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Abstract

The Medium Voltage (MV) network in the Netherlands is almost entirely composed of under-
ground cables. The failure statistics show that the interruptions in the medium voltage have
a high contribution in the mean outage time per year per customer. The interruptions in the
medium voltage grid are often caused by failure of circuit components mainly the cables, joints,
and terminations which account for 73% of the failures. The occurrence of these interruptions
and their duration can be limited by proper maintenance measures.

Partial discharge diagnostics provide a way for the condition assessment of the circuit insu-
lation. The Smart Cable Guard (SCG) systems from DNV GL help in continuous monitoring
of the medium voltage cable circuits during the circuit operation and aid the network operators
in maintaining the MV grid. With its non-intrusive monitoring characteristic, we see that the
SCG systems provide the measurement of partial discharges (PD) occurring in the cable circuit.
Moreover, the partial discharge measurements consists of the information about the location
of each observed discharge event along with the time of its occurrence and its corresponding
discharge magnitude observed in picocoulombs for every minute. The partial discharge events
occurring in the circuit are subjected to evaluation from an expert at DNV GL control rooms
who qualitatively assigns a warning level (Level 1, 2, 3, or Noise) to the observed pattern of
discharge events. This manual process of evaluation of PD events and assignment of warnings
to them is a laborious task and the network operator has to rely on the availability of the expert
and his/her accurate assessment. To reduce this dependence for the network operator, Alliander
in collaboration with the DNV GL experts is developing an automated decision support tool to
identify the partial discharge events and to aid the operator and the expert in evaluating the
condition assessment of the cable network.

This thesis proposes a clustering methodology using the ST-DBSCAN density-based tech-
nique for identifying high-density discharge events or ‘areas of interest’ in the PD data obtained
from the SCG systems. The clusters identified from the method are further evaluated by ex-
tracting their features or characteristics using the PD data attributes as well as describing their
characteristics based on the context of the circuit. The performance of the clustering method
is validated using the DNV GL warnings by formulating performance indicators and metrics to
measure the performance. The clustering method along with the features extracted from the
cluster contribute towards the development of the automated decision support tool.
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Chapter 1

Introduction

Following the 1998 Electricity Act [1], the electric power system in the Netherlands underwent
several changes - from the decoupling of the transmission and distribution operations to market
liberalization and introduction of a regulatory authority to monitor the operations and the
market and cater to the consumer interests. This resulted in separation of vertically integrated
companies and allowed the consumer to exercise freedom of choice in selecting the electricity
supplier thus encouraging competition of supply and efficiency.

Although the consumer could have a choice in deciding their energy supplier, it was not
possible for the consumer to have a choice in deciding their grid operator. The grid operators
are therefore a natural monopoly [2]. The electric power industry is divided into three areas
of operation, namely, generation, transmission and distribution, and supply of electricity. The
transmission responsibility now lies with Tennet, Transmission System Operator (TSO) of the
Netherlands, which transmits energy from generation points to regional distribution network
operators. There are a total of eight distribution network operators with Enexis, Liander,
and Stedin providing services to most of the country. The division of responsibilities between
the transmission and distribution operators were done on different grid voltage levels with the
Extra High Voltage (EHV), Ultra High Voltage (UHV) and High Voltage (HV) network was
maintained and operated by the Transmission System Operator (TSO) and Medium Voltage
(MV), Low Voltage (LV), and part of the HV network was handled by the Distribution System
Operators (DSO).

The Authority for Consumers and Markets (ACM) operates as the regulatory authority with
its main tasks of ensuring that all suppliers have access to the transmission and distribution
infrastructure with similar financial and technical conditions so as to achieve a fair and secure
functioning of the network alongwith exercising tariff regulation for the usage of the infrastruc-
ture. The duties of both Transmission and Distribution (T&D) operators include (i) operation
and maintenance of the network, (ii) guaranteed transport of electricity in a safe and reliable
manner, (iii) construction, repair and expansion of networks, (iv) planning and maintaining
sufficient capacity, (v) access to new connections without discrimination, and (vi) promoting
safe use of electricity [3].

Reliable operation of power systems has always been of utmost importance to ensure there
is uninterrupted and secure supply of energy to consumers. Utilities often have to deal with
aging infrastructure and need to maintain and replace old equipment every now and then. Due
to high cost of components, utilities are constantly striving to optimize the use of resources
for maintenance activities while safeguarding system reliability within adequate limits [4]. The
regulator expects utilities to provide acceptable levels of service for lowest possible rates and also
expects data-driven spending budget reports to ensure credibility of the operator [5]. To comply
with the standards of the regulation, utilities adopt an Asset Management (AM) framework
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CHAPTER 1. INTRODUCTION

Figure 1.1: Three categories of information aspects of electrical asset management and Asset
Maintenance Strategy [6]

to achieve a balance in the technical, financial and societal aspects of the engineering and
infrastructure needs for a reliable energy supply.

In [6], a model is presented that describes the societal, technical, and economical information
aspects that go into assessment of the status of asset (Figure 1.1). The decision process for
asset management is divided into three categories :-

• Technical Aspect takes into account the asset related parameters such as the physical
condition of the asset and maintenance activities for the ageing of components, failure
probability of the component, and inventory and maintenance activity planning.

• Economical Aspect takes into the financial aspect of the maintenance cost and other costs
related to the replacement and procurement of components and costs due to failure.

• Societal Aspect evolved from the need to take into account the failure acceptability of the
society wherein some institutions like hospitals and public places would suffer gravely due
to unreliable supply of electricity and hence the social and economical impact would be
high.

Considering the technical aspect of asset management it can be further extended for employ-
ing maintenance strategies for condition assessment of components. The maintenance strategy
for the performance of electrical assets is categorized into Corrective Maintenance (CM) which
aims to restore performance after a failure through repairing the faulty component, and Pre-
ventive Maintenance (PM) which aims to reduce the failure probability of the component by
inspecting or replacing the component before it fails. In [7], a framework is developed based
on preventive maintenance called reliability centered maintenance (RCM) for asset manage-
ment providing statistical relationship between PM of assets and total maintenance costs for
distribution systems.

PM activities can be planned as scheduled or time-based maintenance activity (TBM) for
a routine inspection of the components or as a condition-based maintenance (CBM) where
the activity is performed based on the condition of the component monitored through sensors.
An advantage with the TBM activity is that all the components are checked at regular time
schedules but poses a risk if the time schedules of inspection are not optimized which can lead
to failure of the component. CBM activity involves the continuous collection and interpretation
of data of the components and determining the initiation of failure modes and subsequent time
of failure to update the decision process of maintenance strategy such as initiation of repair
activity and priority of the activity [8].
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CHAPTER 1. INTRODUCTION

Condition based maintenance includes the process of (i) data collection through condition
monitoring of the component and historical data available for the component, (ii) handling
of the acquired data into meaningful abstract representation, (iii) utilizing the knowledge for
failure prediction, (iv) and finally decision making (repair, replace or run-to-fail) based on the
assessment of the failure risk. With the introduction of smart sensing technology being installed
by utilities, collecting data has become increasingly important in supporting organizational
decisions along with the decision making process. The development of data analytics in the
form of data mining, statistical modelling and machine learning techniques help in better failure
prediction and can bridge the gap between short-term corrective work and long-term capital
planning for utilities [9].

1.1 Challenge
Owing to the increase in demand of high capacity connections of solar farms and data

centres has accelerated the need for updating the network and its expansion to accommodate
these demands and avoid failure of the grid. With these updates in line, the network operator
also has to ensure a reliable supply of electricity at all times. Several reliability indices are
calculated to evaluate the interruptions observed in the grid. In Figure 1.2, the annual outage
duration due to interruptions in the LV, MV, HV, and EHV network is shown. The annual
outage duration is a commonly used indicator to evaluate the degree of reliability. It is evident
that the interruptions in the medium voltage network have a larger share in contributing the
annual outage time. The interruptions are mainly caused due to failure of components in the
network. In the Netherlands, the MV network is almost entirely composed of underground
cables.

Figure 1.2: Annual outage time per customer per network area [min/year], (2009 – 2018) [10]

Figure 1.3 illustrates the failure statistics in the MV grid per component. It is evident from
the figure that majority of the interruptions in the MV grid are caused due to failure in the
circuit of the MV grid which comprises of the cables, joints, and termination components. The
bar chart (Figure 1.3) illustrates the cause of failure in the circuit components. The causes
of failures are mainly due to ageing of the component, damages due to digging activities, and
internal defects in the insulation of the component. The proportion of failure in joints due to
internal defect is prominent and contributes to the majority of interruptions in the MV network.

Aging mechanisms like thermal degradation, electrical stress, mechanical stress, and envir-
onmental conditions are often the cause of failure in cable networks and alter its insulation
property. These changes in the insulation property observed over time help in identifying the
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CHAPTER 1. INTRODUCTION

Figure 1.3: Failure statistics in the MV Grid [10]

process and state of deterioration. Partial Discharge (PD) activity is one such mechanism as-
sociated with degradation of the insulation integrity of the component. Due to thermal aging,
cracks may appear in the insulation which may lead to a rise in PDs. Several tools have been
developed to monitor partial discharge activity.

1.2 Company Profile
This thesis was carried out with the collaboration and support of Alliander, a Dutch distri-

bution system operator (DSO). Alliander is among the biggest distribution network operators
of the Netherlands and extends its service in the operation and maintenance of gas and electri-
city grid across the country’s provinces of Amsterdam, Friesland, Gelderland, North Holland,
Flevoland, and parts of South Holland (Figure 1.4).

With the total electricity grid length of 91,000 km, Alliander serves close to 5.8 million cus-
tomers in the Netherlands. The operator supports several types of loads and feed-in generation
on the grid. Typical loads can be categorized into residential, industrial, and data centres.
With the growing awareness about climate change, the need for energy transition has led to
increase in local energy generation and consumption. Residential rooftop solar and solar/wind
energy parks provide a cleaner and affordable alternative. There has also been an increase in
the adoption of electric transport and its subsequent need for charging infrastructure. This
increase in the local generation capacity and increased demand causes bottlenecks (or conges-
tion) in the grid and the operator needs to solve these bottlenecks by upgrading the network
and applying innovative solutions such as the digitalisation of the grid for improved operation.

One such digital upgrades undertaken by Alliander to improve the operational efficiency of
the network is the installation of Smart Cable Guard (SCG) for medium voltage cable networks
to continuously monitor and detect partial discharge activity in the cable network. The SCG
system detects weak points in the underground cable network before they might lead to outages.
Alliander has over 1500 SCG systems monitoring close to 6000km of the MV cable network that
contain approximately 35,000 joints. The SCG system is described in detail in the following
chapter.
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CHAPTER 1. INTRODUCTION

Figure 1.4: Geographical overview of the service area for electricity network of Alliander [11]

1.3 Research Objective

1.3.1 Problem Definition

Partial discharge activity in cables is a widely known diagnostic method to assess the condition
of circuit components. For a long time, the condition of insulation of the components due to
incipient partial discharges was identified through offline investigation of the cable. With the
introduction of SCG systems in the cable network, online monitoring of the cable condition has
become possible and can provide early warnings in the deterioration of cable components due
to PD activity. To assess the condition of the cable, the utility heavily relies on the analysis
of human experts due to their extensive knowledge gained through the PD behaviour observed
from offline tests. The knowledge rules derived through years of offline investigations are often
not transferable for assessing the data collected from online systems and are also labour intensive
to provide accurate assessment [12].

Continuous monitoring through SCG provides a vast data stream for every circuit which
needs to be correctly interpreted in order to extract useful information on the status of the
circuit and its components. Often the data collected from the online monitoring tool contains
a lot of noise detected from neighbouring radio signals or proximity to industry or solar/wind
parks. The partial discharge events occurring in the circuit are subjected to evaluation from
an expert at DNV GL control rooms who qualitatively assigns a warning level (Level 1, 2, 3,
or Noise) to the observed pattern of discharge events. This manual process of evaluation of
PD events and assignment of warnings to them is a laborious task and the network operator
has to rely on the availability of the expert and his/her accurate assessment. To reduce this
dependence for the network operator, Alliander in collaboration with the DNV GL experts is
developing an automated decision support tool to identify the partial discharge events and to
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aid the operator and the expert in evaluating the condition assessment of the cable network.
This research focuses on the interpretation of the data acquired from the SCG monitor-

ing tool through elimination of noise points and identifying ‘hubs’ or clusters of high density
discharges in the circuit. Further statistical analysis on the identified clusters would help in
preparing knowledge rules through meaningful features of the clusters. For the scope of this
thesis, two main research objectives were identified:-

RO 1: How can we identify high-density discharge events in continuously monitored, noisy
PD activity?

The SCG systems connected at both ends of the circuit, continuously measure the discharges
occurring at various locations in the circuit. Disturbances from surroundings of the circuit such
as proximity to industry or solar/wind parks, construction activities, railway tracks running
along the circuit etc. are also sometimes picked up by the SCG as discharges. PD activity is
also intermittent in nature and can occur during high loading cycles, increase in temperature in
the conductors etc. This research objective aims at identifying high-density activity occurring
in the circuit and filter the noise measurements from the received SCG data.

