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Abstract

Dealing with inherently unmodeled dynamics and large parameter variations or faults, is a
challenging task while controlling robot manipulators. Classical control techniques cannot
usually provide satisfactory responses, and often external supervision systems have to be
designed to handle the faults. Recent research has shown that active inference, a unifying
neuroscientific theory of the brain, bares the potential of intrinsically coping with strong
uncertainties in the system, mimicking the adaptability capabilities of humans. However, the
current state-of-the-art regarding active inference in robotics is very narrow and limited. This
thesis presents a novel active inference controller as a general adaptive fault tolerant solution
for control of robot manipulators. The goal of this work is threefold. First, we demonstrate the
applicability of active inference in robotics, deriving a control scheme which is computationally
efficient and with high performance. Second, we verify the claimed adaptability properties of
active inference against a model reference adaptive controller, in a simulated on-line pick and
place task with a 7 degrees-of-freedom robot arm. Third, we propose a method to exploit the
controller’s structure to perform fault detection, isolation and recovery, without the use of
external supervision systems. This work showed that not only active inference is applicable
to robotics, but it also outperforms the model reference adaptive controller, and it allows to
efficiently deal with sensory faults. This thesis represents a leap forward with respect to the
current state-of-the-art of active inference for robotics, and it lays the foundations for further
research in this direction.
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— Richard Feynman





Chapter 1

Introduction

This introductory chapter focuses on the motivations behind this research, posing the three
fundamental questions that this thesis addresses. After briefly reporting the current state-of-
the-art in the research area of active inference for robotics, the main contributions of this
work are highlighted. The chapter is then concluded with the outline of the document.

1-1 Research motivations

One of the most exciting and at the same time challenging topics in robotics, is the achieve-
ment of human-level adaptability in case of unexpected situations and uncertainties. In a
dynamic world which is hard to model accurately, the performance of classical control archi-
tectures can decay significantly. For robot manipulators, in particular, obtaining a physical
model for reliable control is a hard task. For this reason, research focused on the use of ma-
chine learning to obtain accurate inverse dynamic models [48, 34]. In general, learning models
using Neural Networks (NN) requires experts for defining the best topology for a particular
problem [31], and it mainly involves three steps: input/output data collection, heuristic ar-
chitecture design of the NN, and parameter learning. The resulting structure is usually hard
to generalise due to the required balance between overfitting and accuracy [41, 26]. Even
though it is possible to exploit the physical knowledge of the system to simplify and improve
the learning performance [27], the need of a large amount of training data and the need of
several iterations for learning, remains. Other approaches as [21, 20] focused on the learning
of task specific inverse dynamics which, even if performing well for the learnt task, cannot be
easily generalised to a plurality of motions.

Having said that, in recent years the state-of-the art for robot control in unstructured environ-
ments made giant leaps forward, but traditional solutions are still far from what the human
capabilities are, in terms of sensorimotor control, inference and adaptability. To try to bridge
this gap, bio-inspired control architectures appear to be promising. In the past years, various
researchers focused on the understanding of the processes underlining human intelligence and
decision making. One of the most influential theories which tries to explain how information
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is processed by the human brain, is the so called active inference. This theory, based on the
free-energy principle, was first presented by Karl Friston in the early 2000s [13, 14]. Friston’s
work represents an influential unifying theory of the brain, with an outstanding explanatory
power regarding brain’s cognition and motor control functions.

The free-energy principle and active inference relies on Bayesian inference and gradient de-
scent schemes to perform prediction error minimisation in a biologically plausible manner.
The possibility of encoding in mathematical terms the biological processes of the brain, and
ultimately the intelligence itself, is undoubtedly an interesting research area. Active inference
is relevant from a control perspective, not only because of its explanatory power regarding the
brain’s dynamics, but also because it proposes a structure which is suitable for robot control.

In a robotic context, active inference could provide a general approach which avoids the
use of accurate inverse models, removing the need of learning them through an articulated
NN. Besides, past work such as [25], highlighted the adaptability properties of the framework
proposed by Friston, for state estimation of a robot arm. The free-energy and active inference,
intrinsically bare the potential of dealing with unexpected situations. In a sense, active
inference qualifies, at least at first glance, as a potential intrinsically fault tolerant controller
capable of dealing with sensory faults. This suggests that the framework could be implemented
to simplify the control architecture with respect to other conventional techniques, avoiding
the use of external supervision systems for fault detection and recovery. The complexity of
the brain’s processes, however, reflects on the convolution of the current literature about
the topic. In this thesis we focus on the most relevant aspects of active inference, and we
reformulate them in control engineering terms for their application to robotics.

While active inference has been extensively studied in neuroscience, the application to robotics
has been marginally explored. This is mainly due to the neuroscientific formulation of active
inference, which is far from the robotics community. The application of this paradigm for
robot control is very limited, and at the time of writing, there is no clear evidence of the
benefits that active inference can bring in this scenario1. Besides, the claimed adaptability
properties of the theory in case of noise and unmodeled dynamics, remain to be tested against
other similar approaches. To conclude, the research motivations brought to the formulation
of the three questions that this work addresses:

• Is active inference suitable for robot control?
Answering this question on the basis of concrete evidences, was the first motivation
of this research. Active inference for robotics is as promising as it is intricate. The
fact that, at the time of writing, there was no on-line application for robot control in
the literature, indicated a gap that this work proposes to reduce. The novel solution
derived in this thesis not only answered the question above, but it also motivated further
exploration of the characteristics of the free-energy principle in terms of its adaptive
properties. This brought to formulate the second and third research questions.

1Note that a very recent and still unpublished research, subsequent to this work, formulated a working
active inference controller, in a similar fashion to what presented in this thesis. More details about this are
given on page 5.
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• What are the adaptability properties of active inference compared to other
adaptive solutions?
Active inference tries to capture the adaptability of the brain in terms of state inference
and computation of the control actions, based on a set of sensory input. To date,
however, there is on actual comparison of this framework with other adaptive control
techniques to quantify these properties.

• Can the free-energy principle structure be exploited to obtain an intrinsically
fault tolerant controller?
Past work highlighted how active inference is also able to deal with missing information
from redundant sensors, during the state inference process. This suggested to analyse
if the free-energy structure can be used to obtain intrinsically fault tolerant schemes,
which do not require additional supervision systems.

1-2 The state-of-the-art of active inference in robotics

The main idea at the basis of Friston’s neuroscientific theory, is that the brain’s cognition and
motor control functions could be described in terms of energy minimization. It is supposed
[11] that we, as humans, have a set of sensory data and a specific internal model to characterize
how the sensory data could have possibly been generated. With these models, we approximate
the dynamics of the real generative processes of the external world. Then, given these internal
models, the causes of sensory data are inferred. Usually, the environment acts on humans
to produce sensory impression, and humans can act on the environment to change it. In
this view, the motor control of human body can be considered as the fulfillment of a prior
expectation about proprioceptive sensations [17]. The fact that this theory tries to capture
the adaptive nature of humans’ sensorimotor control, suggested the use of the free-energy
principle to obtain robust control schemes for robotics. In practice, in a robotic application,
the whole sensory input available contributes in understanding the most probable states of the
robot through the minimization of the free-energy as cost function. The same minimisation
problem provides the control actions to the motors in order to fulfill a prior expectation about
a specific desired goal. The use of active inference for robot control allows state estimation
and control only using sensory data and internal models for these data.

As mentioned before, while developing this project the state-of-the-art for active inference
applied to robotics was narrow and it did not provide enough insights to understand whether
or not this brain inspired theory was suitable for real-time robotic applications. Having said
that, it is fundamental to carefully analyse the current solutions and to identify the main
limitations of the proposed approaches.

Open-loop active inference

The work presented in [38] by Léo Pio-Lopez et al., is the very first attempt to implement
active inference for robot control. In here, the authors simulated the behaviour of a PR2
robot in a reaching task using active inference. The main assumptions taken in this work,
are related to the generative processes and models. The generative process, which should
corresponds to the true dynamics of the robot, was replaced with a dynamical model defined
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by the authors. Besides, the authors assumed that the robot knows its forward model and
that it can retrieve the true position of its end effector. Usually, this relation has either to be
encoded or estimated, bringing into the control loop noise and unmodeled dynamics. Then,
the control law for the robot arm was based on a proportional-integral action using a feedback
error computed in Cartesian space. The authors also included a correction term to avoid the
occurrence of singularities while controlling the robot. Due to the assumptions taken, this
control scheme represented an off-line open-loop implementation of active inference for control
in Cartesian space. There is, indeed, no actual feedback from the simulated robot, and all
the necessary signals are computed based on the encoded generative process.

This implementation basically provides open-loop position commands to the joints, and it
relies on the internal PID controllers of the robot arm to account for the motion of the joints
and the compensation of gravity. During the reaching task, the response of the robot was
highly affected by the noise in the sensory data, failing to reach the target when all the sensors
where noisy. Besides, the computational complexity of the proposed solution precluded the
use of active inference for any on-line applications. It is important to notice that the dynamic
model of the robot manipulator was based on Newtonian dynamics, using elasticity and
viscosity terms to derive an expression for the acceleration of the joints. This may constitute a
problem for real applications, mainly because the control actions were computed in open-loop
based on the Newtonian model, and fed to the internal position controller of the simulated
robot arm. This limits the applicability only to set-ups equipped with position control,
and it is not robust. The overall scheme does not provide a general control law for robot
manipulators, since the specific design is hard to generalise.

A recent MSc thesis [32] addressed some of the problems of [38], providing a generalisation
of the approach detailed in the paper. In contrast with Pio-Lopez, [32] derived a closed-
loop implementation of active inference. However, the controller showed lower performance
with respect to a standard designed torque controller in simulation. In particular, the active
inference scheme was not able to stabilise the system when the gravity compensation was
active. One reason behind this behaviour, according to the concluding remarks of [32], could
be that the off-line computation of active inference did not include the gravity in its generative
model. Furthermore, as in [38], the implementation has been carried out in Matlab using the
Statistical Parametric Mapping (SPM) by Karl Friston. This toolbox is suitable for off-line
loops, and it results too computationally expensive for on-line control.

Closed-loop active inference

More recent research focused on a closed-loop implementation of active inference. In partic-
ular, the main contributions were given by Pablo Lanillos and Gordon Cheng, through their
publications regarding the free-energy principle [25] and active inference [24].

The authors first focused on the problem of on-line state estimation in a static situation [25].
For the first time, it appears in the literature an application of the free-energy principle on
a real UR5 robot arm. The goal of the paper was to demonstrate how a robot equipped
with multisensory data (encoders, camera and tactile sensors), can perform body perception
using a gradient descent scheme on the free-energy. After formulating the control problem in
engineering terms, the authors defined an expression for the free-energy as a sum of squared
prediction errors. This was given by the weighted difference between real and expected sensed
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values, provided by the generative models of the process and of the sensory data. In contrast
with [38], the generative models are estimated using Gaussian Process Regression (GPR),
over the collected data from the real robot. The use of GPR with squared exponential kernel,
revealed itself a good choice due to the fact that the necessary gradient of the process is
available in closed form. The fact that only forward generative models had to be learnt,
simplified the complexity of state estimation using fusion of different sensory data. The
advantages of using free-energy for state estimation became clear in the experimental results,
where the most probable state of the robot was inferred in a static situation. Since the free-
energy is based on Bayesian inference, the most probable state of the robot arm is given by
the posterior over the whole sensory set. This allowed to compensate for uncalibrated sensors
and for missing information from redundant sources. The fact that no actions were included
in the framework, however, makes this research incomplete in terms of implementation of the
full active inference paradigm. The authors successfully performed static state perception,
but left the inclusion of control actions for future work.

Starting from their previous work for static body perception, Lanillos and Cheng attempted to
apply active inference for joint space control, in a simulated 2-DOF robot arm. In the solution
proposed in [24], the generative models were obtained through continual learning. State-of-
the-art regressors, namely locally weighted projection regression (LWPR), were implemented
to on-line estimate the non-linear functions for the sensory input and state dynamics. The
control actions were defined through a gradient descent of the free-energy with respect to
the control input, providing the torques to the two joints of the robot arm. This represents
the first closed-loop implementation of active inference for control in joint space. However,
during the simulations, the unreliable on-line estimation of the acceleration of the robot
from the LWPR, was substituted with the ground truth. Besides, the result showed poor
performance of the controlled system with a very slow convergence of the states. Finally, the
authors did not specify how the control actions were determined, only providing the general
expression which however does not add any information regarding the adopted solution. To
conclude, regardless the fact that only forward dynamic models had to be learnt, the problem
still remained hard to solve, and the authors pointed out how this approach is not simpler
compared with classical inverse dynamics approaches. Table 1-1 summarises the main features
of the past work presented so far.

The most recent closed-loop implementation of active inference During the development
of this work, no suitable solution for on-line robot control using active inference was present in
the literature. However, a very recent research [35], unpublished at the time of writing, applied
active inference for control of a 3-DOF humanoid robot for a reaching task. Pablo Lanillos and
Gordon Cheng, are co-authors of this paper from Guillermo Oliver. The presented solution is
based on their previous work [25], extended with the control actions. The approach adopted
is very similar to the solution proposed in this thesis, with the difference that Oliver et al.
are controlling the robot using velocity commands and not directly torques. Besides, the
algorithm was tested in a real 3-DOF set-up, exploiting the inverse Jacobian and a visual
camera for a reaching task in the Cartesian space.

Even if similar, the solution we propose in this thesis brings additional contributions and
novelties. First of all, we use a 7-DOF robot manipulator instead of a 3-DOF. Then, we
provide a more rigorous performance comparison of the active inference controller with a
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Table 1-1: Main features of past work in active inference for robotics

Paper Algorithm Generative models Remarks

Pio-Lopez et
al. [38]

Open-loop
Cartesian Space
control

Supposed to be known

No gravity compensation,
use of built in position con-
trollers, computationally ex-
pensive

Lanillos and
Cheng [25]

Closed-loop state
estimation

Learnt off-line using
GPR

Good state estimation even
with noise and missing in-
formation from redundant
sensors. Static situation
with no actions

Lanillos and
Cheng [24]

Closed-loop joint
space control

Learnt on-line using
LWPR

Used ground truth accelera-
tion, poor performance, un-
clear explanation of the con-
trol actions used

state-of-the-art model reference adaptive controller. The control strategy presented is in joint
space, but similarly to [35] we can use the inverse kinematics to specify the set-point directly
from the Cartesian space. Besides, we provide a more detailed tuning procedure for the novel
controller, which still remains vague in [35]. Finally, we analysed the fault tolerant properties
of the algorithm, deriving a rigorous method to perform fault detection isolation and recovery
from sensory faults.

Apart from these differences, the fact that [35] proposes a similar solution with comparable
performance to what presented in this thesis, is a confirmation of the relevance of this work.
Having acknowledged the presence of another valid active inference controller, the rest of this
report is based on what available at the time of the study, so on any cited publication apart
from [35].

1-3 Main contributions

The goal of this research mainly consisted in developing a novel adaptive fault tolerant active
inference control scheme. This scheme is meant to be applied to robot manipulators subject
to uncertain dynamics and sensory faults, providing a scalable and robust solution. In detail,
the main contributions of this work are listed in the following:

• Derivation of an on-line active inference control law for a generic n-DOF
robot manipulator
With this work, we derived a novel control law using active inference for robot control.
The presented solution is easily scalable to high degrees-of-freedom, and it maintains
high performance even in presence of large unmodeled dynamics. The proposed ap-
proach is a step forward with respect to previous work, and, together with the subse-
quent research in [35], it represents the first application of the free-energy principle for
on-line robot control.
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• Comparison of the adaptability performance with respect to a model refer-
ence adaptive controller
In order to evaluate the performance of the proposed active inference algorithm, we
provided a comparison with another adaptive controller scheme. Due to the similarities
that active inference shares with model reference adaptive control (MRAC), the latter
has been chosen for a fair performance comparison. The simulations were carried out in
a realistic simulator of a real manipulator, for a pick and place task with a 7 degrees-of-
freedom robot arm. With the simulation results presented, we provide a strong evidence
of the relevance of active inference for robot control, and we confirm the adaptability
of the AIC to accommodate large unmodeled dynamics, outperforming the MRAC.

• Fault detection, isolation and recovery from sensory faults using active in-
ference
A novel solution for fault tolerant control of robot manipulators based on active infer-
ence has been devised. The proposed approach simplifies the overall control architecture
for fault detection and recovery in case of sensory faults, exploiting the structure of the
controller itself. In particular, the free-energy principle is used to facilitate the imple-
mentation of the necessary sensory redundancy, and to determine an on-line threshold
for the sensory prediction errors.

1-4 Thesis outline

This document is organised as follows. Chapter 2 is intended to make the thesis as self-
contained as possible. We provide the necessary background knowledge about the three main
topics related to this thesis: the free-energy principle, the model reference adaptive control,
and the current model based methods for fault detection, isolation and recovery.

In chapter 3 we derive an active inference controller for a general n-DOF robot manipulator,
and we explain the model assumptions and simplifications taken in order to obtain a suitable
scheme for on-line robot control. To verify the performance of the proposed solution, the
derived controller is applied to a simulated 7-DOF robot manipulator, and compared to a
model reference adaptive scheme in presence of large unmodeled dynamics.

In Chapter 4 we take advantage of the high adaptability properties of active inference, and
we propose to exploit the structure of the free-energy principle to obtain an intrinsically fault
tolerant controller. We will describe how to detect and isolate sensory faults using a time-
varying threshold on sensory prediction errors. Besides, we propose an approach to recover
from a detected fault using sensory redundancy.

