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 A B S T R A C T

Traditional constitutive models rely on hand-crafted parametric forms with limited expressivity 
and generalizability, while neural network-based models can capture complex material behavior 
but often lack interpretability. To balance these trade-offs, we present monotonic Input-Convex 
Kolmogorov-Arnold Networks (ICKANs) for learning polyconvex hyperelastic constitutive laws. 
ICKANs leverage the Kolmogorov-Arnold representation, decomposing the model into composi-
tions of trainable univariate spline-based activation functions for rich expressivity. We introduce 
trainable monotonic input-convex splines within the KAN architecture, ensuring physically 
admissible polyconvex models for isotropic compressible hyperelasticity. The resulting models 
are both compact and interpretable, enabling explicit extraction of analytical constitutive 
relationships through a monotonic input-convex symbolic regression technique. Through un-
supervised training on full-field strain data and limited global force measurements, ICKANs 
accurately capture nonlinear stress–strain behavior across diverse strain states. Finite element 
simulations of unseen geometries with trained ICKAN hyperelastic constitutive models confirm 
the framework’s robustness and generalization capability.

1. Introduction

Constitutive modeling of material behavior has traditionally relied on a priori hand-crafted parametric models, with model 
parameters iteratively calibrated using simple experimental data, such as tension or torsion tests. However, this approach poses 
challenges in limited generalization of the constitutive model beyond the calibration data and relies on an inefficient, time-
consuming trial-and-error process of hand-crafting such parametric models. In recent years, machine learning (ML) and data-driven 
techniques have revolutionized traditional phenomenological constitutive modeling approaches. Rather than relying on hand-
crafted parametric models, these methods extract patterns directly from experimental or multiscale simulation data, enabling the 
efficient development of physically-consistent, accurate, and generalizable constitutive models [1,2]. Among the modern data-driven 
approaches, several categories exist, each with its own advantages and limitations. Here, we provide a brief and non-exhaustive 
review of recent representative works (see [1] for detailed review) to identify existing gaps and highlight the motivation for this 
study.
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The model-free approaches [3–10] rely on a large catalog of stress–strain pairs and avoid potential errors arising from modeling 
assumption. In this method, when a new strain query is made, the closest stress–strain pair from the existing dataset is identified, 
subject to physical compatibility constraints. However, it struggles with poor generalization to stress–strain states beyond the 
available dataset, lacks the ability to correct for measurement noise, and requires a large amount of data.

In contrast, model-based approaches aim to learn physically admissible and consistent surrogate mappings of stress–strain data 
using various modeling techniques. These methods strive to enhance generalizability, correct for measurement noise, and achieve 
accurate predictions with minimal data. However, among model-based approaches, state-of-the-art techniques span a broad spectrum 
in terms of interpretability (i.e., understanding how and why a model makes a certain prediction), generalizability (i.e., extending 
beyond training data), and model expressivity (i.e., the ability to approximate diverse data distributions and constitutive behaviors).

On one end of the spectrum are techniques based on sparse and symbolic regression. Sparse regression techniques [11–17] 
assume a large catalog of hand-crafted candidate functions and use deterministic or Bayesian methods to select a subset, creating 
parsimonious and interpretable constitutive models. Symbolic regression techniques [18–23] explore permutation and combination 
of mathematical operations on input data to yield an analytical model that best fits the data. While these approaches offer high 
interpretability and generalizability as well as analytically verifiable compliance with physical laws, their expressive power is 
inherently constrained by the predefined set of candidate functions and mathematical operations.

On the other end of the spectrum are techniques based on Gaussian process regression (GPR) and neural networks (NNs) 
which are uninterpretable and black-box in nature, but offer higher expressivity. GPR is particularly well-suited for constitutive 
modeling [24–27] in the low-data regime but encounters computational scaling bottlenecks as the amount of data increases. 
Neural networks (NNs) as constitutive models overcome this bottleneck by leveraging scalable, highly parameterized architectures 
(ranging from thousands to millions of trainable parameters) while providing significantly greater expressivity than GPR. NN-based 
constitutive models have been successfully developed for a wide range of material behaviors — from hyperelasticity [28,29], 
viscoelasticity [30], and plasticity [31] to multi-physics phenomena [32,33]. These models employ diverse architectures, including 
recurrent neural networks [34], long short-term memory networks, hypernetworks [35], neural ordinary differential equations [36], 
sparse networks with interpretable hidden features [37], Bayesian neural networks [38], probabilistic diffusion fields [39], and many 
more; see [1] for an exhaustive review.

To strike a balance between interpretability and expressivity – in the general ML setting and independent of constitutive modeling 
– Kolmogorov-Arnold Networks (KANs) [40] have recently emerged as a novel NN architecture. The Kolmogorov-Arnold representation 
theorem [41] states that any multivariate continuous function on a bounded domain can be written as a finite composition of 
continuous univariate functions and the binary operation of addition. KANs take advantage of the Kolmogorov-Arnold representation 
theorem to break down high-dimensional functions into simpler univariate functions. Like standard multi-layer perceptrons (MLPs), 
KANs are fully connected networks. However, they differ in a key way. MLPs learn by adjusting weights and biases, with fixed 
activation functions providing nonlinearity. In contrast, in KANs, the activation functions themselves are trainable parameters, 
which allows the network to directly learn the nonlinear transformations. Since their introduction, KANs have gained significant 
attention and have been extended to solving forward and inverse problems as well as operator learning for partial differential 
equations [42–46]. In this paper, we first address the question of how KANs can be adapted for constitutive modeling, focusing on 
hyperelasticity?

A major challenge in adapting NNs, including KANs, for constitutive modeling is their high expressivity — an advantage that 
enables them to capture complex material behavior but, if left unchecked, can lead to unphysical predictions of constitutive behavior. 
To address this, significant efforts have been made to incorporate physical knowledge into NN architectures, constraining them 
to the subspace of physically admissible constitutive models and mitigating their tendency to overfit or produce non-physical 
responses. In the context of hyperelasticity, physical admissibility conditions include, for example, (poly)convexity of the strain 
energy density, objectivity, and zero stress at zero deformation [28]. Several recent studies have tackled this challenge using various 
adaptations of the input-convex neural network (ICNN) architecture [47] for modeling hyperelastic strain energy densities [48–53]. 
The ICNN architecture is based on adapting a vanilla MLP architecture to ensure that the output is convex with respect to the 
input values, which aligns well with the (poly)convexity requirements of a hyperelastic strain energy density. However, the ICNN 
architecture is not directly applicable to KANs due to fundamental differences in their formulation. We note that an independent 
study by Abdolazizi et al. [54] has also proposed using KANs as hyperelastic constitutive NNs. In contrast to our approach, the 
KAN models presented by Abdolazizi et al. [54] are not input-convex and thus do not satisfy the (poly-)convexity requirements of 
hyperelasticity. Additionally, their approach was limited to supervised training using only stress–strain pairs. As discussed below, 
unsupervised training and physically admissible generalization is not feasible without enforcing (poly-)convexity. In this study, we 
explore how to build a monotonic Input-Convex KAN (ICKAN) architecture, thereby enabling physically admissible KANs-based hyperelastic 
constitutive models for balanced interpretability and expressivity.

Another challenging aspect of hyperelastic constitutive NNs is their training. While training on labeled stress–strain pairs from 
multiscale simulations is straightforward (commonly done using Sobolev training; see e.g., [18]), most common experimental setups 
(e.g., uniaxial or biaxial tension and torsion tests) fail to sufficiently probe the high-dimensional stress–strain space required to train 
highly parameterized NNs. Additionally, full-field experimental tests using digital image correlation (DIC) provide strain fields but 
only boundary-averaged projections of stress tensors (i.e., reaction forces). Training constitutive NNs on full-field strain fields and 
reaction forces without explicit stress labels presents an unsupervised learning challenge.2 Here, we address the question of how to 
train ICKAN-based hyperelastic constitutive models in an unsupervised manner.

2 In a typical DIC setup, although the strain field is discretized at thousands-to-millions of points, only one or two reaction forces can be measured. As a 
result, reaction forces act as a regularization rather than serving as direct labels for supervised training.
2 
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To tackle this challenge, we previously introduced the NN-EUCLID framework [48], demonstrating that NN-based hyperelastic 
constitutive NNs can be trained without stress data, relying solely on strain fields and global force measurements–quantities readily 
available through mechanical testing and DIC. Without stress labels, the learning process is guided by a physics-motivated loss 
function based on the conservation of linear momentum. NN-EUCLID builds upon the earlier EUCLID framework [11–16] for 
unsupervised model discovery via sparse regression, as well as the Virtual Fields Method [55,56] for unsupervised calibration of 
parametric constitutive models. We note that the Equilibrium Gap Method (EGM) [57] and NN-EUCLID are closely related to the 
Virtual Fields Method (VFM), with EGM being a special case where local ansatz functions are used for the virtual fields. NN-EUCLID 
employs neural networks to model the constitutive behavior, while using the same ansatz functions for the virtual fields as in 
EGM, thereby offering a more flexible and modeling-bias-free approach to constitutive modeling. The validity of NN-EUCLID has 
been further supported by experimental studies conducted by Jailin et al. [53] and Meng et al. [51]. Here, we demonstrate that 
ICKAN-based hyperelastic constitutive models are compatible with NN-EUCLID for unsupervised training, thereby paving the way 
for their application in realistic experimental settings. Notably, we demonstrate that monotonicity and input-convexity in ICKANs 
are essential for addressing the ill-posedness of unsupervised training—without them, the method fails.

2. Modeling hyperelasticity using ICKANs

2.1. Hyperelasticity preliminaries

For hyperelastic materials, the constitutive model is characterized by a strain energy density function 𝑊 (𝑭 ), from which both 
the first Piola–Kirchhoff stress 𝑷 (𝑭 ), and the incremental tangent modulus C(𝑭 ), are derived: 

𝑷 (𝑭 ) =
𝜕𝑊 (𝑭 )
𝜕𝑭

, C(𝑭 ) =
𝜕𝑷 (𝑭 )
𝜕𝑭

, ∀ 𝑭 ∈ GL+(3). (1)

Here, GL+(3) denotes the set of all invertible second-order tensors with positive determinants. The constitutive modeling task is 
to choose an appropriate form of 𝑊 (𝑭 ) that not only captures the material response accurately but also satisfies key physical and 
thermodynamic requirements. These requirements include:

• Stress-free undeformed configuration: In the undeformed state, the stress must vanish: 
𝑷 (𝑭 = 𝑰) = 𝟎. (2)

• Objectivity: The strain energy density must be objective, i.e, 
𝑊 (𝑹𝑭 ) = 𝑊 (𝑭 ), ∀ 𝑭 ∈ GL+(3), 𝑹 ∈ SO(3), (3)

where SO(3) is the group of all 3D rotation matrices. Note that objectivity implies compatibility with the balance of angular 
momentum.

• Polyconvexity: Material stability is ensured if 𝑊 (𝑭 ) satisfies the quasiconvexity condition [58–60]: 

∫
𝑊 (�̄� + ∇𝒘)d𝑉 ≥ ∫

𝑊 (�̄� )d𝑉 , ∀  ⊂ R3, �̄� ∈ GL+(3), 𝒘 ∈ 𝐶∞
0 (), (4)

with 𝒘 vanishing on 𝜕. However, direct enforcement of quasiconvexity is generally impractical [61]. Instead, polyconvexity 
is preferred over quasiconvexity because it offers a more analytically tractable condition and given that polyconvexity 
inherently implies quasiconvexity. The strain energy density is polyconvex if and only if there exists a convex function 
 ∶ R3×3 × R3×3 × R → R such that 

𝑊 (𝑭 ) = (𝑭 ,Cof 𝑭 , det 𝑭 ). (5)

2.2. Hyperelastic model ansatz

For the scope of this study, we consider isotropic compressible hyperelasticity. Incorporating the aforementioned physical 
constraints, we propose the following ansatz for the strain energy density function: 

𝑊 (𝑭 ) = 𝑊 ICKAN
 (𝐾1, 𝐾2, 𝐾3)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
monotonic input-convex

KAN-based model

+ 𝑊 0
⏟⏟⏟
Energy

correction

,

with 𝐾1 = (𝐼1 − 3), 𝐾2 = (𝐼∗2 − 3
√

3), 𝐾3 = (𝐽 − 1)2.

(6)

Here, 𝑊 ICKAN
  represents a monotonic Input-Convex Kolmogorov-Arnold Network (ICKAN) with the trainable parameter set . The 

architecture of ICKAN is discussed in detail in Section 2.3. To model isotropic compressible hyperelasticity, we use deviatoric and 
volumetric invariants, i.e., 

deviatoric invariants ∶ 𝐼1 = 𝐽−2∕3𝐼1, 𝐼∗2 = (𝐼2)3∕2 = (𝐽−4∕3𝐼2)3∕2,
1∕2 (7)
volumetric invariant ∶ 𝐽 = det(𝑭 ) = 𝐼3 ,

3 
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where 
𝐼1 = tr(𝑪), 𝐼2 =

1
2
[

tr(𝑪)2 − tr(𝑪2)
]

, 𝐼3 = det(𝑪) (8)

represent the principal invariants of the right Cauchy–Green deformation tensor 𝑪 = 𝑭 𝑇𝑭 . 𝑊 0 is a constant scalar correction such 
that the energy density vanishes at zero deformation (𝑭 = 𝑰), i.e., 

𝑊 (𝑰) = 0 ⟹ 𝑊 0 = − 𝑊 ICKAN
 (0, 0, 0). (9)

Note that the energy correction 𝑊 0 is updated during each iteration of the training (discussed later in Section 3). While we consider 
hyperelastic models with invariants-based inputs here, models based on other inputs such as principal stretches are also possible; 
see [30].

The first Piola–Kirchhoff stress and tangent modulus are given by (from (1)) 

𝑃𝑖𝑗 (𝑭 ) =
𝜕𝑊 ICKAN

 (𝐾1, 𝐾2, 𝐾3)

𝜕𝐹𝑖𝑗
(10)

and 

C𝑖𝑗𝑘𝑙 =
𝜕𝑃𝑖𝑗 (𝑭 )
𝜕𝐹𝑘𝑙

=
𝜕2𝑊 ICKAN

 (𝐾1, 𝐾2, 𝐾3)

𝜕𝐹𝑖𝑗𝜕𝐹𝑘𝑙
, (11)

respectively. Here, we use the Einstein index notation over the subscripts.
We now discuss how this ansatz satisfies the previously mentioned physical constraints.

