
Balanced-force numerical
framework for immiscible
two phase flow at the onset
of instabilitity

Hrishikesh Joshi

Te
ch

ni
sc

he
Un

iv
er

sit
eit

D
elf

t





BALANCED-FORCE NUMERICAL
FRAMEWORK FOR IMMISCIBLE TWO PHASE

FLOW AT THE ONSET OF INSTABILITITY

by

Hrishikesh Joshi

in partial fulfillment of the requirements for the degree of

Master of Science
in Mechanical Engineering

at the Delft University of Technology,
to be defended publicly on Thursday September 28, 2017 at 02:00 PM.

Process and Energy Department Report number 2849

Thesis committee:
Prof. dr. ir. R. A. W. M. Henkes TU Delft, supervisor
Dr. ir. D. R. van der Heul TU Delft, supervisor
Dr. ir. W. P. Breugem TU Delft
Prof. dr. ir. B. J. Boersma TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/


ii

”The most beautiful thing we can experience is the mysterious. It is the source of all true art and science.”
-Albert Einstein
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ABSTRACT

The Interface Capturing method, which is a finite volume method as formulated by Queutey and Vissoneau[1]
for free surface immiscible, incompressible multiphase flows employs a collocated arrangement of unknowns
and achieves a discrete force balance for the case when the interface coincides with the faces of the control
volumes in the computational domain. This constraint limits the applicability of the method. Furthermore,
the authors do not provide the exact formulation of the operators involved in the pressure velocity coupling.

In the present research, a balanced-force numerical method is formulated, applicable for an interface that
neither has to coincide nor be aligned with the faces of the control volumes. The approach consists of the re-
construction of the values of the flow variables at the interface based on the interface jump conditions, with
which the limit values of the normal derivatives at the interface are calculated. Furthermore, the construction
of the operators of the discrete system is delineated to achieve a discrete force balance, by incorporating the
reconstructed flow variables and employing a discretization which complies with the interface jump condi-
tions. It is sufficient for a stationary discrete formulation to comply with the differential equation and the
interface jump conditions. However, to apply this approach to solve unsteady flow problems the influence of
the reformulated operators on the stability properties of the system should also be investigated.

The properties of the individual operators are analyzed as well as their behaviour when they are embed-
ded in the complete solver algorithm. Results are shown for both steady and unsteady test cases and com-
pared with numerical results obtained with OpenFOAM. The resulting framework avoids the occurrence of
spurious velocities as it discretely complies with the interface conditions.

Keywords: Multiphase flows, immiscible, incompressible, balanced-force method, arbitrary interface, collo-
cated arrangement of unknowns, Rhie and Chow pressure velocity coupling
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1
INTRODUCTION

Multiphase flows are ubiquitous in marine, chemical, oil and gas industry applications. Boiling in steam gen-
erators, slug flow in oil pipelines and particle laden flow are a few examples of multiphase flows. Multiphase
flow encompasses a wide spectrum of flows having more than one phase and can be classified as liquid-
liquid, liquid-gas or liquid-solid flows. Liquid-gas flows can be further divided into dispersed or separated
flows. Dispersed flows consist of finite sized bubbles or particles in a continuous phase, while separated flows
consist of two or more streams of fluids having a distinct interface between them [2]. These flows widely vary
in the flow dynamics according to the phases present and the flow application due to a large range of velocity,
time and length scales. As a result numerically modeling multiphase flows necessitates the use of different
numerical approaches per application. In a two phase channel flow, different flow regimes are encountered
with varying superficial velocities of the two fluids. When the flow velocities are low, the flow is stratified, as
the fluid velocity increases, the high inertia of the fluids creates an instability and the flow becomes unstable
and transitions to slug flow. Numerical modeling of these flows poses a major challenge. A small numeri-
cal error unphysically affects the flow produced. The current research will focus on numerical modeling of
two-phase stratified channel flow at the onset of instability.

To ensure a physically consistent model of the flow, the discretization of the governing equations has to
satisfy the following properties:

1. Discrete force-balance

A basic property of a fluid is that it flows under the action of a shear stress, i.e. a surface force attributed
to viscosity. Along with the viscous force, gravity, a body force, acts on the fluid. Newton’s second law
dictates that the time rate of change of the momentum is directly proportional to the force applied,
which has to be invariably satisfied in both: the continuous and the discrete form. In the special case
of quiescent flow, the pressure at any point in the fluid is balanced by the weight of the fluid above
it, which means the pressure gradient has to balance gravity. Achieving an exact balance between the
forces acting on the fluids is a necessary condition to accurately model multiphase flows.

2. Discrete conservation of mass and momentum

Mass or energy cannot be created or destroyed, which dictates the conservation of mass and the mo-
mentum in fluid dynamics. Achieving a discrete conservation of mass and momentum is the second
necessary condition while modeling multiphase flow at the onset of instability.

Meeting the above two requirements is no easy task, we face the following numerical challenges while doing
so:

1. Pressure-Velocity Coupling

The computational domain is decomposed into control volumes in which the flow variables are ar-
ranged either in a staggered or a collocated fashion. Formulating the discrete system on a staggered
grid is easier, but extending this formulation to a geometrically complex domains is not so trivial. On
the other hand, adapting the collocated grid on a geometrically complex domain is simpler. However,
the collocated arrangement leads to a weakly coupled velocity vector and pressure field. Hence an

1



2 1. INTRODUCTION

explicit pressure-velocity coupling algorithm has to be implemented. The most common and widely
used is the Rhie-Chow pressure velocity coupling in which a numerical face velocity is formulated. The
quantitative effect of the formulation on the discrete conservation of mass and momentum for multi-
phase flows is unclear.

2. Formulation of governing equations

The governing equations can be formulated and discretized in the conservative or the non-conservative
form, and with different sets of dependent variables (for example momentum as velocity multiplied by
the density or momentum as a variable itself). Unphysical high velocity streaks in the lighter phase
have been reported in numerical simulations of a multiphase flow utilizing a conservative formulation
of equations. It may be attributed to artificial numerical momentum transfer between the two phases
at the interface. Further analysis is required to draw definite conclusions.

3. Force Balance on a general setting

Queutey and Visonneau [1] achieved an exact force balance for the case when the interface coincides
with the faces of control volumes in the computational domain. Their proposed method employs a sec-
ond order Taylor expansion to calculate the values of a flow variable at the interface by employing the a
priori known interface jump conditions. The method is not exact when the interface does not coincide
with cell faces and requires a high grid resolution near the interface. In this thesis, a balanced-force
numerical framework independent of the location and the orientation of the interface with respect to
the cell faces will be proposed.

4. Interface representation

The interface between the fluids present in the computational domain is tracked by solving for a scalar
field. The Level Set Method (LS) uses a signed distance function to the interface, and the Volume of
Fluid method (VoF) uses a colour function, of which the volumetric average represents a volume frac-
tion of a fluid in each control volume. LS and the Algebraic-VoF method do not conserve mass, while
the Geometric-VoF needs a complex interface reconstruction in each time step. Hence, the interface
tracking method itself incurs numerical errors in addition to those attributed to the discretization of the
Navier-Stokes equations, and forms a separate topic of research. In this thesis the discretization of the
Navier Stokes equations for two-phase flow will be analyzed and implemented to achieve a balanced-
force formulation assuming the interface is known, i.e. the objective is purely an investigation into the
spatial discretization and the construction of the discrete operators involved.



2
PHYSICS OF TWO PHASE FLOWS

Conservation of mass and momentum govern the dynamics of the fluids and form the basis of a numerical
method for simulating flows. The continuous equations describing the conservation of mass and momentum
can be formulated in a conservative or a non-conservative form. The variables involved in the continuous
form may represent physical or purely mathematical quantities, which will be conserved when discretized.
In a multiphase flow the type of formulation may significantly affect the numerical solution according to the
type of quantity being conserved. Moreover, due to the presence of two fluids having different fluid prop-
erties, including a large difference in density, the momentum field has a C−1 type discontinuity. Thus, care
needs to be taken when discretizing the Navier-Stokes equations. In this Chapter, first the governing equa-
tions are derived, followed by the interface jump conditions. Finally, the different conservative and non-
conservative formulations of the governing equations are discussed.

2.1. FLOW DOMAIN
Consider a general two-fluid flow domain as shown in Figure 2.1. The flow domain is split into subdomains
Ω1, Ω2 having fluids 1 and 2 respectively. The fluid properties are labeled with the appropriate subscript
indicating fluid 1 or 2.

Figure 2.1: Two-fluid stratified multiphase flow domain for analysis of governing equations

2.2. GOVERNING EQUATIONS
Consider a control volumeΩ, bounded by the control surface S that intersects the interface Γ as shown in Fig-
ure 2.1. Mass and momentum will be conserved for the flow in this control volume. The equations governing
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4 2. PHYSICS OF TWO PHASE FLOWS

conservation of mass and momentum equations will be derived in the following subsections.

REYNOLDS TRANSPORT THEOREM

Consider a material volume that moves with the flow such that the same fluid particles remain in the volume.
Reynolds transport theorem states, that for a material volumeΩ and a differentiable scalar φ

d

d t

∫
Ω(t )

φdΩ=
∫
Ω(t )

dφ

d t
+∇· (φU)dΩ. (2.1)

The Reynolds transport theorem will be used to simplify the governing conservation equations.

2.2.1. CONSERVATION OF MASS
The mass in a control volume is conserved when the time rate of change of mass is equal to the mass source.
Hence in the absence of a source term we have

d

d t

∫
Ω(t )

ρdΩ= 0. (2.2)

Applying the Reynolds Transport Theorem∫
Ω(t )

∂ρ

∂t
+∇· (ρU)dΩ= 0. (2.3)

Expanding the second term in (2.3), we get∫
Ω(t )

∂ρ

∂t
+ρ∇·U+U ·∇ρdΩ= 0, (2.4)

∫
Ω(t )

Dρ

Dt
+ρ∇·U = 0. (2.5)

The material derivative of density will be zero as the fluid is incompressible, hence∫
Ω(t )

∇·UdΩ= 0. (2.6)

Equation (2.6) must hold for anyΩ(t ), hence

∇·U = 0. (2.7)

2.2.2. CONSERVATION OF MOMENTUM
The momentum in a control volume is conserved when the rate of change of momentum is equal to the
integrated surface and body forces acting on the fluid.

Consider a surface force fs and a body force fb acting on the fluid. The conservation of momentum is
given by

d

d t

∫
Ω(t )

ρUdΩ=
∫
Ω(t )

ρfbdΩ+
∫

S(t )
fsdS. (2.8)

Applying the Reynold Transport Theorem∫
Ω(t )

∂ρU

∂t
+∇· (ρUU)dΩ=

∫
Ω(t )

ρfbdΩ+
∫

S(t )
fsdS. (2.9)

The surface force consists of the viscous stress and pressure, hence assuming a Newtonian fluid

fs =−∇p +µ(∇U+∇UT ). (2.10)

Gravity acts as a body force on the fluid. Hence

fb = g. (2.11)

Substituting equations (2.11), (2.10) in (2.9), we get
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∫
Ω(t )

∂ρU

∂t
+∇· (ρUU)dΩ=

∫
Ω(t )

ρgdΩ+
∫

S(t )
−∇p +µ(∇U+∇UT )dS. (2.12)

As equation (2.12) should hold for anyΩ(t ), the integrand has to be zero, hence

∂ρU

∂t
+∇· (ρUU) =−∇p +ρgΩ+µ(∇U+∇UT ). (2.13)

DISCONTINUITY OF FLOW FIELDS IN MULTIPHASE FLOWS

Two phase flow consists of two fluids having different fluid properties in the computational domain, for ex-
ample: ρ(x, t ) is a step function with a discontinuity at the interface. As a result the term ∇ · (ρUU) has a
jump discontinuity and is non differentiable at the interface and hence the partial differential equation is not
mathematically valid on the interface. Consequently the flow domain is decomposed into two separate do-
mains for the two fluids where the governing equations do hold. The solutions in the two separate domains
are obtained by solving (2.13) and (2.7) in the two separate domains coupled by interface jump conditions.

2.3. INTERFACE CONDITIONS
In this section the interface jump conditions will be derived and discussed.

2.3.1. VELOCITY INTERFACE CONDITIONS
1. Kinematic condition

On the interface, between two immiscible fluids, mass conservation dictates that the velocity normal
to the interface for both fluids must be equal, which is termed as the Kinematic Velocity Condition.

Let U1, U2 denote the velocity for the two fluids, N the vector normal to the interface.

Hence the Kinematic Condition implies

U1 ·N = U2 ·N. (2.14)

2. Dynamic condition

The interface in a multiphase flow is a surface between the two fluids, that moves with the flow. This
implies that both fluids at the interface have equal velocities and hence have no slip. Mathematically it
implies

U1 ·T = U2 ·T. (2.15)

Here T denotes the vector tangent to the interface.

Equations (2.14) and (2.15) imply that the velocity is continuous.

2.3.2. STRESS INTERFACE CONDITIONS

For the stress tensor E , a force balance on the massless interface dictates∫ ∫
S

(E 1 −E 2)N = 0. (2.16)

The total stress tensor is given by

E =−pI +τ. (2.17)

The deviatoric stress tensor τ is given by

τ=µ(∇U+∇UT ). (2.18)

The velocity U vector expressed in Einstein summation notation is

U = ui ei .

The gradient of the velocity vector is a tensor, which using Cartesian tensor notation, is given by



6 2. PHYSICS OF TWO PHASE FLOWS

∇U = [
uα,β

]
. (2.19)

Differentiation using Cartesian tensor notation is denoted by

∂φ

∂xα
=φ,α. (2.20)

The Cartesian tensor notation and Einstein summation convention will be used in this thesis, and ∇ will be
used wherever deemed more convenient than the tensor notation.

1. Tangential stress condition

Projecting the stress tensor in the direction tangent to the interface gives

TT (E 1 −E 2)N = 0. (2.21)

2. Normal stress condition

Similarly, projecting the stress tensor in the direction normal to the interface gives

NT (E 1 −E 2)N = 0. (2.22)

2.4. INTERFACE JUMP CONDITIONS
If the computational domain Ω is decomposed into two domains, Ω+, Ω− for the two phases, then for a
quantity Q, which is continuously differentiable away from the interface, an operator [ ] is defined, such that
it represents the jump, i.e. the difference in Q over the interface. Hence

[Q] =Q+−Q−, (2.23)

where Q+ represents the value in the limit of the interface in the subdomainΩ+ and Q− represents the value
of in the limit of the interface in the subdomain Ω−. With the help of the interface conditions specified in
section 2.3, constraints can be derived that reveal the smoothness (order of continuity) of the flow variables.
Kang et al. [3] derived these interface jump conditions in detail. These conditions have to be accounted for
when discretizing the system of equations. The interface jump conditions will be described in the following
sub-sections.

2.4.1. MATRIX FORM OF INTERFACE CONDITIONS
The stress conditions (2.21), (2.22) written in matrix form read: NT

T1
T

T2
T

 (pI −τ)N

= 0, (2.24)

where N is the unit normal vector to the interface and T1, T2 are orthogonal unit tangent vectors. Further,
definition (2.18) for τ can be substituted in equation (2.24) to give p

0
0

−µ
 NT

T1
T

T2
T

 ∇u1N
∇u2N
∇u3N

−µ
 ∇u1N ∇u2N ∇u3N

∇u1T1 ∇u2T1 ∇u3T1

∇u1T2 ∇u2T2 ∇u3T2

=
 0

0
0

 . (2.25)

2.4.2. STRESS INTERFACE JUMP CONDITIONS
Equation (2.25) can be simplified to the following interface jump conditions:[

p −2µ ((∇u1) ·N, (∇u2) ·N, (∇u3) ·N) ·N
]= 0, (2.26)

[
µ ((∇u1) ·N, (∇u2) ·N, (∇u3) ·N) ·T1 + ((∇u1) ·T1, (∇u2) ·T1, (∇u3) ·T1) ·N

]= 0, (2.27)

[
µ ((∇u1) ·N, (∇u2) ·N, (∇u3) ·N) ·T2 + ((∇u1) ·T2, (∇u2) ·T2, (∇u3) ·T2) ·N

]= 0, (2.28)

where the operator [] is defined in equation (2.23).
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2.4.3. VELOCITY INTERFACE JUMP CONDITIONS

PROJECTION IN THE TANGENTIAL DIRECTION

As explained in Section 2.4 the velocity is continuous across the interface. Hence,

[U] = 0. (2.29)

Moreover, the tangential derivatives are continuous, hence

[∇U ·T] = 0, (2.30)

where T is any unit tangent vector to the interface.

Projecting Equation (2.30) in the tangential direction gives

[∇U ·T ·T] = 0. (2.31)

Equation (2.31) can be written as

[
∂UT

∂T

]
= 0, (2.32)

which states that the tangential derivative of the tangential velocity is continuous across the interface.

PROJECTION IN THE NORMAL DIRECTION

Similarly, taking the projection of equation (2.30) in the normal direction gives

[∇U ·T ·N] = 0, (2.33)

which can be written as

[
∂UT

∂N

]
= 0. (2.34)

This states that the normal derivative of the tangential velocity is continuous across the interface. Further-
more, identity (2.35) can be used to derive a jump condition for the normal derivative of the normal velocity:

(∇u1 ·N,∇u2 ·N,∇u3 ·N) ·N+(∇u1 ·T1,∇u2 ·T1,∇u3 ·T1) ·T1+(∇u1 ·T2,∇u2 ·T2,∇u3 ·T2) ·T2 =∇·U = 0. (2.35)

Equation (2.35) can be re-written as

[
∂Un

∂n
+ ∂UT1

∂T1
+ ∂UT2

∂T2

]
= 0. (2.36)

The above equation can be simplified to

[
∂Un

∂n

]
+

[
∂UT1

∂T1

]
+

[
∂UT2

∂T2

]
= 0, (2.37)

as the tangential derivative of the tangential velocity is continuous across the interface. Hence

[
∂UN

∂N

]
= 0, (2.38)

which means the normal derivative of the normal velocity is continuous across the interface.
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PROJECTION OF THE TANGENTIAL DERIVATIVE OF VELOCITY IN THE NORMAL DIRECTION

Further, equation (2.27) can be written as [
µ
∂UN

∂T
+µ∂UT

∂N

]
= 0, (2.39)

where ∂
∂T , ∂

∂N represent the tangential and normal directional derivative, respectively. This gives[
µ
∂UN

∂T

]
+

[
µ
∂UT

∂N

]
= 0. (2.40)

As ∂UT
∂N is continuous across the interface from (2.34) it follows that

[
µ
] ∂UT

∂N
+

[
µ
∂UN

∂T

]
= 0,[

µ
∂UN

∂T

]
=−[

µ
] ∂UT

∂N
. (2.41)

SUMMARY OF INTERFACE JUMP CONDITIONS

For future reference the interface jump conditions that couple the solution for the two fluids are summarized
below. These conditions have to be taken into account in the formulation of the discretization of (2.7) and
(2.13) in two-phase flow.

[U] = 0,[
∂UT

∂N

]
= 0,[

∂UN

∂N

]
= 0,[

∂UT

∂T

]
= 0,[

µ
∂UN

∂T

]
=−[

µ
] ∂UT

∂N
. (2.42)

2.5. CONSERVATIVE OR NON-CONSERVATIVE FORM
The governing equations to be satisfied by viscous incompressible flow are: the continuity equation, which
dictates conservation of mass and the Navier-Stokes, equations which dictate conservation of momentum.
The governing equations can be formulated in a conservative or a non-conservative form. As discussed pre-
viously, the terms in the two formulations may represent physical or mathematical quantities, which are
conserved when discretized. Moreover different sets of dependent variables can be used to solve the govern-
ing equations, for example the mass flow rate can be expressed as ρU or mass flow rate m can be used as
a variable itself. The choice of the formulation may affect the resulting numerical solution and needs to be
further investigated.

In this section the different formulations of the continuous form of the equations are discussed.

2.5.1. CONSERVATIVE FORM

CONSERVATION OF MOMENTUM

The conservative form of the momentum equation can be written as,

∂ρU

∂t
+∇· (ρUU) =−∇p +∇· (µ(∇U+∇UT ))+ρg. (2.43)

The gradient of pressure can be rewritten in divergence form by using the following identity,

∇· (pI ) = p (∇· I )+ I · (∇p
)=∇p, (2.44)

as ∇· I = 0. Here I is the identity tensor.
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Using the identity (2.44), equation (2.43) simplifies to

∂ρU

∂t
+∇· (ρUU) =∇· (−pI +µ(∇U+∇UT ))+ρg. (2.45)

∂ρU

∂t
+∇· (ρUU+pI −µ(∇U+∇UT ))= ρg. (2.46)

Discretizing equation (2.46) will conserve momentum in the absence of external forces as the pressure, con-
vective and viscous effects are taken into account in one divergence operator.

2.5.2. NON-CONSERVATIVE FORM

CONSERVATION OF MOMENTUM

The momentum equation in the non-conservative form is written as

ρ
∂U

∂t
+U

∂ρ

∂t
+ρ(U ·∇)U+U∇· (ρU) =−∇p +∇· (µ(∇U+∇UT )

)+ρg. (2.47)

The equation can be further reduced with the continuity equation to give

ρ
∂U

∂t
+ρ(U ·∇)U =−∇p +∇· (µ(∇U+∇UT )

)+ρg. (2.48)

Identity (2.44) can be used to rewrite above equation as

ρ
∂U

∂t
+ρ(U ·∇)U =∇· (−pI +µ(∇U+∇UT ))+ρg. (2.49)

From conservation of mass we know U is solenoidal (2.7), hence equation (2.48) can also be written as

ρ
∂U

∂t
+ρ(U ·∇)U+ρU∇·U =−∇p +∇· (µ(∇U+∇UT ))+ρg. (2.50)

which simplifies to

ρ
∂U

∂t
+ρ∇· (UU) =−∇p +∇· (µ(∇U+∇UT ))+ρg. (2.51)

Equation (2.51) can also be rewritten with identity (2.44)

ρ
∂U

∂t
+ρ∇· (UU) =∇· (−pI +µ(∇U+∇UT ))+ρg. (2.52)

Equation (2.52) is a very popular formulation of conservation of momentum used in the two-phase flow com-
munity. It is a non-conservative formulation of the conservation of momentum, albeit with the convective
term in a conservative form.
Note: Different candidate formulations describing conservation of momentum have been boxed for easy
reference.

