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A B S T R A C T

The aim of present work is to address nonlinear dynamic thermal buckling of shallow spherical functionally
graded porous shells subjected to transient thermal loading using the first order shear deformation theory
(FSDT). A power-law distribution as well as cosine-type porosity distribution are used to model the variation
of constituents through the shell thickness. Thermomechanical properties are assumed to be temperature
dependent. Using Crank–Nicolson time marching scheme, an iterative procedure is employed to solve nonlinear
transient heat conduction equation. For thermal boundary conditions, the outer surface of shells is kept at
a reference temperature, while the inner surface experiences a sudden temperature rise. Geometrical type
of nonlinearity in the sense of von-Karman is taken into account. The highly coupled nonlinear governing
equations of motion are extracted by constructing the appropriate weak form and also using multi-term Ritz–
Chebyshev method. The resulting ODEs are then reduced to a system of nonlinear algebraic equations by
employing the well-known Newmark family of time integration schemes. The latter equations are solved by
means of Newton–Raphson iteration procedure. Budiansky criterion is used to recognize critical parameters of
dynamic instability of shells due to applied thermal shocks. Some comparison studies are conducted in order
to verify the accuracy of results of the present work. Moreover, various parametric studies are performed to
assess the influence of involved parameters.
1. Introduction

Since the primary work of Boley [1] in 1956, the subject of ther-
mally induced vibrations of solid structures have been pursued in
hundreds of publications. Vibrations of beams subjected to simple
harmonic oscillation of boundary temperature have been studied by
Venkataramana and Jana [2]. Bruch [3] et al. investigated the sup-
pression of vibrations of beam structures induced by thermal loading.
Moreover, a general numerical method for thermally induced vibrations
of beam structures has been proposed by Manolis and Beskos [4]. Boley
and Barber [5] extended the work of Boley [1] on beams to the case of
rectangular plates. According to Reissner variational energy principle,
Stroud and Mayers [6] studied the behavior of rectangular plates
subjected to thermal shocks. Nakajo and Hayashi [7,8] conducted both
theoretical and experimental research into the subject of circular plate
vibrations under thermal shocks. Generalization to thermally-shocked
polygonal plates has been presented by Das [9]. Thermally induced
vibrations of laminated plates also studied by Tauchert [10] and Chang
et al. [11]. Rapid heating of circular functionally graded plates has
been presented by Kiani and Eslami [12]. Geometrical nonlinearity in
the sense of von-Karman as well as temperature-dependency of ther-
momechanical properties were taken into account in their work. The
extension of thermally induced vibrations of solid structures to shell
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geometries is due to Kraus [13]. Huang and Tauchert [14,15] inves-
tigated both linear and geometrically nonlinear vibrations of doubly-
curved panels due to thermal loads. They demonstrated the remarkable
result that a full dynamic analysis leads to snap-through buckling
phenomenon. The problem of instability of shells, however, dates from
the beginning of the twentieth century.

Using the linear membrane shell theory, the critical values of exter-
nal pressure were extracted by Zoelly [16]. Critical buckling loads of
isotropic shperical shells have been obtained by Karman and Tsien [17]
in which nonlinear analysis is employed. A theoretical and exper-
imental research on imperfection sensitivity of spherical shells has
been conducted by Wunderlich and Albertin [18]. Combining external
pressurizing with uniform thermal loading and employing Galerkin
weighted residual method, analysis of isotropic shallow spherical shells
has been conducted by Shahsiah and Eslami [19]. Primary studies on
dynamic instability of shells dates back to 1960s. Utilizing Galerkin
weighted residual method, Budiansky and Roth [20] investigated dy-
namic instability of spherical shells. The latter research introduced
the well-known Budiansky criterion of dynamic buckling: The critical
value of involved load parameter is the one at which a small variation
of the load parameter results in a remarkable difference in structural
https://doi.org/10.1016/j.tws.2021.108737
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response. In addition to Budiansky criterion, Simitses [21] also pre-
sented a criterion in which the concept of modified total potential
energy was introduced. The main advantage of Simitses criterion over
Budiansky criterion is that the former employs a time-independent
approach, while the latter requires full dynamic analysis of governing
equations. The Simitses criterion is not, however, applicable to prob-
lems with time-dependent loading. Budiansky criterion has therefore
been used extensively over the past decades due to its generality.
Dynamic instability analysis of isotropic spherical shells subjected to
various loading and boundary conditions has been presented based
on different numerical methods [22–24]. An experimental research
has been conducted by Lock et al. [23] to validate critical buckling
loads of domes. A number of investigations have addressed dynamic
snap-through instability of orthotropic spherical shells [25–27].

Researches on dynamic snap-through buckling of spherical func-
tionally graded shells are more limited in number. Ganapathi and
Varadan [28] studied the dynamic snap-through instability of exter-
nally pressurized spherical FGM shells in which kinematic assumptions
are according to first order shear deformation theory and von-Karman
geometrical nonlinearity. Prakash et al. [29] investigated the nonlinear
dynamic thermal buckling of FGM spherical caps due to a constant field
of temperature rise. Axisymmetric snap-through behavior of shallow
spherical Piezo-FGM shells under thermo-electro-mechanical loading
has been presented by Sabzikar and Eslami [30]. In recent years,
functionally graded porous materials (FGPMs) have drawn the attention
of investigators due to their potential applications in various systems.
Wang and Zu [31] focused on the large amplitude vibration of thin
functionally graded plates with porosities happening due to technical
issues during preparation. According to first order shear deformation
plate theory, Rezaei et al. [32] investigated the free vibration analysis
of rectangular FGM plates with porosities. Wang et al. [33] studied the
vibrations of longitudinally traveling porous functionally graded plates.
Taking into account the geometrical nonlinearity, Wang and Zu [34]
conducted a study on the vibrations of rectangular functionally graded
plates with porosities and moving in thermal environment. For moving
functionally graded materials containing porosities, Wang and Yang
[35] presented the nonlinear vibrations of plates coming into contact
with incompressible, inviscid and irrotational liquid. Free vibration
analysis of light-weight non-uniformly porous plates resting on two
parameter elastic foundation has been investigated by Heshmati and
Daneshmand [36]. Li et al. [37] studied the static linear elasticity,
natural frequency and buckling behavior of porous functionally graded
plates based on isogeometric analysis. Novel quasi-3D theories of dis-
placement field for functionally graded porous structures have been
proposed by Zenkour [38] and Shahsavari [39]. Nonlinear dynamic
buckling analysis of functionally graded plates and shells have been
studied by Bich et al. [40] and Li et al. [41], respectively. Employing
Chebyshev–Ritz method, Chen et al. [42] investigated the bending and
buckling analyses of porous functionally graded plates. For cylindrical
shells, Nam et al. [43] presented the buckling and postbuckling of
porous shells with functionally graded composite coating subjected to
torsion and thermal loading. The buckling and free vibration analysis of
cellular porous plates has been investigated by Thang et al. [44] based
on the first order shear deformation theory of plates. The buckling
and postbuckling behavior of rectangular FGM porous plates have been
studied analytically by Cong et al. [45]. Dynamic buckling of thermally
shocked porous shells are, however, absent in the literature.

