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A B S T R A C T

Background: Local activation time (LAT) annotation in unipolar electrograms is complicated by interference
from nonlocal atrial activities of neighboring tissue. This happens due to the spatial blurring that is inherent
to electrogram recordings. In this study, we aim to exploit multi-electrode electrogram recordings to amplify
the local activity in each electrogram and subsequently improve the annotation of LATs.
Methods: An electrogram array can be modeled as a spatial convolution of per cell transmembrane currents
with an appropriate distance kernel, which depends on the cells’ distances to the electrodes. By deconvolving
the effect of the distance kernel from the electrogram array, we undo the blurring and estimate the underlying
transmembrane currents as our desired local activities. However, deconvolution problems are typically highly
ill-posed and result in unstable solutions. To overcome this issue, we propose to use a regularization term that
exploits the sparsity of the first-order time derivative of the transmembrane currents.
Results: We perform experiments on simulated two-dimensional tissues, as well as clinically recorded electro-
grams during paroxysmal atrial fibrillation. The results show that the proposed approach for deconvolution
can improve the annotation of the true LAT in the electrograms. We also discuss, in summary, the required
electrode array specifications for an appropriate recording and subsequent deconvolution.
Conclusion: By ignoring small but local deflections, algorithms based on steepest descent are prone to generate
smoother activation maps. However, by exploiting multi-electrode recordings, we can efficiently amplify small
but local deflections and reveal new details in the activation maps that were previously missed.

1. Introduction

Atrial electrograms (EGMs) recorded during high resolution atrial
mapping as well as their corresponding activation maps, facilitate
the identification and localization of potential triggers and substrates
perpetuating atrial fibrillation (AF). They can also be used to guide
cardiologists through treatment approaches such as EGM based ablation
therapies [1].

An EGM recording is an aggregation of the per cell activities that are
in the neighborhood of an electrode. How strong each individual cell
contributes to the total aggregated potential depends on the distance of
the cell to the electrode, as well as on the electrode’s dimension [2]. The
depolarization wavefront propagation in a rather homogeneous tissue
with a uniform excitation wavefront results in a smooth stereotype
atrial activity: a positive spike followed by a negative deflection. In
these cases, the local activation time (LAT) of the cells that are right
under the electrode coincides with the maximum negative deflection or
the steepest descent (SD) of the electrogram.

∗ Corresponding author.
E-mail address: b.abdikivanani@tudelft.nl (B. Abdi).

However, if the tissue is inhomogeneous or multiple excitation
wavefronts are propagating in the electrode’s neighborhood, the
recorded EGM may contain nonlocal (far-field) deflections from the
so called ‘‘distant active membrane’’ [3]. In such cases, the steepest
descent annotated as the LAT might belong to a far-field excitation and
not to the local activity. This makes the estimation of LATs prone to
errors and will negatively affect the estimation of other parameters that
depend on LATs, such as conduction velocity or tissue conductivity [4].
This, in turn, complicates the analysis of EGM recordings and the un-
derlying atrial substrate for AF by adding confusion about the origin of
observed components [5]. As shown in a study on bipolar electrograms
in [6], 67% of complex fractionated electrograms represent nonlocal
activities and are thus not consistent with spatial disorganization in
the tissue.

To attenuate the effect of nonlocal activities, bipolar electrograms
are alternatively used in many studies. However, these recordings suffer
from serious drawbacks including sensitivity to propagation direction
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and providing no useful information about the potential distribution
in the electrogram. Many other studies directly focus on improving
LAT estimation in fractionated atrial electrograms. A review of such
methods can be found in [7]. Some of these approaches try to make use
of spatial information offered by multi-electrode recordings. These in-
clude application of cross-correlation, spatial filtering, spatial gradient
or spatial deconvolution, among which only the spatial deconvolution
is formulated according to an electrophysiological model of the tissue.
It benefits from the fact that a multi-electrode electrogram recording
can be modeled as a convolution of the per cell transmembrane current
with a spatial filter that depends on the electrode’s diameter and its
distance to the cells [8].

In this paper, we also exploit the convolutive electrogram model for
a better annotation of the local deflection (and respectively the local
activation time) in fractionated electrograms. We first present a model
for the EGM array that reflects the spatial convolution. By employing
this model, we formulate a deconvolution problem to estimate the local
activities. However, the deconvolution problem is under-determined
and results in unstable solutions. To overcome this issue, some studies
employ prior knowledge such as planar wavefront propagation [8].
Other studies use spatial interpolation and filtering to artificially intro-
duce more data points [2]. None of the assumptions in these approaches
are satisfactory from a physiological point of view. In this paper, we
propose to use a regularization based on sparsity of the first-order time
derivative of the electrograms to solve the inverse problem of local ac-
tivity estimation. We solve the proposed deconvolution problem using
the Split Bregman method [9]. Overall, the approach is computationally
efficient, does not suffer from boundary artifacts, and can also perform
with incomplete observations. Our results on simulated and clinically
recorded data show that the proposed approach can efficiently amplify
the local activities in an EGM and outperforms the reference approaches
in estimation of the LAT.