2.6. OVERVIEW
A C−1 type discontinuity due to a density difference in the fluids creates discontinuous flow fields in a two-
phase flow problem. Hence the derivatives of the flow fields do not exist at the interface. The governing
equations can be solved away from the interface where the flow variables are continuous and hence exist.
The dependence of the solution in the two subdomains is provided by the interface jump conditions.

The governing equations can be formulated in a conservative and non-conservative form. Moreover, the
pressure can be formulated as a gradient and combined with the viscous term and the convective term can
be rewritten in a conservative form. A different form of continuous equation leads to a different discretized
formulation of the governing equation.





3
INTERFACE METHODS

The location and the orientation of the interface are required to incorporate the interface jump conditions.
The location and the orientation are specified by the distance from a point to the interface and the normal
vector to the interface, respectively. To this end an interface tracking method is employed which utilizes a
scalar field to distinguish the fluids and locate the interface. Two of the most widely used methods are:

• The Level Set Method

The Level Set method uses a level set field: a scalar that represents the signed distance function from a
point in the domain to the interface.

• The Volume of Fluid Method

The Volume of Fluid method utilizes a scalar: a colour function that has value 1 in one fluid and 0 in
the other. Volume of fluid methods can be further classified as a:

– Geometric method

– Algebraic method

In this chapter, the Level Set method and the Volume of Fluid method are described, followed by a com-
parison and description of the advantages and disadvantages of each method.

3.1. LEVEL SET METHOD
The Level Set method employs an iso-contour of an implicit function φ, corresponding to value 0 to repre-
sent the interface. The scalar φ is positive in one fluid subdomain and negative in the other. An additional
constraint

|∇φ| = 1, (3.1)

makes the implicit function a continuous signed distance function, such that for any position X, we have

φ=


0,X ∈ Γ,

d(X,dΓ), |∇φ| = 1,X ∈Ω1,

−d(X,dΓ), |∇φ| = 1,X ∈Ω2,

(3.2)

where Γ represents the interface, andΩ1,Ω2 are the domains occupied by fluids 1 and 2, respectively.

3.1.1. TIME EVOLUTION OF LEVEL SET FUNCTION
Consider a point X on the interface Γ represented by the zero level set iso-contour. Hence

∂φ(X(t ), t )

∂t
= 0, (3.3)

11
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∂φ(X, t )

∂t
+ ∂X(t )

∂t
·∇φ(X, t ) = 0. (3.4)

As ∂X(t )
∂t = U,

∂φ

∂t
+U ·∇φ= 0. (3.5)

The time evolution of the level set function consists of advecting the scalar φ. Standard numerical methods
can be used without the need for a complex interface reconstruction.

3.1.2. LEVEL SET RE-INITIALIZATION

The level set function loses the property of a signed distance function (magnitude of the gradient of the
level set function should be equal to one) over the course of time steps. The magnitude of the gradient in-
creases when the interface is stretched and reduces when it is compressed. The level-set function has to be
re-initialized to re-establish the property of a signed distance function by solving

{
∂φ
∂τ +|∇φ| = 1, i f X ∈Ω1,
∂φ
∂τ −|∇φ| = −1, i f X ∈Ω2.

(3.6)

Equations 3.6 are solved to steady state (for artificial time τ) to ensure constraint 3.1 is satisfied. This is
referred to as the re-initialization of the level set function.
Above equations can also be written as

∂φ

∂t
= sign(φ)(1−|∇φ|). (3.7)

For more details reference to the work of Fedkiw, Osher [4] and Prosperetti [5] is made.

3.1.3. MASS CONSERVATION

The re-initialization of the level set function by standard numerical methods shifts the level set iso-contour
corresponding to the interface, which leads to a loss of volume enclosed by the interface, i.e. a loss of mass.

3.2. VOLUME OF FLUID METHOD
The colour function, which is a Heavyside step function of φ, identifies the presence of a fluid at a particular
location by

H(φ) =
{

1, if fluid 1

0, if fluid 2
. (3.8)

Volumetric averaging of the colour function over a control volume gives the volume of fluid function, which
represents the volume fraction of fluid 1 in that control volume. Hence,

Ci =
∫
Ωi

H(φ)dΩ. (3.9)

3.2.1. TIME EVOLUTION OF THE COLOUR FUNCTION

The time evolution of the interface is given by

∂C

∂t
+U ·∇C = 0 (3.10)

or, if the flow is incompressible, equivalently by

∂C

∂t
+∇(UC ) = 0. (3.11)
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Figure 3.1: Example of 2D computational with coincident interface and mesh

VALIDITY OF THE VOLUME OF FLUID FUNCTION

Consider the case where the interface coincides with a cell edge as shown in the Figure 3.1. The interface is
represented by the dashed red line. Cell (i , j +1) is occupied by fluid 2 and cell (i , j ) by fluid 1.
The scalar C forms a step profile with a discontinuity at (i , j + 1

2 ). Hence, the gradient of the volume fraction
function is undefined at (i , j + 1

2 ). As a result, advecting equation 3.11 is mathematically valid only in a weak
sense.

Most numerical frameworks employ a diffused interface formulation where the discontinuous fields are
regularized. This permits definition of the gradient of the volume fraction function (among others). Ideally
the discrete approximations in the finite volume method should respect all the physical constraints, keep the
interface sharp and provide a solution without the need for regularization.

3.2.2. DISCRETIZATION OF ADVECTION EQUATION OF COLOUR FUNCTION
The Volume of Fluid methods are further classified as:

1. Geometric Methods

The surface is explicitly reconstructed and advected based on the geometric considerations. The sim-
plest is the Simple Line Interface Calculation (SLIC) by Hirt and Nichols [6] where the interface in each
cell is represented by two orthogonal lines parallel to the faces of the cell in a Cartesian mesh. Another
widely used method, which is more accurate than SLIC, is the Piecewise Linear Interface Calculation
(PLIC) by DeBar and Young [7]. PLIC involves representing the interface with a line (plane) of a constant
slope in 2D (3D).

2. Algebraic Methods

Algebraic methods use special algebraic schemes that satisfy the local boundedness criteria and keep
the interface sharp without smearing and without introducing numerical oscillations [8], [9]. The alge-
braic schemes utilize a compressive scheme when the flow is normal to the interface which steepens
any gradient, and a high resolution scheme that maintains the sharpness of the interface when the
flow is tangential to the interface. As an example the Compressive Interface Convection Scheme for
Arbitrary Meshes (CICSAM) by Ubbink and Issa [10] is discussed in section 3.2.

3.2.3. PIECEWISE LINEAR INTERFACE CALCULATION
PLIC is a geometric VOF method which involves a linear reconstruction of the interface. The method of
reconstruction and the time evolution are discussed in the following subsections.

INTERFACE RECONSTRUCTION

PLIC represents the interface by a line in 2D with a constant slope given by
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mx x +my y =α. (3.12)

The surface reconstruction consists of solving for the slope m and the constant α, after which the interface
can be advected by geometric considerations.

Surface reconstruction can be done in many ways. A simple example is Young’s finite difference method
[7], where the slope is calculated as the gradient of the colour function. Hence

m =−∇C . (3.13)

The above approach can be employed if the colour function is continuous in the computational domain.
After calculating the slope, α is obtained such that the area (volume in 3D) under the line (surface in 3D) is
equal to the volume fraction of the fluid in that cell.

ADVECTION OF THE INTERFACE

To advect the interface, the end points of the line segment in the cell are calculated. The end points are
advected by the required time step along one co-ordinate direction by linearly interpolating the velocity, fol-
lowed by reconstruction of the interface. This step is repeated in the other coordinate directions.
Hence, consider an end point x, which is advected along the x axis as,

xn+1 = xn +∆tu(xn). (3.14)

where the interpolated velocity u1(xn) is calculated as

u1(xn) = u1 i− 1
2 , j (1−x)+u1 i+ 1

2 , j x. (3.15)

This method is called out-of-cell explicit linear mapping, in contrast to this, onto-cell implicit linear mapping
uses the velocity at the current time level (un+1

1 ).
The interested reader is referred to [7]

3.2.4. COMPRESSIVE METHOD
Compressive schemes such as CICSAM [10] convect the colour function by blending two high-resolution
schemes. As an example of this approach, Ubbink’s and Issa’s seminal work on Compressive Interface Cap-
turing Scheme for Arbitrary Meshes (CICSAM) will be discussed.

In a compressive scheme, the method is formulated based on the values at the center cell (Donor cell), the
cell that receives fluid (Acceptor cell) and the upwind cell, labeled as D, U, A, respectively as shown in Figure
3.2.

Figure 3.2: Upwind, Donor, Acceptor arrangement of cells in Compressive schemes

The original VoF scheme proposed by Hirt and Nichols [6] used an upwind scheme when the angle between
the interface and flow direction was between 0°−45° and downwind when it was between 45°−90° . Down-
winding compresses any finite gradient to a step profile, making it suitable when the flow is normal to the
interface. Upwinding satisfies the local boundedness criteria but smears the interface and downwinding
maintains resolution but violates local boundedness[8] [10]. The original VoF method unphysically deforms
the interface due to unboundedness of downwinding and the sudden shift between the two schemes.
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A numerical formulation is needed which gradually changes from a compressive scheme (giving a step
profile for finite gradient) when the flow is normal to the interface to one that maintains the resolution of the
interface when the flow is tangential to the interface, while being locally bounded.

Ubbink and Issa formulated a blending formulation, weighted by the angle between the interface and the
motion of the flow, of UlTIMATE-QUICKEST(UQ) and HYPER-C (upper bound of CBC) [10].
The schemes are formulated in terms of normalized variables defined as follows:

f̃ = f − fu

fa − fu
, (3.16)

fu , fa are the values at the upwind and the acceptor cell, respectively.
The upper bound of the CBC for explicit implementation is given by

f̃ C BC
f =

{
min

(
f̃D
c ,1

)
when 0 ≤ f̃D ≤ 1

f̃D when f̃D < 0, f̃D > 0
. (3.17)

The upper bound of the UQ for explicit implementation is given by

f̃ UQ
f =

{
min

(
8c f̃D+(1−c)(6 f̃D+3)

8 , f̃ C BC
f

)
when 0 ≤ f̃D ≤ 1

f̃D when f̃D < 0, f̃D > 0
, (3.18)

where c is the Courant number.
The value at the face is calculated by blending the upper-bound of HYPER-C and QUICKEST as

f̃ f = γ f f̃ C BC + (1−γ) f̃ UQ . (3.19)

where,

θ f = | ∇ fD ·d f

|∇ fD ||d f |
|, (3.20)

γ f = min

(
κ

cos(2θ f +1)

2
,1

)
. (3.21)

κ determines the dominance of the different methods.

3.2.5. MASS CONSERVATION
Volume of fluid methods discretely conserve mass.

3.3. COMPARISON BETWEEN INTERFACE METHODS
An ideal interface method should conserve mass, should give an accurate advection and should not necessi-
tate a computationally intensive interface reconstruction. Formulating such method is not trivial and is open
to further research.
The advantages and disadvantages of the discussed interface tracking methods have been summarized in the
table below.

Method Advantages Disadvantages
Level Set Method -Advection of a signed distance function

can be done with standard numerical
methods.
-No surface reconstruction needed.

-Level Set reinitialization leads to mass
loss.

VoF-Geometric -Exact conservation of mass on discrete
level achieved.

-Complex surface reconstruction
needed.
-Non-unique interface produced de-
pending on Geometric method used.

VoF- Algebraic -No surface reconstruction needed. -Does not conserve mass discretely.
-Small time step needed, as CFL num-
ber restricted to a small value to maintain
sharpness of the interface.
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3.4. INFORMATION ABOUT THE INTERFACE LOCATION
Numerical frameworks for multiphase flows require the interface location and orientation to incorporate the
interface jump conditions. The scalar field in the LS method represents a signed distance function, which
can then be trivially employed to extract the required information. Geometric VoF methods provide this
information, as the interface reconstruction is an integral part of the method. Whereas, Algebraic-VoF fail
to provide any data at all. As a result, for the present research the choice of the interface tracking method is
limited to the Level Set and the Geometric-VoF method.



4
PRESSURE VELOCITY COUPLING

It is relatively straightforward to discretize the Navier-Stokes equations on a geometrically complex domain
employing a collocated arrangement of unknowns in comparison with a staggered arrangement of the un-
knowns. Hence, the collocated grid is commonly the preferred choice. However it is well known that the
discretization on a collocated grid, without special measures, leads to a weakly coupled pressure and veloc-
ity vector field. Therefore an additional pressure velocity coupling algorithm needs to be implemented to
re-establish the coupling between the two fields.

In this chapter first the Rhie and Chow pressure velocity coupling for single phase flow is discussed, fol-
lowed by an overview of the necessary modifications to apply this approach to multiphase flows.

4.1. RHIE AND CHOW PRESSURE-VELOCITY COUPLING
Consider the 2D Cartesian grid shown in Figure 4.1. P is the control volume under consideration, E is the
control volume to the east and N to the north of P .

Figure 4.1: Example of a 2D computational grid with collocated arrangement of unknowns

The momentum equation in the ê1 direction in a discretized form for control volume P can symbolically be
written as

ρ|ΩP |
∆t

(uP −un
P )+aP uP −∑

P
ai ui =−p,1

∣∣∣
p
|ΩP |, (4.1)

17
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where P is the cell center over which momentum conservation is being applied,
∑

P represents the summa-
tion of terms corresponding to the surrounding cells (represented by index i ) of cell P , ΩP is the cell volume
and n the current time level. The coefficients ap in the summation represent the coefficients arising out of
discretization of the viscous and the convective term in the control volume P and ai corresponding to the
coefficients in the discretization stencil of the surrounding control volumes. The time level at which other
terms are evaluated is determined by the employed method of time integration.
Equation (4.1) simplifies to [

1+ ρ|ΩP |
aP∆t

]
uP = 1

aP

∑
P

ai ui − |ΩP |
aP

p,1

∣∣∣
P
+ ρ|ΩP |

aP∆t
un

P . (4.2)

Similarly, the discrete form of the governing conservation of momentum equation evaluated over control
volume E in ê1 is given by [

1+ ρ|ΩE |
aE∆t

]
uE = 1

aE

∑
E

ai ui − |ΩE |
aE

p,1

∣∣∣
E
+ ρ|ΩE |

aE∆t
un

E . (4.3)

The Rhie and Chow Coupling or Pressure Weighted Interpolation Method (PWIM) [11] [12] constructs a face
velocity u f analogous to the (4.2) as[

1+ ρ|Ω f |
a f ∆t

]
u f =

1

a f

∑
f

ai ui −
|Ω f |
a f

p,1

∣∣∣
f
+ ρ|Ω f |

a f ∆t
un

f . (4.4)

The coefficients a f and
∑

f ai are artificial numerical constructs. They are eliminated employing the following
definitions:

1

a f

∑
f

ai ui = 1

2

(
1

aP

∑
P

ai ui + 1

aE

∑
E

ai ui

)
(4.5)

|Ω f |
a f

= 1

2

( |ΩP |
aP

+ |ΩE |
aE

)
(4.6)

Utilizing (4.2), (4.3) and (4.5),(4.6) the expression for the face velocity simplifies to

u f =
uP +uE

2
−

[
1

2

( |ΩP |
aP

+ |ΩE |
aE

)
p,1

∣∣∣
f
−

( |ΩP |
aP

p,1

∣∣∣
P
+ |ΩE |

aE
p,1

∣∣∣
E

)]
−

[(
ρ|ΩP |
aP∆t

un
P + ρ|ΩE |

aE∆t
un

E

)
− 1

2

(
ρ|ΩP |
aP∆t

+ ρ|ΩE |
aE∆t

)
un

f

]
.

(4.7)
The mass is discretely conserved over a control volume by imposing a solenoidality constraint on the derived
Rhie and Chow face velocity field u f .

4.1.1. INTERPRETATION OF FACE VELOCITY
The derived PWIM face velocity does not have any explicitly clear physical basis but is numerically formulated
and simplified using the definitions (4.5) and (4.6). The justification for the formulation of the face velocity
is presented by Miller and Schmidt [13]. Furthermore a physical rationalization can be found in the work of
Miller and Schmidt [13] and Francois et al. [14].
In the following section, the interpretations of the numerically constructed face velocity are discussed to gain
an intuitive understanding of PWIM.

SECOND-ORDER TAYLOR EXPANSION

The velocities at the cell centers P and E can be expressed in terms of the velocity at the face by retaining a
second order Taylor expansion as

uP = u f −∆xu,1

∣∣∣
f
+ ∆x2

2!
u,11

∣∣∣
f
− ∆x3

3!
u,111

∣∣∣
f
+ . . . , (4.8)

uE = u f +∆xu,1

∣∣∣
f
+ ∆x2

2!
u,11

∣∣∣
f
+ ∆x3

3!
u,111

∣∣∣
f
+ . . . . (4.9)

Adding equations (4.8) and (4.9) and simplifying, gives
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u f =
uP +uE

2
− ∆x2

8
u,11

∣∣∣
f
+O (∆x4). (4.10)

Application of a second order finite difference approximation to the second derivative gives

u f =
uP +uE

2
− 1

2

(
uE +uP −2u f

)+O (h2). (4.11)

Substituting (4.2), (4.3), (4.4) for the velocity in the second term in the parentheses and utilizing the defini-
tions (4.5), (4.6) in equation (4.11) gives

u f =
uP +uE

2
−

[
1

2

(
ΩP

aP
+ ΩE

aE

)
p,1

∣∣∣
f
−

(
ΩP

aP
p,1

∣∣∣
P
+ ΩE

aE
p,1

∣∣∣
E

)]
−

[(
ρΩP

aP∆t
un

P + ρΩE

aE∆t
un

E

)
− 1

2

(
ρΩP

aP∆t
+ ρΩE

aE∆t

)
un

f

]
.

(4.12)

INTERPOLATING VECTOR FIELD

Francois et al. [14] interpreted it as interpolating the whole vector field at the face rather than the velocity
vector field.
Interpolating the velocity vector field at (i + 1

2 , j ) gives

ũ f =
uE +uP

2
, (4.13)

which, by using (4.2), (4.3) (ignoring terms at previous time level n for simplicity), results into

ũ f =
1

2

(
1

ãP

∑
P

ai ui + 1

ãE

∑
E

ai ui

)
− 1

2

(
ΩP

ãP
p,1

∣∣∣
P
+ ΩE

ãE
p,1

∣∣∣
E

)
, (4.14)

where ãP = aP

1+ ρΩP
aP∆t

.

Such a discrete formulation on a collocated grid leads to a weak coupling between the velocity vector and the
pressure field. Hence Rhie and Chow pressure velocity coupling formulates a pressure weighted interpola-
tion. The face velocity is a function of the pressure at the face rather than the cell centers which leads to a
stronger coupling between the pressure and the velocity field.

u f = ũ f +
1

2

(
ΩP

ãP
p,1

∣∣∣
P
+ ΩE

ãE
p,1

∣∣∣
E

)
− Ω f

ã f
p,1

∣∣∣
f

(4.15)

u f =
uP +uE

2
+ 1

2

(
ΩP

ãP
p,1

∣∣∣
P
+ ΩE

ãE
p,1

∣∣∣
E

)
− Ω f

ã f
p,1

∣∣∣
f

(4.16)

For more details refer to [14], [15].
A symbolic representation of the operators is employed for better readability and to concisely describe

the formulations proposed in this thesis. This symbolic representation for the local operators, is described in
the following subsection.

SYMBOLIC REPRESENTATION

For the sake of easy reference, the face velocity formulation will be described in an algebraic-differential form
as

u f
α i±êα

= ū∗
α i +

1

ρ
Ḃ pn+1, (4.17)

where

ū∗
α i =

u∗
α i +u∗

α i±êα

2
, (4.18)

(
Ḃ p

)±
α i =

[
1

2

(
d h
αpi +d h

αpi±êα

)
−d

h
2
α pi± 1

2 êα

]
. (4.19)
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The Ḃ+ operator refers to the face reconstruction at i+ 1
2 êα and Ḃ− at i− 1

2 êα and the discrete operator d h
α

evaluates the α component of the pressure derivative.
The Ḃ operator is further split as

Ḃ = Ḃ c + Ḃ f , (4.20)

where

Ḃ c = 1

2

(
d h
αpi +d h

αpi±êα

)
, (4.21)

Ḃ f =−d
h
2
α pi± 1

2 êα
. (4.22)

Furthermore, the gradient operator at the face and at the center of the control volume is defined as

Gc = d h
1 pi +d h

1 pi, (4.23)

G f ± = d h/2
α pi+ 1

2 êα
. (4.24)

Hence, Gc represents the gradient of the pressure at the cell center, and G f ± is utilized to represent the êα
component of the pressure gradient at the face having the index i± 1

2 êα.
Moreover, the divergence of the operators needs to be calculated in the iterative approach of the pressure
velocity coupling. Hence, for easy reference they are symbolically represented as

DḂ = DḂ c +DḂ f , (4.25)

where, D is the divergence operator. From (4.22) and (4.24) it can be seen that

DḂ = B f = DG f . (4.26)

Furthermore, the divergence of the cell center component of the operator Ḃ is represented as

DḂ c = B (4.27)

4.2. ITERATIVE SOLUTION METHOD
Miller and Schmidt [13] described an iterative solver for stationary flow based on the Rhie and Chow pressure-
velocity coupling. The solution method consists of iteratively solving for the pressure and the velocity in two
loops. The B and the DG f operator are constructed in the outer loop, and the velocities and the pressure are
updated in the inner loop. The operators are updated in the outer loop once the inner loop converges (con-
vection part of the operators needs to be updated by linearizing the convection operator using the converged
solution of the inner loop). The method has been described below in a differential-algebraic form.

start of the outer loop
(iteration level k)

1. Construct the diffusion operator J

2. Construct operators DG f , B c ,Gc , G f and the convective operator N

start of the inner loop
(iteration level l)

1. The momentum equations are solved implicitly to calculate the predicted cell center velocities uc ∗
1 ,uc ∗

2 .
The pressure gradient is calculated using the previous outer loop pressure values. The predicted cell
center values are under-relaxated with respect to the outer loop cell center velocities.

uc∗ = (1−ω)uc k +ω
(

Juc∗+N u∗−Gc pk
)

, (4.28)

where Gc is the pressure gradient operator evaluated at the center of the control volume.
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2. The predicted face velocities are calculated based on the predicted cell center velocities u f ∗
1 , u f ∗

2 .

u f ∗ = (1−ω)
(
u f k − ũc k

)
+ ũc ∗+ωḂpl , (4.29)

where ˜ represents the interpolation of the flow variables based on the values at the adjacent cell cen-
ters.