As the literature survey demonstrates, no work, to the best of the
authors’ knowledge, has been reported on nonlinear dynamic snap-
through instability of temperature-dependent spherical functionally
graded porous shells subjected to thermal shock. The present study
is therefore directed toward filling this gap in the literature. For the
latter purpose, Hamilton’s principle is utilized to construct nonlinear
governing equations of motion and associated boundary conditions. All
thermomechanical properties are assumed to be temperature depen-
dent. In order to solve transient heat conduction equation, an iterative
 𝑃

2

Fig. 1. Schematic configuration of a shallow spherical FGPM shell.

scheme consisting of central finite difference and Crank–Nicolson time
integration is used. Geometrical nonlinearity in sense of von-Karman as
well as first order shear deformation theory are considered as kinematic
assumptions. Ritz–Chebyshev method is utilized to spatially discretize
nonlinear governing equations of motion. Newmark family of time
integration schemes is employed to reduce the governing equations of
motion to a system of nonlinear algebraic equations. The latter is solved
iteratively using the well-known Newton–Raphson method scheme.
The critical parameter of thermal shock resulting in dynamic snap-
through instability is recognized by Budiansky criterion. The numerical
results of this study are first justified by available data from open
literature. Various parametric studies are then presented to investigate
the influence of involved parameters.

2. Preliminaries

A shallow spherical functionally graded porous shell of radius 𝑅,
thickness ℎ and angle subtended by the shell span at the center of the
sphere 2𝜑0 is considered (Fig. 1). As shown, a curvilinear coordinate
system (𝜑, 𝜗, 𝑧) with its origin located on mid-surface of the shell is
considered. The coordinate measured through the shell thickness is
considered to be positive radially inward. The inner surface of the shell,
being initially at a reference temperature 𝑇0, is subjected to a uniform
temperature rise 𝛩0. Moreover, mechanical boundary conditions of the
shell are considered to be immovable simply-supported. Since thermal
loading and boundary conditions are symmetric, axisymmetric response
of shallow FGM porous shells with no azimuthal dependence is studied
in the present work.

In order to define equivalent thermomechanical properties of FGM
porous shells, an appropriate homogenization technique is required.
The well-known Voigt rule is commonly used for the latter purpose.
According to Voigt rule of mixture for FGMs, thermomechanical prop-
erties of FGM porous shells, including Young’s modulus 𝐸, Poisson’s
ratio 𝜈, the coefficient of thermal expansion 𝛼, thermal conductivity 𝜅,
mass density 𝜌 and specific heat capacity 𝑐, are considered to be a linear
function of constituent volume fractions. Assuming a cosine-type of
porosity distribution, a typical temperature-dependent thermomechan-
ical property of FGM porous shells, denoted by P, is therefore expressed
as

𝑃 (𝑧, 𝑇 ) =
(

𝑃𝑚(𝑇 ) +
(

𝑃𝑐 (𝑇 ) − 𝑃𝑚(𝑇 )
)

𝑉𝑐 (𝑧)
)(

1 − 𝜉 cos
(𝜋𝑧
ℎ

)

)

(1)

where 𝑇 stands for temperature measured in Kelvin, 𝜉 denotes poros-
ity index and subscripts 𝑚 and 𝑐 represent the properties of metal
nd ceramic constituents, respectively. Temperature dependency of
hermomechanical properties is frequently taken into account using
ouloukian model [46]

(𝑇 ) = 𝑃 (𝑃 𝑇 −1 + 1 + 𝑃 𝑇 + 𝑃 𝑇 2 + 𝑃 𝑇 3) (2)
0 −1 1 2 3
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Following a power law for volume fraction of constituents, ceramic and
metal volume fractions are written as [34]

𝑉𝑐 =
( 1
2
+ 𝑧
ℎ

)𝑘
, 𝑉𝑚 = 1 − 𝑉𝑐 (3)

he non-negative constant 𝑘 is called power law index.
In the present work, displacement field is represented using first

rder shear deformation shell theory (FSDT) [37]. According to this
heory which is suitable for the thin and moderately thick class of
hells, displacement field is expressed as

𝜑(𝜑, 𝑧, 𝑡) = 𝑢(𝜑, 𝑡) + 𝑧𝜓(𝜑, 𝑡)

𝑢𝑧(𝜑, 𝑧, 𝑡) = 𝑤(𝜑, 𝑡) (4)

ere, 𝑢 and 𝑤 denote the displacements of a typical point on middle
urface in the 𝜑 and 𝑧 directions, respectively. Moreover, 𝜓 repre-

sents the transverse normal rotation. Taking into account von-Karman
assumptions, the nonzero components of strain tensors are

𝜀𝜑 = 1
𝑅
𝜕𝑢𝜑
𝜕𝜑

−
𝑢𝑧
𝑅

+ 1
2𝑅2

( 𝜕𝑢𝑧
𝜕𝜑

)2

𝜀𝜗 =
cot 𝜑
𝑅

𝑢𝜑 −
𝑢𝑧
𝑅

𝛾𝜑𝑧 =
𝜕𝑢𝜑
𝜕𝑧

+ 1
𝑅
𝜕𝑢𝑧
𝜕𝜑

(5)

n the above equations, 𝜀𝜑 and 𝜀𝜗 are polar and azimuthal normal
trains, respectively. Furthermore, 𝛾𝜑𝑧 denotes shear strain.