2. Method

2.1. Action potential propagation

An electrogram is the record of changes in the potentials of the
many cells surrounding an electrode. These changes in per cell poten-
tials are the result of action potential propagation in the tissue. This
propagation in a two-dimensional (2D) tissue can be modeled using the
following reaction–diffusion equation [10]

𝐶
𝜕𝑉 (𝑥𝑐 , 𝑦𝑐 , 𝑡𝑐 )

𝜕𝑡
= 𝐼(𝑥𝑐 , 𝑦𝑐 , 𝑡𝑐 ) + 𝐼st (𝑥𝑐 , 𝑦𝑐 , 𝑡𝑐 ) − 𝐼ion(𝑥𝑐 , 𝑦𝑐 , 𝑡𝑐 , 𝑉 ), (1)

where 𝑉 (𝑥𝑐 , 𝑦𝑐 , 𝑡𝑐 ) is the per cell potential at location (𝑥𝑐 , 𝑦𝑐 ) and time
𝑡𝑐 , 𝐶 = 1μF cm−2 is the total membrane capacitance, 𝐼st is the stimulus
current, and 𝐼ion is the total ionic current computed according to the
Courtemanche model in [11]. 𝐼(𝑥𝑐 , 𝑦𝑐 , 𝑡𝑐 ) = 𝑆−1

𝑣 ∇⋅𝜮(𝑥𝑐 , 𝑦𝑐 )∇𝑉 (𝑥𝑐 , 𝑦𝑐 , 𝑡𝑐 )
is the transmembrane current, with 𝑆𝑣 = 0.24 μm−1 the cellular surface-
to-volume ratio, and 𝜮(𝑥𝑐 , 𝑦𝑐 ) the intracellular conductivity tensor.

2.2. Electrogram model

An electrogram can modeled as the weighted summation of per
cell transmembrane currents. The weights are equal to the inverse
of the cell-to-electrode distance. The distance between a cell at po-
sition (𝑥𝑐 , 𝑦𝑐 ) and an electrode at position (𝑥𝑚, 𝑦𝑚) and a (constant)
height 𝑧0 above the 2D tissue equals

√

(𝑥𝑐 − 𝑥𝑚)2 + (𝑦𝑐 − 𝑦𝑚)2 + 𝑧20. The
electrogram can thus be modeled as [10]

𝛷(𝑥𝑚, 𝑦𝑚, 𝑡𝑐 ) =
1

4𝜋𝜎𝑒 ∫
𝐼(𝑥𝑐 , 𝑦𝑐 , 𝑡𝑐 )

√

(𝑥𝑐 − 𝑥𝑚)2 + (𝑦𝑐 − 𝑦𝑚)2 + 𝑧20

d𝐴(𝑥𝑐 , 𝑦𝑐 ), (2)

for 𝑚 = 1, 2,… ,𝑀 , where 𝑀 is the total number of electrodes,  is
the area in which the modeled cells are located, 𝐴(𝑥𝑐 , 𝑦𝑐 ) is the area
variable, and 𝜎𝑒 is the constant extra-cellular conductivity.

Eq. (2) represents a 2D spatial convolution of 𝐼(𝑥𝑐 , 𝑦𝑐 , 𝑡𝑐 ) with a
distance kernel 𝑅0 given by

𝑅0(𝑥𝑐 , 𝑦𝑐 ) =
1

√

𝑥2𝑐 + 𝑦2𝑐 + 𝑧20

. (3)

A plot of 𝑅0 is shown in Fig. 9(a). The spatial sampling implemented
by the electrode array is modeled by a sampling operator 𝑆0,

𝑆0(𝑥𝑐 , 𝑦𝑐 ) =
𝑀
∑

𝑚=1
𝛿(𝑥𝑐 − 𝑥𝑚)𝛿(𝑦𝑐 − 𝑦𝑚)

where 𝛿(𝑥𝑐 ) is a Dirac delta impulse. The measurement model in Eq. (2)
can thus be written as

𝛷(𝑥𝑐 , 𝑦𝑐 , 𝑡𝑐 ) =
1

4𝜋𝜎𝑒
𝑆0(𝑥𝑐 , 𝑦𝑐 )

(

𝑅0(𝑥𝑐 , 𝑦𝑐 ) ∗∗ 𝐼(𝑥𝑐 , 𝑦𝑐 , 𝑡𝑐 )
)

, (4)

where ∗∗ denotes the 2D spatial convolution. Note that we have as-
sumed the electrode diameter can be neglected in the model for 𝑅0.
We will motivate this assumption in Section 3.6.

To be able to invert the model, we discretized Eq. (4) in space as
well as in time. In space, we use source clamping and replace each
block of cells in the three dimensional tissue with a modeled ‘‘cell’’ on a
uniform 2D grid of cells with cell-to-cell distance 𝛥𝑥 and 𝑁 = 𝑟𝑐×𝑐𝑐 the
total number of cells. 𝑟𝑐 and 𝑐𝑐 are the number of rows and columns of
the grid, respectively. We also sample in time with sample period 𝑇𝑠 and
total number of time-domain samples 𝑇 . The discretized convolutive
model of the electrogram then becomes

𝛷[𝑥, 𝑦, 𝑡] = 𝑐 𝑆0[𝑥, 𝑦]
(

𝑅0[𝑥, 𝑦] ∗∗ 𝐼[𝑥, 𝑦, 𝑡]
)

, (5)

where 𝑥, 𝑦, 𝑡 are integers that index the sample grid, and 𝑐 = 𝛥𝑥2∕4𝜋𝜎𝑒
contains all constants and will be omitted for simplification. The sam-
pled distance kernel 𝑅0[𝑥, 𝑦] is represented by a limited support of size
(2𝑏+1)× (2𝑏+1) elements. To implement the convolution, the modeled
2D grid of cells need to be extended by 𝑏 cells in each direction. The
sampling operator 𝑆0[𝑥, 𝑦] selects only the 𝑀 spatial locations on the
grid on which we have measurements, and replaces the other locations
with zero. This discretized model is easily translated into a matrix
model [4].

2.3. Transmembrane current estimation

Our aim, in this section, is to estimate the transmembrane currents
𝐼[𝑥, 𝑦, 𝑡] in Eq. (5), which is both a deconvolution and an interpolation
problem. Basically, the deconvolution can be performed by using a
loss function that minimizes the least square error between the target
value 𝛷 and the estimated value 𝑆0(𝑅0 ∗∗ 𝐼) (first term in Eq. (6),
below). However, since the number of available electrograms is less
than the number of modeled cells and the distance kernel has a low-
pass filtering effect, the inverse problem is highly ill-posed and results
in unstable solutions. To stabilize the solution, we need to introduce
regularization constraints that rule out physically unlikely solutions by
employing prior knowledge of the expected solution.