3. The correction in the pressure δp is calculated by imposing the solenoidality condition on the corrected
face velocities

u f l+1 = (1−ω)
(
u f k − ũc k

)
+ ũc l+1 +ωḂpl+1 (4.30)

Applying the solenoidality condition to (4.30), the final pressure correction equation becomes

DG f δp = Du f ∗, (4.31)

where D is the divergence operator and G f is the gradient operator to be applied to calculate the pres-
sure gradients at the face.

4. The corrected cell center velocities are calculated uc l+1
1 ,uc l+1

2

uc l+1
α = uc∗

α − ω

1−ω
∆t

ρ
δp,α

∣∣∣
c

(4.32)

5. The corrected face velocities are calculated u f l+1
1 ,u f l+1

1

u f l+1
α = u f ∗

α − ω

1−ω
∆t

ρ
δp,α

∣∣∣
f

(4.33)

6. The pressure is updated

pl+1 = pl +δp (4.34)

end of the inner loop

The flow variables are updated to the values obtained in the last iteration level in the inner loop.
end of the outer loop
The loops are iteratively solved until convergence is obtained. The interested reader is referred to [13],

[11].

4.3. OPEN QUESTIONS
The Rhie and Chow interpolation is a widely utilized pressure-velocity coupling method. As seen in section
4.1 the method consists of constructing a face velocity and applying a simplification employing definitions
(4.5), (4.6). The constructed analogous equation for face velocity (4.4) has no physical basis but a rationalized
one (section 4.1.1). Hence, the Rhie and Chow interpolation raises a few open questions concerning the
extension of the method to two phase flows, as discussed below.

• Conservation of momentum for face centered velocities

The face velocity used to impose the conservation of mass has no defined control volume over which
it satisfies the conservation of momentum. Hence writing an analogous equation for the face velocity
has no physical basis, and conservation of momentum for the face velocity is unclear.

• Conservation of mass for cell centered velocities

The velocities that satisfy the conservation of momentum (the cell center velocities) have no explicit
conservation of mass imposed, i.e the conservation of mass imposed on a control volume is not through
the cell center velocities but through the constructed PWIM face velocities.
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• Linear variation

Equations (4.5), (4.6) employ a linear interpolation, which implies quantities such as the pressure gra-
dient vary linearly over the computational domain that categorically may not be true. Choi et al. [16]
showed that if a coarse grid is employed or if the flow has a high pressure gradient it leads to an unphys-
ical flow velocities as in such a case linearity cannot be assumed (violating assumptions (4.5), (4.6)).
Similar conclusions were drawn by Miller and Schmidt [13], where a sudden constriction in a pipe flow
produced a high axial pressure gradient which produces high unphysical velocities.

4.4. MODIFICATIONS IN MULTIPHASE FLOW

4.4.1. BODY FORCE CORRECTION
The Rhie and Chow pressure velocity coupling has to be modified in the presence of a body force as an in-
correct treatment leads to an unphysical flow solution. The Rhie and Chow PWIM can be interpreted as
calculating the terms (like the pressure gradient) at the face itself as opposed to a linear interpolation. In the
presence of a body force which varies in the flow domain (an example being the buoyancy term, which is pro-
portional to density) a similar treatment for the body force term was recommended by Gu [16] for utilization
in the Rhie and Chow pressure velocity coupling as follows

u f = u f −
1

2

(
ΩP F x

P

αP
+ ΩE F x

E

αE

)
+
Ω f F x

f

α f
, (4.35)

where αi =
[

1+ ρiΩi
ai∆t

]
.

4.4.2. COEFFICIENT CORRECTION
Van Wachem and Denner[12] proposed modifications to the pressure velocity coupling specific to two-phase
flows to ensure that the discretization does not lead to any unphysical numerical disturbances.

MODIFICATIONS TO PRESSURE

The density at the face was calculated by a harmonic average of the density at the adjacent cell centers

ρ f =
2

ρ−1
p +ρ−1

N B

, (4.36)

where N B is the neighboring cell.
Furthermore, the pressure terms corresponding to the cell centers were weighted by the ratio of the density
at the face and the density at the cell center. Hence equation 4.7 simplifies to

u f =
uP +uE

2
−

[
1

2

(
ΩP

aP
+ ΩE

aE

)
p,1

∣∣∣
f
−ρ f

(
ΩP

aPρP
p,1

∣∣∣
P
+ ΩE

aEρE
p,1

∣∣∣
E

)]
−

[(
ρPΩP

aP∆t
un

P + ρEΩE

aE∆t
un

E

)
− 1

2

(
ρPΩP

aP∆t
+ ρEΩE

aE∆t

)
un

f

]
.

(4.37)

MODIFICATIONS TO GRAVITY

The source term attributed to the gravity is similarly weighted by the ratio of the density at the face to the den-
sity at the cell center for a consistent discretization. Furthermore, discretely gravity has to be implemented
on the same stencil as the pressure gradient to ensure the discrete force balance.
The gravity source term is written as

u f = u f −
ρ f

2

(
ΩP F y

P

αPρP
+ ΩE F y

E

αEρE

)
+
Ω f F y

f

α f
, (4.38)

where

Fp =∑
P

(g ·a f )ρ f n f A f , (4.39)

a f = X f −XN B (4.40)

and A f is the area of the face.
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4.5. OVERVIEW
The Rhie and Chow pressure velocity coupling is widely used to strongly couple the pressure and the velocity
field for a collocated arrangement of unknowns. The assumptions made in the method have no physical basis
and may not hold true for all flow problems. Hence a careful formulation of the Rhie and Chow approach
must be employed to ensure a consistent and well posed numerical implementation.





5
DISCRETE FORCE BALANCE

As discussed in Chapter 2, the mass flow rate and the momentum fields in multiphase flows have C−1 con-
tinuity at the interface due to the fluid property variation in the computational domain. Violation of the
continuity and smoothness requirements of the discretization can lead to a discrete force imbalance produc-
ing numerical waves at the interface. Hence to accurately model flows at the onset of instability a special
discretization needs to be utilized at the interface such that the discretization complies with the disconti-
nuities, which are a priori known from the interface jump conditions. This chapter discusses the different
strategies of discretization to achieve a discrete force balance.

5.1. GRAVITY CONSISTENT DISCRETIZATION

Figure 5.1: Example of a 2D computational grid with collocate arrangment of unknowns, with
coincident interface and cell edge

In quiescent two phase flow on a computational domain as shown in figure 5.1, the hydrostatic pressure in
the fluid is balanced by the weight of the fluid, which is a result of the gravitational acceleration. Hence the
pressure field complies with
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∇p

ρ
= g. (5.1)

As a result the pressure in the fluid is given by

p1(x1, x2) = ρ1gx2, ∀x2 ∈Ω1, (5.2)

p2(x1, x2) = ρ2gx2, ∀x2 ∈Ω2. (5.3)

Moreover, interface jump conditions dictate the pressure at the interface in both the fluids will be equal,
hence

pΓ1 (x1, x2) = pΓ2 (x1, x2). (5.4)

Equation (5.1) implies

∂pΓ1
∂x2

6= ∂pΓ2
∂x2

. (5.5)

A modified pressure can be defined such that its discretization satisfies properties (5.4) and (5.5). A discretiza-
tion that satisfies these properties is commonly referred to as the Gravity Consistent Pressure Discretization
[17].

5.1.1. DISCRETE MOMENTUM EQUATION
Consider a 2D computational domain as shown in Figure 5.1.The interface coincides with the north cell face
having face center x(i , j + 1

2 ) of the cell with cell center x(i , j ). Discretizing the x2 momentum equation spa-
tially on cell (i , j ) we get

(ρu2u2 −µu2,1)
∣∣∣i+1, j

i− 1
2 , j

+ (ρu1u2 −p −µu2,2)
∣∣∣i , j+ 1

2

i , j− 1
2

= 0. (5.6)

The discretization requires values of pressure to be evaluated at the face centers. As the pressure unknowns
are located at the cell centers, it is linearly interpolated to evaluate the value at the face as

pi , j+ 1
2
= pi , j +pi , j+1

2
. (5.7)

As discussed previously, the pressure varies piecewise linearly in a quiescent flow. Hence linear interpolation
is not valid and may produce a numerical force unbalance. Instead a Gravity Consistent Pressure discretiza-
tion can be utilized as follows:

• Modified pressure

A modified pressure [18] is defined as the summation of the pressure and the gravity term. The open-
source OpenFOAM solver interFoam utilizes this method [19]. A similar definition was employed by
Rusche in his work on bubbly flows [18].

• Ghost Fluid Method

Fedkiw et al. proposed a Ghost Fluid Method [20], [21] for two phase flow with a material interface
represented by the Level Set function. GFM defines a ghost fluid having properties of fluid 2 where fluid
1 is present and vice versa. The conservation equations are solved for both the real and the ghost fluid.
Then the system is advanced in time and the appropriate choice between the two is made according
to the sign of the signed distance function. Kang et al. [3] devised a GFM based Boundary Condition
Capturing method, which implements a sharp representation of the interface using the interface jump
conditions. The method interpolates a augmented flow field across the interface to account for the
discontinuity.

• Face value reconstruction based on second order Taylor expansion

Queutey, Visonneau reconstructed face values of flow variables on a collocated grid employing a second
order Taylor expansion based on a priori known flow discontinuities assuming the material interface
coincides with the faces of the control volumes in the mesh [1].
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5.2. MODIFIED PRESSURE
A modified pressure is defined as

pm = p −ρg ·X. (5.8)

Hence

∇pm =∇p −ρg−g ·X∇ρ (5.9)

∇p =∇pm +ρg+g ·X∇ρ. (5.10)

Utilizing the modified pressure, the momentum equation is modified as

∂ρU

∂t
+∇· (ρUU) =−∇pm − (g ·X)∇ρ+∇(

µ(∇U+∇UT )
)

. (5.11)

5.2.1. MOTIVATION

Nodal pressure values are defined on a collocated grid, hence the pressure has to be approximated at the
face centers. The modified pressure is obtained by subtracting the gravity term from the pressure, which
’removes’ the discontinuous step gravity term (making the modified pressure continuous instead of piecewise
continuous for quiescent case), which allows a simple averaging at the face center.

5.2.2. MATHEMATICAL VALIDITY OF MODIFIED MOMENTUM EQUATION

In most multiphase flow numerical frameworks the density is regularized producing a smooth density field
as a function of the signed distance function in the Level Set method or as a function of the volume fraction in
the Volume of Fluid Method. Such a diffused representation of the interface produces a smeared density pro-
file at the interface, mathematically permitting the definition of the density gradient at the interface, which
otherwise does not exist. Conversely a sharp representation maintains a sharp distinction between two flu-
ids. As a result, at the interface the gradient of density does not exist, and hence the modified pressure cannot
be used for a sharp representation of the interface.

5.3. GHOST FLUID METHOD
Fedkiw at al. [20] devised a numerical method called the Ghost Fluid Method (GFM) for multiphase flows
with an interface, formulated such that a multiphase flow problem can be solved with a single phase fluid
solver. It employs two sets of flow values, one set having mass and momentum of the real fluid at that point,
and another set of a ghost mass and momentum having properties of the fluid across the interface. Both sets
of equations are advanced in time, and the appropriate choice is made between the two according to the sign
of the signed distance to the interface at the new time level. The ghost values of a continuous function are
defined to be equal to the value of the real fluid at that point, and the value for a discontinuous function is
extrapolated to the ghost cell using a one sided approximation. The motivation for this is based on an implicit
accountability of the boundary conditions at the interface for contact discontinuities.
Hence, for a discontinuous quantity Q, first the normal to the interface is calculated using the level set func-
tion

N = ∇φ
|∇φ| . (5.12)

Then the quantity is extrapolated as

Qt ±N ·Q = 0. (5.13)

As an example consider the stress tensor in a viscous flow. The GFM splits it in a continuous and a discontin-
uous part. The ghost value of the stress tensor is obtained by adding the continuous part of stress tensor of
the real fluid and the discontinuous part of the extrapolated ghost value. The interested reader is referred to
[21] for more details.
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5.3.1. BOUNDARY CONDITION CAPTURING GHOST FLUID METHOD
Kang et al. proposed a finite difference method with a sharp treatment for the interface on a staggered grid
that employs GFM called the Boundary Condition Capturing Ghost Fluid method (BCC-GFM)[20]. BCC-GFM
explicitly solves for flow variables at the interface utilizing the interface jump conditions.

As an example consider the viscous terms (5.14) and (5.15) in the momentum equations. Components
of the first derivatives of the velocity are discontinuous across the interface. Therefore the interface jump
conditions are employed for the discretization at the interface [3] to account for the discontinuity:

µ

ρ

(
u1,αα

)
(5.14)

µ

ρ

(
u2,αα

)
(5.15)

Equations (2.27), (2.28), (2.29), (2.30) are used to derive the following jump condition


[
µu1,α

]T[
µu2,α

]T[
µu3,α

]T

= [
µ
] ∇u1

∇u2

∇u3

 0
T1

T2

 0
T1

T2

T

+[
µ
]

NNT

 ∇u1

∇u2

∇u3

NNT −[
µ
] 0

T1

T2

 0
T1

T2

T  ∇u
∇u2

∇u3

T

NNT .

(5.16)
Note that the derivatives of the components of the velocity field in equation (5.16) have been expressed as
functions of the continuous fields only.
Equation (5.16) is rewritten as shown in equation 5.17 for a easier reference needed at a later stage

[
µu1,α

]T[
µu2,α

]T[
µu3,α

]T

=
 J 11 J 12 J 13

J 21 J 22 J 23

J 31 J 32 J 33

 . (5.17)

DISCRETIZATION OF VISCOUS TERM

The discretization of the viscous term µu1,11 will be discussed to demonstrate the details of the Boundary
Condition Capturing method. Consider a cell having center (i , j ) intersected by an interface, the level set
function (φ) has opposite signs at the two vertical edges, i.e.

φl =φi− 1
2 , j < 0,

φr =φi+ 1
2 , j > 0.

The interface splits the cell in θ∆X and (1−θ)∆X , such that

θ = |φl |
|φl |+ |φr |

. (5.18)

The velocity is continuous but the first derivatives are discontinuous across the interface, hence (µu1,1)l is
explicitly calculated using interface jump condition (5.16) and (5.17). The jump across the interface is calcu-
lated as

J I = θJr + (1−θ)Jl . (5.19)

The jump across the interface
[
µu1,1

] = J I is expressed in terms of the velocities at the cell centers and the
interface as

J I =µ+
(

ur −uI

(1−θ)∆x

)
−µ−

(uI −ul

θ∆x

)
. (5.20)

Here µ± are the viscosities in the respective domains and the velocities ur = ui+ 1
2 , j , ul = ui− 1

2 , j .

Next, equation (5.20) is solved for uI which is the interface velocity. The calculated interface velocity is then
used to calculate (µux )l as

(µu1,1)l =µ+
(

ur −uI

(1−θ)∆x

)
= µ̂

(ur −ul

∆x

)
− µ̂J Iθ

µ+ , (5.21)
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where,

µ̂= µ−µ+

µ−θ+µ+(1−θ)
. (5.22)

For more details the reader is referred to [3].

5.4. FACE VALUE RECONSTRUCTION BASED ON SECOND ORDER TAYLOR EX-
PANSION

Queutey and Visonneau proposed and implemented an interface capturing method (ICM) based on a face
reconstruction of the flow values using a second order Taylor expansion under the assumption that the inter-
face coincides with the faces of the grid cells in the mesh [1].
For a flow quantity Q the reconstruction is carried out based on the a priori known interface jump for a
quantity and its gradient

[Q] = a, (5.23)

[c∇Q] = b. (5.24)

Assuming that the interface coincides with the faces of the cells in the computational domain, the jump is
approximated as

[Q] =Q+−Q− 'Q f + −Q f − . (5.25)

where
Q f + = lim

X→Γ
Q+(X), (5.26)

Q f − = lim
X→Γ

Q−(X). (5.27)

Refer Figure 5.3 for the definition of the vectors.

Figure 5.2: Computational grid with adjacent cells L, R with coincident interface on face f



30 5. DISCRETE FORCE BALANCE

Figure 5.3: Computational grid with adjacent cells L, R with coinciding interface with the face f

Retaining a second order Taylor expansion at L and R

QL 'Q f − − l ·∇Q f − , (5.28)

QR 'Q f + + r ·∇Q f + . (5.29)

Equations (5.28), (5.29) and (5.23), (5.24) are utilized to solve for the face values Q f + , Q f − . Refer to [1] for
more details.

As an example the pressure in a quiescent flow is subject to:

[
p

]= 0, (5.30)

[∇p ·n

ρ

]
= 0. (5.31)

ICM uses (5.30) and (5.31) for calculating the value of the pressure at the interface.

ICM requires a high density of grid cells near the interface to accurately capture the interface, as the solver as-
sumes that the interface coincides with the mesh. The strict requirement of the interface coinciding limits the
applicability of the method and necessitates the use of computationally expensive Adaptive Mesh refinement
techniques to reduce the impact of the assumption.

5.5. COMPARISON BETWEEN BALANCED-FORCE METHODS

The table below compares the discussed three methods to achieve a discrete force balance.
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Method Comments
Modified Pressure - A modified pressure is defined which includes the gravity term in

the formulation.
-Modified pressure adds an extra term of the density gradient to the
momentum equation. The normal component of the density gradi-
ent does not exist for a two-phase flow at the interface, due to the
discontinuity in the density.

Boundary Capturing Ghost Fluid
Method (Kang et al)

-Discontinuous flow fields are augmented by explicitly incorporating
the interface jump conditions.
-BCC-GFM was formulated for a discretization using a staggered ar-
rangement of the unknowns.

Interface Capturing Method
Queutey, Vissoneau)

- Field values needed at a cell face for flux calculations are found
employing a second order Taylor Expansion based on interface jump
conditions.
- The formulation is based on the assumption that the interface co-
incides with the faces of the control volumes in the computational
domain, limiting the applicability of the method.





6
NUMERICAL CHALLENGES IN MODELING

FLOW AT THE ONSET OF INSTABILITY

In a finite volume method the flow domain is decomposed into a finite number of control volumes, on which
the unknowns are arranged in a collocated or a staggered way. The governing flow conservation equations
are solved to obtain the solution with a certain order of accuracy. Multiphase flows can have a wide range of
spatial and temporal characteristics according to the multiphase flow regime and the multiphase flow appli-
cation. Hence numerically modeling multiphase flows requires special treatment specific to the dominating
dynamics in the flow. The focus of this research is the numerical modeling of incompressible, immiscible two
phase-flows at the onset of instability. To accurately predict the flow numerically the following properties
have to be satisfied:

• Discrete conservation of mass and momentum

• Discrete force balance

Numerical challenges that are faced in an attempt to satisfy rhe above properties were discussed in Chapter 1.
Chapters 1-4 discussed and analyzed the building blocks of a numerical framework for simulating multiphase
flows. In this Chapter, the bottlenecks in the numerical framework are summarized and reviewed.

The numerical challenges can be categorized according to the form of the governing equations: the con-
tinuous form and the discrete form of the governing equations.

6.1. CONTINUOUS FORM OF GOVERNING EQUATIONS
Conservation of mass and momentum in the continuous form are the basis of numerically solving a flow
problem. The continuous form of these equations was analyzed in Chapter 2 , which will be reviewed below.

• Form of governing equations

The momentum equation can be formulated in a conservative or a non conservative form. Further, the
pressure term can be incorporated in the gradient viscous term as described in section 2.5. The terms
involved in the formulation may represent physical quantities such as mass, momentum and shear
stress or purely mathematical variables. Discretization of the governing equation conserves mass and
momentum numerically and the effect on the conservation according to the nature of the quantities is
unclear. Therefore, careful discretization needs to be employed to ensure that the choice of the form of
continuous equation does not lead to numerical errors.

• Discontinuity in flow fields

In multiphase flows a jump in the density creates a discontinuity in the momentum field as discussed
in 2.3 and as a result the momentum equation does not hold at the interface. Hence the governing
equations have to be solved away from the interface coupled by the interface jump conditions.
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6.2. DISCRETE FORM OF GOVERNING EQUATIONS

6.2.1. DISCONTINUITIES IN FLOW FIELDS

Multiphase flows have C−1 continuity due to density jump across the interface. Most methods regularize the
density field producing a smooth density and flow fields permitting straightforward discretization, but these
approximations lead to inaccurate numerical solutions for applications such as the onset of instabilities and
lateral roll of a ship.

1. Interface Jump conditions

Interface jump conditions describe the physics of the flow and the nature of discontinuities at the in-
terface. A straightforward discretization disregards these jump conditions, which creates an unbalance
in the forces acting at the interface leading to a physically unrealistic numerical solution.