• Stress-free undeformed configuration: The inputs (𝐾1, 𝐾2, 𝐾3) in (6) are the modified version of the invariants obtained by 
appropriately shifting – and in some cases squaring – such that both their values and their derivatives with respect to 𝑭
vanish in the undeformed state (𝑭 = 𝑰), i.e., 

𝜕𝐾1
𝜕𝑭

|

|

|

|𝑭=𝑰
= 𝟎,

𝜕𝐾2
𝜕𝑭

|

|

|

|𝑭=𝑰
= 𝟎,

𝜕𝐾3
𝜕𝑭

|

|

|

|𝑭=𝑰
= 𝟎. (12)

Consequently, the first Piola–Kirchhoff stress vanishes identically at undeformed state: 

𝑷 (𝑰) =
𝜕𝑊 ICKAN

 (0, 0, 0)

𝜕𝐾1

𝜕𝐾1
𝜕𝑭

|

|

|

|𝑭=𝑰
+
𝜕𝑊 ICKAN

 (0, 0, 0)

𝜕𝐾2

𝜕𝐾2
𝜕𝑭

|

|

|

|𝑭=𝑰
+
𝜕𝑊 ICKAN

 (0, 0, 0)

𝜕𝐾3

𝜕𝐾3
𝜕𝑭

|

|

|

|𝑭=𝑰
= 𝟎 (13)

• Objectivity : Since the model ansatz (6) is a function of 𝐾1, 𝐾2, and 𝐾3 which are in turn function of invariants of 𝑪, it is 
objective by construction.

• Polyconvexity: The invariant 𝐼1 and equivalently, 𝐾1 are polyconvex in 𝑭 . 𝐾3 = (𝐽 −1)2 is polyconvex in 𝑭 . We note that 𝐼2 is 
not polyconvex in 𝑭 , as previously shown by Hartmann and Neff [62] and Klein et al. [63]. To this end, we use the modified 
second invariant 𝐼∗2  and equivalently 𝐾2, which is polyconvex in 𝑭  (see [62] for proof). In summary, the inputs (𝐾1, 𝐾2, 𝐾3)
are polyconvex in 𝑭 . If 𝑊 ICKAN

  is convex and monotonically non-decreasing in (𝐾1, 𝐾2, 𝐾3), then the overall strain energy 
density 𝑊 (𝑭 ) is polyconvex in 𝑭  [64]. In the subsequent section, we present the monotonic input-convex architecture for 
KANs to satisfy this physical constraint.

2.3. Monotonic input-convex Kolmogorov-Arnold network (ICKAN)

The model architecture of 𝑊 ICKAN
  is based on the Kolmogorov-Arnold representation theorem, which states that any multivariate 

continuous function on a bounded domain can be expressed as a sum of univariate continuous functions. In its simplest form, a 
multivariate function 𝑓 (𝑥1,… , 𝑥𝑛) can be written as a sum of activations of univariate functions. KANs extend this principle to 
deeper and wider architectures, enabling the approximation of more complex multivariate functions. Fig.  1 presents a schematic of 
the ICKAN architecture, which is discussed in the following sections.

We consider a multi-layer KAN with 𝑅 layers. For the 𝑟th layer of the KAN, let 𝒛(𝑟) ∈ R𝑛𝑟  be the (𝑛𝑟)-dimensional output. For 
each layer, the output is obtained as [40] 

KAN layer: 𝒛(𝑟) =

[𝑛𝑟−1
∑

𝑗=1
𝜙𝑟−1,1,𝑗

(

𝑧(𝑟−1)𝑗

)

, … ,
𝑛𝑟−1
∑

𝑗=1
𝜙𝑟−1,𝑛𝑟 ,𝑗

(

𝑧(𝑟−1)𝑗

)

]𝑇

𝑛𝑟×1

, (14)

where 𝒛(𝑟−1) is the output of the previous layer. Here, {𝜙𝑟−1,𝑖,𝑗}𝑛𝑟𝑖=1 are 𝑛𝑟 trainable univariate functions of the 𝑟th layer transforming 
the 𝑗th-dimension of the layer input, i.e., 𝑧(𝑟−1)𝑗 . Summing all the activations 𝜙𝑟−1,𝑖,𝑗 (⋅) over 𝑗 ∈ {1,… , 𝑛𝑟−1} yields the 𝑖th-dimension 
of the layer output, i.e., 𝑧(𝑟)𝑖 . The choice of the univariate activations 𝜙𝑟−1,𝑖,𝑗 (⋅) can be arbitrary. However, to ensure input-convexity, 
special considerations apply on the choice of 𝜙𝑟−1,𝑖,𝑗 (⋅). For the following discussion, we omit the subscripts on 𝜙(⋅) for brevity, while 
implicitly assuming that all 𝜙 functions are independent and have their own trainable parameters.

To ensure monotonic input-convexity, we follow the principles that (i) non-negative sum of convex functions are convex, (ii)
convex non-decreasing composition of a convex function is convex [47,65], (iii) non-negative sum of monotonically non-decreasing 
4 
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Fig. 1. Imposing monotonicity and convexity constraints on the trainable B-splines of 𝑊 ICKAN
 . (a) A B-spline with unconstrained control points (red), illustrating 

how the spline curve is constructed. The natural domain of definition for the B-spline is indicated by the shaded gray area. (b) The resulting B-spline curve 
after enforcing both monotonicity and convexity constraints, with linear extrapolation applied at both endpoints to ensure consistent behavior beyond the spline 
domain. (c) Uniform B-spline basis functions of order 𝑘 = 3. (d) Schematic representation of a vanilla KAN model using unconstrained trainable B-splines, where 
activation functions remain unrestricted. (e) The ICKAN model, incorporating convexity and monotonicity constraints on the trainable B-spline-based activation 
functions. These constraints ensure a physically consistent strain energy density. The insets at each activation node illustrate the univariate activation functions 
used within the respective networks.

functions is monotonically non-decreasing, and (iv) the composition of monotonically non-decreasing functions is monotonically 
non-decreasing. A sufficient condition to ensure monotonic input-convexity is that each KAN layer is convex and non-decreasing. 
Consequently, from (14), each univariate function 𝜙 must be convex and non-decreasing.

We use uniform B-splines as a choice for univariate activation function, i.e., 

𝜙(𝑥) = 𝑔(𝑤𝑠)𝜓(𝑥) (15)

for a scalar input 𝑥. Here, 𝑤𝑠 ∈ R is a trainable scalar weight and 𝑔 ∶ R → R+ is a non-negative function. This ensures that as 
long as 𝜓 is convex and non-decreasing, 𝜙 remains convex and non-decreasing, while allowing for a trainable scaling parameter to 
alter the magnitude of the activations. Here, we choose 𝑔(⋅) = log(1 + exp(𝑥)), i.e., the softplus function. The trainable univariate 
function 𝜓(𝑥) is a convex and non-decreasing uniform B-spline of order 𝑘 and a linear combination of 𝑛𝑏 piecewise polynomial basis 
functions 𝐵𝑖,𝑘(𝑥): 

𝜓(𝑥) =
𝑛𝑏
∑

𝑖=1
𝑐𝑖𝐵𝑖,𝑘(𝑥), with

𝑛𝑏
∑

𝑖=1
𝐵𝑖,𝑘(𝑥) = 1 for 𝑥 ∈ [𝑥min, 𝑥max]. (16)

Here, 𝑐𝑖 is the control point associated with the corresponding basis functions 𝐵𝑖,𝑘. [𝑥min, 𝑥max], is natural definition domain of the 
B-spline curve where zeroth-order consistency is satisfied, i.e., constant functions can represented exactly. The learning process 
involves training the control points {𝑐𝑖}𝑛𝑏𝑖=1 (along with the scaling weight 𝑤𝑠), for each univariate function 𝜙(⋅) (recall we dropped 
the subscripts for brevity).

To define the 𝑘th-order B-spline basis functions (illustrated in Fig.  1c) for each 𝜙, we consider a set of 𝑚𝑏 = (𝑘 + 𝑛𝑏 + 1) knots: 
{𝑡 }𝑚𝑏  and recursively use the algorithm introduced by De Boor [66] as follows:
𝑖 𝑖=1

5 



P. Thakolkaran et al. Computer Methods in Applied Mechanics and Engineering 443 (2025) 118089 
Zero-order basis function (𝑘 = 0): 

𝐵𝑖,0(𝑥) =

{

1, if 𝑡𝑖 ≤ 𝑥 < 𝑡𝑖+1,
0, otherwise.

(17)

Recursive definition for higher orders (𝑘 > 0): 

𝐵𝑖,𝑘(𝑥) =
𝑥 − 𝑡𝑖
𝑡𝑖+𝑘 − 𝑡𝑖

𝐵𝑖,𝑘−1(𝑥) +
𝑡𝑖+𝑘+1 − 𝑥
𝑡𝑖+𝑘+1 − 𝑡𝑖+1

𝐵𝑖+1,𝑘−1(𝑥). (18)

For the special case of a uniform B-spline, the knots are equally spaced, i.e., 
𝑡𝑖+2 − 𝑡𝑖+1 = 𝑡𝑖+1 − 𝑡𝑖, ∀ 𝑖 ∈ [1, 𝑚𝑏 − 2]. (19)

We choose the knots by uniformly discretizing a range of pre-defined (as a hyperparameter) univariate inputs of 𝜙(𝑥).
For a uniform B-spline to be convex and monotonically non-decreasing, the control points must satisfy the following condition: 

𝑐𝑖+2 − 𝑐𝑖+1 ≥ 𝑐𝑖+1 − 𝑐𝑖 ≥ 0, ∀ 𝑖 ∈ [1, 𝑛𝑏 − 2]. (20)

The proof is provided in Appendix  A.1. We note that the convexity and non-decreasing monotonicity of a uniform B-spline curve 
depends entirely on the control points and is independent of the knot spacing. This result follows from the convex hull property of 
B-splines: since the B-spline is contained in the convex hull of its control points, the control points must form a convex set and be 
non-decreasing for the B-spline curve. The implementation of the convexity and non-decreasing constraints are outlined in Appendix 
A.2.

The construction in (20) only guarantees convexity and non-decreasing monotonicity in the natural definition domain of the 
B-spline. The range of the knots are chosen to be sufficiently large for any reasonable data distribution relevant to hyperelasticity. 
Nevertheless, for extreme input data (e.g., exceptionally large strains), we extend the B-spline beyond its natural domain by 
maintaining a constant slope at its endpoints to preserve these properties; see Fig.  1b for a schematic and Appendix  A.3 for 
implementation details. To ensure that the spline domain encompasses the expected input range, we set the knots’ range during 
initialization. This update is done only once and remains fixed throughout training and inference (more details in Appendix  B).

In summary, the ICKAN architecture for isotropic compressible hyperelasticity can be described as follows:

𝐈𝐧𝐩𝐮𝐭 𝐥𝐚𝐲𝐞𝐫 ∶ 𝑭 , (21a)

𝐈𝐧𝐯𝐚𝐫𝐢𝐚𝐧𝐭𝐬 𝐥𝐚𝐲𝐞𝐫 ∶ 𝒛(0) =
[

𝐾1 = 𝐽−2∕3𝐼1 − 3, 𝐾2 = (𝐽−4∕3𝐼2)3∕2 − 3
√

3, 𝐾3 = (𝐽 − 1)2
]𝑇
, (21b)

𝐅𝐢𝐫𝐬𝐭 𝐊𝐀𝐍 𝐥𝐚𝐲𝐞𝐫 ∶ 𝒛(1) =
[

𝑛0
∑

𝑗=1
𝜙0,1,𝑗

(

𝑧(0)𝑗
)

, … ,
𝑛0
∑

𝑗=1
𝜙0,𝑛1 ,𝑗

(

𝑧(0)𝑗
)

]𝑇
, (21c)

⋮

𝑟𝐭𝐡 𝐊𝐀𝐍 𝐥𝐚𝐲𝐞𝐫 ∶ 𝒛(𝑟) =

[𝑛𝑟−1
∑

𝑗=1
𝜙𝑟−1,1,𝑗

(

𝑧(𝑟−1)𝑗

)

, … ,
𝑛𝑟−1
∑

𝑗=1
𝜙𝑟−1,𝑛𝑟 ,𝑗

(

𝑧(𝑟−1)𝑗

)

]𝑇

, (21d)

⋮

𝐎𝐮𝐭𝐩𝐮𝐭 𝐥𝐚𝐲𝐞𝐫 ∶ 𝑊 ICKAN
 = 𝒛(𝑅) =

𝑛𝑅−1
∑

𝑗=1
𝜙𝑅−1,1,𝑗

(

𝑧(𝑅−1)𝑗

)

(21e)

𝐓𝐫𝐚𝐢𝐧𝐚𝐛𝐥𝐞 𝐩𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫𝐬 ∶  =
{

{𝑐(𝑟,𝑖,𝑗)𝑘 ∶ 𝑘 = 1,… , 𝑛𝑏}, 𝑤(𝑟,𝑖,𝑗)
𝑠 ∶ 𝑟 = 1,… , 𝑅; 𝑖 = 1,… , 𝑛𝑟; 𝑗 = 1,… , 𝑛𝑟−1

}

. (21f)

Table  C.2 provides a summary of all the architectural hyperparameters.

3. Unsupervised training of ICKANs

Instead of training the ICKAN model on labeled stress–strain pairs, we train the model on full-field displacement/strain-fields and 
global force data which are realistically available through mechanical testing and DIC techniques. To achieve this, we extend our 
previously introduced NN-based constitutive modeling framework, NN-EUCLID [48], to ICKANs. Here, we provide a brief review of 
NN-EUCLID in the context of ICKANs. Fig.  2 illustrates a schematic overview of the ICKAN and its unsupervised training framework.