Finally, Chapter 5 concludes the work presented in this document, and it summarises the
answers to the research questions previously posed. Besides, the author included some guide-
lines for future research in this direction, pointing out the main challenges and the questions
that still remains unanswered.
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Chapter 2

Background knowledge

In this Chapter, we present some fundamental theoretical concepts at the basis of this work.
Section 2-1 and Section 2-3 are extrapolated and adapted from the literature survey prior to
this thesis, with the purpose of making this report as self-contained as possible. In particular,
the free-energy principle and active inference are presented in control engineering terms to
facilitate the understanding of the control algorithm presented later on. Subsequently, the
theory behind the model reference adaptive controller for performance comparison is detailed.
Finally, the main concepts of classical model based fault detection are reported. The main
purpose of the latter is to highlight the intuitions at the basis of the theory presented in
Chapter 4, were the the active inference based fault tolerant scheme is devised.

2-1 Free-energy principle and active inference: the biological in-
spiration

The background knowledge here presented regarding the free-energy and active inference is
mainly based on the re-formulation proposed by Buckley et al. [5], since it is closer to the
control notation.

The free-energy principle is inspired by the tendency of the living organisms to resist disorder
in order to survive, minimising the surprise associated with the occurrence of atypical events.
The atypicality of an event can be quantified using the negative logarithm of the probability
of its sensory data, which is known as "surprisal":

− ln p(y) (2-1)

where p(y) is the probability of observing some particular multivariate sensory data y in
the environment. The more improbable an event is, the higher is the surprisal. Essentially,
according to the free-energy principle (FEP), all living organisms find themselves in a specific
sub-set of all the infinite possible states in order to survive. From a high level perspective,
think about a fish that finds itself outside water. The atypicality of the sensory input will
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make the fish perform a sequence of actions that will try to bring the animal back in the
water, minimising the sensory surprisal [5]. For clarity, the states represent selected physical
quantities, such as internal body temperature, the joint configuration of a limb, etc. In this
view, in typical conditions, the set of possible states is finite.

Why is the free-energy necessary? As we have seen, the sensory surprisal has to be min-
imised in order to survive. However, the distribution of surprising events is unpredictable
and unknown. To solve this paradox, the free-energy is proposed. In a sense, free-energy is a
quantity that:

1. Provides an upper bound on the extent of atypicality of sensory data (so an upper
bound for surprise);

2. Can be evaluated by an organism, since it depends only on sensory input and on an
internal model of how this sensory input was created, so the environmental causes.

In short, the free-energy as a bound on surprise is required since it can be evaluated more
easily. Minimising the free-energy, the surprise is also indirectly minimised. A more analytic
definition of free-energy is given in the next section.

The FEP structure The FEP proposes that organisms implicitly have a best guess of rel-
evant variables around them, a sort of set of probability distributions over all their possible
values: this can be seen as a Bayesian belief. When an organism receives sensory data, it
updates these distributions to better describe the environment. One of these distributions is
the recognition density (R-Density), which is the internal model of the environmental states.
To update the R-Density, some hypothesis on how environmental states are related to the
sensory input have to be made. These assumptions are expressed in terms of a probability
density function: the generative density (G-Density), which encodes the relation between
sensory input and environmental states. The G-Density uses a Bayesian formalism and it is
expressed as the likelihood times a certain prior. The likelihood is the probability of certain
sensory data given specific environmental variables, and the prior is the way to describe the
beliefs of the probability distribution over the environmental states. The G-Density describes
how sensory data is caused by the environment: generative models are used to specify the
brain expectations on environmental states given sensory data in terms of a Gaussian distri-
bution.

The combination of this two densities will result in the definition of an expression for the
free-energy. More in detail, the free-energy is a non-negative quantity from the Kullback-
Leibler divergence between the two densities R and G. So it is not a directly measurable
quantity, but it is more a quantity dependent on the interpretation of the brain variables
encoded in probability distributions.

2-1-1 Mathematical formulation of the free-energy

This section describes the free-energy from a mathematical point of view. Please note that
this part will make use of concepts related to Bayes theory [28] and in particular variational
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Bayes [3]. To make the mathematical description clear, let us first define the notation for the
most important variables as in Table 2-1.

Table 2-1: Notation for the definition of the free-energy

Symbol Name Description

x
Environment
states

Well-defined physical entities like internal temperature
or joint values.

y Sensory input The data generated from the available sensory set.

u Control action The action that an agent can perform on the environ-
ment in order to change sensory input.

µ State estimate Beliefs about the states of the environment encoded
by the controller. Expectation of the states x

It is assumed [5] that an organism tries to determine the probability of having some environ-
mental states based on the sensory input it has available. This problem can be formulated in
Bayesian terms: the agent is trying to find the posterior of the state (x) of the environment,
based on the current sensory data (y). To achieve so, let us assume that the prior beliefs of
the agents are encoded in the G-Density by the likelihood (so the belief about how environ-
mental states cause sensory input), times a prior (the belief about the world before the input
is received). For the sake of simplicity, we present the free-energy principle for a univariate
case such that x = x, y = y, u = u and µ = µ. We will later on extend the theory to a
multivariate scenario. The G-Density is expressed as:

GDensity = p(x, y) = p(y|x)p(x) (2-2)

Using Bayes theorem, the posterior that the agent is looking for can be formulated as:

p(x|y) = p(y|x)p(x)
p(y) = p(y|x)p(x)∫

p(y|x)p(x)dx (2-3)

The denominator in the above expression is often intractable, due to high dimensionality and
the absence of an analytical solution. Therefore, a Variational Bayes is used to approximate
the nasty term p(x|y) using optimization. To do so, an approximate probability distribution
is introduced, a sort of best guess of the causes of the sensory input, namely the recognition
density rd(x). One hypothesis about this quantity is that it normalises as:∫

rd(x)dx = 1 (2-4)

At this point a measure of the difference between the recognition density and the true posterior
is formulated as a Kullback-Leibler divergence:

DKL(rd(x)||p(x|y)) =
∫
rd(x) ln rd(x)

p(x|y)dx (2-5)

This quantity cannot be evaluated yet since the true posterior p(x|y) is unknown. To solve
this problem the G-Density in Eq. (2-2) and Eq. (2-4) can be exploited. It results:

DKL(rd(x)||p(x|y)) =
∫
rd(x) ln rd(x)

p(x, y)dx+ ln p(y) = F + ln p(y) (2-6)
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where F is the free-energy. Since the marginal probability density p(y) depends just on sensory
inputs, it is sufficient to focus on minimizing only F with respect to R-Density. Doing so,
the R-Density approximates the true posterior p(x|y). In fact when rd(x) = p(x|y) it results
DKL = 0. Furthermore, according to the Jensen’s Inequality [8], the KL-Divergence is always
greater or equal than zero, and this makes the free-energy an upper bound for the surprise:

F ≥ − ln p(y) (2-7)

Expanding the G-Density, Eq. (2-6) is rewritten as

F =
∫
rd(x)E(x, y)dx+

∫
rd(x) ln rd(x)dx (2-8)

where E(x, y) = − ln p(x, y). By analogy with the thermodynamic free-energy, the first term
in the above equation is called average energy.

To conclude, an expression for the free-energy to approximate the surprisal with an upper
bound has been found. A method for minimizing the surprisal itself, however, still has to
be defined. To do so, an organism can either update its beliefs about the surroundings, or
it can perform actions to change the sensory input and match its beliefs. This will result
in the complete framework, namely the active inference. However, at this point a question
should arise: the R-Density and G-Density are of free choice, but how should they be properly
selected? The next two subsections describe possible approaches.

Recognition density

To implement the free-energy, the brain must encode the R-Density. To do so, it is sup-
posed [12] that the brain parametrizes the sufficient statistics (e.g. mean and variance) of a
probability distribution. More in detail, the neuronal variables encode a family of probability
densities over the states x. Then, a specific instantaneous state of the brain (represented by
its mean value µ) picks up a particular density, namely the recognition density rd(x;µ). Note
that the semicolon indicates that µ is more a parameter than a random variable. Finding
rd(x, µ) is hard and intractable, this is why [12] proposes an approximation assuming that
the R-Density is Gaussian. This approximation is called Laplace approximation:

rd(x) = 1√
2πσ

exp{−(x− µ)2/(2σ)} (2-9)

where σ and µ are the variance and the mean of a single environmental variable x. If it
is further assumed, according to the Laplace approximation, that the recognition density is
sharply peaked at its mean value µ, and that E(x, y) is smooth in x, applying the Taylor
expansion of E(x, y) around x = µ allows to re-write Eq. (2-8) as:

F = E(µ, y) + 1
2

([
d2E
dx2

]
µ
σ − ln 2πσ − 1

)
(2-10)

To simplify further, the derivative of the above equation with respect to σ is taken. Demanding
that this equals zero, the optimal variance (which optimizes the free-energy) is found as:

σ∗ =
[
d2E
dx2

]−1

µ
(2-11)
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Substituting in Eq. (2-10):
F = E(µ, y)− 1

2 ln(2πσ∗) (2-12)

All these approximations allowed to recast the free-energy in terms of a joint density p(µ, y).
This is a probability over the sensory data y and the sufficient statistic µ of the recognition
density, instead of over some unspecified environmental features x. The term p(µ, y) is, in
other words, an approximate G-Density. Finally, neglecting the constant term in Eq. (2-12),
an approximate for the free-energy is obtained using the Laplace-encoded energy:

F ≈ E(µ, y) = − ln p(µ, y) (2-13)

This approximation shows that the brain only represents the most likely environmental causes
of some sensory data, neglecting the details of their distributions.

Generative density

In the previous section, the free-energy has been described in terms of the approximate
G-Density, in which the sufficient statistic µ of the R-Density substituted the environmen-
tal state x. In order to evaluate F , it still remains unspecified how the brain encodes the
generative density. A generative model of the environmental causes of sensory data has to
be formulated. Once the model is defined, the G-Density can be specified and F evaluated.
There are several techniques to define a generative model, which are introduced in the next
subsections.

Static generative model In a simple scenario, it is assumed [5] that the sensory data is
generated by a non-linear mapping between environmental states µ in combination with some
noise z ∼ (0, σy):

y = g(µ;x) + z (2-14)

The belief about environmental states can also be expressed by a fixed parameter plus some
noise w ∼ (0, σµ):

µ = µd + w (2-15)

This means that, for a static model, the belief about the states is history-independent, and
it fluctuates around a prior mean µd. Furthermore, the variance σµ represents the agent’s
confidence about its estimate of future states. Note also that µd and σµ are different from the
sufficient statistics of the R-Density µ and σ, since the latter encode the agent’s uncertain
belief about its current environment x. Now, assuming the two random variables z = y −
g(µ;x) and w = µ− µd to be Gaussian [12], the generative density can be written as:

p(µ, y) = p(y|µ)p(µ)

= 1√
2πσy

exp{−(y − g(µ;x))2/(2σy)}
1√

2πσµ
exp{−(µ− µd)2/(2σµ)} (2-16)

Substituting now the univariate case from Eq. (2-13), one obtains (up to a constant):

E(µ, y) = − ln p(y|µ)− ln p(µ)

= 1
2σy

ε2
y + 1

2σµ
ε2
µ + 1

2 ln(σyσµ) (2-17)
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Two new important quantities emerged from Eq. (2-17). They are the so called prediction
errors. In particular:

• εy ≡ y − g(µ;x) is the sensory prediction error. This is the discrepancy between the
sensory data y and the outcome of its predictions from g(µ;x);

• εµ ≡ µ−µd is the model prediction error. This is the extent to which µ differs from µd.

Note that each error is multiplied by the inverse of its variance. This is an indication of the
relative confidence about these errors. The extension to a multivariate case follows simply:
for each sensory input available, a sensory prediction error is collected in a vector εy. The
variance σy is also substituted by a covariance matrix Σy. Analogously for εµ and Σµ.

To conclude, the static model suggests that F is nothing more than a quadratic sum of
prediction errors, regulated by the relative precision (inverse variances). With this definition,
the free-energy can be computed once a prior µd and the generative model g(µ;x) are given.

Dynamic generative model A dynamic generative model is a step forward with respect to
the previous approach. Now, the possibility of the environment to change dynamically is
taken into account. A dynamic generative model is necessary if one wants to perform state
inference of time varying states. Let us assume again a single brain state µ and a single
sensory input y. The Langevin-type equation [52] is considered instead of using the static
Eq. (2-15):

dµ

dt
= f(µ) + w (2-18)

Now, combining Eq. (2-18) with Eq. (2-14), a dynamical generative model can be obtained.
To do so, however, a new concept has to be introduced first: the generalised motions.

Generalised motions The generalised motions are useful to describe the evolution of the
states of a dynamical system in terms of increasingly higher order derivatives of its state
variables, allowing a more precise description of the system itself. In mathematical terms,
neglecting non-linear derivative terms under local linearity assumption [12], the generalised
sensory data is expressed as:

y = g(µ) + z

y′ = ∂g

∂µ
µ′ + z′ (2-19)

y′′ = ∂g

∂µ
µ′′ + z′′

...
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where z, z′, ... are independent noise sources for every dynamic order, and the symbol "′"
means the time derivative d/dt. Similarly, for the Langevin equation it holds:

µ = f(µ) + w

µ′ = ∂f

∂µ
µ′ + w′ (2-20)

µ′′ = ∂f

∂µ
µ′′ + w′′

...

Finally, for a compact notation, the generalised sensory data ỹ, the states µ̃, the noise, and
the functions g, f , are defined as:

ỹ = (y, y′, ...) = (y(0), y(1), ...) µ̃ = (µ, µ′, ...) = (µ(0), µ(1), ...)
z̃ = (z, z′, ...) = (z(0), z(1), ...) w̃ = (w,w′, ...) = (w(0), w(1), ...)
g̃ = (g, g′, ...) = (g(0), g(1), ...) f̃ = (f, f ′, ...) = (f (0), f (1), ...) (2-21)

µ̃′ ≡ Dµ̃ ≡ d

dt
(µ, µ′, ...) =


0 1 0 . . .

0 0 1
...

...
... . . . . . .

0 0 . . . 0

 (µ, µ′, ...) = (µ′, µ′′, ...)

Having said that, the sensory data and the evolution of the states can be written as

ỹ = g̃(µ̃) + z̃ (2-22)
Dµ̃ = f̃(µ̃) + w̃ (2-23)

The first equation describes how sensory data ỹ are inferred using their causes µ̃. At each
dynamical order i, y(i) only depends on µ(i). The second equation is the generalised equation
of motion and it specifies how the coupling between adjacent dynamical orders is. Now,
assuming [12] that all the fluctuations at each dynamical order z(i) and w(i) are Gaussian,
the expression for the Laplace-encoded energy of Eq. (2-13), and thus an approximate for F ,
reduces up to a constant to:

F ≈ E(µ̃, ỹ) =
∞∑
i=0

(
1

2σ
y(i)

ε
(i)
y

2
+ 1

2 ln σy(i)

)
+
∞∑
i=0

(
1

2σ
µ(i)

ε
(i)
µ

2
+ 1

2 ln σµ(i)

)
(2-24)

where:

• ε
(i)
y ≡ y(i)− g(i) is the prediction error between sensory data y(i) and its prediction g(i);

• ε
(i)
µ ≡ µ(i+1) − f (i) is the discrepancy between expected higher order output µ(i+1) and
its prediction f (i);

Usually, only finite dimension systems are considered. As [15] suggests, order six should
be sufficient to describe even complex processes. Moreover, the variance associated to high
derivatives is high, and the contribution of the errors squared in Eq. (2-24) is limited. To sum
up, the Laplace-encoded energy (an approximation for F) is expressed as a quadratic sum
of sensory prediction errors ε(i)

y and model prediction errors ε(i)
µ , between various dynamical

orders, weighted by their variances.
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Free-energy minimization using perception

In the previous sections it has been discussed how to obtain the free-energy. We focus now on
how to minimise free-energy to make the R-Density a good posterior approximation. There
are reasons to believe [16, 11] that the brain implements a gradient descent to minimize F .
A proposal is that a generic brain state updates according to the gradient of the Laplace-
encoded energy. Before proceeding further, an important remark has to be done. In fact,
there is a difference between the expectation of the state motion µ̇ under the generative model,
and the agent’s current belief of that motion Dµ [18] (i.e. for a generic i-th component of
the generalised state µ(i)′ 6= µ̇(i)). In other words, for instance, the velocity of a point in the
generalised state space, is different from the trajectory model that the brain encodes regarding
that motion. Remember that this trajectory is denoted with Dµ̃. This is a crucial point to
understand so, in detail, it holds:

Dµ̃ ≡


0 1 0 . . .

0 0 1
...

...
... . . . . . .

0 0 . . . 0

 µ̃ = (µ(0)′ , µ(1)′ , ...) = (µ′, µ′′, ...) (2-25)

Having said that, considering that Dµ(i) = µ(i)′ , the gradient descent for the free-energy can
be written as:

µ̇(i) −Dµ(i) = −κµ∂µ̃E(µ̃, ỹ) (2-26)

where κµ is the learning rate for the state update. The term E vanishes when ˙̃µ = Dµ̃ so the
expectation of the motion equals the motion of the expectation. Eq. (2-26) in a multivariate
case will represent a set of first order differential equations. If this set was continuously
integrated in presence of sensory input, it would make the brain perform approximate inference
about the environmental states, minimizing F . The next section presents the last piece of
the framework to perform active inference: the definition of the actions.

2-1-2 Active inference

An organism in the environment has usually the possibility to take actions in order to modify
the world around itself. In this view, an organism can change its predictions about environ-
mental states through perception, but it can also change its sensory input through action to
minimize prediction errors. We present now the last piece of theory to define the whole active
inference construct.

Free-energy minimization using actions

While perception minimises the free-energy changing the beliefs about the states to better
predict sensory data, actions act on the environment to indirectly change sensory input to
match sensory predictions.