RO 2: How can we describe relevant events from background noise?

The identified high-density activity is evaluated by calculating features which will help in
describing the activity as well as help in understanding partial discharge events from noisy
events. The attributes of the SCG data such as the location of the activity, timestamp of
the occurrence of the activity and discharge magnitude are used to describe the high-density
activity identified.

1.3.2 Research Outline

For the above research objectives the following tasks were formulated:-

• Implementation of a clustering method to identify high-density discharge events in the
SCG data

– Identify high density clusters using the spatial and temporal attributes of the data.

• Evaluate performance of the clustering method

– Validate the clusters identified with the DNV GL warnings assigned for the circuit.

• Extract quantifiable features from the identified clusters

– Density of the cluster, charge distribution of the cluster, calculating the inter-arrival
times of the discharge events occurring inside the cluster

– Calculate the statistical parameters of the cluster properties such as the mean, me-
dian, skew, and kurtosis.

1.4 Thesis Outline
This thesis report is structured in the following manner:

In Chapter 2, a detailed background of the medium voltage network and the causes of failure
in the network is provided. A brief account of the partial discharge behaviour and the various
monitoring methods for PD activity is described. An elaborate account of the Smart Cable
Guard (SCG) system is described in detail.
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CHAPTER 1. INTRODUCTION

In Chapter 3, we explore the project data used for the scope of the research. A high level
description of the data is provided and preliminary descriptive analysis is performed on the
data. This is followed by the description of the Automated Warning System developed at Alli-
ander and the contribution through this thesis towards its development.

In Chapter 4, we discuss the clustering methods and elaborate on the density based clus-
tering methods for the project data. The clustering process implemented is described in detail
and the performance indicators to evaluate the clustering method are introduced.

In Chapter 5, we discuss the experiments for our evaluation and elaborate on the results.

In Chapter 6, conclusions and some possible future improvements to this work are discussed.

7





Chapter 2

Background

This chapter provides a brief description of the medium voltage network structure and its main
components. The common causes of failure of the components and the degradation mechanisms
associated with the components is briefly summarized. For the scope of this thesis, the basics of
partial discharges and its monitoring methods are described along with the advantages of online
monitoring. The concept and working of the Smart Cable Guard (SCG) online monitoring tool
is elaborately discussed.

2.1 Medium Voltage (MV) Grid Network
In the Netherlands, the network is divided into four different grid voltages [10]:- (i) Low

Voltage (rated voltage ≤ 1kV ), (ii) Medium Voltage (rated voltage > 1kV and ≤ 35kV ),
(iii) High Voltage (rated voltage ≥ 35kV and ≤ 150kV ), (iv) Extra-High Voltage (rated voltage
> 150kV and ≤ 380kV ).

The extra-high voltage grid is maintained by the TSO (Tennet) and helps in transporting
electricity over large distances in the Netherlands mainly through overhead lines. The high
voltage grid connects the extra-high voltage grid to the distribution networks. The voltage at the
power station is transformed to high voltage level (HV: > 35kV ). Power plants, energy intensive
industries, and large wind and solar parks are connected to the HV grid. It consists of partly
overhead lines and underground cables. In the HV substations, the voltage is transformed down
to the MV level (1kV - 35kV). Typically 10 - 30 MV feeders leave the substation to distribute
the power to customers in the region [13]. These feeders usually are comprised of underground
cables in densely populated regions such as the Netherlands. A feeder is characterized by a
number of shorter sections of underground cable that are interconnected by ring-main-units
(RMUs) above ground. The length of a cable between two RMUs can vary from 100m to 8-
12km depending on the topography [14]. Due to local topological changes, most of the cables
between two RMUs consist of multiple shorter cables sections that are connected together by
underground joints [15]. Typically, a RMU contains a busbar that connects multiple, usually
two, incoming MV cables which can be switched on and off the busbar. The busbar connects to
a transformer that transforms the medium voltage to low voltage (LV: < 1kV ). The low voltage
leaving the RMU is distributed over cables or overhead lines to deliver power to customers in
the neighborhood.

The structure of most medium voltage grids is ring-shaped or meshed. The ring-main-unit
derives its name to the fact that RMUs act as nodes in this ring. The ring structure offers
the advantage to network operators more options to feed consumer via an alternative route in
the unlikely event of a malfunction or during maintenance and repair hence providing better
reliability. Therefore, the medium voltage grid is designed in such a way that it is possible to
switch cables to restore the energy supply after a failure has occurred. In that case, the grid
operator locates the fault, isolates the fault location and restores the energy supply via another
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CHAPTER 2. BACKGROUND

Figure 2.1: Structure of the Medium Voltage (MV) grid in ring configuration [13]

part of the medium voltage grid.

2.1.1 Causes of Failures and Degradation mechanism

A MV grid network comprises of several components, mainly the circuit which consists of
the cable, joints which connect parts of the cable, and termination at the end of the cable
connection. There are number of different types of cable, joints, and terminations based on
topographical conditions. Each type provides different properties based on its construction and
insulation material. Failure statistics shown in Figure 1.3 indicate that the MV grid circuit
contributes towards 73% of breakdowns in the MV grid, especially 36% from cable joints [10].

The circuit components are connected in a distributed manner meaning that in the case of
failure, the issue can be resolved by replacing the section of the failed cable and as well as the
failed joint and thereby reducing the time of interruption in power supply. For instance, if part
of a cable connection shows strong degradation, it is removed and replaced. Such repairs may
not only result in an exchange with a similar component, but it also could involve replacement
by another type of the same component or even a modification of the topology of the circuit.
Each of these components may have different insulating media. Cables can be either paper
insulated lead covered (PILC) type or cross-linked polyethylene (XLPE) type [16]. Joints and
terminations can have insulation types such as mastic, resin, paper, oil-filled, premoulded and
hot/cold shrink [16]. A schematic representation of the circuit components is shown in Figure
2.2.

Figure 2.2: Representation of the circuit with its components (cables, joints, terminations)

The causes of defects leading to a breakdown in insulation that occur in the circuit com-
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CHAPTER 2. BACKGROUND

ponents can be seen from the Figure 1.3. The main contributing factors can be characterized
into three main classes [16, 15]:

Manufacturing faults
Impurities induced during the manufacturing process lead to defective components. Cavities
and other defects in insulation emerge due to poor treatment of the insulation material during
the design and engineering phase. Incorporating factory acceptance tests (FAT) and production
tests for examining the quality can help in identifying cavities or inclusion of impurities or bad
finishing of the components.

Incorrect Handling
Substandard handling of the circuit components during transportation can result in damage to
the protective layers of the cable and can lead to initiation of sites of degradation in the insu-
lation. Unprofessional workmanship or lack of sufficient assembling guidelines by the manufac-
turer can cause several problems such as misplacement of conductors in a joint, rough treatment
of components during installation etc. Such violations are prone to occur during high-pressure
situations or bad weather conditions increasing the probability for inefficient handling.

In-Service defects
Defects and stress induced during the operation of the components can be classified into the
operational conditions of the system, environmental condition surrounding the components and
external forces acting on the circuit.

• Operational condition - Aging of the component leads to deterioration of the chemical
or mechanical properties of the component insulation thereby reducing its dielectric or
structural strength consequently leading to a breakdown. Overloading of the cables can
cause thermal and mechanical stresses and lead to damage in the insulation.

• Environmental condition - The surrounding conditions upon laying the circuit components
in the ground affect the lifetime of the insulation. Interaction between the moisture
content of the soil and the component insulation strongly impact the aging process. Soil
operation can lead to thermal and mechanical stresses on the insulation such as a drop in
soil water level combined with increase in soil temperature due to overloading can result
in deterioration of the insulation. Loosened soil can lead to sinking of the cable causing
mechanical stress affecting the water tightness of the joint creating a path for moisture
penetration into the insulation resulting in corrosion of the cable.

• External forces - Excavation activities due to repair work or nearby construction activities
directly damage the cable insulation. These activities can also cause vibrations in the soil
which may cause misplacement of conductors in the joint thereby reducing the water
tightness of the joint.

A single factor or a combination of above mentioned factors can result in the acceleration of
the degradation mechanism of the component. The main degradation mechanisms associated
with medium voltage levels are summarized [17]:

• Thermal degradation: Low dielectric loss in new equipment help prevent overheating
of the component hence avoiding insulation breakdown. However, the dielectric losses
may increase gradually over time due to aging of the component. The aging process
is accelerated during heavy service conditions resulting in high temperatures thereby
reducing dielectric strength.

• Partial discharges (PD): Emergence of discharges is evident in the cavities or cracks in
insulation when the electric field of the insulation defect exceeds its inception voltage
[18]. This process is often accelerated due to high temperatures, chemical deterioration
etc. making PDs both a cause and a symptom of deterioration.
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• Electrical treeing: The process of electrical treeing is considered as the last step in the
insulation degradation before a breakdown occurs. Corrosion of the insulation due to
partial discharges leading to an emergence of carbonized channels indicates the inception
of electrical treeing.

• Water treeing: The process of water treeing is caused due to a combination of water
and electrical stress leading to a degradation in polyethylene materials [19]. The electric
breakdown strength of a polyethylene insulating material is reduced due to water trees.
Although it takes many years for water trees to develop, it can lead to formation of
PDs and electrical trees in its final stages resulting in further deterioration and eventual
breakdown.

2.1.2 Partial Discharge Behaviour

The IEC 60270 standard [20], defines partial discharge as, “localized electrical discharge that
only partially bridges the insulation between conductors and which can or can not occur adjacent
to a conductor”. These discharges are a result of local electrical stress concentrations in the
insulation that appear as pulses with a duration of much less than 1µs.

Partial discharges can be categorized into three types namely internal, surface, and corona
discharges [16]. Internal discharges occur in gas-filled voids or cavities within solid dielectrics
which may lead to electrical treeing if the frequency of discharges increases leading to full break-
down (Figure 2.3 (b)). Surface discharges occur along the dielectric interface. The conductive
path formed along the surface of the insulation leads to tracking which eventually propagates
into electrical treeing causing a complete breakdown Figure 2.3 (a)). Corona discharges are
caused due to electrical overstress at sharp edges in gas or liquid medium due to the ionization
of air surrounding the conductor leading to inhomogeneous field.

Figure 2.3: (a) Formation of tracking from surface discharge leading to inward electrical treeing
[16], (b) Growth of damage in cavity from PD to formation of pit and to breakdown [21].

2.1.3 Partial Discharge Monitoring

Several diagnostic methods are present to identify the deterioration of the insulation in the
circuit components and help in the determination of the circuit condition and ultimately its
lifetime. Testing procedures at each stage of the cable lifecycle - development, type testing,
pre-qualification, production, installation, service, and eventual failure - are available [22].

PD detection methods provide useful information about the cable insulation and its ac-
cessories [23]. High frequency pulses propagate towards the cable ends during partial discharge
activity. The PD detection technique helps provide a reliable way to detect these high frequency
pulses and also helps in locating defective sites or regions along the cable length.
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Partial discharge monitoring can be carried out either offline or online. Offline monitoring
of partial discharges in medium voltage cables involves disconnecting the cable from the grid.
This allows adjustment of test parameters to achieve an optimal outcome of the diagnostic
technique. The cable under test requires a separate power generator to energize the cable and
testing needs to be carried out in a controlled environment i.e. with low disturbance levels
and on a voltage level of choice. High frequency pulses originate upon excitation of partial
discharges at sites along the cable which propagate in both directions and are reflected at cable
ends. The location of the PD site is identified by calculating the difference in the time of arrival
of the first pulse and the reflected pulse at the far end of the cable [24].

Although offline monitoring techniques provide flexibility in test settings for better detection
sensitivity to PD defects, measurement of PDs while the cable is in-service i.e. online over a
longer time periods prove to be beneficial in understanding the development of defects in the
cable circuit. The advantages of online monitoring techniques over offline monitoring techniques
are enumerated below:

• Online monitoring does not require discontinuation of power supply unlike offline tech-
niques which requires disconnecting the cable from the grid to isolate the circuit leading
to increased risk in loss of supply and increased time of testing.

• Offline methods pose a limitation in the number of cable sections that can be tested at
one time to avoid the risk of serious outage. This is not the case with online monitoring
methods.

• Online monitoring reduce the need for personnel efforts for testing thereby reducing the
cost of operation for utilities.

• The cable is monitored under real operating conditions which include the effect of tem-
perature and humidity, overvoltages, and variation in loads which can better insight into
the cable condition during actual conditions.

• Online monitoring provides continuous data registration that gives a possibility of ob-
serving the trend of PD activity over time and its effect on ageing and insulation degrad-
ation. This also helps in capturing PDs occuring before a failure. In case, a PD activity
occurs only for a short period of time and disappears this trend can be intercepted by
online monitoring methods [25].