Consider a hyperelastic specimen undergoing quasi-static deformation in a two-dimensional reference domain 𝛺 ⊂ R2. The 
specimen is designed with a complex geometry (for example, a plate with a hole) to induce diverse and heterogeneous strain states, 
while the material itself is assumed to be homogeneous and isotropic. Without loss of generality, we assume plane strain conditions.

Boundary conditions are applied such that Dirichlet conditions are enforced on 𝜕𝛺𝑢 ⊂ 𝜕𝛺 and Neumann conditions on the 
remainder, 𝜕𝛺𝑡 = 𝜕𝛺 ⧵ 𝜕𝛺𝑢. For simplicity, our analysis focuses on displacement-controlled loading (i.e., Dirichlet boundary 
conditions), while noting that applied forces in load-controlled scenarios are equivalent to reaction forces under displacement 
control. The dataset comprises of 𝑛𝑡 snapshots of displacement measurements, 

 =
{

𝒖𝑎,𝑡 ∈ R2 ∶ 𝑎 = 1,… , 𝑛 ; 𝑡 = 1,… , 𝑛
}

, (22)
𝑛 𝑡
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Fig. 2. Schematic overview of the unsupervised deep learning approach for hyperelastic constitutive modeling using ICKANs. In (a) and (b), pointwise 
measurements of displacements and reaction forces are acquired from a hyperelastic specimen under quasi-static deformation using a DIC setup. These data, 
together with a finite element mesh of the domain (c), are used to reconstruct continuous displacement and strain fields (d,e). The physics-consistent ICKAN-based 
constitutive model (f) then predicts the corresponding stress fields at the quadrature points of each element (g) given the strains. The computed stress fields 
serve to calculate both the internal and external nodal forces (h). By employing the weak form of the conservation of linear momentum, the residual forces 
are minimized—applied pointwise for free degrees of freedom and in an aggregated manner for fixed degrees of freedom corresponding to each set of Dirichlet 
constraints with measured reaction forces. This iterative optimization process refines the parameters of the ICKAN-based constitutive models.

recorded at 𝑛𝑛 reference points 
 =

{

𝑿𝑎 ∈ 𝛺 ∶ 𝑎 = 1,… , 𝑛𝑛
}

. (23)

Additionally, for each snapshot, 𝑛𝛽 reaction forces 
{

𝑅𝛽,𝑡 ∶ 𝛽 = 1,… , 𝑛𝛽 ; 𝑡 = 1,… , 𝑛𝑡
}

(24)

are measured at selected Dirichlet boundaries (e.g., using load cells). For brevity, the superscript (⋅)𝑡 is omitted in the subsequent 
discussion, although the numerical procedure is applied independently to every snapshot.

Given these limited measurements, the primary goal is to infer the constitutive model 𝑊 (𝑭 ) governing the stress–strain response.
To reconstruct the displacement field, the reference domain  is discretized using linear triangular elements (each with a single 

quadrature point at its barycenter), yielding the approximation 

𝒖(𝑿) =
𝑛𝑛
∑

𝑎=1
𝑁𝑎(𝑿) 𝒖𝑎. (25)

Here, 𝑁𝑎 ∶ 𝛺 → R represents the shape function associated with node 𝑿𝑎. The corresponding deformation gradient field is 
approximated as 

𝑭 (𝑿) = 𝑰 +
𝑛𝑛
∑

𝑎=1
𝒖𝑎 ⊗ ∇𝑁𝑎(𝑿), (26)

where 𝑰 is the identity matrix, and ∇ denotes the gradient operator with respect to the reference coordinates.
As outlined in [11,48], we leverage the conservation of linear momentum to guide the learning of the constitutive model, which 

eliminates the need of stress labels. Assuming quasi-static loading and negligible body forces, the weak form of the linear momentum 
balance in the reference domain 𝛺 is given by 

∫𝛺
𝑷 ∶ ∇𝒗 d𝑉 − ∫𝜕𝛺𝑡

�̂� ⋅ 𝒗 d𝑆 = 0 ∀ admissible 𝒗 , (27)

where ̂𝒕 denotes the prescribed tractions and 𝒗 is a test function that vanishes on the Dirichlet boundary 𝜕𝛺𝑢. The weak formulation 
is preferred over the strong form, as it avoids the need for second derivatives, which are sensitive to noise.

Let  = {(𝑎, 𝑖) ∶ 𝑎 = 1,… , 𝑛𝑛; 𝑖 = 1, 2} denote the set of displacement degrees of freedom, which we partition into:

• free: unconstrained degrees of freedom,
7 
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• fix
𝛽  (with 𝛽 = 1,… , 𝑛𝛽): degrees of freedom under Dirichlet constraints that contribute to the observed reaction force 𝑅𝛽 .

Approximating the test function by 

𝒗(𝑿) =
𝑛𝑛
∑

𝑎=1
𝑁𝑎(𝑿) 𝒗𝑎, with 𝑣𝑎𝑖 = 0 ∀ (𝑎, 𝑖) ∈

𝑛𝛽
⋃

𝛽=1
fix
𝛽 , (28)

the weak form (27) reduces to 
𝑛𝑛
∑

𝑎=1
𝑣𝑎𝑖 𝑓

𝑎
𝑖 = 0 , with 𝑓 𝑎𝑖 = ∫𝛺

𝑃𝑖𝑗 ∇𝑗𝑁𝑎 d𝑉
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

internal force

−∫𝜕𝛺𝑡
𝑡𝑖𝑁

𝑎 d𝑆

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
external force

. (29)

Here, the integrals are computed using numerical quadrature over the same discretization and mesh as (25). Since the test functions 
are arbitrary, the force residual must vanish at every free degree of freedom, 

𝑓 𝑎𝑖 = 0 ∀ (𝑎, 𝑖) ∈ free . (30)

At the fixed degrees of freedom, the internal and external forces are counteracted by the reaction force imposed by the Dirichlet 
constraints. Since point-wise reaction forces cannot be measured experimentally, they are assumed to be unavailable. Instead, only 
the total reaction forces integrated over the boundary segments are known. As a result, the global force balance for each measured 
reaction force is expressed as 

∑

(𝑎,𝑖)∈fix𝛽

𝑓 𝑎𝑖 = 𝑅𝛽 ∀ 𝛽 = 1,… , 𝑛𝛽 , (31)

where the summation is carried out over all point-wise forces associated with the degrees of freedom in the 𝛽th Dirichlet constraint, 
denoted as fix

𝛽 . As noted earlier, the superscript (⋅)𝑡 has been omitted for brevity, but the above force balance conditions apply to 
all data snapshots at 𝑡 = 1,… , 𝑛𝑡. 

Our goal is then to learn the constitutive model 𝑊 (𝑭 ) in (6) (with 𝑷 (𝑭 ) given by (10)), now parameterized by the monotonic 
input-convex Kolmogorov–Arnold network 𝑊 ICKAN

 , such that the displacement and reaction force data satisfy the physics-based 
constraints (30) and (31). We formulate the inverse problem as the minimization of the force balance residuals [48] with respect 
to the trainable parameters of the ICKAN: 

 ← argmin


𝑛𝑡
∑

𝑡=1

[

∑

(𝑎,𝑖) ∈ free

(

𝑓 𝑎,𝑡𝑖
)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
free degrees of freedom

+
𝑛𝛽
∑

𝛽=1

(

𝑅𝛽,𝑡 −
∑

(𝑎,𝑖) ∈ fix𝛽

𝑓 𝑎,𝑡𝑖
)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
fixed degrees of freedom

]

. (32)

This optimization is performed via gradient-based minimization, enabled by automatic differentiation (see Table  C.2 for details on 
the optimizer and related hyperparameters).

4. Results

4.1. Numerical benchmarks

To evaluate the ICKAN-based constitutive models, we use the dataset provided by Thakolkaran et al. [48], which emulates a 
digital image correlation (DIC) experiment by simulating a hyperelastic square plate with a hole under plane-strain conditions using 
the finite element method (FEM); see Fig.  3a for schematic. The specimen is subjected to displacement-controlled asymmetric biaxial 
tension, with symmetry enforced along the bottom and left boundaries and loading parameter 𝛿. This configuration yields diverse 
and heterogeneous strain states, making the data ideal for training a generalizable constitutive model from a single experiment; 
hence, the specimen is termed the training specimen.

The dataset includes synthetic data corresponding to several well-established material models:

1. Neo-Hookean (NH) model: 
𝑊 (𝑭 ) = 0.5(𝐼1 − 3) + 1.5(𝐽 − 1)2. (33)

2. Isihara (IH) model [67]: 
𝑊 (𝑭 ) = 0.5(𝐼1 − 3) + (𝐼2 − 3) + (𝐼1 − 3)2 + 1.5(𝐽 − 1)2. (34)

3. Haines-Wilson (HW) model [68]: 
𝑊 (𝑭 ) = 0.5(𝐼1 − 3) + (𝐼2 − 3) + 0.7(𝐼1 − 3)(𝐼2 − 3) + 0.2(𝐼1 − 3)3 + 1.5(𝐽 − 1)2. (35)
8 
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Fig. 3. (a) Training specimen: A square plate with a hole in the bottom-left corner is subjected to displacement-controlled asymmetric biaxial tension. The 
resulting dataset (noisy full-field displacements and reaction forces) is used to train the ICKAN-based constitutive models. (b) Validation specimen: A square plate 
containing two asymmetric elliptical holes is subjected to displacement-controlled uniaxial tension. This geometry is employed solely for validation, and no data 
from these experiments enter the training process. All lengths and displacements are normalized by the side length of the undeformed specimen. The parameters 
used to generate the data can be found in Table  C.2.
Source: Figures adapted from [48].

4. Gent-Thomas (GT) model [69]: 

𝑊 (𝑭 ) = 0.5(𝐼1 − 3) + log(𝐼2∕3) + 1.5(𝐽 − 1)2. (36)

5. Arruda-Boyce (AB) model [70]: 

𝑊 (𝑭 ) = 2.5
√

𝑁𝑐

[

𝛽𝑐𝜆𝑐 −
√

𝑁𝑐 log
(

sinh 𝛽𝑐
𝛽𝑐

)]

− 𝑐AB + 1.5(𝐽 − 1)2, (37)

where 𝜆𝑐 =
√

𝐼1∕3, 𝛽𝑐 = −1
(

𝜆𝑐∕
√

𝑁𝑐

)

, and −1 denotes the inverse Langevin function. Here, 𝑁𝑐 = 28 represents the number 
of polymeric chain segments, and 𝑐AB ≈ 3.7910 offsets the energy density to zero at 𝑭 = 𝑰 , since the Arruda-Boyce formulation 
does not inherently satisfy this condition.

6. Ogden (OG) model [71]: 

𝑊 (𝑭 ) =
𝜇
𝜂
(

�̃�𝜂1 + �̃�
𝜂
2 + �̃�

𝜂
3 − 3

)

+ 1.5(𝐽 − 1)2, with �̃�𝑘 = 𝐽−1∕3𝜆𝑘, 𝑘 = 1, 2, 3, (38)

where 𝜆1, 𝜆2, 𝜆3 are the principal stretches and 𝜇 = 𝜂 = 1.3.

Note that the models given in Eqs. (34)–(36) are not polyconvex, as they involve the modified invariant 𝐼2, which does 
not fulfill ellipticity. For discussions on the polyconvexity of the Ogden model, we refer the reader to the work of Hartmann 
and Neff [62]. These models are included as they are commonly used in literature and provide a representative benchmark for 
evaluating constitutive modeling approaches. Additionally, without loss of generality, all physical quantities in the material models 
are considered as non-dimensionalized.

For benchmarking purposes, the ICKAN-based model is trained to approximate these material laws using the NN-EUCLID loss 
described in (32). Additional details regarding hyperparameters and the training algorithm are provided in Appendix  C.

Considering that real-world DIC measurements contain noise, artificial noise has been added to the displacement data. The noise 
level, determined by the pixel resolution of the imaging system, remains constant for each degree of freedom across all load steps. 
Specifically, the displacement data is modeled as 

𝑢𝑎,𝑡𝑖 = 𝑢fem,𝑎,𝑡𝑖 + 𝜀𝑎,𝑡𝑖 , with 𝜀𝑎,𝑡𝑖 ∼  (0, 𝜎2𝑢 ) ∀ (𝑎, 𝑖) ∈ , 𝑡 ∈ 1,… , 𝑛𝑡. (39)

Here, 𝑢fem,𝑎,𝑡𝑖  represents the FEM-computed displacement, while 𝜀𝑎,𝑡𝑖  is sampled from a normal distribution with zero mean and 
standard deviation 𝜎𝑢. Following [11,12,48], two noise levels are considered (normalized by specimen length): 𝜎𝑢 = 10−4 (low 
noise) and 𝜎𝑢 = 10−3 (high noise), which emulate the noise levels representative of modern DIC setups.

We use pre-processed synthetic datasets from Thakolkaran et al. [48], where the displacement fields were already denoised 
following standard DIC post-processing routines. As described in that work, kernel ridge regression (KRR) was used for spatial 
denoising. To enhance data efficiency, the denoised displacements on the high-resolution mesh with 63,601 nodes are projected 
onto a coarser mesh with 𝑛 = 1441 nodes, which serve as the training dataset for the ICKAN models.
𝑛
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Fig. 4. Two-dimensional projections of the strain invariants (𝐼1 − 3), (𝐼∗2 − 3
√

3), and (𝐽 − 1)2 for all elements in the training specimen (Fig.  3a) across all load 
steps, shown for (a) Arruda-Boyce (37) and (b) Isihara (34) benchmarks. The figure also includes the strain invariants of the validation specimen (Fig.  3b) across 
all elements and load steps, along with those corresponding to the six evaluation deformation paths (40). All data presented are derived from the ground-truth 
model without noise, including the strain invariants of the validation specimen.

4.2. Accuracy and generalizability beyond the training data

We train 𝑛𝑒 ICKAN models with identical architectures, each trained independently with different random initializations to 
mitigate bad local minima in the optimized model parameters. We choose the model whose final loss (as defined in (32)) is the 
lowest loss in the ensemble; the others are discarded.