To perform active inference, an agent must have a model of how sensory data changes with
actions. This can be formulated in mathematical terms. First of all, a one dimensional case
is considered (one sensory input and one brain state). The sensory data y is written as a
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function of the action u such that y = y(u). Assuming a gradient descent scheme as before
[5], the gradient of the Laplace-encoded energy with respect to the control action becomes:

∂E(µ, y)
∂u

≡ ∂y

∂u

∂E(µ, y)
∂y

(2-27)

The action that minimises the Laplace-encoded energy is thus:

u̇ = −κa
∂y

∂u

∂E(µ, y)
∂y

(2-28)

where κa is the learning rate for the actions update. Even though the definition of control
actions appears simple, the partial derivatives of the sensory input with respect to the control
action is hard to determine. This can be seen as a forward dynamics problem, and it represents
the main challenge during the definition of an active inference controller. In Chapter 3, a
possible approach to tackle this problem for the definition of the actions update is presented.

2-2 Model Reference Adaptive Control

Even though there is already evidence of the adaptability performance of active inference, as
highlighted in [25], an actual comparison with another adaptive controller is still missing in
the literature. To validate the performance of the active inference scheme, then, a comparable
control architecture has to be chosen. Considering the fact that one of the goals of this research
is to verify the adaptive properties of the algorithm, our choice falls on an adaptive controller.
Besides active inference, in fact, there exist other well established control solutions to deal with
robotic manipulators subject to parameters variation and abrupt changes in the dynamics.
The adaptive control branch of control theory is the main example [1]. Within the adaptive
controllers, two main categories can be identified: the model reference adaptive systems, and
the self-tuning regulators [44]. The first technique being studied for robot manipulators was
the model reference adaptive control (MRAC) [51]. The idea behind this technique, is to
derive an adaptive control signal to be applied to the robot actuators, which will force the
system to behave as specified by a chosen reference model. Furthermore, the adaptation law
is designed to guarantee stability using either Lyapunov theory or hyperstability theory [45].
The other most common approach for robot control is the self-tuning adaptive control [50] [22].
The main difference between this technique and the MRAC, is that the self-tuning approach
represents the robot as a linear discrete-time model, and it estimates on-line the unknown
parameters substituting them in the control law. The literature for adaptive control of robot
manipulators shows the ability of these techniques to perform well in presence of uncertain
dynamics and varying payloads. Having said that, the complexity of the controllers usually
increases with increasing number of DOF.

Among all the possible adaptive controllers, in this thesis we choose the MRAC with hyper-
stability theory for comparison [45]. As we sill see later on, this choice is motivated by the fact
that this approach provides adaptability to abrupt changes in the robot dynamics, and it does
not require the kinematic or dynamic description of the manipulator. These characteristics
make the MRAC suitable for a fair comparison with the derived active inference controller.

Master of Science Thesis Corrado Pezzato



18 Background knowledge

2-2-1 MRAC for robot manipulators

In the following, we will describe a model reference adaptive controller for a generic n-DOF
robot manipulator. The control scheme here reported, is taken from [45] and it makes use of
hyperstability theory. The control signal is a set of reference torques for the motors. These
torques are computed through an adaptive law, which will make each joint of the robot
manipulator behave as a desired second order linear system. To present the control structure,
let us start with the dynamic description of the robot. In general it holds:

u(t) = M(q(t))q̈(t) +N(q(t), q̇(t))q̇(t) +G(q(t), q̇(t))q(t) (2-29)

where q(t), q̇(t), q̈(t) are the joint positions, velocities and accelerations ∈ Rn. M ∈ Rn×n is
the inertia matrix, N ∈ Rn×n is the Coriolis and friction matrix, and G ∈ Rn×n is the gravity
terms matrix. Let us suppose that the robot has to follow a specified reference trajectory, and
that the reference position qr and velocity q̇r are finite and continuous functions. A general
control law, then, can be expressed as:

u(t) = K0(t)q(t) +K1(t)q̇(t) +Q0(t)qr(t) +Q1(t)q̇r(t) + f(t) (2-30)

where K0(t), K1(t) ∈ Rn×n are matrices of position and velocity feedback, Q0(t), Q1(t) ∈
Rn×n are matrices acting on the reference signal and f(t) ∈ Rn is an auxiliary feedforward
vector. By substituting Eq. (2-30) in Eq. (2-29) it results:

M(q(t))q̈(t) + (N(q(t), q̇(t))−K1(t))q̇(t) + (G(q(t), q̇(t))−K0(t))q(t)
= Q0(t)qr(t) +Q1(t)q̇r(t) + f(t) (2-31)

Now, let us assume [45] that the desired dynamics that we want to impose for each joint of
the manipulator, are described by the following model:

q̈m(t) +A1q̇m(t) +A0qm(t) = A0qr(t) (2-32)

where qm(t) is the n-dimensional joint angle vector of the reference model. The elements
A0, A1 ∈ Rn×n are constant matrices to be chosen such that the error dynamics is asymp-
totically stable, and the joint angles are decoupled. In this manner, qm(t) approaches qr(t).
To do so, the following matrices are used:

A0(t) = diag{ω2
i }, A1(t) = diag{2ζiωi} (2-33)

where ωi, ζi, i = 1...n are the natural frequency and damping of the model of the i-th joint
response, which is given by:

qmi(s) = ω2
i

s2 + 2ζωis+ ω2
i

qri(s) (2-34)

The MRAC will steer the joints to behave as a second order linear system: the joint angle qmi
can be made as close to its reference value qri as desired, choosing proper ζi and ωi. Usually,
it is supposed critical damping ζi = 1,∀i [45].
The problem is now to find an adaptation law such that the response of the joints’ angles
from Eq. (2-31) approaches the one of the reference model described in Eq. (2-32). Let us
define the adaptation error as:

e(t) = qm(t)− q(t) (2-35)
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Substituting equations Eq. (2-31) and Eq. (2-32) in Eq. (2-35), it results:

ë(t) +A1ė(t) +A0e(t) = −u(t) (2-36)

where ë(t) = q̈m(t)− q̈(t), ė(t) = q̇m(t)− q̇(t) and:

u(t) = [A0 +M−1(K0(t)−G)]q(t) + [A1 +M−1(K1(t)−N)]q̇(t)
+ [2M−1Q0(t)−A0]qr(t) +M−1Q1(t)q̇r(t) +M−1f(t) (2-37)

The only remaining part is to find the feedback and cascade matricesK0(t), K1(t), Q0(t), Q1(t)
and the feedforward term f(t) such that the adaptation error of Eq. (2-35) goes to zero. Only
the final results will be here reported, for the complete mathematical derivation the interested
reader is referred to [45]. For the implementation of the control algorithm, the terms which
has to be specified are K0(t), K1(t), Q0(t), Q1(t), f(t). In particular:

K0(t) = K̂0 + E01q̄e(t)q(t)T + E02

∫ t

0
q̄e(τ)q(τ)dτ + E03

d

dt
[q̄e(t)q(t)T ]

K1(t) = K̂1 + E11q̄e(t)q̇(t)T + E12

∫ t

0
q̄e(τ)q̇(τ)dτ + E13

d

dt
[q̄e(t)q̇(t)T ]

Q0(t) = Q̂0 + F01q̄e(t)qr(t)T + F02

∫ t

0
q̄e(τ)qr(τ)dτ + F03

d

dt
[q̄e(t)qr(t)T ] (2-38)

Q1(t) = Q̂1 + F11q̄e(t)q̇r(t)T + F12

∫ t

0
q̄e(τ)q̇r(τ)dτ + F13

d

dt
[q̄e(t)q̇r(t)T ]

f(t) = α1q̄e(t) + α2

∫ t

0
q̄e(τ)dτ + α3

dq̄e
dt

The quantity q̄e is the modified joint angle error vector defined as:

q̄e = P2[qr(t)− q(t)] + P3[q̇r(t)− q̇(t)] (2-39)

and the matrices P2, P3 are P2 = diag{p2i}, P3 = diag{p3i}, i = 1...n with

p2i = l1i
2ω2

i

, p3i = l2i
4ζiωi

+ l1i
4ζiω3

i

, i = 1...n (2-40)

The coefficients l1i, l2i, i = 1...n are such that the matrix L is positive semi-definite, to
guarantee stability. The matrix L is defined as:

L =
(
diag{l1i} 0

0 diag{l2i}

)
, i = 1...n (2-41)

Regarding the terms described in Eq. (2-38), some considerations can be made:

• When the adaptation process is fast, the matrices K̂0(t), K̂1(t), Q̂0(t), Q̂1(t) can be
treated as arbitrary constants, often set to zero;

• The gain matrices E02, E12, F02, F12 are positive definite matrices, while E01, E11, E03, E13,
F01, F11, F03, F13 are positive semi-definite;

• If noise is present in the position measurement the matrices E03, E13, F03, F13 can be
set to small values, often zero.
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Controller characteristics and analysis

The adaptive control law offers large flexibility regarding the structure and the parameters
of the controller. According to Eq. (2-38), one can realise that the adaptation law is of a
proportional-integral-derivative type. Also, the control structure allows a feedforward signal
f to improve tracking performance. This signal can include position, velocity, acceleration
and so on, of the reference signal. Notice that, the adaptation algorithm allows to drasti-
cally improve the performance in case of system’s parameters variation, uncertainties and
disturbances. This, in combination with the scalability of the MRAC, and the fact that no
dynamical model of the robot is needed for control, are the reasons why this controller has
been chosen for comparison. However, while all this flexibility can be beneficial, it can also
represent a challenge during the tuning of the large number of parameters.

2-2-2 MRAC tuning

Based on the controller description previously given, the following block schemes can be
derived:

  
+  

+

++

Figure 2-1: Modified joint angle error vector

     

  

+
  
 

Robot
+
++

+

Figure 2-2: Block scheme for the MRAC with hyperstability approach

There are several constant gain matrices for the feedback, cascade and feedforward signal
to tune. Furthermore, the choice of the positive definite matrix L in equation Eq. (2-41)
influences the controller performance and feasibility. Some considerations from [45] have

Corrado Pezzato Master of Science Thesis



2-3 Fault tolerant control 21

been taken into account for the tuning or the MRAC. This is done to appreciate later on
the simpler tuning procedure of the active inference controller. First of all, the derivative
terms have been set to zero, supposing that noise is present in the position measurements.
Thus E03, E13, F03, F13 can be set to zero. The gain matrices have been considered as a
scalar constant (so the equivalent of a diagonal matrix of a single value) thus every joint
will have the same adaptive gain. Due to fast convergence of the algorithm, the values
K̂0(t), K̂1(t), Q̂0(t), Q̂1(t) have been set to zero. Moreover, the matrix L has been initially
set to the identity and subsequently the values l1i, l1i have been increased, to have a faster
step response. In fact, L directly influences the modified joint angle vector q̄e, through
P2 and P3. The remaining parameters to tune are the proportional and integral matrices,
considered as well just as positive constants to use the same gains for all the joints. The
values E01, E02, F01, F02 have been increased until the response was satisfactory. The same
procedure has been followed for the proportional and integral terms α0 and α1.

2-3 Fault tolerant control

Beside assessing the adaptability performance of the neuroscientific theory proposed by Fris-
ton, this thesis also investigated the fault tolerant properties of active inference. To understand
the connection between the latter and the approaches nowadays implemented for fault toler-
ance, the main components of a fault tolerant scheme are presented. The concepts reported
in this section and the related subsections are mainly based on the theory explained in [2, 7].
In a non-ideal world, technology is vulnerable to faults and failures. Sensor faults, actuator
faults, or plant faults, can make a system behave in an non-optimal manner, leading in some
cases to a complete break-down. It is clear, then, the importance of designing a control system
capable of managing critical situations. But what do faults and failures exactly mean? A
failure represents the inability of a system (or a component) to fulfill its function, and it is
irrecoverable. A fault is a modification of the characteristics of a component, such that its
performance (or mode of operation) is changed in an undesired way. In this view, a fault
tolerant controller has to prevent a component fault to cause a failure. The design of such a
controller consists of two main steps [2]:

• Fault diagnosis: the fault detection and isolation (FDI) of the faults;

• Control re-design: the adaptation of the controller parameters or structure to the
faulty situation.

Usually, fault diagnosis and control re-design are not carried out by a classical feedback
controller but from another supervision system, as depicted in Figure 2-3.
It has to be noticed that faults f and disturbances d are different. In fact, only the latter are
usually taken into account by the default controller, which compensates for them. Moreover,
from Figure 2-3, it can be seen that extra elements have to be added to the overall scheme
to perform fault detection and classification, and to adapt the controller to new situations.
Furthermore, in the diagnosis block, a dynamic model of the system subject to fault has
to be implemented for FDI. There are, to some extent, some ways to avoid these external
components, using for instance adaptive schemes. However, these are usually suitable for a
restricted family of faults, or for slowly changing process dynamics.
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Controller System

Supervision
Level

Controller
re-design Diagnosis

Execution
Level

Alarm

Figure 2-3: Architecture of a fault tolerant control system from [2]

2-3-1 Model-based fault diagnosis

The literature about fault diagnosis, detection and isolation is vast. In this work attention is
paid to the most advanced technique which is nowadays implemented, namely a model-based
approach [7]. This choice has been made since this class of methods makes use of process
models and analytical redundancy. As it will be explained in Chapter 4, this peculiarity
allows to extend the concepts from model-based approaches to the free-energy principle, in
order to perform FDI.
The model-based methods monitor the trend of certain signals, called residuals, for fault
diagnosis. These signals are then compared to a threshold, and faults are recognised if the
threshold is exceeded.
More in detail [7], the first step in a model-based approach is to build a mathematical model
of the system in play, to generate the residuals. The latter are defined as quantities that
reflect the inconsistency between the actual system variables and their mathematical descrip-
tion. Model-based approaches exploit the concept of analytical redundancy, intended as a
mathematical model of a measurable quantity. Analytical redundancy is used to cross-check
the value of a variable, and it is the main concept on which the residual generation rests. In
order to use the residuals for fault diagnosis, as mentioned before, both residual generation
and evaluation have to be performed.

Residual generation

A general framework for residual generation, as described in [7], is now presented. To intro-
duce the idea of residual, the dynamics of a system in which possible faults could occur has
to be defined. To explain this, a MIMO linear system is considered as an example. Such a
system, in absence of any fault, is described by the following dynamics:{

ẋ(t) = Ax(t) +BuR(t)
yR(t) = Cx(t) +DuR(t)

(2-42)

where x(t) is the state vector, yR(t) is the real output vector of the system, uR(t) is the real
input vector to the the system. The matrices A, B, C, and D are the conventional state-space
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matrices. In the presence of a fault, the above dynamics have to be adjusted slightly. First,
a general scheme of a system subject to fault is reported:

Actuators
Input System Sensors

Actuator Faults Component Faults

Actuation Output

Sensor Faults

Measured
Output

Figure 2-4: Faulty open-loop system from [7]

From Figure 2-4, one can observe the presence of three possible kinds fault, described by their
relative functions. In particular there can be: actuator faults fa(t), plant components faults
fc(t), and sensor faults fs(t). Remember that uR is the actuator response to an actuator
command u(t). Neglecting the actuator dynamics it holds that:

uR(t) = u(t) + fa(t) (2-43)

Considering also the other two fault functions and neglecting the sensors dynamics, one can
define a new system of equations to describe the plant dynamics in a more general way:{

ẋ(t) = Ax(t) +B(u(t) + fa(t)) + fc(t)
yR(t) = Cx(t) +D(u(t) + fa(t)) + fs(t)

(2-44)

which can be rewritten as: {
ẋ(t) = Ax(t) +Bu(t) +R1f(t)
y(t) = Cx(t) +Du(t) +R2f(t)

(2-45)

where f(t) is a fault vector and each entry corresponds to a specific fault. R1 and R2 are
the fault matrices representing the effects of the faults on the system. Note that here u(t) is
the input to the actuators (from the controller) and y(t) is the measured output (from the
sensors). These two quantities are known.

The residual generation considering the available signals u(t) and y(t) is now analysed.
For this purpose, a schematic is reported in Figure 2-5, where the system in Figure 2-4 is
grouped in a single block and the general mechanism of the residual generation is illustrated.

Figure 2-5 is a general scheme which highlights two different steps, namely the generation of
the redundant signal z(t) and the generation of the residual signal r(t). In particular, in this
scheme, a function of the input and output F1(u,y) generates a redundant signal which is
used by the function F2(z,y) to compute r(t):

r(t) = F2(z(t),y(t)) = F2(F1(u(t),y(t)),y(t)) (2-46)

Different approaches can be used to define the functions F1 and F2. The simplest solution is
to use a copy of the system dynamics as F1. In this way, only the input u(t) is required by
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Input
System

Output

Residual

Figure 2-5: Redundant structure for residual generation from [7]

F1, which acts as a system simulator, replicating the system output y(t) as z(t). Then F2 can
be, for instance, a simple subtraction. However, this would result in an open-loop approach
which is prone to output drifting due to unavoidable unmodeled dynamics. An extension to
this simulator-based residual generation, is to use an output estimator instead of a copy of
the system. Doing so, both signals u(t) and y(t) are used. In any case, no matter what
type of approach is implemented to define F1 and F2, a residual generator is usually just a
linear processor with input the signals u(t) and y(t) of the system being monitored. In a
mathematical formulation [7]:

r(t) = F2(z(t),y(t)) = Q(z(t)− y(t)) (2-47)

where Q is a static (or dynamic) weighting matrix.
The framework presented so far is general, and the selection of the two functions F1 and F2
defines different parametrizations of the residuals. When the residual generation is properly
defined, a residual evaluation function J(r(t)) and a certain threshold τ (t) are necessary to
detect the presence of a fault.