2. Sharp representation of the interface

Most of the numerical methods regularize discontinuous flow fields and smear out the interface over a
few cells. Such an approach is satisfactory for flows having a relatively large velocity and length scales,
regularizing the density field smoothens the interface over few a control volumes, which is small in
comparison with the length scale of the flow structures. On the other hand flow at the onset of insta-
bility at the interface is initiated with very small physical perturbations and hence requires an accurate
consistent numerical treatment to avoid adding numerical artefacts.

A proper discretization should respect the distinction between the two fluids and should maintain a
sharp interface to produce a physically accurate solution.

6.2.2. CONSERVATION OF MASS AND MOMENTUM
Pressure velocity coupling
A collocated arrangement employing cell centered pressure and velocity values leads to a weakly coupled
pressure and velocity field. Pressure-velocity coupling is employed to calculate the face velocity to impose
conservation of mass. The Rhie and Chow pressure-velocity coupling constructs a face velocity under a set
of assumptions described in 4.1. A careful formulation is needed for multiphase flows due to the presence of
discontinuities at the interface.

6.2.3. DISCRETE FORCE BALANCE
Queuetey et al. [1] achieved a force balance by reconstruction of the face values based on a second order
Taylor expansion. The method assumes that the interface coincides with the faces of the control volumes
in the computational domain, limiting its applicability. The objective of the present research is to achieve a
balanced-force framework for a general setting such that the formulation is applicable independent of the
interface location and orientation.



7
RESEARCH PROPOSAL

7.1. RESEARCH OBJECTIVE
The subject of this research is the development of a balanced-force numerical framework for two-phase im-
miscible, incompressible flow to accurately model flow at the onset of instability. Gravity will be incorporated
as a body force. Surface tension which acts as a surface force at the interface produces a discrete jump in the
pressure across the interface and hence can be added ad hoc to the discretization; it does not necessitate a
special treatment and therefore it will not be considered here. To enable an accurate prediction of the flow at
the onset of instability the formulation should satisfy the following properties:

1. Produce a discrete force balance.

2. Conserve mass and momentum.

3. Applicable for an arbitrary interface, i.e. independent of position and orientation of the interface with
respect to the computational grid.

4. Satisfy interface jump conditions.

A literature study of previous research work, described in Chapters 2-7, revealed the limitations of the
current numerical methods. The ICM proposed by Queutey et al. [1] achieves an exact force balance when the
interface coincides with the mesh. The method constructs the face values in a cell using a second order Taylor
expansion from the known interface jump conditions. The strong assumption that the interface coincides
with the cell faces limits the applicability and the accuracy of the method. The objective of this thesis is to
propose a numerical framework that complies with the interface jump conditions applicable to arbitrarily
located and oriented interface.

Similarly, Kang et al. [3] implemented the interface jump conditions using a finite difference method on
a uniform staggered Cartesian grid by augmenting the discontinuous flow fields. The method accomplishes
a discrete force balance, but a Cartesian staggered grid limits the applicability of the method to simple ge-
ometries. Hence in this thesis the numerical method will be proposed that does not exploit properties of a
Cartesian grid and in principle is applicable for a general, non-uniform, unstructured collocated grid.

Most methods use a straightforward discretization disregarding interface jump conditions and regularize
discontinuous flow fields. As a result of these approximations the flow solution does not converge to machine
precision. The research question can then be posed, whether the numerical framework converges upto the
machine precision if the flow field discontinuities are satisfied?

7.2. RESEARCH OUTLINE
The research will consist of proposing a numerical framework and testing the efficacy of the proposed method
with a set of test cases.

The research will consist of the following stages:

1. Formulate a balanced-force numerical framework for calculating flow fields near the interface for a
unstructured collocated grid.

35



36 7. RESEARCH PROPOSAL

2. Implement the numerical method for a 2D Cartesian collocated grid.

3. Test the numerical method for simple test cases

The complete framework will consist of different components that have a different function, such as
pressure velocity coupling, calculation of values at the interface and at the face. These components will
be tested individually: step by step by implementing the framework for specific flow problems to asses
the effectiveness of each component. The candidate test cases are described below.

(a) Test cases when the interface location is known

Interface methods employed to track the interface such as the Level Set Method and the Volume
of Fluid Method have their complexities and inaccuracies. Hence the first step is to test the effec-
tiveness of the method, without introducing the additional inaccuracies of the interface methods,
i.e. it is assumed that the interface location is known.

i. Quiescent Flow- Interface parallel to the mesh face
In a quiescent flow, both the fluids are stationary and the gravity is balanced by the pressure
gradient. When the interface is aligned to the faces of the control volumes in the computa-
tional domain the face value reconstruction needs to be carried out in one Cartesian direction
(normal to the interface) only. The test case will be subdivided into further configurations as:

A. Test Case 1- Coincident interface with the mesh
When the interface coincides with the cell faces the face values are equal to the values at
the interface which are calculated based on the interface jump conditions. This test case
enables verification of the framework without involving the numerics to reconstruct the
face values based on values at the interface. Figure 7.1 shows an example of a case where
the interface is coinciding with the mesh.

Figure 7.1: Example of a coincing interface with the mesh

B. Test Case 2- Interface offset to the cell face
When the interface is aligned but offset to the faces of the control volumes, first the inter-
face values are calculated using the interface jump conditions, based on which the face
values are reconstructed. This case will test the accuracy of the face reconstruction em-
ployed in the numerical framework. Figure 7.1 shows an example of such a case where
the interface is parallel and offset to a row of grid cells.

Figure 7.2: Example of an offset interface to the mesh

ii. Quiescent Flow- Interface oriented to the cell

A. Test Case 3-Interface cuts opposite side of the cell face
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When the interface is oriented at a small angle such that the interface intersects cells in
one row of cells and all the face centers on the vertical edges lie in one fluid only the calcu-
lation simplifies as face value reconstruction needs to be done in ê2 coordinate direction
only. Figure 7.3 shows such an example.

Figure 7.3: Example where the interface cuts two opposite faces of a cell

B. Test Case 4- Interface cuts two adjacent faces
When the interface is steeper, it will intersect cells in more than one row, and will have
cells, in which the interface intersects two adjacent cell faces. Figure 7.4 shows such an
example. In this case the cell faces values will be calculated based on the interface jump
conditions in both the coordinate directions.

Figure 7.4: Example where the interface cuts two adjacent faces of the cell

(b) Test Cases where the interface location is not fixed

i. Test Case 5- Viscous Standing Wave
When the interface between the two fluids is perturbed, the interface undergoes oscillations
before the perturbation damps out to reach the steady state of quiescent flow. A different
oscillatory damping is observed when the Reynolds number of the flow is varied.

ii. Test Case 6- Flow over an obstacle
Flow over an obstruction creates waves at the interface. To accurately predict such a flow
created the waves should be purely physical and not numerical. Hence accurately modeling
flow at the onset of instability requires an accurate discrete force balance.
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BALANCED-FORCE DISCRETIZATION:

COINCIDING INTERFACE AND CELL FACE

The Interface Capturing method (ICM) for the collocated arrangement of unknowns as described in [1], which
is applicable when the interface coincides with the faces of the control volumes in the computational domain,
involves a reconstruction of values at the interface employing a second order Taylor expansion based on the a
priori known magnitudes of the jumps in the values at the discontinuities. Furthermore, [1] does not provide
the exact formulation of the operators G , B , DG f and the diffusion operator J . The purpose of this chapter
is to formulate these operators, such that they comply with the interface jump conditions by incorporating
the face reconstruction for the case in which the interface coincides with the faces of the control volumes to
produce a balanced-force formulation.

8.1. INTERFACE JUMP CONDITIONS
The complete dynamic interface jump condition for the pressure is given by

[
p,α
ρ

]
=

[
(2µuα),α+

(
µ

(
uα,β+uβ,α

))
β

ρ

]
. (8.1)

It is challenging to derive interface jump conditions for the second derivative of the velocity. The right hand
side of (8.1) vanishes in the limit of the Reynolds number going to infinity. As a result the interface condition
simplifies to the hydrostatic interface jump condition[∇p ·g

ρ

]
= 0. (8.2)

For multiphase flows at high Reynolds number, the hypothesis is that the reconstruction of the pressure based
on the hydrostatic assumption is sufficient to numerically model the dynamics at the interface. This is at-
tributed to the fact that the variation in the velocity in the direction orthogonal to the interface is small,
leading to small viscous stresses and pressure variations normal to the interface. Hence the change in pres-
sure normal to the interface and the change in pressure in the direction of gravity will be dominated by the
change in the hydrostatic pressure.

8.1.1. CANDIDATE TEST CASE
In a quiescent flow the system of equations simplifies as the velocity is zero and therefore the inertia term van-
ishes. Furthermore, the pressure gradient is balanced by gravity. The discretized terms in the operators Gc

and G f should cancel with gravity, and the operators DG f and B should comply with the hydrostatic interface
conditions to produce an exact force balance. If such a balance is achieved, the discrete system will satisfy
the exact analytical solution, and if no significant numerical approximations or regularizations are made, the
occurrence of numerical spurious velocities is avoided. A verification of an exact force balance for the opera-
tors DG f and B is a necessary condition to display the effectiveness of the formulation for the reconstruction
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based on the hydrostatic interface jump conditions. First, the formulation of the discrete operators for a uni-
form grid is presented, followed by results and discussion of the implementation for quiescent multiphase
flow. Next the construction of the discrete operators on a non-uniform grid is presented, and the results of
that implementation are discussed.

8.2. QUIESCENT FLOW: INTERFACE COINCIDING WITH CELL FACES ON A UNI-
FORM GRID

8.2.1. PRESSURE RECONSTRUCTION AT THE INTERFACE
In a quiescent flow the pressure is determined by gravity, and the velocities are zero. The pressure conforms
to a linear distribution with a slope discontinuity at the interface. In this Section, the face reconstruction,
based on the the ICM explained in Section 5, for a hydrostatic discontinuity in multiphase flows is discussed.

The interface jump conditions at the interface Γ for pressure are given by:[
p

]= 0, (8.3)

[∇p · ê2

ρ

]
= 0. (8.4)

Figure 8.1: 2D Computational grid with the collocated arrangement of unknowns, in the case of
coincident interface and cell edge

Pressure p I at the interface is calculated based on the approach described in 5.4 as

pL = p−
I − h

2

(∇−p · ê2
)

, (8.5)

pR = p+
I + h

2

(∇+p · ê2
)

. (8.6)

Multiplying (8.6) by 1
ρ2

and (8.5) by 1
ρ1

and adding these two gives

pL

ρ1
+ pR

ρ2
= p−

I

ρ1
+ p+

I

ρ2
+ h

2

(∇+p · ê2

ρ2
− ∇−p · ê2

ρ1

)
. (8.7)

.
and from (8.4),

∇+p · ê2

ρ2
= ∇−p · ê2

ρ1
. (8.8)

Hence (8.7) simplifies to
pL

ρ1
+ pR

ρ2
= p−

I

ρ1
+ p+

I

ρ2
. (8.9)
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Further, from (8.3)

p+
I = p−

I . (8.10)

Hence

p I = pR

(
ρ1

ρ1 +ρ2

)
+pL

(
ρ2

ρ2 +ρ1

)
. (8.11)

The derived pressure at the interface is utilized in the gradient operator where one of the faces coincides with
the interface.

ANALYTICAL SOLUTION FOR PRESSURE

The pressure can be analytically calculated from

1

ρ(x)
∇p · ê2 = g. (8.12)

OPERATORS

As explained in Section 4.1.1, the operator Ḃ is defined as

(
Ḃ p

)±
α i =

[
1

2

(
d h
αpi +d h

αpi±êα

)
−d

h
2
α pi± 1

2 êα

]
. (8.13)

The Ḃ operator as explained (4.19), can be split as(
Ḃ p

)
α i = Ḃ c

α ip + Ḃ f
α ip, (8.14)

where,

Ḃ c
α ip = 1

2

(
d h
αpi +d h

αpi±êα

)
, (8.15)

Ḃ c
α ip =−d

h
2
α pi± 1

2 êα
(8.16)

Divergence of the local operator Ḃ gives,

B p = D
(
Ḃ p

)= D
(
Ḃ c p + Ḃ f p

)
(8.17)

= DB c p +DḂ f p = B c p +DG f p.

EXPECTED SOLUTION FOR DISCRETE OPERATORS

The iterative approach of Miller and Schmidt was discussed in section 4.2. The discrete system is initialized
according to (8.12). From Section 4.2, it can be seen that for a quiescent flow the face and the cell center
velocities have to be zero, therefore the discrete operators have to satisfy

DG f p = 0, (8.18)

B c p = 0. (8.19)

8.2.2. BOUNDARY CONDITIONS
B c and DG f operators were implemented for the case shown in Figure 8.2. The interface coincides with the
cell face at x2 = 0.5. The imposed boundary conditions are shown in Figure 8.2. The discretization has to be
modified for the control volumes labeled (and other equivalent control volumes) in the figure to account for
the boundary conditions and/or the interface.
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Figure 8.2: Implemented computational Grid with coincident interface and cell face

To achieve a discrete force balance, the operators involved in the pressure-velocity coupling should incorpo-
rate the value of the pressure at the interface derived through the reconstruction. Furthermore, the operators
have to be formulated such that the operators comply with the interface jump conditions. In the following
sections, a formulation based on these requirements is proposed, with the goal to obtain the discrete force
balance.

8.2.3. OPERATOR B
The stencil of the operator B involves a 9 points stencil, hence the operator has to be modified for two rows
of control volumes above and below the interface. Farther away from the interface, the stencil reduces to the
single phase flow stencil. In the following subsections the discretization near and away from the interface is
described.

FAR REMOVED FROM THE INTERFACE

Discretizing operator B gives

B h p = h∆t

[(
1

2

(
d h

1 pi +d h
1 pi+ê1

)
−d

h
2

1 pi+ 1
2 ê1

)
−

(
1

2

(
d h

1 pi +d h
1 pi−ê1

)
−d

h
2

1 pi− 1
2 ê1

)]
(8.20)

+h∆t

[(
1

2

(
d h

2 pi +d h
2 pi+ê2

)
−d

h
2

1 pi+ 1
2 ê2

)
−

(
1

2

(
d h

2 pi +d h
2 pi−ê2

)
−d

h
2

2 pi− 1
2 ê2

)]
.

Away from the interface, the values of the pressure at the cell faces at i ± 1
2 , i ± 3

2 , j ± 1
2 , i ± 3

2 are calculated
by taking the average of the values at the adjacent cell centers. The discretization above gives the following 9
point stencil for a control volume away from the interface:

[
B h

]
=−∆t

ρ


1
4
−1

1
4 −1 3 −1 1

4
−1

1
4

 . (8.21)
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CELLS HAVING THE INTERFACE COINCIDING WITH A CELL FACE

Near the interface, the stencil is modified to account for the reconstruction at the interface, given by (8.11).
Consider the pressure-correction applied to the control volume L with center (i , j ) as shown in figure 8.1:

Ḃ j+ 1
2 =∆t

[(
1

2

(
d h

2 pi +d h
2 pi+ê2

)
−d

h
2

1 pi+ 1
2 ê2

)]
. (8.22)

The derivatives at the cell centers are evaluated by employing the pressure calculated from the pressure re-
construction:

Ḃ
j+ 1

2
c p = 1

2

(
d h

2 pi +d h
2 pi+ê2

)
(8.23)

d h
2 pi =

p I − pi , j +pi , j−1

2

ρ1h
, (8.24)

d h
2 pi+ê2 =

pi , j+2+pi , j+1

2 −p I

ρ2h
. (8.25)

The formulation described above ensures a discrete force balance because the projection of the gradient of
the pressure in direction ê2 scaled by the inverse of density, equals gravity. Near the interface this is achieved
due to the fact that the reconstructed value of the pressure at the interface (hence, in this case the pressure on
the face) is employed, i.e. the approximation of the pressure gradient over the slope discontinuity is avoided.

8.2.4. OPERATOR DG f

The projections of the pressure gradients at the face are evaluated in the operator DG f . Similar to the for-
mulation of operator B , the discrete operator should be constructed such that it satisfies the interface jump
conditions and incorporates the reconstructed pressure value. In the following sections, the formulation of
the operator is explained for the case of control volumes near and far away from the interface.

FAR REMOVED FROM THE INTERFACE

From the definition 8.2.1, operator DG f is given by

DG f p = h∆t

[(
d

h
2

1 pi+ 1
2 ê1

−d
h
2

1 pi− 1
2 ê1

)
−

(
d

h
2

2 pi+ 1
2 ê2

−d
h
2

2 pi+ 1
2 ê2

)]
. (8.26)

Discretizing this gives

DG f p = h∆t

[
pi+1, j −pi , j

ρh
+ pi , j −pi−1, j

ρh
+ pi , j+1 −pi , j

ρh
− pi , j −pi , j−1

ρh

]
. (8.27)

= h∆t

[
pi+1, j +pi , j+1 +pi−1, j +pi , j−1 −4pi , j

ρh

]
(8.28)

The stencil for DG far removed from the interface is given by:

[
DG f h

]
=−∆t

ρ

 −1
−1 4 −1

−1

 . (8.29)

CELLS HAVING THE INTERFACE COINCIDING WITH A CELL FACE

Consider the discretization of the operator DG f for control volume L in figure 8.1. To avoid approximating
the pressure gradient over the discontinuity near the interface, a one-sided approximation is employed as
follows

d
h
2

2 pi+ 1
2 ê2

= p I −pi , j

ρ1
h
2

, (8.30)

where p I is the pressure at the interface calculated in equation 8.11. Here, it can be inferred that such a
formulation ensures that the operator complies with the interface jump conditions.
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8.2.5. RESULT

Operators DG f and B c were implemented and tested for varying density ratios and mesh sizes(N = n ti mesn).
Table 8.1 shows the L2 norm of the residuals for the implementation. The vectors rDG and rB arise out of the
imposed inhomogeneous boundary conditions.

Table 8.1: l 2 norm of the residuals

Density Ratio Mesh
||DG f h p−r

DG f ||2
N

||B h p−rB ||2
N

ρ2
ρ1

= 1
n=8 0 0
n=16 0 0
n=32 0 0

ρ2
ρ1

= 100
n=8 2.7 e-14 5.0-14
n=16 1.1 e-14 1.7 e-14
n=32 4.4 e-14 6.6 e-14

ρ2
ρ1

= 1000

n=8 4.3 e-14 5.6 e-14
n=16 1.2 e-14 2.1 e-14
n=32 4.4 e-14 7.1 e-14
n=64 1.7 e-14 1.7 e-14
n=128 6.8 e-14 9.5 e-14

It can be seen that the norm of the residual is independent of the density ratio and the mesh size. The cal-
culated residual is upto machine precision. Hence, it can be concluded that the proposed formulation of the
operators satisfies the hydrostatic discontinuity and produces an exact force balance.

8.3. QUIESCENT FLOW: INTERFACE COINCIDING WITH THE FACES OF THE

CONTROL VOLUMES ON A NON-UNIFORM GRID
The pressure-correction involves calculating the projected pressure gradients at the face and at the cell center
of the control volume. If the flow domain is discretized on a unstructured or a non-uniform grid, the discrete
operators are evaluated at different spatial scales, which may introduce errors in the numerically calculated
pressure gradient at the interface. To investigate the effect of the discretization on an unstructured grid, the
operators were implemented on a non-uniform grid as shown in figure 8.3. The mesh size of the control
volumes normal to the interface is varied.

Figure 8.3: 2D Computational non-uniform grid with collocated arrangement of unknowns

8.3.1. PRESSURE RECONSTRUCTION AT THE INTERFACE
Employing the pressure reconstruction at the interface for a non-uniform grid gives
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p I = pR

(
ρ1h

ρ1h +ρ2H

)
+pL

(
ρ2H

ρ2H +ρ1h

)
. (8.31)

8.3.2. DISCRETE OPERATORS
An approach similar to the one described in Section 8.2.3 and 8.2.4 is taken to ensure a balanced-force formu-
lation. The derived value at the interface based on the reconstruction is incorporated and the operators are
formulated such that the calculated pressure gradients are exact representations of the discontinuity at the
interface. The appropriate mesh size is taken in the discrete operators. As an example consider the control
volume L with center (i , j ) as shown in Figure 8.3. The pressure terms are evaluated as follows:

d h
2 pi =

p I − pi , j +pi , j−1

2

ρ1H
, (8.32)

d h
1 pi =

pi+1, j +pi , j

2 − pi , j +pi ,i−1

2

ρ1h
, (8.33)

d
h
2

2 pi+ 1
2 ê2

= p I −pi , j

ρ1
H
2

. (8.34)

8.3.3. RESULT
The operators were implemented on a domain as shown in Figure 8.4. The mesh size normal to the interface
is varied by changing the number of subdivisions n2

y , n1
y in direction ê2 . A uniform mesh width is employed

in direction ê1.

Figure 8.4: 2D Computational non-uniform grid with collocate arrangment of unknowns

Table 8.2 shows the L2 norm of the residual for a combination of different mesh sizes and density ratios.
It can be seen that the residual is independent of the size of the mesh, the non-uniformity and the density
ratio.
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Table 8.2: L2 norm of the residual for non-uniform mesh

Density
Ratio

Horizontal
Mesh Size

Vertical Mesh Size ||DG f h p−rDG ||2
N

||B h p−rB ||2
N

ρ2
ρ1

= 10
nx = 8

n2
y = 4, n1

y = 8 1.4e-14 9.9e-14
n2

y = 4, n1
y = 16 1.4e-14 3.2e-14

nx = 16
n2

y = 4, n1
y = 8 1.5e-14 2.7e-14

n2
y = 4 , n1

y = 16 6.3e-14 5.0e-14

8.4. DISCUSSION
Queutey and Visonneau propose a second order Taylor expansion for the face reconstruction that is based on
the a priori known discontinuities for multiphase flows [1]. Exact details on the formulation of the pressure-
velocity coupling and the operators involved are not provided by the authors. Not only the flow fields have
to satisfy the interface jump conditions, but also the operators involved in the discrete system employing
the reconstruction should satisfy the interface jump conditions to produce a balanced-force discretization.
Hence a formulation of the operators was derived and the results of the implementation were discussed for
a uniform and non-uniform grid for quiescent two-phase flow. It was seen that the operators satisfy the
analytical piecewise linear profile of the pressure upto machine precision and they produce a discrete force
balance.