For each benchmark problem (Eqs. (33)–(38)), the performance of the ICKAN-based constitutive models is evaluated against the 
corresponding ground truth along six deformation paths: 

𝑭UT(𝛾) =
⎡

⎢

⎢

⎣

1 + 𝛾 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

, 𝑭UC(𝛾) =

⎡

⎢

⎢

⎢

⎣

1
1+𝛾 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎥

⎦

, 𝑭 BT(𝛾) =
⎡

⎢

⎢

⎣

1 + 𝛾 0 0
0 1 + 𝛾 0
0 0 1

⎤

⎥

⎥

⎦

,

𝑭 BC(𝛾) =

⎡

⎢

⎢

⎢

⎣

1
1+𝛾 0 0
0 1

1+𝛾 0
0 0 1

⎤

⎥

⎥

⎥

⎦

, 𝑭 SS(𝛾) =
⎡

⎢

⎢

⎣

1 𝛾 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

, 𝑭 PS(𝛾) =

⎡

⎢

⎢

⎢

⎣

1 + 𝛾 0 0
0 1

1+𝛾 0
0 0 1

⎤

⎥

⎥

⎥

⎦

,

(40)

where 𝛾 ∈ [0, 2] denotes the loading parameter for UT, BT, and BC, and 𝛾 ∈ [0, 1] for UC, SS, and PS (as these three cases already 
involve significant extrapolation; as shown in Fig.  4). These deformation paths are used solely for evaluation and not for training. The 
abbreviations used are as follows — UT: uniaxial tension, UC: uniaxial compression, BT: biaxial tension, BC: biaxial compression, SS: 
simple shear, PS: pure shear. Note that, while the uniaxial tension load case represents a uniaxial strain state, it induces a multiaxial 
stress state.

Figs.  5–6 and 9–10 (low noise) and Figs.  7–8 and 11–12 (high noise) confirm that both the ICKAN-based strain energy density as 
well as corresponding stress predictions closely match the ground truth across all benchmarks, deformation paths, and noise levels. 
This verifies the generalizability of the trained constitutive models. We observe that in some cases the predictions start to deteriorate 
10 
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at larger strains. However, the issue can be addressed by conducting additional experiments (and include them as training data) or 
using specimens with a larger diversity in strain states to improve generalizability.

We highlight that the monotonic input-convex architecture of KANs guarantees learning physically admissible models. In Ap-
pendix  D, we demonstrate the performance of vanilla KANs without monotonicity and input-convexity. We observe poor prediction 
accuracies for both strain energy densities and stresses relative to their monotonic input-convex variants. In addition, we observe 
non-physical behaviors such as negative stiffness and fictitious material instabilities without monotonicity and input-convexity in 
the KAN architecture.

We further validate the ICKAN-based constitutive models by deploying them within a finite element simulation framework. 
Linear triangular elements and a Newton–Raphson nonlinear solver are employed, with element-level stress and tangent modulus 
computed via automatic differentiation from Eqs. (10) and (11). Since tangent stiffness calculations require the energy density to 
be at least twice differentiable, the splines must have a minimum order of 𝑘 = 3 to ensure adequate smoothness. In this work, 
we use splines of order 𝑘 = 5. These simulations were carried out using a custom in-house finite element solver implemented in 
Python. To assess generalization beyond the training domain, a validation specimen with a more complex geometry—featuring 
two asymmetric elliptical holes and subjected to quasi-static uniaxial loading—is considered (see Fig.  3b). The lowest-loss ICKAN 
models (for each material model, respectively), selected from the ensemble as described above and trained on high-noise data, are 
used in these simulations. As shown in Fig.  13, the finite element solutions for two representative ground-truth models (Isihara 
(34) and Arruda-Boyce (37), respectively) exhibit excellent agreement with those obtained using the ICKAN-based models. This is 
a strong indication that the ICKAN approach is not overfitting to the training data but instead captures the underlying constitutive 
behavior in a generalizable form. Quantitatively, this is supported by high goodness-of-fit 𝑅2 scores: greater than 0.99 for Isihara and 
greater than 0.95 for Arruda-Boyce in the high-noise case, for element-wise strain invariants and close matching of reaction forces. 
Remarkably, the strain states of this validation specimen are completely different from that of the training specimen — as shown 
in Fig.  4; yet the ICKANs show excellent generalization capability to these unseen strain states. In Appendix  E, we also provide a 
comparative analysis of the ICKAN framework with the EUCLID approach of Flaschel et al. [11].

4.3. Interpretability

One advantage of ICKANs over ICNNs and other black-box neural networks is the enhanced interpretability they offer in 
constitutive modeling. This interpretability manifests in two key aspects.

(i) Due to the highly nonlinear and expressive nature of the activations – enabled by trainable splines – only a few layers 
with a small number of dimensions are required in KANs. Consequently, each activation function in ICKANs can be plotted and 
interpreted individually; see the insets of Fig.  1d and e. In contrast, ICNNs and similar classical models rely on less expressive 
nonlinear activations (e.g., rectified linear unit or softplus), which necessitate many more linear layers with higher dimensionality 
to achieve comparable performance. This results in a significantly larger number of parameters and reduced interpretability.

(ii)  The Kolmogorov-Arnold representation allows the network architecture to be decomposed into univariate activation 
functions. This decomposition enables the extraction of analytical expressions at each activation node using symbolic regression, 
which can then be sequentially assembled across the entire network to form an analytical expression for the entire constitutive 
model. Such a univariate decomposition is not possible with ICNNs and similar models, thereby limiting their capacity for symbolic 
interpretation.

To quantitatively demonstrate the latter aspect, we extract the symbolic expression of the strain energy density from the trained 
ICKAN model via symbolic regression at each activation node of the network independently. These expressions are derived using 
a small library of univariate symbolic functions: {𝑥, exp(𝑥), log(1 + exp(𝑥)), log(1 + exp(𝑥))2, log(1 + exp(𝑥))3, log(1 + exp(𝑥))4}. Each 
candidate function in the library is purposefully chosen to be convex and non-decreasing. In Appendix  F, we introduce a monotonic 
input-convex symbolic regression strategy that ensures that the symbolic approximation of the general ICKAN-based hyperelastic 
model remains polyconvex.

Table  1 presents the symbolic expressions of the strain energy densities obtained from the ICKANs for both low- and high-noise 
cases. We overlay the predictions of the symbolic models in each plot of Figs.  5–12 for comparison with the true and ICKAN-based 
strain energy density and stress. In general, the symbolic regression models closely match the ICKAN predictions, and in some cases, 
they even provide a slightly better fit at higher strains. Implementation details of the monotonic input-convex symbolic regression 
are provided in Appendix  F. Limitations of symbolic interpretation: Expectedly, in a few cases, the symbolic models show a deterioration 
in the prediction of strain energy densities and stresses relative to the trained ICKAN models. This can be attributed to the limited 
expressivity of the chosen function library for symbolic regression and the compounding errors from fitting a symbolic expression 
to already fitted splines of the ICKAN.

5. Conclusion

We introduced monotonic Input-Convex Kolmogorov–Arnold Networks (ICKANs) for learning hyperelastic constitutive laws. By 
integrating convexity and monotonicity constraints directly into the KAN architecture, our approach guarantees that the predicted 
strain energy density satisfies polyconvexity. At the same time, the use of trainable spline-based activation functions allows for a 
compact and interpretable representation of the constitutive model. We further demonstrated that ICKANs can be trained in an 
unsupervised manner on realistically measurable data in the form of strain fields and global reaction forces.
11 
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Fig. 5. Strain energy density 𝑊 (𝑭 (𝛾)) predictions for the deformation paths in (40), evaluated under low noise (𝜎𝑢 = 10−4). Results are shown for the best 
ICKAN-based constitutive model in the ensemble, the model obtained through symbolic regression of the ICKAN, as well as for the hidden true model, for the 
NH (33), IH (34), and HW (35) benchmarks.
12 
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Fig. 6. Strain energy density 𝑊 (𝑭 (𝛾)) predictions for the deformation paths in (40), evaluated under low noise (𝜎𝑢 = 10−4). Results are shown for the best 
ICKAN-based constitutive model in the ensemble, the model obtained through symbolic regression of the ICKAN, as well as for the hidden true model, for the 
GT (36), AB (37), and OG (38) benchmarks.
13 
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Fig. 7. Strain energy density 𝑊 (𝑭 (𝛾)) predictions for the deformation paths in (40), evaluated under high noise (𝜎𝑢 = 10−3). Results are shown for the best 
ICKAN-based constitutive model in the ensemble, the model obtained through symbolic regression of the ICKAN, as well as for the hidden true model, for the 
NH (33), IH (34), and HW (35) benchmarks.
14 



P. Thakolkaran et al. Computer Methods in Applied Mechanics and Engineering 443 (2025) 118089 
Fig. 8. Strain energy density 𝑊 (𝑭 (𝛾)) predictions for the deformation paths in (40), evaluated under high noise (𝜎𝑢 = 10−3). Results are shown for the best 
ICKAN-based constitutive model in the ensemble, the model obtained through symbolic regression of the ICKAN, as well as for the hidden true model, for the 
GT (36), AB (37), and OG (38) benchmarks.
15 
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Fig. 9. Predicted first Piola–Kirchhoff stress 𝑷 (𝑭 (𝛾)) components along the deformation paths specified in (40) for the low noise case (𝜎𝑢 = 10−4). The best 
ICKAN-based constitutive model is shown for the NH (33), IH (34), and HW (35) benchmarks, the model obtained through symbolic regression of the ICKAN, 
alongside the response of the true (hidden) model for comparison.
16 
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Fig. 10. Predicted first Piola–Kirchhoff stress 𝑷 (𝑭 (𝛾)) components along the deformation paths specified in (40) for the low noise case (𝜎𝑢 = 10−4). The best 
ICKAN-based constitutive model is shown for the GT (36), AB (37), and OG (38) benchmarks, the model obtained through symbolic regression of the ICKAN, 
alongside the response of the true (hidden) model for comparison.
17 
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Fig. 11. Predicted first Piola–Kirchhoff stress 𝑷 (𝑭 (𝛾)) components along the deformation paths specified in (40) for the high noise case (𝜎𝑢 = 10−3). The best 
ICKAN-based constitutive model is shown for the NH (33), IH (34), and HW (35) benchmarks, the model obtained through symbolic regression of the ICKAN, 
alongside the response of the true (hidden) model for comparison.
18 
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Fig. 12. Predicted first Piola–Kirchhoff stress 𝑷 (𝑭 (𝛾)) components along the deformation paths specified in (40) for the high noise case (𝜎𝑢 = 10−3). The best 
ICKAN-based constitutive model is shown for the GT (36), AB (37), and OG (38) benchmarks, the model obtained through symbolic regression of the ICKAN, 
alongside the response of the true (hidden) model for comparison.
19 
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Table 1
Strain energy density of the (true) hidden and discovered symbolic expressions by the ICKAN-based material 
models for different noise levels 𝜎𝑢. Note that the symbolic expressions do not satisfy 𝑊 (𝑭 = 𝑰) = 0; this can 
be manually fixed by re-introducing the energy correction term 𝑊 0 (see (9)). However, they do satisfy the 
condition 𝑃 (𝑭 = 𝑰) = 0 identically (see (13)).
Model Noise Strain energy density (W)
NH2 (33) Truth 0.5(𝐼1 − 3) + 1.5(𝐽 − 1)2

𝜎 = 10−4 0.5201𝐾1 + 1.4969𝐾3
𝜎 = 10−3 0.5395𝐾1 + 1.4986𝐾3

IH (34) Truth 0.5(𝐼1 − 3) + (𝐼2 − 3) + (𝐼1 − 3)2 + 1.5(𝐽 − 1)2

𝜎 = 10−4 0.35𝐾1 + 1.49𝐾3 + 0.004 log(3568 exp(4.23𝐾2) + 1)2 + 0.004 log(22.43 exp(3.3𝐾1) + 1)3

𝜎 = 10−3 0.31𝐾1 + 1.48𝐾3 + 0.004 log(3568 exp(4.30𝐾2) + 1)2 + 0.009 log(10.16 exp(2.5𝐾1) + 1)3

HW (35) Truth 0.5(𝐼1 − 3) + (𝐼2 − 3) + 0.7(𝐼1 − 3)(𝐼2 − 3) + 0.2(𝐼1 − 3)3 + 1.5(𝐽 − 1)2

𝜎 = 10−4 0.43𝐾2 + 1.48𝐾3 + 0.69 log(0.57 exp(1.04𝐾1) + 1)2 + 0.008 log(6.64 exp(1.90𝐾1) + 1)3

𝜎 = 10−3 0.42𝐾2 + 1.49𝐾3 + 0.88 log(0.57 exp(1.04𝐾1) + 1)2 + 0.591 log(0.57 exp(1.04𝐾1) + 1)2

GT (36) Truth 0.5(𝐼1 − 3) + log(𝐼2∕3) + 1.5(𝐽 − 1)2

𝜎 = 10−4 0.65𝐾1 + 0.03𝐾2 + 0.44𝐾3 + 1.58 log(35.20 exp(0.69𝐾3) + 1)
𝜎 = 10−3 0.62𝐾1 + 0.04𝐾2 + 0.78𝐾3 + 1.09 log(16.45 exp(0.72𝐾3) + 1)

AB (37) Truth Refer to (37)
𝜎 = 10−4 1.1959𝐾1 + 0.0533𝐾2 + 1.4905𝐾3
𝜎 = 10−3 1.0861𝐾1 + 0.1140𝐾2 + 1.4790𝐾3

OG (38) Truth Refer to (38)
𝜎 = 10−4 0.76𝐾1 + 0.001𝐾2 + 0.84𝐾3 + 1.09 log(13.46 exp(0.66𝐾3) + 1)
𝜎 = 10−3 0.69𝐾1 + 0.042𝐾2 + 1.35𝐾3 + 0.23 log(17.64 exp(0.73𝐾3) + 1)

ig. 13. Comparison of FEM for the validation specimen (see Fig.  3b) between the ground-truth and ICKAN-based constitutive model for the Isihara benchmark 
34) (a–c) and the Arruda-Boyce benchmark (37) (d–f) (trained on high noise data). (a & d) Deformed shape of the validation specimen, with colors indicating 
isplacement magnitude, as obtained from both the ground-truth (left) and ICKAN-based (right) simulations. (b & e) Comparison of the reaction force on the 
op surface plotted against the loading parameter 𝛾 (left) and the trained ICKAN-model illustrated with the in-built plotting functionality (right) (c & f) Parity 
lot of the first strain invariant 𝐼1 (left) and the determinant 𝐽 (right) predicted by the ICKAN model versus the ground-truth values, with the gray dashed line 
epresenting perfect agreement (zero intercept, unit slope) and the 𝑅2 value indicating accuracy.
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Extensive numerical experiments demonstrated that the ICKAN-based models accurately capture the nonlinear stress–strain 
behavior of hyperelastic materials, even under varying levels of noise in the data. The predicted strain energy densities and 
first Piola–Kirchhoff stresses closely match the ground truth for numerous material models across multiple deformation paths. 
Furthermore, finite element simulations on a validation specimen with a complex geometry confirmed the generalization capability 
of our method, as the ICKAN-based constitutive models produced robust and physically consistent results.