2.2 Smart Cable Guard (SCG) System
During the period 2001-2005 [17, 13, 26], extensive research was conducted to investigate

and develop a cost-effective solution for online PD detection and localization for MV cable
systems. This led to a presentation of a proof-of-concept called as PD-OL (Partial Discharge
testing On-line with Location) [27]. The proof-of-concept was made commercially available
under the product name Smart Cable Guard (SCG) by DNV GL [28].

The Smart Cable Guard (SCG) system consists of two measurement units which are installed
at the cable circuit ends terminated at the substation or RMU(s). The measurement unit
comprises of a Sensor/Injector Unit (SIU) and a Controller Unit (CU). The measured data is
communicated to the server via the internet [29].

The SIU consists of a sensor that measures pulses from the cable and an injection device
to inject pulses into the cable for time synchronization of the sensors. The sensor/injector unit
is of inductive type and hence placed either around the cable or the earth lead of the cable.
This makes it possible to mount the device without disconnecting the cable. The controller
unit operates as the heart of the locally installed SCG system and is connected to the sensors
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through an optical fibre cable. The CU is also connected to DNV GL’s control centre server
through internet via GPRS or LAN connection. The DNV GL control centre server collects the
measurement data and provides a web platform to visualize the PD and fault data 24/7 [30].
In the event of fault the server sends out a warning to the network operator via email and SMS
including the location of the fault and the timestamp of the occurrence of the fault.

2.2.1 SCG Monitoring Methodology

The Smart Cable Guard monitoring methodology for the detection and location of PDs can be
defined by following process steps:

• The sensor/injector units clamped at the ends of the cable measure pulses propagated
along the cable length. The sensor installed at one end of the cable acts as a master and
the sensor at the other end will act as a slave. Every minute, the master unit injects a
pulse to the other end of the circuit where it is received and detected by the slave unit.
This patented pulse injection technique helps in time synchronization of the internal
clocks of the inductive sensors with an accuracy of 100ns and therefore perform accurate
fault/defect localization.

Figure 2.4: SCG Measurement Setup [14]

• From a defect spot X (Figure 2.4) between positions A and B, electromagnetic waves from
PD pulses travel along the cable in two directions, away from the defect spot X. Each
of the two SCG sensors detects the PD pulse passing. The travelling wave amplitude
alongwith the time of arrival of the pulse is stored. The difference in the time of arrival
of pulses detected at the cable ends helps the SCG system to accurately locate the origin
of the PD using the equation [31]

lpd =
L

2

(
4t
4T

+ 1

)
(2.1)

where:

lpd : defect location where the PD pulse originated from

L : total cable length

4t : difference in arrival time at both cable ends of the PD pulses coming

from the same origin.

4T : cable propagation time [order of nanoseconds]
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• The Controller Unit (CU) connected to the SIU controls the measurement sequence, data
collection, signal processing and the data communication to the Control Centre Server.
PD signals are impeded by noise and interference from the surrounding signals such as
radio broadcasts, broadband background noise, and finite-energy interference such as
thyristor pulses, switching transients or PDs from adjacent HV systems. This makes
signal processing a crucial part for noise suppression. Techniques like matched filtering
help in detecting PD pulses in the presence of noise. Matched filtering technique is used
for detection of deterministic pulses in the presence of noise. Hence, a matched filter
is optimized such that the average signal to noise ratio (SNR) is maximized at the filter
output provided, the signal waveform and noise properties are known or can be estimated.
PD signal waveforms can determined by the signal propagation paths of the cable system
and therefore matched filters can be designed for PD signal extraction [26].

• The injected pulses from the SIU can also be used for calibration of the measuring system.
The pulses injected have a known pulse shape which helps in determining the transfer im-
pedances at the ends of the cable. This information can help in calculating the PD charge
from the measured PD pulse shape and amplitude using the matched filters. Matched
filters are scaled to the measured PD pulse. This provides a linear relation between the
PD pulse measured and the filter response and hence the PD charge can be determined
directly from the maximum filter response [26, 31].

Figure 2.5: SCG Warning Levels

• Since multiple SCG systems are installed in the field locations, the PD measurements
detected by the SIU are processed locally by the CU and communicated to the Control
Centre Server via the internet. The data from both the SIUs is collected and combined
to eliminate external pulses and to calculate the PD origin. Next, various statistical
parameters are calculated to understand the PD behaviour. The trend in the PD data
is evaluated using knowledge rules 1 and expert opinion and warnings are assigned to
indicate the severity of the PD data (Figure 2.5). The PD data is made available every
hour on the web platform along with the warnings assigned. The network operator can
also view the trend of the PD activity in a 3D plot on the web platform provided by DNV
GL (Figure 2.6).

The warnings for the SCG monitored circuit are assigned by a DNV GL expert who continu-
ously observes the PD data sent to the control server every hour. The warning is a qualitative
assessment from the DNV GL expert based on the development of the activity from the last

1These knowledge rules are proprietary to DNV GL and are not present in the public domain. The assessment
methods employed were known through discussion with the DNV GL experts during the course of this thesis.
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Figure 2.6: SCG Web Platform (Source: DNV GL)

time. This makes it a tedious task for the warning assignment as well as placing tremendous
dependence on the availability of the DNV GL expert from the operator side. This makes it
imperative to find a way to automate the process of identifying the development of this activity.

2.3 Summary
This chapter provides background information necessary to understand the system of in-

terest. Section 2.1, provides an overview of Medium Voltage (MV) grid network with its struc-
ture and configuration characteristics.

In Section 2.1.1, the common causes of failures observed in the MV network components.
The degradation mechanisms that may affect the component lifetime and can lead to their
failure is summarized. One of the most prominent symptom and causes of degradation is the
partial discharges occurring in the insulation.

The behaviour of partial discharges and its various types is discussed in Section 2.1.2.
The methods of monitoring are discussed in Section 2.1.3 along with the advantages of online

monitoring of partial discharges.
Section 2.2 introduces the Smart Cable Guard (SCG) system used for online monitoring of

partial discharge activity. The methodology employed by SCG for monitoring of PD activity is
elaborately discussed in Section 2.2.1.
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Chapter 3

Project Data

This chapter introduces the data provided by the SCG system to the network operator. The
circuit characteristics are also briefly described which provide a high-level information of the
circuit. A preliminary descriptive analysis is performed on the available data to understand its
characteristics. An introduction to the Automated Warning System developed at Alliander is
provided with an overview of the development steps of the architecture. The development steps
relevant to the scope of this thesis are addressed.

3.1 Features
There are approximately 1500 active SCG systems mounted on the Alliander circuit network.

Each circuit data consists of the characteristic properties of the circuit along with the PD data
from the SCG systems provided by DNV GL. In Table 3.1, an overview of the Alliander Circuit
data is provided along with a brief description and type of data.

Table 3.1: Alliander Circuit data

Datatype Description
Circuit ID integer Unique identification for circuit

with SCG system.
Cable Congifuration data table Information of the locations

of RMU(s), Terminations, and
Joints(type).

Circuit Length float Length of the circuit in metres
(m).

Start/End Location string Geographical Start and End Loc-
ation of the circuit.

The circuit data from Alliander describes the high-level characteristics of the circuit with
a SCG system installed. The Circuit ID serves as an unique identifier for the circuit. The
Cable Configuration provides information regarding the locations of RMU(s), terminations,
and joints in the circuit. It also holds information of the type of joint installed. The SCG
system is installed at the circuit ends and hence the length of circuit is of importance.

In Table 3.2, the SCG data received from DNV GL for each circuit is described. The PD
data provides the information of discharges in the circuit. The data table consists of the location
of each observed discharge (in metres), the timestamp of the occurrence of discharge and the
magnitude of the discharge occurred (in picocouloumbs or pC). Every hour, one end of the
circuit SCG sensor/injector unit injects a pulse which is detected by at the other end of the
circuit to measure the propagation time of the pulse along the circuit. The SCG sensors also

17



CHAPTER 3. PROJECT DATA

inject a high frequency pulse every hour to detect the pulse amplitude and calculate the charge
associated with it. This is done to measure the PD detection sensitivity of the SCG sensors.
The Warnings data table gives the warning levels (Figure 2.5) assigned to discharge locations
of the circuit and time of occurrence of the discharge events and is updated every hour on the
SCG web platform.

Table 3.2: SCG Data from DNV GL

Datatype Description
PD data data table Date/Time, Location, Charge

Magnitude of the discharge
activity

Propagation time time(ns) Propagation time of the circuit
measured by the SCG systems
every hour.

Sensitivity charge(pC) PD charge detection sensitivity
measured every hour.

Warnings data table Date/Time, Location and Warning
Level (1, 2, 3 or Noise)

3.2 Exploratory Data Analysis
This section explores the high level characteristics of the circuit data. From the actively

monitored circuits, the boxplot of the length of the circuits (Figure 3.1) shows the median
circuit length is around 3000m. Based on the circuit configuration, the average percentage of
cable length (in metres) that consist of the PILC (paper insulated lead covered) insulation type
in the circuit are plotted. It is evident from the boxplot that there is higher percentage of PILC
insulated cables in the circuits.

Figure 3.1: Average circuit length of the monitored circuits and the average percentage of
XLPE and PILC type cable in the circuits

In the Figure 3.2, the scatter plots show the number of warnings observed for the number
of joints in the circuits, the number of RMUs in the circuit, and for the length of the circuit.
The warnings considered here are the DNV GL Level 1, 2, 3, and Noise warnings. There is
very little correlation with the number of warnings with respect to the number of joints and
number of RMUs in the circuit. The number of warnings observed for the increasing circuit
length shows a negative correlation although it is very low.

The scatter plots for the number of warnings with respect to circuit length is plotted for
warnings levels 1 and 2 collectively and also for warning level 1 alone (Figure 3.3). On further
observing the correlation between the number of level 1, level 2 warnings and the length of
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Figure 3.2: Number of warnings observed with respect to number of joints and RMUs in the
circuit and length of the circuit

the circuit, the correlation becomes weak to draw upon any conclusions on the effect of circuit
length on the number of warnings observed. It is interesting to note here that the proportion of
level 1 warnings is far less than the total number of warnings observed (level 1, 2, 3, N) (Figure
3.2). It is also evident that the level 1 warnings are observed for circuit lengths less than 4000m
which is also the average circuit length of the actively monitored circuits.

The SCG data from the actively monitored circuit provides the location of the PD defect,
the timestamp of occurrence of the defect and also the magnitude of charge measured for the
PD. The data for one circuit is visualized in three different views namely the front, top and side
view (Figure 3.4, 3.5, 3.6). These views are a combination of the three attributes of the SCG
data and the observation of each attribute with respect to each other. The front view gives
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Figure 3.3: Number of warnings (Level 1 & 2, Level 1) observed for the length of the circuit

the charge magnitudes observed at each locations of the circuit. The top view helps observe
the concentrations of discharges occurring at locations and see the trend in activity spread in
time. The side view provides a way to visualize the variation in charge observed in time. For
the observed circuit, the DNV GL experts assigned 3 warnings on location 349m (level 3) from
February 2018 - May 2018 and on location 604m (level 2 and level 3) from January 2018 -
February 2018.

From the SCG data, the number of discharges occurring per day for the entire circuit is
visualized in the Figure 3.7. From the months February to March and from March to May,
peaks can be observed in the number of discharges with the number reaching upto 35,000
discharges cumulatively in February for the circuit. This is also observed from the Top View
(Figure 3.5) with dense activity for locations around 500m and around locations 300m-400m.

The average charge (in nC) per day is plotted to observe the magnitude of discharges
measured by the circuit per day. The highest spike in October 2018 is attributed to the high
discharge magnitude observed at the location ∼2200m. This location is the end of the circuit
where the SCG sensor/injector units are clamped and also can be a place where there might be
RMUs present (which is the case here). The RMUs have multiple MV feeders (cables) passing
through and disturbances in the RMU terminations can be mistakenly picked up by the SCG
sensors as high magnitude discharges occurring at the location [26]. The count of discharges
observed at each locations in the circuit is plotted in Figure 3.9. It can be seen from the
figure that the count of discharges is significantly high for locations around 300 to 600m which
also holds true with the warnings assigned by DNV GL experts for the previously mentioned
locations.
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Figure 3.4: Front Visualization of the SCG PD data. (Color bar on the right indicates the
charge magnitude in picocoulomb)
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Figure 3.5: Top Visualization of the SCG PD data. (Color bar on the right indicates the charge
magnitude in picocoulomb)
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Figure 3.6: Side Visualization of the SCG PD data. (Color bar on the right indicates the charge
magnitude in picocoulomb)
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Figure 3.7: Number of discharges per day
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Figure 3.8: Average Charge per discharge event (in nC) per day
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Figure 3.9: Number of discharges per location in the circuit.
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3.3 Automated Warning System at Alliander
The need for preventive maintenance in the medium voltage cable network has accelerated

the development towards automating the discovery of high density discharge events in the
circuit and to develop knowledge rules for evaluating these events. The SCG Analytics team at
Alliander plans to develop an Automated Warning System (Figure 3.10) which will serve as a
decision support tool for the experts of the network operator.