Within the framework of linear thermoelasticity, constitutive law,
fter appropriate substitution of Lame constants by the coefficients of
lane stress state, takes the following form

⎧

⎪

⎨

⎪

⎩

𝜎𝜑
𝜎𝜗
𝜏𝜑𝑧

⎫

⎪

⎬

⎪

⎭

=
⎡

⎢

⎢

⎣

𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄55

⎤

⎥

⎥

⎦

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

𝜀𝜑
𝜀𝜗
𝛾𝜑𝑧

⎫

⎪

⎬

⎪

⎭

− 𝛩

⎧

⎪

⎨

⎪

⎩

𝛼
𝛼
0

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

(6)

he 𝑄𝑖𝑗 ’s (𝑖, 𝑗 = 1, 2, 5), known as material stiffness coefficients, are
iven by

11 = 𝑄22 =
𝐸(𝑧, 𝑇 )

1 − 𝜈2(𝑧, 𝑇 )
, 𝑄12 =

𝜈(𝑧, 𝑇 )𝐸(𝑧, 𝑇 )
1 − 𝜈2(𝑧, 𝑇 )

,

𝑄55 =
𝐸(𝑧, 𝑇 )

2(1 + 𝜈(𝑧, 𝑇 ))
(7)

oreover, 𝛩 = 𝑇 (𝑧, 𝑡) − 𝑇0 is the field of temperature rise. According
o FSDT, stress resultants are related to nonzero components of stress
ensor through the following definitions

𝑁𝜑, 𝑁𝜗,𝑀𝜑,𝑀𝜗, 𝑄𝜑𝑧) = ∫

ℎ
2

− ℎ
2

(𝜎𝜑, 𝜎𝜗, 𝑧𝜎𝜑, 𝑧𝜎𝜗, 𝜏𝜑𝑧) 𝑑𝑧 (8)

By substituting Eqs. (5) and (6) into (8), the stress resultants are
obtained in terms of mid-plane displacements as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑁𝜑
𝑁𝜗
𝑀𝜑
𝑀𝜗
𝑄𝜑𝑧

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐴11 𝐴12 𝐵11 𝐵12 0
𝐴12 𝐴22 𝐵12 𝐵22 0
𝐵11 𝐵12 𝐷11 𝐷12 0
𝐵12 𝐵22 𝐷12 𝐷22 0
0 0 0 0 𝐴55

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
𝑅 𝑢,𝜑 − 𝑤

𝑅 + 1
2𝑅2𝑤2

,𝜑
cot 𝜑
𝑅 𝑢 − 𝑤

𝑅
1
𝑅𝜓,𝜑cot 𝜑
𝑅 𝜓

1
𝑅𝑤,𝜑 + 𝜓

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

−

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑁𝑇

𝑁𝑇

𝑀𝑇

𝑀𝑇

0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(9)

Commas henceforth denote partial differentiation. The stretching,
stretching-bending and bending stiffness coefficients are defined as

(𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐷𝑖𝑗 ) = ∫

ℎ
2

ℎ
𝑄𝑖𝑗 (1, 𝑧, 𝑧2) 𝑑𝑧 (10)
− 2

3

urthermore, 𝑁𝑇 and 𝑀𝑇 are thermal resultants and are given by

𝑁𝑇 ,𝑀𝑇 ) = ∫

ℎ
2

− ℎ
2

(1, 𝑧)
𝐸(𝑧, 𝑇 )𝛼(𝑧, 𝑇 )
1 − 𝜈(𝑧, 𝑇 )

(

𝑇 (𝑧, 𝑡) − 𝑇0
)

𝑑𝑧 (11)

As observed from Eq. (11), the temperature field 𝑇 (𝑧, 𝑡) must be
known in order to obtain thermally induced resultants. Since ini-
tial conditions, thermal loading and thermal boundary conditions are
spherically symmetric, the temperature field 𝑇 varies only in the radial
direction

1
(𝑅 − 𝑧)2

𝜕
𝜕𝑧

(

(𝑅 − 𝑧)2𝜅(𝑧, 𝑇 ) 𝜕𝑇
𝜕𝑧

)

= 𝜌(𝑧, 𝑇 ) 𝑐(𝑧, 𝑇 ) 𝜕𝑇
𝜕𝑡

(12)

In the latter equation, the term
1

(𝑅 − 𝑧)2
𝜅(𝑧, 𝑇 ) 𝜕𝑇

𝜕𝑧
𝜕
𝜕𝑧

(𝑅 − 𝑧)2

is an order of ℎ
𝑅 smaller than other terms. Since the thickness of the

shell is negligible compared to its radius ( ℎ𝑅 ≪1), the above term may
be neglected and the heat conduction equation takes the form

𝜕
𝜕𝑧

(

𝜅(𝑧, 𝑇 ) 𝜕𝑇
𝜕𝑧

)

= 𝜌(𝑧, 𝑇 ) 𝑐(𝑧, 𝑇 ) 𝜕𝑇
𝜕𝑡

(13)

The initial condition is given by

𝑇 (𝑧, 0) = 𝑇0 (14)

As boundary conditions, the outer surface is kept at a reference tem-
perature 𝑇0, while the inner surface experiences a temperature rise of
𝛩0

𝑇
(

−ℎ
2
, 𝑡
)

= 𝑇0, 𝑇
(ℎ
2
, 𝑡
)

≡ 𝑇1 = 𝑇0 + 𝛩0 (15)

Eq. (13) should be solved along with conditions (14) and (15) in order
to obtain the temperature field. For the latter purpose, a hybrid spatial–
temporal discretization is required. By employing second order finite
difference discretization in the spatial domain and also Crank–Nicolson
scheme as the time marching procedure, the heat conduction equation
becomes

𝐂T(𝐓) �̇� +𝐊T(𝐓) 𝐓 = 𝐅T(𝐓) (16)

As observed, due to temperature dependency of the material properties,
the matrices 𝐂T and 𝐊T as well as the vector 𝐅T involved in the above
equation are functions of nodal temperatures 𝐓. As a consequence, an
iterative numerical scheme is required at each time step. For the latter
purpose, Newton–Raphson iterative scheme is adopted.