A classical regularization technique in this context is Tikhonov
regularization [12], however, it provides only a spatial constraint, and
the underlying assumptions on the prior are not strong enough to
provide for much interpolation. A priori space–time information such
as a specific wave pattern propagation is too specific and does not
hold if the EGMs are fractionated. On the other hand, a priori infor-
mation should be simple enough to allow an efficient problem solving.
As shown in many studies, the sharp deflections in an electrogram
are of high importance in the analysis of wave propagation and AF.
These deflections are visible in the first-order time derivative of the
transmembrane current, denoted by 𝐼 ′[𝑥, 𝑦, 𝑡]. A prior model is that the
temporal derivative should have only a few nonzero elements, which
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Fig. 1. The first row of the image shows four normalized conductivity maps (CM) denoted by T1 to T4. The second row shows the corresponding true activation maps (AM) and
the third row shows three example electrograms recorded by electrodes at locations A, B, and C denoted by the red ∗. The true LAT of each electrogram is denoted by vertical
red dashed lines.

are its fast temporal deflections. Note that the assumption may not hold
for electrograms recorded at areas with continuous electrical activity
and no distinct deflection. However, in most types of fractionated elec-
trograms, specially those due to far-field atrial activities, lines of blocks
and wave collisions, the number of deflections is still small and the first-
order time derivative of the transmembrane current can be considered
sparse. In an optimization framework, this is implemented by imposing
an 𝓁1-norm constraint as the regularization function (the second term
in Eq. (6), below). The 𝓁1-norm which is the sum of absolute values,
is known to induce sparsity in the solution. The resulting regularized
optimization problem that we propose is thus given by

min
𝐼

‖𝛷 − 𝑆0(𝑅0 ∗∗ 𝐼)‖22 + 𝜆‖𝐼 ′‖1 (6)

where

‖𝐼‖22 ∶=
∑

𝑥

∑

𝑦

∑

𝑡
|𝐼[𝑥, 𝑦, 𝑡]|2 , ‖𝐼 ′‖1 ∶=

∑

𝑥

∑

𝑦

∑

𝑡
|𝐼 ′[𝑥, 𝑦, 𝑡]|

and 𝜆 is a regularization parameter that is a weight on the importance
of the regularization, which will be discussed further in Section 3.7.

Due to the coupling between the 𝓁1-norm and the 𝓁2-norm terms,
Eq. (6) is a hard problem to solve. An efficient numerical approach
to solve 𝓁1-regularized problems is the Split Bregman algorithm [9]
which splits the 𝓁1-norm and 𝓁2-norm components by introducing new
variables. To efficiently employ the Split Bregman algorithm on this
problem, we propose to use two new splitting variables, 𝑍1 = 𝑅0 ∗∗ 𝐼
and 𝑍2 = 𝐼 ′. The new optimization problem will then be

min
𝐼,𝑍1 ,𝑍2 ,𝐵1 ,𝐵2

‖𝛷 − 𝑆0𝑍1 ‖
2
2 + 𝜇1 ‖𝑍1 − (𝑅0 ∗∗ 𝐼) − 𝐵1 ‖

2
2

+ 𝜆‖𝑍2 ‖1 + 𝜇2 ‖𝑍2 − 𝐼 ′ − 𝐵2 ‖
2
2 (7)

where 𝐵1 and 𝐵2 are the Bregman iterative parameters and 𝜇1 and
𝜇2 are the penalty parameters. Due to the decoupling, we can now
break the problem in Eq. (7) into five easy steps. Each step updates
the value of one of the unknown parameters 𝐼,𝑍1, 𝑍2, 𝐵1, and 𝐵2. A
proper representation of Eq. (7) for structured matrix computations
and a detailed description of the five steps taken to solve it, can be
found in our previous work in [13], where in a preliminary study,
we focused on the proper formulation of the present problem and the
derivation of efficient solutions for its steps. In total, the algorithm has
a fast convergence rate to a reasonable precision in practice by avoiding
costly matrix inversion and performing the computations in the Fourier
domain.

Note that the modeled cell size 𝛥𝑥 that we use in the inverse prob-
lem to estimate the transmembrane currents is much larger than a real
cell size and, as mentioned before, each modeled cell in our simulation
represents a group of cells in the 3D real tissue. Therefore, the estimated
transmembrane currents would actually be more localized electrograms
than the exact per cell transmembrane currents. However, in this paper,
we will keep referring to them as transmembrane currents.



Computers in Biology and Medicine 117 (2020) 103590

4

B. Abdi et al.

Fig. 2. The zoomed activation maps around four representative fractionated electrograms selected from T1 to T4 in Fig. 1 are shown in the first row. The electrogram location
in the center is denoted by red *. The second row shows the fractionated electrograms. The true LAT of each electrogram is denoted by red vertical dashed line. The third and
fourth row show the time derivative of the electrograms, and the time derivative of the estimated transmembrane current with their steepest descent denoted by blue and red
vertical lines, respectively.

3. Simulation results

3.1. Strategies for generation of fractionated electrograms

To perform an instrumental evaluation of our proposed approach,
we need to generate simulated fractionated electrograms. We use var-
ious patterns of heterogeneity for the tissue’s conductivity map, based
on the literature, to produce fractionation. This assures that the patterns
are sufficient to obtain fractionation and the resulting electrograms are
representative of real clinical data. The size of each map is 101 × 83
cells, with 𝛥𝑥 = 0.6 mm. The simulated patterns, in order of increasing
level of heterogeneity, are:

1. A small conduction block: A homogeneous tissue except for two
small areas with smaller conduction in the center (see T1 in
Fig. 1). Notice that T1 is not representative of real tissue, but
serves as a simple example for visualization purposes.