The purpose of the decision support tool would be to collect the SCG data provided by DNV
GL for the monitored circuits and employ noise reduction techniques and identify high density
discharge events in the circuits. The identified clusters of high-density discharges would then be
evaluated by calculating statistical parameters alongwith the underlying circuit configuration
information. These parameters would then serve as features to the clusters and would help in
deciding whether the identified cluster resembles PD activity (Level 1, 2, 3) or noise.

3.3.1 Architecture

The architecture [32] for the automated warning system is divided into four main development
stages:

Data Preparation
In the data preparation stage, raw data collected from the active SCG circuits is collected
and cleaned by removing inconsistent or missing data such as measurement that have missing
location/timestamp/charge magnitude values. The data then undergoes a preprocessing step,
wherein the PD data is checked for gaps in the measurement. If the gaps are encountered to be
longer than 12 hours then the PD data missing for the gap duration is reported. The processed
PD data is then sent to the Clustering stage.

Figure 3.10: Architecture of the Automated Warning System at Alliander [32]

Clustering
In the clustering stage, the preprocessed data undergoes two processes. First, the circuit spe-
cific features such as the configuration of the cable circuit which includes the locations of the
cables, joints, terminations, and RMUs present in the circuit as well as the their insulation type
are added. This also gives the information of the total length of the circuit. Next, the SCG
data containing the location, timestamp and charge magnitude of the discharges for the circuit
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are passed into the clustering process. Here, clusters of high density discharges are identified
among the measurements. The clustering stage serves as a noise filtering step for the PD meas-
urement data. The clusters identified are checked for DNV GL warnings present in them and
are evaluated using performance indicators.

Feature Engineering
The clusters identified in the clustering stage are evaluated by extracting features in the feature
engineering stage. Features of the clusters provide information of the properties of the cluster.
The features specific to the clusters are calculated by measuring the width of the cluster (in
location), calculating the median location as it gives the information of location where max-
imum discharges have occurred, the charge distribution of discharges in the clusters, density of
the cluster which gives the average discharges occurring in the cluster per day etc. This helps
in distinguishing clusters from the list of clusters identified for the circuit. The circuit config-
uration information added in the clustering stage is used to calculate features of the clusters in
relation to its configuration such as calculating the nearest joint and RMU location by taking
the difference of the median location from the locations of the joints and RMUs in the circuit.
This information provides insight into whether a cluster identified by the algorithm was iden-
tified in close proximity to a joint or RMU.

Classification
Once the features are calculated for the identified clusters and assessed for warnings present
in them, the final step of the system is to distinguish PD or ‘relevant’ clusters from noise. To
classify clusters with PD activity from noisy clusters, the features calculated in the feature
engineering step will be evaluated by calculating correlation among them. Based on the feature
correlation, the features will be ranked according to the order of importance. The identified
cluster set is divided into training, testing and validation sets and the classifier will be trained
on the training and validations set and the performance of the classifier will be evaluated on
the test set.

3.3.2 Thesis Contribution

The scope of this thesis focuses on the Clustering stage and the Feature Engineering stage of
the Automated Warning System. A clustering method is implemented to detect high-density
discharge events in the SCG PD data. The clusters identified by the clustering method are
validated against DNV GL warnings using performance indicators. Features are developed to
extract information from the identified clusters and to give a possible way to describe them
quantitatively which would further supplement the classification model in distinguishing the
clusters with PD activity from noise clusters.

3.4 Summary
In Section 3.1, the features of the SCG and Alliander Circuit data were briefly described.

The circuit data is specific to the monitored circuit and provides the configuration information
of the circuit. The SCG data for the monitored circuits comprises mainly of the PD data
and the warnings data provided by DNV GL server for the circuit. The propagation time and
sensitivity feature of the SCG serves as an additional information of the circuit characteristic
as well as calibration information of the SCG sensors.

Section 3.2 performs descriptive analysis of the overall information of the monitored circuits
and the SCG data received for a circuit.

In Section 3.3, a detailed description of the Automated Warning System developed by
Alliander is provided. Various development stages are explained and the contribution of this
thesis is identified in two of the development stages.

The following chapter provides the description of the clustering technique employed on the
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SCG data and the performance indicators to evaluate the clustering method are described.
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Chapter 4

Data Clustering

This chapter provides an overview of clustering methods and an in depth description of the
density based clustering methods. The methodology implemented for the data is discussed in
detail. Performance indicators are formulated to evaluate the clustering method.

4.1 Clustering
Data mining involves the discovery of interesting patterns in large data sets which in turn

can provide a way to understand the data and thus help in making decisions or predictions based
on the data. One such task in data mining is clustering. Clustering task involves partitioning
of a large number of data points into a smaller number of groups (or clusters) such that the
data points in the same cluster are more similar to each other than to those in other clusters
[33]. Greater similarity or homogeneity between the data points of the group and greater the
difference between group, the clustering would yield better and more distinct clusters.

There are different charcteristics of clusterings used to form clusters which are summarized
below [34]:-

Partitional versus Hierarchical
Partitional clustering divides a set of data points into non-overlapping subsets (clusters) such
that each data point is in exactly one subset. In hierarchical clustering, clusters are allowed to
have subclusters such that these group of nested clusters are organized as a tree. The nodes
(clusters) of the tree are a union or collection of its children nodes (subclusters) and the root
of the tree is the cluster containing all data points.

Exclusive versus Overlapping versus Fuzzy
When each data point is assigned a single cluster then the clustering is known to be exclusive.
In cases where some data point(s) may belong to more than one cluster then such clustering
is known as non-exclusive or overlapping. In fuzzy clustering, every data point is associated
with every cluster with a membership weight ranging between 0 (meaning no membership) or
1 (meaning absolute membership).

Complete versus Partial
Complete clustering assigns every data point to a cluster. This not the case in partial cluster-
ing where some of the data points may not be assigned to any cluster. Such data points may
represent noise or outliers and hence may not belong to any well-defined clusters.

Several models of clustering are present based on the above types of clustering [33, 34].

• Connectivity-based clustering model connects data points to form clusters based on their
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distance and its result is often represented using a dendrogram and hence these models
follow a hierarchical clustering. A dendrogram is a tree that iteratively splits the data
into smaller subsets until each subset contains only one data point. The dendrogram can
either be constructed from the leaves to the root by merging clusters at each step, also
known as the agglomerative approach, or from the root down to the leaves by dividing
clusters at each step, also known as the divisive approach (eg. SLINK [35], CLINK [36]).
Although the model provides an ease of interpretation, its results are difficult to use as
they provide a hierarchy that needs to processed further to find appropriate clusters. Also,
the model does not have a notion of noise and hence is not robust to outliers.

• Centroid-based clustering model partitions the data into a set of k-clusters for a given
parameter k. The algorithm is initiated with an initial partition of the data and then
incorporates an iterative strategy to optimize an objective function. The clusters can be
represented by the centre of gravity of the cluster (k-means algorithms) or by one of the
data points of the cluster close to its centre (k-medoid algorithms). These partitioning al-
gorithms are executed in a two step procedure - first, the k representatives are determined
by minimizing the objective function and then each data point is assigned to a cluster
with its representative closest to the considered data point. One of the drawbacks of this
model is that it requires the number of clusters k to identified to be known a priori. Also,
since the initialization criteria is often done randomly by sampling from the database, the
presence of outliers might have a detrimental effect on clustering process and lead to the
formation of singleton or empty clusters.

• Distribution-based clustering model assumes the data to be generated as result of stat-
istical process and clusters can be identified using known probability distributions. The
clustering process involves deciding on a statistical model for the data and estimating the
parameters of that model from the data. One of the major disadvantages of this model is
that for many real world data sets there might not be well defined mathematical models
to describe the data and hence might not be able to produce clusters effectively.

• Density-based clustering model identifies areas of high density separated from areas of
low density. One of the advantages of the model is that they do not require the number
of clusters as input parameters and also do not make any assumptions of the underlying
density or the variance within the clusters in the data. Unlike most algorithms which
partition the data into predefined groups where the sum of squared pairwise dissimilarities
between cluster data points or the sum of squared dissimilarities of all cluster data points
with respect to some cluster representative (e.g., mean, medoid) using some dissimilarity
measure, density-based clusters are not necessarily groups of points with a low pairwise
within-cluster dissimilarity and thus need not have convex shape but can be arbitrarily
shaped clusters. This property also provides a notion of noise to the clustering method
and makes it robust against outliers.

In the context of the project data, the data received from the SCG system for the circuit
provides the location, timestamp, and magnitude of the discharge events and the warnings
assigned to the circuit. This information does not provide the number of clusters that may be
present for the circuit and for the duration of observation. This makes it difficult to employ
any centroid-based clustering model as it requires a prior information of the clusters (k) that
are needed to be found in the data. Based on the representation of the data in Figure 3.5, it
is seen that occurrence of discharge events has varying density and not every discharge event
is of interest as discharge activity which is sustained over time has more severe effects on the
operation and lifetime of the component. In hierarchical or connectivity-based clustering, each
point is assigned to a cluster or an association link is provided which makes it less effective
in separating noise and dense discharge activity as there would be a large number of clusters
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found and also the partitioning criteria would be required as an input from the user. This is also
true with centroid-based clustering where each point is assigned a cluster based on the point’s
distance closest to a cluster. For the distribution-based clustering model, which assumes the
distribution of the data, the PD data from the SCG system do not follow any know distributions
making it difficult to model the clustering with respect to a known distribution or a mixture of
distributions.

With the density-based clustering model, the characteristics specified previously provide an
advantage in the aspect of non-assumption of the distribution of the data as well do not require
the number of clusters to specified apriori. This makes it suitable for using a density-based
approach towards identifying dense discharge activity in the SCG data from the surround-
ing ‘noise’ or uninteresting activity. In the following sections, two density-based clustering
techniques are explained in detail namely, DBSCAN or Density Based Spatial Clustering of
Applications with Noise and ST-DBSCAN which is a variant of the DBSCAN method. For this
thesis, the ST-DBSCAN method is employed on the PD data recieved from the SCG system to
evaluate the performance of the clustering method in effectively identifying clusters of interest.

4.2 DBSCAN
Density Based Spatial Clustering of Applications with Noise (DBSCAN) [37] is one of the

most widely used and cited density-based clustering model. The paper [37] presents a formal
model for identifying density-based clusters and also a database-oriented algorithm to find
clusters that adhere to the density model.

The DBSCAN model requires two parameters, a spatial threshold or ε-radius (with an
arbitrary distance measure) which defines the minimum distance between two points and the
minPts which is based on the threshold for the minimum number of neighbors of objects. If the
distance between two points is lower or equal to the ε threshold then the points are considered as
neighbors. Objects that have more than the minPts neighbors within the ε-radius are considered
as core points. This forms the main intuition of the DBSCAN model, to find areas that satisfy
the minimum density criteria and thus can be separated from areas of low density. Figures 4.1,
4.2, 4.3 illustrate the various concepts of the DBSCAN clustering methodology (Here for the
sake of illustration the minPts is considered to be 4).

Below are the formal definitions adapted from the paper [37] that expand on the DBSCAN
clustering model:

Definitions

1. The ε − neighborhood of a point p, denoted by Nε(p), is defined by Nε(p) = {q ∈
D|dist(p, q) ≤ ε}, where D is a set of points and dist(p,q) is a distance function e.g.
Euclidean distance, between p and q.

2. A point p is a core point if |Nε(p)| ≥ minPts.

3. A point p is directly density-reachable from a point q with respect to ε and minPts if
p ∈ Nε(q) and q is a core point.

4. A point p is a border point if p is directly density-reachable from a core point q and
|Nε(p)| < minPts.(Figure 4.3)

5. A point p is density-reachable from a point q with respect to ε and minPts if there is a chain
of points p1,...,pn, with p1 = q and pn = p such than pi+1 is directly density-reachable
from pi

6. A point p is density-connected to a point q with respect to ε and minPts if there is a point
o such that both, p and q are density-reachable from o.
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Figure 4.1: Core Point

Figure 4.2: Directly density-reachable

7. Let D be a set of points. A cluster C with respect to ε and minPts is a non-empty subset
of D satisfying the following conditions:

(a) ∀p, q : if p ∈ C and q is density-reachable from p with respect to ε and minPts, then
q ∈ C.

(b) ∀p, q ∈ C : p is density-connected to q with respect to ε and minPts.

8. A point p is considered to be noise if it is neither a core point nor a border point. This
implies that noise does not belong to any cluster.