3. Governing equations

Under the assumptions of uncoupled thermoelasticity, the governing
equations of motion of shallow spherical functionally graded porous
shells may be obtained using Hamilton’s principle expressed as

∫

𝑡2

𝑡1
(𝛿𝑈 − 𝛿𝐾) 𝑑𝑡 = 0 (17)

where 𝛿𝐾 is the variation of kinetic energy of FGM porous shells and
is written as

𝛿𝐾 = ∫

2𝜋

0
𝑑𝜗∫

𝜑0

0
𝑅2 sin𝜑 𝑑𝜑∫

ℎ
2

− ℎ
2

𝜌(𝑧)(�̇�𝜑𝛿�̇�𝜑 + �̇�𝑧𝛿�̇�𝑧) 𝑑𝑧

= −∫

2𝜋

0
𝑑𝜗∫

𝜑0

0

{

(𝐼0�̈� + 𝐼1�̈�)𝛿𝑢 + 𝐼0�̈�𝛿𝑤 + (𝐼1�̈� + 𝐼2�̈�)𝛿𝜓
}

× 𝑅2 sin𝜑 𝑑𝜑 (18)

here a dot means differentiation with respect to time. The inertia
oefficient 𝐼𝑖 is defined as

𝑖 = ∫

ℎ
2

ℎ
𝑧𝑖𝜌(𝑧) 𝑑𝑧 (𝑖 = 0, 1, 2) (19)
− 2
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The total virtual strain energy of FGM porous shells due to the nonzero
components of stress tensor reads

𝛿𝑈 = ∫

2𝜋

0
𝑑𝜗∫

𝜑0

0
𝑅2 sin𝜑 𝑑𝜑∫

ℎ
2

− ℎ
2

(𝜎𝜑𝛿𝜀𝜑 + 𝜎𝜗𝛿𝜀𝜗 + 𝜏𝜑𝑧𝛿𝛾𝜑𝑧) 𝑑𝑧

= ∫

2𝜋

0
𝑑𝜗∫

𝜑0

0

{

𝑁𝜑

( 𝛿𝑢,𝜑
𝑅

− 𝛿𝑤
𝑅

+
𝑤,𝜑
𝑅2

𝛿𝑤,𝜑
)

+𝑀𝜑
𝛿𝜓,𝜑
𝑅

+𝑁𝜗

( cot 𝜑
𝑅

𝛿𝑢 − 𝛿𝑤
𝑅

)

+𝑀𝜗
cot 𝜑
𝑅

𝛿𝜓 +𝑄𝜑𝑧
( 𝛿𝑤,𝜑

𝑅
+ 𝛿𝜓

)

}

× 𝑅2 sin𝜑 𝑑𝜑 (20)

ubstituting Eqs. (9) into the previous relation and then combining the
atter and virtual kinetic energy relation (18) with Hamilton’s principle
17) lead to the weak form of governing equations of motion

∫

𝜑0

0
sin𝜑 𝑑𝜑

{

𝐴11

𝑅2

(

𝑢,𝜑𝛿𝑢,𝜑 + cot2 𝜑 𝑢𝛿𝑢
)

+
𝐴12

𝑅2
cot 𝜑

(

𝑢,𝜑𝛿𝑢 + 𝑢𝛿𝑢,𝜑
)

−
𝐴11+𝐴12

𝑅2

(

𝑤𝛿𝑢,𝜑 + cot 𝜑 𝑤𝛿𝑢
)

+
𝐴11

2𝑅3
𝑤2
,𝜑𝛿𝑢,𝜑 +

𝐴12

2𝑅3
cot 𝜑 𝑤2

,𝜑𝛿𝑢

+
𝐵11

𝑅2

(

𝜓,𝜑𝛿𝑢,𝜑 + cot2 𝜑 𝜓𝛿𝑢
)

+
𝐵12

𝑅2
cot 𝜑

(

𝜓,𝜑𝛿𝑢 + 𝜓𝛿𝑢,𝜑
)

−
𝐴11+𝐴12

𝑅2

(

𝑢,𝜑 + cot 𝜑 𝑢
)

𝛿𝑤 +
𝐴11

𝑅3
𝑢,𝜑𝑤,𝜑𝛿𝑤,𝜑 +

𝐴12

𝑅3
cot 𝜑 𝑢𝑤,𝜑𝛿𝑤,𝜑

+
𝐴11+𝐴12

𝑅2
2𝑤𝛿𝑤 +

𝐴55

𝑅2
𝑤,𝜑𝛿𝑤,𝜑 −

𝐴11+𝐴12

2𝑅3
𝑤2
,𝜑𝛿𝑤 −

𝐴11+𝐴12

𝑅3
𝑤𝑤,𝜑𝛿𝑤,𝜑

+
𝐴11

2𝑅4
𝑤3
,𝜑𝛿𝑤,𝜑 −

𝐵11+𝐵12

𝑅2

(

𝜓,𝜑 + cot 𝜑 𝜓
)

𝛿𝑤 +
𝐴55

𝑅
𝜓𝛿𝑤,𝜑

+
𝐵11

𝑅3
𝑤,𝜑𝜓,𝜑𝛿𝑤,𝜑 +

𝐵12

𝑅3
cot 𝜑 𝑤,𝜑𝜓𝛿𝑤,𝜑 +

𝐵11

𝑅2

(

𝑢,𝜑𝛿𝜓,𝜑 + cot2 𝜑 𝑢𝛿𝜓
)

+
𝐵12

𝑅2
cot 𝜑

(

𝑢,𝜑𝛿𝜓 + 𝑢𝛿𝜓,𝜑
)

−
𝐵11+𝐵12

𝑅2

(

𝑤𝛿𝜓,𝜑 + cot 𝜑 𝑤𝛿𝜓
)