Our findings indicate that the ICKAN framework successfully overcomes key limitations of ICNN-based models by combining 
physical consistency with enhanced interpretability and efficiency. Future work will explore extending the framework to model 
additional material behaviors such as viscoelasticity and plasticity, as well as integrating uncertainty quantification to further bolster 
model reliability in real-world applications. Additionally, the ICKAN approach can be applied to any machine learning task that 
ICNNs, as introduced by Amos et al. [47], can address, thereby benefiting the broader machine learning community.
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Appendix A. Details on enforcing convexity and monotonicity

A.1. Proof of the non-decreasing convexity condition

The derivative of a spline basis function can be computed as [72]: 
𝑑𝐵𝑖,𝑘(𝑥)
𝑑𝑥

= 𝑘
𝑡𝑖+𝑘 − 𝑡𝑖

𝐵𝑖,𝑘−1(𝑥) −
𝑘

𝑡𝑖+𝑘+1 − 𝑡𝑖+1
𝐵𝑖+1,𝑘−1(𝑥). (A.1)

This implies that 
𝑑𝜓(𝑥)
𝑑𝑥

=
𝑛𝑏
∑

𝑖=1
𝑐𝑖

(

𝑘
𝑡𝑖+𝑘 − 𝑡𝑖

𝐵𝑖,𝑘−1(𝑥) −
𝑘

𝑡𝑖+𝑘+1 − 𝑡𝑖+1
𝐵𝑖+1,𝑘−1(𝑥)

)

= 𝑘
𝑛𝑏−1
∑

𝑖=0

𝑐𝑖+1
𝑡𝑖+𝑘+1 − 𝑡𝑖+1

𝐵𝑖+1,𝑘−1(𝑥) − 𝑘
𝑛𝑏
∑

𝑖=1

𝑐𝑖
𝑡𝑖+𝑘+1 − 𝑡𝑖+1

𝐵𝑖+1,𝑘−1(𝑥)

=
𝑘𝑐1

𝑡𝑘+1 − 𝑡1
𝐵1,𝑘−1(𝑥) + 𝑘

𝑛𝑏−1
∑

𝑖=1

𝑐𝑖+1 − 𝑐𝑖
𝑡𝑖+𝑘+1 − 𝑡𝑖+1

𝐵𝑖+1,𝑘−1(𝑥) −
𝑘𝑐𝑛𝑏

𝑡𝑛𝑏+𝑘+1 − 𝑡𝑛𝑏+1
𝐵𝑛𝑏+1,𝑘−1(𝑥)

(A.2)

Note that by definition of the basis functions, the first and last terms are zero. For uniform B-splines, the knots are equally spaced 
by interval 𝑠 = 𝑡𝑖+1 − 𝑡𝑖 > 0, for 𝑖 ∈ [1, 𝑛𝑏 − 1]. Hence the first order derivative can be simplified as 

𝑑𝜓(𝑥)
𝑑𝑥

= 1
𝑠

𝑛𝑏−1
∑

𝑖=1

(

𝑐𝑖+1 − 𝑐𝑖
)

𝐵𝑖+1,𝑘−1(𝑥). (A.3)

Since basis functions are by definition non-negative, the non-decreasing requirement 
𝑑𝜓(𝑥)
𝑑𝑥

≥ 0 (A.4)

leads to 
𝑐𝑖+1 − 𝑐𝑖 ≥ 0, ∀𝑖 ∈ [1, 𝑛𝑏 − 1]. (A.5)
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The second-order derivative of the basis function is: 
𝑑2𝐵𝑖,𝑘(𝑥)
𝑑𝑥2

= 𝑘
𝑡𝑖+𝑘 − 𝑡𝑖

(

𝑘 − 1
𝑡𝑖+𝑘−1 − 𝑡𝑖

𝐵𝑖,𝑘−2(𝑥) −
𝑘 − 1

𝑡𝑖+𝑘 − 𝑡𝑖+1
𝐵𝑖+1,𝑘−2(𝑥)

)

−

𝑘
𝑡𝑖+𝑘+1 − 𝑡𝑖+1

(

𝑘 − 1
𝑡𝑖+𝑘 − 𝑡𝑖+1

𝐵𝑖+1,𝑘−2(𝑥) −
𝑘 − 1

𝑡𝑖+𝑘+1 − 𝑡𝑖+2
𝐵𝑖+2,𝑘−2(𝑥)

)

= 1
𝑠2

(

𝐵𝑖,𝑘−2(𝑥) − 2𝐵𝑖+1,𝑘−2(𝑥) + 𝐵𝑖+2,𝑘−2(𝑥)
)

.

(A.6)

Substituting this into 𝜓(𝑥) and considering the definition of the basis functions, we have: 
𝑑2𝜓(𝑥)
𝑑𝑥2

=
𝑛𝑏
∑

𝑖=1
𝑐𝑖
𝑑2𝐵𝑖,𝑘(𝑥)
𝑑𝑥2

= 1
𝑠2

(𝑛𝑏−2
∑

𝑖=−1
𝑐𝑖+2𝐵𝑖+2,𝑘−2(𝑥) − 2

𝑛𝑏−1
∑

𝑖=0
𝑐𝑖+1𝐵𝑖+2,𝑘−2(𝑥) +

𝑛𝑏
∑

𝑖=1
𝑐𝑖𝐵𝑖+2,𝑘−2(𝑥)

)

= 1
𝑠2

(𝑛𝑏−1
∑

𝑖=1
(𝑐𝑖+2 − 2𝑐𝑖+1 + 𝑐𝑖)𝐵𝑖+2,𝑘−2(𝑥)

)

.

(A.7)

Convexity condition requires 
𝑑2𝜓(𝑥)
𝑑𝑥2

≥ 0. (A.8)

Since 𝐵𝑖+2,𝑘−2(𝑥) ≥ 0, convexity is ensured if: 

𝑐𝑖+2 − 2𝑐𝑖+1 + 𝑐𝑖 ≥ 0, ∀𝑖 ∈ [1, 𝑛𝑏 − 2]. (A.9)

A.2. Implementation of convexity and monotonicity constraints

Let 𝐩 = {𝑝𝑖}
𝑛𝑏
𝑖=1 be a sequence of randomly initialized coefficients, A sequence of convex coefficients 𝐜 = {𝑐𝑖}

𝑛𝑏
𝑖=1 can be derived 

from 𝐩 through the following steps: 

𝐡 = {ℎ𝑖}
𝑛𝑏
𝑖=1, with ℎ𝑖 =

{

𝑝1, if 𝑖 = 1,
max(0, 𝑝𝑖), otherwise,

𝐝 = {𝑑𝑖}
𝑛𝑏
𝑖=1, with 𝑑𝑖 =

{

ℎ1, if 𝑖 = 1,
∑𝑖
𝑖=2 ℎ𝑗 , otherwise,

𝐜 = {𝑐𝑖}
𝑛𝑏
𝑖=1, with 𝑐𝑖 =

𝑖
∑

𝑗=1
𝑑𝑗 .

(A.10)

Since 𝐝 = {𝑑𝑖}
𝑛𝑏
𝑖=2 is the cumulative sum of a sequence of non-negative values 𝐡 = {ℎ𝑖}

𝑛𝑏
𝑖=2, it follows that: 

𝑐𝑖+1 − 𝑐𝑖 = 𝑑𝑖+1 ≥ 𝑑𝑖 = 𝑐𝑖 − 𝑐𝑖−1 ≥ 0, ∀𝑖 ∈ [2, 𝑛𝑏 − 1]. (A.11)

Thus, the sequence 𝐜 = {𝑐𝑖}
𝑛𝑏
𝑖=1 is non-decreasing and convex.

This algorithm enforces a hard constraint on the coefficients, ensuring convexity by construction. Consequently, backpropagation 
can be performed efficiently during training without introducing additional computational overhead.

A.3. Linear extrapolation at the endpoints

As illustrated in Fig.  1b, convexity cannot be guaranteed outside the B-spline domain [𝑡𝑘+1, 𝑡𝑚𝑏−𝑘]. To smoothly extend the curve 
𝜓(𝑥) beyond these boundaries, we apply a linear extrapolation that preserves the local behavior at the endpoints.

For the left endpoint at 𝑥 = 𝑡𝑘+1, choose two sample points using a small offset 1≫ 𝜀 > 0: 

𝑥0 = 𝑡𝑘+1, 𝑥1 = 𝑡𝑘+1 + 𝜀. (A.12)

Evaluating the curve at these points gives: 
𝑦0 = 𝜓(𝑥0), 𝑦1 = 𝜓(𝑥1). (A.13)

We fit a linear function of the form: 
𝜓left(𝑥) = 𝑎left(𝑥 − 𝑡𝑘+1) + 𝑏left. (A.14)

Using the finite difference approximation, the coefficients are determined as: 

𝑎 =
𝑦1 − 𝑦0 =

𝜓(𝑡𝑘+1 + 𝜀) − 𝜓(𝑡𝑘+1) , 𝑏 = 𝜓(𝑡 ). (A.15)
left 𝜀 𝜀 left 𝑘+1
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Thus, for 𝑥 < 𝑡𝑘+1, the extrapolated curve is given by 

𝜓left(𝑥) =
𝜓(𝑡𝑘+1 + 𝜀) − 𝜓(𝑡𝑘+1)

𝜀
(𝑥 − 𝑡𝑘+1) + 𝜓(𝑡𝑘+1). (A.16)

Similarly, for the right endpoint at 𝑥 = 𝑡𝑚𝑏−𝑘, extrapolation function can be evaluated as: 

𝜓right(𝑥) =
𝜓(𝑡𝑚𝑏−𝑘) − 𝜓(𝑡𝑚𝑏−𝑘 − 𝜀)

𝜀
(𝑥 − 𝑡𝑚𝑏−𝑘) + 𝜓(𝑡𝑚𝑏−𝑘), 𝑥 > 𝑡𝑚𝑏−𝑘. (A.17)

By applying the above linear extrapolation at both endpoints, the extended B-spline curve �̄�(𝑥) is defined as 

�̄�(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝜓(𝑡𝑘+1+𝜀)−𝜓(𝑡𝑘+1)
𝜀 (𝑥 − 𝑡𝑘+1) + 𝜓(𝑡𝑘+1), 𝑥 < 𝑡𝑘+1,

𝜓(𝑥), 𝑡𝑘+1 ≤ 𝑥 ≤ 𝑡𝑚𝑏−𝑘,
𝜓(𝑡𝑚𝑏−𝑘)−𝜓(𝑡𝑚𝑏−𝑘−𝜀)

𝜀 (𝑥 − 𝑡𝑚𝑏−𝑘) + 𝜓(𝑡𝑚𝑏−𝑘), 𝑥 > 𝑡𝑚𝑏−𝑘.

(A.18)

This approach ensures a smooth extension of the B-spline, preserving both function continuity (𝐶0) and first-order smoothness (𝐶1) 
at the boundaries, thereby maintaining local shape consistency. Note that while we can ensure physical consistency for 𝑊  outside 
the spline domain using linear extrapolation, it may not be the most ideal solution and could hinder generalization.

Appendix B. ICKAN spline grid initialization

In our ICKAN implementation, the natural definition domain bounds of the splines are set during the initialization phase to 
ensure they cover the expected range of input values.

This process begins by constructing dummy inputs in the form of 𝒛(0)—with each dimension’s values set in the sufficiently large 
range of [−5, 25] discretized along 100 uniformly spaced points. These dummy inputs are passed through the first KAN layer (𝑟 = 1) 
and the outputs, i.e., 𝒛(1), are recorded. The range of values for 𝑧(1)𝑗  (with 𝑗 ∈ {1,… , 𝑛0}) is computed, which is then set as the 
natural definition domain for 𝜙0,𝑖,𝑗 for all 𝑖 ∈ {1,… , 𝑛1}.

Similar to the previous step, the new range of values for each dimension of 𝒛(1) is set to the respective natural definition domains 
and new dummy inputs are created for the second KAN layer (𝑟 = 2). The process is then subsequently repeated for the following 
layers in a similar fashion.

Once this initialization step is complete for all KAN layers, the bounds remains fixed and are not updated during training or 
inference.

Appendix C. Training details

The Algorithm 1 (adapted from NN-EUCLID [48]) summarizes the unsupervised training of the ICKAN-based constitutive models. 
All parameters used for data generation and training are found in Table  C.2.

Appendix D. Learning material models without convexity constraints

Figs.  D.14–D.15 illustrate the constitutive response for three representative benchmarks when the ICKAN model in (6) is replaced 
with a standard KAN without the convexity and monotonicity constraints while maintaining the same network architecture. We kept 
the initial update of the knot range (outlined in Appendix  B). Here, we included the bias function in the construction of the univariate 
function to improve the learning (as originally suggested for KANs by Liu et al. [40]), i.e., 

𝜙(𝑥) = 𝑤𝑏𝑏(𝑥) +𝑤𝑠𝜓(𝑥), (D.1)

where 𝑏(𝑥) = 𝑥(1 + exp (−𝑥))−1 is the SiLU activation [73] and 𝑤𝑏 is a trainable scalar weight. Note that we did not perform any 
other hyperparameter tuning in this case.

Appendix E. Comparison with EUCLID

Flaschel et al. [11] have previously introduced the EUCLID framework for discovering interpretable and analytical hyperelastic 
models via sparse (linear) regression on a large catalog of candidate functions in an unsupervised setting. Since the candidate 
functions are predefined, EUCLID inherently provides interpretable models. However, its expressivity may be limited by the chosen 
set of functions used for sparse regression.

