
Electrical Sustainable Energy

Model validation and feasibility
analysis of Modelica based dynamic
simulations using OpenIPSL and
CGMES

Harish Krishnappa

M
as

te
ro

fS
cie

nc
e

Th
es

is

Model validation and feasibility analysis of
Modelica based dynamic simulations using

OpenIPSL and CGMES

by

Harish Krishnappa

in partial fulfillment of the requirements for the degree of

Master of Science
in Electrical Engineering at Delft University of Technology

To be defended publicly
on Friday August 25, 2017 at 15:00 in TU Delft.

Student number: 4477847
Project duration: December 1, 2016 – August 25, 2017
Supervisors: Dr. ir. Jose L. Rueda Torres, TU Delft

Ir. Sander Franke TenneT TSO B.V.

Thesis committee: Prof. dr. Peter Palensky, TU Delft
Dr. ir. Jose L. Rueda Torres, TU Delft
Dr. ir. Luigi Vanfretti, RPI, USA
Ir. Sander Franke TenneT TSO B.V.

ii

Master of Science Thesis

Acknowledgement

First and foremost, I would like to thank TenneT TSO for giving me the opportunity to
conduct my master thesis and, TU Delft for its guidance through my Master’s course. This
thesis would not have been possible without the kind support and help of many individuals
from these organizations. This thesis was supported by the System Operations department of
TenneT TSO.
I am thankful to my supervisors Sander Franke (TenneT) and Prof. Jose Rueda Torres (TU
Delft) for their insights and guidance throughout the thesis and steering me in the right direction
whenever they thought I needed it. I would like to thank Prof.Luigi Vanfretti (RPI, USA) for
his guidance, especially during the initial stages of this thesis. I would like to thank Prof. Peter
Palensky (Chair, TU Delft) for his insightful comments and encouragement to go ahead with
this open-source crusade.
Besides, I would like to thank Francisco Gomez (Phd, KTH) for all the help with Modelica
scripting and for specific insights into the modelling process. Also, am grateful to Svein Olsen
(Statnett SF) for his help in formulating the thesis objectives.
I am grateful to all my TenneT collegues, Susana de Graff, Frank Spaan, Tofan Fadriansyah,
Jasper van Casteren, Frank Nobel, Nikoleta Kandalepa, Pim Jacobs, Vinay Sewdien and Marco
Pavesi for their support. I would also like to thank my fellow interns, Camiel van Altenborg
and Michelle Porte for their constant support and for all the fun, yet resourceful conversations.
I am also grateful to my Master co-ordinator, Laura Ramirez Elizondo and Academic counsellor
Agaby Masih for their support and guidance in the beginning of this thesis. I would also like
to thank my friends, Avinash Prakash, Aravinth Thamizh, Aniket Lewarkar, Prateek Gupta,
Siddharth Kumar, Digvijay Gusain, Chetan Kumar, Deesh Dileep and all the colleagues in
IEPG group at TU Delft for all the technical and moral support. Also, the Willemse family
van Arnhem deserve a special thanks because they have been like a second family to me.
I would like to offer my special thanks to my childhood friend Santhosh Kumar , who although
no longer with us, continues to inspire by his example.
Finally, I must express my very profound gratitude to my family and all my friends for providing
me with unfailing support and continuous encouragement throughout my years of study and
through the process of researching and writing this thesis. This accomplishment would not
have been possible without them.

Master of Science Thesis

iv

“There are only two options:
Make progress or make excuses.”

- Tony Robbins

Master of Science Thesis

Abstract

The European Union’s energy and climate policy objectives for 2030 targets to achieve at
least 27% of the generated electricity from renewables. Such large-scale integration of
renewable Energy Sources (RES) into the grid, will have drastic effects on the electricity grid
structure, system operations and the functioning of the electricity market itself. In order to
tackle the intermittency challenges posed by RES, smarter operating processes are essential.
This requires accurate simulation tools and an efficient exchange of information between the
energy players in Europe (TSOs, DSOs and other private generators). The Common Grid
Model Exchange Standard (CGMES) was developed to support data exchanges between these
energy players. The CGMES based Common Information Model (CGMES-CIM) files contain
all the information about the grid under study including the powerflow values. The current
version of CGMES-CIM supports full interoperability with respect to steady state simulations
but is quite challenging to use for dynamic simulations. Open-Instance Power System Library
(OpenIPSL), which is a Modelica based power system library, seems to be one of the possible
solutions that can overcome the interoperability issue with respect to dynamic simulations.
This thesis focuses on extending the OpenIPSL with PowerFactory based models and provides
a proof of concept to automatically initialize the Modelica grid model using CGMES-CIM.
OpenModelica, an open-source Modelica simulation environment is used in this project to carry
out dynamic studies on a modified Bonneville Power Administration (BPA) grid model. In order
to perform dynamic studies, the Modelica grid model first needs to be populated with powerflow
values. OpenModelica does not include powerflow option and therefore, powerflow solution
needs to be obtained from another simulation tool and the values need to be subsequently
loaded into OpenModelica to perform dynamic simulations; this process is called Initialization.
Thus, to overcome the challenges with initialization of Modelica models, this thesis presents
a proof of concept that directly utilizes the CGMES-CIM files for initialization of Modelica
based grid models. The interfacing process between CIM and Modelica based grid model is
done using Python.
To test the concept, Modelica based dynamic simulations were carried out and compared with
reference results (signal records obtained through time domain simulations) from
PowerFactory. For this purpose, several PowerFactory based Modelica models were developed
and validated, extending the OpenIPSL. These models were subsequently used to create and
validate a modified BPA grid model, which serves as a test case. This thesis also proposes a
method to directly convert CGMES-CIM files to Modelica files. This conversion helps achieve
complete automation of dynamic simulations in a Modelica environment. Therefore, this
thesis contributes to the OpenIPSL by developing PowerFactory based models and, also
proposes a new CGMES-CIM to Modelica converter.

Master of Science Thesis

vi

Master of Science Thesis

Table of Contents

Acknowledgement iii

Abstract v

1 Introduction 1
1-1 Background . 1

1-1-1 CGMES-CIM . 3
1-1-2 Dynamic profile in CGMES-CIM . 4

1-2 Problem definition . 5
1-3 Motivation . 6
1-4 Goals and research questions . 6
1-5 Contributions . 9
1-6 Approach and thesis outline . 9

2 Modelica power system library 11
2-1 Introduction to Modelica . 11

2-1-1 Main characteristics . 12
2-1-2 Softwares based on Modelica . 12

2-2 Modelling environment . 13
2-2-1 Attributions and equations . 13
2-2-2 Simulation parameters . 14

2-3 Application example . 15
2-4 Modelica libraries . 17

2-4-1 Modelica standard library (MSL) . 17
2-4-2 Open-Instance Power System Library . 17

Master of Science Thesis

viii Table of Contents

3 PowerFactory based Modelling 19
3-1 DIgSILENT PowerFactory . 19
3-2 PowerFactory Models . 21

3-2-1 Synchronous generator . 22
3-2-2 Loads . 25
3-2-3 Transformer . 27
3-2-4 Transmission line . 28
3-2-5 Exciter system . 29
3-2-6 Overexcitation Limiter . 30
3-2-7 Speed-Governing System . 31
3-2-8 Steam Turbine system . 32
3-2-9 OLTC . 33
3-2-10 Asynchronous machine . 34

4 CIM based initialization for dynamic simulation 37
4-1 Standards for Model Information Exchange . 37
4-2 Common information model standards . 38
4-3 CIM UML . 38
4-4 CGMES files . 41
4-5 CGMES-CIM based initialization of Modelica grid models 44

4-5-1 Method 1: Initialization of Modelica based grid models 45
4-5-2 Method 2: Model to model transformation 47

5 Result discussion 49
5-1 Considered test system . 49
5-2 Model Validation . 50

5-2-1 Simulation set-up . 51
5-2-2 Synchronous Generator . 51
5-2-3 Excitation system . 52
5-2-4 Governor system . 54
5-2-5 Load . 55
5-2-6 Transformer . 56
5-2-7 Transformer tap changers . 57
5-2-8 Complete model . 58

5-3 CGMES-CIM based Initialization in Modelica 59
5-4 CGMES-CIM to Modelica converter . 63

6 Conclusions and future scope 69
6-1 Conclusion . 69
6-2 Future scope and recommendations . 70

Master of Science Thesis

Table of Contents ix

A 77
A-1 Synchronous generator . 77

A-1-1 Parameters and equations . 78
A-1-2 Generator code . 78

A-2 Load . 84
A-3 Transmission Line . 87
A-4 Governor . 88
A-5 Exciter . 88
A-6 OLTC . 89

B 91
B-1 Grid parameters . 91
B-2 Validation results of uncontrolled generator . 92
B-3 Generator validation with excitation system . 94
B-4 Generator validation with exciter and governor system 96
B-5 Complete Model . 98

C 101
C-1 CGMES based Initialization . 101
C-2 Model to model transformation . 102

Master of Science Thesis

x Table of Contents

Master of Science Thesis

List of Figures

1-1 Types of simulation studies and respective tools used 2
1-2 CIM model part types . 4
1-3 Issue with the dynamic model exchange . 5
1-4 Overall Idea . 7
1-5 Work division . 7
1-6 Initialization process for dynamic simulations in OpenModelica 8
1-7 ’All in one’ test system or modified Bonneville Power Administration (BPA) test

system . 8
1-8 Workflow . 9
1-9 Thesis outline . 10

2-1 Modelica Process [1] . 12
2-2 OMEdit - OpenModelica Connection Editor . 13
2-3 Simulation options in OpenModelica . 14
2-4 Text view of electrical bus . 15
2-5 Model connections using PwPin . 15
2-6 Modelica based generator model displayed in text, icon and diagram view (shown

using OpenModelica connection editor) . 16
2-7 Modelica library . 17
2-8 OpenIPSL . 18

3-1 Model definition of simple exciter system consisting DSL blocks 20
3-2 Composite frame of the generator . 20
3-3 Common model of user defined AVR system . 21
3-4 Composite model of a generator system . 21
3-5 Equivalent d-axis circuit . 22
3-6 Equivalent q-axis circuit for round-rotor machine 22

Master of Science Thesis

xii List of Figures

3-7 Coordinate system of Synchronous and Rotor frames∗ 23
3-8 Relationship between coordinate systems . 23
3-9 Modelica model of the synchronous machine based on PowerFactory round rotor

model (Machine model 2.2) . 25
3-10 Representation of mixture of static and dynamic loads in PowerFactory∗ 26
3-11 Model that approximates the behaviour of the non-linear dynamic load∗ 26
3-12 Non-linear dynamic load modelled based on PowerFactory in Modelica 27
3-13 Positive sequence (per unit) equivalent circuit of a transformer∗ 27
3-14 Transformer model in Modelica and the dialog box for parameter input 28
3-15 Equivalent circuit of the three phase line∗ . 28
3-16 Transmission model in Modelica and dialog box for parameter input 29
3-17 Simplified IEEE ST1A excitation model∗ . 29
3-18 Over excitation limiter∗ . 30
3-19 Exciter and limiter modelled in Modelica . 30
3-20 Typical speed-governing system∗ . 31
3-21 Speed-governing steam turbine system∗ . 31
3-22 Linear model of turbine system . 32
3-23 Governor and turbine model in Modelica based on PowerFactory 32
3-24 Tap changer is modelled at the HV side∗ . 33
3-25 Equivalent circuit of the three-phase line∗ . 33
3-26 off-load tap changer block in Modelica . 34
3-27 On-load tap changer block in Modelica . 34
3-28 General equivalent circuit of asynchronous machine in PowerFactory 35
3-29 Simple cage rotor model . 35
3-30 Modelica model . 35

4-1 Power transformer represented in CIM-UML∗ 38
4-2 UML class diagram for the classes of a transformer∗ 39
4-3 CIM-UML representation of Load based on CGMES v2.5 40
4-4 Different CIM profiles according to CGMES v2.5 41
4-5 The powerflow values inside the SV profile . 42
4-6 Graph structure of the attributes of the CIM classes, SvPowerFlow and SvVoltage

inside SV profile . 43
4-7 Graph structure of the attributes of the CIM class, TopologicalNode inside TP

profile . 43
4-8 Flowchart to obtain the name of the bus and its respective bus voltages and angles 44
4-9 Dialog box for powerflow input in a generator model 45
4-10 Initialization process in Modelica using CGMES-CIM files 45
4-11 Model to Model transformation; CGMES-CIM to Modelica script conversion . . . 48

5-1 Test system modelled in PowerFactory . 49

Master of Science Thesis

List of Figures xiii

5-2 Grid model in PowerFactory . 50
5-3 Grid model in Modelica . 50
5-4 Terminal voltage and speed variation in an Uncontrolled generator 52
5-5 Comparison of terminal voltage with and without excitation system 52
5-6 Test system used to validate excitation system 53
5-7 Terminal voltage and electrical torque obtained from exciter validation 53
5-8 Test system for governor validation . 54
5-9 Comparison of speed responses with and without the Governor system 54
5-10 Comparison of Modelica and PowerFactory responses with the governor system . 55
5-11 Difference in static and dynamic load responses 55
5-12 Test system for transformer validation in PowerFactory 56
5-13 Test system for transformer validation in OpenModelica 56
5-14 Comparison of Modelica and PowerFactory responses for transformer validation . 56
5-15 Voltages when the tap changer position is at 93 57
5-16 Complete model of the modified BPA system in Modelica 58
5-17 Voltages at the buses when load is increased by 100% between 5-7sec 59
5-18 Process used in the thesis for CGMES-CIM based initialization of Modelica models 60
5-19 Dialog box of a Modelica based generator showing dummy initial values 60
5-20 Part of modelica script that undergoes changes 60
5-21 Generator output obtained from the Python based CGMES reader 61
5-22 SV profile of the the test system for scenario 1 62
5-23 Voltage magnitude at Bus3 for different scenarios 63
5-24 The test system modelled in PowerFactory . 64
5-25 Process followed in this thesis to obtain the Modelica model directly from CGMES-

CIM . 65
5-26 Dynamic profile showing the generator parameters required for dynamic simulations 66
5-27 Automatically generated test system in OpenModelica using the proposed converter 66
5-28 Volatge at Bus1 for a load increase of 100% at LoadC between 5-7 sec. 67
5-29 Voltages at all the buses when a perturbation is applied 67

A-1 The parameters of round rotor 2.2 generator in PowerFactory 78
A-2 Governor parameter description . 88
A-3 Exciter parameter description . 88
A-4 off-load tap changer in Powerfactory - 1 . 89
A-5 off-load tap changer block in Powerfactory - 2 89
A-6 on-load tap changer block in Powerfactory . 90
A-7 Voltage at the Load when OLTC is used in OpenModelica 90

B-1 Comparison graphs for uncontrolled generator - 1 92
B-2 Comparison graphs for uncontrolled generator - 2 93

Master of Science Thesis

xiv List of Figures

B-3 Comparison graphs for a generator with excitation system-1 94
B-4 Comparison graphs for a generator with excitation system-2 95
B-5 Comparison graphs for a generator with excitation system and governor system-1 96
B-6 Comparison graphs for a generator with excitation system and governor system-2 97

C-1 Generator output obtained from the python based CGMES reader for IEEE 14 bus
system . 101

Master of Science Thesis

List of Tables

2-1 Variables and class overview . 14

5-1 Simulation set-up in OpenModelica . 51
5-2 Results when tap changer is added at the HV side of the transformer (steady-state

values) . 57
5-3 My caption . 58
5-4 Comparison of steady state voltage values . 59
5-5 Powerflow values of the 9-bus test system . 63

A-1 Input Definition of the RMS-Model . 77
A-2 State Variables . 77
A-3 Output Definition . 78

B-1 Synchronous machine parameters used in the validation process 91
B-2 Line parameters used in uncontrolled generator model 91
B-3 Exciter parameter values used for validation . 95
B-4 Governor system parameter values used for validation 98
B-5 Line parameters used in modified BPA system for Transmission line near the load 98
B-6 Line parameters used in both of the parallel transmission lines 98
B-7 Exciter parameter values used for validation of modified BPA system 99
B-8 Governor system parameter values used for validation for BPA test system 99
B-9 Tranformer near G1 . 99

Master of Science Thesis

xvi List of Tables

Master of Science Thesis

Glossary

• CGMES-CIM Common Grid Model Exchange Standard based Common Information
Model

• RES Renewable Energy Sources
• ENTSO-E European Network of
• CGMES Common Grid Model Exchange Standard
• TSOTransmission System Operators for Electricity
• UML Unified Modeling Language
• CIM Common Information Model
• CPS cyber physical systems
• OpenIPSL Open-Instance Power System Library
• ICT Information and Communication Technology
• IDE Integrated Development Environment
• MSL Modelica standard library
• iTesla Innovative Tools for Electrical System Security within Large Areas
• DSL DIgSILENT Simulation Language
• PU Per-unit
• EMT simulations Electromagnetic simulations
• OEL over-excitation limiter
• EC European Commission
• IOP Interoperability tests

Master of Science Thesis

xviii List of Tables

Master of Science Thesis

Chapter 1

Introduction

In this chapter, a background to the field of research is presented. Introduction to the
concepts like information model exchange, CIM, CGMES, OpenIPSL and OpenCPS will
also be provided in this chapter. Finally, the problem definition, goals, research questions
and outline of this thesis project are described.

1-1 Background

The European Union’s energy and climate policy objectives for 2030 has led to the large
integration of Renewable Energy Sources (RES) into the grid. The contribution of renewable
energy in the electricity grid had increased to 13% in 2012 as a proportion of total energy
consumed and is expected to rise to 21% in 2020 and 24% in 2030 [2]. This has impacts on the
electricity grid infrastructure, operations and the functioning of the electricity market itself.
With penetration of new technologies and the growth of large scale power systems, the need
for complex power system simulation has increased. With this in mind, achieving valuable
simulation results has become one of the important research questions in the area of electrical
power engineering [3].

Power system simulation can be classified into steady state and dynamic simulations.
Steady state simulations involve computations to find new system equilibrium. The
dynamic simulations on the other hand, computes system evolution through time and are
slower than steady state simulations [4]. Different kinds of models are designed to meet
different simulation requirements. The emphasis of modelling complexity mainly deals with
the type of study, described below and shown in 1-1.

• Electromagnetic transient study: This study provides information about
interactions between the magnetic field of inductances and electrical field of
capacitance in power systems [5]. Consists the most detailed type of power system
models. Studies like the analysis of transients after asymmetrical faults, or operations

Master of Science Thesis

2 Introduction

of power electronics converters are covered. EMTP-RV, PSCAD/EMTDC, etc. are
mainly used to study the electro-magnetic transient of the system after large or small
disturbances, in the time scale between microseconds and seconds. Usually, it is
difficult to simulate very large networks and needs to be dealt with by using discrete
solvers. This kind of study in Powerfactory is referred to as EMT simulation study.

• Electromechanical transient study: Deals with the interaction between the
mechanical energy stored in the inertia of rotating machines and the electrical energy
stored in the system [5]. The most common softwares are PSS/E, Eurostag, Simpower,
PSAT, etc. These kind of software tools mainly simulates and investigates the
response of system after large or small disturbances, such as short-circuit fault,
opening of transmission lines, loads and generators. These tools are also used to study
the system ability to maintain stable operation. In case of large networks,these models
are usually simplified (equivalent models are used for faster computations). This kind
of study in PowerFactory is referred to as RMS simulation study.

• Quasi steady state dynamics study: This kind of study uses a simplified
representation of power system components, which can be used in long-term dynamic
simulation. The models used are simplified further by neglecting most of the dynamics
(by replacing the differential equations by algebraic equations).

Figure 1-1: Types of simulation studies and respective tools used

Simulation tools like DIgSILENT PowerFactory, SimPowerSystems, etc. help the user with
varied types of power system studies. These tools consider both the electromagnetic transient
and electromechanical transient models and can provide simulation results in a broader time
range [6]. They also help obtain more detailed and accurate simulation solutions. However,
the libraries integrated in the tools are commonly closed for modifications (black-box models),
which limit the flexibility of simulation to some extent [6].