9
BALANCED-FORCE DISCRETIZATION: NON

COINCIDING INTERFACE AND CELL FACE

In this chapter a balanced-force discretization is proposed for the case in which the interface does not coin-
cide with the cell face. First, an extension of the reconstruction approach proposed by Queutey and Vison-
neau, for an arbitrarily inclined interface based on the its location is delineated. Next, the construction and
the formulation of the operators are discussed. Then the order of the operators is mathematically derived
and numerically verified using the Method of Manufactured Solutions. Finally the reconstruction for velocity
at the interface has been outlined, and the results of the implementation are evaluated.

9.1. GENERAL FORMULATION
Consider a general planar interface Γ (shown as the dashed red line in figure 9.1) dividing the computational
subdomainsΩ− andΩ+. The interface in the limit of the domainΩ−,Ω+ is labeled as I− and I+, respectively,
and the cell face with the face center F is shown with a solid black line. The vectors l, r, f are the vectors joining
the cell center L, R and the face center F to the interface center, respectively. Second order Taylor expansions
are employed consecutively to first calculate the value of the scalar at the interface, based on which the face
value is calculated using a one sided approximation of the gradient as described below.

Figure 9.1: Example of a arbitrarily oriented and located interface

Consider a quantity Q, where Q is a scalar field that is continuously differentiable away from the interface.
The interface jump conditions at the interface Γ are given by:

[Q] = a, (9.1)

[c∇Q] = b, (9.2)

47
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where a,b and c are known functions. The face and the interface values are calculated as follows:

QL =QI− − l ·∇Q− (9.3)

QR =QI+ + r ·∇Q+ (9.4)

QF =QI− − f ·∇Q−. (9.5)

The value at the interface is calculated using equations (9.3) and (9.4) based on the jump conditions (9.1) and
(9.2). Next, the value at the face is calculated based on a one sided approximation between the interface and
the face using equation (9.5).

9.2. QUIESCENT FLOW: CELL FACE OFFSET AND ALIGNED WITH THE INTER-
FACE ON A NON-UNIFORM GRID

In this section the balanced-force approach for the case in which the interface is aligned but offset to the
interface will be presented. In this case, it is assumed that the gravity is defined as g = g ê2, where g is the
magnitude of the gravitational force. The pressure reconstruction based on the general formulation pre-
sented in section 9.1 is required in the direction ê2 to calculate the pressure at the interface and the face. First
the pressure reconstruction process is described, followed by description of the construction of operators to
achieve a discrete force balance. Finally the results of the implementation are discussed. The test case will
help to verify the fidelity of the operators when the general formulation as described in 9.1 is employed.

9.2.1. PRESSURE RECONSTRUCTION AT THE INTERFACE AND THE FACE
Consider the gravity acting as a body force in the direction ê2: the interface is offset to the faces of the control
volume as shown in figure 9.2.

g = g ê2 (9.6)

The pressure reconstruction is required to ensure the discretization satisfies the interface conditions.
The interface Γ is offset and aligned with the horizontal face at i , j + 1

2 by the distance δ.

Figure 9.2: Example of offset interface to the face on a 2D collocated grid: discretization for Cell R

The proposed formulation in 9.1 is applied to calculate the pressure as follows:
The pressure field at the interface is subject to [

p
]= 0, (9.7)

[∇p · ê2

ρ

]
= 0. (9.8)

The values at cell centers L, R are expressed as:

pL = p I − (H +δ)∇−p · ê2, (9.9)
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pR = p I + (h −δ)∇+p · ê2. (9.10)

Hence we get

p I = PL(h −δ)ρR +PR (H +δ)ρl

(h −δ)ρR + (H +δ)ρl
(9.11)

A second order Taylor expansion at point i , j + 1
2 gives

p f = p I −δ(∇p− · ê2). (9.12)

The projection of the gradient is calculated by a one sided approximation to ensure that the interface jump
condition for the discontinuity in the pressure gradient is satisfied.

p f = p I −δ
(

p I −pL
H
2 +δ

)
, (9.13)

p f = p I

(
1− δ

H
2 +δ

)
+PL

(
δ

H
2 +δ

)
. (9.14)

As seen above, the value of the pressure at the face is reconstructed based on a one-sided approximation at the
interface. For the case in which the interface coincides with the interface, the formulation of the operators
DG f and B , to achieve a discrete force balance, was delineated in Section 8.2.3 and Section 8.2.4. For the
case where the interface does not coincide with the faces of the control volumes in the computational grid, a
similar approach is taken. The operators are constructed which incorporate the value calculated at the face
and measures are taken to ensure gradients that the numerically gradients are directly approximated using
the pressure values at either side of the interface.

9.2.2. OPERATOR DG f

Operator DG f is defined as

DG f p = h∆t

[(
d

h
2

1 pi+ 1
2 ê1

−d
h
2

1 pi− 1
2 ê1

)
−

(
d

h
2

2 pi+ 1
2 ê2

−d
h
2

2 pi+ 1
2 ê2

)]
. (9.15)

When evaluating the operator, a one sided approximation is employed to restrict the calculation of the gradi-
ent to one fluid. Further, the local density of the fluid is chosen, which ensures that the ê2 component of the
operator G f cancels with gravity.
In the following subsections, the method of discretizing the components of the DG f operator has been de-
scribed.

CONTROL VOLUME R
Consider the discretization of the operator in control volume R shown in figure 9.2, the discretization near
the interface in the control volume R is employed as follows:

d h
2 pi− 1

2 ê2
=

p f −pi , j− 1
2

ρ2
H
2

, (9.16)

d h
2 pi+ 1

2 ê2
=

pi , j+ 1
2
−pi , j

ρ2
h
2

, (9.17)

d h
1 pi+ 1

2 ê1
= pi+1, j −pi , j

ρ1∆x1
, (9.18)

d h
1 pi− 1

2 ê1
= pi , j −pi−1, j

ρ1∆x1
. (9.19)
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Figure 9.3: Example of offset interface to the face on a 2D collocated grid: discretization for Cell L

CONTROL VOLUME L
Consider the discretization of the operator in control volume R shown in figure 9.3, the discretization of the
pressure term in operator DG f operator in the control volume L is done as follows:

d h
2 pi+ 1

2 ê2
= p f −pi , j

ρ1
H
2

, (9.20)

d h
1 pi− 1

2 ê2
= pi , j −pi , j−1

ρ1H
, (9.21)

d h
1 pi+ 1

2 ê1
= pi+1, j −pi , j

ρ1∆x1
, (9.22)

d h
1 pi− 1

2 ê1
= pi , j −pi−1, j

ρ1∆x1
. (9.23)

9.2.3. OPERATOR B c

The operator B c involves the discretization of the pressure gradients at the center of the cell. For the case in
which the interface does not coincide with the cell face, the value of the pressure at the face, reconstructed
from the interface jump conditions is incorporated. Further a choice is made between the volumetric aver-
aged density and a numerically defined density, termed as the projected density and denoted byρξ, to achieve
a discrete force balance, as explained in Section 9.2.4. In the following section the method of discretization is
described, followed by the derivation of projected density in Section 9.2.4.

CONTROL VOLUME R
In the presence of an interface in the control volume, such as control volume R shown in Figure 9.2, the
pressure derivatives at the center of the cell are discretized as follows:

d h
1 pi =

pi+ 1
2 , j −pi− 1

2 , j

ρc∆x1
, (9.24)

where ρc is the mixture density defined by

ρc = ρ1δ+ρ2(h −δ)

h
. (9.25)

The pressure at the cell face is calculated by linear interpolation

pi+ 1
2 , j =

pi+1, j +pi , j

2
, (9.26)

p1− 1
2 , j =

pi , j +pi−1, j

2
. (9.27)
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The pressure derivative in the direction ê2 at the center of the control volume R is discretized as

d h
2 pi =

pi , j+ 1
2
−pi , j− 1

2

ρξh
, (9.28)

where ρξ is a numerically calculated density referred to as the projected density to achieve a discrete force
balance, as explained in section 9.2.4.

CONTROL VOLUME L
On the other hand, when the control volumes are not intersected by the interface, such as for control volume
L shown in Figure 9.3, the pressure derivatives at the center of the control volume are discretized as follows:

d h
1 pi =

pi+ 1
2 , j −pi− 1

2 , j

ρ1∆x1
, (9.29)

d h
2 pi =

pi , j+ 1
2
−p f

ρ1h
. (9.30)

9.2.4. BALANCED-FORCE APPROXIMATION OF THE DENSITY
A prudent choice for the density has to be made when constructing the operators to achieve a force balance,
as described in the following subsections.

DISCRETIZATION AT A FACE

1. The pressure gradient is discontinuous at the interface. Hence the discretization at the face is per-
formed by a one-sided approximation to avoid discretization over the discontinuity. Such an approach
limits the calculation of the gradient to one fluid, and the density of that fluid is chosen.

For the control volume R shown in figure 9.3, we have

d h
1 pi+ 1

2 ê1
= pi+1, j −pi , j

ρ2∆x1
, (9.31)

d h
2 pi+ 1

2 ê2
= pi , j+1 −pi , j

ρ2h
. (9.32)

Similarly,

d h
2 pi− 1

2 ê2
= p f −pi , j−1

ρ1h
. (9.33)

DISCRETIZATION AT A CELL CENTER

When evaluating the pressure gradients at the center of the control volumes, a numerically constructed den-
sity has to be used, termed as the projected density. In the following subsection the reasoning and the formu-
lation of projected density has been presented.

1. Derivative in the ê2 direction

Consider the control volume R in figure 9.2. A fraction of the control volume is occupied by each fluid,
hence the density is chosen such that the projection of the gradient of the pressure in the operator B c

in direction ê2 cancels out with the gravity as follows:

pi , j+ 1
2
−p I = ρ2g (h −δ), (9.34)

p I −pi , j− 1
2
= ρ1gδ. (9.35)

Adding (9.35) and (9.34) gives
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pi , j+ 1
2
−pi , j− 1

2
= ρ2g (h −δ)+ρ1gδ (9.36)

Dividing by h on both sides gives

pi , j+ 1
2
−pi , j− 1

2

h
=

(
ρ2

h −δ
h

+ρ1
δ

h

)
g . (9.37)

From equation (9.37) an equivalent density, referred to as the ’projected’ density is defined as

ρξ =
(
ρ2

h −δ
h

+ρ1
δ

h

)
= ρ2φd i , j− 1

2
+ρ1φdi , j+ 1

2
, (9.38)

where φξ is the projection of the level set field (φ) in direction ê2.

Hence,

d h
2 pi =

pi , j+ 1
2
−pi , j− 1

2

ρξh
. (9.39)

2. Derivative in the ê1 direction

The gravity does not contribute to the pressure gradient in the direction ê1

g · ê1 = 0. (9.40)

There is no explicit choice for the density when evaluating component ê1 of the pressure gradient.
Hence the volumetric averaged density is chosen when calculating the ê1 component of the pressure.

It is clear that the discussed approach produces a discrete force balance as the discretization satisfies the
interface jump conditions by employing a pressure reconstruction and the projected density.

9.2.5. RESULT

The operators were implemented and tested for uniform and non-uniform grids. Table 9.1 shows the L2

norm of the residuals of the discrete operators B , DG f . It is evident that the formulation is independent of
the density ratio, mesh size, non-uniformity and location of the interface.

Table 9.1: L2 norm of the residuals for the operators DG f , B

Density Ratio δ
h Horizontal Mesh Size Vertical Mesh Size ||DG f h p−rDG ||2

N
||B h p−rB ||2

N

ρ1
ρ2

= 1 0.2
n1

x = n2
x = 8

n2
y = 4, n1

y = 8 1.8e-14 7.8e-15
n2

y = 4, n1
y = 16 4.3e-14 6.9e-14

n1
x = n2

x = 16
n2

y = 4, n1
y = 8 5.1e-14 5.4e-15

n2
y = 4, n1

y = 16 8.2e-14 1.5e-14

ρ1
ρ2

= 1000

0.2
n1

x = n2
x = 8

n2
y = 4, n1

y = 8 7.9e-14 9.3e-15
n2

y = 4, n1
y = 16 2.5e-13 2.0e-14

n1
x = n2

x = 16
n2

y = 4, n1
y = 8 7.4e-14 1.8e-14

n2
y = 4, n1

y = 16 1.5e-14 5.4e-15

0.7
n1

x = n2
x = 8

n2
y = 4, n1

y = 8 6.1e-14 1.1e-14
n2

y = 4, n1
y = 16 1.9e-14 1.4e-14

n1
x = n2

x = 16
n2

y = 4, n1
y = 8 1.4e-14 9.2e-15

n2
y = 4, n1

y = 16 4.0e-14 1.5e-14
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9.3. INCLINED INTERFACE
Consider an inclined interface Γ, as represented by the red dotted line in Figure 9.4. The gravity is assumed
to be directed normal to the interface. Reconstruction is required in both Cartesian directions as gravity
contributes to the vector projections of the pressure gradient in both directions ê1 and ê2. For an arbitrarily
inclined interface the distance to the interface varies in each control volume, which requires a reconstruction
of the face according to the distance to the interface. In the following sections, first the pressure reconstruc-
tion for a arbitrarily inclined interface is discussed, followed by construction of the operators and discussion
of results of the implementation.

9.3.1. PRESSURE RECONSTRUCTION AT THE FACE AND THE INTERFACE
The interface divides the computational domain into the subdomains Ω1 and Ω2. The pressure at the inter-
section of line segment joining cell centers i , j +1 and i , j is denoted by p I , while the pressure at the center of
the face is referred to as p f .
The gravity is normal to the interface and given by

g = g n. (9.41)

Figure 9.4: Example of an inclined interface : Face reconstruction from cell center below the interface

PRESSURE AT THE INTERFACE

Retaining a second order Taylor expansion at points R and L gives

PR = p I + r ·∇I p, (9.42)

pL = p I − l ·∇I p. (9.43)

Decomposing the vectors l, r in directions normal and tangential to the interface gives

PR = p I + (rn + rt) ·∇I p, (9.44)

pL = p I − (ln + lt) ·∇I p. (9.45)

The tangential vector projection of the pressure gradient is zero because the gravity acts normal to the inter-
face, hence

rt ·∇I p = 0, (9.46)

lt ·∇I p = 0. (9.47)
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Equations (9.44) and (9.45) simplify to

pR = p I + rn ·∇I p, (9.48)

pL = p I − ln ·∇I p. (9.49)

or

pR = p I + rn n ·∇I p, (9.50)

pL = p I − ln n ·∇I p, (9.51)

where, rn , ln are the distances from points R and L to the interface, respectively.
Further [∇p ·g

ρ

]
= 0. (9.52)

Multiplying equation (9.50) by 1
ρ1rn

, and equation (9.51) by 1
ρ2ln

gives

p I = pL
ρ2rn

ρ1ln +ρ2rn
+pR

ρ1ln

ρ1ln +ρ2rn
. (9.53)

PRESSURE AT THE FACE CENTER

The value of the pressure at the face is calculated using a Taylor expansion using a one-sided approximation
as explained in the following section.

Face value reconstruction from cell center below the interface
Consider the interface between the face and cell center center R as shown in the figure 9.4. Retaining a second
order Taylor expansion

p f = pL + f ·∇L p, (9.54)

f = f ê2 ·∇L p. (9.55)

The projection of the pressure gradient at L is calculated by

ê2 ·∇L p = p I −pL

l
. (9.56)

Hence

p f = pL + f

l

(
p I −pL

)
, (9.57)

p f = pL + f

l

(
pL

ρ2rn

ρ1ln +ρ2rn
+pR

ρ1ln

ρ1ln +ρ2rn
−pL

)
=

(
1− f

l

)
pL +

(
f

l

)(
ρ2rn

ρ1ln +ρ2rn

)
pL +

(
f

l

)(
ρ1ln

ρ1ln +ρ2rn

)
pR . (9.58)

Face value reconstruction from cell center above the interface
Consider the interface between the face and cell center L as shown in figure 9.5, the value at the face is con-
structed from gradient at point R, which gives

p f = pR − f ·∇R p, (9.59)

p f = pR − f

l

(
pR −pI

)
,

p f = pR − f

l

(
pR −pL

ρ2rn

ρ1ln +ρ2rn
+pR

ρ1ln

ρ1ln +ρ2rn

)
,

=
(
1− f

l

)
pR +

(
f

l

)(
ρ2rn

ρ1ln +ρ2rn

)
pL +

(
f

l

)(
ρ1ln

ρ1ln +ρ2rn

)
pR . (9.60)
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Figure 9.5: Example of an inclined interface: Face value reconstruction from cell center from above
the interface

RECONSTRUCTION IN DIRECTION ê1

The face reconstruction at the vertical faces of the control volumes is carried out in a similar fashion. Figures
9.6 and 9.7 show examples where a reconstruction is needed in direction ê1.

Figure 9.6: Example of an inclined interface: Face value reconstruction from cell center to the left of
the interface

9.3.2. BALANCED-FORCE APPROXIMATION OF THE DENSITY
A explained in section 9.2.4, when evaluating the pressure gradients at the face, a one sided approximation is
employed, and the local density at the face is chosen to consistently evaluate the operators. When evaluating
the pressure gradient at the cell center the projected density is utilized to ensure a discrete force balance
between the pressure gradient and the gravity.

∇p ·n = ρg ·n (9.61)

In the case presented in section 9.3 the gravity contributes to the pressure gradient in both the coordinate
directions (9.61). Hence the projected density has to be employed when evaluating both the components of
operator B c . The level set field is projected in the direction ê1 and ê2 when evaluating the ê1 and ê2 compo-
nent of operator B c , respectively.
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Figure 9.7: Example of an inclined interface: Face value reconstruction from cell center to the right of
the interface

Consider the discretization of the pressure gradient in the control volume R as shown in figure 9.4.

DISCRETIZATION AT A FACE

When evaluating the gradients of the pressure at the face, the local density, i.e. the density of the fluid present
at the face, is chosen.

DISCRETIZATION AT A CELL CENTER

Consider evaluation of d h
2 pR in control volume R. The following relation between pressure hold

pi , j+ 1
2
−p I = ρ2gξ2

i , j+ 1
2

, (9.62)

p I −p f = ρ1gξ f , (9.63)

where, ξ2 represents the projection of the level set field in direction ê2.
Adding equation 9.62 and 9.63 gives

pi , j+ 1
2
−p f =

(
ρ2ξ

2
i , j+ 1

2
+ρ1ξ f

)
g . (9.64)

Dividing both sides by h we get

1(
ρ2ξ

2
i , j+ 1

2
+ρ1ξ

2
f

)
h

pi , j+ 1
2
−p f

h
= g . (9.65)

1

ρ2
ξ R

pi , j+ 1
2
−p f

h
= g , (9.66)

where, ρR
ξ

represents the density in cell R weighted by the projected distance from points i , j + 1
2 and f .

ρR
ξ =

ρ2ξ
2
i , j+ 1

2
+ρ1ξ

2
f

h
(9.67)

It is clear from equations 9.66 and 9.65 that proposed ensures that the pressure gradient calculated as above
satisfies a discrete force balance with the gravity.
Hence,

d h
2 pR =

pi , j+ 1
2
−p f

ρR
ξ

h
(9.68)

Similarly when evaluating the scalar projection of the pressure gradient in ê1 direction, the projected density
ρ1
ξ

is employed to achieve a discrete force balance.
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9.3.3. DISCRETE OPERATORS
In the following Section a force balanced formulation for the arbitrarily inclined interface is presented. As
seen in Section 8.2.1 and 9.2, the operators are constructed by:

• Employing the reconstructed value at the face based on the interface jump conditions.

• Using a one sided approximation.

• Making an appropriate choice of the density between the volumetric averaged density, the projected
density and the local density of the fluid to achieve a discrete force balance.

In the following Subsections, the method of discretization, taking the above delineated measures to achieve
a discrete force balance is described for the case of a planar interface not aligned with or coinciding with the
coordinate directions.

DG f

Consider the discretization of the operator DG in the control volume R, as shown in figure 9.4. A one sided
discretization is carried out as follows

d h
2 pi− 1

2 ê2
= p f −pi , j−1

ρ1h
, (9.69)

where p f is the pressure calculated by the face value reconstruction, as explained in section 9.3.1.

d h
2 pi+ 1

2 ê2
= pi , j+1 −pi , j

ρ2h
(9.70)

d h
1 pi+ 1

2 ê1
= pi+1, j −pi , j

ρ2h
(9.71)

d h
1 pi− 1

2 ê1
= pi , j −pi−1, j

ρ2h
(9.72)

B
1. Component of pressure gradient in direction ê2 .

Consider the discretization of the pressure gradient in the control volume R, as shown in figure 9.4. The
evaluation of the component in direction ê2 is done as follows:

d h
2 pi =

pi , j+ 1
2
−p f

ρR
ξ

h
, (9.73)

in which, the pressure at i , j + 1
2 is evaluated by linear interpolation from the adjacent cell values,

d h
2 pi =

pi , j+1 +pi , j

2
. (9.74)

As explained in section 9.3.2, the projected density is utilized.

2. Component of pressure gradient in direction ê1

The ê1 component of the pressure gradient in control volume R, as shown in figure 9.4, is evaluated as

d h
1 pi =

pi+ 1
2 , j −pi− 1

2 , j

ρ2h
. (9.75)

When the interface intersects the vertical edges of the control volumes, as shown in figures 9.6 and 9.7, a
approach similar to (9.73) is taken by employing the projected distance ρ1

ξ
density in the direction ê1.
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9.3.4. BOUNDARY CONDITION
Inhomogeneous Neumann boundary conditions are imposed to concur with

∇p ·nb = g ·nb, (9.76)

where nb is the vector normal to the interface.