Here, we compare the vanilla EUCLID framework with ICKANs. The EUCLID implementation used in this work is directly adapted 
from [11] (code available at: github.com/EUCLID-code/EUCLID-hyperelasticity). In consultation with the authors of Flaschel et al. 
[11], we changed the penalty parameter 𝜆𝑝 therein from 0.0001 to 0.0125 to adapt the implementation to our data. For details such 
as the methodology, hyperparameters, and the catalog of candidate functions, please refer to Flaschel et al. [11].

The results in Fig.  E.16 demonstrate that both the EUCLID framework [11] and ICKAN perform well in capturing the underlying 
constitutive behavior for the IH (34) and AB (37) benchmarks under high noise conditions. EUCLID discovers physically meaningful 
and compact strain energy formulations by operating within a predefined functional basis, which promotes interpretability but can 
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Fig. D.14. Strain energy density 𝑊 (𝑭 (𝛾)) predictions for the deformation paths in (40), evaluated under high noise (𝜎𝑢 = 10−3). Results are shown for a vanilla 
KAN-based model, as well as for the hidden true model, for the NH (33), IH (34), and HW (35) benchmarks.
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Fig. D.15. Predicted first Piola–Kirchhoff stress 𝑷 (𝑭 (𝛾)) components along the deformation paths specified in (40) for the high noise case (𝜎𝑢 = 10−3). The 
response of a trained vanilla KAN-based model is shown for the NH (33), IH (34), and HW (35) benchmarks, alongside the response of the true (hidden) model 
for comparison.
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Algorithm 1 Unsupervised training of the ICKAN-based constitutive models
1: Input: Point-wise displacement data  = {𝒖𝑎,𝑡 ∈ R2 ∶ 𝑎 = 1,… , 𝑛𝑛; 𝑡 = 1,… , 𝑛𝑡}
2: Input: Global reaction forces {𝑅𝛽,𝑡 ∶ 𝛽 = 1,… , 𝑛𝛽 ; 𝑡 = 1,… , 𝑛𝑡}
3: Randomly initialize ICKAN parameters: .
4: Initialize learning rate scheduler
5: Initialize Adam optimizer with parameters  and learning rate scheduler
6: for 𝑒 = 1,… , 𝑛𝑒 do ⊳ Training epochs
7:  Loss: 𝓁 ← 0 ⊳ Initialize loss for current epoch
8:  for 𝑡 = 1,… , 𝑛𝑡 do ⊳ Iterate over snapshots
9:  for each element in mesh do
10:  𝑊 0 ← 𝑊 ICKAN

 |𝑭=𝑰 ⊳ see (9)
11:  𝑊 ← 𝑊 ICKAN

 +𝑊 0 ⊳ see (6)
12:  𝑷 ← 𝜕𝑊

𝜕𝑭 ⊳ see (10)
13:  end for
14:  for 𝑎 = 1,… , 𝑛𝑎 do
15:  for 𝑖 = 1, 2 do
16:  Compute force 𝑓 𝑎,𝑡𝑖  using (29)
17:  end for
18:  end for
19:  for (𝑎, 𝑖) ∈ free do
20:  𝓁 ← 𝓁 +

(

𝑓 𝑎,𝑡𝑖
)2 ⊳ force balance at free degrees of freedom; see (32)

21:  end for
22:  for 𝛽 = 1,… , 𝑛𝛽 do
23:  𝑟𝛽,𝑡 ← 0
24:  for (𝑎, 𝑖) ∈ fix

𝛽  do
25:  𝑟𝛽,𝑡 ← 𝑟𝛽,𝑡 + 𝑓 𝑎,𝑡𝑖 ⊳ see (32)
26:  end for
27:  𝓁 ← 𝓁 +

(

𝑅𝛽,𝑡 − 𝑟𝛽,𝑡
)2 ⊳ force balance at fixed degrees of freedom; see (32)

28:  end for
29:  end for
30:  Compute gradients 𝜕𝓁∕𝜕 using automatic differentiation
31:  Update  with Adam optimizer using gradients 𝜕𝓁∕𝜕.
32:  Update learning rate with learning rate scheduler based on epoch number 𝑒
33: end for
34: Output: Trained ICKAN model 𝑊 ICKAN



limit expressivity in more complex settings. In contrast, ICKANs begin with a highly expressive KAN-based architecture capable of 
fitting intricate stress–strain responses, and subsequently distills interpretable expressions through symbolic regression. For both 
benchmarks, the models obtained from EUCLID and ICKAN show strong agreement with the ground truth responses. These results 
highlight the complementary nature of the two approaches — EUCLID provides interpretable models by design, while ICKAN 
achieves accuracy-first learning with interpretability introduced in a post-processing stage.

Appendix F. Monotonic input-convex symbolic regression

To improve the interpretability of the learned ICKAN constitutive models, symbolic regression is applied to analytically 
approximate the trained univariate activation functions individually. The symbolic expressions of each activation are then assembled 
across the entire network to obtain a symbolic expression of the whole constitutive model. Here, we adapt the symbolic framework 
of Liu et al. [40] to enable monotonic input-convex symbolic regression and, thereby, obtain symbolic polyconvex hyperelastic 
models.

Given a trained univariate function mapping from layer 𝑟 to layer 𝑟+1, the activation function 𝜙𝑟,𝑖,𝑗 is approximated by searching 
for the best symbolic representation �̂�𝑟,𝑖,𝑗 from a candidate function library  . In the subsequent discussion, we drop the subscripts 
on 𝜙 for the sake of brevity.

For a given candidate function 𝑓 ∈  that is convex and non-decreasing, we construct an approximation ansatz of the form: 
�̂�(𝑥) = 𝑐𝑓 (𝑎𝑥 + 𝑏) + 𝑑, with 𝑎 ≥ 0 and 𝑐 ≥ 0, (F.1)

where 𝑎, 𝑏, 𝑐, 𝑑 are scalar fitting parameters. The convex and non-decreasing constraint on 𝑓 and along with 𝑎 ≥ 0 and 𝑐 ≥ 0 ensure 
that �̂� is convex and non-decreasing. Consequently, this guarantees that the ICKAN’s symbolic model is monotonic and input-convex 
and the resulting hyperelastic strain energy density is polyconvex.
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Table C.2
List of parameters and hyperparameters used for the data generation and benchmarks.
 Parameter Notation Value  
 Training specimen:  
   Number of nodes in mesh for FEM-based data generation – 63,601  
   Number of nodes in data available for learning 𝑛𝑛 1441  
   Number of reaction force constraints 𝑛𝛽 4  
   Number of data snapshots for NH, GT 𝑛𝑡 3  
   Number of data snapshots for IH, HW 𝑛𝑡 8  
   Number of data snapshots for AB 𝑛𝑡 10  
   Number of data snapshots for OG 𝑛𝑡 6  
   Loading parameter for NH, GT, IH, HW 𝛿 {0.1 × 𝑡 ∶ 𝑡 = 1,… , 𝑛𝑡}  
   Loading parameter for AB, OG 𝛿 {0.05 × 𝑡 ∶ 𝑡 = 1,… , 𝑛𝑡}  
 Validation specimen:  
   Number of nodes in the mesh – 4908  
   Loading parameter 𝛿 {0.01 × 𝑡 ∶ 𝑡 = 1,… , 100} 
 ICKAN hyperparameters:  
   Order of B-splines 𝑘 5  
   Number of coefficients per trainable activations 𝑛𝑏 17  
   Number of knots 𝑚𝑏 23  
   Number of hidden layers 𝑅 − 1 1  
   Number of trainable activations in hidden layer (𝑅 − 1) 𝑛0 × 𝑛𝑅−1 3 × 2 = 6  
   Number of trainable activations in output layer (𝑅) 𝑛𝑅−1 × 𝑛𝑅 2 × 1 = 2  
   Number of trained ICKAN models 𝑛𝑒 10  
   Optimizer – Adam  
   Epochs – 1000  
   Learning rate scheduler – Cyclic  
   Base learning rate – 0.001  
   Maximum learning rate – 0.1  
   Learning rate scheduler steps – 50  
   Symbolic regression balance parameter 𝜆sym 0.8  

The parameters 𝑎, 𝑏, 𝑐, 𝑑 are obtained by numerically fitting �̂� to the splines-based 𝜙 as 

𝑎, 𝑏, 𝑐, 𝑑 ← arg min
𝑎,𝑏,𝑐,𝑑

𝑛
∑

𝑖=1
‖�̂�(𝑥𝑖) − 𝜙(𝑥𝑖)‖2 s.t. 𝑎 ≥ 0 and 𝑐 ≥ 0. (F.2)

Here, the functions �̂� and 𝜙 are evaluated at 𝑛 = 100 points for the purpose of fitting. The parameters 𝑎 and 𝑏 are determined via 
iterative grid search in the range [0, 10] and [−10, 10] respectively, while 𝑐 and 𝑑 are obtained through linear regression in each 
iteration.

In this study, we choose the function library as 

 = {𝑥, exp(𝑥), log(1 + exp(𝑥)), log(1 + exp(𝑥))2, log(1 + exp(𝑥))3, log(1 + exp(𝑥))4} with 𝑥 ∈ R, (F.3)

where all the candidate functions are convex and non-decreasing.
To select the optimal symbolic function 𝑓 from the library  , the following loss function and selection criterion is used: 

𝑓 ← arg min
𝑓∈

𝜆symcomplexity + (1 − 𝜆sym)fit , (F.4)

where 𝜆sym ∈ [0, 1] is a scalar hyperparameter. fit quantifies the approximation error due to 𝑓 using the goodness-of-fit 𝑅2 score, 
defined as 

fit = log2(1 + 10−5 − 𝑅2(�̂�, 𝜙)), (F.5)

while complexity penalizes the complexity of 𝑓 (i.e., promotes parsimony) by assigning numerical weights to different expressions: 

complexity =
⎧

⎪

⎨

⎪

⎩

1 if 𝑓 (𝑥) = 𝑥,
2 if 𝑓 (𝑥) = exp(𝑥),
2 if 𝑓 (𝑥) = log(1 + exp(𝑥))𝑛, where 𝑛 ∈ 1, 2, 3, 4.

(F.6)

The parameter 𝜆sym is tunable (see Table  C.2 for chosen value), which allows for a balance between simplicity and accuracy.

Data and code availability

The data and codes generated in the current study are freely available at https://github.com/mmc-group/ICKANs/.
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Fig. E.16. Predicted first Piola–Kirchhoff stress 𝑷 (𝑭 (𝛾)) components along the deformation paths specified in (40) for the high noise case (𝜎𝑢 = 10−3). The best 
ICKAN-based constitutive model is shown for the IH (34) and AB (37) benchmarks, and the model obtained through EUCLID, alongside the response of the true 
(hidden) model for comparison.

References

[1] J.N. Fuhg, G. Anantha Padmanabha, N. Bouklas, B. Bahmani, W. Sun, N.N. Vlassis, M. Flaschel, P. Carrara, L. De Lorenzis, A review on data-driven 
constitutive laws for solids, Arch. Comput. Methods Eng. (2024) http://dx.doi.org/10.1007/s11831-024-10196-2.

[2] S. Kumar, D.M. Kochmann, What machine learning can do for computational solid mechanics, in: Current Trends and Open Problems in Computational 
Mechanics, Springer, 2022, pp. 275–285, http://dx.doi.org/10.1007/978-3-030-87312-7_27.
28 

http://dx.doi.org/10.1007/s11831-024-10196-2
http://dx.doi.org/10.1007/978-3-030-87312-7_27


P. Thakolkaran et al. Computer Methods in Applied Mechanics and Engineering 443 (2025) 118089 
[3] T. Kirchdoerfer, M. Ortiz, Data-driven computational mechanics, Comput. Methods Appl. Mech. Engrg. 304 (2016) 81–101, http://dx.doi.org/10.1016/j.
cma.2016.02.001, URL: https://www.sciencedirect.com/science/article/pii/S0045782516300238.

[4] T. Kirchdoerfer, M. Ortiz, Data-driven computing in dynamics, Internat. J. Numer. Methods Engrg. 113 (11) (2018) 1697–1710, http://dx.doi.org/10.1002/
nme.5716, URL: https://onlinelibrary.wiley.com/doi/10.1002/nme.5716.

[5] R. Eggersmann, T. Kirchdoerfer, S. Reese, L. Stainier, M. Ortiz, Model-free data-driven inelasticity, Comput. Methods Appl. Mech. Engrg. 350 (2019) 81–99, 
http://dx.doi.org/10.1016/j.cma.2019.02.016, URL: https://linkinghub.elsevier.com/retrieve/pii/S0045782519300878.

[6] R. Ibañez, D. Borzacchiello, J.V. Aguado, E. Abisset-Chavanne, E. Cueto, P. Ladeveze, F. Chinesta, Data-driven non-linear elasticity: constitutive manifold 
construction and problem discretization, Comput. Mech. 60 (5) (2017) 813–826, http://dx.doi.org/10.1007/s00466-017-1440-1, URL: http://link.springer.
com/10.1007/s00466-017-1440-1.

[7] S. Conti, S. Müller, M. Ortiz, Data-driven problems in elasticity, Arch. Ration. Mech. Anal. 229 (1) (2018) 79–123, http://dx.doi.org/10.1007/s00205-017-
1214-0, URL: http://link.springer.com/10.1007/s00205-017-1214-0.

[8] L.T.K. Nguyen, M.-A. Keip, A data-driven approach to nonlinear elasticity, Comput. Struct. 194 (2018) 97–115, http://dx.doi.org/10.1016/j.compstruc.
2017.07.031, URL: https://linkinghub.elsevier.com/retrieve/pii/S0045794917301311.

[9] P. Carrara, L. De Lorenzis, L. Stainier, M. Ortiz, Data-driven fracture mechanics, Comput. Methods Appl. Mech. Engrg. 372 (2020) 113390, http:
//dx.doi.org/10.1016/j.cma.2020.113390, URL: https://linkinghub.elsevier.com/retrieve/pii/S0045782520305752.