2. Zones of no conduction: In this model the heterogeneities in
conductivity are incorporated as a set of randomly positioned
lines of blocks, disconnecting the coupling between the cells on
the grid [14] (see T2 in Fig. 1).

3. Percolation: the conduction disturbance in this approach is mod-
eled by randomly disconnecting the coupling between some
modeled cells and their neighbors [15] (see T3 in Fig. 1).

4. Zones of no conduction and percolation: both approaches are used
simultaneously to generate new pattern of heterogeneity (see T4
in Fig. 1).

To model action potential propagation in the simulated tissues,
Eq. (1) is discretized and solved using a finite difference method with
no flux boundary condition. A more detailed description of the simula-
tion steps and parameters can be found in [4]. The resulting activation
maps are shown in the second row of Fig. 1. Each pixel in the activation
map represents the true activation time of its corresponding cell which
is annotated as the time when the cell’s potential 𝑉 reaches a threshold
value of −40 mV in the depolarization phase of its action potential. The
white pixels belong to the cells that were positioned on a block and did

not get activated. Finally, Eq. (2) is used to compute the electrograms
recorded by an assumed 15 × 9 electrode array (M=135), with an inter-
electrode distance of 𝛥𝑙 = 3𝛥𝑥, covering the 43 × 25 central cells and a
constant value of 𝑧0 = 1 mm (which will be discussed in Section 3.4).
We used the largest kernel size possible, (2𝑏 + 1) × (2𝑏 + 1) = 83 × 83
to compute the simulated electrograms. The last row of Fig. 1 shows
the simulated electrograms recorded at three locations on the tissue
denoted by the ∗. The true LAT of each electrogram which equals the
activation time of the cell that is exactly under the electrode, is also
denoted by red vertical dashed lines. Due to the heterogeneity in the
tissues, the recorded electrograms have multiple deflections. Moreover,
as we move from T1 to T4, the level of fractionation increases and the
deflections get less distinct.

3.2. Transmembrane currents

To visualize the performance of our proposed approach, we start
with examples of single electrograms. Fig. 2 shows four examples of
fractionated electrograms selected from T1 to T4, respectively. As can
be seen in the zoomed activation maps of the 21 × 21 cells surrounding
the fractionated electrogram, the slow conductions and blocks in the
wave propagation induce fractionation in the recorded electrogram.
The first-order time derivatives of the electrograms are plotted in the
second row. As can be seen, the local deflection that coincides with
the true LAT, is not the steepest descent. These examples show that,
although in most studies the steepest descent is used as the LAT, it may
not provide reliable results in fractionated electrograms.

We used the 15 × 9 electrogram array and Eq. (7) to estimate the
transmembrane current 𝐼[𝑥, 𝑦, 𝑡]. For simplification the limited kernel
size of (2𝑏+1)×(2𝑏+1) = 13×13 was used in the inverse problem. Since
the focus of this study is on introducing the approach itself and not
on optimal tuning of its parameters, we used values that yielded good
results in LAT estimation in all simulations, which are, 𝜆 = 7×10−4, 𝜇1 =
1, 𝜇2 = 1, and the number of iteration Nitr = 100. The custom written
MATLAB codes for simulation of atrial electrograms and estimation of
LATs using the proposed approach are available in the linked Research
Data.
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Fig. 3. Two example electrograms in which both SD𝛷 nd SD𝐼 fail to estimate the true LAT. The first column shows the zoomed activation maps around the selected electrograms
from T2 and T4. The second column shows the electrograms with the true and estimated LAT using both approaches.

The first-order time derivative of the estimated transmembrane
currents are plotted in the third row of Fig. 2. As can be seen, the local
deflections are amplified and the far-field activities are attenuated.
Now as expected, the steepest descent of the transmembrane currents
coincides with the true LAT. Fig. 3 also shows two examples where
both methods fail to estimate the correct LAT. This highly depends on
the wave propagation pattern but mostly happens around areas with
a complex propagation pattern, with a strong far-field activity that is
very close to the electrode location.

As can be seen, the estimated transmembrane currents do not look
as sharp as expected and still some level of fractionation is observed.
This is because the estimation of the transmembrane current in the
inverse problem is highly ill-posed and there is no guarantee that the
resulting electrograms should look like as expected specially in case of
fractionation. This can be imposed on the problem by using different
regularizations such as imposing sparsity constraint on the transmem-
brane current itself to provide sharper results or minimizing the error
between the estimated currents and a stereotype transmembrane cur-
rent. However, our goal in this paper is to improve LAT estimation,
and our experiments with different regularization terms shows that the
current problem formulation in Eq. (6) provides the best results. That
is because imposing the sparsity constraint on the first time-derivative
of the transmembrane current, helps to preserve the sharp deflections
of the transmembrane current (that are later annotated as LATs) while
performing deconvolution.

3.3. LAT Estimation

Since the transmembrane currents are less affected by the far-field
activities, they should provide a better estimation of LATs than the
electrograms. To evaluate the performance of our proposed approach
(SD𝐼 ) in LAT estimation, we have compared its results with two refer-
ence approaches: (i) steepest descent of the electrograms, and (SD𝛷) (ii)
maximum of the spatial gradient of the electrogram array (SG𝛷) [16].
From each of the three conductivity patterns demonstrated as T2, T3
and T4 in Fig. 1, 5 randomly generated tissues were simulated. This

Table 1
RMSE (ms) in LATs estimation of the simulated electrograms using the proposed
approach SD𝐼 , the steepest descent SD𝛷 , and the maximum spatial gradient SG𝛷 .

T2 T3 T4

SD𝐼 2.5 2.4 1.8
SD𝛷 3.1 4.2 2.2
SG𝛷 4.7 7.0 3.0

resulted in 675 simulated electrograms for each pattern. The proposed
and the two reference methods were used to estimate the LATs in each
electrogram.

