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Purpose: To develop a method for MR Fingerprinting (MRF) sequence opti-
mization that takes both the applied undersampling pattern and a realistic
reference map into account.
Methods: A predictive model for the undersampling error leveraging on per-
turbation theory was exploited to optimize the MRF flip angle sequence for
improved robustness against undersampling artifacts. In this framework param-
eter maps from a previously acquired MRF scan were used as reference.
Sequences were optimized for different sequence lengths, smoothness con-
straints and undersampling factors. Numerical simulations and in vivo mea-
surements in eight healthy subjects were performed to assess the effect of the
performed optimization. The optimized MRF sequences were compared to a
conventionally shaped flip angle pattern and an optimized pattern based on the
Cramér–Rao lower bound (CRB).
Results: Numerical simulations and in vivo results demonstrate that the under-
sampling errors can be suppressed by flip angle optimization. Analysis of the
in vivo results show that a sequence optimized for improved robustness against
undersampling with a flip angle train of length 400 yielded significantly lower
median absolute errors in T1: 5.6% ± 2.9% and T2: 7.9% ± 2.3% compared to the
conventional (T1: 8.0% ± 1.9%, T2: 14.5% ± 2.6%) and CRB-based (T1: 21.6% ±
4.1%, T2: 31.4% ± 4.4%) sequences.
Conclusion: The proposed method is able to optimize the MRF flip angle
pattern such that significant mitigation of the artifacts from strong k-space
undersampling in MRF is achieved.
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1 INTRODUCTION

MR fingerprinting (MRF) samples the MR signal in
a transient-state while varying acquisition parameters
are applied.1 After each excitation pulse an undersam-
pled k-space read-out is acquired and reconstructed by
zero-filling, even though this results in severe aliasing
artifacts. Tissue parameters are generally estimated using
inner product matching of the measured signal to a precal-
culated dictionary (e.g. yielding the longitudinal relaxation
time T1, transverse relaxation time T2 and magnitude of
the steady-state magnetization 𝜌 or M0).

Sequence optimization has been performed to increase
the accuracy of the parameter maps and to further reduce
the scan time.2 Most previous methods for sequence opti-
mization modeled the errors in the MRF signal as inde-
pendent, zero-mean stochastic noise.3-7 However, these
approaches neglected spatial correlations between voxels
introduced by the undersampling. For shorter acquisition
times, either due to high undersampling factor and/or low
number of time indices, the undersampling error can have
a large effect on the accuracy and the image quality of the
parameter maps.8

In recent work, Jordan et al.9 proposed an
MRF-sequence optimization scheme that explicitly mod-
els undersampling effects as well as spatial variations of
the signal phase, potentially caused by spatial variations
in the B0 and B1 field. To reduce the computational com-
plexity, a reference image was separated into white matter,
gray matter and CSF fractions using three reference
T1,T2 combinations. For each tissue type undersampling
artifacts were precalculated per time point using the
respective fraction maps. During iterations of the opti-
mization scheme only the transverse magnetization of the
three tissue types was recalculated and used as weight-
ing per time point to obtain time-frame images. Based
on these simplified reference maps, error estimates could
be obtained, thereby allowing an iterative optimization
procedure to reduce undersampling errors.

In this paper we aim to develop a new MRF opti-
mization method to mitigate undersampling artifacts that
applies a more sophisticated spatial reference map. While
doing so, our focus will be on the flip angle train. To over-
come the issue of high computational complexity we use
a recently proposed model relying on perturbation theory,
to predict the interplay between a specific MRF acquisi-
tion scheme and the undersampling artifacts in the tissue
parameter maps.8 Our method does not require the calcu-
lation of extensive MRF-dictionaries, includes the spatially
varying signal phase in the model and allows to use any
reference parameter map as target for the optimization.
The predictive model and optimized sequences will be val-
idated by means of simulations and in vivo brain scans.

We hypothesize that optimization of the flip angle train
can significantly reduce the undersampling errors in the
reconstructed parameter maps.

2 THEORY

To provide the necessary background for the performed
optimization and context to the presented results, the
MRF-undersampling model proposed by Stolk and
Sbrizzi8 is briefly described. We will use this model
for sequence optimization in Section 3. Essentially, the
model gives an analytical expression for the estimated
quantitative parameter maps 𝜽∗ resulting from an MRF
experiment:

𝜽
∗ ≈ 𝜽 + PSFE(𝜽) + 1(𝜶) + 2(𝜽;𝜶), (1)

in which 𝜽 ∈ RN
𝜃

×NI×NI are the N
𝜃

reference tissue param-
eter maps of NI × NI voxels; 𝜶 represents the flip angle
pattern and PSFE is the point spread function error that
depends on the k-space sampling pattern, but is inde-
pendent of the flip angle pattern (only minimized by
adjusting the undersampling scheme). Importantly, 1(𝜶)
and 2(𝜽;𝜶) are error terms that do depend on the flip
angle pattern and can therefor be minimized by appro-
priately adjusting the flip angles. In further equations
the dependence on 𝜶 has been omitted for ease of
notation.