Master of Science Thesis

1-1 Background 3

1-1-1 CGMES-CIM

A powerful modelling language which can realize, not only an accurate model
representation, but also increase computational efficiency of model simulation could be an
effective solution [7]. Usually for a energy player (TSOs, DSOs and other private
generators), the behaviour of the neighbouring control areas becomes significant during their
grid development and maintenance. For this, they would require accurate simulation tools
and data from their neighbouring energy players. In this regard, an efficient exchange of
information between the energy players in Europe (TSOs, DSOs and other private
generators) becomes very crucial [8].

To enable better coordination and data exchange between TSOs, a commonly agreed exchange
format standard called Common Grid Model Exchange Standard (CGMES) was introduced
by the European Network of Transmission System Operators for Electricity (ENTSO-E) [8].
ENTSO-E represents around 42 electricity transmission system operators from around 35
countries in Europe. CGMES is based on Common Information Model (CIM).

CIM is based on the Unified Modeling Language (UML) and, uses classes and relations to
represent the semantic information. The CIM follows Object-Oriented Programming (OOP)
principles defining network analysis data in terms of building blocks, which contain the
basic components and topology of the power network as shown in Figure 1-2 [7]. A CIM
represented power system objects can be quickly converted to classes in an appropriate
object-oriented programming language application [7].

Data in CGMES-CIM is partitioned into types of profile model parts as shown in Figure 1-2.

1. Invariant profile model types include the data that describe the qualities of the grid
that are inherent in its construction and will not typically change except as a result
of new construction activity. (the term “invariant” here emphasizes the goal that this
information about a given element should be the same in every study representing that
element) [7].

2. Variant profile model types are those that the engineer will set up differently for different
kinds of studies. For example, a capacity planning study might look at a heavy-load
scenario, while a real-time state estimator studies current load conditions [7].

The CGMES-CIM profiles are:

• Equipment profile (EQ) profile provide the details about the basic steady-state
characteristics of all the equipments connected to the grid.

• Diagram layout (DL) profile defines how grid parts may be organized into schematic
diagrams [7].

• Short-circuit (SC) profile defines additional data required for short-circuit analysis [7].

• Dynamic (DY) profile defines additional data required for dynamic analysis.

• Geographical layout (GL) profile defines geographical data [7].

Master of Science Thesis

4 Introduction

• Steady-state hypothesis (SSH) profile defines the input choices for power flow, consisting
mainly of component status, generation and load values, regulation targets, limits [7].

• Topology (TP) defines the bus-branch topology that results from eliminating switches
from the model [7].

• State variables (SV) defines the steady-state solution (the solution after powerflow).

Figure 1-2: CIM model part types ∗

1-1-2 Dynamic profile in CGMES-CIM

The DY (dynamics) profile supports the exchange of dynamic behaviour models that are
defined by IEEE / CIGRE standards for Power System Stability Analysis [9]. There are
three ways in which the current version of the dynamics profile is designed to support under
CGMES [10]:

• Standard model exchanges: A simplified approach for exchanging dynamic models.
The behaviours of the models are defined in a standard manner. The current profile
supports a set of standard models only.

• User-defined model exchanges: It is a way to exchange full information on user
defined models. Currently, the DY profile is not fully equipped for this type of exchange,
to be precise, it does not support the mechanism to model the individual elements from
the control blocks and describe how they are linked to each other [10].

• Proprietary models exchange: This process provides users with the ability to
exchange the parameters of a model representing a vendor-proprietary tool, where an
explicit public description of the model is not desired. It is a process to exchange
proprietary models (black box models like .dll etc). All parties participating in the
exchange should have the model (.dll, etc.). Only parameters of models are exchanged.
The current version allows for the exchange of model information like the name and
description with unlimited number of parameters per model [10].

*Figure taken from reference [7]

Master of Science Thesis

1-2 Problem definition 5

1-2 Problem definition

One of the developments in the field of power systems is the effort to achieve a common
language that supports interoperability between power system tools with respect to dynamic
simulations [2] - [11]. CGMES based CIM helps in exchange of dynamic data by sharing the
parameters(values) of associated blocks needed for dynamic studies [9].
Within the current CGMES (v2.4), dynamic standard models are described in both graphical
(black box/control block diagrams) and textual format [9], [12], which could lead to different
interpretations. Therefore, a reliable, organised approach is required to capture, maintain
and exchange information of each standard model (IEEE models) [10]. Also, the utilities
often introduce new equipments in their grid, develop new or improved standard models
and maybe even add new modelling functionalities for business processes. Therefore, the
classes in the standards need to be extended every single time, which becomes a complex task
for all the energy players involved. Thus, unambiguous model exchange between different
applications/software platforms might become challenging [10].
Another drawback could be that different non-standard components (like exciters and other
control systems) are not consistent in all platforms due to different modelling philosophy,
assumptions and simplifications. Also, the conventional block diagram modelling forces the
user to share only parameters, which sometimes leads to different interpretations in power
system tools [12]. The mismatch could be as shown in Figure 1-3.

Figure 1-3: Issue with the dynamic model exchange

Additionally, within an utility, there is need for a common dynamic grid model that could be
used during all the stages of the grid development. Usually, the utilities use different tools
(PSSe, PowerFactory and EMS) at different stages of grid development and analysis. Here, the
interoperability might be a huge factor, as the grid models need to undergo specific changes
before it can be simulated in another platform. Often, this requires expert intervention and
is time consuming.

Master of Science Thesis

6 Introduction

1-3 Motivation

As discussed, there are limitations in the exchange of dynamic models by making use of
CGMES for unambiguous dynamic model sharing. Though most of the power system
simulation tools are reasonably user-friendly and computationally efficient, they have a
closed architecture and different modelling philosophies [13] & [14]. Thus, there is
motivation to use an open-source modelling language such as Modelica, to describe electric
networks [13]. Also, the latest version of CGMES v2.5 proposes Modelica for user defined
dynamic model exchanges. Therefore, Modelica based dynamic model exchanges could
become very crucial in the near future among the energy companies for model exchange
process and co-ordination.

In general, an equation-based modelling language helps to know the exact model (in terms of
equtions and parameters) of the system independently of the software in which it is modelled.
An explicit mathematical representation can be made using Modelica that helps to wave out
any ambiguity about the model, while enabling simulations with diverse tools. Also, Modelica
separates the solver from the model, which is an advantage while working with a large system
and the models can be easily exchanged between simulation environments[12].

The development of a Modelica library for phasor time-domain simulation of power systems
was first initiated during the iTesla project and later moved into the Open Cyber Physical
Systems (OpenCPS) project. The Open-Instance Power System Library (OpenIPSL)
contains a set of power system component models necessary for the execution of prototype
demonstrations on the iTesla platform. Currently, OpenIPSL already consists PSAT and
PSSE compliant dynamic models in it’s library, but it lacks PowerFactory models. Several
TSOs might revert back to using PowerFactory for dynamic simulations in the near future
because of its features and improved efficiency. Addition of PowerFactory based models into
OpenIPSL would find significance with TSOs using other proprietary tools. Also, within a
TSO, there is a great need for one grid model for dynamic simulations that utilizes
initialization data from different sections of grid development like the grid planning stage,
day ahead, hourly planning stage and from the Energy management systems (EMS).

1-4 Goals and research questions

The overall objective of this thesis project is to make use of CGMES-CIM files directly to
simulate the dynamic responses of a grid with a fixed topology. The CGMES-CIM files contain
all the information regarding the grid under study. This information is converted to specific
Modelica class files utilizing the OpenIPSL library files (Mapping algorithm is utilized for this
purpose) and Python. Therefore, the user would be able to perform dynamic studies with
just a click of a button, and the dependency on proprietary tools is avoided. The overall idea
of the project is described in Figure 1-4. The idea described in Figure 1-4 is further simplified
to obtain the objective of the project:

“Investigate the feasibility of using open source software to overcome interoperability issues
with dynamic model exchange, using CGMES and OpenIPSL“

Master of Science Thesis

1-4 Goals and research questions 7

Figure 1-4: Overall Idea

Figure 1-5: Work division

The open source software considered is OpenModelica and Modelica language would be used
to model the grid elements with PowerFactory as a reference tool. Phase 1 of the thesis is to
develop PowerFactory models in OpenModelica and validate them. And in this way
extending the OpenIPSL library with the non-existing PowerFactory (dynamic) models.
Phase 2 of this Master Thesis deals with making use of CGMES model for the initialization
of the Modelica based grid model. The work division is shown in Figure 1-5. OpenModelica
doesn’t contain its own powerflow toolbox, powerflow needs to be carried in other
simulation tools and later loaded into OpenModelica and this process is called initialization.

Note: All models in OpenIPSL are programmed in such way that by introducing a power
flow solution consisting of Voltage magnitude in pu, Voltage angle in degrees, Active power
in MW and reactive power in MVAr (usually from another tool), the initial guess is
computed as a parameter within each model (eg: generator model) and are provided into
the initial equations that are used to solve the overall initialization problem [15].

Master of Science Thesis

8 Introduction

The most important research questions that are investigated:

1. Is it possible to model and validate a PowerFactory based grid models in OpenModelica
in terms of dynamic simulations and thereby extending the openIPSL library?

2. Can the initialization process (shown in Figure 1-6) in Modelica be implemented by
directly utilizing the CGMES files (SV,SSH profiles)?

The test system chosen (shown in Figure 1-7 [16]) is a modified Bonneville Power
Administration (BPA) test system described in [17]. The test system can capture transient
(angle), frequency and voltage instability phenomena (resulting in system collapse), all
within one single system.

Figure 1-6: Initialization process for dynamic simulations in OpenModelica

Figure 1-7: ’All in one’ test system or modified Bonneville Power Administration (BPA) test
system

Master of Science Thesis

1-5 Contributions 9

Since, the proof of concept is carried out using PowerFactory models, research question (1)
needs to be implemented first. Later on, using (1), the concept of importing initialization data
directly from CIM files would be tested and verified, as described in (2). Figure 1-8 describes
the workflow implemented in this thesis. The research questions were framed focusing on
aspects that TenneT and/or other similar TSOs are concerned about.

Figure 1-8: Workflow

The objectives will be achieved in order to evaluate the feasibility of utilizing Modelica with
OpenIPSL and CGMES for internal dynamic model exchanges within a TSO.

1-5 Contributions

• Contribute models to the Open-Source Modelica Power system library - Update
OpenIPSL with PowerFactory based models.

• Develop tutorials and documentation for an Intelligent Electrical Power Grids (IEPG)
course - Make video tutorials and develop instructions for Modelica based course work.

• One conference and one journal paper.

1-6 Approach and thesis outline

This chapter starts with a brief introduction to the thesis topic and why this project is
of great importance to the field of electric power system simulations. The outline of the

Master of Science Thesis

10 Introduction

project, its main goal and objectives are all explained in this chapter. Literature survey was
carried out to understand the current practices with respect to dynamic model exchanges,
CGMES, CIM and Modelica. The second chapter discusses Modelica language in detail and
also includes details regarding using Modelica for power system dynamic studies. This is
followed by, third chapter which discusses the implementation of PowerFactory based models
in OpenModelica. Modelling philosophy in PowerFactory is discussed. Chapter 4 describes
CIM, CGMES and python scripting is used for mapping the initial values directly from the
CIM files into Modelica grid model. Chapter 5 shows the completed test system model in
Modelica. Validation of component models, the results from the CGMES-CIM to Modelica
converter and the initialization process is discussed. Last chapter of this report concludes
the thesis and gives details on the probable future developments that can follow this thesis
project. Figure 1-9 can be referred for an overview of the chapters in this thesis report.

Figure 1-9: Thesis outline

Master of Science Thesis

Chapter 2

Modelica power system library

This chapter deals with the introduction of Modelica programming language. Modelica’s
main constructs encountered in power system library is discussed using an application
example. Finally, the power system library used in the thesis - the OpenIPSL is described.

2-1 Introduction to Modelica

Modelica is an open-source object-oriented programming language for modelling of physical
systems containing electrical, mechanical, hydraulic, thermal or any other process-oriented
sub-components [6]. Therefore, Modelica based modelling could play a vital role in CPS,
which is a combination of physical processes and Information and Communication
Technology (ICT) [18], [19].

The Modelica language is used for modelling large, complex and multi-domain systems. It is
designed in a way to support library developments and model exchanges. It’s a modern
language based on acausal modelling with mathematical equations and object-oriented
constructs to facilitate re-usability of models [20].

After compilation of Modelica model into machine code by the Modelica compiler, execution
of the code takes place with a numerical solver that is capable of solving combinations of
Differential and Algebraic Equations (DAEs). A Modelica model is not coupled to any
specific solver and therefore can be easily exchanged between simulation environments [1].
There are different Integrated Development Environment (IDE) based on a standardized
Modelica language. IDEs provide the development environment and simulation facility.
Therefore, several steps are involved in order to simulate a model, specifically the model is
compiled into C-code and binded to a desired solver as shown in Figure 2-1.

Modelica helps the user to focus on what he/she wants to model rather than the

Master of Science Thesis

12 Modelica power system library

computational realizations. This way, the user can achieve the desired goals without being
fully aware of the processing scheme [21].

Figure 2-1: Modelica Process [1]

The developers of Modelica, the Modelica Association have developed Modelica standard
library that includes about 1600 model components and 1350 functions from many domains.
The latest version, Modelica 3.4 was released in April 2017 [20].

2-1-1 Main characteristics

Modelica as a modelling language offers its own unique capabilities which play an important
role in power system studies. Few of the characteristics are mentioned [6],[22]:

1. Equation-based. Modelica is based on equations instead of assignment statements.
The equation level modelling allows for greater flexibility as they do not prescribe a
certain data flow. Such modelling also helps decompose complex systems into simple
sub-models making it easier to understand, share and reuse.

2. Object-oriented. Modelica uses a general class concept, which unifies classes and
general sub-typing into a single language construct. Re-usability and evolution of models
is made easier.

3. Multi-domain modelling. Model components from different physical domains can
be connected and simulated without interference of each other.

4. Model exchange. In Modelica, dynamic models can be exported as Functional Mock-
up Units (FMU) and used in other simulation environments. (eg: Simulink)

5. Re-usability. Within Modelica, the definition of each component consists of equations
using only local variables and connectors. Thus, there is no connection between a
component and the rest of the system, except from the connector.

2-1-2 Softwares based on Modelica

Modelica is a non-proprietary (open-source) language so it can be used for free by anyone.
This enabled a wide range of softwares based on Modelica. A lot of commercial (Dymola,
CyModelica, MapleSim etc.) and free software tools (JModelica, Scicos, SimForge etc.) are

Master of Science Thesis

2-2 Modelling environment 13

now available for industrial and academic use. The biggest difference among them is the
interface and solvers they use. An open-source platform called OpenModelica (see Figure
2-2) is utilized in this thesis project.
OpenModelica Connection Editor is an advanced open-source Modelica based software tool.
It provides friendly graphical user interface with easy-to-use model creation, simulation of
models, and plotting of results. The interface is extensible enough to support user-defined
extensions. Models can be in both code form and graphical form [23].

Figure 2-2: OMEdit - OpenModelica Connection Editor

2-2 Modelling environment

The basic structure of modelling in Modelica is the class. A class consists of name, list of
declaration of its attributes and equations. Every object is an instant of corresponding class
which is defined by its data and behaviour [24].

2-2-1 Attributions and equations

The attributions of a Modelica class contains constants, parameters, and variables. By
default, all of the variables are continuous time variables which change their values
continuously during simulation [24]. Variables can be declared by prefixes constant,
parameter, discrete. Constants will never change their value after their definition, eg:
constant Real pi=3.1415. If the variables have prefixed parameter, then they can be
assigned by users before simulation or after the stage of initialization, but will remain
constant during time-dependent simulation. The discrete variables can change their values
only at event instants during simulation. Furthermore, time is a global built-in variable,
which can be used without declaration [20]. For the sake of readability, different types of
variables and classes can be defined in Modelica as shown in Table 2-1. Equations in the
model are followed by the keyword ’equation’. The differential equations are defined using
the ’der’ operator, eg: der(x)=x+1, where, x is the state variable. Each state requires an
initial condition, eg: der(x)= 0 which can also be defined during its parameter definition, eg.
some_parameter_name(start=0).

Master of Science Thesis

14 Modelica power system library

Table 2-1: Variables and class overview

Keywords Description
Real Default variable type ;floating point eg. 50.022

Integer Default variable type; integer eg. 1, 579
Boolean Default variable type; eg. true, false
String Default variable type; eg. "HelloWorld"
type Class to define variable types

connector Class to define interfaces
model Class to define model components
package Class to define library, no equations here.
block Class just like model-class, consists only public input, output an parameter

2-2-2 Simulation parameters

As discussed in the previous section, the simulation solvers in Modelica programming
environments are decoupled from the model. This makes it easier to exchange models
between different simulation platforms. The basic characteristics that will change the
outputs of the simulations are the solvers used, the integration time step and the tolerance.
The user can choose between several kinds of solvers. In the example shown in Figure. 2-3,
the simulation time is set for 10 sec and the tolerance of the solver is set to 1e-6. The solver
is radau5 - Radau IIA with three points. the size of the solver is set by the number of
intervals.

Figure 2-3: Simulation options in OpenModelica

Master of Science Thesis

2-3 Application example 15

2-3 Application example

Complex models can be created by introducing equations that are accurate using Modelica.
Code of an electrical bus is shown in Figure 2-4. In Modelica, defining a parameter or a
variable is pretty straightforward, as shown in Figure 2-4. Modelica works on the concept of
class to represent models. The collection of basic models forms a library.

Models are connected by connectors, which are special Modelica classes that define the
connection of two or more components[6] . In the example shown in Figure 2-4, PwPin
connectors are used for electrical components and similar class called Impin connectors
exist for non-electrical components.

Figure 2-4: Text view of electrical bus

Variables vr, vi, ir and ii are defined to present the real and imaginary parts of voltages and
currents respectively. Two connection rules apply: the voltages must be equal and sum of
currents should be zero as shown in Figure 2-5 [6] and Equation 2-1.

Figure 2-5: Model connections using PwPin

Master of Science Thesis

16 Modelica power system library

pin1.ir + pin2.ir = 0;
pin1.ii+ pin2.ii = 0;
pin1.vr = pin2.vr;
pin1.vi = pin2.vi;

(2-1)

Three types of model views are possible while working on models in OpenModelica and is as
shown in Figure 2-6. The contents of these views are inter-dependent, that is the change in
one particular view induces similar change in other two views.

1. The text view: the code is written. All the graphical modifications will have an
impact on it.

2. The icon view: the graphical representation is designed. Allows to define the
model’s graphical appearance.

3. The diagram view: Is where the user can drag and drop previously made models, the
models will appear as an instance with the appearance created in the icon view [6].

Figure 2-6: Modelica based generator model displayed in text, icon and diagram view (shown
using OpenModelica connection editor)

Master of Science Thesis

2-4 Modelica libraries 17

2-4 Modelica libraries

2-4-1 Modelica standard library (MSL)

Modelica Standard Library (MSL) is a free (standard conform) library developed by
Modelica Association. The brief view of the library is shown Figure.2-7. It is freely available
in the source code and can be modified to be used in commercial software. The elements in
the library can be used to model multi-domain system which can include: 1D or 3D
mechanical, electrical (analog, digital, machines), control systems thermal, fluid and
hierarchical state machines [24].

To build a system, one can drag-and-drop the components from the library to the graphical
edit screen. Additionally, numerical functions, functions for strings, files and streams are
also included in the library. This thesis utilize several basic blocks such as transfer functions
and some numerical functions to build the components of control blocks of the generator
system and other grid elements.

Figure 2-7: Modelica library

2-4-2 Open-Instance Power System Library

To overcome the growing complexity in pan European Transmission system, FP7 iTesla
(Innovative Tools for Electrical System Security within Large Areas) was initiated to create
a toolbox for operating the European transmission network [1].

OpenIPSL started as a fork of iPSL and is actively developed by SMartTS Lab members
and other researchers from all over the world, as a research and education oriented library
for power systems. These models are now part of OpenCPS project. OpenIPSL is an
open-source Modelica library for power systems. It contains a set of power system

Master of Science Thesis

18 Modelica power system library

components for phasor time domain modelling and simulation. The models within this
library have been validated against a number of reference tools. The main package
OpenIPSL consists of several packages like Connectors, Electrical, Interfaces and
Non-Electrical.

1. Connectors : This package contains three connectors; PwPin, is used for treating voltage
and current as complex variables, ImPin is a simple connector for real variables and
PwcobPin is used for changing from machine power base to system power base.