In the estimation of the error, electrograms that were positioned
on the cells that did not get activated were excluded. This resulted in
658, 650, and 649 simulated electrograms in tissue type T2, T3 and T4,
respectively. The resulting root-mean-square errors (RMSE) between
the true LAT and the LAT estimated by each approach per tissue type
are shown in Table 1. On average, in all tissue types, the proposed
approach outperforms the reference approaches in LAT estimation.

For a better comparison, Fig. 4 shows the histogram of the absolute
errors (larger than 2 ms) in LAT estimation by SD𝛷 and SD𝐼 . As can
be seen, the number of errors with large values are much larger with
SD𝛷 than with SD𝐼 . Since, these large errors belong to areas with
blocks in the tissue, this shows that a large number of the blocks and
heterogeneities are ignored by SD𝛷.

As an example, Fig. 5 demonstrates the true activation map of the
15 × 9 electrogram array recorded on T1, as well as the three estimated
activation maps using SD𝐼 , SD𝛷, and SG𝛷. As can be seen, there is an
area with slower conduction in the center of the tissue which causes
fractionation in the resulting electrograms. Since this area is small
and has a low conductivity, its local deflections are smaller than the
nonlocal deflections caused by far-field activities of the neighboring
cell. As a result, SD𝛷 and SG𝛷 both miss the local deflections, and
annotate the far-field activities as the LAT. On the other hand, the
proposed approach first amplifies the local activities and then annotates
them as the LAT, which helps to preserve the block in the center.
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Fig. 4. The histogram of absolute errors (larger than 2 ms) in LAT estimation using
SD𝛷 and SD𝐼 on simulated electrograms.

Fig. 6 also provides another example of a simulated tissue with two
extensive lines of block that can potentially lead to a reentry circuit
(denoted by the white arrows) in larger scales. The white rectangle in
the middle of the tissue denotes the location of the 15 × 9 electrode
array. The activation maps estimated using the steepest descent SD𝛷
and our propose approach SD𝐼 of the simulated electrograms are also
shown. As can be seen, no evidence of the block lines is visible in the
SD𝛷. This is because the local deflection cased by the wave propagating
in between the two lines is very small compared to the strong activity
of the neighboring cells. On the other hand, our propose approach
SD𝐼 accurately annotates the small local deflections except for the two
electrodes at the boundaries due to the incomplete observations in their
neighborhoods.

3.4. Electrode height z0

Throughout this paper, we used a constant value 𝑧0=1 mm for the
electrode height, as suggested in [17,18]. In this section, we aim to
examine if this value is applicable in our simulation setup and how
it affects the simulated electrograms. To do so, we have designed
an experiment as follows: (i) first, an 8 × 8 subsection of the clin-
ical electrogram array with equal number of rows and columns is
selected. To avoid further complications, a subsection of the array
with non-fractionated electrograms is selected. (ii) The activation map
of the selected subsection is estimated and interpolated (using cubic
interpolation). The resolution is increased by 3 times in both the 𝑥
and the 𝑦 direction. The higher resolution activation map is used as
the activation map of the modeled cells whose sizes are one-third
of the inter-electrode distance. (iii) To regenerate electrograms based
on the higher resolution activation map, the simplified electrogram
model in [4] is used. It employs the simplifying assumption that once
activated, all cells produce the same stereotype action potential 𝑉0(𝑡).
The stereotype 𝑉0(𝑡) is estimated from the Courtemanche model for a
single cell. The action potential produced by each modeled cell will
therefore be 𝑉𝑛(𝑡) = 𝑉0(𝑡 − 𝜏𝑛), where 𝜏𝑛 is the activation time of
the cell. (iv) The transmembrane currents are then calculated using
𝐼(𝑥, 𝑦, 𝑡) = 𝑆−1

𝑣 𝜎∇ ⋅ ∇𝑉 (𝑥, 𝑦, 𝑡). We further normalize the amplitudes of
regenerated and clinical electrograms and ignore all the constants. (v)
Finally, Eq. (2) is used to calculate the regenerated electrograms from
the transmembrane currents. Since the LATs and other parameters are
estimated from the clinical electrograms, the only left parameter that
can affect the morphology of the regenerated electrograms is 𝑧0.

As an example, Fig. 7(a) shows the high resolution activation map
estimated from the selected 8 × 8 subsection of a clinical electrogram
array. Fig. 7(b, c and d) show a clinical electrogram as well as its
corresponding regenerated electrograms (using the above approach)

Fig. 5. The true (simulated) activation map of the 15 × 9 electrogram array in T1, as
well as the estimated activation maps using the proposed approach SD𝐼 , the steepest
descent SD𝛷 , and the maximum spatial gradient SG𝛷 , respectively.

Fig. 6. Simulated tissue with two parallel vertical lines of block close to the center of
the tissue that can potentially lead to a reentry circuit (denoted by white arrows). The
white rectangle in the middle of the tissue denotes the location of the 15 × 9 electrode
array. The activation maps estimated using the steepest descent SD𝛷 and our propose
approach SD𝐼 are also shown.

with three different values of electrode height: 𝑧0 = 1 mm, 𝑧0 =
0.2 mm, and 𝑧0 = 5 mm, respectively. The electrogram location is
denoted by the red * on the activation map. As can be seen, the effect
of 𝑧0 is more evident on the steepness of the main deflection and
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Fig. 7. (a) The high resolution activation map estimated from an 8 × 8 subsection of a
clinical electrogram array. (b, c and d) The clinical and regenerated electrogram of the
electrode at the location denoted by * with z0 = 1 mm, z0 = 0.2 mm and z0 = 5 mm,
respectively.

the regenerated electrogram with 𝑧0 = 1 mm has the best matching
with the clinical electrogram. Although an extension of the above
approach can be used for the systematic estimation of 𝑧0, the accuracy
of the result will largely depend on the accurate estimation of other
underlying parameters including activation map, conductivity map and
the stereotype 𝑉0. This makes the correct estimation of 𝑧0 in a clinical
setup prone to error and almost impractical.