The paper also provides an algorithm to compute the clusters based on the above defined
model. A pseudo code of the clustering algorithm is shown in 1. The database DB is linearly
scanned for objects that are yet to be processed. When a core point is discovered, its neighbors
are iteratively expanded and added to a cluster with a label assignment whereas the non-core
points are assigned a noise label. If the neighbors of the core points is again a core point, then
their neighborhoods are transitively included in the cluster (density reachable). The objects
that have been assigned a cluster will be dropped from processing.

The algorithm of DBSCAN serves as an abstraction for the clustering model. Different
variants of the algorithm are available such as scikit-learn 0.23 [38], first identify all the neigh-
borhoods and then perform the cluster expansion on the core points that are identified. This
does not improve the overall runtime complexity but is more efficient to execute in the Python
environment.
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Figure 4.3: Illustration of DBSCAN cluster model (A: core point, B & C: border points, N:
Noise point)

Algorithm 1: Pseudocode of DBSCAN Algorithm [39]

Input: DB: Database
Input: ε : Spatial Threshold or radius
Input: minPts: Density threshold
Input: dist: Distance function
Data: label: Point labels. Initially undefined

1 foreach point p in Database DB do // Iterate over every point

2 if label(p) 6= undefined then continue // Skip processed points

3 Neighbors N ← RangeQuery(DB, dist, p, ε) // Find initial neighbors

4 if |N | < minPts then // Non-core points labelled as noise

5 label(p) ← Noise
6 continue

7 c ← next cluster label // Start a new cluster

8 label(p) ← c
9 Seed set S ← N / {p} // Expand neighborhood

10 foreach q in S do
11 if label(q) = Noise then label(q) ← c
12 if label(q) 6= undefined then continue
13 Neighbors N ← RangeQuery(DB, dist, p, ε)
14 label(q) ← c
15 if |N | < minPts then continue // Core-point check

16 S ← S ∪ N

17 end

18 end

The DBSCAN method provides a possibility to cluster points which are close based on the
spatial attribute of the data using the ε threshold. The PD data from the SCG system consists
of the description of discharge event with its location and time of occurrence. The association
of a discharge event with both time and location compels to find a more suitable method to
incorporate the temporal attributes of the data and to impose a threshold on the extent of
evolution of activity in time and thereby identifying clusters close in the spatial and temporal
domain.
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4.3 ST-DBSCAN
ST-DBSCAN is a variant of the DBSCAN model and stands for Spatio-Temporal DBSCAN

[40]. The ST-DBSCAN model provides a way to use the temporal attribute of the data by
defining a temporal threshold. The temporal dimension provides a description of the extent of
evolution of the object whereas the spatial dimension provides a description about whether the
objects considered are associated with a fixed or moving location [41].

Figure 4.4: Spatio-temporal Representation [42]

In the context of this thesis, the data from the SCG systems (as seen in Figure 3.5) shows an
evolution of the discharge activity (or events) in time for locations along the length of the circuit.
This makes ST-DBSCAN a beneficial model to capture clusters of discharge activity that are
close in time and in space (location). The ST-DBSCAN model uses three parameters namely,
the spatial threshold or ε1, the temporal threshold or ε2, and the minPts or the minimum
number of neighbors. The ε1 measures the closeness of objects in the spatial dimension and the
ε2 measures the closeness of objects in the temporal dimension.

The working principle of ST-DBSCAN is such that if the time difference between successive
points is within the temporal threshold or ε2 and the distance between those points is is less
than or equal to the spatial threshold or ε1, then the points are spatial and temporal neighbors.
If a region is dense then the it should satisfy the minPts criteria for the core point condition.
The values of the parameters do not of have any defined rules and the selection is dependent
on the intuition of threshold values based on the application specific to the use case.

For the ε1 parameter, the value is intuitively set based on the information of the SCG
accuracy of 1% of the length of the circuit. For the ε2 threshold, there is no one specific value
that is effective as the temporal characteristics of the data vary across circuits. To find an
optimum threshold value for ε2, the heuristic provided in [37] is employed. The usage of the
heuristic is demonstrated in the next chapter during the evaluation of the circuit. The value
identified for one circuit is used forward for evaluation of other circuits which share similar
circuit characteristics.

4.3.1 Methodology

This section elaborates on the methodology of clustering adopted for the project data. It is
divided into three main process steps (Figure 4.5).

To perform the clustering process, the circuit under evaluation is loaded with its associated
circuit and PD data. The circuit data provides the configuration information such as the lengths
of different types of cable insulation and the locations of RMU(s), joints, and terminations in
the circuit. The PD data is the SCG measured PDs in the cable circuit along with the warnings
assigned to the circuit.
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Figure 4.5: Clustering Process

Figure 4.6: SCG data

The SCG data has three attributes - the timestamp of the discharge event, the location where
it was observed, and the magnitude of discharge. For the clustering process, the location and
timestamp of the discharge events is considered for identifying clusters in the spatial-temporal
domain. The clustering method uses a distance measure to calculate the similarity or closeness
of points both in location and time. The timestamps of the data are converted into hourly
measurements based on the start date of the data. The location attribute consists of numerical
data of floating type. For the location attribute, the values are discretized using the equal
bin-width technique into 10m wide bins. The equal bin-width technique divides the range of
observed values into k equal sized bins. The parameter k is set according to the length of the
circuit. The discretization allows for converting the continuous datatype into discrete location
intervals. This is helpful in aggregating points within the 10m interval and assigning their
counts as weights for the measurement. Additionally, for the timestamps, the hourly resolution
is chosen due to the discharge activity, in most cases, is spread for hours leading up to days.
This can also be observed in the Figure 3.5, where the activity at locations (300-600) is dense
and spread over for days/months. The discretization of the time and location attributes helps in
aggregating the points which are similar in the dataset and assign their counts as weights. This
is done because of the large amounts of data present in the PD data table. Since, ST-DBSCAN
computes a distance matrix for all the points in the dataset this makes it computationally
expensive in the cases of large amounts of observation points and hence discretization allows
grouping of similar points and perform the distance matrix calculation easily.
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Figure 4.7: Discretization of the location attribute

Next, the parameters for the ST-DBSCAN clustering process are initialized. ST-DBSCAN
requires three parameters - the spatial threshold (ε1), the temporal threshold (ε2), and the
minPts. The threshold parameters can be set intuitively based on the data or can be set
using an heuristic provided [37]. For the spatial threshold (ε1), the parameter value is set
intuitively at 1 bin-width or 10m due to location discretization. This is motivated by two
reasons- (i) the location accuracy of the SCG sensors is close to 1% of the length of the circuit
(domain knowledge) and median circuit length for the actively monitored circuits is close to
3000m so a 10m radius provides higher resolution in finding tight clusters, and (ii) circuit lengths
which are less than 1000m are less than 10% of the total circuits, for which the bin-width can be
set at 5m. For the temporal threshold (ε2), it is difficult to set the parameter value intuitively
for all the circuits, as the discharge activity may be spread for days or months for some circuits
whereas it may be just spread for a few hours or days in others. Hence, a single value for all
circuits may not be beneficial in identifying clusters. The value for the temporal threshold can
be estimated using the heuristic provided [37] by setting the minPts parameter. The minPts
parameter serves the purpose of smoothening the density estimate of the data [39]. Although
papers [37, 40, 43] propose several ways to set the minPts parameter but with datasets with a
lot of noise or that are very large it is favourable to set the minPts to higher value for better
results [39].

Once the parameters for the spatial threshold (ε1), temporal threshold (ε2), and minPts are
initialized for the circuit under evaluation, the next step that remains is the clustering process.
A pseudo code for the ST-DBSCAN algorithm developed for this project is shown in Algorithm
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2.

Algorithm 2: Pseudocode of ST-DBSCAN Algorithm [44]

Input: DB: Database
Input: ε1 : Spatial Threshold
Input: ε2 : Temporal Threshold
Input: minPts: Density threshold
Input: dist: Distance function
Data: label: Point labels. Initially undefined

1 dist(Nt)← RetrieveNeighbors(DB, ε2, dist) // Temporal Neighbors

2 dist(Nst)← RetrieveNeighbors(DB, ε1, dist(Nt)) // Spatial Neighbors

3 DBSCAN(DB, ε1, minPts, dist(Nst)) // Apply DBSCAN model

4 Assign labels

The algorithm inputs are the Database DB (or the PD data for the circuit), the clus-
tering parameters (ε1, ε2, minPts), and the distance measure or dist for the calculating the
distance between the points in location-time which is the Euclidean distance used here. The
RetrieveNeighbors function is called twice. First, to support the temporal characteristics of
the data, data is filtered by retrieving the temporal neighbors and their corresponding spatial
values by calculating the distance matrix with respect to the temporal threshold. For points
whose distances satisfy the temporal threshold are retained with their corresponding spatial
values and for points that do not satisfy the threshold the spatial distance for those points
is set twice the spatial threshold and will evntually be labelled as noise points. The spatial
distances retrieved from line 1 are then sent to the RetrieveNeighbors function to compute
the distance matrix of spatial neighbors. The entire dataset is then passed to Dbscan along
with the pre-computed distance matrix and the parameter values ε1, minPts. The Dbscan
function here represents the function provided by the sklearn library [38] in Python environ-
ment which gives the functionality to input a pre-computed distance matrix and not perform
the distance computation in the DBSCAN method. The distance matrix is simply evaluated
for identifying core points and their neighborhoods (density-reachability) and to carry out the
label assignment.

4.3.2 Performance Indicators

The clusters identified for the circuit from the clustering process are compared against the
DNV GL warnings assigned to that circuit. Performance indicators are formulated to evaluate
the clustering. The efficiency of the algorithm is quantitatively expressed using performance
indicators.

The DNV GL warnings assessment is considered as the ground truth for the evaluation of
clusters. The performance of the clustering is assessed for Level 1, 2, and 3 warnings whereas
the Noise warnings are dropped out of evaluation. To evaluate the warnings with respect to the
clusters found the warnings are converted into a bounding box of length equivalent to the time
duration of the warning and the width is equivalent to the warning assigned to the location ±
0.5m. For the clusters, the bounding box is created with width equivalent to the range of the
location of the cluster and the length is equivalent to the duration for which the cluster was
detected. To detect if a warning is present inside a cluster, the overlap between the bounding
box of the warnings and the bounding box of the clusters are checked.

The following performance indicators are formulated:-

1. For a cluster identified, if there is a DNV GL warning detected in it then the identified
cluster is assigned as a True Positive (TP).

2. For a cluster identified, if there is no DNV GL warning detected in it then the identified
cluster is assigned as a False Positive (FP)
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3. If there is no cluster detected for a DNV GL warning then the identified cluster is assigned
as a False Negative (FN).

The performance indicators are used to calculate metrics such as precision and recall for the
clustering algorithm. Precision is defined as the fraction of correctly identified clusters among
all identified clusters (with or without warnings) whereas the Recall is defined as the fraction
of correctly identified clusters among all detected clusters (i.e., clusters with warnings).

Precision =
TP

TP + FP
and Recall =

TP

TP + FN
and F1 = 2

(
Precision×Recall
Precision+Recall

)
The precision and recall scores are used to compute the F1 score which provides a harmonic

mean of the two scores.

4.4 Summary
In Section 4.1, the characteristics of different type of clusterings along with the various

models that employ the clustering methods are discussed. Here, the advantage of using a
density-based clustering method is motivated based on the PD data received from the SCG
system and the method employed for this thesis is identified.

In Section 4.2, the DBSCAN clustering model is explained with the formal definitions used
by the model to identify clusters.

In Section 4.3, the ST-DBSCAN method which is a variant of the DBSCAN model is
presented and the description of the parameters in context to the project are discussed. The
methodology of the clustering method is described in detail and the performance indicators and
metrics formulated to evaluate the performance of the clustering method are discussed.

The next chapter discusses different cases that are used to perform the clustering and their
results.
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Chapter 5

Results and Discussion

In this chapter, five circuits considered for the evaluation of the clustering method are discussed.
For each circuit, the description of the circuit configuration is provided along with the DNV
GL warnings assigned to the circuit. Next, we tune the parameters in case 1 and perform
the clustering on the subsequent circuits. The clustering is evaluated using the performance
metrics mentioned in the previous chapter. The clusters identified from the clustering method
are analysed and features of the clusters are presented.

5.1 Case I
This circuit consists of mixture of PILC and XLPE type cables connected together with 23

joints (dashed blue lines, see Figure 5.1) of several type of insulation and and also consists of 4
Ring Main Units (RMUs) (solid green lines, see Figure 5.1). The length of the entire circuit is
2299 metres. The PD data received from the SCG system is graphically illustrated in Figure
5.1. From the figure, 4 clusters of varying density are visible at locations around 250m to 400m
and locations around 500m to 650m.