2. Electrical : This is the main package of the library with all the power system
component models for phasor time domain representation. It contains several
sub-packages like Bus,Branch, Machine, Loads, Controls etc. Several of these models
are based on different proprietary software tools like PSAT, PSSE and Eurostag.

3. Examples : Contains set of examples that show the usage of the power system
component models.

4. Interfaces : contains models used for data conversion. These models help to exchange
data between the library and other Modelica libraries.

5. Non-Electrical : This package comprises of functions, blocks, and specialized models
that is used to build the power system component models. They can be transfer
functions, logical operators and so on., These models perform specific operations and
are not available in the MSL.

Figure 2-8: OpenIPSL

The current OpenIPSL consists of models based on simulink, Eurostag, PSAT and PSSe.
Therefore, OpenIPSL is updated with the PowerFactory based models, which are created
during the course of this thesis project. These models are developed based on the
requirements of the test system considered in this thesis. The following chapter would
provide the information regarding the modelling philosophy used in PowerFactory.

Master of Science Thesis

Chapter 3

PowerFactory based Modelling

In this thesis, PowerFactory is used as a reference to develop models in Modelica, and hence
the modelling philosophy used in PowerFactory is discussed in this chapter. This is followed
by detailed explanation of the mathematical representation of each electrical model that is
used in this thesis. It starts from electrical element such as a load, transformer, generator
and subsequently describes the governor and exciter systems used in this thesis.

3-1 DIgSILENT PowerFactory

Different events in the power system would cause varied disturbances in the system, which
sometimes results in major black-outs. Possibility to predict and simulate the power system
stability for different types of disturbances is quite crucial in grid operations [3].
Sophisticated simulation tools like DIgSILENT PowerFactory have emerged to integrate
scientific approaches to assist power engineers in both academic and industry-oriented
research studies [25]. PowerFactory includes load flow calculation, optimal power flow
calculation, contingency analysis, protection, RMS/EMT simulation, reliability assessment
and many other functionalities. It also supports interfacing with other packages (e.g.
MATLAB, Phyton) for data exchange.

The PowerFactory modelling approach combines both graphical and script based modelling
methods. It is also based on basic hierarchical levels of time-domain modelling [3]:

1. DSL Block Definitions are based on the “DIgSILENT Simulation Language” (DSL).
They form the basic building blocks to represent transfer functions and differential
equations for the more complex models [3].

2. Common models, are based on the DSL Block Definitions and are the front-end of
the user-defined transient models as shown in Figure 3-3.

Master of Science Thesis

20 PowerFactory based Modelling

3. Composite models are based on composite frames. They help to combine and
interconnect several elements (built-in models) and/or common models as shown in
Figure 3-4. The composite frames (shown in Figure 3-2 [26]) enable the reuse of the
basic structure of the composite model [3].

Figure 3-1: Model definition of simple exciter system consisting DSL blocks

Figure 3-2: Composite frame of the generator

The Common Model combines general time-domain models or Block Definitions with a set
of parameter values and creates an integrated time-domain model. The Composite Model on
the other hand, connects a set of time-domain models inside a diagram (which is a composite
frame).

Master of Science Thesis

3-2 PowerFactory Models 21

Figure 3-3: Common model of user defined AVR system

Figure 3-4: Composite model of a generator system

3-2 PowerFactory Models

This thesis considers ’All-in-one’ or a modification of the BPA test system [27]. The test
system captures transient (angle), frequency and voltage instability phenomena within one
single system. In this thesis, models are developed specifically for this test system.

Master of Science Thesis

22 PowerFactory based Modelling

3-2-1 Synchronous generator

PowerFactory offers three types of synchronous machine models, Model 2.1 (salient pole
machine), Model 2.2 (round rotor machine) and Model 3.3 (detailed generator model). They
are all represented in a rotor reference system (dq-reference frame) [28]. This thesis makes
use of round rotor system. The Model 2.2 is defined by six state variables and therefore is a
sixth order generator model.

The rotor d-axis is always modelled by two rotor loops representing the excitation or field
winding and the 1d-damper winding. The equivalent d-axis circuit is shown in Figure 3-5
[28]. For the q-axis, PowerFactory supports two models, a salient-pole rotor machine model
having only the 1q damper winding and a round-rotor machine model with the 1q and 2q
damper windings. The equivalent q-axis circuit for a round rotor system is shown in Figure
3-6 [28].

Figure 3-5: Equivalent d-axis circuit

Figure 3-6: Equivalent q-axis circuit for round-rotor machine

Individual synchronous machines variables are transferred to rotor reference frame, however
the network quantities are expressed in synchronous reference frame. The coordinate system
is shown in Figure. 3-7 [24].

Master of Science Thesis

3-2 PowerFactory Models 23

Figure 3-7: Coordinate system of Synchronous and Rotor frames∗

Where, the generator is represented by a voltage source E behind a dynamic impedance Xs.
The rotor angle here is angular spatial positions of the generator rotor shaft. The
synchronously rotating reference axes leading the dq-axes by angle θ = π

2 - δ. Thus,
relationship between the quantities expressed in Re− Im axes and dq-axes are as following:

Figure 3-8: Relationship between coordinate systems

Normally, for large-scale stability studies the transformer voltage terms and the effect of speed
variations are neglected in the stator voltage equations. The stator dynamics are relatively fast
for stability studies. Therefore, for RMS-simulations, the derivatives of the stator quantities
(transformer voltage terms) are not considered in the equations. This allows also using bigger
time steps compared to the EMT model [26]. Taking into account this simplification, the
stator voltages are given by:

ud = u
′′
d − rstr ∗ id + n ∗ x′′

q ∗ iq (3-1)

uq = u
′′
q − rstr ∗ iq + n ∗ x′′

d ∗ id (3-2)

*Figure taken from reference [26]

Master of Science Thesis

24 PowerFactory based Modelling

where the sub-transient voltages are given by,

u
′′
d = −n ∗ ψ′′

q

u
′′
q = n ∗ ψ′′

d

(3-3)

The state equations of the round rotor system consists of 4 rotor rotor voltage equations and
2 equations of motion. The variables and parameters of the sixth order synchronous machine
model are detailed in Figure A-1-2.

vfd = rfd ∗ ifd + 1
wn

dψfd
dt

(3-4)

0 = r1d ∗ i1d + 1
wn

dψ1d
dt

(3-5)

0 = r1q ∗ i1q + 1
wn

dψ1q
dt

(3-6)

0 = r2q ∗ i2q + 1
wn

dψ2q
dt

(3-7)

where, wn =2 ∗ π ∗ fnom is the nominal angular frequency. Equations of motion defined by
speed (n) and angle (φ):

dn

dt
= tm − te − tdkd − tdpe

tag
(3-8)

dφ

dt
= wn ∗ (n− fref) (3-9)

where,
tm = pt

n
− dpu ∗ n+ addmt (3-10)

te = iq ∗ ψd − id ∗ ψq
cosn

(3-11)

All models in a Modelica library require initial guess values that should come from a solution
of the steady state of the overall model. From these values, a Modelica tool solves the
initialization problem for all algebraic and differential - state variables. Few initial equations
for the mentioned state equations are defined in [28] and are as folows:

φ0 = arctan(ut + (rstr + j ∗ xq)it)−
π

2 (3-12)

tm0 = pt

n
− (xmdm+ dpu ∗ n) (3-13)

The remaining initial equations are discussed in the Appendix code A-1-2. The model in
Modelica contains two inputs ve and pt (for inputs from exciter and governor control
blocks).The initial equations are discussed in Listing 3.1. It also consists of several output
including the torques as shown in Figure. 3-9. All the details of output/input parameters
are discussed in Appendix A-1. A partial model called Base Machine (BM) is created so as
to help further extension of PowerFactory synchronous machines like salient pole (Model
2.1) or detailed model (model 3.3) and the Modelica code is given in A-1-2.

Master of Science Thesis

3-2 PowerFactory Models 25

Figure 3-9: Modelica model of the synchronous machine based on PowerFactory round rotor
model (Machine model 2.2)

Listing 3.1: Synchronous generator initialization equations

parameter Real te0 = (iq0 * psid0 - id0 * psiq0) / cosn" electrical torque ";
parameter Real tm0 = pt00 / n0" initial mechanical torque ";
parameter Real ie0 = xadu * ifd0" initial excitation current ";
parameter Real ve00 = ie0" initial excitation voltage ";
parameter Real ufd0 = rfd / xadu * ve00" initial field voltage ";
parameter Real pt00 = te0 * n0" initial turbine power";

// Initial conditions for rotor flux linkages
parameter Real ifd0 = ((xad + xl) * id0 + uq0 + rstr * iq0) / xad;
parameter Real psid110 = kfd * psifd0 + k1d * psi1d0 ;
parameter Real psiq110 = k1q * psi1q0 + k2q * psi2q0 ;
parameter Real psid0 = (- xd11 * id0) + psid110 ;
parameter Real psiq0 = (- xq11 * iq0) + psiq110 ;
parameter Real psifd0 = (- xad * id0) + (xad + xrl + xfd) * ifd0;
parameter Real psi1d0 = (- xad * id0) + (xad + xrl) * ifd0;
parameter Real psi1q0 = -xaq * iq0;
parameter Real psi2q0 = -xaq * iq0;

3-2-2 Loads

With RMS simulations in PowerFactory, three-phase loads are modelled as a combination of
the static and the dynamic load as shown in Figure 3-10. The static part is modelled as a
constant impedance and the dynamic portion of the load can be modelled as a linear load or
as a non-linear load [29]. In this thesis both the static load and non linear dynamic loads are
developed.

Master of Science Thesis

26 PowerFactory based Modelling

Figure 3-10: Representation of mixture of static and dynamic loads in PowerFactory∗

The dynamic, voltage and frequency-dependent load model represented by the block
diagrams shown in Figure 3-11 . It uses the three polynomial terms when modelling the
voltage dependency of loads in PowerFactory .

Figure 3-11: Model that approximates the behaviour of the non-linear dynamic load∗

where,
kput = aP ∗ kpu0 + bP ∗ kpu1 + cP ∗ kpu
kqut = aQ ∗ kqu0 + bQ ∗ kqu1 + cQ ∗ kqu

(3-14)

Figure. 3-12 shows the parameter dialog box, which is by default modelled for non-linear
dynamic model. But, the model can work as a static model with right choice of parameter
values and making certain values equal to zero. The Modelica code for the non-linear dynamic
load is given in A-2.

*Figure taken from reference [29]

Master of Science Thesis

3-2 PowerFactory Models 27

Figure 3-12: Non-linear dynamic load modelled based on PowerFactory in Modelica

3-2-3 Transformer

Two-winding transformers are used in the considered test system. The two-winding
transformers in PowerFactory can be used to represent network transformers, phase-shifters,
auto transformers or MV-voltage regulators [30]. The per-unit positive sequence equivalent
circuit of the transformer is shown in Figure 3-13 . The leakage reactance and winding
resistances are included on the HV and LV sides, and the magnetising branch accounts for
core losses. These losses are represented by the magnetising reactance and a parallel
resistance. Figure 3-14 shows the dialog box for parameter input.

Figure 3-13: Positive sequence (per unit) equivalent circuit of a transformer∗

*Figure taken from reference [30]

Master of Science Thesis

28 PowerFactory based Modelling

Figure 3-14: Transformer model in Modelica and the dialog box for parameter input

3-2-4 Transmission line

PowerFactory gives the option to choose between two transmission line models. The “Lumped
parameters model (π -nominal)” or the “Distributed parameters model (π -equivalent)” [26].
The π -nominal model is a simplification of the π -equivalent model. Lumped parameter model
is used in this thesis. The equivalent circuit for a three-phase Lumped parameters model is
shown in Figure 3-15. The sum of all admittances connected to the corresponding phase
is given by Ys. Ym gives the negative value of the admittances between two phases. The
input parameters in the line type transmission line are defined in terms of positive and zero
sequence impedances and admittances Z1, Y1, Z0 and Y0. The negative sequence values are
assumed to be equal to the positive sequence.

Figure 3-15: Equivalent circuit of the three phase line∗

*Figure taken from reference [26]

Master of Science Thesis

3-2 PowerFactory Models 29

Figure 3-16: Transmission model in Modelica and dialog box for parameter input

3-2-5 Exciter system

Excitation systems should be capable of responding rapidly to a disturbance; should be
designed to have fast acting response to enhance transient stability. In this thesis, a
simplified ST1A model shown in Figure 3-17 is implemented. The input signal of the
excitation system is the output of the voltage transducer, VTR. This voltage is compared
with the voltage regulator reference, VREF . Thus, the difference between these two voltages
gives the error signal that drives the excitation system. An additional signal from
over-excitation limiter (OEL) output, VOEL is also provided, which becomes non-zero only
in the case of unusual conditions (disturbances).

Figure 3-17: Simplified IEEE ST1A excitation model∗

*Figure taken from reference [16]

Master of Science Thesis

30 PowerFactory based Modelling

3-2-6 Overexcitation Limiter

Certain slow acting phenomena, such as voltage collapse,might force machines to operate
at high excitation levels for a sustained duration, this phenomenon can be captured using
Over-Excitation Limiters (OEL). According to the IEEE recommended practice 421.5, OELs
are required in excitation systems to capture slow changing dynamics associated with long-
term phenomena. OEL protects the generator from overheating due to prolonged field over-
currents. The overheating is seen either due to failure of a component inside the voltage
regulator, or due to an abnormal system condition. In other words, OEL allows machines to
operate for a defined time-overload period, and then reduces an excitation to a safe level. The
OEL detects high field currents (IFD) and outputs a voltage signal (VOEL) which is sent to
the excitation system summing junction as shown in Figure 3-18. This signal is equal to zero
in normal operation condition.

Figure 3-18: Over excitation limiter∗

Both the exciter and OEL are modelled together in PowerFactory and a similar system is
modelled in Modelica as shown in Figure 3-19. The inputs are terminal voltage (ut) and
excitation current (ie). In addition to this, it contains inputs for initial parameters from the
synchronous machine; initial excitation voltage (VE0) and initial terminal voltage (UT0) as
shown in Listing 3.2.

Figure 3-19: Exciter and limiter modelled in Modelica

*Figure taken from reference [16]

Master of Science Thesis

3-2 PowerFactory Models 31

Listing 3.2: Exciter initialization equations
// Inputs from the synchronous machine
Modelica.Blocks.Interfaces.RealInput VEE " Initial Excitation voltage from

machine ";
Modelica.Blocks.Interfaces.RealInput UTT " Initial Terminal voltage from

machine ";
// Parameter initializations

parameter Real VE0(fixed = false)" Initialization ";
parameter Real UT0(fixed = false) " Initialization ";
//
initial equation
VE0 = VEE;
UT0= UTT;

3-2-7 Speed-Governing System

A typical mechanical-hydraulic speed-governing system consists of a speed governor, a speed
relay, hydraulic servomotors, and controlled valves, which are represented in the functional
block diagram [16]:

Figure 3-20: Typical speed-governing system∗

Figure 3-21: Speed-governing steam turbine system∗

*Figure taken from reference [16]

Master of Science Thesis

32 PowerFactory based Modelling

3-2-8 Steam Turbine system

High pressure and high temperature steam is converted into rotating energy by the steam
turbine, which in turn is converted into electrical energy by a generator. A steam system,
tandem compound single reheat turbine, is used in this thesis. The turbine is represented
by a simplified linear model as shown in Figure 3-22. The governor block consists inputs
for initial parameters from the synchronous machine; initial turbine power (pt0) and initial
power factor (cosn0) as shown in Listing 3.3.

Figure 3-22: Linear model of turbine system

Figure 3-23: Governor and turbine model in Modelica based on PowerFactory

Listing 3.3: Governor initialization equations
// Inputs from the synchronous machine
Modelica.Blocks.Interfaces.RealInput xspeed "speed (pu) from the machine ";
Modelica.Blocks.Interfaces.RealInput cosn "power factor from the machine ";
Modelica.Blocks.Interfaces.RealInput PTT " turbine power from machine ";
parameter Real cosn0(fixed=false);
parameter Real pt0(fixed=false);
//
initial equation
pt0=PTT;
cosn0=cosn;

Master of Science Thesis

3-2 PowerFactory Models 33

3-2-9 OLTC

The tap changer is represented by an additional, ideal transformer connected to either the
HV or LV side of the transformer as shown in Figure 3-24. For most applications, the winding
ratio of this transformer is real and is defined by the actual tap position (in number of steps)
multiplied by the additional voltage per step [30]. In this thesis, discrete tap changers are used
where, only integer tap positions are considered. The tap changer is placed at HV side and
the control node is at LV side, which means that the Tap controls the LV side. Asymmetrical
tap changer model works as shown in Figure 3-25. where, nntap0 is the neutral position,
tapmx and tapmn are the respective higher and lower tap positions.

Figure 3-24: Tap changer is modelled at the HV side∗

This kind of asymmtrical tap changer model uses a complex value du, which is expressed as:

du = dutap(cos(phitr) + j ∗ sin(phitr)) (3-15)

Figure 3-25: Equivalent circuit of the three-phase line∗

*Figure taken from reference [30]

Master of Science Thesis

34 PowerFactory based Modelling

A separate block as shown in Figure 3-26 functions as a off-load tap changer and follows the
equation 3-15.

Figure 3-26: off-load tap changer block in Modelica

The 2-winding transformer model in PowerFactory is comprised of the 2-winding transformer
element (ElmTr2), and the 2-winding transformer type (TypTr2). The transformer element
allows input of data relating to the control of the transformer under steady-state conditions,
and the transformer type allows input of the physical properties of the transformer [30]. In
order to use the OLTC option, the user needs to input data in both the transformer element
and type as shown in Appendix A-6.

Since, the exact logic for OLTC is not well documented in [30], an approximate PowerFactory
based OLTC model is developed during this project.

Figure 3-27: On-load tap changer block in Modelica

3-2-10 Asynchronous machine

In this thesis, single cage model is used. It is the simplest of the rotor impedance models.
The model is characterised by a single R-L branch with a slip dependent rotor resistance.

Master of Science Thesis

3-2 PowerFactory Models 35

This model is adequate for describing wound rotor motors, however it is unsuitable for motor
starting studies with squirrel cage motors [31].

Figure 3-28: General equivalent circuit of asynchronous machine in PowerFactory

Figure 3-29: Simple cage rotor model

Figure 3-30: Modelica model

The voltage equations of an asynchronous machine model - single cage model:

us = rs.is + j
wref
wn
∗ x′′

.is + x
′′

wn

dis
dt

+ j.
wref
wn

.ψ
′′ + 1

wn
∗ dψ

′′

dt
(3-16)

Master of Science Thesis

36 PowerFactory based Modelling

where the subtransient flux is defined as,

ψ
′′ = xTsr.x

−1
RR.ψR (3-17)

where,
ψR is the rotor flux vector,
iR is a rotor-current vector;
us, is and ψs are stator voltage, current and flux;
wn = dphi

dt = 2.π.fnom is nominal angular frequency and
wR is the rotor speed.

The single cage model constitutes of 3 state equations: One of the state equation is the speed
equation and the remaining state equations are the rotor flux equations derived from 3-16.

dwm
dt

= me −mm

Tag
(3-18)

where,
Tag is the total acceleration time constant in sec;
me is the electrical torque in p.u.;
mm is the mechanical torque in p.u.;
wm is the speed in p.u.

and the electric torque is given by,

me = is.r ∗ ψs.i− is.i ∗ ψs.r
cosn.eff/wn

(3-19)

where,
cosn is the nominal power factor and
eff is the efficiency at nominal operation in p.u.

The following chapter discusses the use of model to model transformation approach to directly
use the initial values (powerflow values) from the CGMES data and to generate the Modelica
file that is ’dynamic simulation ready’.

Master of Science Thesis

Chapter 4

CIM based initialization for dynamic
simulation

This chapter describes the model information exchange process with CGMES, which is closely
related to the IEC- 61970 CIM standards. The structure of CGMES-CIM and its profiles are
introduced. Finally, algorithm based on Python is described that obtains specific data from
CGMES and helps automatically initialize the Modelica grid model. Also, the extension of this
thesis work; Model to Model transformation (direct conversion of CGMES-CIM to a Modelica
script file) is explained.