Residual evaluation

Residual evaluation is a fundamental part of fault detection. A number of evaluation schemes
are available and described in the literature. In particular, statistical methods and norm
based evaluation methods are the most popular [9] and often used for residual evaluation in
model-based approaches. Both schemes create a threshold according to model uncertainties,
noise and residual features. In general, residual evaluation can be represented as in Figure 2-6,
where exceeding the threshold indicates a fault in the system. In particular, it holds that:{

J(r(t)) ≤ τ (t), for f(t) = 0
J(r(t)) > τ (t), for f(t) 6= 0

(2-48)

We will see later on how the free-energy could be used to facilitate the definition of r(t),
J(r(t)) and τ (t).

2-3-2 Controller re-design

The last part of a fault tolerant control scheme is the controller-redesign. The ability to
change the default controller parameters (or structure) in order to fulfill the specifications in
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Figure 2-6: Residual evaluation and threshold generation from [9]

case of fault, is indeed crucial. This task can be really complicated and sometimes unfeasible.
This can happen when unstable modes of the system become uncontrollable or unobservable
due to the fault. To try to solve the problem of controller re-design, two general approaches
can be found in the literature:

• Fault accommodation: adapting the controller parameters in relation to the dynam-
ical properties of the plant subject to a fault;

• Control reconfiguration: selecting a new control configuration and re-designing the
controller online. This is necessary when severe faults occur, like sensor faults, actuators
or plant faults. This kind of faults usually leads to unobservability or uncontrollability.

Some considerations for-real time applications deserve to be done here. Fault accommodation
and control reconfiguration have to be completely automatic, and a solution, even if not op-
timal, has to be found as quickly as possible. The switching and/or adaptation of controllers
can require a certain amount of time, and this interval can be seen as a time delay that can
possibly lead to instability. The controller re-design block is a hard component to design,
which depends on the controlled system and the supposed faults. Common approaches con-
sider modality switching to recover from large faults [2, 19, 33]. This means that for each
supposed faulty situation, a working controller is designed. Then, once a fault is detected and
isolated, the supervision system switches to the specifically designed controller for recovery.
This clearly increases the complexity of the overall architecture.

Relation between free-energy and model-based FDI and recovery

So far we have seen the main steps to be performed to achieve fault tolerant control. The choice
of the external supervision system for the residual generation and evaluation, is influenced by
the process to be controlled and by the controller itself. The same happens for the controller
re-design part. Designing an external supervision system can then become a quite challenging
task.
One question might then arise: is there a way to avoid the external residual generation and
evaluation using an intrinsically fault tolerant control scheme? And also, can the modality
switching be avoided for recovery? Active inference is a possible candidate to achieve so.
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The FEP provides a structure which could be used to obtain an intrinsically fault tolerant
controller. First of all, its adaptability properties could be beneficial in case of smaller faults
such as limited decrease of actuator efficiency, or increase of friction coefficients etc. Besides,
the framework considers as sensory input y for the state inference, a generic m-dimensional
vector. Since the whole sensory set contributes to the state estimation, this could be exploited
to facilitate the inclusion of redundant sensors, to recovery in case of sensory faults. Analysing
both the sensory prediction errors in the FEP, and the residuals in a fault tolerant sense,
one can notice some strong similarities. Due to the free-energy minimisation, in fact, the
sensory prediction errors are quantities which measure the mismatch between what it is
sensed and what it is predicted to be sensed. In normal working conditions these terms
should approach zero. However, in case of sensory faults, the sensory prediction error relative
to the faulty sensor should manifest an unusual increase. Besides, since the free-energy is
a positive quantity, one could calculate an upper bound to be used as threshold for fault
detection. Finally, the recovery actions in case of sensory faults, could be directly embedded
in the active inference controller. Remember that the controller encodes its confidence with
respect to the sensory input through the covariance matrices Σy(i) . Increasing the variance
associated to a faulty sensor would exclude the malfunctioning sensor from both the inference
process and the control action computation. Thus, also the recovery could be implmented
in the controller in a natural way. To conclude, Table 2-2 summarises the intuitions behind
free-energy for fault tolerance.

Table 2-2: Intuitions regarding free-energy for fault tolerance

Method Residual generation Residual evaluation Recovery

Classical
model based

External, using a
model of the process

Norm or statistic
based threshold

External, usually
with modality
switching

Free-energy
Internal, using the
available sensory
prediction errors

On-line threshold from
sensory prediction
errors and F

Internal, changing
the confidence on
the sensory input

2-4 Concluding remarks

This chapter introduced the three main topics on which this study is based. The definition of
the free-energy principle and active inference provides that both state estimation and control
can be performed through the minimisation of one single cost function. The framework heavily
relies on the defined generative models for the sensory data and the state dynamics. But how
should these models be defined? And also, what kind of benefits can active inference bring
for robot control? If we find a way of properly defining these generative models, we could
obtain a lightweight formulation of active inference for on-line applications. Then, we could
take advantage of the adaptability performance of the framework, and obtain a novel control
scheme.

In order to understand the relevance of such a novel controller, a measure of performance
had to be defined. The choice of using a model reference adaptive controller for performance
comparison, is motivated by the similar characteristics that the controllers share. The two
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schemes are indeed both scalable to high DOF, and they do not require the dynamic equations
of the robot to be controlled. Besides, the MRAC is a good candidate as a benchmark for
evaluating the claimed adaptability performance of the active inference controller (AIC).

Finally, the initial study of active inference suggested its possible applicability as a fault
tolerant controller. To verify this, we reported the general theory regarding model-based
fault tolerant control, and we pointed out the similarities in terms of residual generation
that this approach shares with the free-energy. We also saw how traditional fault tolerant
solutions require external supervision systems, and a dynamical model of the process. The
free-energy appears to be useful to avoid all these components. In particular, the intuition
which lies behind this work, is that the sensory prediction errors could be used as residuals for
fault detection and isolation. Besides, the free-energy would facilitate the implementation of
sensory redundancy, and it would provide a way to weight the sensory input to perform fault
recovery. This idea will result in an elegant way of performing fault tolerance only exploiting
the internal signal of the controller.
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Chapter 3

Robot arm control with active
inference

This chapter presents a novel active inference control scheme for a generic n-DOF manipu-
lator. The algorithm allows to control the robot in joint space, directly providing the torques
to be applied to the motors. To illustrate the properties of active inference, two examples with
a 2-DOF robot arm are reported. Then, the adaptability properties of the control algorithm
are tested in a simulated pick and place cycle with a 7-DOF robot arm. The resulting perfor-
mance is compared to an MRAC in case of large model uncertainties, showing that the AIC
can outperform the other adaptive controller. The chapter is then concluded with a summary
regarding the benefits and limitations of the proposed solution.

3-1 Free-energy and active inference from a control perspective

In Chapter 2, the free-energy principle and active inference have been presented, focusing on
their biological inspiration. The concepts of sensory set, control actions and environmental
states, can however be seen from a more control engineering perspective. In a classical control
problem, the system can be described with a set of states representing the physical quantities
to be controlled. Then, the control input is computed making use of a model of the system,
a set of sensors, and a control law. The analogy with the quantities described in the active
inference framework, is then self explanatory. Since the goal of this thesis is to perform on-line
control of a robot manipulator in joint space, a clear connection with active inference can be
drawn, as reported in Table 3-1.

It is important to notice that, in a classical control scheme, there will be a dedicated filtering
block for the state estimation, and a control block to perform reference tracking. From this
point of view, given a system to be steered to a desired goal, active inference provides both
state estimation and control input through the minimization of one single cost function, the
free-energy.
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Table 3-1: Biological inspiration in engineering terms for robot control

Inspiration Sensory data Beliefs update Control actions

Biological Proprioception Sensory explanation Stimuli to the
muscles

Control
engineering

Encoders and
tachometers

Filtering, state
estimation

Torques to the
motors

In the next sections, we adapt the theory presented in the previous chapter to the robot control
case. First, the simplest case of static state estimation through free-energy minimisation in
a multivariate case is explained. Then, the control actions are included in the framework
to obtain a closed-loop implementation of active inference. The results are first presented
through a 2-DOF example, to appreciate the theoretical aspects described in Chapter 2.
Then, the derived general control law is applied to a more complex 7-DOF manipulator, for
performance comparison with the MRAC.

3-2 Free-energy minimisation for static state estimation

The simplest implementation of the free-energy principle, is to perform state estimation in a
static scenario without any control action allowed. Such a case is analysed in the following,
where the general state update law for an n-DOF robot manipulator is derived. Since we
consider only perception in a static case, there is no need to use the generalised motions to
describe the dynamic evolution of the states.

For this case, we suppose that the only sensory information available is the one from noisy
encoders. In a more complex scenario, multisensory data can be considered to have a better
a posteriori approximation of the states. This is particularly useful in presence of a relevant
level of noise, but also in case of uncalibrated or even faulty sensors. The multisensory case
is presented in Chapter 4, when sensory faults are injected in the system.

As a starting point to derive the static state update expression, we recall the general for-
mulation of the free-energy given in Chapter 2. In a multivariate case, the free-energy is
represented by:

F = − ln p(µ,yq) (3-1)

where µ is the belief about the states of the robot, and yq is the available noisy measurement
of the joints position q. The static state perception will make the beliefs converge to the
true states. But what should be chosen as state? A reasonable choice is to consider the joint
positions as states of the robot to be estimated. This will be helpful also later on when the
control of the robot in joint space will be presented. This choice, indeed, considerably sim-
plifies the overall control structure. To summarise, the state estimate µ ∈ Rn represents the
posterior approximation of the joint values, given the noisy encoders’ output yq. The infer-
ence process will make µ converge to the true joint values q. According to the fundamental
rule of probability it holds that:

p(µ,yq) = p(yq|µ)p(µ) (3-2)
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Eq. (3-2) reads as: the joint probability of being in a state µ and sensing yq, is given by
the probability of sensing yq once given the state µ, times the probability of being in µ.
Substituting Eq. (3-2) in Eq. (3-1) leads to:

F = − ln p(yq|µ)− ln p(µ) (3-3)

To express these two probabilities, the generative models of the sensory data and state dy-
namics need to be specified.

Generative model of the sensory data The sensory data is modeled through a noisy non-
linear mapping between the state estimate µ and the encoders’ output. Following [11], we
can write:

yq = gq(µ) + z (3-4)

where gq(µ) is a the generative function, and z is some Gaussian noise z ∼ (0,Σyq). Since we
chose the states to be the joint positions, and the sensory data provides directly q, it holds:

gq(µ) = µ (3-5)

Rewriting Eq. (3-4) as z = yq − gq(µ) and making use of the Laplace assumption, allows to
express p(yq|µ) as:

p(yq|µ) = 1
|Σyq |

n
√

2π
exp

{
−1

2(yq − gq(µ))>Σ−1
yq (yq − gq(µ))

}
(3-6)

where |Σyq | is the determinant of the covariance matrix.

Generative model of the state dynamics Since the environment is static, we encode in the
controller a static generative model. In this way, the controller assumes that the states are
fluctuating around a mean µd [5]:

µ = µd +w (3-7)

where w is Gaussian noise w ∼ (0,Σµ). Similarly, then:

p(µ) = 1
|Σµ| n
√

2π
exp

{
−1

2(µ− µd)>Σ−1
µ (µ− µd)

}
(3-8)

3-2-1 Free-energy and beliefs update in a static environment

The static state perception here presented, is an extended version to a robotic example of the
1-DOF thermostat example presented in [5], making use of [4] and [25].

Free-energy expression

The Laplace assumption regarding Gaussian distributed probability densities, allows to sim-
plify the expression of F . Substituting Eq. (3-6) and Eq. (3-8) in Eq. (3-3), leads to:

F ≈ 1
2(yq − gq(µ))>Pyq(yq − gq(µ)) + 1

2(µ− µd)>Pµ(µ− µd) ∈ R (3-9)
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32 Robot arm control with active inference

In the expression above, the positive constant terms resulting from the logarithm of the Gaus-
sian distribution have been neglected, since they will not play any role in the minimisation of
F for state estimation. Furthermore, the inverse covariance matrices Σ−1

yq and Σ−1
µ have been

renamed as precision matrices Pyq and Pµ respectively. In general, Py indicates a precision
matrix for a generic sensory input. In this view, a lower precision matrix would result in a
lower confidence of the controller regarding either the sensory input or the internal estimate
about the states. This term will be crucial while performing recovery from sensory faults, as
explained in Chapter 4.

Beliefs update equation for static state estimation

To perform state estimation in the static case, a gradient descent on the free-energy is used.
In particular, the state inference is provided by:

µ̇ = −κµ∂µF ∈ Rn (3-10)

were κµ > 0 is the learning rate to adjust the rate of convergence. Recalling that, for a generic
vector v it holds ∂v(v>Av) = v>(A + A>), and that the precision matrices are symmetric,
we can write the following state update equation:

µ̇ = −κµ
[
−(yq − gq(µ))Pyq∂µgq(µ) + (µ− µd)Pµ

]
(3-11)

Finally, since the states have been chosen as the joint values of the robot manipulator, and
gq(µ) = µ, it holds ∂µgq(µ) = 1.

Remarks

A detail which deserves attention, is the role of the mean µd. The FEP defines this quantity
as a prior expectation regarding the states of the environment. In control terms, µd can be
seen as the desired goal to be reached. In a sense, this term encodes the desire of the controller
to steer the states to a specific value. If, as in this case, the control actions are suppressed,
the only way to completely minimise F , is when the desired goal coincides with the actual
robot position. The free-energy minimisation will then fulfill the prior expectation encoded
in the controller, through state estimation only.

In case µd differs from the actual joint values of the robot, the free-energy minimisation will
settle to a local minimum. The controller cannot satisfy its desire to steer the states to a
specific set-point since no actions are allowed. In this situation, the most probable state
µ, will be a trade-off between the sensed and the desired states. The posterior estimate
qualifies as minimiser for F , which in this case will be stuck in a local minimum. The only
way to solve this discrepancy is through the control actions. Once again, it becomes clear
the coupling between state estimation and control actions which usually remains separate in
classical control solutions.

However, this phenomenon should not be seen as a limitation of the algorithm. In fact, the
interconnection between actions and perception is the main reason behind the adaptability
properties of active inference, as we will see in the next sections. In other words, the actions
computed by the controller aims at changing the sensed values in order to match the prior
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3-2 Free-energy minimisation for static state estimation 33

expectation. To conclude, the best situation is found when the controller is sensing what it
expects to sense, and when its internal beliefs about the states coincide with their desired
values. With the next example we illustrate these concepts.

3-2-2 2-DOF example

To illustrate the free-energy minimisation for state estimation in a static environment, a
simple 2-DOF example is here presented. The complete Matlab implementation is reported
in Appendix A-1. The initial free-energy minimisation was based on the tutorial from Bogacz
[4], and subsequently adapted and extended with the control actions. First of all, the dynamic
model of a 2-DOF robotic arm as in Figure 3-1 is specified.

Figure 3-1: 2-DOF robot manipulator

Let us consider the dynamic description of the manipulator as follows [43]:

u(t) = M(q)q̈ + C(q, q̇)q̇ +Dq̇ + gt(q) (3-12)

where q = [q1, q2]>, u(t) = [u1, u2]>. Furthermore, the inertia matrix is given by:

M(q) =
(
M11 M12
M21 M22

)
(3-13)

Each term of the symmetric inertia matrix are defined as:

M11 = m1a
2
C1 +m2[a2

1 + a2
C2 + 2a1aC2cos(q2)] + J1 + J2

M12 = M21 = m2[a2
C2 + a1aC2cos(q2)) + J2 (3-14)

M22 = m2a
2
C2 + J2

The terms Ji, mi and ai for i = 1, 2, are respectively the inertia, the masses and the lengths
of the two links. The Coriolis matrix is instead:

C(q, q̇) =
(
−m2a1aC2sin(q2)q̇2 −m2a1aC2sin(q2)(q̇1 + q̇2)
m2a1aC2sin(q2)q̇1 0

)
(3-15)

The gravity term gt = [g1 g2]> is defined as:

g1 = (m1aC1 +m2a1)cos(q1)g +m2aC2cos(q1 − q2)g
g2 = m2aC2cos(q1 − q2)g (3-16)

Master of Science Thesis Corrado Pezzato
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and the matrix D of friction coefficients is simply D = diag{d1, d2}. The full model will be
used when the control actions will be allowed, to simulate the response of the controlled robot
arm. For now, the robot is assumed to be in a the static configuration, and the noisy joint
values from the encoders are used to perform state estimation.

Simulation results

For this simulation, the robot arm is fixed in a configuration in joint space. Specifically,
q = [0.3, 0.8]> [rad] ∀t > 0. The sensory input is affected, without loss of generality, by
normally distributed Gaussian noise with standard deviation 0.001 [rad]. The noise in the
two encoders is supposed uncorrelated [5] such that z ∼ (0, 0.001I2), with I2 two dimensional
identity matrix. The actual simulated measurement of the joint positions is then coded as
yq = q + z.

State estimation which meets the desired prior expectation The prior beliefs about the
states µd is initially set equal to the actual robot position, so the desire of the controller is
actually met when the states are correctly estimated. In other words when µd = q. This
allows to evaluate just the effect of perception using to sensory data.

Figure 3-2: Free-energy minimisation for state estimation in a static case. µd = q

The two equations to be implemented for static state estimation, are given by Eq. (3-9) and
Eq. (3-11). The precision matrices Pyq and Pµ are assumed to be the identity, to evaluate the
state estimation with equally weighted sensory input and internal beliefs. The learning rate
κµ for the update is set to 20 for a fast convergence, and the integration step is set to 1 [ms].

State estimation with different prior expectation We now assume that the prior expecta-
tion µd differs from the actual robot configuration, imposing for instance, µd = [0.4, 0.6].
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Figure 3-3: Free-energy minimisation for state estimation in a static case. µd 6= q

As can be seen, the beliefs do not converge to the true states due to the discrepancy between
sensed and desired values to be sensed. This situation will be solved allowing the control
actions to further minimise the free-energy, and meet the control objective.