Fig. 8 shows two examples of using wrong values for 𝑧0 in our
proposed inverse problem for estimating LATs for T1 in Fig. 5. The
values used in the inverse problem are 𝑧0 = 0.5 mm, 𝑧0 = 1 mm,
and 𝑧0 = 2 mm, while the true value used in the forward model
for generating the electrograms is 𝑧0 = 1 mm. As can be seen, using
smaller values for 𝑧0, to some extent, will still provide better results
than SD𝛷. This is because the distance kernel has a larger value on its
central element and using it in the inverse problem will sharpen the
electrograms.

3.5. Spatial sampling resolution

The required inter-electrode distance for spatial sampling of the
tissue using the electrode array, depends on the spatial bandwidth
(Nyquist rate) of the electrograms. Although the true spatial band-
width of the underlying electrogram is at the micrometer level and
unknown, it is unavoidably filtered by the response of the measurement
electrodes. In other words, the blurring caused by the distance kernel
𝑅0 limits the spatial resolution of the recorded electrical activity. The
distance kernel (also known as point spread function (PSF) in the
image processing literature [19,20]) performs as a low-pass filter and
inevitably removes the high-frequency components of the recorded
signal.

The so-called ‘‘Full Width at Half Maximum (FWHM)’’ of the dis-
tance kernel is commonly used as a short-hand measure of the required
spatial resolution [20]. It is equal to the width between the two points
on the distance kernel where the amplitude has dropped to half of its

Fig. 8. Three different values of 𝑧0 = 0.5 mm, 𝑧0 = 1 mm, and 𝑧0 = 2 mm are used
in the inverse problem to estimate LATs for T1 in Fig. 5. The true value used in the
forward model for generating the electrograms is 𝑧0 = 1 mm.

Fig. 9. (a) The distance kernel calculated from Eq. (3) with 𝑧0 = 1 mm and (b) a cross
section of the distance kernel at the central row with its FWHM denoted by vertical red
lines. (c and d) The cross section of the distance kernel at the central row for (𝑅0) and
(𝑅′

0), without and with considering the effect of the electrode’s diameter, respectively.
The electrode diameter equals 𝑑0 = 0.45 mm and 𝑑0 = 1 mm in (c) and (d), respectively.

maximum value. Fig. 9(a) shows the symmetric 2D distance kernel of
size 60 × 60 mm2, calculated using Eq. (3) with 𝑧0 = 1 mm and with
ignoring the electrode diameter. The distance kernel is normalized to
have a maximum of 1. Fig. 9(b) shows a cross section of the distance
kernel at the central row where the FWHM is also denoted. For this
kernel the FWHM, and therefore the maximal spatial sampling distance,
equals 3.4 mm. Although sampling at Nyquist rate guarantees perfect
reconstruction of the sampled signal, a more conservative approach
would be to record the electrograms at smaller distances than the
FWHM. Therefore, the spatial resolution we use in our clinical setup
equals 2 mm. Note that, a denser electrode array will only improve
the signal-to-noise ratio but will not reduce the blurring caused by the
distance kernel. Also note that the estimated maximal spatial sampling
distance is strongly dependent on the selected electrode height 𝑧0.
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Fig. 10. The logarithm of RMSE in LAT estimation using SD𝛷 and SD𝐼 with different
values of 𝜆 for the five randomly generated tissue based on the T4 pattern as in
Section 3.1. The logarithm of the RMSE is normalized so that the steepest descent
has an amplitude of 1.

3.6. Electrode size

The distance kernel, and therefore the measured electrograms, also
depend on the diameter 𝑑0 of the electrodes. In this section, we in-
vestigate the effect of the electrode’s diameter 𝑑0 on the measurement
model. We describe the effect of the non-zero diameter by an averaging
of all per cell electrograms that the electrode’s surface covers. This can
be modeled by updating the distance kernel in Eq. (3) as

𝑅′
0(𝑥, 𝑦) = 𝐷(𝑥, 𝑦) ∗∗ 𝑅0(𝑥, 𝑦), (8)

where function 𝐷(𝑥, 𝑦) is 1 if
√

𝑥2 + 𝑦2 < 𝑑0∕2, and 0 otherwise. The
convolution results in an averaging effect over the electrode surface.

Fig. 9(c and d) shows the distance kernel after considering the
electrode diameter, calculated using Eq. (8). In Fig. 9(c) the electrode
diameter is 𝑑0 = 0.45 mm. This is equal to the electrode size we use for
recording our clinical data. Fig. 9(d) also shows the PSF for 𝑑0 = 1 mm.
As can be seen, the electrode size does not change the morphology of
the distance kernel considerably and its effect will be ignored in this
study. This is because of the large value of 𝑧0 which is inherent of the
tissue and cannot be improved. This result also implies that decreasing
the electrode diameter to smaller values than we currently use, will not
considerably improve the resolution of the electrogram recording.

3.7. Regularization parameter 𝜆

As discussed in Section 2.3, the inverse problem of transmembrane
current estimation is highly ill-posed and may result in many unfavor-
able solutions. To overcome this issue, we added a regularization term
to the optimization problem in Eq. (6). Although many regularization
terms can be used to stabilize the results, we opt for the sparsity of the
first-order time derivative of the transmembrane current. This helps to
preserve the sharp deflections of the transmembrane current (that are
later annotated as LATs) while performing deconvolution. However,
one can, dependent on the application, employ different regularizations
such as imposing a sparsity constraint on the transmembrane current to
provide sharper results, or minimizing the error between the estimated
currents and a stereotype transmembrane current.