The (to be estimated) parameters of our focus

are:𝜽(∗)
(

x⃗
)
=
(

T(∗)1
(

x⃗
)
,T(∗)2

(
x⃗
)
,Re

{
𝜌

(∗) (x⃗
)}
, Im

{
𝜌

(∗)(x⃗
)})T

such that the number of parameters N
𝜃

= 4. Notice that
the steady state magnetization 𝜌

(∗) ∈ CNI×NI contains the
(estimated) spatially varying, signal phase.

The rest of this section contains an overview of the key
steps in the model derivation from Stolk et al.8 The under-
sampled time-series images from an MRF scan are written
as a convolution of the transverse magnetization at time
TE of the readout with a Point Spread Function (PSF) that
depends on the k-space sampling scheme:

I
𝑗

(
x⃗|𝜽

)
=
∑

y⃗∈G

P
𝑗

(
x⃗ − y⃗

)
m
𝑗

(
𝜽
(

y⃗
))
, (2)

in which I
𝑗

(
x⃗|𝜽

)
∈ CNI×NI is the undersampled

time-series image at time index 𝑗; G is the spatial domain;
P
𝑗

∈ C(NI+2⌊NI∕2⌋)×(NI+2⌊NI∕2⌋) is the PSF for time index 𝑗
that models the effect of undersampling; m(𝜽) ∈ CNJ is
the transverse magnetization over time determined by ref-
erence parameters 𝜽 and m

𝑗

(𝜽) the magnetization at time
index 𝑗.

Observe that (2) partitions the description of the under-
sampled images in a spatial component (the PSF) that
depends on the k-space sampling pattern, and a temporal

 15222594, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.29554 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [13/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



HEESTERBEEK et al. 3

component (the transverse magnetization) that depends
on the flip angle pattern. Only the temporal component
needs to be updated when optimizing for the acquisition
parameters. This proves to be useful for obtaining feasible
calculation times.

MRF parameter estimation can be conceived as
the voxel-wise least-square minimization based on NJ
time-series images I ∈ CNJ×NI×NI :

𝜽
∗(x⃗

)
= arg min

̃𝜽∈RN
𝜃

‖‖‖I
(

x⃗|𝜽
)
−m

(
̃𝜽
)‖‖‖

2
, (3)

in which I
(

x⃗|𝜽
)
∈ CNJ denotes the observed signal in a

voxel at location x⃗, which depends on 𝜽 in all voxels due to
the applied PSF.

The estimate 𝜽∗ is a stationary point of the objective
function (3), such that:

Re
{⟨(

m
(
̃𝜽
)
− I

(
x⃗|𝜽

))
,

𝜕

𝜕𝜃p
m

(
̃𝜽
)⟩}||||| ̃𝜽=𝜽∗(x⃗)

= 0, (4)

for all x⃗ in the spatial domain G and each p ∈ {1, 2, ..,N
𝜃

}.
From (2) and (4) it can be deduced that:

0 = Re

{ NJ∑

𝑗=1
m
𝑗

(
𝜽
∗(x⃗

))
m

𝑗;p
(
𝜽
∗(x⃗

))

−
NJ∑

𝑗=1

∑

y⃗∈G

P
𝑗

(
x⃗ − y⃗

)
m
𝑗

(
𝜽
(

y⃗
))
m

𝑗;p
(
𝜽
∗(x⃗

))
}

, (5)

in which m is the complex conjugate of the Jacobian
matrix of the magnetization vector m.

Since (5) cannot be rewritten in a closed form expres-
sion for 𝜽∗, a perturbation theoretic expansion is initially
performed which is subsequently linearized. It is assumed
that the range of tissue parameter values is small such that
the magnetization can be considered linear with respect to
the tissue parameters, allowing for the expansion. Defin-
ing 𝜼 = (T1,T2), the parameters of 𝜽 and 𝜽∗ are expanded
through:

𝜼
(∗)(x⃗

)
= 𝜼0 + 𝜼

(∗)
1
(

x⃗
)
,

𝜌

(∗)(x⃗
)
= 𝜌(∗)0

(
x⃗
) (

1 + 𝜌(∗)1
(

x⃗
))
, (6)

in which 𝜼0 are the assumed spatially constant values that
we set to the mean T1 and T2 value of the reference map;
𝜼
(∗)
1

(
x⃗
)

and 𝜌(∗)1
(

x⃗
)

are (estimated) contrast terms (i.e. off-
sets with respect to constants) and 𝜌0 is a binary mask
for zero-signal areas. Due to the linearity of 𝜌(∗) in the
magnetization function we can write:

m
(
𝜽
(∗)(x⃗

))
= 𝜌(∗)0

(
x⃗
)

m
(
𝜽0 + 𝜽(∗)1

(
x⃗
))
, (7)

in which

𝜌

∗
0(⋅) =

1
NJ

NJ∑

𝑗=1
P
𝑗

(⋅) ∗ 𝜌0(⋅) (8)

and

𝜽0 + 𝜽(∗)1

(
x⃗
)
= (𝜼0, 1, 0)T

+
(
𝜼
(∗)
1

(
x⃗
)
,Re

{
𝜌

(∗)
1

(
x⃗
)}

, Im
{
𝜌

(∗)
1

(
x⃗
)})T

. (9)

Note that because of the binary mask 𝜽
(∗)(x⃗

)
≠ 𝜽0 +

𝜽
(∗)
1
(

x⃗
)
.