+
𝐴55

𝑅
𝑤,𝜑𝛿𝜓 +

𝐵11

2𝑅3
𝑤2
,𝜑𝛿𝜓,𝜑 +

𝐵12

2𝑅3
cot 𝜑 𝑤2

,𝜑𝛿𝜓 + 𝐴55𝜓𝛿𝜓

+
𝐷11

𝑅2

(

𝜓,𝜑𝛿𝜓,𝜑 + cot2 𝜑 𝜓𝛿𝜓
)

+
𝐷12

𝑅2
cot 𝜑

(

𝜓,𝜑𝛿𝜓 + 𝜓𝛿𝜓,𝜑
)

+
(

𝐼0�̈� + 𝐼1�̈�
)

𝛿𝑢 + 𝐼0�̈�𝛿𝑤 +
(

𝐼1�̈� + 𝐼2�̈�
)

𝛿𝜓 − 𝑁𝑇

𝑅2
𝑤,𝜑𝛿𝑤,𝜑

− 𝑁𝑇

𝑅
(

𝛿𝑢,𝜑 + cot 𝜑 𝛿𝑢
)

+ 2𝑁𝑇

𝑅
𝛿𝑤 − 𝑀𝑇

𝑅
(

𝛿𝜓,𝜑 + cot 𝜑 𝛿𝜓
)

}

= 0 (21)

sing some integration by parts, the following governing equations of
otion are obtained

11(𝑢,𝜑𝜑 + cot 𝜑 𝑢,𝜑) − (𝐴11 cot2 𝜑 + 𝐴12) 𝑢 − (𝐴11+𝐴12)𝑤,𝜑 + 𝐴11𝑅
−1𝑤,𝜑𝑤,𝜑𝜑

+ (2𝑅)−1(𝐴11−𝐴12) cot 𝜑 𝑤2
,𝜑 + 𝐵11(𝜓,𝜑𝜑 + cot 𝜑 𝜓,𝜑)

− (𝐵11 cot2 𝜑+𝐵12) 𝜓 = 𝑅2(𝐼0�̈� + 𝐼1�̈�) (22a)

(𝐴11+𝐴12)(𝑢,𝜑 + cot 𝜑 𝑢) + (𝐴11+𝐴12) cot 𝜑 𝑢,𝜑𝑤,𝜑 + 𝐴11(𝑢,𝜑𝜑𝑤,𝜑
+ 𝑢,𝜑𝑤,𝜑𝜑)

+𝐴12(cot 𝜑 𝑢𝑤,𝜑𝜑 − 𝑢𝑤,𝜑) + 𝑅(𝐴55−𝑁𝑇 )(𝑤,𝜑𝜑 + cot 𝜑 𝑤,𝜑)

− 2𝑅(𝐴11+𝐴12)𝑤

−(𝐴11+𝐴12)(cot 𝜑 𝑤𝑤,𝜑 +𝑤𝑤,𝜑𝜑 + 0.5𝑤2
,𝜑) + 𝑅

−1𝐴11(1.5𝑤2
,𝜑𝑤,𝜑𝜑

+ 0.5 cot 𝜑 𝑤3
,𝜑)

+ 𝑅(𝑅𝐴55+𝐵11+𝐵12)(𝜓,𝜑+cot 𝜑 𝜓)+𝐵11(𝑤,𝜑𝜑𝜓,𝜑+𝑤,𝜑𝜓,𝜑𝜑)

+ 𝐵12(cot 𝜑 𝑤,𝜑𝜑𝜓 −𝑤,𝜑𝜓)

+ (𝐵11+𝐵12) cot 𝜑 𝑤,𝜑𝜓,𝜑 − 2𝑅2𝑁𝑇 = 𝑅3𝐼0�̈� (22b)

𝐵11(𝑢,𝜑𝜑 + cot 𝜑 𝑢,𝜑) − (𝐵11 cot2 𝜑 + 𝐵12) 𝑢 − (𝑅𝐴55+𝐵11+𝐵12)𝑤,𝜑
+ 𝑅−1𝐵11𝑤,𝜑𝑤,𝜑𝜑
+ (2𝑅)−1(𝐵11−𝐵12) cot 𝜑 𝑤2

,𝜑 +𝐷11(𝜓,𝜑𝜑 + cot 𝜑 𝜓,𝜑)

− (𝐷11 cot2 𝜑 +𝐷12) 𝜓

− 𝑅2𝐴55𝜓 = 𝑅2(𝐼1�̈� + 𝐼2�̈�) (22c)
4

The associated boundary conditions for immovable simply-supported
shells read

𝜑 = 0 ∶ 𝑢 = 0, 𝑉𝜑 = 0, 𝜓 = 0

𝜑 = 𝜑0 ∶ 𝑢 = 0, 𝑤 = 0, 𝑀𝜑 = 0 (22d)

where 𝑉𝜑 = 𝑄𝜑𝑧 + 𝑅−1𝑁𝜑𝑤,𝜑. Furthermore, FGM porous shells are
assumed to be initially at rest. This means that

𝑢(𝜑, 0) = 0, 𝑤(𝜑, 0) = 0, 𝜓(𝜑, 0) = 0
𝜕𝑢
𝜕𝑡

(𝜑, 0) = 0, 𝜕𝑤
𝜕𝑡

(𝜑, 0) = 0,
𝜕𝜓
𝜕𝑡

(𝜑, 0) = 0 (22e)

. Solution procedure

In order to solve the highly coupled nonlinear equations presented
n Eqs. (22a)–(22c) along with boundary conditions (22d) and initial
onditions (22e), a spatial discretization scheme is first applied. In the
resent work, Ritz–Chebyshev method is adopted for the latter purpose.
ccordingly, primary variables are approximated as

⎧

⎪

⎨

⎪

⎩

𝑢(𝜑, 𝑡)
𝑤(𝜑, 𝑡)
𝜓(𝜑, 𝑡)

⎫

⎪

⎬

⎪

⎭

=
∑

𝑚

⎡

⎢

⎢

⎣

𝑓 𝑢𝑚(𝜑) 0 0
0 𝑓𝑤𝑚 (𝜑) 0
0 0 𝑓𝜓𝑚 (𝜑)