9.3.5. RESULTS

Table 9.2 shows the L2 norm of the residuals for the implementation of the balanced-force formulation near
an inclined interface for different slopes, density ratios and mesh widths. It can be seen that the residuals
are upto machine precision, which shows a successful reconstruction for an arbitrary interface based on the
general formulation and a discrete force balance.

Table 9.2: L2 norm of the residuals for operators DG f and B

Density Ratio Slope x2 intercept Mesh Size ||DG f h p−rDG ||2
N

||B h p−rB ||2
N

ρ1
ρ2

= 1 0.5 0.5 32 2.7e-15 2.3e-15

ρ1
ρ2

= 1000

0.5 0.5
8 1.3e-15 1.2e-15
16 1.2e-15 1.1e-15
32 1.6e-15 1.3e-15

0.7 0.1
8 1.9e-15 1.4e-15
16 1.7e-15 1.6e-15
32 1.6e-15 1.8e-15

9.4. METHOD OF MANUFACTURED SOLUTIONS
The B operator constructed in the pressure velocity coupling suppresses checker-board modes and strongly
couples the pressure-velocity field. To ascertain that the operator behave as expected, the Method of Man-
ufactured Solutions is used to numerically calculate the order of the operators, which is compared with the
mathematically calculated order. First the order of the operators is derived and thereafter the results of the
Method of Manufactured Solutions is discussed.

DEFINITION OF THE LOCAL TRUNCATION ERROR

Consider a differential equation defined as

Lφ= q, (9.77)

where L is a differential operator, φ a sufficiently differentiable scalar field and q a known source term.
The discrete approximation of the differential equation is given by

Lhφi = qi. (9.78)

The local truncation error is the difference between the exact solution to the differential equation (9.77) and
the numerical solution (9.78), i.e.

τi = Lhφ(xi)−Lhφi, (9.79)

where, φ(xi) is the exact solution to the differential equation, and φi the discrete solution.

9.4.1. CONTINUOUS FORM OF DISCRETE OPERATORS

DG f

The operator DG f is an approximation of the continuous operator DG f
c defined as:

DG f
c p(xi ) :=

∫
Ωi

1

ρ
∇·∇pdΩ (9.80)

and the source term can be defined as q(xi ) := DG f
c p(xi ).
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A pressure field p(xi ) is chosen such that DG f
c p(xi ) 6= 0, x ∈ Ωi and such that the pressure field complies

with the interface and the boundary conditions with which q(xi ) is evaluated. The pressure field is now the
solution of

DG f
c φ(xi ) = q(xi ). (9.81)

The discrete approximation of (9.81) is given by

DG f φi = q(xi ). (9.82)

Hence, the local truncation error is given by:

τi = DG f φ(xi )−DG f
c φ(xi ) = DG f φ(xi )−

∫
Ωi

1

ρ
∇·∇φdΩ. (9.83)

EXPECTED ORDER OF ACCURACY

Away from the interface

Consider the evaluation of the operator DG f away from the interface

DG f p(xi) = h

ρ

(
p,2

∣∣∣
i+ 1

2 ê2

−p,2
∣∣∣

i− 1
2 ê2

)
+ h

ρ

(
p,1

∣∣∣
i+ 1

2 ê1

−p,1
∣∣∣

i− 1
2 ê2

)
(9.84)

Using a Taylor expansion around i gives

DG f p(xi) = h

ρ

(
p ′

i + (0.5h)p ′′
i êα

+ (0.5h)2

2!
p ′′′

i êα
+ (0.5h)3

3!
p ′′′′

i êα
+ (0.5h)4

4!
p ′′′′′

i êα
+ . . .

)
−h

ρ

(
p ′

i − (0.5h)p ′′
i êα

+ (0.5h)2

2!
p ′′′

i êα
− (0.5h)3

3!
p ′′′′

i êα
+ (0.5h)4

4!
p ′′′′′

i êα
+ . . .

)
. (9.85)

Simplifying this gives

DG f p(xi) = 1

ρ

(
h2p ′′

1 êα
+ h4

24
p ′′′′

1 êα

)
+O (h6). (9.86)

Now, the discrete operator DG f pi is given by

DG f pi = h

(
pi+êα −pi

ρh
− pi −pi−êα

ρh

)
. (9.87)

Using a Taylor expansion around i gives

DG f pi = 1

ρ

(
hp ′

i êα
+ h2

2!
p ′′

i êα
+ h3

3!
p ′′′

i êα
+ h4

4!
p ′′′′

i êα
+ . . .

)
− 1

ρ

(
hp ′

i êα
− h2

2!
p ′′

i êα
+ h3

3!
p ′′′

i êα
− h4

4!
p ′′′′

i êα
+ . . .

)
, (9.88)

= 1

ρ

(
h2p ′′

i êα
+ h4

12
p ′′′′

i êα

)
+O (h6).

Hence,

DG f pi = 1

ρ

(
h2p ′′

1 êα
+ h4

12
p ′′′′

1 êα

)
+O (h6). (9.89)

Subtracting the exact solution to the differential equation (9.86) from the discrete solution (9.89) gives

τDG f

i = h4

12ρ
p ′′′′

1 êα
+O (h6). (9.90)

Hence, it can be seen the local truncation error of the operator DG f is fourth order accurate at a sufficiently
large distance from the interface.

Near the interface
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Consider the case where the interface coincides with the cell face at the top face of the control volume as
shown in figure 8.1. The pressure at i + 1

2 ê2 is calculated by the pressure reconstruction, as explained in
section 8.2.1, which gives

pi+ 1
2 ê2

= pi +hp ′
iê2

(9.91)

A standard discretization is employed for component ê1 of operator DG f . As seen in equation 9.90, the local
truncation error will be of the order 4. On the other hand, the ê2 component incorporates the reconstruction
to achieve a discrete force balanced given by

DG f ê2 pi = 1

ρ

(
pi +hp ′

i+ 1
2 ê2

−pi

)
− 1

ρ

(
pi −pi− 1

2 ê2

)
. (9.92)

Employing a Taylor expansion at point i gives

DG f ê2 pi = 1

ρ

(
pi +hp ′

i+ 1
2 ê2

−pi

)
− 1

ρ

(
pi −

(
pi −hp ′

i ê2
+h2p ′′

i ê2
−h3p ′′′

i ê2
+ . . .

))
, (9.93)

= 1

ρ

(
h2p ′′

i+ 1
2 ê2

−h3p ′′′
i+ 1

2 ê2

)
+O (h4).

Subtracting the exact solution to the differential equation (9.86) from the discrete solution (9.93) gives

τDG f

i = h2

ρ
p ′′

i+ 1
2 ê2

+O (h3). (9.94)

It can be seen that the local truncation error of the operator is DG f is of the order 2 near the interface.

B OPERATOR

Away from the interface

The discrete operator utilized in the pressure-velocity coupling, Ḃ pi, is given as

Ḃαpi = 1

ρ

[
1

2

(
p,α i +p,α iα+êα

)−p,α i+ 1
2 êα

]
. (9.95)

In this subsection, the continuous differential counterpart of the operator is derived. Next, the order of the
local truncation error is inferred by subtracting the exact differential solution from the discrete solution.
Employing a Taylor expansion around iα+ 1

2 êα gives

p ′
i α = p ′

i+ 1
2 êα α

− h

2
p ′′

i+ 1
2 êα α

+ h2

8
p ′′′

i+ 1
2 êα α

− h3

48
p ′′′′

i+ 1
2 êα α

..., (9.96)

p ′
i+êα α

= p ′
i+ 1

2 êα α
+ h

2
p ′′

i+ 1
2 êα α

+ h2

8
p ′′′

i+ 1
2 êα α

+ h3

48
p ′′′′

i+ 1
2 êα α

. . . (9.97)

Adding equations (9.96) and (9.97) we get

p ′
i α+p ′

i+êα α
= 2p ′

i+ 1
2 êα α

+ h2

4
p ′′′

i+ êα
2 α

+O
(
h4) . (9.98)

Rewriting equation (9.98) gives

1

ρ

(
1

2

(
p ′

i α+p ′
i+êα α

)
−p ′

i+ 1
2 êα α

)
+O

(
h4)= h2

8
p ′′′

i+ êα
2 α

. (9.99)

Assuming ∇p · ê1 = 0 gives
p ′′′ = (∇∇·∇p

)
. (9.100)

From equations (9.100) and (9.99)
Ḃαpi +O

(
h4)= (∇∇·∇p

)
. (9.101)

Taking the divergence of equation (9.101) and integrating gives∫
∇· (∇∇·∇p

)
Ω−DḂαpi =

∫
∇· (∇∇·∇p

)
Ω−BPi =O

(
h4) . (9.102)
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Hence,
τB

i =O
(
h4) . (9.103)

Near the interface

A similar numerical analysis can be done for operator B to evaluate the order of the local truncation error
near the interface, as done in section 9.4.1. The operator can be split as

B = B f +B c = DG f −DGc . (9.104)

The approximation of the first term in (9.104) is of the order O (h2), hence a higher order may not be expected,
due to the fact the local truncation error is of the order 2 for the first term.

9.4.2. CONVERGENCE OF DISCRETE OPERATORS
Equations (9.105) and (9.106) describe the discrete formulation and its continuous counterpart. A known
function is used in the Method of Manufactured Solutions to determine the order of a numerical method by
evaluating the convergence characteristics between the discrete and the continuous form (source term) as
the computational grid is refined:

DGp =
∫

1

ρ
∇·∇pdΩ, (9.105)

B p = h2

8

∫
1

ρ
∇· (∇∇·∇p

)
dΩ. (9.106)

Consider Figure 9.13 in which ε is the distance from the origin O to the interface.

Figure 9.8: Computational Domain utilized in the Method of Manufactured Solutions

The function utilized in the method should satisfy the boundary and interface conditions. In this case, the
solution to the operators is subject to

1

ρ
pΩ1 ,2 (x1,0) = g , (9.107)

pΩ2 (x1,1) = 0, (9.108)

pΩ1 (x1,ε) = pΩ2 (x1,ε), (9.109)

[∇p(x1,ε) · ê2

ρ(x)

]
= 0, (9.110)

where the density (ρ(x)), is a function of the location in the computational domain x.
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A fourth order polynomial was constructed that satisfy conditions (9.107)-(9.110) as follows

pΩ1 = ρ1g x4
2 +ρ1g x2 −

((
ρ1 −ρ2

)(
ε4 +ε)g +2ρ2g

)
, (9.111)

pΩ2 = ρ2g x4
2 +ρ2g x2 −2ρ2g . (9.112)

RESULTS

Figures 9.9 and 9.10 show the log-log plot of the local error in operator B as the mesh is refined at the inter-
face and away from the interface, respectively. The error is calculated in a row near to and far way from the
interface at x1 = 0.5. Figures 9.11 and 9.12 show the log-log graph of the local error for operator DG f as the
mesh is refined, at the interface and away from the interface, respectively. A reference line has been drawn in
the plots to compare the expected analytical order of accuracy and the numerically obtained order. It can be
clearly seen that the numerical order of the accuracy concurs with the analytically calculated order.

Figure 9.9: Order of the local truncation error in
operator B near the interface

Figure 9.10: Order of the local truncation error in
operator B away from the interface

Figure 9.11: Order of the local truncation error in
operator DG f near the interface

Figure 9.12: Order of the local truncation error in
operator DG f away from the interface
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IMPACT OF THE ORDER OF CONVERGENCE

The B operator arises from the pressure velocity coupling formulated on a collocated grid to suppress the
pressure-velocity checkerboard modes.
As explained in Section 4.2, the predicted face velocity using the approach of Rhie and Chow pressure velocity
coupling is defined as

u f ∗
α = (1−ω)

(
u f k
α − ũαc k

)
+ ũc ∗

α +ωḂ p l . (9.113)

Similarly, the corrected face velocity is defined as

u f l+1
α = (1−ω)

(
u f k
α − ũαc k

)
+ ũαc l+1 +ωḂ p l+1. (9.114)

Further, the final continuity equation incorporating the pressure-velocity coupling is given by

DG f δp = Du∗
f . (9.115)

It can be seen that the the velocity at the face is calculated by linearly interpolating the cell center velocities,
and correcting for pressure gradients at the face. The linear interpolation employed is second order accurate,
and as seen Section 9.4.2 the DG f and the B operator is fourth order accurate away from the interface and
second order accurate near the interface. Hence, it can be inferred that the constructed operators do not
lower the order of accuracy of the discrete system.

9.4.3. DISCUSSION

A general balanced-force formulation for the reconstruction of the flow variables was proposed. An approach
to construct the operators, to incorporate the pressure reconstruction consistent with the interface jump con-
ditions was presented. The formulation was implemented for quiescent flow, where the interface is aligned
and offset to the control volume faces and an arbitrarily inclined interface. Next, the order of accuracy was
derived for the operators and numerically verified using the Method of Manufactured Solutions. It can be
concluded that the proposed method successfully produces a discrete force balance, employing the face value
reconstruction and a discretization consistent with the interface jump conditions.

Along with the density jump also the viscosity jumps across the interface. A reconstruction for velocity
is required to ensure that the velocity interface conditions are satisfied, namely the continuity of the velocity
and the tangential shear stress. In the following section, the formulation for the velocity reconstruction is
presented. Next, the proposed formulation is implemented for stratified channel flow and the results are
discussed.

9.5. VELOCITY RECONSTRUCTION
In an incompressible and immiscible flow the velocity has to be continuous at the interface. Furthermore,
the total shear stress acting on the interface should be zero, i.e. the shear stress has to be continuous. The
dynamics of the flow are characterized by

[u] = 0, (9.116)[
t̂ T ·µ∇u · n̂

]= 0. (9.117)

where, t̂ and n̂ are the tangential and normal vectors to the interface. The discrete diffusion operator J should
satisfy equation (9.116) and (9.117) to ensure a force balance between the viscous forces and the pressure.

In a stratified channel flow, the velocity along the channel forms a piecewise parabolic profile. The net
convective fluxes are zero and the diffusion balances the pressure gradient in the channel. If the value of the
velocity at the interface and the diffusion operator is carefully formulated to account for the interface jump
condition, the piecewise parabolic profile can be numerically replicated. The efficacy of the formulation will
be tested for a stratified channel flow.
In this section, first the reconstruction of velocity at the face is presented. Next the results of the implemen-
tation of the formulation for stratified flow are discussed. Finally, the order of the formulation is evaluated
numerically.
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9.5.1. RECONSTRUCTION OF THE VELOCITY AT THE INTERFACE
Reconstruction of the velocity at the face is carried out based on the following jump conditions:

1. Continuity of shear stress [
t̂ T ·µ∇u · n̂

]= 0. (9.118)

2. Continuity of velocity
[u] = 0. (9.119)

Figure 9.13: Velocity Recinstruction: Example of a offset and aligned interface

Consider Figure 9.13 in which the interface is offset to the common face between control volumes L and R of
mesh width h by a distance of δ. Based on the interface conditions, the face value reconstruction employing
the general formulation is done:

u1 R = uR
1 I + (0.5h −δ)uR

1,2 +
(0.5h −δ)2

2!
uR

1,22 +
(0.5h −δ)3

3!
uR

1,222 + . . . (9.120)

u1 L = u1 I − (0.5h +δ)uL
1,2 +

(0.5h +δ)2

2!
uL

1,22 +
(0.5h −δ)3

3!
uR

1,222 + . . . (9.121)

Multiplying equation (9.120) by µ1 and dividing by 0.5h −δ and similarly multiplying equation (9.121) by µ2

and dividing by 0.5h +δ, gives

µ2u1 R

0.5h −δ = µ2u1 I

0.5h −δ +µ2uR
1,2 +

µ2 (0.5h −δ)

2
uR

1,22 + . . . , (9.122)

µ1u1 L

0.5h +δ = µ1u1 I

0.5h +δ −µ1uL
1,2 +

µ1 (0.5h +δ)

2
uL

1,22 + . . . . (9.123)

In the following sections the reconstruction and the order of the reconstruction are discussed for a zero and
non-zero value of δ.

δ= 0
Substituting δ= 0 in (9.122), (9.123) gives

µ2u1 R

0.5h
= µ2u1 I

0.5h
+µ2uR

1,2 +
µ2 (0.5h)

2
uR

1,22 + . . . (9.124)

µ1u1 L

0.5h
= µ1u1 I

0.5h
−µ1uL

1,2 +
µ1 (0.5h)

2
uL

1,22 + . . . (9.125)
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It is known that

µ1uL
1,22 =µ2uR

1,22 = p,1 . (9.126)

Hence (9.124) and (9.125) simplify to

µ2u1 R

0.5h
= µ2u1 I

0.5h
+µ2uR

1,2 +0.5hp,1+ . . . (9.127)

µ1u1 L

0.5h
= µ1u1 I

0.5h
−µ1uL

1,2 +0.5hp,1+ . . . (9.128)

Equations (9.127) and (9.128) are re-written as

µ2u1 R

0.5h
= µ2u1 I

0.5h
+µ2uR

1,2 +0.5h

(
µ1

µ1 +µ2

)
p,1+0.5h

(
µ2

µ1 +µ2

)
p,1+ . . . , (9.129)

µ1u1 L

0.5h
= µ1u1 I

0.5h
−µ1uL

1,2 +0.5h

(
µ1

µ1 +µ2

)
p,1+0.5h

(
µ2

µ1 +µ2

)
p,1+ . . . . (9.130)

The velocity at the interface is calculated based on continuity of the shear stress. The first derivatives can be
eliminated from (9.129) and (9.130). As a result the numerical solution will satisfy continuity of shear stress,
but the cell center velocities calculated will have an error(i.e. the velocity calculated will not be exact) due to
an unaccounted fraction of the second derivative of the velocity (or the gradient in pressure) as shown below.
Numerical interface velocity is defined as

µαuh
α I

0.5h
= µαuα I

0.5h
+0.5

(
µα

µ1 +µ2

)
hp,1 , (9.131)

where α is a component of the velocity.
Equations (9.129), (9.130) can be written as

µ2u1 R

0.5h
= µ2uh

1 I

0.5h
+µ2uR

1,2

(
+0.5h

(
µ1

µ1 +µ2

)
p,1+ . . .

)
, (9.132)

µ1u1 L

0.5h
= µ1uh

1 I

0.5h
−µ1uL

1,2

(
+0.5h

(
µ1

µ1 +µ2

)
p,1+ . . .

)
. (9.133)

The expression in the brackets shows the fraction of the pressure gradient (or the second derivative of the
velocity) that cannot be accounted for in the face value reconstruction and the higher order terms.
Adding the above equations gives

µ2u1 R

0.5h
+ µ1u1 L

0.5h
= µ1 +µ2

0.5h
uh

1 I (9.134)

uh
1 h = µ2u1R +µ1u1 L

µ1 +µ2
(9.135)

Such a treatment ensures that the interface conditions for the interface velocity, namely continuity of the
velocity and of the shear stress are satisfied.
Further, from (9.137) and (9.133) we obtain

u1 R = uh
1 I +µ2uR

1,2 +
h2

4

(
µ1

µ1 +µ2

)
uR

1,22 +
(0.5h −δ)3

3!
uR

1,222, (9.136)

u1 L = uh
1 I +µ2uL

1,2 +
h2

4

(
µ1

µ1 +µ2

)
uL

1,22 +
(0.5h −δ)3

3!
uL

1,222. (9.137)

Numerically, the velocities are calculated as

u1 R = uh
1 I +µ2uR

1,2 +O (h2), (9.138)

u1 L = uh
1 I +µ2uL

1,2 +O (h2). (9.139)

Hence, it can be seen that the calculated velocity is second order accurate.
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NON-ZERO δ

The velocity at the interface can be derived in a similar fashion as follows.
Adding equations (9.122) and (9.123) and using equation (9.118) gives

µ2u1 R

0.5h −δ + µ1u1 L

0.5h +δ =
( µ2

0.5h −δ + µ1

0.5h +δ
)

u1 I +
(
µ2 (0.5h −δ)

2
+ µ1 (0.5h +δ)

2

)
u1,22. (9.140)

Hence

u1 I =
µ2u1 R
0.5h−δ +

µ1u1 L
0.5h+δ( µ2

0.5h−δ +
µ1

0.5h+δ
) +O (h2) (9.141)

As explained in section 9.5.1, the calculated velocity is second order accurate, and no approximations are
made when calculating the first derivative.

9.5.2. RECONSTRUCTION OF VELOCITY AT THE FACE
The value of the velocity at the face is calculated by using a one-sided approximation based on the value of
the velocity at the interface. Considering Figure 9.13, the value at the face u1 f is calculated by a one sided
approximation at the face as follows

u1 f = u1 I −δu1,2, (9.142)

u1 f = u1 I −δu1 I −u1 L

0.5h +δ .

This can be simplified to

u1 f =
(

0.5h

0.5h +δ
)

u1 I +
(

δ

0.5h +δ
)

u1 L . (9.143)

9.5.3. DISCRETIZATION
The diffusion operator is given by

Juα =
∫

∇·µ∇uαdΩ (9.144)

=
∫
µ∇uαdS.

Discretizing gives
Juα = hµ

(
uα,1 +uα,2

)
. (9.145)

In this section, the method of discretization that is consistent with the velocity interface jump conditions and
which incorporates the velocity reconstruction is presented.