3-3 Active inference for robot control

In this section, we present a novel active inference controller (AIC) for a generic n-DOF
manipulator controlled in joint space. The resulting approach represents a general model-
free control law, which provides high adaptability against unmodeled dynamics, and high
scalability to increasing number of degrees of freedom. Since the controller will steer the
robot to a desired set-point, the states will be characterized by a dynamical evolution. To
perform dynamic state estimation, the use of the generalised motions is then necessary, in
contrast with the previous example.

Generalised motions

With the generalised motions, we consider that the states are described by increasingly higher-
order derivatives, up to the selected order nd. The generalised state vector is represented as:

µ̃ = [µ, µ′, µ′′, µ′′′, ..., µ(nd)] (3-17)

where nd is the order to be considered. The generalised motions of the beliefs under local
linearity assumption [12] are:

µ′ = µ(1) = f(µ) +w

µ′′ = µ(2) = ∂f

∂µ
µ′ +w′ (3-18)

...
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Similarly, the generalised motions of the sensory input are given by:

y = y(0) = g(µ) + z

y′ = y(1) = ∂g

∂µ
µ′ + z′ (3-19)

...

The generalised sensory input is also represented as:

ỹ = [y, y′, y′′, y′′′, ..., y(nd−1)] (3-20)

The generalised motions can extend up to infinite order. However, the noise related to high
orders is predominant, allowing to decide on the number of derivatives to consider [15].

3-3-1 Free-energy in a dynamic environment

A general expression for the free-energy for a robot manipulator, using generalised motions,
is derived starting from:

F = − ln p(µ̃, ỹ) = − ln p(ỹ|µ̃)p(µ̃) (3-21)

The likelihood of the sensory data p(ỹ|µ̃) and the prior p(µ̃) have to be specified. To do so, a
few considerations have to be made. According to [5] and to the assumption previously given,
the noise at each dynamical order is considered uncorrelated. Then, according to Eq. (3-19),
the sensory data at a particular order relates only with the states at the same dynamical
order. Similarly, for the state dynamics, the state at a certain dynamical order are related
only with those which are one order below. This allows us to write:

p(µ̃, ỹ) =
nd−1∏
i=0

p(y(i)|µ(i))p(µ(i+1)|µ(i)) (3-22)

Then, taking the logarithm:

F = −
nd−1∑
i=0

[
ln p(y(i)|µ(i)) + ln p(µ(i+1)|µ(i))

]
(3-23)

Using the Laplace assumption, and thus considering Gaussian distributed probability densi-
ties, we can write:

p(y(i)|µ(i)) = 1
|Σy(i) | n

√
2π
exp

{
−1

2(y(i) − g(µ)(i))>Σ−1
y(i)(y(i) − g(µ)(i))

}
(3-24)

p(µ(i+1)|µ(i)) = 1
|Σµ(i) | n

√
2π

exp
{
−1

2(µ(i+1) − f(µ)(i))>Σ−1
µ(i)(µ(i+1) − f(µ)(i))

}
(3-25)
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Free-energy expression with generalised motions

Equipped with the extra theoretical knowledge about generalised motions, we can define an
expression for the free-energy for a multivariate case in a dynamically changing environment.
This is a general expression which holds for any system with generalised sensory input ỹ and
states µ̃, using nd generalised motions. Substituting Eq. (3-24) and Eq. (3-25) into Eq. (3-23),
leads to express F as a sum of prediction errors:

F = 1
2

nd−1∑
i=0

[
(y(i) − g(i))>Py(i)(y(i) − g(i)) + (µ(i+1) − f (i))>Pµ(i)(µ(i+1) − f (i))

]
(3-26)

where nd is the number of generalised motions chosen and the covariance matrices have
been substituted with the equivalent precision matrices. Furthermore, it holds the following
relation:

g(i) = ∂g

∂µ
µ(i), f (i) = ∂f

∂µ
µ(i), g(0) = g, f (0) = f (3-27)

The minimisation of this expression can be done by refining the internal beliefs, thus perform-
ing state estimation, but also computing the control actions to fulfill the prior expectations
and achieve a desired motion.

The next two sub-subsections describe how this general free-energy equation is adapted for
any robot manipulator equipped with joint position and velocity sensors. Before giving the
details about the active inference controller, however, the initial assumptions underlining the
controller structure are here reported.

Assumption 1 The robot manipulator is equipped with position and velocity sensors, which
respectively provide the two variables yq, yq̇ ∈ Rn.

Assumption 2 The states x are chosen to be the joint positions of the robot manipulator.
Doing so, we can control the robot arm in joint space through free-energy minimization, and
simplify the equations for states update and control actions.

Assumption 3 Since only the position and velocity measurements are available, we will
consider the generalised motions up to order two, so nd = 2. Doing so, Eq. (3-18) and
Eq. (3-19) reduce to: {

µ′ = f(µ) +w
µ′′ = ∂f

∂µµ
′ +w′

{
y = g(µ) + z
y′ = ∂g

∂µµ
′ + z′

(3-28)

Assumption 4 The Gaussian noise affecting the different sensory channels is uncorrelated.
Without loss of generality, we consider that the sensors are affected by the same level of noise.
The covariance matrices for sensory input and state beliefs are then represented as:

Py(0) = Σ−1
y(0) = In/σq, Py(1) = Σ−1

y(1) = In/σq̇, (3-29)

Pµ(0) = Σ−1
µ(0) = In/σµ, Pµ(1) = Σ−1

µ(1) = In/σµ′ (3-30)
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where we can see that the controller associates four different precision matrices to map its
confidence about sensory input and internal beliefs. Note that In ∈ Rn×n is the identity
matrix.

Generative models

To be able to numerically evaluate F , the generative models for sensory data and state
dynamics are needed. In comparison with the static case previously analysed, the number
of sensory input is now increased due to the generalised motions, and the static generative
model for the state update is not sufficient anymore.

Generative models of the sensory data The generalised sensory data vector ỹ = [y, y′] is
the internal representation of the sensory input for positions and velocities. Since we chose
the states to be the joint positions, and the sensory data provide the noisy values of yq and
yq̇, it follows directly from Eq. (3-28):{

yq = µ+ z
yq̇ = µ′ + z′

{
yq = y

yq̇ = y′
g(µ) = µ (3-31)

Generative model of the state dynamics The function f(µ) is defined taking inspiration
from what presented in [5]. The definition of the generative model of the state dynamics is
crucial. The techniques implemented in past work, overly complicated the selection of f(µ).
For instance, [24] used online regressors to estimate this function along with the generative
models of the sensory data. Even if this could turn out to be essential for an unknown process,
for the case of robot arm control it is most likely unnecessary. In [38] instead, the generative
model of the real world process was modeled using Newton’s laws. Both of the previous
approaches did not include the prior expectation µd into the generative model, to specify the
goal of the controlled system. The author considers the inclusion of µd in f(µ) essential in
the definition of an active inference controller.

Having said that, to simplify the controller structure and to reduce the computational com-
plexity, the generative model f(µ) is chosen such that the robot is steered to a desired position
µd. In other words, the controller believes that the states will evolve in such a way that they
will reach the goal µd:

f(µ) = µd − µ (3-32)

The value µd is a constant ∈ Rn corresponding to the desired set-point for the joints of the
robot manipulator. This is an adapted version of the idea proposed by Buckley in [5], were
a simple one dimensional case of a particle trying to settle to a specific temperature was
detailed. Instead of providing a scalar temperature as set-point, we propose to encode the
goal position through an n-dimensional vector µd.

Once defined f(µ), the generalised motions of the states can be further specified. Given
Eq. (3-32), we can simplify Eq. (3-28) to:{

µ′ = µd − µ+w
µ′′ = −µ′ +w′

(3-33)
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Free-energy for n-DOF robot manipulator with position and velocity feedback

Substituting Eq. (3-31) and Eq. (3-33) in Eq. (3-26), leads to the free-energy expression for a
generic robot manipulator:

F = 1
2(yq − µ)>Py(0)(yq − µ) + 1

2(yq̇ − µ′)>Py(1)(yq̇ − µ′)

+ 1
2(µ′ + µ− µd)>Pµ(0)(µ′ + µ− µd) + 1

2(µ′′ + µ′)>Pµ(1)(µ′′ + µ′) (3-34)

Note that this equation holds for any n-DOF manipulator equipped with position and velocity
sensors. To illustrate the high scalability of this approach, a 2-DOF and a 7-DOF examples
using the same equations are presented later on.

3-3-2 Beliefs update in a dynamic environment

Now that the free-energy is defined, the general beliefs update law for state estimation is
determined from the gradient of F , with respect to each of the states in generalised motions.
Assuming a learning rate κµ to be tuned, it holds:

˙̃µ = Dµ̃− κµ
∂F
∂µ̃

(3-35)

State update for an n-DOF robot manipulator with position and velocity feedback

According to the free-energy principle, the states of the robot manipulator can be estimated
using a gradient descent scheme. Recalling that µ̃ = [µ, µ′, µ′′], and applying Eq. (3-35)
having defined F as in Eq. (3-34), leads to the following state update law:

µ̇ = µ′ − κµ[−Py(0)(yq − µ) + Pµ(0)(µ′ + µ− µd)]
µ̇′ = µ′′ − κµ[−Py(1)(yq̇ − µ′) + Pµ(0)(µ′ + µ− µd) + Pµ(1)(µ′′ + µ′)] (3-36)

µ̇′′ = −κµ
[
Pµ(1)(µ′′ + µ′)

]
Note that κµ is the tuning parameter for state estimation. Again, this is a general state
update law which can be extended to any number of degrees of freedom.

3-3-3 Control actions

In the free-energy principle, the control actions play a fundamental role in the minimisation
process. In fact, the control input u allows to steer the system to a desired state while
minimising the prediction errors. The control input is computed as before using gradient
descent. The dynamics of the control actions are then given, in a multivariate case, by:

u̇ = −κa
∂ỹ

∂u

∂F
∂ỹ

(3-37)

where κa is the chosen learning rate to be tuned. The final step to specify all the components
of the active inference controller, is the definition of the partial derivatives of the sensory
input with respect to the control actions.
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40 Robot arm control with active inference

Control actions for an n-DOF robot manipulator with position and velocity feedback

The general actions update is expressed by Eq. (3-37). The partial derivatives of Eq. (3-34)
with respect to the generalised sensory input are given by:

∂F
∂yq

= Py(0)(yq − µ), ∂F
∂yq̇

= Py(1)(ẏq − µ′) (3-38)

Having said that, the actions update is expressed as:

u̇ = −κa
[
∂yq
∂u

Py(0)(yq − µ) + ∂yq̇
∂u

Py(1)(yq̇ − µ′)
]

(3-39)

Active inference requires then to define the change in the sensory input with respect to the
control actions, namely ∂yq/∂u and ∂yq̇/∂u. This is usually a hard task, and it can be seen
as a forward dynamic problem. One approach to compute these relations, is through online
learning using high-dimensional space regressors. However, this increases the complexity of
the overall scheme and can produce unreliable results, as shown by the authors in [24]. In
this work, we propose to approximate the partial derivatives relying on the high adaptability
of the active inference controller against unmodeled dynamics, as suggested in the conclusive
remarks in [24].

Approximation of the true relation between states and sensory input

Let us first analyse the structure of the partial derivative matrices in Eq. (3-39). The control
action is a vector of n torques applied to the n joints of the robot manipulator. Each torque
has a direct effect only on the corresponding joint to which it is applied. This allows us to
conclude that ∂yq/∂u and ∂yq̇/∂u are diagonal matrices.

Furthermore, considering the second Newton’s law, the total torque applied to a rotational
joint equals the moment of inertia times the angular acceleration. The diagonal terms of the
partial derivatives matrices are then time varying positive values which depend on the current
robot configuration. In other words, this means that a positive torque applied to a joint will
always result in a positive contribution for both position and velocity of that specific joint. In
this control scheme, we propose to approximate the true time-varying relation with a positive
constant, making use of the learning rate κa as tuning parameter to achieve a sufficiently fast
actions update. The general control update law, is finally given by:

u̇ = −κa
[
CyqPy(0)(yq − µ) + Cyq̇Py(1)(yq̇ − µ′)

]
(3-40)

where:
∂yq
∂u
≈ Cyq ,

∂yq̇
∂u
≈ Cyq̇ (3-41)

The positive definite diagonal constant matrices Cyq , Cyq̇ are then set to the identity, meaning
that we only encode the sign of the relation between control input and change in the sensory
data. In the simulation results for both the 2-DOF and 7-DOF, we will show how this
approximation results valid, thanks to the adaptability of the AIC.
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Active inference control scheme

The active inference controller for a generic robot manipulator can be schematized as in Fig.
3-4, where the five main blocks are highlighted. Note that computing the free-energy itself
is not strictly necessary for the active inference controller, since the equations for beliefs and
actions update are available in closed form.

Robot

Compute actionsCompute free-energy

Beliefs updateGenerative functions

Figure 3-4: General active inference control scheme for a robot manipulator

The equations to be implemented for an AIC scheme are the free-energy as in Eq. (3-34), the
state update as in Eq. (3-36), and the control actions as in Eq. (3-40). The resulting tuning
parameters for the AIC are then:

• Py(0) , Py(1) , Pµ(0) , Pµ(1) : the diagonal positive semi-definite precision matrices repre-
senting the confidence of the controller regarding its sensory input and internal beliefs
about the states;

• κµ, κa: the learning rates for state update and control actions respectively.

3-3-4 2-DOF example

For this simulation, the same 2-DOF robot arm as in Figure 3-1 is used. In contrast with
the previous case, the robot is now free to move, and it will be controlled through active
inference in the joint space. The control action is the the torque to be applied to each of the
two actuators. The dynamic equations for the simulation of the robot arm were presented in
Section 3-2-2.

For the simulation, the following scenario has been considered: the goal is specified through µd
in the joint space, and the starting position of the robot is set to q = [−π/2, 0]> [rad]. Doing
so, the robot starts from the completely extended down-down position. The goal position is
set to:

µd = [−0.2, 0.3] [rad] (3-42)

The control actions were allowed after ta = 1 [s] of simulation, to appreciate their effect on
the free-energy minimisation.

The sensory input is affected, without loss of generality, by normally distributed Gaussian
noise with standard deviation 0.001. The noise in the two encoders and tachometers is
supposed uncorrelated [5], such that z ∼ (0, 0.001I2) and z′ ∼ (0, 0.001I2), with I2 two
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dimensional identity matrix. The actual simulated measurements of the joint positions are
then given by:

yq = q + z (3-43)
yq̇ = q̇ + z′ (3-44)

where q and q̇ are the ground truth values. The three equations to implement are given
by Eq. (3-34), Eq. (3-36) and Eq. (3-40). The precision matrices Py(0) , Py(1) , Pµ(0) , Pµ(1)

are chosen to be the identity, to evaluate the state estimation and action computation with
equally weighted sensory input and internal beliefs. The learning rate κµ for the state update
is set to 20, while the learning rate κa for the actions is set to 500, in order to have a fast
convergence. The integration step is set to 1 [ms] as before.

Simulation results

Figure 3-5: Active inference for robot arm control. Reaching task with a 2-DOF manipulator

As can be seen, during the first second of simulation the actions are not allowed. In this
case, as showed in the previous static example, the beliefs do not converge to the true states
due to the discrepancy between sensed and desired values to be sensed. Once the control
actions are allowed at ta = 1 [s], the free-energy can be further minimised. This means two
things: the beliefs about the states will converge to the real states, and the real states will
converge to the imposed goal, thanks to the control actions. In the next section, a more
complex simulation is carried out, using a 7-DOF robot manipulator. This is done to show
that the derived algorithm is naturally scalable to high degrees of freedom, and that the
reduced computational complexity allows real-time control of the robot arm for a pick and
place task. Besides, the adaptability performance of the algorithm will be compared with the
ones of the model reference adaptive controller.
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3-4 Simulation results with a 7-DOF robot manipulator

This section presents the performance comparison between the novel AIC and the more es-
tablished MRAC. The free-energy minimisation through states and actions update is coded
in C++1, to simulate the robot behaviour using the Robot Operating System (ROS) [39]
ad Gazebo. To analyse the adaptability of the algorithms against unmodeled dynamics, the
following steps have been taken:

• A heavily approximated model of the robot arm to be controlled is defined;

• The AIC and MRAC are tuned using the approximated model;

• The performance of the two controllers using the approximated model is compared;

• The same controllers tuned using the approximated model, are then applied to the
system with accurate parameters description;

• The performance degradation of the two schemes against unmodeled dynamics is eval-
uated.

The tests to be performed are based on a pick and place cycle using the Franka Emika Panda
7-DOF robot manipulator2, as depicted in Fig. 3-6. The desired joint values to perform the
task are chosen such that the arm simulates the pick and place of an object from one bin to
the other. More specifically, the following sequence of set-points is given to the robot arm:

1. The goal is set to be qA = [1, 0.5, 0, −2, 0, 2.5, 0] [rad] from the initial position of
the robot at t = 0, in order to reach the first bin A;

2. The goal is set to qB = [0, 0.2, 0, −1, 0, 1.2, 0] [rad] at t = 6s, to move to the central
position B;

3. The goal is set to qC = [−1, 0.5, 0, −1.2, 0, 1.6, 0] [rad] at t = 12s, to reach the
second bin C;

4. At t = 18s the goal is set to qB to move back to the central position, and at t = 24s
the goal is set again to qA to re-start the cycle.

3-4-1 AIC tuning

In the previous sections we introduced the structure and the tuning parameters for both the
MRAC and the AIC. We now present how the tuning procedure has been performed for
the novel AIC. During the tuning part, the advantages of the AIC over the MRAC began
to emerge. In particular, the active inference controller resulted in an overall easier tuning
procedure, due to the reduced number of parameters and their clear physical meaning.