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

𝑈𝑚(𝑡)
𝑊𝑚(𝑡)
𝛹𝑚(𝑡)

⎫

⎪

⎬

⎪

⎭

(23)

ere, 𝑓 𝑢𝑚, 𝑓𝑤𝑚 are 𝑓𝜓𝑚 are approximation functions and must satisfy
ssential type of boundary conditions. Hence

⎧

⎪

⎨

⎪

⎩

𝑓 𝑢𝑚(𝜑)
𝑓𝑤𝑚 (𝜑)
𝑓𝜓𝑚 (𝜑)

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

𝐴𝑢(𝜑)
𝐴𝑤(𝜑)
𝐴𝜓 (𝜑)

⎫

⎪

⎬

⎪

⎭

T𝑚
(2𝜑
𝜑0

− 1
)

(24)

where T𝑚 stands for Chebyshev polynomials of the first kind, defined
as

cos(𝑚𝜃) = T𝑚(cos 𝜃) (25)

𝐴𝑢(𝜑), 𝐴𝑤(𝜑) and 𝐴𝜓 (𝜑) are also auxiliary functions defined corre-
sponding to essential boundary conditions:

𝐴𝑢(𝜑) =
𝜑
𝜑0

(

1 −
𝜑
𝜑0

)

𝐴𝑤(𝜑) = 1 −
𝜑
𝜑0

𝐴𝜓 (𝜑) =
𝜑
𝜑0

(26)

Insertion of the approximation (23) into the weak form presented in
Eqs. (21) leads to the spatially discretized form of governing equations
as

𝐌(𝐓) �̈� +𝐊(𝐓,𝐗) 𝐗 = 𝐅(𝐓) (27)

Here, 𝐌 and 𝐊 denote the mass and stiffness matrices, respectively.
oreover, 𝐅 is the force vector induced by thermal loading. Since geo-
etrical nonlinearity is taken into account, the stiffness matrix 𝐊 is a
onlinear function of time-dependent unknown vector 𝐗. It is observed
hat due to temperature dependency of thermomechanical properties,
he matrices involved in (27) are also functions of time-dependent
emperature vector 𝐓. In order to reduce the system of ODEs presented
n (27) to a system of nonlinear algebraic equations, the well-known
ewmark family of time integration schemes is employed. Applying

he constant-average acceleration scheme (𝛽= 0.25) of Newmark family
eads to

̂(𝐓,𝐗) 𝐗 = �̂�(𝐓) (28)

here

̂(𝐓,𝐗) = 𝐊(𝐓,𝐗) + 1
𝛽𝛥𝑡2

𝐌(𝐓)

�̂�(𝐓) = 𝐅(𝐓) +𝐌(𝐓)
(

1
𝛽𝛥𝑡2

𝐗 + 1
𝛽𝛥𝑡

�̇� +
1 − 2𝛽
2𝛽

�̈�
)

(29)
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Fig. 2. A comparison of the maximum dimensionless midspan deflection of an isotropic
homogeneous spherical shell (𝜆 = 1.7 and 𝜇 = 150) subjected to a sudden temperature
ise at the inner surface with the results provided by Javani et al. [24].

Fig. 3. A comparison of critical temperature of rapidly-heated isotropic homogeneous
spherical shells for various values of 𝜇 and 𝜆 parameters with the results provided by
Javani et al. [24].

In order to solve the system of nonlinear algebraic Eqs. (28), an
iterative procedure is required. Similar to the case of solving heat
conduction equation, Newton–Raphson iterative scheme is adopted for
the latter purpose.

5. Results and discussions

The procedure outlined in the previous sections is implemented
here to investigate the nonlinear dynamic snap-through instability of
temperature-dependent spherical FGM porous shells subjected to tran-
sient thermal loading. It is henceforth assumed that 𝑊 denotes the

idspan deflection of shells. For the purpose of greater clarity, 𝑊 is
ondimensionalized by the cap height 𝑓0 = 𝑅(1 − cos𝜑0). Moreover,
= 1 mm is considered unless otherwise stated.

In order to verify numerical results of the present work, a com-
arison study is first presented to assure the accuracy of solution
ethod. For this purpose, the work by Javani et al. [24] is considered.
5

his research treats dynamic snap-through phenomenon of isotropic
hallow spherical caps under transient type of thermal loading. The
nner surface of shells is subjected to sudden temperature rise, while
he outer surface is kept at a reference temperature. The mechanical
oundary conditions are considered to be immovable simply supported.
otion equations are discretized within the shell domain by means

f the harmonic differential quadrature method (HDQM). Newmark
amily of time integration schemes is used to reduce the nonlinear
DEs to a system of nonlinear algebraic equations. Javani et al. [24]
lso introduced the geometrical parameter 𝜆 and slenderness ratio 𝜇 as

follows

𝜆 =
√

12
𝑅𝜑2

0
ℎ

, 𝜇 = 2
√

12
𝑅𝜑0
ℎ

(30)

The thermomechanical properties of shells are assumed to be tem-
perature independent and are: 𝐸 = 207.79 GPa, 𝜈 = 0.3178, 𝛼 =
15.321 × 10−6 1/K, 𝜅 = 12.1429 W/mK, 𝜌 = 8166 kg∕m3 and 𝑐 = 390.035
J/kgK. Moreover, the shell thickness is considered to be ℎ = 1 mm.
Fig. 2 depicts a comparison of the maximum dimensionless midspan
deflection of an isotropic homogeneous spherical shell subjected to a
sudden temperature rise at the inner surface. In this figure, for any
specified value of the inner surface temperature 𝑇1, dynamic response
of shells are extracted. The maximum midspan deflection of shells,
undimensionalized by the cap height 𝑓0, are then determined. The
geometrical parameter and slenderness ratio are selected to be 𝜆 = 1.7
and 𝜇 = 150, respectively. For temperatures lower than 𝑇 = 368.25 K,
a small positive variation of inner surface temperature is followed by
a small increase in the maximum dimensionless midspan deflection. At
the temperature 𝑇 = 368.25 K, however, as slight growth of temperature
as 0.25 K leads to a rapid increase in the maximum dimensionless
midspan deflection. 𝑇 = 368.25 K is therefore recognized as the critical
temperature of snap-through buckling according to Budiansky criterion.
A comparison on critical temperature of dynamic buckling of shells for
a wide range of slenderness ratio 𝜇 and also two values of geometrical
parameter 𝜆 is observed in Fig. 3. As seen, the critical temperature of
dynamic snap-through is a strictly increasing function of the geomet-
rical parameter 𝜆. On the other hand, an increase in slenderness ratio
reduces the critical temperature of dynamic buckling. As observed, the
results of the present study are in good agreement with those reported
by Javani et al. [24]. Compared to the work of Javani et al. [24],
structures herein are considered to be inhomogeneous and hence the
governing equations of motion are more general and complicated.
Moreover, porosity is included. Since all thermomechanical properties
are assumed to be temperature dependent, heat conduction equation is
nonlinear and numerical schemes are inevitable.