CONTROL VOLUME AWAY FROM THE INTERFACE

<the discretization away from the interface is given by

Ju1 · ê2 = hµ

(
u1,2

∣∣∣i+ 1
2

i , j− 1
2

)
=µh

(u1 j+1 −u1 j

h
− u1 j −u1 j−1

h

)
=µh

(
u1 j+1 −2u1 j +u1 j−1

h

)
(9.146)

CONTROL VOLUME INTERSECTED BY THE INTERFACE

Consider the evaluation of the ê2 component of the operator J in control volume R. The contribution of the
operator at the face near the interface iR − 1

2 ê2 is evaluate by a one-sided approximation, while away from the
interface, i.e at iR + 1

2 ê2, the operator is evaluated by a central difference approximation:

Ju1 R · ê2 = h

[
µ2

(u1 j+1 −u1 j

h

)
−µ1

(
u1 f −u1 j−1

0.5h

)]
(9.147)

CELL BELOW THE INTERFACE

Similarly the ê2 component of the operator J in control volume L is evaluated as

Ju1 l · ê2 = h

[
µ1

(
u1 f −u1 j

0.5h
− u1 j −u1 j−1

h

)]
. (9.148)
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DISCUSSION

It can be seen from (9.147) and (9.148) that at face shared by the control volumes L and R the diffusion op-
erator is evaluated identically (and complies with the interface conditions) to ensure to ensure the diffusive
flux is uniquely defined.

9.5.4. ANALYTICAL SOLUTION
The analytical solution for the stratified flow is calculated based on the following interface and boundary
conditions:

• The continuity of the velocity at he interface

u1
1 I = u2

1 I . (9.149)

• No slip for the ê1 component of the velocity at the walls

uw = 0 (9.150)

• The continuity of the shear stress at the interface

µ1u1
1,2 I =µ2u2

1,2 I (9.151)

Employing equations (9.149)-(9.151), the analytical solution is given by

u1
1 =− p,1

2µ1
x2

2 +0.25p,1
3µ1 +µ2

µ1(µ1 +µ2)
x2 (9.152)

u2
1 =− p,1

2µ2
x2

2 +0.25p,1
3µ1 +µ2

µ2(µ1 +µ2)
x2 +0.25p,1

µ1 −µ2

µ2(µ1 +µ2)
(9.153)

9.5.5. RESULTS

NUMERICAL SOLUTION

The diffusive operator was implemented. Figure 9.14 shows the numerical and analytical results for the ve-
locity along the channel for µ1 = 120, µ1 = 1. It can clearly be seen that the numerical solution reproduces the
piecewise parabolic profile, as expected analytically.
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ORDER OF OPERATOR J
Figure 9.15 shows the log− log plot of the absolute of global error of the velocity as a function of the grid size
for µ1 = 120 and µ1 = 1. As the log− log plot has a slope of 2 it can be concluded that the operator J is second
order accurate.
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INTEGRATED SOLVER

A balanced-force method based on the interface jump conditions, which involves the reconstruction of values
near the interface and a consistent construction of operators, was presented in Chapters 8 and 9.

It is sufficient for a stationary discrete formulation to comply with the differential equation and the in-
terface jump conditions. However, to apply this approach to solve unsteady flow problems the influence of
the reformulated operators on the stability properties of the system has to be investigated. The properties of
the individual operators and their behavior when they are embedded in the complete solver algorithm are
analyzed. Results are shown for dynamic flow test cases and compared with the numerical results obtained
with OpenFOAM.

10.1. NAVIER-STOKES SOLVER
The complete solver consists of solving for the velocities and the pressure iteratively. To this end, the continu-
ity equation and the conservation of momentum equations in both coordinate directions and the advection
of level set are solved. The fluids are considered to be incompressible and immiscible.
Miller and Schmidt [13] proposed an iterative, segregated solver for stationary single phase flow as explained
in section 4.2. Based on the Miller and Schmidt method an iterative method for transient multiphase flows is
proposed as follows.
The solution algorithm consists of the following sequence of steps:
start of time loop
(iteration level n)

start of outer loop
(iteration level k)

1. Construct the diffusion operator J

2. Construct operators DG f , B c ,Gc , G f and the convective operator N

start of inner loop
(iteration level l)

1. The momentum equations are solved to calculate the predicted cell center velocities uc ∗
1 ,uc ∗

2 . The
convective term in the right hand side is calculated using outer loop face and cell center velocities

(uc k
1 ,uc k

2 ,u f k
1 ,u f k

2 ).

uc∗∗ = Juc∗+N uk −Gc p (10.1)

The predicted cell center velocity is under-relaxated, by a under-relaxation factorω, with respect to the
cell center velocity calculated at the last iterate level of the outer loop.

uc ∗ =ωuc∗∗+ (1−ω)uk (10.2)

69
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2. The predicted face velocities are calculated based on the predicted cell center velocities u f ∗
1 , u f ∗

2 .

u f ∗ = (1−ω)
(
u f k − ũc k

)
+ ũc ∗+ωḂpl (10.3)

3. A correction in pressure is calculated by imposing the solenoidality condition on the corrected face
velocities δp. The corrected face velocity is defined as

u f l+1 = (1−ω)
(
u f k − ũc k

)
+ ũc k+1 +ωḂpl+1. (10.4)

Imposing the solenoidality condition and simplifying, gives

DG f δp = Du f ∗ (10.5)

4. The cell center velocities are corrected based on the calculated correction in the pressure: uc k+1
1 ,uc k+1

2

uc l+1
α = uc∗− ω

1−ω
∆t

ρ
δp,α c (10.6)

5. The face velocities are corrected based on the calculated correction in the pressure u f k+1
1 ,u f k+1

1

u f l+1
α = u f ∗

α − ω

1−ω
∆t

ρ
δp,α f (10.7)

6. The pressure is updated
pl+1 = pl +δp (10.8)

end of inner loop

The velocities in the outer loop are updated to the values obtained in the latest iteration level of the inner
loop.
end of outer loop

The velocities at the new time level are updated to the values obtained in the latest iteration level of the outer
loop.
end of time loop

The presented method for instationary flows and the approach proposed by Miller and Schmidt[13] differ
in the following aspects

1. The approach presented by Miller and Schmidt has two loops: an inner and an outer loop. The pre-
dicted cell center velocities are calculated using the linearized convection operator, and the convection
and the diffusion operator are treated implicitly.

The above proposed method treats diffusion implicitly and calculates the convective term in the outer
loop. The outer loop is iterated until it converges, hence the treatment of the convective operator is
implicit.

2. Miller and Schmidt calculate a one step correction in the pressure in the inner loop, i.e the correction
in the pressure is calculated with respect to the pressure in the outer loop. In the method presented, the
correction in the pressure is calculated incrementally until the inner loop and the outer loop converge,
i.e. the correction in the pressure is calculated with respect to the pressure at the last iteration level in
the inner loop .

The complete solver, incorporating the balanced-force framework, was evaluated for the cases where the
computational domain is closed and for flow in a rectangular channel. A fixed number of inner and outer
iterations was used, determined by ensuring that the inner and the outer loops have converged before step-
ping in time. The formulation of the discretisation differs only through the different imposed boundary and
initial conditions. The results of the numerical simulation are discussed in the upcoming section.
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10.2. CASE: CLOSED BOX
In this case, the flow in a closed box or tank is numerically modeled. The fluids are allowed to slip along the
boundaries of the domain, i.e. the tangential stress on the boundary is zero. Thereto the imposed boundary
conditions are as follows (graphically represented in Figure 10.1):

• Left and Right Boundary

– Pressure- Homogeneous Neumann

– Velocity in ê1- Homogeneous Dirichlet

– Velocity in ê2- Homogeneous Neumann

• Top and Bottom Boundary

– Pressure- Non-homogeneous Neumann

– Velocity in ê1- Homogeneous Neumann

– Velocity in ê2- Homogeneous Dirichlet

Figure 10.1: Closed box case: Boundary conditions

HANDLING OF PRESSURE BOUNDARY CONDITIONS

The evaluation of the pressure at a row/column of control volumes outside the computational domain, i.e the
ghost nodes, is required in the formulation of operator B c . The possible approaches for the this treatment are:

• Employ the boundary conditions to determine the value at the ghost node.

In this approach, the boundary condition is utilized to calculate the values of the pressure outside of
the computational domain. The calculation is based over a distance of one mesh width.

• Extrapolate the value of the pressure at the ghost nodes, based on the values inside the computational
domain.

Wesseling [22] and Peric et al. [23] recommend extrapolation to calculate the value of pressure at the
ghost node, albeit with giving a numerical justification. The extrapolation is performed over a distance
of two mesh widths.

For a single phase flow the operators have to satisfy the relation DT =−G . Extrapolation of the pressure at the
boundaries violates this equality, whereas if the boundary conditions are employed the equality is satisfied
(only for single phase flow). Furthermore, it leads to a higher numerical accuracy (one mesh width versus
two). Hence the final evaluation of pressure was performed by utilizing the boundary condition.
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DYNAMIC FLOW CASES

The fully closed problem numerical setup was evaluated for the following cases:

• Quiescent flow

• A viscous standing wave in a tank

• Dam break case

The results of the dynamic cases are presented in the following subsections.

10.2.1. QUIESCENT FLOW

The balanced-force formulation of the operators B and DG f was evaluated for a quiescent flow for the case
in which the interface coincides with the cell faces, the interface is aligned but offset with the cell faces and
in which the interface is neither coinciding nor aligned with the cell faces; see Section 8.2.3, 9.2.4 and Section
9.3, respectively. The numerical experiments show that the operators produce a discrete force balance upto
machine precision.

In this section, the complete frame work is evaluated, where the discrete system is numerically solved for
both the velocities and the pressure for quiescent flow. First, the convergence characteristics of the solver
are studied for an unperturbed initialization. Next, the case is studied, where the pressure is perturbed by a
cosine wave to investigate the effect of modifying the formulation of the pressure gradient and the effect of
the operator B on the stability of the system.
The quiescent case is investigated in the following section for the case where the interface is offset and aligned
with the faces of the control volume. The error plots of the velocities are studied to evaluate the capability for
the complete numerical framework to produce a discrete force balance and suppress numerical artefacts.
The quiescent flow is evaluated for the following computational and fluid proprieties:
Computational properties

• Size of the domain:1×1

• Mesh width (h/L): 0.2 (Number of control volumes: 5×5)

• Time step size (∆t ): 0.1

• Location of the interface: interface offset by 0.28h

• Number of inner loop iterations per outer loop: 30

• Number of outer loop iterations per time step: 15

Fluid properties

• Density ratio: ρ1
ρ2

= 0

• Viscosity ratio: µ1
µ2

= 100

NO PERTURBATION

Figures 10.2 and 10.3 show the plot of the L∞ norm of the error for the face velocities against the number of
inner loop iterations. The order of the error has a magnitude of approximately 10−31. Furthermore, figure 10.4
and 10.5 show the plot of the error in the cell center velocities against the number of inner loop iterations. The
error in the ê1 component of the velocity has a magnitude 10−31, whereas the error in the component ê2 of the
cell center velocity has that of magnitude 10−16. It can be seen that the errors are of the magnitude of machine

precision. The difference in the order of the error in between u f
2 and other cell center and face velocities, is

attributed to the fact that the face velocities are made divergence free in the pressure correction equation,
further the projection of the pressure gradient in the direction ê1 is zero, whereas in the direction ê2 it is equal
to the density scaled gravitational acceleration, hence providing more opportunity for the accumulation of
the round off errors.
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PERTURBED INITIALIZATION

The pressure is initialized with a perturbation of a cosine wave of magnitude 10−12 in the direction ê2 (i.e.
aligned with gravity) with respect to the hydrostatic pressure, as shown in Figure 10.6. The expression for the
perturbation in the pressure is given by

∆p = a cos(2πx2)−a (10.9)

The purpose of this investigation is to determine the behaviour of the operators when a flow variable is per-
turbed and to verify the effectiveness of the pressure velocity coupling. Figure 10.7 shows the plot of the
maximum absolute value of the error in pressure as a function of the inner loop iterations. It is clearly seen,
that the initialized perturbation gradually damps out, and in a few inner loop iterations the oscillation in the
pressure has completely disappeared. Figures 10.8, 10.9 and Figures 10.10 and 10.9 show the plots of the L∞
norm of the error in the face velocities and the cell center velocities as a function of the number of inner loop
iterations, respectively. As can be seen in the unperturbed case, the error in the velocities is maintained upto
the machine precision.
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INFERENCES

The following inferences can be drawn from the results presented in this section:

• The proposed formulation achieves a discrete force balance and avoids the occurrence of spurious
velocities at the interface for the case where the interface does not coincide with the cell faces.

• The balanced-force formulation of the pressure-velocity coupling successfully removes the introduced
numerical oscillations and maintains the solution upto machine accuracy.

• The iterative solver constructed with the force balanced operators is successful in correcting the pres-
sure and velocity field to produce a divergence free flow.

10.2.2. VISCOUS WAVE
Greaves et al. [24] and Wang et al. [25] numerically modeled a viscous standing wave in a tank using adaptive
quad tree grids. A similar viscous wave is numerically modeled to investigate the behavior of the solver in a
dynamic case.
A perturbed wave of small amplitude is initialized as follows:

η= a cos(2πxb), (10.10)

where b = 2h is the length of the tank, h is the mean water depth and a = 0.002h is the amplitude of the wave.
The length of the tank was assumed to be b = 1. Figure 10.12 shows the contour plot of the level set field. The
different colours indicate the two fluids in the domain. The damping of the wave over time is modeled for a

Reynolds number defined as Re = h
p

g h
ν . The elevation of the wave is studied to determine the damping of

the wave at different Reynolds numbers. The larger the Reynold number, the larger the inertial forces acting
on the fluids and the longer it takes for the wave to damp. In the following subsection the results for different
Reynolds numbers are discussed and compared with the OpenFOAM solutions.
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Figure 10.12: Closed box: Initialized viscous standing wave

Re = 2
Mesh details
Figure 10.13 shows the elevation of the wave at x1 = 0.5 as a function of time for the balanced-force formula-
tion at different mesh sizes and the OpenFOAM solution. OpenFOAM employs a volume of fluid based solver
where the fluid properties and the interface are diffused over the control volumes. As a result, OpenFOAM
does not recognize a perturbed interface for the initialization (10.10) for a coarse mesh (such as 10× 10),
necessitating a much finer mesh.
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Figure 10.13: Viscous standing wave: Elevation plot for Re = 2

A similar damping of the wave is seen in the numerical solution of OpenFOAM and the implemented force
balanced solver. No significant differences are seen when the mesh is refined.
Quiver Plots
Figure 10.14 and 10.15 show the quiver plots of the velocity for the implemented solver for the solution ob-
tained with a mesh with h/b = 0.1 and OpenFOAM, respectively. OpenFOAM produces spurious velocities at
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the boundaries and at the interface. Furthermore, the velocity profile is not symmetric and perturbations in
the velocity are seen near the center of the vortices. On the other hand, the new solver produces a symmetric
and smooth profile, indicating continuity of the velocity across the interface.

Figure 10.14: Viscous standing wave: Quiver plot
at t = 2.5s for the Implemented Solver

Figure 10.15: Viscous standing wave: Quiver plot
at t = 2.5s for OpenFoam

In the following subsections the flow characteristics are evaluated by comparing the numerical solution of
OpenFoam and the solution obtained from the implemented solver for a mesh of 10×10.

Velocity

Figure 10.16 shows the magnitude of velocity along a vertical line at x1 = 0.5. The velocity is expected to vary
smoothly along this vertical line with the highest value expected at x2 = 0.5 near the interface. An indication
of spurious velocities can be seen near the interface (x2 = 0.5) in the solution of OpenFOAM, whereas the
implemented solver leads to a smooth (i.e. no unphysical velocity spikes) profile for the velocity.
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Figure 10.16: Viscous standing wave:Comparison of velocity at x1 = 0.5

Figures 10.17 and 10.18 show the magnitude of velocity along a horizontal line at x2 = 0.5. As the horizontal
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line at x2 = 0.5 is traversed, the magnitude of the velocity should decrease as one reaches the center of the
vortices and it should increase away from it. Such a behavior is seen in the solution obtained from the formu-
lated solver, while OpenFoam produces spurious velocities of a much higher magnitude at the boundaries of
the closed box.
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Figure 10.17: Viscous standing wave: Velocity plot
at x2 = 0.5 for the Implemented Solver
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Figure 10.18: Viscous standing wave: Velocity plot
at x2 = 0.5 for OpenFoam

Implemented solver: Mesh refinement
Figures 10.19 and 10.20 show velocity along the lines x1 = 0.5 and x2 = 0.5, respectively for the mesh of 10×10
and 20× 20. No differences are seen in the dynamics of the solution. The velocity profiles show a smooth
distribution with no indication of spurious contributions.
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Figure 10.19: Mesh refinement: Velocity plot along
the vertical line at x1 = 0.5
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Figure 10.20: Mesh refinement: Velocity plot along
the vertical line at x2 = 0.5

HIGHER REYNOLDS NUMBER:Re = 20 AND Re = 200
Figure 10.22 and 10.22 show the elevation for Reynolds number Re = 20 and Re = 200, respectively. It can be
seen that the formulated solver and the numerical solution of OpenFOAM show a similar trend. A difference
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is seen in the elevation plots when the mesh is refined for the formulated solver. This is attributed to the
fact that the flow at a higher Reynolds number is much more violent, and hence needs a much finer mesh to
accurately model the flow.
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Figure 10.21: Viscous standing wave: Elevation plot at Re = 20
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Figure 10.22: Viscous standing wave: Elevation plot at Re = 200

A similar occurrence of spurious velocities is observed in the numerical solution of OpenFOAM for higher
Reynolds numbers. OpenFOAM fails to maintain a smooth symmetric velocity profile, similar to what is seen
in figure 10.14 for Re = 2. On the contrary, the formulated solver produces a smooth continuous flow profile,
without occurrence of spurious velocities. The plots have been omitted for the sake of conciseness and to
avoid repetition of information.
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10.2.3. DAM BREAK
A dam break case is modeled by initializing an inclined interface. An obstacle of one mesh width by two mesh
widths is placed at x1/b = 0.2 as shown in solid re line in Figure 10.23. The computational and fluid properties
employed are as follows:
Computational properties

• Mesh width (h/b): 0.05 (20×20)

• Time step size (∆t ): 0.01

• Location of the interface: x2/b = 0.4

• Orientation of the interface: slope 0.3

Fluid properties

• Density ratio: ρ1
ρ2

= 50

• Viscosity ratio: µ1
µ2

= 50

The flow is allowed to slip at the boundaries and at the walls of the obstacle. As the inclined interface oscil-
lates, a wave is created at the interface due to the presence of the obstacle. The developed wave breaks over
the interface and eventually is expected to damp out to a steady state quiescent flow.
Figures 10.23-10.26 shows the quiver plot of the velocity, the location of the interface and the obstacle at
t = 0.1s, t = 0.2s, t = 0.3s and t = 0.7s, respectively.
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Figure 10.23: Dam Break: Quiver plot of velocity
and contour of the level set field at t=0.1s
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Figure 10.24: Dam Break: Quiver plot of velocity
and contour of the level set field at t=0.2s

Figure 10.26 shows that a wave is formed at the left boundary. The wave travels to the right as time progresses,
as shown in Figures 10.28-10.30.
Figures 10.27-10.30 show the contour of the level set field at t = 0.3s, t = 0.4s, t = 0.7s and t = 0.8s, respec-
tively. It can be seen that the level set field is not smooth. This is attributed to the fact that a coarse mesh
is being employed and requires a finer mesh for high inertia flows. As the simulation progresses, when the
wave crest breaks against the interface, the edges of the wave are a relatively short distance apart compared
to the mesh width. As a large stencil is employed in the interface model, over the course of further time steps
it leads to a tear in the level set field. Hence a much smaller mesh width may be required to avoid an incorrect
advection of the level set field. Due to limited computational and temporal resources a finer mesh could not
be used.

The viscous standing wave and the dam break case successfully illustrate the effectiveness of the balanced-
force sharp interface method. The numerical simulations performed and the comparison made between the
numerical solution obtained by the implemented solver and OpenFOAM demonstrate that the proposed for-
mulation avoids occurrence of spurious velocities and numerical dispersions at the interface. Furthermore,
the pressure-velocity algorithm proposed, eliminates oscillations in the flow fields.

In the next section the analysis and the results of two-phase stratified channel flow are discussed.
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Figure 10.25: Dam Break: Quiver plot of velocity
and contour of the level set field at t=0.3s
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Figure 10.26: Dam Break: Quiver plot of velocity
and contour of the level set field at t=0.7s

Figure 10.27: Dam Break: Contour of level set field:
t=0.3s

Figure 10.28: Dam Break: Contour of level set
field:t=0.4s

Figure 10.29: Dam Break: Contour of level set field:
t=0.7s

Figure 10.30: Dam Break: Contour of level set field:
t=0.8s
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10.3. STRATIFIED FLOW
Stratified flow consists of multiphase flows with a density variation in the vertical direction, where a lighter
fluid lies on top of a denser fluid. In this case, a two-phase stratified channel flow is numerically modeled.
Numerically it can be modeled with two sets of boundary conditions:

• Inflow-Outflow

• Periodic boundary conditions

In the following section the results and analysis of the stratified case for the two choices of boundary condi-
tions are discussed.

10.3.1. INFLOW-OUTFLOW BOUNDARY CONDITIONS
The following boundary conditions are imposed:

• Top and Bottom Boundary

– Pressure- Non-homogeneous Neumann

– Velocity in ê1- Homogeneous Neumann

– Velocity in ê2- Homogeneous Dirichlet

• Left and Right Boundary

– Pressure

¦ Left- Homogeneous Neumann

¦ Right- Non-homogeneous Dirichlet

– Velocity in ê1- Homogeneous Dirichlet

– Velocity in ê2- Homogeneous Neumann

Figure 10.31 graphically shows the imposed boundary conditions.

Figure 10.31: Stratified flow: Inflow-Outflow
condition

Figure 10.32: Stratified flow: Periodic Boundary
condition

With the imposed boundary conditions the tangential stress on the top and bottom is zero. A Dirichlet condi-
tion is imposed for the pressure evaluated according to the location of the interface. As a result the operators
B and DG become non-singular. As explained in Section 10.2 , at the boundaries the pressure at the ghost
nodes is calculated by employing the specified boundary condition.
The computational and fluid properties defined in Section 10.2.1 and a uniform velocity of u1 = 1 are utilized.