Figure 5.1: Location vs Date/Time PD data for the circuit
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The warnings assigned by DNV GL experts for the circuit are represented in the following
table:

Table 5.1: Warnings associated with the circuit

Location (in metres) Start Date/Time End Date/Time SCG warning level (1, 2, 3, N)

604 2017-12-30 19:48:43 2018-02-05 00:03:25 3
604 2018-02-05 00:03:25 2018-02-23 16:08:12 2
349 2018-02-26 22:40:58 2018-05-27 08:45:43 3

In the table, we see that two types of warnings were assigned to location 604m (level 2
and 3) and a level 3 warning was assigned at location 349m of the circuit. The warning are
projected on the PD frame and illustrated on a magnified view of the locations in Figure 5.2.
The yellow bands represent the level 3 warnings and the level 2 warning is represented with an
orange band.

Figure 5.2: Warnings assigned at locations 349m and 604m. (Level 2: orange band, Level 3:
yellow band)

Parameter Tuning

The parameter values of the clustering algorithm are initialized, with ε1 threshold set at 1 bin-
width or 10 metres. To set the value for ε2, the heuristic presented in [37] is used to estimate
the parameter value. The heuristic suggests calculating the k-th neighbor distance for each
point in the dataset. The parameter k is set using the minPts. The distances calculated are
sorted in descending order of their k-distance values which provides some hints in the density
distribution of the dataset. Then for an arbitrary point p if the ε2 value is set at k-dist(p) then
all points with equal or smaller k-dist values will be core points. To find an optimal value for
the ε2, the threshold point is ideally the first point in the first ‘valley’ or ‘knee-point’ (from the
left side) in the sorted k-distance graph [37].

For the ε2 threshold, the sorted k-th distances are calculated for k = (100, 200, 300, 400, 500)
which are the sets of minPts values that are evaluated. The distances are plotted in Figure
5.3. The horizontal dashed lines are the ε2 bands of values from 100 to 500. It is evident from
the graph that the number of ‘valleys’ in the distance plots increases with higher value of k.
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Figure 5.3: Sorted k-th neighbors distance plot for k = (100, 200, 300, 400, 500).

This makes it difficult to determine the correct threshold point or ‘valley’ which would help in
yielding thin clusters. With k value of 100, the first valley is detected between bands 200 to
300. The discrete steps visible are due to the low numerical precision of the temporal attribute
since the temporal resolution is set at hourly precision.

Clustering results

The clustering is performed with the following parameter values:

• Spatial threshold or ε1: 10m (1 bin-width)

• Temporal threshold or ε2: 250 hours (estimated from Figure 5.3)

• minPts: 100

The result of the clustering is illustrated in the following plot (Figure 5.4).

From the Figure 5.4, it is evident that the estimation of the ε2 parameter value is able to
identify the four visible clusters. The clusters identified are checked for overlap of warnings
from DNV GL by creating bounding box of the warning and clusters. From Figure 5.5, clusters
1 and 3 do not have an overlap with the DNV GL warnings whereas for the DNV GL warnings
(ref. Table 5.1) are detected forming an overlap with clusters 2 and 4. Therefore, clusters 1
and 3 are the false positives identified by the clustering algorithm and clusters 2 and 4 are true
positives with DNV GL warnings present.

For the above, parameters the performance indicators are evaluated with the Precision,
Recall and F1 scores.
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Figure 5.4: Clustering result

Figure 5.5: Overlap of clusters with the DNV GL warnings

Performance Indicators

True Positives False
Positives

False
Negatives

Precision Recall F1-score

3 2 0 0.6 1 0.75

Cluster Features

For the identified clusters, it is interesting to evaluate the clusters by calculating the features
of the clusters. Features help in defining the characteristics of a cluster and help in providing
insight into the behaviour of the discharge activity. The features identified are summarized in
the Table 5.2.

To begin with, the density of the cluster is calculated by counting the number of discharges
and dividing them by the duration (start and end time) of the cluster. From the Table 5.2,
the density of clusters 1 and 3 is low compared to the clusters 2 and 4. This serves as a good
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Figure 5.6: Location vs Charge scatterplot of cluster

distinction between the clusters with DNV GL warnings (true positives) versus the clusters
without DNV GL warnings (false positives).

The location versus charge scatter plots are plotted to visualize the cluster in the front view
(Figure 5.6). This helps in identifying the width of the cluster which is calculated by taking
the difference of the maximum and minimum of the location values of the cluster. The location
attribute is further evaluated by calculating the statistical moments such as the mean, standard
deviation, skew, and kurtosis which help in providing the shape characteristics of the clusters.
The median locations of the clusters 2 and 4 is same as the warnings assigned for locations
(Table 5.1).

The charge attribute helps in identifying the distribution of charge in the cluster (Figure
5.7). This provides information into the magnitude of the extent of discharge activity that was
observed in the identified cluster. The statistical moments are also calculated for the charge
attribute. For clusters 1 and 3, the maximum magnitude of charge is higher compared to
clusters 2 and 4. This is also evident from the mean and standard deviation of the charge in
clusters. The skew characteristic of the charge shows closeness to a normal distribution for
clusters 2 and 4 whereas it is positively skewed for clusters 1 and 3.

The time attribute of the clusters can be utilized by calculating the duration (height) of
the cluster. This is done by taking the difference between the start and end time of the cluster
activity. The temporal feature handling provides both the 0th-order and 1st-order handling
of the temporal characteristics of the clusters. The 0th-order feature helps in bucketizing the
timestamp of the discharges into number of days, hours, minutes etc. and the temporal res-
olution chosen for the clustering process is hourly resolution of the discharges. The temporal
characteristic of the data can be further taken advantage of by calculating the inter-arrival time
of the discharges present inside the cluster (Figure 5.8). Inter-arrival time is defined as the time
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Figure 5.7: Charge distribution in the identified clusters

Figure 5.8: Histogram of inter-arrival times of discharge events within the cluster

interval between two consecutive discharge events within the cluster. The inter-arrival time of
discharges within the clusters serve as the 1st-order handling of the temporal feature. From
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the Figure 5.8, the histogram of inter-arrival times measured in minutes is plotted for all the
clusters. The histograms are binned for 100 minutes of the inter-arrival times with a bin width
of 1 minute. Cluster 1 shows an interrupted activity of the discharge events within it. For
cluster 3, there are multiple peaks observed in the occurrence of discharge events happening
inside the cluster. Clusters 2 and 4 show a high number of discharge events happening in quick
succession. Since the reporting of the PDs from the SCG is limited to 1 minute the inter-arrival
times can only be measured with maximum resolution of 1 minute.

Apart from the features extracted from the attributes of the data, the circuit configuration
data can be utilized to identify circuit specific features for the clusters. For the median location
of the cluster, the distance from the nearest joint and RMU location are found out. This gives
the information of how close the cluster identified was from a joint as the most likely defects or
PDs are observed in joints. One of the assessments from the DNV GL experts was that during
high loading cycles vibrations in the RMU may be picked up as PD signals by the SCG system
and are characterized by a repititive pattern of discharges in time and hence such patterns in
the PD data are regarded as noise. The Table 5.2 summarizes the distances measured for the
median cluster locations. For clusters 2 and 4, it is evident that the discharge activity was
observed in a joint whereas clusters 1 and 3 appear far away from the nearest joint location.
Since the nearest RMU located is at the 0m of the circuit, the distance from the nearest RMU
location does not provide any information in this case.

Discussion

Case I demonstrates the method involved in setting the parameter values for the temporal
threshold using the heuristic to estimate the threshold value. The result of the clustering is
able to capture the visible denser regions in the PD data from the otherwise sparse discharge
events in the rest of the circuit. The process of extracting features that define the characteristics
of the identified clusters is illustrated. The case was demonstrated at the start as the warning
assigned for location 604m (level 3 and level 2) is a known and most commonly used example
of a partial discharge happening in the circuit of Alliander’s medium voltage circuit database.
This motivated the implementation and testing of the clustering method to ensure the clustering
method is able to identify clusters and capture the warnings assigned by DNV GL.
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Table 5.2: Cluster Features

Cluster Density (Discharges per day)

Cluster 1 Cluster 2 Cluster 3 Cluster 4

12.11 564.45 78.73 6268.60

Cluster Width (in metres)

Cluster 1 Cluster 2 Cluster 3 Cluster 4

37 67 68 77

Location (in metres): Descriptive Statistics

Cluster Min Max Mean Median St. Dev Skew Kurtosis

1 252 289 270.24 270 8.68 0.13 -0.52
2 310 377 347.90 349 8.53 -0.62 1.37
3 490 558 523.47 525 12.48 -0.36 0.15
4 560 637 605.03 606 8.01 -1.02 2.83

Charge (pC): Descriptive Statistics

Cluster Min Max Mean Median St. Dev. Skew Kurtosis

1 407.50 28039.00 7645.05 7300.50 4470.63 1.47 4.49
2 244.50 18110.50 5897.13 5674.25 2077.25 0.82 2.41
3 436.00 69419.00 7480.45 6493.50 5786.62 4.71 35.21
4 366.00 14957.50 4936.50 4805.50 1455.06 0.58 1.14

Cluster Height (in days)

Cluster 1 Cluster 2 Cluster 3 Cluster 4

35 days 11:14:00 71 days 01:28:00 48 days 13:29:00 62 days 13:49:00

Inter-arrival time [4, IAT] (in minutes): Descriptive Statistics

Cluster Min Max Mean Median St. Dev. Skew Kurtosis
1 0 2353 286.93 121 412.25 2.54 7.77
2 0 4926 49.14 8.5 234.04 14.99 262.20
3 0 6432 86.43 27 324.09 13.91 238.28
4 0 10721 13.62 1 201.41 42.48 2011.27

Circuit specific features

Cluster Median Location (m) Distance from the
nearest joint location

Distance from the
nearest RMU location

1 270 84 270
2 349 5 349
3 525 78 525
4 606 3 606
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5.2 Case II

This circuit shares similar characteristics as the previous circuit. It consists of 23 joints and
5 RMUs connecting a combination of PILC and XLPE type cables. The length of the circuit
is 2240m which is also close to the case discussed above. The PD data from SCG system is
graphically illustrated in Figure 5.9. It can be seen from the plot that the PD data represented
in location versus the timestamp of the discharge activity consists of a noisy background with
a few clusters visible. The actual number of clusters is difficult to determine solely from visual
inspection unlike the previous case.

Figure 5.9: Location vs Date/Time scatter plot of PD data with warnings from DNV GL plotted
(yellow bands)

The warnings associated with the circuit are represented in the Table 5.7. It is evident
from the warnings table that the three warnings at locations 724m, 725m, and 729m and three
warnings at locations 1846m, 1858m, 1860m are closer in locations. On visualising the warnings
assigned to the circuit, one of the warnings assigned to location 724m showed an interesting
ambiguity in the start of actual activity and the start time of the warning assigned by the
experts at DNV GL. The warning assignment is a manual operation where an expert at DNV
GL oversees the PD data associated with the circuit and based on the activity observed assigns
a warning to signal the operator. Therefore, there can be a difference in the start time of the
activity and the eventual assessment and warning assignment by the DNV GL expert. This
can be seen in the warning band plotted on the PD data (Figure 5.19).
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Figure 5.10: Warning assigned to location 724m

This mismatch in the overlap of the warning assignment and the start time of activity can
have severe downside when evaluating the performance of the clustering as there might not be
any overlap detected and the cluster would be assigned as a false positive and a false negative
would be assigned for a cluster not found for the DNV GL warning. To overcome this issue,
upon consultation with the DNV GL experts it was decided to introduce a buffer of 2 weeks
that would be added to the timestamp of the warning for the start and end of the warning.
The buffer for the end of the warning can be considered optional.

Table 5.3: Warnings associated with the circuit

Location (in metres) Start Date/Time End Date/Time SCG warning level (1, 2, 3, N)

724 28-01-2019 14:21:41 31-01-2019 23:59:00 3
725 20-08-2019 14:52:07 31-01-2020 23:53:00 3
729 20-08-2019 14:52:07 30-08-2019 22:46:00 3
822 07-02-2020 16:51:39 29-02-2020 23:25:00 3
1846 10-11-2017 16:10:15 31-07-2019 23:53:00 3
1858 10-11-2017 16:10:15 31-07-2019 23:53:00 3
1860 28-01-2019 14:21:52 28-02-2019 23:51:00 3
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Clustering results

Since the characteristic of the circuit match with the previous case, the clustering is performed
with the same parameter values.

The parameter values are set as follows:- ε1=10 metres, ε2=250 hours, minPts=100
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Figure 5.11: Clustering result with parameter set 1. Clusters labelled from left to right (bottom
cluster first).

Table 5.4: Performance Indicators

Parameter set (ε1=10m, ε2=250, minPts=100)

Nclusters True
Positives

False
Positives

False
Negatives

Precision Recall F1-score

10 12 3 0 0.80 1 0.89

Parameter set (ε1=10m, ε2=24, minPts=100)

Nclusters True
Positives

False
Positives

False
Negatives

Precision Recall F1-score

12 21 0 0 1 1 1

The clustering results show that using the parameter values from the previous case, the
algorithm yeilds 10 clusters of which 3 clusters do not have an overlap with any DNV GL
warning. Out of the three clusters, the clusters at the start of the circuit show a repetitive
pattern in the discharges and are closer to the RMU placed in the circuit and are hence regarded
as noise points that are clustered. Although there are no false negatives, upon closer inspection
of the clusters, on magnifying the cluster no. 8 it is visible that the cluster formed does not
form a thin and tight cluster but in fact has several clusters merged together. This is attributed
to the large value of the temporal threshold which coupled with a lower minimum number of
points leads to a merging of multiple clusters together. The clusters identified have several
‘outliers’ or noise points which are included in the cluster due to large temporal threshold.