[10] K. Karapiperis, M. Ortiz, J. Andrade, Data-driven nonlocal mechanics: Discovering the internal length scales of materials, Comput. Methods Appl. Mech. 
Engrg. 386 (2021) 114039, http://dx.doi.org/10.1016/j.cma.2021.114039, URL: https://linkinghub.elsevier.com/retrieve/pii/S0045782521003704.

[11] M. Flaschel, S. Kumar, L. De Lorenzis, Unsupervised discovery of interpretable hyperelastic constitutive laws, Comput. Methods Appl. Mech. Engrg. 381 
(2021) 113852, http://dx.doi.org/10.1016/j.cma.2021.113852, URL: https://linkinghub.elsevier.com/retrieve/pii/S0045782521001894.

[12] A. Joshi, P. Thakolkaran, Y. Zheng, M. Escande, M. Flaschel, L. De Lorenzis, S. Kumar, Bayesian-EUCLID: Discovering hyperelastic material laws with 
uncertainties, Comput. Methods Appl. Mech. Engrg. 398 (2022) 115225, URL: http://dx.doi.org/10.1016/j.cma.2022.115225.

[13] M. Flaschel, S. Kumar, L. De Lorenzis, Discovering plasticity models without stress data, Npj Comput. Mater. 8 (1) (2022) 91, URL: http://dx.doi.org/10.
1038/s41524-022-00752-4.

[14] M. Flaschel, S. Kumar, L. De Lorenzis, Automated discovery of generalized standard material models with EUCLID, Comput. Methods Appl. Mech. Engrg. 
405 (2023) 115867, http://dx.doi.org/10.1016/j.cma.2022.115867.

[15] M. Flaschel, H. Yu, N. Reiter, J. Hinrichsen, S. Budday, P. Steinmann, S. Kumar, L. De Lorenzis, Automated discovery of interpretable hyperelastic material 
models for human brain tissue with EUCLID, J. Mech. Phys. Solids 180 (2023) 105404, http://dx.doi.org/10.1016/j.jmps.2023.105404.

[16] E. Marino, M. Flaschel, S. Kumar, L. De Lorenzis, Automated identification of linear viscoelastic constitutive laws with EUCLID, Mech. Mater. 181 (2023) 
104643, http://dx.doi.org/10.1016/j.mechmat.2023.104643.

[17] Z. Wang, J. Estrada, E. Arruda, K. Garikipati, Inference of deformation mechanisms and constitutive response of soft material surrogates of biological 
tissue by full-field characterization and data-driven variational system identification, J. Mech. Phys. Solids 153 (2021) 104474, http://dx.doi.org/10.1016/
j.jmps.2021.104474.

[18] B. Bahmani, W. Sun, Physics-constrained symbolic model discovery for polyconvex incompressible hyperelastic materials, Internat. J. Numer. Methods 
Engrg. 125 (15) (2024) http://dx.doi.org/10.1002/nme.7473.

[19] B. Bahmani, H.S. Suh, W. Sun, Discovering interpretable elastoplasticity models via the neural polynomial method enabled symbolic regressions, Comput. 
Methods Appl. Mech. Engrg. 422 (2024) 116827, http://dx.doi.org/10.1016/j.cma.2024.116827.

[20] N.N. Phan, W. Sun, J.D. Clayton, HYDRA: Symbolic feature engineering of overparameterized Eulerian hyperelasticity models for fast inference time, 
Comput. Methods Appl. Mech. Engrg. 437 (2025) 117792, http://dx.doi.org/10.1016/j.cma.2025.117792.

[21] J. Hou, X. Chen, T. Wu, E. Kuhl, X. Wang, Automated data-driven discovery of material models based on symbolic regression: A case study on the human 
brain cortex, Acta Biomater. 188 (2024) 276–296, http://dx.doi.org/10.1016/j.actbio.2024.09.005.

[22] R. Abdusalamov, M. Hillgärtner, M. Itskov, Hyperelastic material modelling using symbolic regression, PAMM 22 (1) (2023) http://dx.doi.org/10.1002/
pamm.202200263.

[23] G. Kissas, S. Mishra, E. Chatzi, L. De Lorenzis, The language of hyperelastic materials, Comput. Methods Appl. Mech. Engrg. 428 (2024) 117053, 
http://dx.doi.org/10.1016/j.cma.2024.117053.

[24] K. Upadhyay, J.N. Fuhg, N. Bouklas, K.T. Ramesh, Physics-informed data-driven discovery of constitutive models with application to strain-rate-sensitive 
soft materials, Comput. Mech. (2024) http://dx.doi.org/10.1007/s00466-024-02497-x.

[25] I. Rocha, P. Kerfriden, F. van der Meer, On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through 
probabilistic machine learning, J. Comput. Phys.: X 9 (2021) 100083, http://dx.doi.org/10.1016/j.jcpx.2020.100083, URL: https://www.sciencedirect.com/
science/article/pii/S2590055220300354.

[26] J.N. Fuhg, M. Marino, N. Bouklas, Local approximate Gaussian process regression for data-driven constitutive models: development and comparison with 
neural networks, Comput. Methods Appl. Mech. Engrg. 388 (2022) 114217, http://dx.doi.org/10.1016/j.cma.2021.114217, URL: https://www.sciencedirect.
com/science/article/pii/S004578252100548X.

[27] A. Aggarwal, B.S. Jensen, S. Pant, C.-H. Lee, Strain energy density as a gaussian process and its utilization in stochastic finite element analysis: application 
to planar soft tissues, Comput. Methods Appl. Mech. Engrg. 404 (2023) 115812, http://dx.doi.org/10.1016/j.cma.2022.115812.

[28] L. Linden, D.K. Klein, K.A. Kalina, J. Brummund, O. Weeger, M. Kästner, Neural networks meet hyperelasticity: A guide to enforcing physics, J. Mech. 
Phys. Solids 179 (2023) 105363, http://dx.doi.org/10.1016/j.jmps.2023.105363.

[29] N.N. Vlassis, R. Ma, W. Sun, Geometric deep learning for computational mechanics part I: anisotropic hyperelasticity, Comput. Methods Appl. Mech. Engrg. 
371 (2020) 113299, http://dx.doi.org/10.1016/j.cma.2020.113299.

[30] K.P. Abdolazizi, K. Linka, C.J. Cyron, Viscoelastic constitutive artificial neural networks (vcanns) – a framework for data-driven anisotropic nonlinear finite 
viscoelasticity, J. Comput. Phys. 499 (2024) 112704, http://dx.doi.org/10.1016/j.jcp.2023.112704.

[31] C. Bonatti, D. Mohr, One for all: Universal material model based on minimal state-space neural networks, Sci. Adv. 7 (26) (2021) http://dx.doi.org/10.
1126/sciadv.abf3658.

[32] D.K. Klein, R. Ortigosa, J. Martínez-Frutos, O. Weeger, Nonlinear electro-elastic finite element analysis with neural network constitutive models, Comput. 
Methods Appl. Mech. Engrg. 425 (2024) 116910, http://dx.doi.org/10.1016/j.cma.2024.116910.

[33] K.A. Kalina, P. Gebhart, J. Brummund, L. Linden, W. Sun, M. Kästner, Neural network-based multiscale modeling of finite strain magneto-elasticity with 
relaxed convexity criteria, Comput. Methods Appl. Mech. Engrg. 421 (2024) 116739, http://dx.doi.org/10.1016/j.cma.2023.116739.

[34] M. Mozaffar, R. Bostanabad, W. Chen, K. Ehmann, J. Cao, M.A. Bessa, Deep learning predicts path-dependent plasticity, Proc. Natl. Acad. Sci. 116 (52) 
(2019) 26414–26420, http://dx.doi.org/10.1073/pnas.1911815116.

[35] L. Zheng, D.M. Kochmann, S. Kumar, HyperCAN: Hypernetwork-driven deep parameterized constitutive models for metamaterials, Extrem. Mech. Lett. 72 
(2024) 102243, http://dx.doi.org/10.1016/j.eml.2024.102243.

[36] V. Taç, F. Sahli Costabal, A.B. Tepole, Data-driven tissue mechanics with polyconvex neural ordinary differential equations, Comput. Methods Appl. Mech. 
Engrg. 398 (2022) 115248, http://dx.doi.org/10.1016/j.cma.2022.115248.

[37] K. Linka, E. Kuhl, A new family of constitutive artificial neural networks towards automated model discovery, Comput. Methods Appl. Mech. Engrg. 403 
(2023) 115731, http://dx.doi.org/10.1016/j.cma.2022.115731.
29 

http://dx.doi.org/10.1016/j.cma.2016.02.001
http://dx.doi.org/10.1016/j.cma.2016.02.001
http://dx.doi.org/10.1016/j.cma.2016.02.001
https://www.sciencedirect.com/science/article/pii/S0045782516300238
http://dx.doi.org/10.1002/nme.5716
http://dx.doi.org/10.1002/nme.5716
http://dx.doi.org/10.1002/nme.5716
https://onlinelibrary.wiley.com/doi/10.1002/nme.5716
http://dx.doi.org/10.1016/j.cma.2019.02.016
https://linkinghub.elsevier.com/retrieve/pii/S0045782519300878
http://dx.doi.org/10.1007/s00466-017-1440-1
http://link.springer.com/10.1007/s00466-017-1440-1
http://link.springer.com/10.1007/s00466-017-1440-1
http://link.springer.com/10.1007/s00466-017-1440-1
http://dx.doi.org/10.1007/s00205-017-1214-0
http://dx.doi.org/10.1007/s00205-017-1214-0
http://dx.doi.org/10.1007/s00205-017-1214-0
http://link.springer.com/10.1007/s00205-017-1214-0
http://dx.doi.org/10.1016/j.compstruc.2017.07.031
http://dx.doi.org/10.1016/j.compstruc.2017.07.031
http://dx.doi.org/10.1016/j.compstruc.2017.07.031
https://linkinghub.elsevier.com/retrieve/pii/S0045794917301311
http://dx.doi.org/10.1016/j.cma.2020.113390
http://dx.doi.org/10.1016/j.cma.2020.113390
http://dx.doi.org/10.1016/j.cma.2020.113390
https://linkinghub.elsevier.com/retrieve/pii/S0045782520305752
http://dx.doi.org/10.1016/j.cma.2021.114039
https://linkinghub.elsevier.com/retrieve/pii/S0045782521003704
http://dx.doi.org/10.1016/j.cma.2021.113852
https://linkinghub.elsevier.com/retrieve/pii/S0045782521001894
http://dx.doi.org/10.1016/j.cma.2022.115225
http://dx.doi.org/10.1038/s41524-022-00752-4
http://dx.doi.org/10.1038/s41524-022-00752-4
http://dx.doi.org/10.1038/s41524-022-00752-4
http://dx.doi.org/10.1016/j.cma.2022.115867
http://dx.doi.org/10.1016/j.jmps.2023.105404
http://dx.doi.org/10.1016/j.mechmat.2023.104643
http://dx.doi.org/10.1016/j.jmps.2021.104474
http://dx.doi.org/10.1016/j.jmps.2021.104474
http://dx.doi.org/10.1016/j.jmps.2021.104474
http://dx.doi.org/10.1002/nme.7473
http://dx.doi.org/10.1016/j.cma.2024.116827
http://dx.doi.org/10.1016/j.cma.2025.117792
http://dx.doi.org/10.1016/j.actbio.2024.09.005
http://dx.doi.org/10.1002/pamm.202200263
http://dx.doi.org/10.1002/pamm.202200263
http://dx.doi.org/10.1002/pamm.202200263
http://dx.doi.org/10.1016/j.cma.2024.117053
http://dx.doi.org/10.1007/s00466-024-02497-x
http://dx.doi.org/10.1016/j.jcpx.2020.100083
https://www.sciencedirect.com/science/article/pii/S2590055220300354
https://www.sciencedirect.com/science/article/pii/S2590055220300354
https://www.sciencedirect.com/science/article/pii/S2590055220300354
http://dx.doi.org/10.1016/j.cma.2021.114217
https://www.sciencedirect.com/science/article/pii/S004578252100548X
https://www.sciencedirect.com/science/article/pii/S004578252100548X
https://www.sciencedirect.com/science/article/pii/S004578252100548X
http://dx.doi.org/10.1016/j.cma.2022.115812
http://dx.doi.org/10.1016/j.jmps.2023.105363
http://dx.doi.org/10.1016/j.cma.2020.113299
http://dx.doi.org/10.1016/j.jcp.2023.112704
http://dx.doi.org/10.1126/sciadv.abf3658
http://dx.doi.org/10.1126/sciadv.abf3658
http://dx.doi.org/10.1126/sciadv.abf3658
http://dx.doi.org/10.1016/j.cma.2024.116910
http://dx.doi.org/10.1016/j.cma.2023.116739
http://dx.doi.org/10.1073/pnas.1911815116
http://dx.doi.org/10.1016/j.eml.2024.102243
http://dx.doi.org/10.1016/j.cma.2022.115248
http://dx.doi.org/10.1016/j.cma.2022.115731


P. Thakolkaran et al. Computer Methods in Applied Mechanics and Engineering 443 (2025) 118089 
[38] K. Linka, G.A. Holzapfel, E. Kuhl, Discovering uncertainty: Bayesian constitutive artificial neural networks, Comput. Methods Appl. Mech. Engrg. 433 
(2025) 117517, http://dx.doi.org/10.1016/j.cma.2024.117517.

[39] V. Taç, M.K. Rausch, I. Bilionis, F. Sahli Costabal, A.B. Tepole, Generative hyperelasticity with physics-informed probabilistic diffusion fields, Eng. Comput. 
41 (1) (2024) 51–69, http://dx.doi.org/10.1007/s00366-024-01984-2.

[40] Z. Liu, Y. Wang, S. Vaidya, F. Ruehle, J. Halverson, M. Soljačić, T.Y. Hou, M. Tegmark, Kan: Kolmogorov–Arnold networks, 2024, arXiv preprint 
arXiv:2404.19756. URL: https://arxiv.org/abs/2404.19756.