4-1 Standards for Model Information Exchange

The Common Grid Model Exchange Standard (CGMES) is developed by European Network
of Transmission System Operators for Electricity (ENTSO-E) for interfacing between
members’ software in order to exchange power system modelling information as required by
the ENTSO-E and TSO business processes [8]. The CGMES is a superset of the IEC
Common Information Model (CIM) standard. It was developed to help transmission system
operators (TSOs) with data exchanges in the areas of network planning, system operations
and integrated electricity markets [9].

The major contribution of FP7 iTesla or the OpenCPS is the use of Modelica language for
exchanging dynamic models. The latest draft version of CGMES v2.5 standard, proposes
the use of Modelica for model exchanges and would require the proprietary tool owners to
provide grid models to the users , both in CGMES-CIM and in Modelica [10]. The
CGMES-CIM (v2.5) would be implemented by the European TSOs for operational and
system development exchanges by the end of 2017 [32].

Master of Science Thesis

38 CIM based initialization for dynamic simulation

4-2 Common information model standards

A common information model is therefore required, that works with all the proprietary
power system tools. Therefore the primary goal of the CIM standard is to improve model
quality and to assure that information from different sources fit together in a structured and
meaningful model. The CIM is based on Unified Modelling Language (UML) classes and
relations to represent semantic information of the real power grid. Within CIM the power
systems components are treated as objects that can be quickly converted to classes in an
appropriate object-oriented programming language application. The CGMES-CIM works
perfectly for the steady-state analysis. However, for dynamic simulations, it could be
challenging to attain interoperability between proprietary tools as each proprietary tool
follows its own modelling philosophy and simplifications.

4-3 CIM UML

The scope of this thesis limits the discussion of UML. However, the genral structure of UML
is discussed with an example of a transformer. UML class (shown in Figure 4-2) diagrams
provides visual representation of object hierarchies. Figure 4-1 shows the general CIM-UML
layout of a power transformer.

Figure 4-1: Power transformer represented in CIM-UML∗

*Figure taken from reference [32]

Within CIM-UML, a two terminal power transformer becomes two Transformer Winding
objects within a PowerTransformer container. If a tap changer is present to control one of
the terminals then an instance of the TapChanger class is associated with the
TransformerWinding object of that particular Terminal while still being contained within
the PowerTransformer instance.

Master of Science Thesis

4-3 CIM UML 39

Thus, Figure 4-1 shows 4 CIM objects: two TransformerWindings, one TapChanger and
one PowerTransformer along with the Terminals associated with each TransformerWinding.

Figure 4-2: UML class diagram for the classes of a transformer∗

*Figure taken from reference [32]

Classes are of different kinds and is explained using the class diagram of a transformer shown
in Figure 4-2 [33]:

1. Inheritance class: Inheritance is often referred to as Generalisation. It defines a
class as being a sub-class of another class. A sub-class inherits all the attributes of its
parent-class, but can also contain its own attributes. In Figure. 4-1, Equipment inherits
PowerSystemResource. Arrows are used to show the inheritance.

2. Association class: Here, the classes share different parent super-classes. In the
Figure 4-2, TapChanger class is associated with the TransformerWinding object of
that particular terminal while still being contained within the PowerTransformer
instance.

3. Aggregation class: The Aggregation relationship defines a special kind of association
between classes, indicating that one is a container class for the other. In the Figure

Master of Science Thesis

40 CIM based initialization for dynamic simulation

4-2, PowerTransformer is a container class of TransformerWinding. It is represented by
a white diamond [33]. In PowerTransformer association with TransformerWinding, 1
PowerTransformer might have TransformerWinding from 0 to many (0..*).

4. Composition class: Composition is a specialised form of Aggregation where the
“contained” object is a fundamental part of the “container” object, and that if the
“container” is destroyed, all the objects that are related to it with a composition are
similarly destroyed. It is represented by a shaded diamond shape.

Figure. 4-3 shows the load model according to the latest CGMES.

Figure 4-3: CIM-UML representation of Load based on CGMES v2.5

Master of Science Thesis

4-4 CGMES files 41

4-4 CGMES files

The Common Grid Model Exchange Standard (CGMES) is an ENTSO-E standard based
on the IEC CIM, which stablishes a framework to assess the conformity of the suppliers’
applications to the CGMES. The CGMES is used by European TSOs for operational and
system development exchanges [32]. It contains several profiles that are interlinked as shown
in Figure.

Figure 4-4: Different CIM profiles according to CGMES v2.5

Few of the profiles (they are the subset of classes, associations and attributes needed to
accomplish a specific type of interface and based upon a canonical model) within CGMES
are discussed below:

1. Equipment profile:The equipment profile is separated by three functional parts: EQ
core, EQ operation and EQ short circuit. An equipment instance file describes the
equipments in the grid model.

2. Topology profile :A topology instance file contains all topology objects for a grid
model. These topology objects reference the corresponding equipment describing how
equipment is electrically connected.

3. Steady state hypothesis profile :A steady state hypothesis instance file contains
all objects required to exchange input parameters to be able to perform load flow
simulations.

4. State variables profile : A state variable instance file contains all objects required to
complete the specification of a steady-state solution.

5. Dynamics profile : A dynamics instance file represents the parameters necessary to
model dynamic behaviour of the power system, e.g. transient and subtransient
reactances of synchronous machines, parameters of the control block diagrams of
excitation systems, turbine, governors, power system stabilisers, etc.

6. Diagram layout profile : Diagram layout profile standard and contains data necessary
for the model diagram.

7. Geographical location profile : A geographical data instance file contains GIS data
and is constructed based on IEC 61968-4, although it is limited to the classes which
cover ENTSO-E needs.

Master of Science Thesis

42 CIM based initialization for dynamic simulation

The CGMES-CIM can also be used in the eXtensible Markup Language (XML), which is a
standard format that stores machine-readable data in a structured, extensible format. This
thesis uses XML format to read the powerflow values from the CGMES-CIM files. All the
CGMES-CIM profiles are associated with each other through Resource Description
Framework identification (RDFid).

RDF identifications help create relationships between XML nodes. For example, the initial
voltage and angle of a bus is obtained from SV profile, the corresponding name of the bus is
obtained from TP profile. The class object in SV profile and that of TP profile are
associated by a common RDFid. The SV profile for a simple two bus system with a
generator and a load is described in Figure 4-5.

Figure 4-5: The powerflow values inside the SV profile

To better interpret the xml classes and attributes, online tool known as Xmlgrid was utilized,
which gives the graphical structure of attributes within CIM classes as shown in Figure. 4-6
and 4-7. This kind of representation helps to understand the attributes and association that
CIM classes have between them. For example, CIM class SvVoltage has attributes angle and
v. Also, this class is associated with the TP profile - CIM class, TopologicalNode, from which
the name of the respective bus in the grid model is obtained.

Master of Science Thesis

4-4 CGMES files 43

This process is shown using a flowchart in Figure 4-8. Similar logic can be developed to harvest
the other load flow values (active power (p) and reactive power (q)) from the CGMES-CIM
profiles.

Figure 4-6: Graph structure of the attributes of the CIM classes, SvPowerFlow and SvVoltage
inside SV profile

Figure 4-7: Graph structure of the attributes of the CIM class, TopologicalNode inside TP
profile

Master of Science Thesis

44 CIM based initialization for dynamic simulation

The flowchart to obtain all the bus values and the names of the elements in the grid is
shown in Figure 4-8. If there is a bus named Bus1, then all its values are obtained from SV
profile and using its respective RDFid, its name is obtained from TP profile to obtain a list:
(BUS_NAME, Voltage, Angle) = [Bus1, 1.04, 0.5213]

Figure 4-8: Flowchart to obtain the name of the bus and its respective bus voltages and angles

4-5 CGMES-CIM based initialization of Modelica grid models

All the models in OpenIPSL are programmed in such way that by introducing a power flow
solution from another tool [22]. Figure 4-9 shows the dialog box of a generator in the grid,
where the powerflow values (Voltage at the generator bus (V_0), angle (angle_0), active
power (P_0), reactive power (Q_0)) is obtained from other tool and manually input into
Modelica models. This process could be very stressful for a large grid model and there is also
a high chance for human-errors while entering the powerflow values.

Using the powerflow values, the remaining initial guess values are computed as a parameter
within each model (ex: initial excitation voltage ve0 is computed within the synchronous
machine model). These initial values are subsequently provided into the initial equations
that are used to solve the overall initialization problem

Master of Science Thesis

4-5 CGMES-CIM based initialization of Modelica grid models 45

Figure 4-9: Dialog box for powerflow input in a generator model

In order to overcome this tedious nature of working with Modelica models, a CGMES-CIM
reader is developed that harvests the powerflow data and dumps it into respective component
model (Generator or Load) in Modelica based grid model. The CGMES reader is interfaced
using Python. Therefore, this thesis proposes a automatic process to harvest data directly
from CGMES-CIM and initialize the Modelica based grid model.

4-5-1 Method 1: Initialization of Modelica based grid models

Here, the powerflow values are directly harvested from the CGMES files. The existing
Modelica script for a specific grid model is also used for manipulation. The names of the
equipment (eg: Gen_Delft or Load_Arnhem) are looked up and their respective powerflow
values are updated accordingly. The algorithm developed tries to locate the names and the
respective equipments through the SV profile. NOTE: Different algorithms can be
developed with this idea.

Figure 4-10: Initialization process in Modelica using CGMES-CIM files

Master of Science Thesis

46 CIM based initialization for dynamic simulation

The process is carried out through following steps:

1. Access CGMES files: Find all the buses, generators and loads

2. After deducing the number of elements, find their corresponding names.

3. Access the corresponding Modelica script file: Look up for the name of the
element (Generators and Loads), replace the dummy powerflow values in the models by
the actual powerflow values from the CGMES-CIM.

Listing 4.1: Python code snippet for Method 1
import fileinput
import sys

Function to replace the specific line
def replaceAll (file ,searchExp , replaceExp):
for line in fileinput .input(file , inplace =1):
if searchExp in line:
line = line. replace (searchExp , replaceExp)
sys. stdout .write(line)

This is an example code snippet for Method 1
text = " GEN_delft " # if any line contains this name , I want to modify the

whole line (Only in the parameters section).
#In actual code , text will be from a CGMES reader .
x = fileinput .input(files="new.mo")
for line in x:
print line
if text in line:
Sentence =line
x.close ()
#Copy the entire line into a new file
x1 = open(r’newfile .mo’, ’w’)
x1.write(line + ’\n’)
x1.close ()
break

Obtain the powerflow values for GEN_delft , text1 is just an example here ,it
will be replaced by a list of lists in the actual script

text1=’P_0 = 9.8572 , Q_0 = 9.8767 , V_0 = 1, _b = 20, angle_0 = 0.00075)
annotation (’

#Read from the temporary file
datafile = open(’newfile .mo’, ’r’)
Create my final file
smallerdataset = open(’FinalScript .mo’, ’w’)
for counter , line in enumerate (datafile):
print counter
smallerdataset .write(line.split(’(’, 2)[0]+ ’(’+text1)
New_Sentence = line.split(’(’, 2)[0]+ ’(’+text1
break
smallerdataset .close ()
replaceAll (’new.mo’,Sentence , New_Sentence)

#This is an example script

Master of Science Thesis

4-5 CGMES-CIM based initialization of Modelica grid models 47

Code description: The Python code developed in this thesis are based on standard
packages and are developed from scratch. Although, there are existing Python packages
that enable direct interaction of Python with OpenModelica, they were not utilized in this
thesis, keeping in mind the IT-security constraints within an utility.

In Method 1, specific code-line manipulation is carried out. It uses 3 .mo files are used for
manipulation, original Modelica script file (new.mo), where dummy powerflow values exist,
temporary file (newfile.mo) and a final script (FinalScript.mo) that contains the powerflow
values from CGMES-CIM as shown in the Listing 4.1.

Advantages of Method 1:

1. Easy to initialize the Modelica grid models, where manual input of values is avoided.
(Everytime, the generator dispatch values are changed or the load consumption is
changed, it becomes easier to load the powerflow values using this method.)

2. Mapping is based on “names” of the elements (eg: Gen_001), which increases
readability of the code.

Rules for using Method 1:

1. It requires 2 similar grid models in both the software environments (even the names
of the elements should be same), which means a Modelica based grid model has to be
created already.
If a transmission line is removed in the another tool, the same line should be removed
in Modelica model as well. This method works only if the physical grid models in both
the tools are the same.

2. The Python script handles both the .mo file and the CGMES files at once (Could be
time consuming for large system and may consume more system memory).

3. Only converged power flow values are to be used. In this thesis, the CGMES-CIM files
are obtained through PowerFactory and for all the methods provided in this thesis, the
powerflow is assumed to be converged.

With this method, the objective of this thesis project is accomplished. However, this thesis
goes a step ahead to achieve Model to model transformation, which provides complete
automation and overcomes the short-comings of Method 1.

4-5-2 Method 2: Model to model transformation

The Model-to-Model transformation (M2M) [32] is a process of converting a target model from
a source model. There have been several attempts at converting CIM files to Modelica script
[18]. The work in [18] also describes Model to Model transformation for a IEEE 9-bus system.
However, the output Modelica model is in the form of equations (only text) as it doesn’t
take into account the Diagram Profile (DL profile). Similarly, there exists a Power Systems
on Modelica (PSM) tool [34] that automatically generates and simulates power systems in

Master of Science Thesis

48 CIM based initialization for dynamic simulation

Modelica. However, it is implemented for ENTSO-E CIM Profile 1 (the older version of
CGMES-CIM), which again outputs the Modelica model in the form of equations.

In this thesis, CGMES-CIM files are used for the conversion. In addition, the diagram profile
(DL profile) is also utilized to obtain the graphical representation, which was missing in the
previous other tools. Figure 4-11, depicts the process of obtaining Modelica script directly
from CGMES-CIM.

Figure 4-11: Model to Model transformation; CGMES-CIM to Modelica script conversion

In order to test the M2M method, a 9-bus system is considered, which uses all the
PowerFactory models developed in this thesis. The proposed CGMES-CIM reader can work
with any grid consisting of synchronous generators, loads, transmission lines, transformers
and buses. The results of this method and the validation results of the PowerFactory based
Modelica models are described in the following chapter.

Master of Science Thesis

Chapter 5

Result discussion

This chapter deals with the results obtained from model validation in Modelica with
PowerFactory as a reference tool. The test system considered is described first and the
components developed specifically for the test system is described one by one. Also, the
results obtained from the CGMES to Modelica converter is described in the end.

5-1 Considered test system

As described in the previous chapter, this thesis develops PowerFactory Based Modelica
models specifically for the considered test system as shown in Figure 5-1. The ’All-in-one’
test system consists of a local area connected to a strong grid (Thevenin Equivalent) by two
380 kV transmission lines. A motor load (rated 750 MVA, 15 kV) is connected at Bus 4
and supplied via a 380/15 ratio transformer. A local generator (rated 450 MVa, 20 kV) is
connected at Bus 2 to supply the loads through a 20/380 ratio transformer. Also, a Load Tap
Changer (LTC) is present at the Load.

Figure 5-1: Test system modelled in PowerFactory

Master of Science Thesis

50 Result discussion

Therefore, individual grid component models starting from the Synchronous machine is first
Modelled in Modelica and then validated against PowerFactory.

5-2 Model Validation

For the validation process, a simple 3 bus system with a load is considered. Since, the models
had to be testes from scratch, few existing components from the OpeniPSL like the PSAT
static load and PSAT based transmission lines (Lumped parameter type) were initially used.
The grid model followed for testing is as shown in Figure 5-2.

Figure 5-2: Grid model in PowerFactory

Figure 5-3: Grid model in Modelica

Validation tests are carried out using this simple system. Thus a single generator model was

Master of Science Thesis

5-2 Model Validation 51

validated first and then each control system was validated using the validated generator.
The perturbations introduced were events such as three phase to ground faults, load
variations (both increase and decrease in load) to analyse the transient behaviour. All of the
perturbations were modelled in the same way in Modelica as they are in PowerFactory.

During the validation process, the results are obtained both qualitatively and quantitatively.
The graphical observation only provides an insight of the validity of a model. A quantitative
assessment on the other hand, allows to measure the validity of a model response against its
reference. It gives a numerical value for better assessment.Root Mean Square Error (RMSE)
is used for quantitative assessment.

RMSE is given by equation 5-1. Where, n is the total number of discrete measurement
points.
x1, x2,. . . , xn are the discrete measurement points at time t1, t2,. . . ,tn for Modelica and
y1, y2,. . . ,yn are the discrete measurement points at time t1, t2,. . . ,tn for PowerFactory.

RMSE =

√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 ++ (xn − yn)2

n2
(5-1)

All the simulation graphs contain the RMSE on the bottom right corner.

5-2-1 Simulation set-up

Power flow computations were performed in PowerFactory and the same power flow solution
was used in OpenModelica to initialize the Modelica grid model. The simulation set up
is given in Table 5-1. However, the actual solvers used in PowerFactory were not known
and a solver that gives the closest response was chosen in OpenModelica to carry out the
simulations.

Table 5-1: Simulation set-up in OpenModelica

Value
Start time 0
Stop time 10
Interval step 0.001
Integration method Radau5
Tolerance 1e-6
Non-linear solver Hybrid

5-2-2 Synchronous Generator

The equations and parameters used for the generator are given in the Appendix A-1. Few
results are shown here and the remaining can be found in the Appendix B-2. The
perturbations are:
Load increase by 100% between 2-3sec
3phase short circuit at bus 2 between 4-5sec
Load decrease by 200% between 7-9sec.

Master of Science Thesis

52 Result discussion

Figure 5-4: Terminal voltage and speed variation in an Uncontrolled generator

5-2-3 Excitation system

Simplified IEEE ST1A excitation model is used in this thesis. The parameter values and
other results are discussed in the Appendix. Figure 5-5 shows that the voltage is brought
back to the nominal value with the exciter. Figure 3-18 shows the graphs from Modelica and
PowerFactory.

Figure 5-5: Comparison of terminal voltage with and without excitation system

A test system was created in PowerFactory as shown in Figure 5-6 to test for different
perturbations:

1. Active and Reactive load increased by 100% at Bus2, starting from 2s to 3s.

2. Line 1 is opened at 4s and closed at 5sec.

3. Active and Reactive load decreased by 200% at Bus4, starting from 6s to 7s.

Master of Science Thesis

5-2 Model Validation 53

Figure 5-6: Test system used to validate excitation system

Figure 5-7: Terminal voltage and electrical torque obtained from exciter validation

The parameter values of the exciter as same as shown in Appendix A-5. The line parameter
values are shown in Table B-2. The generator parameter values are shown in Table B-1. The
remaining results of exciter validation are shown in Appendix B-3.

Master of Science Thesis

54 Result discussion

5-2-4 Governor system

Governor system was also modelled for the test system. Similar grid system as that of exciter
was taken for analysis (see Figure. 5-8). Figure. 5-9 shows the effect of the governor system.
(Note: The governor in this example is not tuned as it is beyond the scope of this thesis.)

Figure 5-8: Test system for governor validation

The impact of the governor system described in the Chapter 3 is initially checked. Figure.5-10
shows the responses on speed and electrical torque after a load variation of 100% between
5-7sec. The values of the governor used are tabulated in the Appendix A-5.

Figure 5-9: Comparison of speed responses with and without the Governor system

Master of Science Thesis

5-2 Model Validation 55

Figure.5-10 shows the responses on speed and voltage at Load B after the application of the
described perturbations. The remaining results are shown in Appendix A-4.

(a) Speed (b) Mechanical torque

Figure 5-10: Comparison of Modelica and PowerFactory responses with the governor system

5-2-5 Load

100% non-linear load is used in this thesis. A non-linear PowerFactory based load model is
modelled in Modelica. However, for the initial model validation in this thesis, a static load
was used from the PSAT sub-library. Figure. 5-11 shows the difference in response of the
PowerFactory based dynamic load model with the PSAT load model. The grid model shown
in Figure 5-2 is used and same perturbations are applied. Care must be taken to choose an
appropriate load model to avoid error in the simulations.

Figure 5-11: Difference in static and dynamic load responses

Master of Science Thesis

56 Result discussion

5-2-6 Transformer

Transformer was modelled by using the PSAT transformer model from the OpeniPSL, to
obtain the same response as PowerFactory. In the test system shown in Figure 5-12 is
replicated in OpenModelica as shown in Figure 5-13.

Figure 5-12: Test system for transformer validation in PowerFactory

The load is increased by 100% between 3-5 sec and the responses of the primary and secondary
voltages of the transformer is shown in Figure. 5-14.