1The C++ code is freely available at https://github.com/cpezzato/panda_simulation
2Franka Emika https://www.franka.de/
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B

C

A

Figure 3-6: Pick and place cycle to position the end-effector of the 7-DOF Franka Emika Panda
in A, B or C. The set-points are given in the joint space, following the order qA, qB , qC , qB , qA.

Number of tuning parameters

The number of tuning parameters for the MRAC equals the number of DOF times the number
of weighing terms. This results in 17×n parameters to be tuned. These terms are the elements
of the weights described in Eq. (2-38) and Eq. (2-41). Even though the matrices are diagonal
and one could use the same weight for each link, to achieve good performance a fine tuning
of the individual parameters is essential.
Regarding the AIC, instead, the number of tuning parameters is independent from the DOF
and it equals 6, according to Eq. (3-36) and Eq. (3-40). The lower number of parameters
resulted in an overall easier tuning procedure for the active inference controller.

AIC tuning procedure

To obtain a satisfactory response for the AIC, we followed the tuning procedure reported
below. As a general approach, the state estimation in a static case has been tuned first,
assuming equal weights for sensory input and internal beliefs. Once the state convergence
was fast enough, the control actions have been included to steer the robot to the goal. Then,
the weights on the confidence of the controller have been increased to reduce the oscillations.
We now report the tuning steps in more detail.

• We set the controller confidence about sensory input and internal beliefs to one. That
is, we impose the matrices Py(0) , Py(1) , Pµ(0) , Pµ(1) to the identity;

• We disabled the control actions and incremented the learning rate κµ until the state
estimation in a static situation was fast enough (i.e. ∼ 20− 30 [ms]);

• We included the control actions and increased the learning rate κa until the robot was
steered to the desired position, showing significant oscillations;

• We dampened the oscillatory behaviour decreasing the sensory confidence about the
most noisy sensors, and the internal beliefs about the higher order generalised motions.
In this way, the controller relies more on the least noisy sensory input.
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3-4-2 Performance comparison between AIC and MRAC

Pick and place cycle with approximated model

The pick and place performance is now presented. The controllers have been tuned using a
fairly wrong model of the robot arm on purpose. The links of the robot manipulator have
been approximated as cuboids, and 20% random uncertainty in each link’s mass has been
assumed. This will allow to evaluate later on the adaptability performance, applying the
same controllers to the system with accurate description. The joint values, and the computed
control actions using AIC and MRAC, are depicted in Fig. 3-7. To keep the presented results
as neat as possible, the plots in this section will report the behaviour of only two relevant
joints, in terms of position and computed torques. For the complete plots, an interested
reader is referred to Appendix B. Note that, for the MRAC, saturation of the control input
at ±85Nm is sometimes reached after providing the new goal position.

Figure 3-7: Response and control actions for q3 and q4. Simulation using ROS and Gazebo.

Performance degradation in case of large parameters variations

The same controllers tuned using the approximated model of the 7-DOF robot arm, are now
applied to control the manipulator for which accurate dynamics have been specified. For
clarity, we present the performance analysing the difference between the responses of the
model with approximated and accurate dynamics.

The two control architectures should adapt to the large parameter changes, and keep the
difference between the responses limited. The results are presented Fig. 3-8.
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Figure 3-8: Performance degradation applying the controllers (tuned with approximated model)
to the robot with accurate system description. Simulation using ROS and Gazebo.

As can be seen, there is one order of magnitude between the AIC errors in the joint positions,
and the correspondent ones from the MRAC. Besides, the convergence to zero of the errors
is also considerably faster in the AIC. The performance degradation becomes more clear if
the Cartesian pose of the end-effector is considered, as in Figure 3-9.

Figure 3-9: Performance degradation in Cartesian space. Simulation using ROS and Gazebo.
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Remarks

The active inference controller has shown better adaptability performance with respect to
the MRAC. Overall, the performance degradation in joint space due to unmodeled dynamics
is more than ten times lower in the AIC. The free-energy minimisation through beliefs and
actions update, allowed to simultaneously infer the robot’s states and to move to the desired
goal. The behaviour of the free-energy during the pick and place cycle, with accurate dynamic
description of the robot, is reported in Figure 3-10. It can be noticed how, whenever a new
set-point is imposed, the free-energy increases. This is due to the fact that suddenly the
new desired position differs from the actual one. In this situation, the controller is trying
to minimise this discrepancy through state estimation and actions, and this leads to the
minimisation of F .

Figure 3-10: Free-energy minimisation during pick and place cycle with 7-DOF manipulator.

The AIC showed very high performance. However, one point which the author considers
important to mention, is the difficulty encountered while trying to impose a specific response
for the robot arm. In fact, the way the robot will reach the target in the joint space, is not
imposed by the tuning parameters, but rather by the encoded generative function f(µ). In
a sense, the AIC and the MRAC share another similarity, since the behaviour of the robot is
imposed a priory through another reference model. In conclusion, the main disadvantage of
this approach is that, in order to change the modes of the response, one should act on f(µ),
as one would change the reference models on the MRAC.

Table 3-2: Summary of AIC versus MRAC

Parameters Control input Performance
degradation

Response

MRAC Linearly
increasing with n

More aggressive,
with saturation

Marginally stable
behaviour Imposed by qm

AIC Constant with n No saturation Low performance
degradation Imposed by f(µ)
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3-5 Concluding remarks

In this chapter, we presented the structure and the performance of a novel active inference
controller. The general expressions for the free-energy, the state update, and the control
actions, have been derived for a generic n-DOF robot manipulator with position and velocity
sensors. The derived control law represents a general model-free approach for robot control
in joint space.

The performance of the controller has been tested in a 2-DOF toy example, to highlight
its peculiarity in terms of interconnection between actions and perception. Besides, the
scalability and adaptability performance of the proposed solution have been showed in a
complex 7-DOF example. With the latter, we demonstrated that this control architecture is
relevant for robotics applications.

The proposed definition of the dynamic generative model, allowed to express the free-energy
minimization problem without any kinematic or dynamic knowledge of the system. This,
in combination with the model approximations regarding the control actions, resulted in a
controller which is less sensitive to large parameters variation. This is an evidence of the
capability of the AIC to compensate for unmodeled dynamics, as supposed by previous work
regarding active inference.

The comparison with the MRAC showed that the AIC achieves better performance with
respect to the adaptive controller. In fact, the AIC showed greater adaptability in case of large
parameter uncertainties, and did not achieve saturation of the control input. Furthermore, the
AIC has the advantage that the controller complexity does not increase with higher number
of DOF, and it is easier to tune. The main disadvantage of the proposed approach is that it
is not straightforward to impose a particular response or motion constraints. To achieve so,
the dynamic generative model of the evolution of the states should be modified.
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Chapter 4

Active inference for fault tolerant
control

The fault tolerant properties of active inference foreseen in Chapter 2, are now analysed in
detail. In particular, a novel active inference based fault tolerant scheme for sensory faults
is devised. The general expression of F for a n-DOF robot manipulator, is used to include
the necessary sensory redundancy for fault recovery. Besides encoders and tachometers, also
a camera is implemented to retrieve the end-effector position. The overall algorithm for state
estimation and control, extends naturally to accommodate heterogeneous sensors. An upper
bound on the sensory prediction errors is mathematically derived, and then used as on-line
threshold for fault detection. The recovery actions are implemented reducing the precision
matrix associated with the faulty sensor.

4-1 Problem statement

In recent years, industries has become more and more keen on making use of robots for man-
ufacturing and production lines [23]. As a consequence, in order to guarantee high standards
of reliability and security, the area of fault tolerant control of robot manipulators gathered
more importance [49]. Several approaches have been developed in the past years, focusing on
physical joints, actuators and sensors faults [10, 42, 36, 46, 6]. The two main drawbacks in
the current approaches, as highlighted also in Chapter 2, are:

• The definition of meaningful residuals to map the effects of the faults affecting the
sensors;

• The selection of a robust threshold which qualifies as best compromise between missed
and false alarms.

Besides, the recovery from sensory faults requires a fault specific external block, that has to
be defined apart from the default controller and the FDI scheme. In the following subsections,
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50 Active inference for fault tolerant control

we present how the AIC can be exploited to facilitate the residual generation, the threshold
determination and the recovery in case of sensory faults.

The controlled plant

First of all, let us specify in more detail the system to be controlled. The control problem
that we consider, is a reaching task using the 2-DOF robot arm of the previous chapter.
However, this time the robot is equipped with one extra sensor, namely a camera to retrieve
the end-effector position. Furthermore, during the execution of a trajectory, we suppose the
presence of faults either in the encoders or in the camera, such as sensor freezing or camera
occlusion. The controlled plant is depicted in Fig. 4-1.

 
 

Robot

FK

Distortion +

ControlAct.StateEst.

AIC
Ca

me
ra

Figure 4-1: Control scheme of a robot manipulator using active inference and redundant sensory
input

The robot arm is equipped with a camera to retrieve the end effector Cartesian position
yv = [yvx , yvz ]>, and with position and velocity sensors yq, yq̇ ∈ R2 for the two joints. The
camera output is simulated in Matlab using the direct kinematics of the robot arm plus
a radial distortion and additive noise. In such a case, the generalised sensory input is then
composed by:

ỹ = [y(0),y(1)] = [(yq, yv), yq̇] (4-1)

Assumption 1 The proprioceptive sensors yq, yq̇ are affected, without loss of generality, by
Gaussian noise z and z′ respectively, of zero mean and standard deviation σq = 0.001 [rad]
and σq̇ = 0.001 [rad/s].

Assumption 2 The additive noise η affecting the simulated camera is supposed, without
loss of generality, as Gaussian noise with zero mean and standard deviation ση equal to 0.01
[m] [29, 37, 30]. Furthermore, we inject a barrel distortion in the camera, with coefficients
K1 = −1.5e−3, K2 = 5e−6, K3 = 0 [47], for a more realistic sensory input. Figure 4-2 shows
the distortion effect for a field of view of 2× 2 [m].

The robot arm is controlled by means of an active inference controller AIC based on the previ-
ous chapter. To define the controller’s structure, and in particular the free-energy expression
for prediction error minimisation, two generative models for the sensory data and the world
dynamics have to be specified. The next subsection presents the controller’s equations for
state estimation and control actions using sensory redundancy.
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Figure 4-2: Effect of simulated barrel distortion

4-2 Incorporating sensory redundancy

To incorporate sensory redundancy, the starting point is the general definition of F for a
robot manipulator. We report Eq. (3-26) from Chapter 3 for clarity:

F = 1
2

nd−1∑
i=0

[
(y(i) − g(i))>Py(i)(y(i) − g(i)) + (µ(i+1) − f (i))>Pµ(i)(µ(i+1) − f (i))

]
(4-2)

Note that, in this definition, there is no assumption on the dimension of the generalised sensory
input ỹ. The number of available sensory input is not constrained, and the only requirement
to evaluate F , is to provide a generative model g(i)(µ) for each generalised order.
One of the great advantages of the free-energy principle, is the possibility to combine an
arbitrary number of sensory data into the same prediction error minimisation problem. This
is an important property when dealing with sensory faults, since redundancy can easily be
implemented for recovery. To define the equations for state estimation and control actions
for the AIC, the first step is to determine the generative models of the sensory data g̃, and
the state dynamics f̃ . As before, we suppose to control the robot arm in joint space, and we
assume the states to be the joint positions. This leads to:

gq(µ) = µ,
∂gq(µ)
∂µ

= 1 (4-3)

To be able to evaluate the free-energy, the definition of the generative model for the visual
camera gv(µ), and its Jacobian are still missing. Note that, since the camera is not giving
the joint positions directly but the end-effector one, it is not possible anymore to simplify the
generative models as for the encoders and tachometer. The relation between joint values and
end-effector has to be encoded. There are at least three ways of doing so:

• Using the direct kinematic of the robot arm;

• Learning the generative model off-line;

• Learning the generative model on-line.

We chose to derive the generative model off-line through Gaussian Process Regression (GPR)
[40] as in [25]. In fact, since we injected camera distortion, the estimate of the sensory input
using the direct kinematics would result poor. On the other hand, the use of a complex
on-line learning technique can lead to unreliable estimates [24]. The use of GPR is a good
compromise, and the main advantage is that the Jacobian of the process can be determined
in closed form.
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4-2-1 Gaussian process regression for the camera generative model

The problem that we want to solve is a prediction problem. We basically try to determine
the non-linear relation between the measured end-effector position yv, and the measured joint
position yq, trough gv. More formally, a GPR generates data in a domain such that any finite
subset follows a multivariate Gaussian distribution. The training data is composed by a set
of observations of the camera output [ȳvx , ȳvz ]> in several robot configurations ȳq. The core
of this technique is the relation between one observation and another, which is encoded in the
covariance matrix K, and especially in the covariance kernel function k(yqi ,yqj ). We chose
to use a squared exponential kernel of the form:

k(yqi ,yqj ) = σ2
f exp

(
−1

2(yqi − yqj )>Λ(yqi − yqj )
)

+ σ2
ndij (4-4)

where yqi , yqj ∈ ȳq, and dij is the Kronecker delta function. Λ is a diagonal matrix of
hyperparameters. The prediction of the camera output, once given the current state yq∗ , is
determined by the posterior mean:

gv(yq∗) =
[
K∗K

−1ȳvx
K∗K

−1ȳvz

]
(4-5)

Since we chose to use a squared exponential kernel, we can determine a closed form for the
derivative of the estimated process [25]. This is indeed equal to:

gv(yq∗)′ = ∂k(yq∗ , ȳq)
∂yq∗

[
αx
αz

]
⇒ gv(yq∗)′ =

[
−Λ−1(yq∗ − ȳq)>[k(yq∗ , ȳq)> ·αx]
−Λ−1(yq∗ − ȳq)>[k(yq∗ , ȳq)> ·αz]

]
(4-6)

where · means element-wise multiplication, αx = K−1ȳvx and αz = K−1ȳvz . Note that, the
computational demand of the GPR increases with the number of DOF, due to the need or
an augmented training set, and the higher size of the matrices in play. For a more in detail
explanation regarding the GPR, an interested reader is referred to Appendix C-1.

4-2-2 Free-energy with sensory redundancy

Now that all the generative models have been specified, the free-energy can be expressed,
starting from Eq. (3-26), as:

F = 1
2(yq − µ)>Pyq(yq − µ) + 1

2(yq̇ − µ′)>Pyq̇(yq̇ − µ′)

+ 1
2(yv − gv(µ))>Pyv(yv − gv(µ))

+ 1
2(µ′ + µ− µd)>Pµ(µ′ + µ− µd)

+ 1
2(µ′′ + µ′)>Pµ′(µ′′ + µ′) (4-7)

In the expression above, we considered the generalised motions up to order two, since measure-
ments up to the velocity are available. To distinguish between the different sensory inputs,
the precision matrices have been named accordingly to the relative sensor. The matrices
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Pyq , Pyq̇ , Pyv are diagonal positive semi-definite precision matrices containing the confidence
about specific sensory inputs. The higher these values, the higher the relevance given to one
specific sensor. Very low values for the precision associated with certain inputs would exclude
the specific sensor from both the state estimation and the control action parts. It is conve-
nient, also, to rename the precision matrices Pµ(0) , Pµ(1) as Pµ, Pµ′ . Again, they express the
confidence about the estimated generalised states µ and µ′.

4-2-3 Beliefs update with sensory redundancy

As can be seen from Fig. 4-1, the AIC is composed by two main blocks. The first one is the
state estimation block, which continuously minimises the free-energy according to a gradient
descent scheme with respect to µ̃. In this block, the controller is computing the most probable
posterior states estimate, according to the current sensory input. The equations for the beliefs
update are given in general by:

˙̃µ = Dµ̃− κµ
∂F
∂µ̃

(4-8)

Considering F as in Eq. (4-7) leads to:

µ̇ = µ′ − κµ[−Pyq(yq − µ)− Pv(yv − gv(µ))∂gv
∂µ

+ Pµ(µ′ + µ− µd)]

µ̇′ = µ′′ − κµ[−Pyq̇(yq̇ − µ′) + Pµ(µ′ + µ− µd) + Pµ′(µ′′ + µ′)] (4-9)

µ̇′′ = −κµ
[
Pµ′(µ′′ + µ′)

]
Note that the two non-linear functions gv(µ) and ∂gv

∂µ are given by Eq. (4-5) and Eq. (4-6)
respectively.

4-2-4 Control actions with sensory redundancy

In an AIC the control actions are defined through the gradient descent of F with respect to
the control input u:

u̇ = −κa
∂ỹ

∂u

∂F
∂ỹ

(4-10)

Using F as in Eq. (4-7), the control actions for the 2-DOF example with sensory redundancy
are defined as:

u̇ = −κa
[
∂yq
∂u

Pyq(yq − µ) + ∂yq̇
∂u

Pyq̇(yq̇ − µ′) + ∂yv
∂u

Pv(yv − gv(µ))
]

where the only terms still to be defined are:

∂yq
∂u

=
(∂yq1
∂u1

∂q1
∂u2

∂yq2
∂u1

∂q2
∂u2

)
,
∂yq̇
∂u

=
(
∂q̇1
∂u1

∂q̇1
∂u2

∂q̇2
∂u1

∂q̇2
∂u2

)
(4-11)

and:
∂yv
∂u

=
(
∂vx
∂u1

∂vx
∂u2

∂vy
∂u1

∂vy
∂u2

)
(4-12)
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As explained for the AIC with position and velocity sensors, the partial derivatives of yq and
yq̇ can be set to positive definite diagonal matrices. We chose again to impose them to be
the identity matrix, using the learning rate κa to have a sufficiently fast response.

Regarding the relation between u and yv, it is possible to do similar geometric considerations.
The partial derivatives describe how the control actions influence the x and z position of the
end-effector. These terms are also time varying parameters which, however, can assume both
positive and negative values depending on the current robot configuration. As for the other
two partial derivatives, we approximate the true relation only with its sign, and we rely on
κa for tuning.