The perturbation equations (6) and (9) facilitate extrac-
tion of an explicit expression for 𝜽∗(x⃗). This is done by
substituting the perturbation theoretic expansions and
performing a first-order Taylor expansion of the two terms
in (5) around 𝜽0. For instance, the Taylor expansion of the
first term in (5) yields:

m
𝑗

(
𝜽
∗(x⃗

))
m

𝑗;p
(
𝜽
∗ (x⃗

))
=

|||𝜌
∗
0
(

x⃗
)|||

2
⋅m

𝑗

(
𝜽0 + 𝜽∗1

(
x⃗
))
m

𝑗;p
(
𝜽0 + 𝜽∗1

(
x⃗
))
≈

|||𝜌
∗
0
(

x⃗
)|||

2
⋅

(

m
𝑗

(𝜽0)m
𝑗;p (𝜽0) +

N
𝜃∑

q=1
m

𝑗;q (𝜽0)m
𝑗;p (𝜽0)𝜃∗1,q

(
x⃗
)
)

+
N
𝜃∑

q=1
m
𝑗

(𝜽0)2m
𝑗;p,q(𝜽0)𝜃∗1,q

(
x⃗
)
)

. (10)

Based on these Taylor expansions an explicit expression for
𝜽
∗
1
(

x⃗
)

can be obtained, that can be rewritten into the form
presented in Equation (1). For the error terms 1 and 2
this results in:

1;p(𝜶) = ||𝜌
∗
0
||
2

N
𝜃∑

q=1
Re{N}−1

p,qRe
{
𝜌

∗
0S(1,0)resid;q ∗ 𝜌0

}
,

2;p(𝜽,𝜶) = ||𝜌
∗
0
||
2

N
𝜃∑

q=1
Re{N}−1

p,qRe

{

𝜌

∗
0

N
𝜃∑

r=1
S(1,1)resid;q,r ∗

(
𝜌0𝜃1;r

)
}

,

(11)

for p ∈ {1, 2, ..,N
𝜃

}. Here the following definitions have
been used:

Np,q =
NJ∑

𝑗=1
m

𝑗;p (𝜽0)m
𝑗;q (𝜽0) ,

S(1,0)resid;q =
NJ∑

𝑗=1

(

P
𝑗

− 1
NJ

NJ∑

i=1
Pi

)

m
𝑗;q (𝜽0)m𝑗

(𝜽0) ,

S(1,1)resid;q,r =
NJ∑

𝑗=1

(

P
𝑗

− 1
NJ

NJ∑

i=1
Pi

)

m
𝑗;q (𝜽0)m

𝑗;r (𝜽0) . (12)

Note that N is also known as the Fisher information
matrix. A more detailed derivation of (1) can be found
in for example Stolk et al.8,10 Using this approach, an
expression is found for the predicted parameters (given
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4 HEESTERBEEK et al.

certain reference parameter values). We will use this
expression to mitigate the undersampling dependent error
terms.

One may observe that the derived expression for 𝜽∗1
only depends on m(𝜽0) and the first- and second-order
derivatives of m in 𝜽0. Next to the use of precomputed PSFs
(see (2)), this is the second step that makes this model suit-
able for sequence optimization, since only m(𝜽0) and its
derivatives are required instead of the computation of a
large dictionary.

3 METHODS

Methods were implemented in Python. The full imple-
mentation of the proposed optimization scheme, used
reference maps and optimized sequences can be found
at https://github.com/imphys/MRF_undersampling_
optimization.11 Results were visualized with Python
libraries Matplotlib12 and Seaborn.13

3.1 Sequence optimization

MRF sequences were optimized for a gradient spoiled
steady-state free precession acquisition14 with a fixed rep-
etition time of 15 ms. The Extended Phase Graph for-
malism15 was used to simulate the MRF signals m(𝜽)
over time. Using this approach the derivatives with
respect to the tissue parameters can be calculated ana-
lytically through differentiation of the relaxation matrix
and the term representing the recovery toward ther-
mal equilibrium. All MRF scans used the same con-
stant density, spiral k-space trajectory with an effec-
tive undersampling factor of 1/32. Incremental steps of
360◦∕32 rotation were applied between readouts and
starting angles were equally distributed across sequence
repetitions.