The regularization parameter 𝜆 controls the importance of the reg-
ularization term. Fig. 10 shows the logarithm of the RMSE in LAT
estimation using SD𝛷 and SD𝐼 with different values of 𝜆 for the five
randomly generated tissue based on the T4 pattern in Fig. 1. Although
using larger value for 𝜆 makes the resulting transmembrane current
sharper, as can be seen, it increases the error in LAT estimation drasti-
cally. This is because the deconvolution error is ignored. On the other
hand, decreasing the value of 𝜆 after a certain point, causes almost no
regularization and the error will stay constant.

4. Clinical results

In this section, we apply the proposed method to clinically recorded
data. The epicardial electrograms used in this study were recorded
using an 8 × 24 unipolar electrode array (𝑀 = 192) with a 2mm
inter-electrode distance and 𝑑0 = 0.45mm electrode diameter. The
electrode array is subsequently positioned visually by the surgeon on
9 mapping atrial sites using anatomical borders. The array records 5 s
of sinus rhythm and 10 s of induced atrial fibrillation (IAF) signals at
each site. This technique was performed in more than 400 patients of
18 years and older, with coronary and/or structural heart disease, with
paroxysmal AF, electively scheduled for cardiac surgery and a ventric-
ular ejection fraction above 40%. The acquired signals are amplified,
filtered (bandwidth 0.5 to 400Hz), sampled (1 kHz), analogue-to-digital
converted (16 bits) and recorded on a hard disk. More details on the
mapping approach and the electrode array specifications can be found
in [21].

As with the simulated data, we use the steepest descent of the
clinical electrograms (SD𝛷) as well as the steepest descent of estimated
transmembrane currents (SD𝐼 ) to estimate the activation map of the
electrogram array. However, we do not have access to the true LATs
to evaluate and compare the performance of these two approaches. For
this reason, we manually inspect the electrogram array to explain the
differences in the resulting activation maps and to identify the local de-
flections for the clinical examples shown in this section. Although this
is a quite complicated task, some spatio-temporal criteria of the electro-
gram array can help us. The common criteria of nonlocal activities are:
(i) having no evidence of propagation [22], (ii) having time-equivalent
deflections with lower amplitudes at neighboring electrodes whose
amplitudes decrease with distance [23], and (iii) matching highly with
the average of the neighboring electrograms [22]. While none of these
criteria alone can perfectly single out the local deflection, observing
some of these criteria together increases the probability of a correct
annotation.

In the following subsections, we provide four categories of common
cases where our proposed approach provides different results compared
to the steepest descent. In each case, we use one representative example
(recorded from different patients) to visualize and discuss the results.
Notice that these results are based on our visual observation of limited
number of patients and a more robust validation on a larger number of
patients is deferred to future work. The clinically recorded electrograms
for one array (8 × 24 electrodes) and Eq. (7) are used to estimate the
transmembrane currents 𝐼[𝑥, 𝑦, 𝑡] and subsequently the local deflection.
It takes about 1.4 s to solve the deconvolution problem (with 100
iterations) for the clinical data of size 𝑀 = 24 ∗ 8 without increasing the
resolution, and about 6.7 s if we increase the resolution by 9 times to
have smaller modeled cells (3 times increase in each axis) on a 2.9 GHz
Intel i5 MacBook Pro and MATLAB R2019a.

4.1. Turning a smooth propagation into a non-smooth propagation

The most noticeable difference between the activation maps (AMs)
generated from the electrograms SD𝛷 and our proposed approach using
the estimated transmembrane currents SD𝐼 is that, in general, the AMs
estimated from electrograms tend to be smoother. An example of such
a case is shown as P1 in Fig. 11. As can be seen, SD𝐼 introduces some
heterogeneities in the area denoted by a red circle in the map, while
the SD𝛷 shows a homogeneous propagation. To investigate the results,
we have plotted a 3 × 3 subsection of the electrograms recorded in
the area of interest. The electrode locations are denoted by white dots
on the AMs. The blue vertical lines denote the LAT estimated using
SD𝛷 and the red vertical lines denote the LAT estimated using SD𝐼 .
As can be seen, the recorded electrograms are fractionated, which is
an indication of a zone of slow conduction in the tissue [24]. This
observation matches with the AM we get using SD𝐼 , but not with the
AM we get using SD𝛷. This is similar to the example already shown in
Fig. 5.
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Fig. 11. Each row of the figure shows a different clinically recorded electrogram array denoted by P1 to P3. The first column shows LATs estimated from the electrograms SD𝛷 and
the second column shows the LATs estimated from the estimated transmembrane currents SD𝐼 . In each case some representative electrograms belonging to the locations denoted
by red dashed circles and white dots are shown on the right hand side of the figure. The blue vertical lines denote the LAT estimated using SD𝛷 and the red vertical lines denote
the LAT estimated using SD𝐼 . The red arrow in P3 shows a new distinct wavefront in the activation map that is only visible in the activation map estimated using SD𝐼 . The plot
in the right-hand side of P3 shows the electrogram 𝛷(4, 4) and the average electrogram of its 8 neighboring electrodes.
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Fig. 12. The estimated activation maps of three succeeding atrial beats at the same
location. The first row shows the activation map estimated using SD𝛷 and the second
row shows the activation map estimated from SD𝐼 .

Fig. 13. Two example electrograms from the block line in P5, the electrode locations
are denoted by white dots in the activation map. The second and the third row show
the first-order time derivatives of the electrogram and the estimated transmembrane
current. The steepest point of each derivative (LAT) is denoted by vertical lines.