To define the partial derivatives ∂yv/∂u, we suppose to operate the robot arm in a specific
region, such that we can properly define the sign of the relations. The matrix ∂yv/∂u can
assume a limited set of values, depending on the combination of the two joint angles q1 and q2.
For the presented example, since the reaching task will be carried out in the fourth quadrant
of a Cartesian reference frame, (i.e. −π/2 ≤ q1 ≤ 0) then positive values of u1 will lead to
positive increments of both x and z.

For what concerns the torque for the second joint u2, a bit more articulated reasoning has
to be carried out. The effect of the second torque depends also on the sum of the first and
second joint angles. Always considering to operate in the fourth quadrant, we have:

Table 4-1: Sign of ∂vx

∂u2
, ∂vy

∂u2
in the 4th quadrant

Joint values sign
(
∂vx
∂u2

)
sign

(
∂vy
∂u2

)
−π/2 ≤ q1 + q2 < 0 +1 +1
0 ≤ q1 + q2 < π/2 -1 +1

π/2 ≤ q1 + q2 < 3π/2 -1 -1
3π/2 ≤ q1 + q2 < 2π +1 -1

The full fourth quadrant have then been characterized. Note that, the geometric considera-
tions above can be extended for the whole Cartesian workspace.

4-3 An active inference based fault tolerant controller

The AIC controller structure have been fully specified for the case of redundant sensory input.
We now present how the above controller can be exploited to obtain an intrinsically fault
tolerant scheme.

The main idea behind the active inference based fault tolerant scheme, is to use the sensory
prediction errors for fault detection, and the sensory redundancy for fault recovery. The
first step is to determine an on-line threshold from the sensory prediction errors through an
observer. Subsequently, when a fault is detected and isolated, the confidence of the controller
about the faulty sensor can be consistently reduced. This allows to recover from sensory
faults, exploiting the structure of the controller itself, and avoiding the implementation of a
switching procedure between sensors. The general scheme is depicted in Fig. 4-3.
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Figure 4-3: Active inference based fault tolerant scheme

Definition of the supposed faults

We now rigorously define the sensory faults that will be later on injected in the system.

Assumption 3 No fault occurs before the fault time tf , such that the controlled system is
supposed in nominal working conditions for 0 ≤ t < tf .

Assumption 4 We will investigate the effect of faults in the proprioceptive sensors and in
the visual camera, for which the sensor redundancy is available. In particular, we assume the
following:

1. Encoder fault: the fault in one of the encoders is simulated freezing the sensor’s output
to the value at tf for 200 [ms], that is yq(t) = [q1(tf ), q2(t)]> + z for tf ≤ t < tf + 0.2.
Remember that z is Gaussian noise;

2. Camera fault: the fault in the camera is supposed to be occlusion of the field of view, so
complete lack of information from the visual sensors. This is simulated with an abrupt
change in the camera output which is bigger than the usual noise supposed in the sensor.
For instance, at tf we inject an additive term equal to 0.075 [m]. Remember that the
standard deviation of the noise in the camera is 0.01 [m].

4-3-1 On-line threshold determination

To define an on-line threshold for the sensory prediction errors, we first have to prove the
existence of an upper bound for the free-energy in the faultless case. To do so, we exploit
the fact that F is a quadratic function. Let us consider the free-energy for a generic system,
using generalised motions up to order nd:

F =
nd−1∑
i=0

1
2
[
ε(i)>
y Py(i)ε(i)

y + ε(i)>
µ Pµ(i)ε(i)

µ

]
(4-13)

where ε(i)
y and ε(i)

µ are respectively the sensory and model prediction errors (y(i) − g(i)(µ))
and (µ(i+1) − f (i)(µ)).
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Assumption 5 The generative model g(i)(µ), i = 1, 2 expresses the relation between the
states of the system and the sensory input, up to some uncertainties δ(i)

y .

Assumption 6 The uncertainties δ(i)
y affecting the generative models are bounded by a

maximum value δM ∈ R+, which includes unmodeled dynamics and measurement noise. It
holds then:

− δM ≤ δ(i)
y ≤ δM , ∀ t > 0 (4-14)

Theorem 1 Let us consider the free-energy for a generic system with generalised sensory input
ỹ, states µ̃ and generative models g(i)(µ), f (i)(µ). The system is subject to uncertainties δ(i)

y

in the generative functions for sensory prediction errors. In such a case, using generalised
motions up to order nd, F can be expressed as:

F =
nd−1∑
i=0

1
2
[
(ε(i)
y + δ(i)

y )>Py(i)(ε(i)
y + δ(i)

y ) + ε(i)>
µ Pµ(i)ε(i)

µ

]
(4-15)

If Assumptions 5 and 6 hold then:

F ≤
nd−1∑
i=0

1
2
[
ε(i)>
y Py(i)ε(i)

y + ε(i)>
µ Pµ(i)ε(i)

µ + δ>MPy(i)δM + 2||ε(i)>
y Py(i)δM ||22

]
(4-16)

Proof of Theorem 1 Let us consider the order zero sensory prediction error εy, the cor-
responding uncertainty δy, and the diagonal positive definite precision matrix Py. Using As-
sumptions 5 and 6 we can write:

(εy + δy)>Py(εy + δy) = (ε>y + δ>y )(Pyεy + Pyδy)
= ε>y Pyεy + ε>y Pyδy + δ>y Pyεy + δ>y Pyδy
= ε>y Pyεy + 2ε>y Pyδy + δ>y Pyδy
≤ ε>y Pyεy + 2||ε>y Pyδy||22 + δ>y Pyδy
≤ ε>y Pyεy + 2||ε>y PyδM ||22 + δ>MPyδM (4-17)

The steps above can be repeated for all the prediction errors and for each order of the gener-
alised motions, leading to the result of Theorem 1. This concludes the proof. �

Using Theorem 1, we can define an upper bound on the free-energy F once the maximum
uncertainty δM is specified. Furthermore, since F is a sum of squared prediction errors, the
upper bound on F will always be an upper bound of the single sensory prediction errors.

Corollary 1 Let us consider a generic sensory prediction error (y(i)
s −g(i)

s (µ)) for a sensor s,
and let us call it ε(i)

s . Assuming that different values of maximum uncertainties are available
for each sensory prediction error, such that:

− δ(i)
Ms
≤ δ(i)

s ≤ δ
(i)
Ms
, i = 1...nd − 1, δ

(i)
Ms
∈ R+ (4-18)

Then, each sensory prediction error can be bounded by a specific threshold as:

(ε(i)
s + δ(i)

s )>σ−1
y(i)(ε(i)

s + δ(i)
s ) ≤ ε(i)>

s σ−1
y(i)ε

(i)
s + δ

(i)>
Ms

σ−1
y(i)δ

(i)
Ms

+ 2||ε(i)>
s σ−1

y(i)δ
(i)
Ms
||22 (4-19)
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Proof of Corollary 1 The proof directly follows from the Proof of Theorem 1, if different
maximum values for the uncertainties δ(i)

Ms
are considered instead of a single δM . �

4-3-2 Fault detection and isolation

As explained in Section 2-3, in conventional model based FDI, there is in general the need
of generating the residual signals for fault detection. Another advantage of using the free-
energy, is that F already provides the normalised residuals as sensory prediction errors. Thus,
we can limit our effort to the computation of the threshold. The latter is done according to
Corollary 1, using the estimated sensory input through an observer. In particular, the sensory
prediction errors for each group of sensors (i.e. encoders, velocity sensors and visual camera),
are compared with the thresholds generated using Eq. (4-19), where the real sensory data is
substituted with the observed ones. Using different thresholds for different groups of sensors,
will lead to directly perform fault isolation, besides giving a tighter threshold with respect to
the one over the whole F as expressed in Eq. (4-16).

State observer

A simple observer is here introduced to determine the estimated sensory input for the on-
line threshold. We can express the following state-space model defining [x1 x3]> = q and
[x2 x4]> = q̇ and thus x = [x1 x2 x3 x4]. A Luenberger observer for q and q̇ is given by:{ ˙̂x = Ax̂+ L(y − ŷ)

ŷ = x̂
(4-20)

where L ∈ Rn×n is the observer gain and:

A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 and L > 0 (4-21)

The estimation error dynamics are given by:

˙̄x = ẋ− ˙̂x (4-22)

which leads to:
˙̄x = (A− L)x̄ (4-23)

Therefore, L should make (A − L) Hurwitz such that limt→∞ x̄(t) = 0. The modes of the
response are determined by the eigenvalues of (A − L). Since the system is observable, the
eigenvalues of (A − L) can be placed arbitrarily. Choosing L as diagonal positive definite,
will asymptotically bring the estimation error to zero. Note that the full state is available
through measurements. The use of the observer is necessary for two main reasons: the
first is to obtain a filtered version of the sensory input, and the second is to avoid drifts of
the estimated quantities due to unmodeled dynamics. In this way, the threshold generated
using the observed sensory input will follow any abrupt change, but with a certain transient
imposed by L. This will make the real sensory prediction errors exceed the threshold in case
of detectable sensory faults, at least for a certain amount of time.
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Threshold selection

According to Eq. (4-19) and Eq. (4-20), an on-line threshold for a generic sensor is given by:

τs = (ŷ(i)
s − g(i)

s )>P
y

(i)
s

(ŷ(i)
s − g(i)

s ) + δ
(i)>
Ms

P
y

(i)
s
δ

(i)
Ms

+ 2||(ŷ(i)
s − g(i)

s )>P
y

(i)
s
δ

(i)
Ms
||22 (4-24)

where s indicates the type of the sensor, i.e. for a 2-DOF robot arm with proprioceptive
sensors for position and velocity of the joints and a visual camera, s = {q, q̇, v}. Note that
the camera output is not directly estimated from the observer, but this can be reconstructed
using the already available generative model gv and the estimated q̂. Finally, when the
threshold τs is chosen, we have to compare the sensory prediction errors against it. If we
assume that y(i)

s − g(i)
s (µ) is a generic sensory prediction error for i = 0, ..., nd − 1, it holds:y

(i)
s − g(i)

s (µ) ≤ τs Faultless
y

(i)
s − g(i)

s (µ) > τs Fault in sensor s
(4-25)

4-3-3 Fault recovery

The final part to be detailed, is the definition of the recovery actions after a fault has been
detected and isolated. The fault recovery in case of sensory faults is simplified by means of
the free-energy principle. We exploit indeed the fact that the controller encodes the precision
matrices Pyq , Pyq̇ and Pyv to define the confidence about each sensory input. The framework
allows to include in a natural way multiple sensors for the state estimation and control actions.
Every sensor contributes to the posterior prediction of the most plausible state of the robot
arm. If a sensor is marked as faulty, it is sufficient to decrease the confidence about that
specific input to perform recovery. The controller can thus exploit the sensory redundancy
for two reasons: the first one is to have a better a posteriori approximation of the states,
and the second is to compensate for missing or wrong sensory data. Formally, once a fault is
detected and isolated using the approach explained before, the precision matrix of the faulty
sensor Pfs is reduced to small values or to zero:

Pfs = 0 (4-26)

Note that there is no need to design a switching procedure between different sensors, but the
recovery is embedded in the controller itself.

4-3-4 Analysis of false and missed alarms rate

We present now an analysis of the detectability of the faults, as well as the false alarm rate
(FAR) associated with the active inference based fault tolerant scheme. The detectability
of a fault depends on the entity of the fault itself, and on the selection of the maximum
uncertainties δ(i)

Ms
for the definition of the threshold. In particular, according to Eq. (4-24),

a fault which will produce an abrupt anomaly in the sensory input bigger than δ(i)
Ms

will be
detected. For what concerns the FAR, this is determined considering again δ(i)

Ms
. In practice
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this value can be chosen according to the standard deviation of the noise present in the
sensory data. The maximum uncertainty can then be set, for example, as 5σ(i)

s or 7σ(i)
s where

ηs ∼ (0, σ(i)
s ) is the Gaussian noise affecting the sensor s. Choosing 5σ(i)

s , for instance, the
probability of having a false alarm due to an abrupt change in the sensory input related to the
noise, and not to a fault, is less that 10−6. Having said that, also the dynamics of the observer
influences the FAR. However, if these dynamics are imposed to be fast enough through the
observer gain L, the effect results negligible, and the FAR remains limited.

4-4 Simulation results

The simulations are carried out using the 2-DOF robot specified in Chapter 3. The simulation
consists in controlling the robot arm from the initial position [−π/2, 0] to the desired position
µd = [−0.6, 0.5]. A fault is supposed during the trajectory towards the final position, thus
we set tf = 2s. For encoders and tachometers, the maximum uncertainties δMq and δMq̇ are
both set to 5σq = 5σq̇ = 0.005. For the more noisy camera data, we chose δMv = 7ση = 0.07.

Fault in the encoder: sensor’s output freezing

In this scenario, a fault is injected in the first encoder, freezing its output for 200ms at
tf = 2s. Fig. 4-4 depicts the behaviour of the normalised sensory prediction errors. As can
be seen, the detection and recovery happens at tDR, as soon as the threshold is exceeded, so
when the ratio εq1/τq is bigger than one.

Figure 4-4: Normalised sensory prediction errors in case of fault in the encoder for q1
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Fault in the camera: occlusion

Camera occlusion is injected at tf = 2s. The detection for this case is faster due to the bigger
entity of the fault. In fact, the entity of this anomaly, which equals 0.075, is slightly higher
than the supposed maximum uncertainty δMv = 0.07, thus the FDI is fast. The detection
and recovery in such a scenario are presented in Fig. 4-5. The actual response of the robot is
not influenced significantly, as shown in Fig. 4-6.

Figure 4-5: Normalised sensory prediction errors for fault detection and recovery in case of
camera occlusion

For an interested reader, the behaviour of the normalised prediction errors in a faultless case
can be found in Appendix B-3. The proposed algorithm showed high performance for fault
detection, isolation and recovery. Since the single sensory prediction errors can be bounded by
a time varying threshold separately, fault detection and isolation are achieved simultaneously.
The smaller the effect of the fault on the system, the greater the time taken for detection. For
the first case analysed, the encoder fault is detected isolated and recovered within 82 [ms].
The camera occlusion, instead, is detected isolated and recovered in just one time steps (i.e.
1 [ms]). The entity of this fault is indeed considerably higher than the previous one.

Recovery performance and error in joint space

We report now the recovery performance, analysing the trajectory of the robot arm in the
joint space. Since the fault detection and recovery is fast, the effects of the faults in the
overall execution of the task is limited, as depicted in Figure 4-6. In this case, after the
camera occlusion is detected and recovered, the system relies only on the noisy encoders to
reach the desired goal. It can be noticed how the internal beliefs converge again to the true
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states after the fault, due to the combined effect of state and actions update. The resulting
trajectory of the joints is marginally affected.

Figure 4-6: Joint space trajectory with recovery from camera occlusion

4-5 Concluding remarks

In this chapter, we presented a novel approach to obtain a fault tolerant controller using
the free-energy principle and active inference. The core contribution of this work is the
derivation of an on-line threshold for FDI, based on the sensory prediction errors defined in
the free-energy. This has been possible after proving the existence of an upper bound on the
free-energy for a generic n-DOF robot manipulator. The overall solution only requires an
observer besides the default controller to be able to perform FDI and recovery from sensory
faults. The simultaneous detection and isolation of faults is possible since the single sensory
prediction errors are compared against a dedicated threshold. Furthermore, the free-energy
facilitates the inclusion of redundant sensors, and it allows for recovery actions without resort
to switching procedures. The main limitation of the proposed approach is the fact that only
sensory faults can be detected and isolated using the current formulation. An extension to
actuator faults could be achieved adding supplementary sensory data, for instance current
sensors, and extending the observer. However, the definition of the generative models for
the supplementary sensors could result more challenging. Simulation results were included
demonstrating the effectiveness of the proposed solution applied to a 2-DOF robot arm subject
to severe faults in the proprioceptive and visual sensors.
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Chapter 5

Conclusions

This conclusive chapter summarises the content presented in this work, and the answers to
the initial research questions. Besides, some guidelines for future work and current challenges
to be solved are reported.

5-1 Summary

In this work we proposed an adaptive and fault tolerant control scheme based on active
inference. The starting point was the analysis of the limitations of past work, focusing on the
reasons that prevented the development of active inference controllers for robotics. From the
preliminary study of the state-of-the-art, the dynamic generative model described in [5], and
the static state estimation using the free-energy from [25], appeared promising for reducing
the computational complexity of the algorithm.

Combining these ideas with the standard definition of the free-energy principle and active
inference, a control architecture for a generic n-DOF robot manipulator has been derived.
The main challenges in the definition of the generative models, for state estimation and joint
space control, have been solved introducing model approximations and defining the states to
be controlled as the joint values of the manipulator. More in detail, to be able to compute the
expression for the control actions update, an approximation of the true dynamics between
control input and change is the sensory data was proposed. Instead of providing the full
relation, in fact, only the direction of change was encoded, relying on the high adaptability of
the active inference itself. This approximation allowed to overcome the computational limi-
tations highlighted by previous work, leading to a novel application of active inference for an
on-line robotic application. The validity of the assumptions taken, and the performance of the
novel control architecture, have been tested against another adaptive scheme. The simulation
results showed that active inference intrinsically possesses high adaptability to unmodeled
dynamics, outperforming the model reference adaptive controller used for comparison.