The cost function for this optimization problem was
based on the relative errors r{1,2},i predicted by the model:

r{1,2},i =
Tund
{1,2},i − Tref

{1,2},i

Tref
{1,2},i

, (13)

for voxel i where Tund
{1,2},i denotes the (undersampled) pre-

dictions resulting from (1) and Tref
{1,2},i is the reference

value. The Root-Mean-Square (RMS) of the relative errors
of nonmasked voxels was used as a measure for the opti-
mization performance:

RMST{1,2} =

√√√√ 1
Nvox

Nvox∑

i=1
r2
{1,2},i, (14)

T T

F I G U R E 1 Maps of T1, T2, and 𝜌 that were used as reference
in sequence optimizations for the in vivo data. Maps were estimated
from a previously performed fully sampled 3 T inversion recovery
gradient spoiled steady-state free precession MR fingerprinting
acquisition.

in which Nvox is the number of nonmasked voxels. The
mask used to calculate the RMS error strictly removed the
zero-signal voxels (air) surrounding the head. Optimiza-
tions for in vivo data were based on previously acquired
parameter maps from a single, fully sampled brain slice
masked by thresholding the proton density map (see
Figure 1).

Different optimization schemes were considered.
Mathematically this design problem was posed as:

min
{𝛼
𝑗

}NJ
𝑗=1

Cost function

s.t. 1© ∶LB ≤ 𝛼1 ≤ 180◦

LB ≤ 𝛼
𝑗

≤ 60◦ ∀ 𝑗 ∈ {2, 3, ..,NJ}

2© ∶|𝛼
𝑗+1 − 𝛼𝑗| ≤ 1◦ ∀ 𝑗 ∈ {2, 3, … ,NJ − 1}, (15)

in which the cost function is dependent on the relative
errors while LB is a to be defined Lower Bound, as pre-
sented in Table 1. The (six) performed optimizations were
variations on the first optimization option OptA, with
1
2

(
RMST1 + RMST2

)
as cost function, using 400 flip angles,

a 1/32 undersampling factor, a 10◦ lower bound and a
smoothness constraint. We performed the variations (see
Table 1) to study the effects of the applied constraints.
The first constraint was introduced to restrict the solution
space and limit power deposition. The second constraint,
on the flip angle difference, promotes a smooth evolu-
tion of the transverse magnetization. These constraints
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HEESTERBEEK et al. 5

T A B L E 1 Settings for the optimizations as performed in this study

Name Cost function
Sequence
length (NJ )

Undersampling
factor Readouts

Lower
Bound
constraint 1©

Smoothness
constraint 2©

Optimization A (OptA) 1
2

(RMST1
+ RMST2

) 400 1/32 400 10◦ ✓

Optimization B (OptB) 1
2

(RMST1
+ RMST2

) 400 3/32 1200 10◦ ✓

Optimization C (OptC) 1
2

(RMST1
+ RMST2

) 200 2/32 400 10◦ ✓

Optimization D (OptD) 1
2

(RMST1
+ RMST2

) 400 1/32 400 0◦ ✓

Optimization E (OptE) 1
2

(RMST1
+ RMST2

) 400 1/32 400 10◦ ×

Optimization F (OptF) RMST2
400 1/32 400 10◦ ✓

were similar to Zhao et al.5 A conventionally shaped MRF
sequence (see Figure 4) was used as initialization in all
optimizations.

We solved the optimization problem (15) using
Sequential Least-Square Quadratic Programming.16

This algorithm reformulates the problem by applying
a quadratic approximation to the cost function at the
current solution. The resulting constrained, quadratic
optimization problem is solved based on a linearization
of the constraints. Since the problem is nonconvex, global
convergence is not guaranteed and the algorithm can
get stuck in a poor local minimum. However, in initial
experiments we did not observe this behavior.

A multiprocessor implementation with eight CPUs
(Intel E5-2683 CPU) was used to compute the different
gradient steps in the Sequential Least-Square Quadratic
Programming algorithm. This resulted in calculation times
of approximately 32 h per complete sequence optimization
during which 400 parameters were optimized.

Our optimized sequences were compared to a
state-of-the-art optimization method based on the
Cramér–Rao lower bound (CRB).5 The CRB is a the-
oretical lower bound on the variance of any unbiased
estimator of parameters assuming stochastic noise. The
normalized CRB for a single tissue voxel was calcu-

lated as nCRB(𝜃p) =
√

𝜌

2CRB(𝜃p)
𝜃

2
p𝜎

2 for tissue parameter

𝜃p, where 𝜌 is the steady-state magnetization and 𝜎

2 is
the variance of the stochastic noise. Using the Sequen-
tial Least-Square Quadratic Programming solver, a
sequence with minimal nCRB for an a priori defined
set of tissues was obtained. Two single tissue signals
with representative values for white and gray matter
in the brain were chosen for the optimization, that is,
(T1,T2) = (700 ms, 60 ms), (1100 ms, 100 ms) from Zhao
et al.,5 while the constraints of OptA (see Table 1) were
used. The normalized CRB values were also calculated for
the optimized sequences as previously proposed (OptA-F).
For this purpose, 1000 T1 and T2 combinations were

randomly drawn from the reference maps as shown in
Figure 1.