Figure 5-13: Test system for transformer validation in OpenModelica

]

(a) Primary voltage (b) Secondary voltage

Figure 5-14: Comparison of Modelica and PowerFactory responses for transformer validation

Master of Science Thesis

5-2 Model Validation 57

Note: The transformer model used in this thesis is a modified form of
TwoWindingTransformer from the PSAT library. Significant error is seen when this model is
used in the simulation. Figure 5-14 shows the error during and after the disturbance.

5-2-7 Transformer tap changers

PowerFactory based tap changers based on asymmetrical type described in the section 3-2-9
is modelled and validated for the transformer test system shown in Figure 5-13. Table 5-2
shows the the values of tap positions for which the model was validated.
The fixed ratio tap changer works based on the equation in 3-25. where, phitr = 0,
dutap=0.01 ∗ n and n is the number taps moved from the neutral position. For example, if
the tap position is set to 93 and the neutral 95, then the secondary voltage decreases by
2 ∗ 0.01V , to give 1.0047V at the secondary side.
The results of transformer tap position at 93 is shown in Figure 5-15, when a load is increased
by 100% between 3-5 sec. The tap changer is added to the existing modified PSAT transformer
used in Figure 5-13. Therefore, significant eror can be seen in the simulation responses of the
models that include tap changers.

Table 5-2: Results when tap changer is added at the HV side of the transformer (steady-state
values)

Tap changer at HV side Value Transformer primary Transformer Secondary
Minimum tap position 90 - -
Maximum tap position 100 - -
Neutral tap position 95 - -
Actual tap position 1 90 1.0247 0.972507
Actual tap position 2 95 1.0247 1.0237
Actual tap position 3 93 1.0247 1.0032
Actual tap position 4 100 1.0247 1.0751

(a) Generator terminal voltage (b) Voltage at the load

Figure 5-15: Voltages when the tap changer position is at 93

Master of Science Thesis

58 Result discussion

5-2-8 Complete model

Figure 5-16: Complete model of the modified BPA system in Modelica

Due to various reasons like the time constraint for this thesis, unclear documentations,
different algorithms and solvers, few component models are incomplete and not utilized in
the test system. However, the test system works without these component models. The list
of working models are given in Table 5-3. Therefore, the OLTC and the induction machine
are inactive in the test system.

Table 5-3: My caption

Componenet Status
Synchronous generator (round rotor) model-2.2 Working
Non-linear dynamic load Working
Transformer(normal) Working
Transformer(with taps) Working
Off-load tap changer Working
Exciter: mod ST1A Working
Governor Working
OLTC Incomplete
Induction Machine (3rd order) Incomplete
Infinite Bus Incomplete

Master of Science Thesis

5-3 CGMES-CIM based Initialization in Modelica 59

Table 5-4: Comparison of steady state voltage values

Steady state voltage values at the buses
BUS PowerFactory Modelica
Bus1 1.06 1.06
Bus2 1.04 1.03629
Bus3 1.0678 1.06783
Bus4 1.006987 1.007
Bus5 1.067063 1.06708

The parameter values of the test system is given in Appendix B-5. The steady comparison of
Modelica based model and that of PowerFactory is given in Table 5-4.

The infinite bus used in the validation process belongs to the PSAT library of OpeniPSL. The
exact dynamics of the infinite bus are missing in the test carried out in this thesis. Figure
5-17 shows that missing dynamics in the Modelica based grid model.

(a) Voltage at Bus1 (b) Voltage at Bus3

Figure 5-17: Voltages at the buses when load is increased by 100% between 5-7sec

5-3 CGMES-CIM based Initialization in Modelica

In order to automatize the process of initialization in Modelica based models, the CGMES-
CIM based initialization is carried out. Due to practical constraints, CGMES-CIM files are
obtained from PowerFactory. The workflow is described in the Figure 5-18.

Master of Science Thesis

60 Result discussion

Figure 5-18: Process used in the thesis for CGMES-CIM based initialization of Modelica models

Different scenarios were created in PowerFactory for the considered BPA test system. The
developed Python based CGMES-CIM reader gets all the powerflow values from CGMES-
CIM to initialize the Modelica based grid models. This Python based interface, matches the
names of the generators and loads and replaces the dummy initial values (Modelica models
by default will have some random initial values as shown in Figure 5-19.) with the ones from
the CGMES-CIM. The change is similar to the one shown in Figure 5-20.

Figure 5-19: Dialog box of a Modelica based generator showing dummy initial values

Figure 5-20: Part of modelica script that undergoes changes

Master of Science Thesis

5-3 CGMES-CIM based Initialization in Modelica 61

Therefore, different scenarios are created and the respective CGMES-CIM files are used to
obtain different responses based on different initialization values in OpenModelica
automatically.

1. Scenario 1: The test system (Figure 5-16) is used with all the original values.

2. Scenario 1: The load is decreased by 50%.

3. Scenario 1: The active power dispatch of the generator is reduced by 50%.

Figure 5-21: Generator output obtained from the Python based CGMES reader

Listing 5.1: Results obtained from the CGMES-CIM reader for Scenario 1
*** The new powerflow values are: ***
Total_Gen_PF list reads [Generator name , Active power , Reactive power ,

Voltage , Angle]:
[(’Gen_001 ’, ’449.999 ’, ’148.619 ’, ’1.04 ’, ’14.8888 ’)]
SlackGenData list gives the Corresponding base voltage [Generator name ,

Base voltage , nominal voltage , powerfactor]:
(’Gen_001 ’, ’450. ’, ’20. ’, ’1.’)
Total_Infinitebus_details gives [Infinite_bus_name , Active power , Reactive

power , voltage , angle , base voltage in kV]:
[(’Inf_bus ’, ’350 ’, ’15’, ’1.06 ’, ’0’, ’380. ’)]
Total_Load_details gives [Load name , Active power , Reactive power , voltage ,

angle , base voltage , xaxis , yaxis]:
[(’Load ’, ’100.0 ’, ’20.0 ’, ’1.0670631578947367 ’, ’4.70029 ’, ’380. ’, ’161.875

’, ’118.125 ’)]

As described in the section 4-4, the powerflow values are defined inside the SV profile. The SV
profile for scenario-1 is shown in Figure 5-22. The CGMES-CIM reader maps the powerflow
values directly to the modelica script with the help of element names. The CGMES-CIM
reader output for scenario-1 is shown in Listing 5.1. The response of the voltages at Bus3 for
different initilization values is shown in Figure 5-23.

Master of Science Thesis

62 Result discussion

Figure 5-22: SV profile of the the test system for scenario 1

Master of Science Thesis

5-4 CGMES-CIM to Modelica converter 63

Figure 5-23: Voltage magnitude at Bus3 for different scenarios

5-4 CGMES-CIM to Modelica converter

The test system considered is inspired by the IEEE 9-bus system. The 9-bus system used in
this thesis consists of three generators, six transmission lines, three loads and three
transformers. Generator Gen1 has a modified ST1A exciter. The complete data of the test
system is provided in the Appendix C-2.

Powerflow values of the test system are shown in Table 5-5:

Table 5-5: Powerflow values of the 9-bus test system

Powerflow values of the test system
Element Active power Reactive power Voltage magnitude Voltage angle in deg.
Gen1 10.0019 -42.8841 1.04 0
Gen2 20 20 1.04416 0.0450432
Gen3 20 20 1.04465 0.0727758
LoadA 10 10 1.0425695 -0.0369459
LoadB 10 10 1.04263043 -0.0318971
LoadC 10 10 1.04278260 -0.0314053
Bus4 - - 1.042474 -0.031714
Bus5 - - 1.042571 -0.036946
Bus6 - - 1.042626 -0.031897
Bus7 - - 1.042783 -0.030731
Bus8 - - 1.042784 -0.031405
Bus9 - - 1.042812 -0.028207

Master of Science Thesis

64 Result discussion

A similar approach is followed as shown in Figure 5-18 to obtain the CGMES-CIM files.
The Python based CGMES-CIM to Modelica converter converts the CGMES-CIM profiles
directly into Modelica file. The test system in PowerFactory is shown in Figure 5-24. The
grid parameters are shown in Appendix.

Figure 5-24: The test system modelled in PowerFactory

The proposed CGMES-CIM to Modelica converter uses SV, TP, EQ, DL and DY profiles.
The information regarding the element coordinates are obtained from the DL profile. After
placing the elements in their respective co-ordintes, the details regarding their connections
with other elements in the grid is obtained from the TP profile. However, the elements are
approximately (scaling is done to accommodate the grid model within the boundaries
allowed in OpenModelica.) placed according to the original PowerFactory model.

The converter successfully converts the CGMES-CIM into Modelica file (.mo) with exact
names and parameter values as in the original PowerFactory model (Figure 5-24). The
Modelica script in OpenModelica is as shown in Figure 5-27. The corresponding generated
Modelica script is shown in Appendix C-2.

Note-1 : The proposed converter works well with transformers, transmission lines,
generators, loads and buses. It can be further extended to work with other elements in the
grid.

Master of Science Thesis

5-4 CGMES-CIM to Modelica converter 65

Note-2 : The perturbations were added within the converter script. Also, PowerFactory
allows CGMES export of standard IEEE models only, therefore even the modified ST1A
exciter was added within the converter script and not from the CGMES-CIM files. However,
the user can also opt to add the perturbations manually after loading the .mo script in
OpenModelica.

The process used in this thesis for obtaining the converted script is as shown in Figure 5-25.

1. The grid model is developed in PowerFactory and powerflow is carried out (SV profile
is obtained only if powerflow is carried out). Also, make sure that the poweflow is
converged and limits of the power system elements are not violated.

2. Using the ’CGMES Tools’ option, first the grid information needs to be converted to
CIM. Later on, it is exported clicking ’CIM Data Export’ option.

3. These exported CGMES-CIM files are accessed by the developed Python based converter
and internal dictionaries/lists are generated that stores the information of the grid that
is later used to make the Modelica script (.mo) file.

4. The generated .mo file from the converter is loaded into OpenModelica and dynamic
simulations are carried out.

Figure 5-25: Process followed in this thesis to obtain the Modelica model directly from
CGMES-CIM

The Dynamic parameters of the generators are obtained from DY profile. Figure 5-26 shows
the DY profile with the generator (Gen1) parameters. Similar values are obtained for other
generators in the system.

Master of Science Thesis

66 Result discussion

Figure 5-26: Dynamic profile showing the generator parameters required for dynamic
simulations

Figure 5-27: Automatically generated test system in OpenModelica using the proposed
converter

Master of Science Thesis

5-4 CGMES-CIM to Modelica converter 67

The responses of the Modelica based test system was compared with the responses of the
same test system in PowerFactory. A perturbation of load variation at LoadC was applied
between 5-7 s. The responses of voltage at Bus1 is shown in Figure 5-28.

Figure 5-28: Volatge at Bus1 for a load increase of 100% at LoadC between 5-7 sec.

Figure 5-29: Voltages at all the buses when a perturbation is applied

Master of Science Thesis

68 Result discussion

Therefore, if the grid model consists only generators, lines, loads, buses and transformers,
then the user can directly convert the CGMES-CIM files into Modelica (.mo file) with a click
of a button and perform dynamic simulations in the Modelica environment using the proposed
converter.

Master of Science Thesis

Chapter 6

Conclusions and future scope

This chapter aims to briefly describe the findings obtained during this thesis project and the
future scope of the CGMES-CIM to Modelica Converter.

6-1 Conclusion

PowerFactory based Modelica models were successfully developed and validated for a test
case of modified BPA system. The validation results show a high degree of similarity between
dynamic performance of Modelica model and that of the reference PowerFactory model.

The literature survey helped understand the importance of a common language that supports
interoperability between power system tools with respect to dynamic simulations. Chapter
one gives the introduction about the background of this thesis project and the motivation to
use Modelica with the CGMES-CIM for dynamic simulations. Within the same chapter, it
was concluded that the current CGMES does not fully support interoperability, with respect
to dynamic simulations. Modelica based simulations are going to be crucial in the near future
for dynamic model exchanges if implemented through the latest version of CGMES (v2.5).

With this as a backdrop, Chapter 2 was dedicated for describing the Modelica language and
OpenIPSL. Extending the PowerFactory based models within OpenIPSL was one of the sub-
goals of this thesis project. Therefore, Chapter 3 describes the modelling philosophy used
by PowerFactory. All the necessary equations and parameter descriptions of the required
component models are shown in Chapter 3 and used for model development in OpenModelica.
Another sub-goal of this thesis is using the CGMES-CIM for initialization of Modelica grid
models, Chapter 4 was dedicated to describe the CGMES-CIM in detail.

Finally, each component model (Generator, load, exciter etc) was validated using test
system that was identical to that of PowerFactory. Modelica based dynamic simulations
were carried out and compared with reference results (signal records obtained through time
domain simulations) from PowerFactory to validate each component model. With individual
models validated, the test system considered in this thesis (Modified BPA system) was

Master of Science Thesis

70 Conclusions and future scope

validated. The results of this test system did not contain the dynamics offered by the
infinite bus, as the infinite bus from PSAT package is utilized in this thesis.

This thesis also proposes a new method for initialization of Modelica models using
CGMES-CIM files (Method-1). This method is an efficient substitution for manual input of
powerflow values and helps to minimize the human-error caused during input of powerflow
values into the Modelica model. Furthermore, the shortcomings and the rules for using this
method is mentioned in Chapter 4. This thesis further uses CGMES-CIM to obtain Model
to Model transformation or direct conversion of CGMES-CIM to Modelica file (Method-2).
The Method-2 was shown to be better than Method-1 and is well described in Chapter 5.
Example of 9 bus system was chosen to test this proof of concept. The proposed
CGMES-CIM converter worked successfully for a grid model with generators, loads, buses,
transformers and transmission lines.

Therefore, this thesis successfully provides a proof of concept for an open-source converter
that directly converts the CGMES based CIM to Modelica script file with just a click of a
button. All the data concerning the validation tests are documented in the appendix section
of this report. The procedure for validating a model is explained wherever possible and would
be easy to follow up on the work if there is any need to carry out more tests.

6-2 Future scope and recommendations

Further development of PowerFactory based models:

• Either due to the scope of the thesis or due to the time constraint for the thesis, not all
the electrical models required for the analysis of modified BPA test system are complete.
Furthermore, Modelica models can be developed based on PowerFactory for all kinds
of standard test systems like IEEE 9 bus, 14 bus or 39 bus systems. Alos, models for
power electronic interfaced devices and FACTs devices need to be developed.

• Once all the models are developed, project specifically targeting the study of Modified
BPA test system or the all-in-one system can be initiated. Small signal stability, long-
term voltage stability and frequency stability could be carried out on the test system.

• The solver used in this thesis for Modelica simulation is not the actual solver that
PowerFactory uses. Further studies/ analysis can be done with respect to the solvers.

• Investigate the use of Rapid Parameter Identification toolbox (RaPId), developed
within the EU FP7 iTesla project. The toolbox does parameter identification on
models developed using the Modelica language, focusing in particular on power system
model identification needs.

Further development of CGMES-CIM to Modelica converter:

This thesis emphasized on achieving a proof of concept with CGMES based initialization of
Modelica models. The CGMES-CIM converter proposed in this thesis worked successfully
for a grid model with generators, loads, buses, transformers and transmission lines.

Master of Science Thesis

6-2 Future scope and recommendations 71

• Further improvements can be made to the converter by adding routines to read other
electrical elements from CGMES-CIM like the shunts, tap changers, governors, PSS,
exciters etc. The converter could be developed to an extend, where no specialized
knowledge is required from the user.

• Geographic location (GL) profile can also be utilized based on the logic used in the
converter for real grid models. This way the user can also find the geographic
information of the element in the grid.

• The Python based converter can be further developed to accommodate any model from
the OpenIPSL based on the origin of CGMES-CIM files. (eg: if the CGMES-CIM is
from PSSE, then all the required models are chosen from the available PSSE package
in OpenIPSL). This way the converter works with CGMES-CIM from any source and
generates a Modelica model that is source specific. This plays a crucial role in the
co-ordination among energy players.

Few precautions to take while working with Modelica based simulations; check if the model
has been initialized properly. Always verify the initialization values and then only proceed
to dynamic simulations. Check if the faults/events in both systems (OpenModelica and
PowerFactory) are the same. Verify the model equations and parameter values.

Master of Science Thesis

72 Conclusions and future scope

Master of Science Thesis

Bibliography

[1] L. Vanfretti, T. Rabuzin, M. Baudette, and M. Murad, “itesla power systems library
(ipsl): A modelica library for phasor time-domain simulations,” SoftwareX, vol. 5, pp. 84–
88, 2016.

[2] C. European, “A policy framework for climate and energy in the period from 2020 to
2030,” tech. rep., 2014.

[3] F. Gonzalez-Longatt and J. L. Rueda, PowerFactory applications for power system
analysis. Springer, 2014.

[4] P. Aristidou, F. Plumier, T. Van Cutsem, and C. Geuzaine, “Power system simulation
challenges,” 2013.

[5] P. Kundur, N. J. Balu, and M. G. Lauby, Power system stability and control, vol. 7.
McGraw-hill New York, 1994.

[6] L. Qi, Modelica Driven Power System Modeling, Simulation and Validation. PhD thesis,
Master’s thesis, Royal Institute of Technology (KTH), 2014.

[7] J. Britton, P. Brown, J. Moseley, and M. Bunda, “Optimizing operations with cim:
Today’s grid relies on network analysis (and a lot of data),” IEEE Power and Energy
Magazine, vol. 14, no. 1, pp. 48–57, 2016.

[8] ENTSO-E, “Common Grid Model Exchange Standard, Version 2.4,” Tech. Rep. August,
2014.

[9] “ENTSO-E common grid model exchange standards.” https://
www.entsoe.eu/major-projects/common-information-model-cim/
cim-for-grid-models-exchange/standards/Pages/default.aspx. Accessed: 2016.

[10] “CGMES Annex F common grid model exchange standards v2.5.” https://www.
entsoe.eu/Documents/CIM_documents/IOP/CGMES_2_5_TechnicalSpecification_
61970-600_Part%201_Ed2.pdf. Accessed: 2016.

Master of Science Thesis

https://www.entsoe.eu/major-projects/common-information-model-cim/cim-for-grid-models-exchange/standards/Pages/default.aspx
https://www.entsoe.eu/major-projects/common-information-model-cim/cim-for-grid-models-exchange/standards/Pages/default.aspx
https://www.entsoe.eu/major-projects/common-information-model-cim/cim-for-grid-models-exchange/standards/Pages/default.aspx
https://www.entsoe.eu/Documents/CIM_documents/IOP/CGMES_2_5_TechnicalSpecification_61970-600_Part%201_Ed2.pdf
https://www.entsoe.eu/Documents/CIM_documents/IOP/CGMES_2_5_TechnicalSpecification_61970-600_Part%201_Ed2.pdf
https://www.entsoe.eu/Documents/CIM_documents/IOP/CGMES_2_5_TechnicalSpecification_61970-600_Part%201_Ed2.pdf

74 Bibliography

[11] G. León, M. Halat, M. Sabaté, J.-B. Heyberger, F. J. Gómez, and L. Vanfretti, “Aspects
of power system modeling, initialization and simulation using the modelica language,”
in PowerTech, 2015 IEEE Eindhoven, pp. 1–6, IEEE, 2015.

[12] F. J. Gómez, L. Vanfretti, and S. H. Olsen, “Binding cim and modelica for consistent
power system dynamic model exchange and simulation,” in Power & Energy Society
General Meeting, 2015 IEEE, pp. 1–5, IEEE, 2015.

[13] L. Vanfretti, T. Bogodorova, and M. Baudette, “A modelica power system component
library for model validation and parameter identification,” in Proceedings of the 10 th
International Modelica Conference; March 10-12; 2014; Lund; Sweden, no. 096, pp. 1195–
1203, Linköping University Electronic Press, 2014.

[14] T. Øyvang, D. Winkler, B. Lie, and G. J. Hegglid, “Power system stability using
modelica,” 2014.

[15] M. Zhang, M. Baudette, J. Lavenius, S. Løvlund, and L. Vanfretti, “Modelica
implementation and software-to-software validation of power system component models
commonly used by nordic tsos for dynamic simulations,” in Proceedings of the 56th
Conference on Simulation and Modelling (SIMS 56), October, 7-9, 2015, Linköping
University, Sweden, no. 119, pp. 105–112, Linköping University Electronic Press, 2015.