The adaptability properties, and the capability of the free-energy to include different sensory
input in a natural way, suggested the study of the framework from a fault tolerant point of
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view. In the fourth chapter we derived a novel fault tolerant active inference based control
scheme. We described how the sensory redundancy can be included to recover from sensory
faults, without the need of external supervision systems besides the default controller. After
proving the existence of an upper bound on the sensory prediction errors, an on-line threshold
has been derived to simultaneously detect and isolate sensory faults. A distinguishing feature
of this work, is that the fault detection, isolation and recovery are performed within the
controller itself, while other traditional solutions need ad-hoc external architectures. The
recovery actions were implemented exploiting two things: the fact that the free-energy easily
allows for sensory redundancy, and the fact that the precision matrices in the controller can
be tuned online to exclude the faulty sensory input. The simulation results confirmed the
suitability of the framework for fault detection isolation and recovery in case of sensory faults.

To conclude, a diagram summarising the work-flow of the thesis is depicted at the end of this
chapter, in Figure 5-1. The scheme indicates the main references, theoretical concepts and
equations taken as starting point for this study. The evolution of the proposed solution from
promising existing theory is clearly depicted, highlighting the main underlining ideas which
brought to the adaptive and fault tolerant active inference controller.

5-2 The answers to the research questions

The research goal of this thesis was to investigate the relevance of active inference for robot
control since, at the time this research has been conducted, there was no clear evidence
of its applicability for real-time applications. Besides, the adaptability performance of the
framework was only claimed in past work, but not verified against other adaptive control
architectures. The outcome of this work led to the following answers to the initial research
questions.

Is active inference suitable for robot control?
The control architecture derived in Section 3-3 showed that the active inference algorithm is
effective in a real-time application for robot control. The approximations introduced during
the definition of the control scheme, allowed to reduce the computational complexity, relying
on the adaptability of active inference to compensate for unmodeled dynamics. The control
scheme resulted performing and easily scalable to high degrees of freedom. The solution is
particularly suitable for joint space control, for tasks in which the robot’s dynamic are un-
certain or subject to relevant changes during the operations.

What are the adaptability properties of active inference compared to other adap-
tive solutions?
The comparison of the AIC with the MRAC in Section 3-4 showed that the adaptability
performance of this novel control architecture is comparable and even superior to the other
adaptive scheme in the proposed control problem. This thesis confirmed what predicted in
previous work about the adaptability of the framework against noise and model uncertainties.
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Can the free-energy principle structure be exploited to obtain an intrinsically
fault tolerant controller?
Many advantages regarding active inference emerged during this study. In Chapter 4 we
explained that one of these was the ability of extending in a natural way the set of sensory
input for state estimation, using heterogeneous sources. This is crucial when considering a
system which is subject to sensory faults, since it allows to implement sensory redundancy.
We also showed that the recovery actions could directly be implemented within the controller
itself, changing the confidence about the faulty sensory input. Overall, then, the structure
of active inference can be seen as an intrinsically fault tolerant scheme, which facilitates the
detection, isolation and recovery from sensory faults.

To conclude, the novelties presented in Chapter 3 and 4, which allowed to answer the research
questions above, will constitute the main content of the two publications that will follow this
work. In particular, the first paper will contain the novel active inference controller, and the
performance comparison with the MRAC. Then, a second publication will explain the active
inference based fault tolerant algorithm, as in Chapter 4.

5-3 Future challenges and recommendations

Active inference undoubtedly bares a considerable potential for adaptive and fault tolerant
robot control. This work represents only the first step towards a new category of control
architectures, thus we provide some guidelines to keep exploring this interesting area. One
of the main points which deserves attention, is the stability proof of the closed-loop active
inference scheme.

Future work may also focus on a different definition of the generative functions for the state
evolution, in order to include motion constraints. In addition, since in this work we only
focused on joint space control, a relevant research direction would be the extension to control
in Cartesian space, without using inverse models.

Another interesting topic regarding fault tolerance, would be to investigate the effect of learn-
ing the variances associated with the prediction errors. This could allow the AIC to auto-
matically perform the fault recovery without any further actions.

To conclude, what we understood from this study, is that the free-energy principle is as
complicated as it is powerful. Thus, the author feels to encourage the further development of
this fascinating brain inspired controller for robotic applications.
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Appendix A

Coding active inference

The scripts here reported, and the C++ code for active inference applied to a 7-DOF manipu-
lator using ROS and Gazebo, are freely available at https://github.com/cpezzato/panda_
simulation.

A-1 Free-energy minimisation in a static environment

1 %% State estimation using free-energy minimisation - Static case
2

3 %% Set-up variables for simulation
4 t = 0.3; % [s] Simulation time
5 h = 0.001; % [s] Integration step
6

7 % 2DOF robot parameters
8 a1 = 1; % [m] Length link 1
9 a2 = 1; % [m] Length link 2

10

11 %% Set-up variables for perception
12 % Real state of the robot, fixed joint position, no control actions
13 q = [0.3 0.8]'; % [rad]
14

15 % Prior belief about the states of the robot arm
16 mu_d = q; % [rad]
17

18 % Precision matrix for the prior belief
19 P_mu = eye(2);
20 % Precision matrix for the proprioceptive sensory data
21 P_y = eye(2);
22

23 % Learning rate
24 k_mu = 20;
25

26 %% Initialization
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27 % Initialize the vector of beliefs abot the states
28 mu = zeros(2,t/h);
29

30 % Initialize vector for collecting the free-energy values
31 F = zeros(1,t/h-1);
32

33 % Random initial guess about the states of the robot, initial conditions
34 mu(:,1) = [1 1.2]';
35

36 %% Free-energy minimization using gradient descent
37

38 for i=1:t/h-1
39

40 % Simulate noisy sensory input from encoders
41 % Noise
42 z = random('norm', 0, 0.001, length(q), 1);
43 % Sensory input
44 y_q = q + z;
45

46 % Free-energy computation
47 F(i) = 1/2*((y_q-mu(:,i))'*P_y*(y_q-mu(:,i)) + ...

(mu(:,i)-mu_d)'*P_mu*(mu(:,i)-mu_d));
48

49 % Define free-energy gradient
50 gradF = -((y_q-mu(:,i))'*P_y - (mu(:,i)-mu_d)'*P_mu);
51

52 % State update using gradient descent on the free-energy
53 mu(:,i+1) = mu(:,i)-k_mu*h*gradF';
54 end

A-2 Active inference

1 %% Active inference for robot control - Dynamic case
2

3 %% Set-up variables for simulation
4

5 t = 6; % [s] Simulation time
6 h = 0.001; % [s] Integration step
7 actionsTime = 1;
8

9 % 2DOF robot parameters
10 a1 = 1; % [m] Length link 1
11 a2 = 1; % [m] Length link 2
12

13 %% Set-up variables for perception
14

15 % Initialize generative process (so the sensors' output)
16 q = zeros(2,t/h); % [rad]
17 dq = zeros(2,t/h); % [rad/s]
18 ddq = zeros(2,t/h); % [rad/s^2]
19

20 % Initial state of the robot
21 q(:,1) = [-pi/2, 0]';
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22

23 % Prior belief about the states of the robot arm, desired position
24 mu_d = [-0.2 0.3]';
25

26 %% Tuning parameters
27

28 % Confidence in the prior belief about the states
29 P_mu0 = eye(2);
30 % Confidence in the prior belief about the derivative of the states
31 P_mu1 = eye(2);
32 % Confidence in the proprioceptive sensory data (position)
33 P_y0 = eye(2);
34 % Confidence in the proprioceptive sensory data (velocity)
35 P_y1 = eye(2);
36

37 % Learning rate for beliefs update
38 k_mu = 20;
39 % Learning rate for actions
40 k_a = 500;
41

42 %% Initialize vectors
43

44 % Initialize actions vector
45 u = zeros(2,t/h);
46 % Initial control action
47 u(:,1) = [0 0]';
48

49 % Initialize the vector of beliefs about the states and their derivatives
50 mu = zeros(2,t/h);
51 mu_p = zeros(2,t/h);
52 mu_pp = zeros(2,t/h);
53

54 % Initial guess about the states of the robot, initial belief
55 mu(:,1) = q(:,1)+[+0.6 +0.2]'; % mu position + random constant to ...

appreciate the convergence
56 mu_p(:,1) = [0 0]'; % mu' velocity
57 mu_pp(:,1) = [0 0]'; % mu'' acceleration
58

59 % Initialize vector for collecting the free-energy values
60 F = zeros(1,t/h-1);
61

62 % Initialize vectors for sensory input (these will be noisy)
63 y_q = zeros(2,t/h);
64 y_dq = zeros(2,t/h);
65

66 %% Active Inference loop
67

68 for i=1:t/h-1
69

70 %% Simulate noisy sensory input from encoders and tachometers
71 z = random('norm', 0, 0.001, size(q,1), 1);
72 z_prime = random('norm', 0, 0.001, size(q,1), 1);
73 y_q(:,i) = q(:,i) + z;
74 y_dq(:,i) = dq(:,i) + z_prime;
75

76 %% Compute free-energy in generalised motions
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77 F(i) = 0.5*(y_q(:,i)-mu(:,i))'*P_y0*(y_q(:,i)-mu(:,i))+... ...
% Proprioceptive position for joint 1 and 2

78 + 0.5*(y_dq(:,i)-mu_p(:,i))'*P_y1*(y_dq(:,i)-mu_p(:,i))+... ...
% Proprioceptive velocity for joint 1 and 2

79 + ...
0.5*(mu_p(:,i)+mu(:,i)-mu_d)'*P_mu0*(mu_p(:,i)+mu(:,i)-mu_d)+... ...
% Model prediction errors mu_p

80 + 0.5*(mu_pp(:,i)+mu_p(:,i))'*P_mu1*(mu_pp(:,i)+mu_p(:,i)); ...
% Model prediction errors mu_pp

81

82 %% Belifs update
83 % Support variables for beliefs update
84 mu_dot = mu_p(:,i) - k_mu*(-P_y0*(y_q(:,i)-mu(:,i)) + ...

P_mu0*(mu_p(:,i)+mu(:,i)-mu_d));
85 mu_dot_p = mu_pp(:,i) - k_mu*(-P_y1*(y_dq(:,i)-mu_p(:,i)) ...
86 +P_mu0*(mu_p(:,i)+mu(:,i)-mu_d) ...
87 +P_mu1*(mu_pp(:,i)+mu_p(:,i)));
88 mu_dot_pp = - k_mu*(P_mu1)*(mu_pp(:,i)+mu_p(:,i));
89

90 % State estimation
91 mu(:,i+1) = mu(:,i) + h*mu_dot; % Belief about the position
92 mu_p(:,i+1) = mu_p(:,i) + h*mu_dot_p; % Belief about motion of mu
93 mu_pp(:,i+1) = mu_pp(:,i) + h*mu_dot_pp; % Belief about motion of mu'
94

95 %% Control actions
96 if i > actionsTime/h
97 % Active inference
98 u(:,i+1) = u(:,i)-h*k_a*(P_y1*(y_dq(:,i)-mu_p(:,i)) + ...

P_y0*(y_q(:,i)-mu(:,i)));
99 else

100 u(:,i+1) = [0,0]'; % Set control torques to zero during the ...
initial part

101 end
102

103 %% Update sensory input according to the actions taken
104 ddq(:,i) = RealrobotDynamics(q(1,i),q(2,i),dq(1,i),dq(2,i),u(1,i),u(2,i));
105 dq(:,i+1) = dq(:,i)+h*ddq(:,i);
106 q(:,i+1) = q(:,i)+h*dq(:,i);
107

108 end
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Appendix B

Additional simulation results

B-1 Pick and place with a 7-DOF robot manipulator - Approxi-
mated dynamical model

Figure B-1: Full response and control actions using AIC. Simulation using ROS and Gazebo.
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Figure B-2: Full response and control actions using MRAC. Simulation using ROS and Gazebo.

B-2 Performance degradation due to large unmodeled dynamics

Figure B-3: Full performance degradation for the 7-DOF example. The controllers tuned using
the approximated model are applied to the accurate system. Simulation using ROS and Gazebo.
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B-3 Normalised sensory prediction errors in faultess case for 2-DOF
manipulator

Figure B-4: Normalised sensory prediction errors for fault detection and recovery in a faultless
case
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Appendix C

Additional background knowledge

C-1 Gaussian process regression

For the general mathematical definition of the GPR based on [40], we will make use of the
following notation:

Table C-1: General notation for Gaussian process regression

Symbol Meaning
x Training sample ∈ Rm
y Target value ∈ R corresponding to x
x̄ Collection of training samples ∈ Rm×n
ȳ Collection of target values ∈ Rn

l
Length scale for the kernel ∈ Rm where m is
the number dimension of a generic training
sample x

θ
Hyperparameters, in case of squared
exponential kernel with noisy measurements
θ = {l, σf , σn}

In a Gaussian process, the inference involves only multivariate Gaussian distributions. Let
us assume that we have a set of points defined as follows:

D = {(x1, y1), (x2, y2), ..., (xn, yn)} xi ∈ Rm, yi ∈ R, i = 1...n (C-1)

In Gaussian regression we are always looking at a finite set of data, and we are trying to
determine the distribution of the pairs (xi, yi). To do so, we assume that this distribution
can be described as a sum of two independent distributions:

Y = Zx + ε (C-2)
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where Zx ∼ (µ,Kz) is a multivariate Gaussian with mean µ (often set to zero) and covariance
matrix Kz. Finally ε ∼ (0, σ2

nI). Since Y is a sum of two independent distributions it holds
that (assuming µ = 0):

Y ∼ N (0,Kz + σ2
nI︸ ︷︷ ︸

K

) (C-3)

Now, we describe the crucial point in order to be able to make predictions about a new
expected output y∗ given an input x∗, a set of training inputs x̄, and training targets ȳ.
In particular, let us assume that we have a set of n observations of the input and output
variables.
Since the GPR assumes that the data is represented by multivariate Gaussian distributions,
we can write the following partition:

Y =
[
ȳ
y∗

]
∼ N

(
0,
[
K K>∗
K∗ K∗∗

])
(C-4)

We are interested in the conditional probability p(y∗|ȳ), in other words we want to know how
likely a certain prediction for y∗ is. The probability follows a Gaussian distribution:

y∗|ȳ ∼ N (K∗K−1ȳ, K∗∗ −K∗K−1K>∗ ). (C-5)

The best guess of the value of y∗ given a new observation x∗, is given by the mean of the
above distribution, that is:

E(y∗) = K∗K
−1ȳ (C-6)

Finally, the variance of the best guess about y∗ is given by:

var(y∗) = K∗∗ −K∗K−1K>∗ (C-7)

To be able to compute these quantities, we have to define the matrices K, K∗ and K∗∗. The
relation between one observation and another is encoded in the beating heart of this process,
the covariance matrix K, and especially the covariance function k(xi,xj). In literature there
are different ways of choosing this covariance function or kernel [40]. The most common
choice is to use a squared exponential kernel of the form:

k(xi,xj) = σ2
f exp

(
−1

2(xi − xj)>Λ(xi − xj)
)

+ σ2
ndij (C-8)

where dij is the Kronecker delta, dij = 1 when i = j and 0 otherwise. Furthermore, one
possible choice of Λ is Λ = diag{l2p}, p = 1, ...,m. The hyperparameters in this expression are
hyp = {l, σf , σn}, with l = {l1, l2, ..., lm}. The choice of these parameter highly influences
the predictions of y∗. They can be initially set to a value and subsequently optimized to
maximize the marginal likelihood. This part will be explained later on. For the covariance
matrix K it holds:

K =


k(x1,x1) k(x1,x2) · · · k(x1,xn)
k(x2,x1) k(x2,x2) · · · k(x2,xn)

...
... . . . ...

k(xn,x1) k(xn,x2) · · · k(xn,xn)

 (C-9)

The other two matrices are defined by:

K∗ =
[
k(x∗,x1) k(x∗,x2) · · · k(x∗,xn)

]
(C-10)

K∗∗ = k(x∗,x∗) = σ2
f + σ2

n (C-11)
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Definition of the hyperparameters

The outcome of our guess is strongly dependant on the form of the kernel chosen for the
regression, as well as its hyperparameters θ. If the hyperparameters are chosen wrongly, the
result will be incorrect. So how should the parameters (in this case l, σf and σn) be selected?
To answer this question let us consider the fact that the maximum a posteriori estimate of θ
occurs when p(θ|x̄, ȳ) is maximized. To achieve so, it is necessary to maximize the marginal
likelihood given by the equation below:

log p(ȳ|x̄,θ) = −1
2 ȳ
>K−1ȳ − 1

2 log |K| − n

2 log 2π (C-12)

where |K| is the determinant of K. Provided an initial guess of the parameters, after op-
timization we get the values which maximize the marginal likelihood. In other words, the
hyperparameters are fit according to the training data to obtain accurate predictions.

Gaussian process derivative

Let us call the posterior mean E(y∗) as g(x∗) and its derivative as g(x∗)′. The problem is
now to define the derivative g(x∗)′. In particular, there is a closed form for the first order
derivative of the posterior mean. Remember that the posterior mean is given by:

g(x∗) = E(y∗) = K∗K
−1ȳ , K∗ααα (C-13)

The only term in the expression above which is dependant on the test point x∗ is k(x∗, x̄). To
calculate the derivative of the posterior with respect to x∗, then, it is sufficient to differentiate
the kernel. Since we chose the squared exponential covariance function, the derivative of the
kernel with respect to x∗ is:

g(x∗)′ = ∂k(x∗, x̄)
∂x∗

α = ∂

∂x∗

{
σ2
f exp

(
−1

2(x∗ − x̄)>Λ(x∗ − x̄)
)

+ σ2
ndij

}
α (C-14)

Taking advantage of the squared exponential kernel, the partial derivatives are defined by:

g(x∗)′ = −Λ−1(x∗ − x̄)>σ2
f exp

(
−1

2(x∗ − x̄)>Λ(x∗ − x̄)
)
α

= −Λ−1(x∗ − x̄)>[k(x∗, x̄)> ·α] (C-15)

where · means element-wise multiplication.
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