3.2 Numerical experiments

A numerical checkerboard phantom was used for val-
idation of the error model and our optimization strat-
egy. Furthermore, it was used to study the effect of
spatial variations in the signal phase, which was mod-
eled as a time-wise constant complex phase term,
while applying a conventionally shaped FA-pattern.
The MRF-undersampling model proposed by Stolk and
Sbrizzi8 was validated by comparison to brute force
simulations. They consisted of Extended Phase Graph sim-
ulations, subsequently Fourier transformation, undersam-
pling and then inverse (nonuniform) Fourier transformed
image formation, after which parameter estimates were
obtained via dictionary matching. The efficacy of our opti-
mization strategy was tested using the numerical phantom
as reference map and with constraints as for OptA (see
Table 1).

3.3 In vivo experiments

In vivo brain scans were acquired on a 3.0 T Philips Ingenia
MRI scanner (Philips, Best, The Netherlands) from eight
healthy subjects to compare the performance of the dif-
ferent MRF sequences. This study was approved by the
local medical ethics committee and from all volunteers
informed consent was obtained prior to image acquisition.
Subjects were instructed to move as little as possible during
the entire scan session.

In each subject, the conventional sequence (Conv),
OptA, and the CRB optimized sequence were all acquired
with the undersampling factors 1/32, 3/32 and 32/32 (fully
sampled). These fully sampled acquisitions essentially
resulted in three reference maps for each subject. Sequence
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6 HEESTERBEEK et al.

OptB was acquired with an undersampling factor of 3/32,
OptC with 2/32 and OptD-F with 1/32. A delay time of 6 s
was used between repetitions of the same flip angle pat-
terns. Two slices were acquired with a 2-cm slice gap of
which the lower slice was positioned to intersect the ven-
tricles, similar to Figure 1. The field of view was 224 ×
224 mm2 with a resolution of 1 × 1 mm2and 5 mm slice
thickness.

A dictionary was calculated for each flip angle pattern
with T1 values ranging from 150 ms to 5 s and T2 values
from 30 ms to 1 s both applying a step size of 3%. Dictionary
matching was performed to obtain 𝜌, T1 and T2 estimates.
To minimize errors due to slight motion, the fully sampled
reference scans and undersampled scans were rigidly reg-
istered based on the T1 maps using the mutual information
metric.17 After registration, voxel-wise relative error maps
r1,2 (13) were computed for each undersampled acquisi-
tion based on the three different fully sampled reference
series. Using the parameter maps, brain tissue was seg-
mented by applying a signal intensity threshold to exclude
regions outside the skull and a T1 > 1.6 s threshold to
exclude CSF to prevent unpredictable errors due to flow
phenomena. From the masked relative error maps, the
median absolute (relative) error was calculated:

MAE{1,2} = median
(||r{1,2}||

)
. (16)

This was found to be a more robust error measure com-
pared to the RMSE which is sensitive to outliers. Note that
the mask applied to calculate the MAE and generate the
figures in the results is different from the one applied to
calculate the RMSE used for the cost function calculation:
the latter merely serves to remove zero-signal voxels.

For each undersampled scan and parameter map, three
MAE values were computed corresponding to the three
different fully sampled sequences. Presented results were
based on the reference scan for which the MAE was mini-
mal. MAE values were compared between sequences with
an equal number of readouts (i.e. flip angle train length
× number of repeats). A Wilcoxon signed-rank test was
performed to compare MAE values of the conventionally
shaped flip angle pattern, CRB optimized and undersam-
pling optimized sequences. A p-value < 0.05 was consid-
ered to indicate a significant difference.

4 RESULTS

4.1 Numerical experiments

To validate the used error model and test the depen-
dency on spatial variations in signal phase, the relative
errors predicted by the model were compared to brute
force validation simulations, as shown in Figure 2. Notice
that the model predictions closely resemble the maps
from the simulations; additionally an increasing error
with larger “phase deformation” (left to right) can be
observed. The T1 error maps showed a similar outcome
(see Figure S1).

Error maps for T2 estimation, reflecting the terms from
(1) before and after optimization are shown in Figure 3.
Observe that the individual 1 and 2 error terms are
effectively minimized and that the remaining total relative
error is dominated by the PSF error (as the latter error can
be mitigated only by the use of a different undersampling
scheme). Also, note that the 1 error before optimization
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F I G U R E 2 Comparison of
relative errors in T2 value predicted
by the model (center row) and those
obtained in brute force simulation
(bottom row) for different signal
phase distortions (top row). The
numerical phantom with the
checkerboard pattern is shown in the
left column.
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HEESTERBEEK et al. 7

T

F I G U R E 3 Total T2 undersampling error estimation (upper
row) subdivided into the components c.f. (1) for the numerical
checkerboard phantom with a conventional and optimized flip
angle pattern (left and right column respectively); the signal phase
was kept spatially constant (left column in Figure 2).

does not show the spatial checkerboard-like variation,
which is visible in the 2 error (see (1)).