After verifying the numerical results of the present work, various
parametric studies are conducted to assess the influence of several
involved parameters. To this end, ceramic–metal functionally graded
material porous shells composed of silicon nitride (Si3N4) as the ce-
ramic constituent and stainless steel (SUS304) as the metal constituent
are considered in the rest. The inner surface of shells is assumed to
be zirconia rich, while the outer one is aluminum rich. It is assumed
that FGM porous shells experience Cauchy-type of thermal boundary
conditions such that the inner surface of shells is suddenly exposed to a
temperature rise, while the outer surface remains at a reference temper-
ature. Thermomechanical properties of silicon nitride and stainless steel
(SUS304) are significantly temperature-dependent. This dependency is
best described by Touloukian model given by Eq. (2). Corresponding
to each thermomechanical property, the 𝑃𝑖 coefficients presented in
Touloukian model are tabulated in Table 1. In the subsequent numer-
ical results, the shell thickness is discretized using a mesh consisting
of 50 nodes. Moreover, the reference temperature is considered to be
𝑇0 = 300 K.

In the first example, a spherical linearly graded shell (𝑘 = 1 and
𝜉 = 0) with the geometrical parameter 𝜆 = 1.7 and slenderness ratio
𝜇 = 150 is selected. In order to recognize critical temperature of
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Fig. 4. Temporal evolution of the dimensionless midspan deflection of a spherical linearly graded shell (𝜇 = 150, 𝜆 = 1.7 and 𝜉 = 0) for different values of surface temperature
rise. (a): 𝑇1 = 350 K, (b): 𝑇1 = 400 K, (c): 𝑇1 = 406.2 K, (d): 𝑇1 = 406.3 K.
dynamic snap-through instability, temporal evolution of the midspan
deflection of the shell is required. In Fig. 4, the dimensionless midspan
deflection of the shell is plotted versus time (in seconds) for different
boundary temperatures. In plots (a) to (d), the values of inner surface
temperature are 𝑇1 = 350 K, 𝑇1 = 400 K, 𝑇1 = 406.2 K and 𝑇1 = 406.3 K,
respectively. If inertia terms in the governing Eqs. (22a)–(22c) are ne-
glected, thermally induced vibrations observed in Fig. 4 disappear. The
latter approach in uncoupled thermoelasticity is known as quasi-static
analysis. The curves plotted in Fig. 4 are indeed oscillation around the
6

corresponding quasi-static-analysis curves. Prior to Boley [1], the dom-
inant approach in uncoupled thermoelasticity was quasi-static analysis.
Boley [1] demonstrated, however, that although quasi-static analysis is
appropriate in many cases, it is inadequate in general. The problem of
dynamic snap-through instability is an example of such a case. A quasi-
static analysis is not capable of tracing dynamic snap-through buckling.
It is observed in Fig. 4 that for temperatures smaller than 𝑇 = 406.2
K, a small positive change in inner surface temperature results in a
slight increase in the maximum dimensionless midspan deflection. At
the temperature 𝑇 = 406.2 K, however, a slight growth of temperature
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Table 1
The coefficients of temperature dependency for SUS304 and Si3N4 [47].
Material Property 𝑃−1 𝑃0 𝑃1 𝑃2 𝑃3
SUS304 𝐸 (GPa) 0 201.04 3.079 × 10−4 −6.534 × 10−7 0

𝜈 0 0.3262 −2.002 × 10−4 3.797 × 10−7 0
𝛼 (10−6/K) 0 12.33 8.086 × 10−4 0 0
𝜌 (kg/m3) 0 8166 0 0 0
𝜅 (W/mK) 0 15.379 −1.264 × 10−3 2.092 × 10−6 −7.223 × 10−10

𝑐𝑣 (J/kgK) 0 496.56 −1.151 × 10−3 1.636 × 10−6 −5.863 × 10−10

Si3N4 𝐸 (GPa) 0 348.43 −3.07 × 10−4 2.16 × 10−7 −8.946 × 10−11

𝜈 0 0.24 0 0 0
𝛼 (10−6/K) 0 5.8723 9.095 × 10−4 0 0
𝜌 (kg/m3) 0 2370 0 0 0
𝜅 (W/mK) 0 13.723 −1.032 × 10−3 5.466 × 10−7 −7.876 × 10−11

𝑐𝑣 (J/kgK) 0 555.11 1.016 × 10−3 2.92 × 10−7 −1.67 × 10−10
Fig. 5. Maximum dimensionless midspan deflection of a spherical linearly graded shell
(𝜇 = 150, 𝜆 = 1.7 and 𝜉 = 0) versus the inner surface temperature.

0.1 K) is followed by a rapid increase in the maximum dimensionless
idspan deflection. The temperature 𝑇 = 406.2 K is therefore recog-

nized as the critical temperature of dynamic snap-through instability
according to Budiansky criterion. Similar to curves presented in Fig. 4,
temporal evolution of the dimensionless midspan deflection of the shell
is obtained for various inner surface temperature. Maximum values
of the dimensionless midspan deflection are selected for each case of
thermal loading and then plotted against inner surface temperature
𝑇1, as shown in Fig. 5. According to Budiansky criterion, the inner
surface temperature 𝑇1 = 406.2 K is recognized once again as the critical
temperature of dynamic snap-through buckling.