To identify thin clusters, the ε2 parameter value is estimated in the same way as the previous
case. With the minPts set at 100, the k-th neighbor distance is plotted (Figure 5.12). From
the graph, the ‘valley’ or the ‘knee-point’ of the distance graph is visually detected to lie closer
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Figure 5.12: ε2 parameter tuning

to 20 hours. An orange dashed line is plotted across the graph to set the threshold value at 24
hours.

The updated parameters of the clustering algorithm are set as follows:- ε1=10 metres, ε2=24
hours, minPts=100.
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Figure 5.13: Clustering result with parameter set 2. Clusters labelled from left to right (bottom
cluster first).

On running the clustering algorithm for the updated parameters, 12 clusters are found with
no false positives or false negatives yielding the overall F1-score as 1 (Table 5.4). Upon visually
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inspecting the clusters, it is evident that a lower temporal threshold is beneficial in achieving
thin and tight clusters. The clusters along the terminations of the cable are also not detected
as the discharge activity is not so dense within the 24 hour threshold.

Figure 5.14: Overlap of clusters with the DNV GL warnings

However, a lower temporal threshold can also be detrimental in identifying clusters which
may have been missed by the DNV GL experts. As in the above two parameter sets, although
the first set of parameter values performed poorly in terms of identifying tight clusters, there
were additional three cluster (or false positives) which were identified. These clusters can later
be evaluated by extracting their features and may provide insight into the activity that was
captured within the cluster and thereby providing more clusters to process in the classification
stage. This is not possible in the second set of parameter values due to low temporal threshold
and low number of minPts.

Discussion

The PD data presented in Case II showed a more strong surrounding ‘noise’ or infrequent
discharges around the dense clusters visible near joints and RMUs. An inconsistency with the
warning assignment was encountered which was corrected by adding a buffer of 2 weeks to start
of the timestamp of the warning received from DNV GL. The clustering method re-used the
parameters estimated in the previous case and was able to identify high-density regions in the
PD data. For the first parameter set, the clustering method identified 10 clusters out of which
3 clusters did not have any overlap with any DNV GL warning. Out of the 3 clusters, two
clusters were found close to an underlying RMU in the circuit. On discussion with the DNV
GL experts to understand why these regions of discharges were not signalled as warnings for
the circuit, the assessment that was reached during the discussion was that due to high amount
of vibrations in the RMU, the SCG systems may pick up on these vibrations as discharges in
the circuit. These events captured near the RMUs in the PD data is likely to be noise due to
repetitive pattern of discharge events. Upon tuning the temporal threshold for the circuit the
estimated threshold - depicted visually - suggested a lower temporal threshold. On clustering
with the updated temporal threshold it was observed that the previously found 3 clusters were
not clustered and instead of one big cluster (cluster 8) there were 4 thin clusters identified.
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5.3 Case III
In this case, the circuit under evaluation is double the length of the previous two circuits

with a circuit length of 4818m. It has 22 joints and 8 RMUs connecting the cable which is
entirely of the PILC insulation type. From the PD data plotted the data has visibly uniform
distribution of discharge events with a minor activity present near the termination location at
0m of the circuit whereas the activity near location 2177m is not easily visible in the plot. The
activity along with the warning assigned to it is plotted on to the PD data and can be seen in
Figure 5.15.

Figure 5.15: Location vs Date/Time PD data for the circuit

There was one warning assigned to this circuit at location 2177m with a warning level 3.
The warning information is represented in the table below:

Table 5.5: Warnings associated with the circuit

Location (in metres) Start Date/Time End Date/Time SCG warning level (1, 2, 3, N)

2177 19-04-2020 10:15:05 18-06-2020 03:58:38 3

To perform the clustering, the parameters estimated from the previous two cases are reused
to evaluate whether they are transferable to other circuits with varying circuit length. On
using the first parameter set of ε1 = 10m, ε2 = 250 hours, and minPts = 100, the clustering
identifies two clusters at locations near the start of the circuit (50-90m) and at location around
2177m. The clustering performance yields one true positive and one false positive (for locations
50-90m). Upon a closer visual inspection of the clusters it is found that a lot of noise points
are also clustered for the cluster found near location 2177m whereas the activity present near
the termination of the circuit shows a sparse activity resembling noise which may be picked up
by the SCG systems because of the close proximity to RMU.

Using the parameter set of ε1 = 10m, ε2 = 24 hours, and minPts = 100, the clustering yields
a better result with a tight cluster identified at location 2177m. The activity at locations 50 -
90m is not clustered as previously seen visually that it is not dense when a 24 hour temporal
threshold is set for the clustering method.

49



CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.16: Warning assigned for location 2177m on PD data (magnified view)
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Figure 5.17: Clustering result with parameter set 1. Clusters labelled from left to right.

Discussion

In Case III the circuit has different circuit characteristics such as longer length of the circuit and
also the type of the cable in the circuit is of PILC type solely. Instead of tuning the temporal
threshold, the clustering is performed using the parameter sets from the previous two cases.
The clustering from the parameter set 1 values identified 2 clusters of which one was identified
correctly and the other ‘false positive’ was identified near the RMU at the termination of the
circuit. Based on the inference from the previous case the parameter set 1 performs well with
identifying the actual warning present and also an additional cluster which can be evaluated as
noise by identifying cluster features which are in context to the circuit (distance from the RMU,
inter-arrival time). On visual inspection of the clustering it is noted that the cluster identified
at location 2177m had quite a number of discharge events with longer inter-arrival times with
67 number of discharges with inter-arrival time greater than 20 minutes. Clustering using the
parameter set 2 identified a thin cluster at location 2177m and the number of discharges with

50



CHAPTER 5. RESULTS AND DISCUSSION

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Feb 22020

Feb 16

Mar 1

Mar 15

Mar 29

Apr 12

Apr 26

May 10

May 24

Jun 7

Jun 21 Data
Noise
Cluster 1

Clusters found with ST-DBSCAN

Location (m)

Figure 5.18: Clustering result with parameter set 2.

Figure 5.19: Overlap of cluster found at 2177m with the DNV GL warning.

inter-arrival times exceeding 20 minutes was 7. Of course, this is a very specific time threshold
of the inter-arrival times and either of the parameter sets were able to identify the DNV GL
warnings assigned.
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Table 5.6: Performance Indicators

Parameter set (ε1=10m, ε2=250, minPts=100)

Nclusters True
Positives

False
Positives

False
Negatives

Precision Recall F1-score

2 1 1 0 0.5 1 0.67

Parameter set (ε1=10m, ε2=24, minPts=100)

Nclusters True
Positives

False
Positives

False
Negatives

Precision Recall F1-score

1 1 0 0 1 1 1

5.4 Case IV
This circuit consists of a PILC type cable circuit connected via 10 joints and 5 RMUs with

a total circuit length of 1937m. The PD data for the circuit is represented in Figure 5.20. In
the Figure 5.20, it is visible that no data is present during the mid of January, 2020 to mid
February, 2020. This is due to new SCG systems installed during that period. There are two
warnings assigned to this circuit - a level 3 and a level 1 warning. Level 3 is shown by yellow
band whereas level 1 warning is shown using a red band (Figure 5.20).

Figure 5.20: Location vs Date/Time plotted using PD data (also showing warnings assigned
for the circuit).

The warning information is presented in the following table:-

Table 5.7: Warnings associated with the circuit

Location (in metres) Start Date/Time End Date/Time SCG warning level (1, 2, 3, N)

865 17-04-2020 22:59:55 30-06-2020 23:59:00 3
961 06-01-2020 12:39:05 30-06-2020 23:59:00 1

The warnings assigned to the locations 865m and 961m are close to joint locations in the
circuit. There is also a dense activity present around the warning locations. There is a dense
activity of discharges present exactly on the location of RMU at 1146m which was not assigned
any warning from DNV GL.
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The parameter values used in the previous cases are used for the clustering method. The
results of the clustering are presented below:

Parameters: ε1 = 10m, ε2 = 250 hours, and minPts = 100
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Figure 5.21: Clustering result with parameter set 1. Clusters labelled from left to right (bottom
cluster first).

Parameters: ε1 = 10m, ε2 = 24 hours, and minPts = 100
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Figure 5.22: Clustering result with parameter set 2. Clusters labelled from left to right (bottom
cluster first).
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Parameters: ε1 = 10m, ε2 = 250 hours, and minPts = 500
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Figure 5.23: Clustering result with parameter set 3. Clusters labelled from left to right (bottom
cluster first).

Table 5.8: Performance Indicators

Parameter set (ε1=10m, ε2=250, minPts=100)

Nclusters True
Positives

False
Positives

False
Negatives

Precision Recall F1-score

8 3 5 0 0.375 1 0.54

Parameter set (ε1=10m, ε2=24, minPts=100)

Nclusters True
Positives

False
Positives

False
Negatives

Precision Recall F1-score

8 7 1 0 0.87 1 0.93

Parameter set (ε1=10m, ε2=250, minPts=500)

Nclusters True
Positives

False
Positives

False
Negatives

Precision Recall F1-score

4 3 1 0 0.75 1 0.85

From the above parameter set of values, the clustering results show that visibly all parameter
sets are able to capture the warning assigned to the circuit. Parameter set 2 yields multiple
clusters at location 950-980m which include the DNV GL warnings. This puts a dilemma of
sorts of what can be considered as good or effective clustering. Based on the performance
indicators, the precision and F1 score suggest that parameter set 1 performs poorly due to
the high number of false positives whereas set 2 and 3 perform good. In set 2 the number of
clusters is same as the set 1 but the since set 2 is identifies clusters on the same location 5
times the precision and F1 score are not affected. In set 3, the minPts was increased to remove
the excess clusters identified in set 2. The choice of increasing the minPts was made because
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varying the temporal threshold resulted in not much change in the multiple clusters found on
a single location and hence the idea was to see the effect of increasing the minPts on the result
of the clustering which would impose stricter constraints on clusters with low density and due
to the longer temporal threshold the result of the clustering showed a one big cluster on the
locations. This results in the loss of clusters around the dense clusters.

Discussion

This case demonstrates inadequacy of the method of evaluation of the clustering using the
precision, recall and F1 scores. The results of the three parameter set clustering and their
respective performance scores show that the solely relying on the performance indicators may
not be such a good idea to accept or reject the results of the clustering. As it is evident from
the ‘visual’ results that every clustering identified the warnings assigned from DNV GL. For set
1 the number of clusters was high leading to a higher number of false positives resulting in a
low precision and F1-score. The set showed similar number of clusters with lower false positives
and an improved precison and F1 score whereas for set 3 the overall clusters were low with a
low number of false positives.

In this case, we encountered a level 1 warning which as seen from the Figure 5.20 is present
for a long time prompting the question regarding the action taken for such a warning. Upon
discussions it was made clear that the underlying resin joint for which the warning was signalled
was replaced by a heat shrink joint on the 7th January, 2020. The reason for the persistence
of the activity as well as the warning was later learned as the cause of the presence of cavities
which are present in the joint during the connection of the cable. The material of the joint does
not shrink well to the cables when using heaters. These cavities later disappear when adjusted
to the cable temperatures and is a known phenomenon in heat shrink joints and hence no cause
for alarm. If the PD persists for a long time then it is replaced because of improper installation
of the joint.

5.5 Case V
In this case, the circuit consists of purely PILC type insulation cables and with 6 joints and

3 RMUs in the circuit. The length of the circuit is 973m. There were two level 3 warnings
assigned to the circuit and are shown in Figure 5.24.

Figure 5.24: Location vs Date/Time PD data for the circuit along with the warnings assigned
to it
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The clustering was performed with the parameter values set as ε1 = 10m, ε2 = 250 hours,
and minPts = 500. The results of the clustering is shown in the plot below with the warnings
overlaid on the clusters found.

Figure 5.25: Overlap of clusters identified with the warnings assigned to the circuit.

The inter-arrival times of the clusters are plotted below (Figure 5.26). From the plots it
is interesting to see that for cluster 1 the discharges were in quick succession. The underlying
configuration showed that the cluster was found over a oil-filled joint. The activity shows
discharges happening quickly in the oil-filled joint due to continuous migration of the insulation
fluid (oil) from the joints into the cable insulation during high loading cycles or increased
temperature [15]. Although there are high number of discharges, the oil level in the joint will
return back to normal after cooling of the fluid and hence the level 3 warning. The inter-arrival
times for cluster 2 and cluster 3 were plotted as well (Figure 5.26). The clusters were found on
the cables and were also close to a RMU in the circuit - this based on the information received
during discussions seems not something which can be assigned a warning. Although, for cluster
3 there is a level 3 warning assigned. The inter-arrival time of discharges observed in cluster 2
are higher in density than the inter-arrival time of discharges in cluster 3, but was not flagged
as a warning by DNV GL experts. This prompts us to investigate into the behaviour of the
discharges observed in the identified clusters 2 and 3.