[16] R. Leelaruji and L. Vanfretti, “" all-in-one" test system modelling and simulation for
multiple instability scenarios,” 2011.

[17] C. T. Force, “38-02-10, modeling of voltage collapse including,” Dynamic Phenomena,
CIGRE Brochure, no. 75, 1993.

[18] OpenCPS, “CIM/UML and Modelica Electrical Power System Models and Tooling for
MST Testing and Demonstration.”.

[19] E. Widl, P. Palensky, P. Siano, and C. Rehtanz, “Guest editorial modeling, simulation,
and application of cyber-physical energy systems,” IEEE Transactions on Industrial
Informatics, vol. 10, no. 4, pp. 2244–2246, 2014.

[20] “Modelica org. modelica and the modelica association.” https://www.modelica.org/.
Accessed: 2017.

[21] D. Zimmer, “Towards improved class parameterization and class generation in modelica,”
in 3rd International Workshop on Equation-Based Object-Oriented Modeling Languages
and Tools; Oslo; Norway; October 3, no. 047, pp. 33–42, Linköping University Electronic
Press, 2010.

[22] L. Vanfretti, W. Li, T. Bogodorova, and P. Panciatici, “Unambiguous power system
dynamic modeling and simulation using modelica tools,” in Power and Energy Society
General Meeting (PES), 2013 IEEE, pp. 1–5, IEEE, 2013.

[23] “openModelica open-source modelica-based modeling and simulation environment.”
https://www.openmodelica.org/. Accessed: 2017.

[24] M. ZHANG, “Mango classes-modelica classes of the norvegian grid for itesla and sw-to-sw
validation,” 2014.

Master of Science Thesis

https://www.modelica.org/
https://www.openmodelica.org/

75

[25] B. Karlsson, “Comparison of psse & powerfactory,” 2013.

[26] D. PowerFactory, “Digsilent powerfactory 16 user manual,” 2016.

[27] R. Leelaruji and L. Vanfretti, “" all-in-one" test system modelling and simulation for
multiple instability scenarios,” 2011.

[28] D. PowerFactory, “Digsilent powerfactory 16 technical reference documentation,
synchronous machine,” 2016.

[29] D. PowerFactory, “Digsilent powerfactory 16 technical reference documentation, general
load,” 2016.

[30] D. PowerFactory, “Digsilent powerfactory 16 technical reference documentation, two
winding transformer (3phase),” 2016.

[31] D. PowerFactory, “Digsilent powerfactory 16 technical reference documentation,
asynchronous machines,” 2016.

[32] C. Ivanov, T. Saxton, J. Waight, M. Monti, and G. Robinson, “Prescription for
interoperability: Power system challenges and requirements for interoperable solutions,”
IEEE Power and Energy Magazine, vol. 14, no. 1, pp. 30–39, 2016.

[33] “Common information model primer: Third edition.” https://www.epri.com/.
Accessed: 2016.

[34] R. V. S. M. L. María, Z. G. L. F. Beaude, S. Petitrenaud, and J.-B. Heyberger, “A tool
to ease modelica-based dynamic power system simulations,”

Master of Science Thesis

https://www.epri.com/

76 Bibliography

Master of Science Thesis

Appendix A

Implementing the PowerFactory based models in Modelica is a challenging task. The following
shows the steps to achieve a successful implementation:

• Try to understand the conceptual background of each individual model. Read the
PowerFactory manual/documentation of the model.

• Identify the state equations and other main equations that define the dynamic behaviour
of the model. Figure out the initialization equations.

• Develop a model in Modelica based on the information gathered (usually, a test system
needs to be constructed in both simulation platforms to test a new developed model).

• Perform a software-to-software validation of the Modelica model against the
PowerFactory model (comparison of the behavior by using the same test system in
both Modelica and PowerFactory).

A-1 Synchronous generator

Table A-1: Input Definition of the RMS-Model

Input Signal Symbol Description
ve ve Excitation voltage
pt Turbine power

Table A-2: State Variables

Parameter Symbol Description
psifd ψfd Excitation flux
psi1d ψ1d Flux in 1d-damper winding, d-axis
psi1q ψiq Fluxin 1q-damper winding, q-axis
psi2q ψ2q Flux in 2q-damper winding, q-axis
speed n Speed
phi φ Rotor position angle

Master of Science Thesis

78

Table A-3: Output Definition

Parameter Symbol Description
ut |ut| Terminal Voltage, Magnitude
utr TerminalVoltage, Real Part
uti Terminal Voltage, Imaginary Part
pgt Electrical Power (based on rated active power)
ie ie Excitation Current (in non-reciprocal p.u. system)
xspeed Speed (xspeed = speed)
xme te Electrical Torque
xmt tm Mechanical Torque
P1 Positive-Sequence, Active Power
Q1 Positive-Sequence, Reactive Power

A-1-1 Parameters and equations

Figure A-1: The parameters of round rotor 2.2 generator in PowerFactory

A-1-2 Generator code

Listing A.1: Modelica code of the Base Machine and synchronous generator 2.2
partial model BM " Developed during a master thesis project at TU Delft"
import Modelica.Constants.pi ;
import Complex ;
import Modelica.ComplexMath.arg ;
import Modelica.ComplexMath.real ;
import Modelica.ComplexMath.imag ;
import Modelica.ComplexMath. ’abs ’;
import Modelica.ComplexMath.conj ;
import Modelica.ComplexMath.fromPolar ;
import Modelica.ComplexMath.j ;
import Modelica.Blocks.Interfaces. *;
extends OpenIPSL.Electrical.Essentials.pfComponent ;
// Machine parameters
parameter Real M_b = 100 " Nominal Power rating (MVA)" annotation (

Master of Science Thesis

A-1 Synchronous generator 79

Dialog (group = " Machine parameters "));
parameter Real ugn = 20 " Nominal Voltage rating (kV)" annotation (
Dialog (group = " Machine parameters "));
parameter Real cosn = 0.8 "power factor (pu)" annotation (
Dialog (group = " Machine parameters "));
parameter Real xd = 2.1 " d-axis transient reactance (pu)" annotation (
Dialog (group = " Machine parameters "));
parameter Real xq = 2.1 " q-axis transient reactance (pu)" annotation (
Dialog (group = " Machine parameters "));
parameter Real h = 3.5 " Inertia time constant rated to apparent power"

annotation (
Dialog (group = " Machine parameters "));
parameter Real pgini = 80 " Nominal Active power in MW" annotation (
Dialog (group = " Machine parameters "));
parameter Real qgini = 15 " Nominal Reactive power in Mvar" annotation (
Dialog (group = " Machine parameters "));
parameter Real usetp = 1 " Voltage rating of the machine in (pu)" annotation (
Dialog (group = " Machine parameters "));
parameter Real phiini = 0 " machine angle in degrees " annotation (
Dialog (group = " Machine parameters "));
parameter Real rstr = 0.031;
parameter Real xl = 0.2;
parameter Real xrl = 0.0;
parameter Real td01 = 9.1 "tds0";
parameter Real tq01 = 2.3 "tqs0";
parameter Real td011 = 0.03 "tdss0";
parameter Real tq011 = 0.2 "tqss0";
parameter Real xd1 = 0.3;
parameter Real xq1 = 0.73;
parameter Real xd11 = 0.25;
parameter Real xq11 = 0.256;
// Initialization of pins
OpenIPSL.Connectors.PwPin p(vr(start = vr0), vi(start = vi0), ir(start = ir0

), ii(start = ii0)) annotation (
Placement (transformation (extent = {{100, -10}, {120, 10}}),

iconTransformation (extent = {{100, -10}, {120, 10}})));
// Output phi
RealOutput phi(start = phi0) "Rotor position angle (rad)" annotation (
Placement (transformation (extent = {{100, 60}, {120, 80}}),

iconTransformation (extent = {{100, 82}, {116, 98}})));
// Input and initial ve;
RealInput ve " Excitation voltage (pu)" annotation (
Placement (transformation (extent = {{-114, 40}, {-94, 60}}),

iconTransformation (extent = {{-108, 40}, {-88, 60}})));
// Output ie;
RealOutput ie " Machine excitation current " annotation (
Placement (transformation (extent = {{100, -40}, {120, -20}}) ,

iconTransformation (extent = {{100, 42}, {116, 58}})));
// Input turbine power(pt)
RealInput pt " Generator turbine power (pu)" annotation (
Placement (transformation (extent = {{-114, -62}, {-94, -42}}) ,

iconTransformation (extent = {{-108, -60}, {-88, -40}})));
Modelica.Blocks.Interfaces.RealOutput pt0 " Initial generator turbine power (

pu)" annotation (
Placement (visible = true, transformation (extent = {{100, -60}, {120, -40}},

rotation = 0), iconTransformation (extent = {{-42, -104}, {-26, -88}},
rotation = 0)));

// OutofStep indicator
RealOutput OutOfStep " outofStep indicator " annotation (

Master of Science Thesis

80

Placement (transformation (extent = {{100, 20}, {120, 40}}),
iconTransformation (extent = {{100, -58}, {116, -42}})));

// Output torques
RealOutput te " electrical torque (pu)" annotation (
Placement (transformation (extent = {{100, -80}, {120, -60}}) ,

iconTransformation (extent = {{100, 62}, {116, 78}})));
RealOutput tm " Machine mechanical torque (pu)" annotation (
Placement (transformation (extent = {{100, 78}, {120, 98}}),

iconTransformation (extent = {{100, 22}, {116, 38}})));
// Output initial terminal voltage
RealOutput ut0 " Machine mechanical torque (pu)" annotation (
Placement (transformation (extent = {{110, 78}, {130, 98}}),

iconTransformation (extent = {{110, 22}, {136, 38}})));
// Output speed
RealOutput n(start = n0) " Machine field current (pu)" annotation (
Placement (transformation (extent = {{-10, -10}, {10, 10}}, rotation = 0,

origin = {110, -90}), iconTransformation (extent = {{-8, -8}, {8, 8}},
rotation = 0, origin = {108, -90})));

// Output Voltages and currents
Modelica.Blocks.Interfaces.RealOutput Vt(start = V_0) "Bus voltage magnitude

(pu)" annotation (
Placement (visible = true, transformation (extent = {{120, 50}, {120, 50}},

rotation = 0), iconTransformation (extent = {{10, -54}, {26, -38}},
rotation = 0)));

Real anglev (start = anglev_rad) "Bus voltage angle (deg.)";
RealOutput I(start = sqrt(ir0 ^ 2 + ii0 ^ 2)) " Terminal current magnitude (

pu)" annotation (
Placement (transformation (extent = {{80, 20}, {90, 40}}), iconTransformation (

extent = {{90, -118}, {106, -132}})));
Real anglei (start = atan2(ii0, ir0)) " Terminal current angle (deg.)";
RealOutput utr "Real part of Terminal voltage " annotation (
Placement (transformation (extent = {{80, 20}, {100, 40}}), iconTransformation

(extent = {{-80, -118}, {-96, -128}})));
RealOutput uti " Imaginary part of terminal voltage " annotation (
Placement (transformation (extent = {{80, 50}, {100, 70}}), iconTransformation

(extent = {{-80, -98}, {-90, -112}})));
RealOutput cur1r "Real part of current " annotation (
Placement (transformation (extent = {{80, -60}, {100, -80}}) ,

iconTransformation (extent = {{-100, 118}, {-120, 132}})));
RealOutput cur1i " imaginary part of current " annotation (
Placement (transformation (extent = {{80, -20}, {100, -40}}) ,

iconTransformation (extent = {{-100, 128}, {-120, 142}})));
// Output powers in pu : NOTE: convert to MW/MVAr for further use!
RealOutput P(start = P_0 / S_b) " Active power (p.u. on S_b)";
RealOutput Q(start = Q_0 / S_b) " Reactive power (p.u. on S_b)";
// protected
Real id " d-axis armature current (pu)";
Real iq " q-axis armature current (pu)";
Real ud " d-axis terminal voltage (pu)";
Real uq " q-axis terminal voltage (pu)";
// protected
parameter Real w_b = 2 * pi * fn " System base speed (rad/s)";
parameter Real anglev_rad = angle_0 * pi / 180 " initial value of bus voltage

angle in rad";
parameter Real CoB = M_b / S_b;
parameter Real vr0 = V_0 * cos(anglev_rad) "Real component of initial

terminal voltage ";
parameter Real vi0 = V_0 * sin(anglev_rad) " Imaginary component of intitial

terminal voltage ";

Master of Science Thesis

A-1 Synchronous generator 81

parameter Real p0 = P_0 / M_b " initial active power generation in pu
machinebase ";

parameter Real q0 = Q_0 / M_b " initial reactive power generation in pu
machinebase ";

parameter Complex VT = V_0 * cos(anglev_rad) + j * V_0 * sin(anglev_rad) "
Complex terminal voltage ";

parameter Real angleVolt = arg(VT);
parameter Real magVolt = sqrt ((V_0 * cos(anglev_rad)) ^ 2 + (V_0 * sin(

anglev_rad)) ^ 2);
parameter Complex S = p0 + j * q0 " Complex power on machine base";
parameter Complex It = real(S / VT) - j * imag(S / VT) " Terminal current ";
parameter Real ir0 = real(It);
parameter Real ii0 = imag(It);
parameter Real angleCurr = arg(It);
parameter Real magCurr = sqrt(real(It) ^ 2 + imag(It) ^ 2);
parameter Real angg = acos(p0 / (magVolt * magCurr)) " initial Power Factor

angle";
parameter Real Tan1 = xq * magCurr * cos(angg) - rstr * magCurr * sin(angg);
parameter Real Tan2 = 1 + rstr * magCurr * cos(angg) + xq * magCurr * sin(

angg)
// load angle
parameter Real TOTangle2 = atan(Tan1 / Tan2);
parameter Real phi0 = TOTangle2 - pi / 2 " initial state variable phi";
parameter Real n0 = 1 " initial speed";
parameter Real tag = 7 " acceleration time constant ";
Real fref;
equation
ut0 = V_0;
[p.ir; p.ii] = CoB * [sin(TOTangle2), cos(TOTangle2); -cos(TOTangle2), sin(

TOTangle2)] * [id; iq];
[p.vr; p.vi] = [sin(TOTangle2), cos(TOTangle2); -cos(TOTangle2), sin(

TOTangle2)] * [ud; uq];
P = ud * id + uq * iq;
Q = uq * id - ud * iq;
Vt = sqrt(p.vr ^ 2 + p.vi ^ 2) " Terminal Volatage ";
anglev = atan2(p.vi, p.vr);
utr = p.vr;
uti = p.vi;
I = sqrt(p.ii ^ 2 + p.ir ^ 2) " Terminal current ";
anglei = atan2(p.ii, p.ir);
cur1r = p.ir;
cur1i = p.ii;
OutOfStep = 0 "can ’t be detected,as this is the reference machine ";
der(n) = (tm - te) / tag;
fref = n "The voltage source is considered as reference ";
der(phi) = w_b * (n - fref) " Considered as slack machine,fref =n,der(phi)=0";
end BM;

model PowerFactory_6order " Developed during a master thesis project at TU
Delft and TenneT "

import Modelica.Constants.pi ;
import Complex ;
import Modelica.ComplexMath.arg ;
import Modelica.ComplexMath.real ;
import Modelica.ComplexMath.imag ;
import Modelica.ComplexMath. ’abs ’;
import Modelica.ComplexMath.conj ;
import Modelica.ComplexMath.fromPolar ;
import Modelica.ComplexMath.j ;
import Modelica.ComplexMath. ’sqrt ’;

Master of Science Thesis

82

import Modelica.Blocks.Interfaces. *;
Modelica.Blocks.Interfaces.RealOutput ve0(start = ve00) " Initial Excitation

voltage (pu)" annotation (
Placement (visible = true, transformation (extent = {{100, 40}, {120, 60}},

rotation = 0), iconTransformation (extent = {{-8, 90}, {8, 106}},
rotation = 0)));

extends OpenIPSL.TestFiles.BM (id(start = id0), iq(start = iq0), ud(start =
ud0), uq(start = uq0), te(start = te0), tm(start = tm0), ie(start = ie0)
, pt(start = pt00), ve(start = ve00));

// protected
parameter Real ud0 = magVolt * sin(TOTangle2) " q-axis component of intitial

current ";
parameter Real uq0 = magVolt * cos(TOTangle2) " d-axis component of intitial

current ";
parameter Real id0 = magCurr * sin(TOTangle2 + angg) " d-axis component of

intitial voltage ";
parameter Real iq0 = magCurr * cos(TOTangle2 + angg) " q-axis component of

intitial voltage ";
protected
Real i1d(start = i1d0) " current in 1d damper ";
Real i1q(start = i1q0) " current in 1q damper ";
Real i2q(start = i2q0) " current in 2q damper ";
Real ifd(start = ifd0) " excitation current ";
Real psid(start = psid0);
Real psiq(start = psiq0);
Real psifd(start = psifd0) " excitation flux";
Real psi1d(start = psi1d0) "flux in 1d damper ";
Real psi1q(start = psi1q0) "flux in 1q damper ";
Real psi2q(start = psi2q0) "flux in 2q damper ";
// NOTE: Assumption based on Kundur ;
parameter Real i1d0 = 0;
parameter Real i1q0 = 0;
parameter Real i2q0 = 0;
// reactances that are required for rotor current calculations
protected
parameter Real xdetd = (xad + xrl) * (x1d + xfd) + xfd * x1d;
parameter Real xdetq = (xaq + xrlq) * (x2q + x1q) + x2q * x1q;
parameter Real xfdloop = xad + xrl + xfd;
parameter Real x1dloop = xad + xrl + x1d;
parameter Real x1qloop = xaq + xrlq + x1q;
parameter Real x2qloop = xaq + xrlq + x2q;
parameter Real kfd = xad * x1d / ((xad + xrl) * (x1d + xfd) + xfd * x1d);
parameter Real k1d = xad * xfd / ((xad + xrl) * (x1d + xfd) + xfd * x1d);
parameter Real k1q = xaq * x2q / ((xaq + xrlq) * (x2q + x1q) + x2q * x1q);
parameter Real k2q = xaq * x1q / ((xaq + xrlq) * (x2q + x1q) + x2q * x1q);
parameter Real XD11 = xad + xl - (k1d + kfd) * xad;
parameter Real XQ11 = xaq + xl - (k2q + k1q) * xaq
// Initial conditions for rotor flux linkages
parameter Real ifd0 = ((xad + xl) * id0 + uq0 + rstr * iq0) / xad;
parameter Real psid110 = kfd * psifd0 + k1d * psi1d0 ;
parameter Real psiq110 = k1q * psi1q0 + k2q * psi2q0 ;
parameter Real psid0 = (- xd11 * id0) + psid110 ;
parameter Real psiq0 = (- xq11 * iq0) + psiq110 ;
parameter Real psifd0 = (- xad * id0) + (xad + xrl + xfd) * ifd0;
parameter Real psi1d0 = (- xad * id0) + (xad + xrl) * ifd0;
parameter Real psi1q0 = -xaq * iq0;
parameter Real psi2q0 = -xaq * iq0;
//{START}d axis model parameters //
protected
parameter Real td11 = td011 * (xd11 / xd1);