4.2 Optimization results

Figure 4 shows the conventional flip angle train, the flip
angle train resulting from CRB optimization and those
obtained after optimization of each sequence option with
our approach using in vivo reference maps (see Figure 1).
All optimized sequences begin with a 180◦ pulse, although
this was a free parameter in the optimization. After the ini-
tial 180◦ pulse, each optimized sequence starts with the
smallest flip angle (0◦ or 10◦). Subsequently, they exhibit
a gradual increase in flip angle (albeit varying across the
sequences), except for OptE.

Distributions of nCRB values, per definition with-
out taking into account undersampling artifacts, for
the different flip angle trains are shown in Figure 5.
These were computed for a selection of 1000 T1 and T2

F I G U R E 4 Conventional flip angle (FA) train, Cramér–Rao
lower bound optimized FA train and FA trains optimized for
different MR fingerprinting sequence options based on the
proposed approach. The different constraints used for Optimization
A to Optimization F are specified in Table 1.

values sampled from the reference brain (see Figure S2
for the distribution of these values). The CRB opti-
mized flip angle pattern had the lowest combined mean
nCRB (nCRB-T1 = 1.37 ± 0.16, nCRB-T2 = 1.69 ± 0.19).
However, mean nCRBs of both patterns OptA
(nCRB-T1 = 1.40 ± 0.14, nCRB-T2 = 1.83 ± 0.23) and
OptB (nCRB-T1 = 1.38 ± 0.13, nCRB-T2 = 1.82 ± 0.22)
were very similar.

4.3 In vivo experiments

Figure 6 shows the relative error maps for one subject for
sequences with 400 readouts (see Figure S3 for two other
subjects). Specifically notice that the spatial correlations
present with the Conv and CRB optimized sequence are
mitigated in OptA and OptD (both regarding T1 and T2),
and OptC(only for T1). Notably, the CRB optimized pattern
shows an increased error compared to all other sequences.
Furthermore, the error maps for the Conv and CRB opti-
mized sequence show an asymmetric distribution along
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8 HEESTERBEEK et al.

T

T

F I G U R E 5 Violin plots of normalized Cramér-Rao lower
bounds of T1 and T2 values (top and bottom of each line,
respectively) for the optimized MR fingerprinting trains shown in
Figure 4. Normalized Cramér–Rao lower bound values were
computed for a selection of 1000 T1 and T2 values sampled from the
reference brain in Figure 1. Values next to each distribution are the
mean value and SD.

the slice. We observed in simulations that these asymme-
tries rotate with the starting angle of the spiral undersam-
pling pattern, suggesting that this pattern is responsible for
the asymmetric distribution.

Figure 7 shows the relative error maps for the same
subject for acquisitions with 1200 readouts. Observe that
the error maps show less variation for 1200 readouts than
for 400 readouts, both visually and in terms of the MAE.

In Figure 8 the model-based error predictions and
error maps derived from in vivo acquisitions are depicted.
The figure shows results using the sequences Conv, OptA
and CRB. Observe that for Conv and CRB, measured
and model-based error maps show strong visual similari-
ties and the MAE values are in agreement. However, for
OptA the undersampling artifacts are mitigated to such an
extend that other error sources become dominant in the
in vivo scans resulting in a model underestimation of the
MAE.

Figure 9 shows box plots of MAE values based on
the scans of eight healthy volunteers. The differences
between sequences were tested with the Wilcoxon test. The

CRB optimized sequence differed significantly (p < 10−3)
from all other sequences, although this difference was
smaller for 1200 readouts. For 400 readouts, the error in
sequence OptA(MAE-T1 = 5.6% ± 2.87% and MAE-T2 =
7.9% ± 2.31%) was significantly smaller than the con-
ventional (MAE-T1 = 8.0% ± 1.92%, MAE-T2 = 14.5% ±
2.65%) and CRB optimized (MAE-T1 = 21.6% ± 4.14%,
MAE-T2 = 31.4% ± 4.41%) sequences.

The differences visually observed in Figures 6 and 7
are confirmed in the MAE distributions in Figure 9. MAE
values were generally smaller for the optimized sequences
OptA-OptD compared to the conventional sequences. The
increased number of readouts (1200) resulted in a decrease
in MAE for all sequences, but the significant difference
between Conv and OptA in T2 remained. The set of opti-
mization constraints (see Table 1) clearly affected the
estimated MAE values. Sequence OptE (no smoothness
constraint) yielded an increased error compared to OptA
and no significant improvement compared to the Conv
sequence. OptF was not optimized for T1 and the effect
of this can be seen in an increase in T1-MAE compared
to the Conv sequence, while the T2-MAE is significantly
smaller.