ANALYSIS OF ITERATIVE SOLVER

Figures 10.33, 10.36 show the L∞ norm of the error in the face and the cell center velocities as a function of
the inner loop iterations.
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Figure 10.33: Stratified flow: Plot of L∞ norm of
the error in u1
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Figure 10.34: Stratified flow: Plot of L∞ norm of
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Figure 10.35: Stratified flow: Plot of L∞ norm of
the error in uc
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Figure 10.36: Stratified flow: Plot of L∞ norm of
the error in uc
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Figures 10.37 to 10.40 show L∞ norm of the error in the velocities as a function of the number of inner loop
iterations for the case, where the pressure is perturbed as explained in Section 10.2.1.
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Figure 10.37: Stratified flow Perturbed case: Plot of
L∞ norm of the error in u1
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Figure 10.38: Stratified flow Perturbed case: Plot of
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Figure 10.39: Stratified flow Perturbed case: Plot of
L∞ norm of the error in uc
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Figure 10.40: Stratified flow Perturbed case: Plot of
L∞ norm of the error in uc
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10.3.2. PERIODIC BOUNDARY CONDITIONS
Periodic boundary conditions mimic an infinite channel, which is useful for assessing fully developed flows
such as the steady state channel flow. The following boundary conditions are imposed for the case of periodic
boundaries:

• Top and Bottom Boundary

– Pressure- Non-homogeneous Neumann

– Velocity in ê1- Homogeneous Neumann

– Velocity in ê2- Homogeneous Dirichlet

• Left and Right Boundary

– Pressure - Periodic
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– Velocity in ê1- Periodic

– Velocity in ê2- Periodic

Figures 10.41 to 10.44 show the L∞ norm of the error in the velocities as a function of the inner loop iterations.
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Figure 10.41: Stratified flow Periodic boundaries:
Plot of L∞ norm of the error in u1
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Figure 10.42: Stratified flow Periodic boundaries:

Plot of L∞ norm of the error in u
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Figure 10.43: Stratified flow Periodic boundaries:
Plot of L∞ norm of the error in uc
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Figure 10.44: Stratified flow Periodic boundaries:
Plot of L∞ norm of the error in uc
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10.3.3. ANALYSIS
The visualizations of the error in the face and cell center velocity show an increase in the errors over the
course of the iterations, in contrast to the closed box case, where the errors stabilize and level off. Although a
force balance is produced, inferred from the fact that the numerical solution obtained in the first inner loop
iteration is accurate upto machine precision, the error in the solution slowly builds up over time. Despite the
fact that the flow variables are initialized to the exact analytical solution, small round off errors build up and
destabilize the discrete system, pointing to an unstable equilibrium. This can most likely be attributed to two
factors:
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• floating point arithmetic

• unstable nature of the operators

In the following section, these two factors are investigated and analyzed.

FLOATING POINT ARITHMETIC

The correction calculated for the flow variables is small and comparable to machine precision at the begin-
ning of the simulation. Hence, the corrected values of the flow variables can be affected by rounding off
errors of comparable magnitude as the correction. Although the pressure correction is of comparable size to
the round of error, it is essential to make the face velocity field divergence free. Furthermore, the magnitude
of the pressure is higher than the magnitude of the correction in pressure. Hence, due to a limited compu-
tational precision, when the pressure is corrected, the mantissa of corrected pressure cannot account for the
mantissa of the correction in pressure.
To counter this limitation, the pressure is split into a background pressure and the perturbation over the
background pressure. The operators are evaluated individually for the split values. Furthermore, the pertur-
bation is updated with the correction in pressure to ensure the correction is not lost due to limited numerical
precision.
The pressure is split as the background pressure p̄ and perturbation over this pressure ṗ

p = p̄ + ṗ. (10.11)

The operators are evaluated individually
B p = B p̄ +B ṗ, (10.12)

DG f p = DG f p̄ +DG f ṗ. (10.13)

Furthermore, the pressure is updated by correcting the perturbation. Hence,

ṗ l+1 = ṗ l +δp. (10.14)

SINGLE PHASE FLOW:BEHAVIOR OF DISCRETE OPERATORS

It is sufficient for a stationary discrete formulation to comply with the differential equation and the interface
jump conditions. However, to apply the approach to solve unsteady flow problems the influence of the re-
formulated operators on the stability properties of the system has to be investigated. In this subsection the
properties of the individual operators and their behavior when they are embedded in the complete solver
algorithm is analyzed for single phase flow. Based on the analysis of the operators for single phase flow, the
nature of the behavior of the operators is extrapolated to the case for multiphase flow with a large density
ratio.
Conservation of momentum in discrete form is written as

du

d t
+C (u)u =−Gp + Ju (10.15)

where C (u) is the divergence of the linearized convective flux function The discrete form of the continuity
equation is written as

Du +B p = 0 (10.16)

The temporal rate of change in the kinetic energy in the domain is expressed as

1

2

duT u

d t
= 1

2
uT du

d t
+ 1

2

duT

d t
u (10.17)

Taking the transpose of (10.14) gives

duT

d t
+uT C T (u) =−pT GT +uT J T (10.18)

Pre-multiplying equation (10.14) by uT and post multiplying (10.18) by u and substituting in 10.17 gives

1

2

duT u

d t
=−1

2

(
uT (

C (u)+C T (u)
)

u
)+ 1

2

(
uT (

J + J T )
u

)− 1

2

(
uT Gp +pT GT u

)
(10.19)
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As the convection terms are discretized using a central scheme the operator C is skew symmetric. Hence

1

2

duT u

d t
= 1

2

(
uT (

J + J T )
u

)− 1

2

(
uT Gp +pT GT u

)
(10.20)

It holds that

DT =−G (10.21)

Hence, using (10.21) and (10.16) in (10.20), gives

1

2

duT u

d t
= 1

2

(
uT (

J + J T )
u

)− 1

2

(
pT B T p +pT B p

)
(10.22)

= 1

2

(
uT (

J + J T )
u

)− 1

2

(
pT (

B T +B
)

p
)

= uT Ju +pT B p

In the above equation, it can be seen that if the operator J is symmetric negative definite then

∀u ∈R\ {0} : uT Ju < 0. (10.23)

Similarly, if B is symmetric positive definite then

∀p ∈R\ {0} : pT J p > 0. (10.24)

Hence,
1

2

duT u

d t
= 1

2

(
uT (

J + J T )
u

)− 1

2

(
pT (

B T +B
)

p
)< 0 (10.25)

It can be inferred that the kinetic energy of a perturbation will decrease if J is symmetric negative definite and
B is symmetric positive definite. Hence, if the numerical stability conditions are met, the resulting system will
be stable and can be numerically integrated in a stable manner with a time-integration method.

ANALYSIS OF MULTIPHASE FLOWS

Pressure splitting was employed to evaluate the operators and the pressure update in the integrated solver,
as explained in Section 10.3.3. The numerical solution was indistinguishable for the implementation with
and without the splitting. Hence, it can be concluded that the characteristic of an unstable equilibrium is not
likely explainable by a limited numerical precision.

The stratified two-phase flow has a uniform velocity and an exact analytical solution dictated by the con-
tinuous form of the governing equations. The discrete formulation satisfies the interface and the boundary
conditions, hence it can be inferred that a solution to the discrete system exists, namely the exact solution
with which the solver is initialized. Analysis of the evolution of discrete kinetic energy for single phase flows
pointed to the stability relations the operators should hold. It can be reasonably speculated that the stability
constraints should hold for operators constructed for multiphase flows. The eigenspectrum of the formulated
operator B was studied, wherein an inhomogeneous Dirichlet boundary condition is imposed for pressure at
the top boundary. It was noted that the eigenspectrum for this case contains both negative and positive eigen-
values. The spectrum of a symmetric (semi) positive definite matrix is strictly (non-negative)positive. Hence,
it can be inferred that the formulated B operator, for the case of stratified flow is not a symmetric positive
definite matrix.

Stratified two-phase flow is an exceptional case, where the diffusion term vanishes due to uniform velocity
in the computational domain. As a result the contribution of the operator J is small compared to the contri-
bution of the operator B . Hence over the course of the iterations, a (unavoidable) non-zero round off error
develops in the vector projection of the pressure gradient in the direction of the negative valued eigenmode.
As a result the kinetic energy increases as the contribution of the operator B overwhelms the contribution of
the operator J .

Furthermore, the formulation of the operator B leads to a shift in the weights of the contributions of the
surrounding control volumes creating a non-standard stencil(listed in Appendix-A). The effect of such a shift
in the weights is unclear and needs to be investigated.
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CONCLUSIONS

The objective of this research was to formulate a balanced-force numerical framework applicable for incom-
pressible, immisicble two-phase flows for the case where the interface between the two fluids does not have
to coincide or to be aligned with the faces of the control volumes in the computational domain. This was
achieved by formulating a reconstruction of the flow variables using a second order Taylor expansion at the
interface. Discrete operators were formulated, in which the gradients of the flow variables are evaluated in
the the limit values of the gradient upon approaching the interface. Numerical experiments were carried out
to ascertain the efficacy of the formulation for a quiescent flow for the case where the interface coincides, is
offset and aligned and is arbitrarily inclined to the faces of the control volumes. The accuracy of the formu-
lation was studied by comparing the order of the local truncation error computed mathematically and nu-
merically. An iterative in-stationary solver for multiphase flows based on the approach of Miller and Schmidt
was proposed. The numerical framework was analyzed for steady and unsteady dynamic cases of quiescent
flow, a viscous standing wave in a closed tank, dam break and stratified flow. Finally, an examination of the
properties and the behavior of the operators embedded in the iterative solver was carried out.

CONCLUSIONS
Based on the extensive analysis of the formulated numerical method and the numerical experiments per-
formed the following conclusions can be drawn about the balanced-force formulation to numerically model
two-phase incompressible, immiscible flows:

• A balanced-force framework applicable for interface that is arbitrarily located and oriented with respect
the faces of the control volumes is achieved by:

– Reconstruction of the flow variables at the interface based on the interface jump conditions.

– Discretization of the gradients in the discrete operators in the limit of approaching the interface
such that the operators comply with the interface jump conditions.

– Employing a balanced-force based density.

The numerical solution produced by this framework avoids the occurrence of spurious velocities and
leads to a physically consistent solution.

• The local truncation error in the operators B and DG f is fourth order accurate away from the interface
and second order accurate near the interface. Hence the constructed operators do not lead to a loss of
accuracy of the discrete system.

• The interface jump condition for the pressure simplifies to the hydrostatic interface jump condition for
the case where the Reynolds number tends to infinity. The numerical experiments of the dynamic cases
carried out at low Reynolds number also gave accurate results, which implies the hydrostatic interface
jump condition is a sufficient condition to model two-phase flows at low and high Reynolds numbers.

89
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• For the case of unsteady flows, wherein the discrete operators are incorporated in the iterative solver
stability relations need to hold true. In exceptional cases where the diffusion term vanishes, the desta-
bilizing contribution of the operator B overwhelms the stabilizing contribution of the operator J , likely
leading to a discrete system with an unstable equilibrium.

RECOMMENDATION FOR FUTURE RESEARCH
In this research, the coefficients of the pressure gradients in the operators involved in the the formulation of
the face velocity and the pressure-velocity coupling were scaled by the inverse of the density and the time
step to ensure dimensional correctness. The individual derivatives were calculated such that the vector pro-
jection of the pressure gradient in the direction of gravity complies with the hydrostatic interface jump con-
dition. The coefficients can also be formulated to take into account the convective and the diffusive term as
elaborated by Miller and Schmidt [13] and Rhie and Chow [11]. The precise choice of the coefficients cannot
be mathematically justified, and hence a sensitivity analysis to the choice of coefficients is required.

The nature of the local truncation errors in the operators, which are integral to the balanced-force formu-
lation, was investigated. Further analysis could be done regarding the characteristics of the global truncation
error of the discrete system.

The proposed formulations were implemented on a Cartesian grid employing the collocated arrangement
of unknowns. The collocated arrangement of unknowns provides an opportune choice to discretize the sys-
tem of equations on an unstructured computational domain. Hence, an effort could be taken to extend the
formulation to general arbitrary unstructured control volumes.

In this research the level set method was utilized as an interface tracking method. A drawback of this
method is that it requires reinitialization to maintain the property of a signed distance function which leads
to a loss of mass over the course of time steps. The balanced-force formulation requires the location and
the orientation of the interface to construct the operators involved in the framework. Hence an approach
to employ this formulation coupled with another interface tracking method that can provide the necessary
information, such as the Geometric Volume of Fluid method, could be investigated.

Stability relations for the operators were derived for single phase flows. Based on these relations, the
stability requirements for the operators in multiphase flows were conjectured. As the stability requirements
for the balanced-force formulation only holds true when the system reduces to single phase flows, a more
detailed concrete investigation is needed to draw definite conclusions.

The conducted numerical experiments conducted displayed the conformance of the formulation with the
interface jump conditions. The balanced-force numerical framework can be used to validate flow instabilities
that require such a sharp interface treatment. For example the lateral roll of ship creates waves at the water-
air interface. A balanced-force numerical model will ensure that the numerical solution produces physically
consistent waves without adding any numerical dispersion. The proposed framework can be integrated in an
available flow solver, such as OpenFOAM, to evaluate more complex dynamic flow cases.

”The more I read, the more I acquire, the more certain I am that I know nothing”.
— Voltaire
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The stencils obtained for a computational domain of size l × l for the discrete operators DG f and B are listed
below for the following computational and fluid properties:

Computational Properties

• Mesh width h
l : 0.01

• Interface location : x2
l = 0.5

Computational Properties

• Density : ρ1 = 50, ρ2 = 1

The stencils have been listed for the control volumes located near the interface as shown in Figure A.1
and A.2, for operator B and DG f , respectively. A comparison of the resulting stencil is made between single
phase flow of density ρ = 50, single phase flow of density ρ = 1 and two-phase flow of ρ1 = 50 and ρ2 = 1.

A.1. STENCILS OF OPERATOR B

CV ρ = 50 ρ = 1 ρ1 = 50, ρ2 = 1

1


0.05
−0.2

0.05 −0.2 0.6 −0.2 0.05
−0.2
0.05




2.5
−10

2.5 −10 30 −10 2.5
−10
2.5




2.5
−2.7941

0.05 −0.02 0.7441 −0.02 0.05
−0.02
0.05



2


0.05
−0.2

0.05 −0.2 0.6 −0.2 0.05
−0.2
0.05




2.5
−10

2.5 −10 30 −10 2.5
−10
2.5




0.0980
−0.2480

0.05 −0.02 0.6 −0.02 0.05
−0.02
0.05



3


0.05
−0.2

0.05 −0.2 0.6 −0.2 0.05
−0.2
0.05




2.5
−10

2.5 −10 30 −10 2.5
−10
2.5




2.5
−10

2.5 −10 30 −10 2.5
−7.5980
0.0980



4


0.05
−0.2

0.05 −0.2 0.6 −0.2 0.05
−0.2
0.05




2.5
−10

2.5 −10 30 −10 2.5
−10
2.5




2.5
−10

2.5 −10 22.7941 −10 2.5
−0.3441

0.05
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Figure A.1: Location of the control volumes: Operator B

A.2. STENCIL OF OPERATOR DG f

CV ρ = 50 ρ = 1 ρ1 = 50, ρ2 = 1

1

 −1
−1 4 −1

−1

  −0.2
−0.2 0.8 −0.2

−0.2

  −0.392
−0.2 0.992 −2

−0.2


2

 −1
−1 4 −1

−1

  −0.2
−0.2 0.8 −0.2

−0.2

  −1
−1 3.0392 −1

−0.0392



Figure A.2: Location of the control volumes: Operator DG f
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A comparison was made between the numerical solution obtained for the proposed balanced-force formula-
tion and the numerical solution of OpenFOAM(Version 2.4.0). The files specifying the OpenFOAM setup have
been listed below. FunkySetFields utility, part of swak4Foam was utilized to initialize the perturbed interface
between the two fluids.

/ *−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*− C++ −*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
| ========= | |
| \ \ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \ \ / O peration | Version : 2 . 4 . 0 |
| \ \ / A nd | Web: www.OpenFOAM. org |
| \ \ / M anipulation | |
\*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−* /
FoamFile
{

version 2 . 0 ;
format a s c i i ;
class volScalarFie ld ;
object p ;

}
/ / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /
dimensions [1 −1 −2 0 0 0 0 ] ;
i n t e r n a l F i e l d uniform 0 ;
boundaryField
{ wall

{
type empty ;

}

i n l e t 1
{

type zeroGradient ;
}

outlet1
{

type zeroGradient ;
}

wall_upper
{

type zeroGradient ;
}

wall_lower
{

type zeroGradient ;
}

}
/ / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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/ *−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*− C++ −*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
| ========= | |
| \ \ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \ \ / O peration | Version : 2 . 4 . 0 |
| \ \ / A nd | Web: www.OpenFOAM. org |
| \ \ / M anipulation | |
\*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−* /
FoamFile
{

version 2 . 0 ;
format a s c i i ;
class volVectorField ;
object U;

}
/ / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /

dimensions [0 1 −1 0 0 0 0 ] ;

i n t e r n a l F i e l d uniform (0 0 0 ) ;

boundaryField
{

wall
{

type empty ;
}

wall_upper
{

type s l i p ;
}

wall_lower
{

type s l i p ;
}

i n l e t 1
{

type s l i p ;
}

outlet1
{

type s l i p ;
}

}

/ / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /
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/ *−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*− C++ −*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
| ========= | |
| \ \ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \ \ / O peration | Version : 2 . 4 . 0 |
| \ \ / A nd | Web: www.OpenFOAM. org |
| \ \ / M anipulation | |
\*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−* /
FoamFile
{

version 2 . 0 ;
format a s c i i ;
class volScalarFie ld ;
location "0" ;
object alpha . water ;

}
/ / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /

dimensions [0 0 0 0 0 0 0 ] ;
i n t e r n a l F i e l d uniform 0 ;

boundaryField
{

boundaryField
{

outlet1
{

type zeroGradient ;
}
i n l e t 1
{

type zeroGradient ;
}
wall_upper
{

type zeroGradient ;
}
wall_lower
{

type zeroGradient ;
}
wall
{

type empty ;
}

}

}
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/ *−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*− C++ −*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
| ========= | |
| \ \ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \ \ / O peration | Version : 1.6 |
| \ \ / A nd | Web: www.OpenFOAM. org |
| \ \ / M anipulation | |
\*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−* /
FoamFile
{

version 2 . 0 ;
format a s c i i ;
class dictionary location "system" ;
object controlDict ;

}
/ / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /

application interFoam ;

startFrom latestTime ;

startTime 0 . 0 ;

stopAt endTime ;

endTime 20;

deltaT 0.0005;

writeControl adjustableRunTime ;

w r i t e I n t e r v a l 0 . 0 2 ;

purgeWrite 0 ;

writeFormat a s c i i ;

writePrecision 6 ;

writeCompression uncompressed ;

timeFormat general ;

timePrecision 6 ;

runTimeModifiable yes ;

adjustTimeStep yes ;

maxCo 0 . 5 ;
maxAlphaCo 0 . 0 5 ;

maxDeltaT 1 ;

/ / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /
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/ *−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*− C++ −*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
| ========= | |
| \ \ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \ \ / O peration | Version : 2 . 4 . 0 |
| \ \ / A nd | Web: www.OpenFOAM. org |
| \ \ / M anipulation | |
\*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−* /
FoamFile
{

version 2 . 0 ;
format a s c i i ;
class dictionary ;
location "system" ;
object fvSchemes ;

}
/ / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /

ddtSchemes
{

default Euler ;
}

gradSchemes
{

default Gauss l i n e a r ;
}

divSchemes
{

div ( rhoPhi ,U) Gauss linearUpwind grad (U) ;
div ( phi , alpha ) Gauss vanLeer ;
div ( phirb , alpha ) Gauss l i n e a r ;
div ( ( muEff*dev (T( grad (U) ) ) ) ) Gauss l i n e a r ;

}

laplacianSchemes
{

default Gauss l i n e a r corrected ;
}

interpolationSchemes
{

default l i n e a r ;
}

snGradSchemes
{

default corrected ;
}

fluxRequired
{

default no ;
p_rgh ;
pcorr ;

}
/ / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /
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/ *−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*− C++ −*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
| ========= | |
| \ \ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \ \ / O peration | Version : 2 . 4 . 0 |
| \ \ / A nd | Web: www.OpenFOAM. org |
| \ \ / M anipulation | |
\*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−* /
FoamFile
{

version 2 . 0 ;
format a s c i i ;
class dictionary ;
location "system" ;
object fvSolution ;

}
/ / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /

solvers
{

" alpha . water . * "
{

nAlphaCorr 1 ;
nAlphaSubCycles 10;
cAlpha 1 ;

}

p_rgh
{

solver GAMG;
tolerance 1e−08;
re l Tol 0 . 0 1 ;
smoother DIC ;
nPreSweeps 0 ;
nPostSweeps 2 ;
nFinestSweeps 2 ;
cacheAgglomeration f a l s e ;
nCellsInCoarsestLevel 10;
agglomerator faceAreaPair ;
mergeLevels 1 ;

}

p_rghFinal
{

$p_rgh ;
re l Tol 0 ;

}

" pcorr . * "
{

$p_rghFinal ;
tolerance 0.0001;

}

U
{

solver smoothSolver ;
smoother GaussSeidel ;
tolerance 1e−06;
re l Tol 0 ;
nSweeps 1 ;

}

" ( k | B | nuTilda ) "
{

solver smoothSolver ;
smoother symGaussSeidel ;
tolerance 1e−08;
re l Tol 0 ;

}
}
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PIMPLE
{

momentumPredictor no ;
nCorrectors 3 ;
nNonOrthogonalCorrectors 0 ;

pRefPoint (0 .51 0.51 0 ) ;
pRefValue 0 ;

}

/ / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /
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