The inter-arrival time distribution of the clusters showed to follow a trend in the time
between discharges and seemed close to a lognormal distribution. The lognormal distribution
was fit on the distribution data of the inter-arrival times of cluster 2 and 3 (Figure 5.27). For
better visualization, the cumulative distribution of the lognormal distribution was fit on the
empirical cdf of the inter-arrival time data of the cluster (Figure 5.28).

For the sample that follows a lognormal distribution, the logarithm of the sample data (here
the inter-arrival time of discharge events) is known to follow a normal distribution [45]. To
assess the goodness of fit of the lognormal distribution, the data is tested for normality or how
close the data distribution follows a normal distribution. This was done because when the data
distribution was tested using the Kolmogorov-Smirnov (K-S) test which is used to compare a
sample data with a known probability distribution, the chi-square statistic and the p-statistic
of the test were significantly low. This was because the K-S test needs the location, shape and
scale parameter of the data to be specified and an estimated parameter values invalidates the
test. Also, the p-statistic of the test is heavily dependent on the amount of sample data and if

56



CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.26: Histogram of inter-arrival time of discharges (Top: Cluster 1, Bottom left: Cluster
2, Bottom right: Cluster 3)

Figure 5.27: Lognormal distribution fit on the inter-arrival times distribution of cluster 2 and
3 respectively

the sample data is large then the number of deviations (which are checked by the p-statistic)
can be large and can often lead to rejection of the hypothesis.
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Figure 5.28: Lognormal cumulative distribution function (cdf) fitted for the empirical CDF of
the inter-arrival time for Cluster 2 (left) and Cluster 3 (right).

Figure 5.29: Inter-arrival time distribution of Cluster 2 (left) and Cluster 3 (right) represented
on logarithmic scale

Since, the lognormal distribution is known to follow a normal distribution on a log scale
the distribution of the data was plotted on a logarithmic scale on the x-axis. The data did
not seem to follow a normal distribution and showed a skewed distribution (Figure 5.29). The
data was then transformed to follow a normal distribution by using the ‘Yeo-Johnson’ power
transformation [46]. A power transformation helps in converting data using a continuously
varying function with respect to the power parameter λ. The Yeo-Johnson power transformation
helps to convert non-normal data into normal data by raising the power of the distribution to
a power of lamda (λ). The reason behind choosing the Yeo-Johnson power transform is that
since the inter-arrival time contains values which are zero minutes, this makes the common
Box-Cox transform [47] ineffective as it requires values to be positive and greater than zero.
The parameter λ is estimated from the data using the scipy package [48] from the equation:
[46] (where yi is a data vector)

y
(λ)
i =



(
(yi + 1)

λ − 1
)
/λ if λ 6= 0, y ≥ 0

log (yi + 1) if λ = 0, y ≥ 0

−
[
(−yi + 1)

(2−λ) − 1
]
/(2− λ) if λ 6= 2, y < 0

− log (−yi + 1) if λ = 2, y < 0

(5.1)
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After the data is transformed, a normal distribution is fit to the transformed data (Figure
5.30). The transformed data is plotted on a Q-Q plot to compare the probability distributions
of the data and the normal distribution (Figure 5.31).

Figure 5.30: Yeo-Johnson Transformed data of the inter-arrival times for Cluster 2 (left) and
Cluster 3 (right) fit with a normal probability distribution

The chi-square and p-statistic was computed for both the transformed data of cluster 2
and 3. For cluster 2, the chi-square statistic was 2.33 and the p-statistic is 0.31 which fails to
reject the null hypothesis and states that the distribution of the sample data follows a normal
distribution. Although, looking at the distribution fit (Figure 5.30) and the Q-Q plots (Figure
5.31) of cluster 2, the visual depiction contradicts the p-statistic and the data seems to deviate
from the normal distribution and shows a positively skewed distribution. For cluster 3, the
chi-square statistic was 64.87 but the p-statistic was 0 and rejects the null hypothesis but the
Q-Q plots visually depict that the data is distributed much close to a normal distribution. Since
the sample data is quite large the Q-Q plot provide a better approximation of the normality of
the data than calculating the p-statistic.

The goodness of fit test was done to understand whether the inter-arrival times of certain
clusters follows a trend. This case serves as an exploratory analysis of the inter-arrival times and
should not be considered as only the lognormal distribution is a possible distribution. Several
tests need to be formulated to understand the behaviour of such clusters identified and how
many of them are found with an underlying joints or type of cables.

Discussion

This case does not demonstrate the results of clustering method, instead, it analyses the inter-
arrival time feature of the identified clusters. It is important to note that this analysis was
carried out for only this case and not for the previous cases. The motivation behind the analysis
was compelled by a trend in the inter-arrival time distribution of the clusters identified. The
lognormal distribution was chosen because the trend in the clusters visually seemed to follow a
distribution similar to lognormal. To support this visual depiction of the trend, the goodness
of fit test were carried out.
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Figure 5.31: Top: Q-Q plot of the original and transformed data for cluster 2, Bottom: Q-Q
plot of the original and transformed data for cluster 3

5.6 Conclusions
This chapter provided results from the cases for the evaluation of the ST-DBSCAN clustering

method and also analysed features of the identified clusters.
Cases I and II demonstrate the parameter tuning method for estimating the value for the

temporal threshold. In Case II we also see the difference in the results of the clustering between
the parameter values reused from the previous case and the tuned parameters.

Case III demonstrates the result of the clustering using the previously identified parameter
values and showcases the difference in the result for the two sets of parameter values. Here, we
also see that although both sets of values identify clusters where warnings were present it shows
that having a higher temporal threshold leads to inclusion of discharge events farther from the
actual high-density activity.

Case IV demonstrates the dilemma introduced due to different results of clustering for
different sets of parameter values and also showcases the inadequacy of the performance metrics
formulated to evaluate the results of the clustering method.

Case V provides perspective into the analysis of the inter-arrival time characteristic of the
identified cluster and demonstrates the tests conducted to support the hypothesis of the analysis.

In the next chapter we conclude the discussion and this thesis work and provide possible
recommendations for future work.
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Conclusions

This thesis proposed a clustering methodology developed using the ST-DBSCAN density-based
clustering technique for identifying high-density discharge events in the partial discharge data
for the medium voltage cable circuits obtained from DNV GL’s Smart Cable Guard (SCG) sys-
tems. This method serves as a contribution to the clustering phase involved in the development
of the Automated Warning System at Alliander. The method allows a promising approach in
utilizing the spatial and temporal characteristics of the PD data and helps in automatically
separating high-density regions from low density noisy areas.

To evaluate the performance of the clustering, indicators are formulated to quantitatively
measure the results of the clustering method. This is done by comparing the overlap of manually
labelled DNV GL warnings, considered as the ground truth for assessment of the discharge
events observed in the PD data for the circuit, with the clusters identified from the clustering
method. These indicators are used to calculate the precision, recall and F1-score metrics for
the method.

The cases presented in the previous chapter demonstrate the results of the proposed cluster-
ing methodology. The method and tuning approach for the temporal threshold are explained
and tested for the cases presented in the previous chapter to observe the clustering result.
There are real world considerations that should be taken into account, like, (i) variation of
density of discharge events among various circuits, (ii) there is also a variation in the timing of
occurrence of discharge events among various circuits. With each case we see that the tem-
poral threshold estimated in the first case does not always identify thin clusters and for some
cases results in inclusion of discharge events spread out further away in time of occurrence or
identification of clusters that do not have an overlap with any DNV GL warnings. During the
execution of the cases the mismatch between the assignment of the warning and the actual
start of the activity was discovered. This was fixed upon discussion with the DNV GL experts
to extend the time margin of the warning timestamp by a period of 2 weeks.

For the clusters identified from the clustering method various features were calculated to
quantitatively describe them using statistical moments such as mean, standard deviation, skew,
and kurtosis. The PD attributes are utilized to calculate the cluster width using the location
attribute, duration of the cluster using the time attribute, and the discharge magnitude observed
in the cluster. The cluster densities are calculated to evaluate how many discharges per day
were observed within the cluster. Since the data from the SCG is representation of discharge
events spread across the length of the circuit and in time of observation, the clusters are further
described using the inter-arrival time of occurrence between two consecutive discharge events
to identify how close the discharge events were observed in the clusters. This feature also led to
an interesting observation demonstrated in case 5 which showed a trend followed by discharges
in clusters identified.
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A caveat which concerns the validity of the performance results is demonstrated in Case
4 where the dilemma of accepting a clustering to be effective is presented by showcasing the
inadequacy of the performance indicators formulated and the visual results of the clustering.
This can be challenging in many circuits and can require a visual inspection of the identified
clusters to accept or reject the result of the clustering. A possible solution is to identify as
many clusters during the clustering phase and then ‘post-process’ the identified clusters to see
if two or more clusters that are found on the same location have a small time gap within them.
These clusters can then be merged to form one cluster. Of course this would mean that there
be an additional parameter required to be set for minimum time gap between clusters found
on the same location. This can be tested for a list of circuits using a tighter threshold (such as
the parameters estimated in case 2) and the performance of the results can be evaluated using
the metrics.

A challenge for the implementation of the method was encountered. The clustering method-
ology implemented is not scalable for large datasets as the distance computation of the temporal
and spatial neighbors fails when executed on a standard laptop processor. This poses as a chal-
lenge where even with the resolution of the data lowered to hour or 12 hour precision and using
the location discretization, the distance computation becomes expensive when the objects of
the dataset increase leading to an increase in higher number of temporal and spatial neighbors
and thereby terminating the computation due to lack of memory resource.

Despite the caveats and challenge, the work carried out during this thesis helps in utilizing
the SCG data obtained for the actively monitored circuits and provides a way to describe
the discharge events that are identified through the clustering method. This work serves as a
preliminary exploration of the possible advantages of automating the identification of the partial
discharge events occurring in the circuit and their description which would help in future by
aiding in the characterization of these events of interests into actual PD activity or noise.

A few suggestions on the possibilities for future work to broaden the applicability of the
current work and to cater more to some of the assumptions made in the clustering methodology
and cluster evaluation are presented below:-

• To overcome the issues with the application of the clustering method for large datasets
a possible recommendation is to implement a batchwise clustering method which would
split the datasets into smaller subsets for distance computation and clustering and set an
overlap to merge the results of the clustering back to its original dataset [49].

• The parameter tuning employed using the heuristic in case 1 and 2 was performed by
visual inspection of the ’knee-point’ in the sorted distances plot. The process of identifying
the ‘knee-point’ or the optimal threshold can be automated to avoid manual errors and
can be efficient in setting of the values if the tuning is performed for a large group of
representative circuits.

• In this thesis, the cases presented involved circuits with either a mixture cable sections
of PILC and XLPE type or were entirely of PILC cables sections. This was also because
PILC type cables are more common in the circuit as seen in Figure 3.1 and purely XLPE
circuits form less than 20 % of the monitored circuits. Since the newly installed cables
are more commonly of the XLPE type, the clustering can be tested for purely XLPE or
high percentage of XLPE cable sections in the circuit. This would also provide insight
into the partial discharge activity observed in these circuits and the extent of temporal
threshold to be set for different types of circuit configurations.

• The inter-arrival time feature explored in case 5 can be extended to test for such trends
across circuits and test for the distribution fit. A set of distributions needs to be identified
and evaluated across the observed trends to perform a hypothesis test for the explanation
of such phenomenon.
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Currently, the development of the automated detection of the ‘interesting’ discharge events
and their characterization is being done in collaboration with the DNV GL experts and Al-
liander. In future a possible addition to the development can be a collaborative effort with
other network operators and their data from the SCG systems and create a knowledge sharing
platform for evaluating the patterns observed in the medium voltage network. Additionally,
different sources of data such as the cable loading capacity, weather data, soil temperature
data etc. can be included as features for the evaluation of the discharge events detected in the
circuits and investigate their correlation.

63





Bibliography

[1] Peter Fraser. Netherlands - regulatory reform in the electricity industry. http://www.

oecd.org/regreform/sectors/2497385.pdf, 1998. Accessed: 2020-07-25. 1

[2] The Netherlands Authority for Consumers and Markets (ACM). In-
centive regulation of the gas and electricity networks in the neth-
erlands. https://www.acm.nl/en/publications/publication/17231/

Incentive-regulation-of-the-gas-and-electricity-networks, 2017. Accessed:
2020-07-25. 1

[3] Directive 2009/72/ec of the european parliament and of the council. https://

eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0072, 2009. Ac-
cessed: 2020-07-25. 1
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