5 DISCUSSION

We proposed an optimization scheme that mitigates
the undersampling error in MRF by adjusting the flip
angle train. The proposed optimization applied previously
acquired parameter maps as the reference for optimiza-
tion. This is the main difference with the work by Jordan
et al.9 where a numerical, discretized phantom was used,
opposed to the flexibility of the here presented framework.
We studied the effect of different optimization constraints
and performed in vivo experiments to verify the effective-
ness of our approach.

Initial numerical experiments (see Figures 2 and 3)
demonstrated the effect of the signal phase on the under-
sampling error and how the adopted undersampling
model8 can be exploited to predict and minimize this error.
The ability to correctly predict the MAE and relative error
maps was further validated in in vivo scans for different
sequences (Figure 8). The predicted and observed error
maps were most similar when undersampling artifacts
are the dominant source of error (sequences Conv, CRB).
After the optimization, others error sources, such as ther-
mal noise or misregistration, become dominant so that the
error predictions do not match the in vivo results anymore
(cf. sequence OptA).

The in vivo experiments concerned optimizations
based on a single in vivo reference map (see Figure 1)
while a range of constraints was applied (see Table 1). The

 15222594, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.29554 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [13/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



HEESTERBEEK et al. 9

T
T

F I G U R E 6 In vivo relative error maps for T1 (top) and T2 (bottom) in one subject, applying the different flip angle trains with 400
readouts. Above each map the corresponding Median Absolute Error (MAE) is indicated. Notice that the optimized sequences show reduced
errors compared to the conventionally shaped and Cramér-Rao lower bound pattern. Observe that OptF was not optimized for T1 which results
in large errors in the T1 map. The colors of the box edges correspond to the colors used in Figures 4 and 5 and reflect the different sequences.

F I G U R E 7 In vivo
relative error maps for T1 (top)
and T2 (bottom) in one subject,
applying the different
optimized flip angle trains with
1200 readouts. Above each map
the corresponding Median
Absolute Error (MAE) is
indicated. The colors of the box
edges correspond to the colors
used in Figures 4 and 5 and
reflect the different sequences.

T
T

optimization showed to be effective for different parts of
the brain (see Figures 9 and Figure S3), indicating that it is
robust to differences between regions of interest. We only
optimized and evaluated our method for T1 and T2 since
we considered these parameters the most relevant for clin-
ical use. The settings as used for OptA were chosen similar
to Zhao et al.5 Although the CRB pattern and the sequence
options A-F show similarities (e.g. low FAs around index

150 and peak at the end), taking the undersampling into
account in the optimization had a significant effect on the
error (see Figure 9). The poor performance of the CRB opti-
mized sequence points out that optimization for such a
presumed fully sampled signal is not always effective when
undersampling is used in the acquisition. The settings
for OptA were used as a starting point for the sequence
variations OptB to OptF.
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10 HEESTERBEEK et al.

T
T

F I G U R E 8 Relative error maps measured in vivo (first and
third row) and model predictions (second and fourth row) for a
healthy subject regarding estimation of T1 (top two rows) and T2

(bottom two rows) parameters for different sequences (across
columns). The Median Absolute Error (MAE) was computed for the
nonmasked regions.

Sequence OptB was designed with three repeats of
the same flip angle train, resulting in 1200 readouts. The
resulting flip angle pattern only showed small differences
with OptA. Also, the differences in MAE in the in vivo
experiments were not significant. Based on this we con-
clude that an increased number of repetitions does not
need to be taken into account in the flip angle pattern
optimization.

In sequence OptC the sequence length was reduced
to 200 flip angles and this sequence was repeated twice
after a repetition delay of 6 s. As such two inversion pulses
are applied, potentially enhancing T1 sensitivity. The com-
puted nCRBs (Figure 5) and in vivo errors (Figures 7 and
9) show that the shorter sequence length mainly affected
the T2 estimation: the nCRB increased and the T2-MAE
was significantly higher compared to OptA. Therefore, a
longer flip angle train with less repetition (and less inver-
sion pulses) would be preferred over a shorter sequence
to improve T2 accuracy and avoid the need of a repetition
delay time of several seconds.

The lower bound of 10◦ was reduced to 0◦ for sequence
OptD resulting in a flip angle pattern that started at 0◦ after
the inversion pulse. The optimized sequence showed a

F I G U R E 9 Comparison between reference sequences (gray)
and sequences optimized for undersampling regarding the median
absolute relative T1 and T2 error in scans of eight healthy subjects.
Almost all sequences optimized for undersampling differ
significantly from the reference sequences for the shortest scan time
(400 readouts). A Wilcoxon signed-rank test was used to compare
the distribution of median absolute error-values. The annotations
point out noteworthy comparisons: ns indicates nonsignificance; *:
0.01 < p ≤ 0.05; **: 0.001 < p ≤ 0.01; ***: 10−4

< p ≤ 0.001; ****:
p < 10−4.

step wise increasing pattern, which is seemingly smoother
than the other patterns. Compared to OptA an increased
T2-nCRB was found (see Figure 5). The T2-MAE of OptD
showed a small increase in error compared to OptA,
although the difference was not significant. As such both
options seem viable.