Master of Science Thesis

A-1 Synchronous generator 83

parameter Real tq11 = tq011 * (xq11 / xq1);
parameter Real td1 = td01 * (xd1 / xd);
parameter Real tq1 = tq01 * (xq1 / xq);
parameter Real xad = xd - xl;
parameter Real xaq = xq - xl;
parameter Real x1 = xad + xrl;
parameter Real x2 = x1 - (xd - xl) ^ 2 / xd;
parameter Real x3 = (x2 - x1 * (xd11 / xd)) / (1 - xd11 / xd);
parameter Real T1 = xd / xd1 * td1 + (1 - xd / xd1 + xd / xd11) * td11;
parameter Real T2 = td1 + td11;
parameter Real a = (x2 * T1 - x1 * T2) / (x1 - x2);
parameter Real b = x3 * td1 * td11 / (x3 - x2);
parameter Real Tsfd = (-a / 2) + sqrt(a ^ 2 / 4 - b);
parameter Real Ts1d = (-a / 2) - sqrt(a ^ 2 / 4 - b);
parameter Real xfd = (Tsfd - Ts1d) / ((T1 - T2) / (x1 - x2) + Ts1d / x3);
parameter Real x1d = (Ts1d - Tsfd) / ((T1 - T2) / (x1 - x2) + Tsfd / x3);
parameter Real rfd = xfd / (w_b * Tsfd);
parameter Real r1d = x1d / (w_b * Ts1d);
//{END}d axis model parameters //
//q axis model parameters //
protected
parameter Real x11 = xq - xl + xrlq;
parameter Real x22 = x11 - (xq - xl) ^ 2 / xq;
parameter Real x33 = (x22 - x11 * (xq11 / xq)) / (1 - xq11 / xq);
parameter Real T11 = xq / xq1 * tq1 + (1 - xq / xq1 + xq / xq11) * tq11;
parameter Real T22 = tq1 + tq11;
parameter Real a1 = (x22 * T11 - x11 * T22) / (x11 - x22);
parameter Real b1 = x33 * tq1 * tq11 / (x33 - x22);
parameter Real Ts2q1 = (-a1 / 2) + sqrt(a1 ^ 2 / 4 - b1);
parameter Real Ts1q1 = (-a1 / 2) - sqrt(a1 ^ 2 / 4 - b1);
parameter Real x2q = (Ts2q1 - Ts1q1) / ((T11 - T22) / (x11 - x22) + Ts1q1 /

x33);
parameter Real x1q = (Ts1q1 - Ts2q1) / ((T11 - T22) / (x11 - x22) + Ts2q1 /

x33);
parameter Real r2q = x2q / (w_b * Ts2q1);
parameter Real r1q = x1q / (w_b * Ts1q1);
//{END}q axis model parameters //
// Assumption {start };
protected
parameter Real xrlq = xrl;
parameter Real te0 = (iq0 * psid0 - id0 * psiq0) / cosn;
parameter Real tm0 = pt00 / n0;
parameter Real xadu = 1.9;
// Assumption {end };
Real ufd(start = ufd0), ud11(start = ud110), uq11(start = uq110), psid11 (

start = psid110), psiq11 (start = psiq110);
protected
parameter Real ie0 = xadu * ifd0;
parameter Real ve00 = ie0;
parameter Real ufd0 = rfd / xadu * ve00;
parameter Real pt00 = te0 * n0;
parameter Real ud110 = -n0 * psiq110 ;
parameter Real uq110 = n0 * psid110 ;
equation
// ____state equations___ //
der(psifd) = (ufd - rfd * ifd) * w_b;
der(psi1d) = -r1d * i1d * w_b;
der(psi1q) = -r1q * i1q * w_b;
der(psi2q) = -r2q * i2q * w_b;
//// _______stator voltage eqns______ //

Master of Science Thesis

84

// Electromechanical simulation (RMS)
ud11 = -n0 * psiq11 ;
uq11 = n0 * psid11 ;
ud = ud11 - rstr * id + n0 * xq11 * iq;
uq = uq11 - rstr * iq - n0 * xd11 * id;
//// __________stator flux linkages____ //
psid11 = kfd * psifd + k1d * psi1d;
psiq11 = k1q * psi1q + k2q * psi2q;
psid = (- xd11 * id) + psid11 ;
psiq = (- xq11 * iq) + psiq11 ;
// _______rotor current eqns______ //
ifd = kfd * id + (x1dloop * psifd - (xad + xrl) * psi1d) / xdetd;
i1d = k1d * id + (xfdloop * psi1d - (xad + xrl) * psifd) / xdetd;
i1q = k1q * iq + (x2qloop * psi1q - (xaq + xrlq) * psi2q) / xdetq;
i2q = k2q * iq + (x1qloop * psi2q - (xaq + xrlq) * psi1q) / xdetq;
te = (iq * psid - id * psiq) / cosn;
pt0 = pt00;
tm = pt / n;
ie = xadu * ifd;
ve0 = ve00;
ufd = rfd / xadu * ve;
end PowerFactory_6order ;

A-2 Load

Listing A.2: Modelica code for PowerFactory non-linear dynamic load
model Complete_Load " Developed during a master thesis project at TU Delft -
(100% non-linear dynamic load)"
import Modelica.Constants.pi ;
extends OpenIPSL.Electrical.Essentials.pfComponent ;
OpenIPSL.Connectors.PwPin p annotation (
Placement (visible = true, transformation (origin = {132, 0}, extent = {{-56,

-10}, {-36, 10}}, rotation = 0), iconTransformation (origin = {70, 100},
extent = {{-80, 0}, {-60, 20}}, rotation = 0)));

Real V " Voltage magnitude (pu)";
Real Angle_V " voltage angle (rad)";
Real P(start = P_0 / S_b) " Active power (pu)";
Real Q(start = Q_0 / S_b) " Reactive power (pu)";
Real I;
parameter Real t_start_1 "Start time of first load variation (s)" annotation

(
Dialog (group = " Variation 1"));
parameter Real t_end_1 "End time of first load variation (s)" annotation (
Dialog (group = " Variation 1"));
parameter Real dP1 "First active load variation (MW)" annotation (
Dialog (group = " Variation 1"));
parameter Real dQ1 "First reactive load variation (MVAr)" annotation (
Dialog (group = " Variation 1"));
parameter Real t_start_2 "Start time of first load variation (s)" annotation

(
Dialog (group = " Variation 1"));
parameter Real t_end_2 "End time of first load variation (s)" annotation (
Dialog (group = " Variation 1"));
parameter Real dP2 "First active load variation (MW)" annotation (
Dialog (group = " Variation 1"));
parameter Real dQ2 "First reactive load variation (MVAr)" annotation (

Master of Science Thesis

A-2 Load 85

Dialog (group = " Variation 1"));
Real pout;
Real qout;
parameter Real umin = 0.8"Lower Voltage Limit";
parameter Real umax = 1.2"upper Voltage Limit";
parameter Real t1 = 0.05 " Dynamic Time constant ";
parameter Real kpf, tpf, tpu, kqf, tqf, tqu = 0 " Frequency Constants ";
parameter Real ap = 1 annotation (
Dialog (group = " Volatge dependency constants "));
parameter Real bp = 0 annotation (
Dialog (group = " Volatge dependency constants "));
parameter Real kpu0 = 1.5 annotation (
Dialog (group = " Volatge dependency constants "));
parameter Real kpu1 = 1 annotation (
Dialog (group = " Volatge dependency constants "));
parameter Real kpu2 = 2 annotation (
Dialog (group = " Volatge dependency constants "));
parameter Real aq = 1 annotation (
Dialog (group = " Volatge dependency constants "));
parameter Real bq = 0 annotation (
Dialog (group = " Volatge dependency constants "));
parameter Real kqu0 = 2.5 annotation (
Dialog (group = " Volatge dependency constants "));
parameter Real kqu1 = 1 annotation (
Dialog (group = " Volatge dependency constants "));
parameter Real kqu2 = 2 annotation (
Dialog (group = " Volatge dependency constants "));
parameter Real cp, cq = 0 annotation (
Dialog (group = " Volatge dependency constants "));
parameter Real kput = ap * kpu0 + bp * kpu1 + cp * kpu2;
parameter Real kqut = aq * kqu0 + bq * kqu1 + cq * kqu2;
parameter Real S_b = SysData.S_b " system base MVA";
Real k;
Real dV;
Real dF;
iPSL.NonElectrical.Continuous.LeadLag f1(K = 0, T1 = 0, T2 = 0, y_start = 0)

annotation (
Placement (visible = true, transformation (origin = {-52, 60}, extent = {{-10,

-10}, {10, 10}}, rotation = 0)));
iPSL.NonElectrical.Continuous.LeadLag f2(K = 0, T1 = 0, T2 = 0, y_start = 0)

annotation (
Placement (visible = true, transformation (origin = {-52, 24}, extent = {{-10,

-10}, {10, 10}}, rotation = 0)));
iPSL.NonElectrical.Continuous.LeadLag v1(K = 1, T1 = 0, T2 = t1, y_start =

0) annotation (
Placement (visible = true, transformation (origin = {-52, -40}, extent =

{{-10, -10}, {10, 10}}, rotation = 0)));
iPSL.NonElectrical.Continuous.LeadLag v2(K = 1, T1 = 0, T2 = t1, y_start =

0) annotation (
Placement (visible = true, transformation (origin = {-50, -76}, extent =

{{-10, -10}, {10, 10}}, rotation = 0)));
equation
-P = p.vr * p.ir + p.vi * p.ii;
-Q = p.vi * p.ir - p.vr * p.ii;
V = sqrt(p.vr ^ 2 + p.vi ^ 2);
Angle_V = atan2(p.vi, p.vr);
f1.u = dF;
f2.u = dF;
dV = V_0 - V;
dF = 0;

Master of Science Thesis

86

v1.u = dV;
v2.u = dV;
pout = (f1.y + 1) * (P_0 / S_b) * (v1.y + V_0) * (ap * (V / V_0) ^ kpu0 + bp

* (V / V_0) ^ kpu1 + cp * (V / V_0) ^ kpu2);
qout = (f2.y + 1) * (Q_0 / S_b) * (v2.y + V_0) * (aq * (V / V_0) ^ kqu0 + bq

* (V / V_0) ^ kqu1 + cq * (V / V_0) ^ kqu2);
I = sqrt(p.ii ^ 2 + p.ir ^ 2) " Terminal current ";
if V >= umin and V <= umax then
k = 1;
elseif V > 0 and V < umin / 2 then
k = 2 * abs(V) ^ 2 / umin ^ 2;
elseif V > umin / 2 and V < umin then
k = 1 - 2 * ((abs(V) - umin) / umin) ^ 2;
else
k = 1 + (V - umax) ^ 2;
end if;
if time >= t_start_1 and time <= t_end_1 then
P = k * (pout + dP1 / S_b);
Q = k * (qout + dQ1 / S_b);
elseif time >= t_start_2 and time <= t_end_2 then
P = k * (pout + dP2 / S_b);
Q = k * (pout + dQ2 / S_b);
else
P = k * pout;
Q = k * qout;
end if;
end Complete_Load ;

Listing A.3: Equation part of PowerFactory static load
equation
P = p.vr * p.ir + p.vi * p.ii;
Q = p.vi * p.ir - p.vr * p.ii;
V = sqrt(p.vr ^ 2 + p.vi ^ 2);
Angle_V = atan2(p.vi, p.vr);
I = sqrt(p.ii ^ 2 + p.ir ^ 2) " Terminal current ";
if V >= umin and V <= umax then
k = 1;
elseif V > 0 and V < umin / 2 then
k = 2 * abs(V) ^ 2 / umin ^ 2;
elseif V > umin / 2 and V < umin then
k = 1 - 2 * ((abs(V) - umin) / umin) ^ 2;
else
k = 1 + (V - umax) ^ 2;
end if;
if time >= t_start_1 and time <= t_end_1 then
P = k * ((P_0 + dP1) / S_b);
Q = k * ((Q_0 + dQ1) / S_b);
elseif time >= t_start_2 and time <= t_end_2 then
P = k * ((P_0 + dP2) / S_b);
Q = k * ((Q_0 + dQ2) / S_b);
else
P = k * (P_0 / S_b);
Q = k * (Q_0 / S_b);
end if;

Master of Science Thesis

A-3 Transmission Line 87

A-3 Transmission Line

model PFTransmission_Line " Developed during a master thesis project at TU
Delft and TenneT :Model for a transmission Line based on the
pi-equivalent circuit "

outer iPSL.Electrical.SystemBase SysData ;
import Modelica.ComplexMath.conj ;
import Modelica.ComplexMath.real ;
import Modelica.ComplexMath.imag ;
import Modelica.ComplexMath.j ;
iPSL.Connectors.PwPin p annotation (
Placement (transformation (extent = {{-80, -10}, {-60, 10}}),

iconTransformation (extent = {{-80, -10}, {-60, 10}})));
iPSL.Connectors.PwPin n annotation (
Placement (transformation (extent = {{60, -10}, {80, 10}}), iconTransformation

(extent = {{60, -10}, {80, 10}})));
parameter Real R " Resistance in ohms (PowerFactory) in actual units"

annotation (
Dialog (group = "Line parameters "));
parameter Real X " Reactance in ohms (PowerFactory)in actual units"

annotation (
Dialog (group = "Line parameters "));
parameter Real G " Conductance from PowerFactory in actual units" annotation (
Dialog (group = "Line parameters "));
parameter Real B " Susceptance from PowerFactory in actual units" annotation (
Dialog (group = "Line parameters "));
parameter Real S_b = SysData.S_b " System base power (MVA)" annotation (
Dialog (group = "Line parameters ", enable = false));
parameter Real t1 = Modelica.Constants.inf annotation (
Dialog (group = " Perturbation parameters "));
parameter Real t2 = Modelica.Constants.inf annotation (
Dialog (group = " Perturbation parameters "));
Real P12;Real P21;Real Q12;Real Q21;
// Calculation of sending and recieving end voltage and currents
Complex vs(re = p.vr, im = p.vi);
Complex is(re = p.ir, im = p.ii);
Complex vr(re = n.vr, im = n.vi);
Complex ir(re = n.ir, im = n.ii);
// The inputs in Powerfactory are not in ’pu’
parameter Real V_b "base voltage ";
protected
parameter Complex Y(re = G1, im = B1);
parameter Complex Z(re = R1, im = X1);
parameter Real baseZ = V_b ^ 2 / S_b;
parameter Real R1 = R / baseZ;
parameter Real X1 = X / baseZ;
parameter Real G1 = G * baseZ / 2;
parameter Real B1 = B * baseZ / 2;
equation
// Calculations for the power flow display
P12 = real(vs * conj(is)) * S_b;
P21 = -real(vr * conj(ir)) * S_b;
Q12 = imag(vs * conj(is)) * S_b;
Q21 = -imag(vr * conj(ir)) * S_b;
//PI model
(vs) - vr = Z * (is - vs * Y);
(vr) - vs = Z * (ir - vr * Y);
end PFTransmission_Line ;

Master of Science Thesis

88

A-4 Governor

Figure A-2: Governor parameter description

A-5 Exciter

Figure A-3: Exciter parameter description

Master of Science Thesis

A-6 OLTC 89

A-6 OLTC

Asymmetrical tap changer is used in this thesis. The parameters used are explained in section
3-2-9. The dialog box is found in the Load flow tab inside the ’Transformer type’ as shown
in A-4.

Figure A-4: off-load tap changer in Powerfactory - 1

If off-load tap changer is used, the tap position needs to be defined in the RMS-Simulation
tab as shown in Figure A-5.

Figure A-5: off-load tap changer block in Powerfactory - 2

Master of Science Thesis

90

In order to use the on-load tap changer, the ’Use Integrated Tap Controller’ box needs to be
checked as shown in Figure A-5. After which the required set-points need to be filled in the
Load flow tab inside the ’Transformer element’ as shown in Figure A-6.

Figure A-6: on-load tap changer block in Powerfactory

Figure A-7: Voltage at the Load when OLTC is used in OpenModelica

As evident from the Figure A-7, there is quite a large error. The test system used is same as
shown in Figure 5-13. The steady state value obtained in OpenModelica after the action of
OLTC is different from that of PowerFactory. There are several possible reasons for this error,
this thesis doesn’t use the exact solver as in PowerFactory, the algorithm used for OLTC is
not straight forward in the DIgSILENT manual. Therefore, this model is made inactive in
the test system and does not contribute to the analysis of the test system.

Master of Science Thesis

Appendix B

B-1 Grid parameters

Table B-1: Synchronous machine parameters used in the validation process

Parameter Value
h 4.375
rstr 0.031
xl 0.2
td0′ 9.1
tq0′ 2.3
td0′′ 0.03
tq0′′ 0.2
xd

′′ 0.25
xq

′′ 0.256
xd 2.1
xq 2.1
xd

′ 0.3
xq

′ 0.73

Table B-2: Line parameters used in uncontrolled generator model

Line Parameters
parameter Description Value

r resistance 0.04 W/Km
x reactance 0.4 W/Km
g conductance 0.0 µS/Km
b susceptance 125 µS/Km

Master of Science Thesis

92

B-2 Validation results of uncontrolled generator

The generator parameter values used in the model are shown in Table B-1.

(a) Active power (b) Reactive Power

(c) d-axis voltage (d) q-axis voltage

(e) d-axis current (f) q-axis current

Figure B-1: Comparison graphs for uncontrolled generator - 1

Master of Science Thesis

B-2 Validation results of uncontrolled generator 93

The transmission lines are 1 Km each and have the parameters as shown in Table B-2.

(g) Flux in 1d damper winding (h) Flux in 1q damper winding

(i) Flux in 2q damper winding (j) Speed

(k) Stator d-axis flux (l) Stator q-axis flux

Figure B-2: Comparison graphs for uncontrolled generator - 2

Master of Science Thesis

94

B-3 Generator validation with excitation system

(a) speed (b) current magnitude

(c) d-axis voltage (d) q-axis voltage

(e) d-axis current (f) d-axis current

Figure B-3: Comparison graphs for a generator with excitation system-1

Master of Science Thesis

B-3 Generator validation with excitation system 95

(g) excitation voltage (h) flux in 1q damper winding

(i) flux in 2q damper winding (j) q-axis voltage

Figure B-4: Comparison graphs for a generator with excitation system-2

Exciter block is created as shown in Figure 3-19 and connected to the generator.

Table B-3: Exciter parameter values used for validation

Exciter system parameter values
G AVR gain [pu] 50
ymin Minimum excitation limit [pu] -5
ymax Maximum excitation limit [pu] 2
Tavr Excitation time constant [s] 0.2
K11 Lower bound of OEL timer [pu] -20
K22 Upper bound of OEL timer [pu] 0.1
Kr Reset constant of OEL [pu] -1
Ki Integral gain of OEL [pu] 0.1

Ifdlim Max field current enforced by OEL [pu] 2.825

All the transmission lines are 1 km each and have the values shown in Table B-2. The
powerflow values are shown within the Figure 5-6.

Master of Science Thesis

96

B-4 Generator validation with exciter and governor system

The line parameter values used in the model are shown in Table B-2. The generator parameter
values used in the model are shown in Table B-1.

(a) electrical torque (b) flux in 1D damper winding

(c) flux in 1Q damper winding (d) flux in 2Q damper winding

(e) d-axis voltage (f) q-axis voltage

Figure B-5: Comparison graphs for a generator with excitation system and governor system-1

Master of Science Thesis

B-4 Generator validation with exciter and governor system 97

(g) terminal voltage (h) excitation voltage

(i) d-axis current (j) q-axis current

(k) voltage magnitude at Load B

Figure B-6: Comparison graphs for a generator with excitation system and governor system-2

Master of Science Thesis

98

For the system shown in Figure 5-6, a governor system block is connected and the values used
for the Governor system are shown in Table B-4. The exciter values used in the validation is
the same as shown in Table B-3.

Table B-4: Governor system parameter values used for validation

Governor system parameter values
K1 Controller gain [pu] 1
Tsm Servo time constant [s] 0.04
T4 Steam chest & inlet piping time constant [s] 0.1
K2 High pressure turbine factor [pu] 4.5
K3 Low pressure turbine factor [pu] -4.5
T6 Interm & low pressure turbine time constant [s] 0.01
T5 Reheater time constant [s] 0.06

zdotmin Minimum rate of change of main valve position -10
zdotmax Maximum rate of change of main valve position 10
Pmax Maximum gate limit [pu] 4
Pmin Minimum gate limit [pu] -4

B-5 Complete Model

The OLTC and the induction machine are kept inactive in the test system, as they are not
completely developed to be used for analysis.