4.2. Changing the location of the line of collision or (functional) conduction
block

Another noticeable difference between the AM generated by SD𝛷
and SD𝐼 , is in the location of the line of collision or the line of
(functional) conduction block. As can be seen in P2 in Fig. 11, a
distinct late wavefront (color coded by purple) invades the mapping
area from above. The AM estimated using the SD𝐼 shows that this
wavefront covers more parts of the mapping area compared to the AM
estimated from SD𝛷. It also shows that the two distinct discontinuities
in the SD𝛷 map are connected. To investigate the results, we have
plotted a 3 × 3 subsection of the electrograms recorded in the area
of interest. The electrode locations are denoted by white dots on the
AMs. The blue vertical lines denote the LAT estimated using SD𝛷 and
the red vertical lines denote the LAT estimated using SD𝐼 . As expected,
the electrograms show double potentials, which is an indicator of a
collision or a functional block [24]. We can also explain the low
amplitude of the second deflection by the small area its corresponding
wavefront covers. On the other hand, the other wavefront (color coded
in red, yellow and green) covers a bigger area and produces stronger
activities. As a result, the electrodes in this area record a nonlocal
activity that is much stronger than its true local activity. Moreover, on
the right-hand side of the block, all electrodes have similar LAT and
there is no evidence for wavefront propagation. This is an indicator
of superposition of far-field activity. However the local activity seems
to be very small such that it cannot even be detected using estimated
transmembrane currents.

4.3. Introduction of more distinct wavefronts in the mapping area

In some cases, the proposed approach introduces new wavefronts in
the mapping area. P3 in Fig. 11 shows an example where the estimated
activation map using SD𝛷 contains two main distinct wavefronts, while
the activation map estimated using SD𝐼 contains a new wavefront color
coded by blue and denoted by a red arrow. We have also plotted
three electrograms whose locations are denoted by white dots on the
activation map. As can be seen, each electrogram belongs to one of
the observed wavefronts. SD𝛷 and SD𝐼 provide a similar result in LAT
estimation for 𝛷(4, 3) and 𝛷(4, 5), while they annotate two different
deflections for 𝛷(4, 4). As can be seen, 𝛷(4, 4) is composed of 3 main
deflections, two of each coincide with its two neighbors, which implies
these are the nonlocal activities. However, the second deflection does
not match with the two wavefronts in its neighborhood. This indicates
that the second deflection belongs to the local activity. This conclusion
is more clear when we compare 𝛷(4, 4) with the average activity of
its 8 neighboring electrodes shown in the right-hand side of P3 in
Fig. 11. As can be seen, the difference is more distinct around the
second deflection.

4.4. Providing more consistent maps over succeeding beats

One remarkable difference between an AM generated by SD𝛷 and
SD𝐼 , is that the proposed approach provides more consistent activation
maps over succeeding atrial beats. Fig. 12 shows the activation maps
generated by both approaches for three succeeding atrial beats for
the same location. As can be seen, both approaches show some large
conduction delays in the area denoted by the red oval. However, the
pattern is more consistent in the maps estimated using the proposed
approach (second row). Note that P4 (in Fig. 12) and P2 (in Fig. 11)
are similar. In Section 4.2 we provided some evidence to explain the
difference between the activation patterns generated by SD𝛷 and SD𝐼 .

Fig. 13 also demonstrates two example electrograms denoted by
white dots in the line of block of P5. The first-order time derivative of
the electrograms and the estimated transmembrane currents are also
plotted. As can be seen in both cases, the amplitude of the smaller
deflection increases after the deconvolution. This indicates that this
small activation is a local activity and not the far-field effect of the
neighboring cells.
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5. Discussion and conclusion

In this paper, we proposed a new approach for a better estimation
of local activation times for atrial mapping by reducing the spatial
blurring effect that is inherent to electrogram recordings, using de-
convolution. Employing sparsity based regularization and first-order
time derivatives in formulating the deconvolution problem, improved
the performance of transmembrane current estimation. We solved the
regularized deconvolution problem efficiently using the Split Bregman
algorithm. We also discussed, in summary, the required electrode array
specifications including the electrode height, the electrode size and the
required spatial resolution for an appropriate deconvolution. Unlike
other approaches, our algorithm uses electrophysiological models to in-
corporates spatial information to improve LATs. We also showed, using
simulated realistic tissue, that our algorithm outperforms two reference
approaches: steepest descent (SD𝛷) as the most common approach for
LAT annotation, and the approach based on the spatial gradient (SG𝛷)
which also requires multi-electrode recording. Our results on simulated
and clinically recorded data, show that SD𝛷 is prone to make the
activation maps smoother by always selecting the steepest descent and
ignoring local small deflections. This arises in situations where the
local activities belong to a wavefront that only invades a small part of
the mapping area. The activities generated by this wavefront are thus
smaller in amplitude compared to the nonlocal activities that belong to
a wavefront that covers a larger area. The deconvolution, on the other
hand, reduces the effect of nonlocal activities and amplifies the local
activities which results in a better estimation of true local deflection.
This can result in estimation of AMs that are less smooth and more
irregular with probably more distinct wavefronts. It also changes the
location of estimated (functional) conduction blocks or collision lines
in the tissue.

While the focus of this paper is to develop a new algorithm for
a better estimation of LATs in electrogram arrays, future work will
include an evaluation on the effect of these changes on the further
analyses performed on LATs regarding AF. More specifically, we aim to
investigate the effect of the new approach on association of conduction
disorders with substrates underlying AF and on the performance of
existing methods in classification of AF stages in a larger group of
patients. Moreover, to provide a more robust claim on the consistency
of the estimated activation map over time, we aim to provide a measure
of consistency/stability for a larger group of patients.

5.1. Limitations of the proposed method

In this study, we replaced each block of 3D tissue with a mod-
eled cell in a 2D mono-layer tissue with constant cell-to-cell distance,
ignoring the tissue curvature and thickness which might affect the
results. Moreover, we assume a constant electrode height of 𝑧0 = 1
mm, to compute the distance kernel while it might be subject to spatial
variation and quality of contact. Due to complications of simulating
3D tissue, the performance of the proposed approach was tested on
two-dimensional simulated tissue. Since we do not have access to the
true local activities of clinically recorded electrograms, we used manual
annotation to analyze the performance of the approach.
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