Sequence OptE did not include a smoothness con-
straint, resulting in stronger variations. While reducing
a potential bias, leaving out a constraint comes with an
increased risk of getting trapped in a poor local mini-
mum during optimization or overfitting. Another potential
source of error is the increased sensitivity to B+1 inhomo-
geneities that is associated with a rapidly varying flip angle
train.18 This may explain the higher MAE (see Figure 9)
compared to other undersampling optimized sequences
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HEESTERBEEK et al. 11

and the insignificant difference with the conventional
approach.

Only optimizing for T2 as for OptF yielded a high
T1-nCRB and low T2-nCRB (see Figure 5). Simultane-
ously, OptF performed worse for T1 than the conventional
sequence, but T2 estimations were similar to OptA. This
indicates that the sequence improved compared to the ini-
tialization, but was not able to achieve extra T2 sensitivity
compared to combined optimization. The optimized flip
angle pattern (Figure 4) shows a clear difference compared
to OptA in the first 200 time points where all pulses stay
low (< 20◦). We hypothesize that this difference reduces
the T1 encoding and makes the sequence less appropriate
for T1 estimation.

Based on the performed experiments it may be con-
cluded that the smoothness constraint leads to lower
errors; furthermore, a longer sequence is preferred over a
shorter sequence with multiple repetitions and inversion
pulses (for the here considered combination of 200 and 400
flip angle pulses). The effects of reducing the lower bound
on the flip angle were minimal.

The used solver (Sequential Least-Square Quadratic
Programming) is prone to find different local minima, but
in initial experiments we found that different initializa-
tions led to slightly different flip angle patterns with very
similar cost. Potentially different optimization schemes
could be applied, for example, simplicial homology global
optimization,19 to find a global optimum with respect to a
certain reference map or multiple reference maps, but this
would be at the cost of increased computation time. We do
not consider such optimizations necessary since we do not
expect the global minimum to significantly outperform the
solutions we found.

A limitation of our approach is that optimizations did
not include repetition time to reduce computation time.
By exploiting the use of GPUs and restricting the number
of free parameters, for example, using b-spline represen-
tations,20 computation time can be further reduced to the
order of minutes. This could allow for co-optimization
of repetition time, and potentially further enhance the
undersampling robustness of the sequence.

Computation times are also affected by the initializa-
tion choice. In particular, initialization close to the opti-
mum will yield a reduction in computation time. A very
short computation time might facilitate estimation of the
optimized MRF sequences in real time. Thus, optimization
could be performed based on selected scan settings, time
constraints and specific geometry immediately before an
actual scan.

Another limitation is that only two-dimensional
acquisitions and one specific undersampling trajec-
tory were considered. The method can be extended
to three-dimensional acquisitions in a straightforward

manner, although this would, again, lead to computational
challenges. The optimization method can also be easily
adapted to other k-space trajectories (e.g. radial or variable
density spirals), where we expect that these optimizations
are especially beneficial with high undersampling factors.
A more complicated extension of the proposed model
could be the co-optimization of the undersampling trajec-
tory and MRF flip angle train. For such co-optimization,
deep learning methods, such as supervised learning, can
be of use. For example, a supervised learning framework
has been proposed to design MR sequences including RF
pulses and gradients for weighted images.21

Our paper focused on zero-filled nuFFT reconstruc-
tions and did not employ low rank reconstruction.21,22

The use of the latter could lead to similar improvements
in image quality, at the cost of increased reconstruction
times. When using improved reconstructions, CRB opti-
mized patterns may still be very effective as was shown
previously.5,6 Whether the combination of the proposed
optimized sequences and more advanced reconstruction
schemes can lead to further improvements or mitigates the
optimization effects is another subject for further study.

6 CONCLUSION

An optimization framework for MRF sequences taking
the undersampling pattern into account was proposed and
successfully validated in simulations and brain scans in
healthy volunteers. The optimized flip angle patterns can
mitigate the artifacts from strong undersampling in MRF.
In in vivo experiments, the relative errors resulting from
our optimized sequences are significantly smaller com-
pared to standard sequence designs. The proposed frame-
work and resulting optimized MRF sequences could be
applied in further use of MRF and may reduce the need for
improved reconstructions.
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online version of the article at the publisher’s website.

Figure S1. Comparison of the relative errors in T1 value
predicted by the model and those obtained in brute force
simulation for different signal phase distortions. This
figure is similar to Figure 2, but for T1 instead of T2.
Figure S2. Distribution of T1 and T2 values in the (ran-
dom) selection used in CRB calculations for the inter
sequence comparison of Figure 5.
Figure S3. In vivo relative error maps in two different
subjects, for two different brain slices.
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