The next example is devoted to the study of porosity index influence
on the dynamic response of spherical FGM porous shells subjected to
surface rapid heating. As before, a spherical linearly graded porous
shell (𝑘 = 1) with the porosity index 𝜉 = 0.1, the geometrical parameter
𝜆 = 1.7 and slenderness ratio 𝜇 = 150 are selected. Four different
values of inner surface temperature are considered: (a) 𝑇1 = 350 K, (b)
𝑇1 = 400 K, (c) 𝑇1 = 403.5 K and (d) 𝑇1 = 403.6 K. Temporal evolution of
the midspan deflection of the shell is plotted versus time (in seconds)
for the aforementioned values of inner surface temperature in Fig. 6.
It is observed that a temperature increase as small as 0.1 K in the
inner surface temperature results in a significant change of temporal
evolution of the dimensionless midspan deflection. Comparing Fig. 6
with Fig. 4, it should be noted that porosity distribution postpones the
onset of dynamic snap-through buckling due to thermal shocks. More-
over, porosity inclusion reduces the intensity of dynamic buckling of
7

FGM porous shells subjected to rapid surface temperature rise. Similar
to the previous case, maximum values of the dimensionless midspan
deflection are selected for each case of thermal loading and then plotted
against the inner surface temperature 𝑇1, as shown in Fig. 7. It is
again observed that a temperature increase of only 0.1 K in the inner
surface temperature leads to a drastic change of temporal evolution of
the dimensionless midspan deflection. The inner surface temperature
𝑇1 = 403.5 K is therefore recognized as the critical temperature of
dynamic buckling according to Budiansky criterion.

Fig. 8 depicts the dynamic snap-through temperature of linearly
graded porous shells for different values of porosity index versus slen-
derness ratio. Three different values of porosity index are considered:
𝜉 = 0.1, 𝜉 = 0.2 and 𝜉 = 0.5. It is seen that the dynamic snap-
through temperature is an increasing function of the porosity index. As
the slenderness ratio becomes greater, the difference between dynamic
buckling temperature for various porosity indices reduces.

The aim of the next study is to investigate the influence of tem-
perature dependency of thermomechanical properties. Fig. 9 shows
the dynamic buckling temperature of a linearly graded porous shell
for two different cases. In the first case, thermomechanical properties
of the porous shell are assumed to be temperature dependent (TD)
and to obey Touloukian model given by Eq. (2). In the second case,
on the other hand, thermomechanical properties of the shell are as-
sumed to be temperature independent (TID). For the latter purpose,
the thermomechanical properties of the shell are evaluated at the
reference temperature 𝑇0 = 300 K. As observed, the dynamic buckling
temperature of the shell increases when the assumption of temperature
dependency is incorporated. The influence of power law index on
dynamic buckling temperature of functionally graded porous shells is
illustrated in Fig. 10. As seen, the dynamic snap-through temperature
increases as power law index decreases. This is simply understood since
greater values of the power law index leads to a higher equivalent
elastic modulus. This in turn implies that dynamic buckling temper-
ature increases. Fig. 11 depicts the dynamic snap-through temperature
of linearly graded porous shells versus slenderness ratio. Four different
values of geometrical parameter are considered: 𝜆 = 1.6, 𝜆 = 1.8,
𝜆 = 2, 𝜆 = 2.2. It is easily observed that the dynamic snap-through
temperature is an increasing function of the geometrical parameter. As
the slenderness ratio becomes greater, the difference between dynamic
buckling temperature for various geometrical parameters diminishes.

6. Conclusion

Based on the assumptions of von-Karman geometrical nonlinearity
and temperature dependency of thermomechanical properties, the non-
linear governing equations of motion of spherical FGM porous shells
subjected to thermal shock are derived. The inner surfaces of the
shells are kept at a reference temperature, while the outer surfaces
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t

Fig. 6. Temporal evolution of the dimensionless midspan deflection of a spherical linearly graded porous shell (𝜇 = 150, 𝜆 = 1.7 and 𝜉 = 0.1) for different values of surface
emperature rise. (a): 𝑇1 = 350 K, (b): 𝑇1 = 400 K, (c): 𝑇1 = 403.5 K, (d): 𝑇1 = 403.6 K.
of the shells experience a sudden temperature rise. Employing Ritz–
Chebyshev as well as Newmark family of time integration schemes, a
system of nonlinear algebraic equations are obtained. The equations
are then solved via Newton–Raphson iterative method. Critical bound-
ary temperatures resulting in dynamic snap-through phenomenon are
recognized using the well-known Budiansky criterion. The numerical
results demonstrate that for the constituents considered herein, dy-
namic buckling temperature is a decreasing function of porosity index
as well as power law index. The geometrical parameter of the shells
8

is also an influential parameter on the critical temperature of shells
such that higher values of the geometrical parameter lead to greater
dynamic buckling temperatures. The other influential parameter on
the critical temperature of the shells is the slenderness ratio. In con-
trast to the geometrical parameter, critical temperature is a decreasing
function of slenderness ratio. Moreover, comparison study on temper-
ature dependency of thermomechanical properties shows that ignoring
temperature dependency leads to an underestimated temperature of
dynamic snap-through buckling.
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Fig. 7. Maximum dimensionless midspan deflection of a spherical linearly graded
porous shell (𝜇 = 150, 𝜆 = 1.7 and 𝜉 = 0.1) versus the inner surface temperature.

Fig. 8. Dynamic snap-through temperature of spherical linearly graded porous shells
(𝜆 = 1.7) for various porosity indices versus slenderness ratio.

Fig. 9. Dynamic buckling temperature of spherical linearly graded porous shells (𝜆 =
1.7 and 𝜉 = 0.1) for temperature-dependent (TD) and temperature-independent (TID)
thermomechanical properties versus slenderness ratio.
9

Fig. 10. Dynamic buckling temperature of spherical functionally graded porous shells
(𝜆 = 1.7 and 𝜉 = 0.1) for various power-law indices versus slenderness ratio.

Fig. 11. Dynamic buckling temperature of spherical linearly graded porous shells
(𝜉 = 0.1) for various geometrical parameters versus slenderness ratio.
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