[41] J. Schmidt-Hieber, The Kolmogorov–Arnold representation theorem revisited, Neural Netw. 137 (2021) 119–126.
[42] S. Patra, S. Panda, B.K. Parida, M. Arya, K. Jacobs, D.I. Bondar, A. Sen, Physics informed Kolmogorov–Arnold neural networks for dynamical analysis via 

efficent-kan and wav-kan, 2024, arXiv preprint arXiv:2407.18373.
[43] D.W. Abueidda, P. Pantidis, M.E. Mobasher, DeepOKAN: Deep operator network based on Kolmogorov Arnold networks for mechanics problems, Comput. 

Methods Appl. Mech. Engrg. 436 (2025) 117699, http://dx.doi.org/10.1016/j.cma.2024.117699, URL: https://www.sciencedirect.com/science/article/pii/
S0045782524009538.

[44] Y. Wang, J. Sun, J. Bai, C. Anitescu, M.S. Eshaghi, X. Zhuang, T. Rabczuk, Y. Liu, Kolmogorov–Arnold-informed neural network: A physics-informed deep 
learning framework for solving forward and inverse problems based on Kolmogorov–Arnold networks, Comput. Methods Appl. Mech. Engrg. 433 (2025) 
117518, http://dx.doi.org/10.1016/j.cma.2024.117518, URL: https://www.sciencedirect.com/science/article/pii/S0045782524007722.

[45] Z. Gao, G.E. Karniadakis, Scalable Bayesian physics-informed Kolmogorov–Arnold networks, 2025, http://dx.doi.org/10.48550/ARXIV.2501.08501, URL: 
https://arxiv.org/abs/2501.08501.

[46] J.D. Toscano, L.-L. Wang, G.E. Karniadakis, KKANs: Kurkova–Kolmogorov–Arnold networks and their learning dynamics, 2024, http://dx.doi.org/10.48550/
ARXIV.2412.16738, URL: https://arxiv.org/abs/2412.16738.

[47] B. Amos, L. Xu, J.Z. Kolter, Input convex neural networks, in: Proceedings of the 34th International Conference on Machine Learning, in: Proceedings of 
Machine Learning Research, vol. 70, PMLR, 2017, pp. 146–155, URL: https://proceedings.mlr.press/v70/amos17b.html.

[48] P. Thakolkaran, A. Joshi, Y. Zheng, M. Flaschel, L. De Lorenzis, S. Kumar, NN-EUCLID: Deep-learning hyperelasticity without stress data, J. Mech. Phys. 
Solids 169 (2022) 105076, http://dx.doi.org/10.1016/j.jmps.2022.105076.

[49] F. As’ad, P. Avery, C. Farhat, A mechanics-informed artificial neural network approach in data-driven constitutive modeling, Internat. J. Numer. Methods 
Engrg. 123 (12) (2022) 2738–2759, http://dx.doi.org/10.1002/nme.6957, URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6957. arXiv:https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6957.

[50] D.K. Klein, M. Fernández, R.J. Martin, P. Neff, O. Weeger, Polyconvex anisotropic hyperelasticity with neural networks, J. Mech. Phys. Solids 159 (2022) 
104703, URL: http://dx.doi.org/10.1016/j.jmps.2021.104703.

[51] S. Meng, A.A.K. Yousefi, S. Avril, Machine-learning-based virtual fields method: Application to anisotropic hyperelasticity, Comput. Methods Appl. Mech. 
Engrg. 434 (2025) 117580, http://dx.doi.org/10.1016/j.cma.2024.117580.

[52] R. Shi, H. Yang, J. Chen, K. Hackl, S. Avril, Y. He, Deep learning without stress data on the discovery of multi-regional hyperelastic properties, Comput. 
Mech. (2025) http://dx.doi.org/10.1007/s00466-024-02591-0.

[53] C. Jailin, A. Benady, R. Legroux, E. Baranger, Experimental learning of a hyperelastic behavior with a physics-augmented neural network, Exp. Mech. 64 
(9) (2024) 1465–1481, http://dx.doi.org/10.1007/s11340-024-01106-5.

[54] K.P. Abdolazizi, R.C. Aydin, C.J. Cyron, K. Linka, Constitutive Kolmogorov–Arnold networks (CKANs): Combining accuracy and interpretability in 
data-driven material modeling, 2025, http://dx.doi.org/10.48550/ARXIV.2502.05682, URL: https://arxiv.org/abs/2502.05682.

[55] M. Grédiac, F. Pierron, S. Avril, E. Toussaint, The virtual fields method for extracting constitutive parameters from full-field measurements: a review, 
Strain 42 (4) (2006) 233–253, http://dx.doi.org/10.1111/j.1475-1305.2006.tb01504.x.

[56] F. Pierron, M. Grédiac, The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements, Springer New 
York, 2012, http://dx.doi.org/10.1007/978-1-4614-1824-5.

[57] D. Claire, F. Hild, S. Roux, A finite element formulation to identify damage fields: the equilibrium gap method, Internat. J. Numer. Methods Engrg. 61 
(2) (2004) 189–208, URL: http://dx.doi.org/10.1002/nme.1057.

[58] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal. 63 (4) (1976) 337–403, http://dx.doi.org/10.
1007/BF00279992, URL: http://link.springer.com/10.1007/BF00279992.

[59] J. Schröder, Anisotropie polyconvex energies, in: CISM International Centre for Mechanical Sciences, Springer Vienna, 2010, pp. 53–105, http://dx.doi.
org/10.1007/978-3-7091-0174-2_3.

[60] C.B. Morrey, Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2 (1) (1952) 25–53, http://dx.doi.org/10.2140/pjm.1952.
2.25.

[61] S. Kumar, A. Vidyasagar, D.M. Kochmann, An assessment of numerical techniques to find energy-minimizing microstructures associated with nonconvex 
potentials, Internat. J. Numer. Methods Engrg. 121 (7) (2019) 1595–1628, http://dx.doi.org/10.1002/nme.6280.

[62] S. Hartmann, P. Neff, Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility, Int. J. Solids Struct. 40 
(11) (2003) 2767–2791, http://dx.doi.org/10.1016/S0020-7683(03)00086-6, URL: https://www.sciencedirect.com/science/article/pii/S0020768303000866.

[63] D.K. Klein, R. Ortigosa, J. Martínez-Frutos, O. Weeger, Finite electro-elasticity with physics-augmented neural networks, Comput. Methods Appl. Mech. 
Engrg. 400 (2022) 115501, URL: http://dx.doi.org/10.1016/j.cma.2022.115501.

[64] D. Balzani, P. Neff, J. Schröder, G.A. Holzapfel, A polyconvex framework for soft biological tissues. Adjustment to experimental data, Int. J. Solids Struct. 
43 (20) (2006) 6052–6070.

[65] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
[66] C. De Boor, On calculating with B-splines, J. Approx. Theory 6 (1) (1972) 50–62.
[67] A. Isihara, N. Hashitsume, M. Tatibana, Statistical theory of rubber-like elasticity. IV. (Two-dimensional stretching), J. Chem. Phys. 19 (12) (1951) 

1508–1512, http://dx.doi.org/10.1063/1.1748111, URL: https://aip.scitation.org/doi/10.1063/1.1748111. Publisher: American Institute of Physics.
[68] D.W. Haines, W.D. Wilson, Strain-energy density function for rubberlike materials, J. Mech. Phys. Solids 27 (4) (1979) 345–360, http://dx.doi.org/10.

1016/0022-5096(79)90034-6, URL: https://www.sciencedirect.com/science/article/pii/0022509679900346.
[69] A.N. Gent, A.G. Thomas, Forms for the stored (strain) energy function for vulcanized rubber, J. Polym. Sci. 28 (118) (1958) 625–628, http://dx.doi.org/

10.1002/pol.1958.1202811814, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/pol.1958.1202811814. URL: https://onlinelibrary.wiley.com/doi/
abs/10.1002/pol.1958.1202811814.

[70] E.M. Arruda, M.C. Boyce, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, J. Mech. Phys. Solids 41 (2) 
(1993) 389–412, http://dx.doi.org/10.1016/0022-5096(93)90013-6, URL: https://www.sciencedirect.com/science/article/pii/0022509693900136.

[71] R.W. Ogden, R. Hill, Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. 
A 326 (1567) (1972) 565–584, http://dx.doi.org/10.1098/rspa.1972.0026, URL: https://royalsocietypublishing.org/doi/10.1098/rspa.1972.0026. Publisher: 
Royal Society.

[72] K.R. Butterfield, The computation of all the derivatives of a B-spline basis, IMA J. Appl. Math. 17 (1) (1976) 15–25, URL: http://dx.doi.org/10.1093/
imamat/17.1.15.

[73] S. Elfwing, E. Uchibe, K. Doya, Sigmoid-weighted linear units for neural network function approximation in reinforcement learning, Neural Netw. 107 
(2018) 3–11, URL: http://dx.doi.org/10.1016/j.neunet.2017.12.012.
30 

http://dx.doi.org/10.1016/j.cma.2024.117517
http://dx.doi.org/10.1007/s00366-024-01984-2
http://arxiv.org/abs/2404.19756
https://arxiv.org/abs/2404.19756
http://refhub.elsevier.com/S0045-7825(25)00361-5/sb41
http://arxiv.org/abs/2407.18373
http://dx.doi.org/10.1016/j.cma.2024.117699
https://www.sciencedirect.com/science/article/pii/S0045782524009538
https://www.sciencedirect.com/science/article/pii/S0045782524009538
https://www.sciencedirect.com/science/article/pii/S0045782524009538
http://dx.doi.org/10.1016/j.cma.2024.117518
https://www.sciencedirect.com/science/article/pii/S0045782524007722
http://dx.doi.org/10.48550/ARXIV.2501.08501
https://arxiv.org/abs/2501.08501
http://dx.doi.org/10.48550/ARXIV.2412.16738
http://dx.doi.org/10.48550/ARXIV.2412.16738
http://dx.doi.org/10.48550/ARXIV.2412.16738
https://arxiv.org/abs/2412.16738
https://proceedings.mlr.press/v70/amos17b.html
http://dx.doi.org/10.1016/j.jmps.2022.105076
http://dx.doi.org/10.1002/nme.6957
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6957
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6957
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6957
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6957
http://dx.doi.org/10.1016/j.jmps.2021.104703
http://dx.doi.org/10.1016/j.cma.2024.117580
http://dx.doi.org/10.1007/s00466-024-02591-0
http://dx.doi.org/10.1007/s11340-024-01106-5
http://dx.doi.org/10.48550/ARXIV.2502.05682
https://arxiv.org/abs/2502.05682
http://dx.doi.org/10.1111/j.1475-1305.2006.tb01504.x
http://dx.doi.org/10.1007/978-1-4614-1824-5
http://dx.doi.org/10.1002/nme.1057
http://dx.doi.org/10.1007/BF00279992
http://dx.doi.org/10.1007/BF00279992
http://dx.doi.org/10.1007/BF00279992
http://link.springer.com/10.1007/BF00279992
http://dx.doi.org/10.1007/978-3-7091-0174-2_3
http://dx.doi.org/10.1007/978-3-7091-0174-2_3
http://dx.doi.org/10.1007/978-3-7091-0174-2_3
http://dx.doi.org/10.2140/pjm.1952.2.25
http://dx.doi.org/10.2140/pjm.1952.2.25
http://dx.doi.org/10.2140/pjm.1952.2.25
http://dx.doi.org/10.1002/nme.6280
http://dx.doi.org/10.1016/S0020-7683(03)00086-6
https://www.sciencedirect.com/science/article/pii/S0020768303000866
http://dx.doi.org/10.1016/j.cma.2022.115501
http://refhub.elsevier.com/S0045-7825(25)00361-5/sb64
http://refhub.elsevier.com/S0045-7825(25)00361-5/sb64
http://refhub.elsevier.com/S0045-7825(25)00361-5/sb64
http://refhub.elsevier.com/S0045-7825(25)00361-5/sb65
http://refhub.elsevier.com/S0045-7825(25)00361-5/sb66
http://dx.doi.org/10.1063/1.1748111
https://aip.scitation.org/doi/10.1063/1.1748111
http://dx.doi.org/10.1016/0022-5096(79)90034-6
http://dx.doi.org/10.1016/0022-5096(79)90034-6
http://dx.doi.org/10.1016/0022-5096(79)90034-6
https://www.sciencedirect.com/science/article/pii/0022509679900346
http://dx.doi.org/10.1002/pol.1958.1202811814
http://dx.doi.org/10.1002/pol.1958.1202811814
http://dx.doi.org/10.1002/pol.1958.1202811814
https://onlinelibrary.wiley.com/doi/pdf/10.1002/pol.1958.1202811814
https://onlinelibrary.wiley.com/doi/abs/10.1002/pol.1958.1202811814
https://onlinelibrary.wiley.com/doi/abs/10.1002/pol.1958.1202811814
https://onlinelibrary.wiley.com/doi/abs/10.1002/pol.1958.1202811814
http://dx.doi.org/10.1016/0022-5096(93)90013-6
https://www.sciencedirect.com/science/article/pii/0022509693900136
http://dx.doi.org/10.1098/rspa.1972.0026
https://royalsocietypublishing.org/doi/10.1098/rspa.1972.0026
http://dx.doi.org/10.1093/imamat/17.1.15
http://dx.doi.org/10.1093/imamat/17.1.15
http://dx.doi.org/10.1093/imamat/17.1.15
http://dx.doi.org/10.1016/j.neunet.2017.12.012

	Can KAN CANs? Input-convex Kolmogorov-Arnold Networks (KANs) as hyperelastic constitutive artificial neural networks (CANs)
	Introduction
	Modeling hyperelasticity using ICKANs
	Hyperelasticity preliminaries
	Hyperelastic model ansatz
	Monotonic input-convex Kolmogorov-Arnold network (ICKAN)

	Unsupervised training of ICKANs
	Results
	Numerical benchmarks
	Accuracy and generalizability beyond the training data
	Interpretability

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Appendix A. Details on enforcing convexity and monotonicity
	Proof of the non-decreasing convexity condition
	Implementation of convexity and monotonicity constraints
	Linear Extrapolation at the endpoints

	Appendix B. ICKAN spline grid initialization
	Appendix C. Training details
	Appendix D. Learning material models without convexity constraints
	Appendix E. Comparison with EUCLID 
	Appendix F. Monotonic input-convex symbolic regression
	Data and code availability
	References