Table B-5: Line parameters used in modified BPA system for Transmission line near the load

Line Parameters
parameter Description Value

r resistance 0 W/Km
x reactance 0.05776 W/Km
g conductance 0.0 µS/Km
b susceptance 0 µS/Km
l length 100 Km

Table B-6: Line parameters used in both of the parallel transmission lines

Line Parameters
parameter Description Value

r resistance 0 W/Km
x reactance 0.798 W/Km
g conductance 0.0 µS/Km
b susceptance 0 µS/Km
l length 100 Km

Master of Science Thesis

B-5 Complete Model 99

Table B-7: Exciter parameter values used for validation of modified BPA system

Exciter system parameter values
G AVR gain [pu] 50
ymin Minimum excitation limit [pu] -5
ymax Maximum excitation limit [pu] 5
Tavr Excitation time constant [s] 0.2
K11 Lower bound of OEL timer [pu] -20
K22 Upper bound of OEL timer [pu] 0.1
Kr Reset constant of OEL [pu] -1
Ki Integral gain of OEL [pu] 0.1

Ifdlim Max field current enforced by OEL [pu] 2.825

Table B-8: Governor system parameter values used for validation for BPA test system

Governor system parameter values
K1 Controller gain [pu] 129.5
Tsm Servo time constant [s] 0.04
T4 Steam chest & inlet piping time constant [s] 0.1
K2 High pressure turbine factor [pu] 4.5
K3 Low pressure turbine factor [pu] -4.5
T6 Interm & low pressure turbine time constant [s] 0.01
T5 Reheater time constant [s] 0.06

zdotmin Minimum rate of change of main valve position -10
zdotmax Maximum rate of change of main valve position 10
Pmax Maximum gate limit [pu] 4
Pmin Minimum gate limit [pu] -4

Table B-9: Tranformer near G1

Transformer Parameters
parameter Description Value

xT Transformer reactance (pu) 0.08
rT Transformer resistance (pu) 0

Vbus1 Sending end Bus nominal voltage (KV) 20000
Vbus2 Receiving end Bus nominal voltage (KV) 380000

S Power rating (MVA) 200

Master of Science Thesis

100

Master of Science Thesis

Appendix C

C-1 CGMES based Initialization

The python based converter was used to verify IEEE 14 bus system (Figure. C-1).

Figure C-1: Generator output obtained from the python based CGMES reader for IEEE 14 bus
system

Master of Science Thesis

102

C-2 Model to model transformation

Listing C.1: Python script to generate the Modelica file
###
import fileinput
import sys
print ’WRITING THE .mo FILE ’
print ’......................................\ n’
print ’_______________________________________ ’
datafile = open(’newfile .mo’, ’w’)
datafile .write(’model Test_system " Developed during a master thesis project

at TU Delft"’)
datafile .write(’\n’)
datafile .write(’OpenIPSL . Electrical . SystemBase SysData annotation (Placement (

visible = true , transformation (origin = {-2, -7}, extent = {{-1, -1},
{1, 1}}, rotation = 0)));’)

datafile .write(’\n’)
#write the buses
for i in range (0, len(BUS_Axes)):
if i %5==0:
datafile .write(’OpenIPSL . Electrical .Buses.Bus ’+ BUS_Axes [i]+’ annotation (’)
datafile .write(’\n’)
if i %5==1:
datafile .write(’Placement (visible =true , transformation (origin ={’+str(float(

BUS_Axes [i]) /10))
if i %5==3:
datafile .write(’,’+str(float(BUS_Axes [i]) /10)+’}, extent = {{-1, -1}, {1,

1}}, rotation = 0)));’+’\n’)
#Write the slack generator
GenName = SlackGenData [0]
S= SlackGenData [1]
U= SlackGenData [2]
cosn= SlackGenData [3]
for i in range(len(Total_Gen_PF)):
a= Total_Gen_PF [i]
if GenName ==a[0]:
P=a[1]
Q=a[2]
V=a[3]
An=a[4]
print GEN_Axes_tuple
for item in range(len(GEN_Axes_tuple)):
a1= GEN_Axes_tuple [item]
if GenName ==a1 [0]:
axis1=a1 [1]
axis2=a1 [2]
for j in range(len(Gen_Dynamics)):
b= Gen_Dynamics [j]
if b[1]== GenName :
h=b[2]
xl=b[3]
rstr=b[4]
td01=b[5]
tq01=b[6]
td011=b[7]
tq011=b[8]
xd11=b[9]
xq11=b[10]
xd=b[11]

Master of Science Thesis

C-2 Model to model transformation 103

xq=b[12]
xd1=b[13]
xq1=b[14]
datafile .write(’OpenIPSL . Multiple . PowerFactory_6orderX ’ + GenName +’(h=’+h+’

,xq1=’+xq1+’,xd1=’+xd1+’,xq=’+xq+’,xd=’+xd+’,xq11=’+xq11+’,xd11=’+xd11+’
,tq011=’+tq011+’,xl=’+xl+’,td011=’+td011+’,tq01=’+tq01+’,td01=’+td01 +’,
rstr=’+rstr+’,V_b=’+str(U)+’,V_0=’+str(V)+’,angle_0 =’+str(An)+’,P_0=’+
str(P)+’,Q_0=’+str(Q)+’,cosn=’+cosn+’,M_b=’+S+’)’ + ’ annotation (’) #

datafile .write (’\n ’)
datafile .write(’\n’)
datafile .write(’Placement (visible =true , transformation (origin ={’ + str(float

(axis1)/10))
datafile .write(’,’ + str(float(axis2)/10) + ’}, extent = {{-1, -1}, {1, 1}},

rotation = 0)));’ + ’\n’)
#Write remaining generators
for item in range(len(Remaining_Gen_EQ)):
a= Remaining_Gen_EQ [item]
GenName =a[0]
S=a[1]
U=a[2]
cosn=a[3]
for i in range(len(Total_Gen_PF)):
b= Total_Gen_PF [i]
if GenName == b[0]:
print b[0]
P = b[1]
Q = b[2]
V = b[3]
An = b[4]
for item1 in range(len(GEN_Axes_tuple)):
a1 = GEN_Axes_tuple [item1]
if GenName == a1 [0]:
axis1 = a1 [1]
axis2 = a1 [2]
X=(GenName ,S,U,cosn ,P,Q,V,An)
print (’the X is’,X)
for j in range(len(Gen_Dynamics)):
b = Gen_Dynamics [j]
if b[1] == GenName :
h = b[2]
xl = b[3]
rstr = b[4]
td01 = b[5]
tq01 = b[6]
td011 = b[7]
tq011 = b[8]
xd11 = b[9]
xq11 = b[10]
xd = b[11]
xq = b[12]
xd1 = b[13]
xq1 = b[14]
datafile .write(’OpenIPSL . Multiple . PowerFactory_6order ’ + GenName +’(h=’+h+’

,xq1=’+xq1+’,xd1=’+xd1+’,xq=’+xq+’,xd=’+xd+’,xq11=’+xq11+’,xd11=’+xd11+’
,tq011=’+tq011+’,xl=’+xl+’,td011=’+td011+’,tq01=’+tq01+’,td01=’+td01 +’,
rstr=’+rstr+’,V_b=’ + str(U) + ’,V_0=’ + str(V) + ’,angle_0 =’ + str(An)
+ ’,P_0=’ + str(P) + ’,Q_0=’ + str(Q) + ’,cosn=’ + cosn + ’,M_b=’ + S +
’)’ + ’ annotation (’) # datafile .write (’\n ’)

datafile .write(’\n’)

Master of Science Thesis

104

datafile .write(’Placement (visible =true , transformation (origin ={’ + str(float
(axis1) / 10))

datafile .write(’,’ + str(float(axis2) / 10) + ’}, extent = {{-1, -1}, {1,
1}}, rotation = 0)));’ + ’\n’)

#write the loads (for static loads:IEEE 9bus system)
for item in range(len(Total_Load_details)):
a = Total_Load_details [item]
name=a[0]
vb=a[5]
p=a[1]
q=a[2]
vo=a[3]
an=a[4]
axis1=a[6]
axis2=a[7]
datafile .write(’OpenIPSL . TestFiles . Load_CGMES ’ + name + ’(V_b=’+str(vb)+’,

V_0=’+str(vo)+’,angle_0 =’+str(an)+’,P_0=’+str(p)+’,Q_0=’+str(q)+’)’+’
annotation (’)

datafile .write(’\n’)
datafile .write(’Placement (visible =true , transformation (origin ={’ + str(float

(axis1)/10))
datafile .write(’,’ + str(float(axis2)/10) + ’}, extent = {{-1, -1}, {1, 1}},

rotation = 0)));’ + ’\n’)
#write the Transmission lines
#(B = 0.0005 / 2, G = 0, R = 0.01 , X = 0.1)
TL_Axes =[]
for i in range (0, len(Total_AC_Line_Segment)):
if i %9==2:
Name_of_the_line = Total_AC_Line_Segment [i]
Vbase= Total_AC_Line_Segment [i+1]
r= Total_AC_Line_Segment [i+3]
x= Total_AC_Line_Segment [i+4]
g= Total_AC_Line_Segment [i+5]
b= Total_AC_Line_Segment [i+6]
datafile .write(’OpenIPSL . TestFiles . PFTransmission_Line ’+ Name_of_the_line +’(

B=’+b+’,V_b=’+Vbase+’,G=’+g+’,R=’+r+’,X=’+x+’)’+’ annotation (’+’\n’)
datafile .write(’ OpenIPSL . PowerFactory_models_steadyS .

Transmission_Line ’ + Name_of_the_line +’;’+’\n ’)
BUS1= Total_AC_Line_Segment [i -2]
BUS2= Total_AC_Line_Segment [i -1]
for j in BUS_Axes :
index1 = BUS_Axes .index(BUS1)
x1= BUS_Axes [index1 +1]
y1= BUS_Axes [index1 +3]
index2 = BUS_Axes .index(BUS2)
x2 = BUS_Axes [index2 + 1]
y2 = BUS_Axes [index2 + 3]
datafile .write(’Placement (visible =true , transformation (origin ={’+str ((float(

x1)+float(x2))/20)+’,’+str ((float(y2)+float(y1))/20)+’}, extent ={{ -0.3 ,
-0.2}, {0.3 , 0.2}} , rotation =0)));’+’\n’)

TL_Axes . append (Name_of_the_line)
X=(float(x1)+float(x2))/20
Y=(float(y1)+float(y2))/20
TL_Axes . append (X)
TL_Axes . append (Y)
#write Transformers
for i in range(len(Tf_full)):
a= Tf_full [i]
V1=float(a[2])
V2=float(a[6])

Master of Science Thesis

C-2 Model to model transformation 105

n=(V1/V2)*(V1/V2)
print n
r=float(a[3])
x=float(a[4])
print x
rt=str(r/n)
xt=str(x/n)
print xt
for j in range(len(Tranformer_values1)):
b1= Tranformer_values1 [j]
if a[0]== b1 [0]:
Sn=b1 [1]
for k in range(len(TF_AXES)):
a1= TF_AXES [k]
if a1 [0]==a[0]:
x1=a1 [1]
y1=a1 [2]
datafile .write(’OpenIPSL . TestFiles . Transformer ’+a[0]+ ’(Vbus1=’+a[6]+ ’,Sn=’+

Sn+’,Vn=’+a[6]+ ’,Vbus2=’+a[2]+ ’,rT=’+rt+’,xT=’+xt+’) ’+’ annotation (’+’\
n’)

datafile .write(’Placement (visible = true , transformation (origin = {’+str(
float(x1)/10)+’,’+str(float(y1)/10)+’}, extent = {{-1, -1}, {1, 1}},
rotation = 0)));’+’\n’)

datafile .write(’equation ’)
datafile .write(’\n’)
Connect the transformer to the buses
for item in range(len(TF_BUS)):
a= TF_BUS [item]
name=a[0]
BUS1 = a[1]
BUS2 = a[2]
datafile .write(’connect (’ + a[0] + ’.n, ’ + BUS1 + ’.p) annotation (’ + ’\n’)
for i in range(len(TF_AXES)):
tff = TF_AXES [i]
if tff [0]==a[0]:
x1 = tff [1]
y1 = tff [2]
#print(x1 ,y1)
for j in BUS_Axes :
index1 = BUS_Axes .index(BUS1)
x2 = BUS_Axes [index1 + 1]
y2 = BUS_Axes [index1 + 3]
datafile .write(’Line(points = {{’ + str(float(x1) / 10) + ’,’ + str(float(y1

) / 10) + ’}, {’ + str(float(x2) / 10) + ’,’ + str(float(y2) / 10) + ’
}}, color = {0, 0, 255}));’ + ’\n’)

datafile .write(’connect (’ + a[0] + ’.p, ’ + BUS2 + ’.p) annotation (’ + ’\n’)
for i in range(len(TF_AXES)):
tff = TF_AXES [i]
if tff [0] == a[0]:
x1 = tff [1]
y1 = tff [2]
for j in BUS_Axes :
index1 = BUS_Axes .index(BUS2)
x2 = BUS_Axes [index1 + 1]
y2 = BUS_Axes [index1 + 3]
datafile .write(
’Line(points = {{’ + str(float(x1) / 10) + ’,’ + str(float(y1) / 10) + ’}, {

’ + str(float(x2) / 10) + ’,’ + str(
float(y2) / 10) + ’}}, color = {0, 0, 255}));’ + ’\n’)
Connecting the loads to the buses

Master of Science Thesis

106

#print Map_Load_BusName_Tuple
for item in range(len(Map_Load_BusName_Tuple)):
a= Map_Load_BusName_Tuple [item]
datafile .write(’connect (’+a[0]+ ’.p, ’+a[1]+ ’.p) annotation (’+’\n’)
index_of_load = LOAD_Axes .index(a[0])
cx= LOAD_Axes [index_of_load +1]
cy= LOAD_Axes [index_of_load +2]
index_of_bus = BUS_Axes .index(a[1])
dx= BUS_Axes [index_of_bus +1]
dy= BUS_Axes [index_of_bus +3]
datafile .write(’Line(points = {{’+str(float(cx)/10)+’,’+str(float(cy)/10)+’

}, {’+str(float(dx)/10)+’,’+ str(float(dy)/10)+’}}, color = {0, 0, 255})
);’+’\n’)

Connecting the generators to the buses
#print Map_Gen_BusName_Tuple
for item in range(len(Map_Gen_BusName_Tuple)):
a= Map_Gen_BusName_Tuple [item]
datafile .write(’connect (’ + a[0] + ’.p, ’ + a[1] + ’.p) annotation (’ + ’\n’)
index_of_load = GEN_Axes .index(a[0])
cx= GEN_Axes [index_of_load +1]
cy= GEN_Axes [index_of_load +2]
index_of_bus = BUS_Axes .index(a[1])
dx = BUS_Axes [index_of_bus + 1]
dy = BUS_Axes [index_of_bus + 3]
datafile .write(’Line(points = {{’ + str(float(cx) / 10) + ’,’ + str(float(cy

) / 10) + ’}, {’ + str(float(dx) / 10) + ’,’ + str(float(dy) / 10) + ’
}}, color = {0, 0, 255}));’ + ’\n’)

Connecting the lines to the buses.
#print Total_AC_Line_Segment
for i in range (0, len(Total_AC_Line_Segment)):
if i %9==2:
Name_of_the_line = Total_AC_Line_Segment [i]
BUS1= Total_AC_Line_Segment [i -2]

datafile .write(’connect (’ + Name_of_the_line + ’.n, ’ + BUS1 + ’.p)
annotation (’ + ’\n’)

index_of_line = TL_Axes .index(Name_of_the_line)
x1= TL_Axes [index_of_line +1]
y1= TL_Axes [index_of_line +2]
index_of_bus = BUS_Axes .index(BUS1)
x2 = BUS_Axes [index_of_bus + 1]
y2 = BUS_Axes [index_of_bus + 3]
datafile .write(’Line(points = {{’ + str(float(x1)) + ’,’ + str(float(y1)) +

’}, {’ + str(float(x2) / 10) + ’,’ + str(float(y2) / 10) + ’}}, color =
{0, 0, 255}));’ + ’\n’)

BUS2= Total_AC_Line_Segment [i -1]
datafile .write(’connect (’ + Name_of_the_line + ’.p, ’ + BUS2 + ’.p)

annotation (’ + ’\n’)
index_of_line = TL_Axes .index(Name_of_the_line)
x1 = TL_Axes [index_of_line + 1]
y1 = TL_Axes [index_of_line + 2]
index_of_bus = BUS_Axes .index(BUS2)
x2 = BUS_Axes [index_of_bus + 1]
y2 = BUS_Axes [index_of_bus + 3]
datafile .write(’Line(points = {{’ + str(float(x1)) + ’,’ + str(float(y1)) +

’}, {’ + str(float(x2) / 10) + ’,’ + str(float(y2) / 10) + ’}}, color =
{0, 0, 255}));’ + ’\n’)

Master of Science Thesis

C-2 Model to model transformation 107

datafile .write(’end Test_system ;’)
datafile .close ()
print ’_______________________________________ ’
print ’_______________________________________ ’
print ’FILE Writing finished ’
print ’......................................\ n’

Listing C.2: The corresponding Modelica script for the test system generated
\ model Test_system " Developed during a master thesis project at TU Delft and

TenneT "
OpenIPSL.Electrical.SystemBase SysData annotation (
Placement (visible = true, transformation (origin = {26, 17}, extent = {{-1,

-1}, {1, 1}}, rotation = 0)));
OpenIPSL.Electrical.Buses.Bus BUS2 annotation (
Placement (visible = true, transformation (origin = {17.9375, 7.0}, extent =

{{-1, -1}, {1, 1}}, rotation = 0)));
OpenIPSL.Electrical.Buses.Bus Bus8 annotation (
Placement (visible = true, transformation (origin = {17.0625, 10.9375}, extent

= {{-1, -1}, {1, 1}}, rotation = 0)));
OpenIPSL.Electrical.Buses.Bus BUS5 annotation (
Placement (visible = true, transformation (origin = {11.375, 10.9375}, extent

= {{-1, -1}, {1, 1}}, rotation = 0)));
OpenIPSL.Electrical.Buses.Bus BUS3 annotation (
Placement (visible = true, transformation (origin = {17.0625, 17.9375}, extent

= {{-1, -1}, {1, 1}}, rotation = 0)));
OpenIPSL.Electrical.Buses.Bus Bus9 annotation (
Placement (visible = true, transformation (origin = {17.0625, 15.3125}, extent

= {{-1, -1}, {1, 1}}, rotation = 0)));
OpenIPSL.Electrical.Buses.Bus BUS4 annotation (
Placement (visible = true, transformation (origin = {8.75, 16.1875}, extent =

{{-1, -1}, {1, 1}}, rotation = 0)));
OpenIPSL.Electrical.Buses.Bus BUS1 annotation (
Placement (visible = true, transformation (origin = {5.25, 16.1875}, extent =

{{-1, -1}, {1, 1}}, rotation = 0)));
OpenIPSL.Electrical.Buses.Bus BUS6 annotation (
Placement (visible = true, transformation (origin = {12.25, 16.1875}, extent =

{{-1, -1}, {1, 1}}, rotation = 0)));
OpenIPSL.Electrical.Buses.Bus Bus7 annotation (
Placement (visible = true, transformation (origin = {17.0625, 8.3125}, extent

= {{-1, -1}, {1, 1}}, rotation = 0)));
OpenIPSL.Multiple.PowerFactory_6orderX G1(M_b = 500., P_0 = 10.0019, Q_0 =

-42.8841, V_0 = 1.04, V_b = 20., angle_0 = 0.0, cosn = 1., h = 3.5, rstr
= 0.031, td01 = 9.1, td011 = 0.03, tq01 = 2.3, tq011 = 0.2, xd = 2.1,

xd1 = 0.3, xd11 = 0.25, xl = 0.2, xq = 2.1, xq1 = 0.73, xq11 = 0.256)
annotation (

Placement (visible = true, transformation (origin = {3.9375, 16.25}, extent =
{{-1, -1}, {1, 1}}, rotation = 0)));

OpenIPSL.Multiple.PowerFactory_6order G2(h = 3.5, xq1 = 0.73, xd1 = 0.3, xq
= 2.1, xd = 2.1, xq11 = 0.256, xd11 = 0.25, tq011 = 0.2, xl = 0.2, td011

= 0.03, tq01 = 2.3, td01 = 9.1, rstr = 0.031, V_b = 20., V_0 = 1.04416,
angle_0 = 0.0450432, P_0 = 20.0, Q_0 = 20.0, cosn = 0.85, M_b = 250.)

annotation (
Placement (visible = true, transformation (origin = {21.0, 6.5625}, extent =

{{-1, -1}, {1, 1}}, rotation = 0)));
OpenIPSL.Multiple.PowerFactory_6order G3(h = 3.5, xq1 = 0.73, xd1 = 0.3, xq

= 2.1, xd = 2.1, xq11 = 0.256, xd11 = 0.25, tq011 = 0.2, xl = 0.2, td011
= 0.03, tq01 = 2.3, td01 = 9.1, rstr = 0.031, V_b = 20., V_0 = 1.04465,
angle_0 = 0.0727758, P_0 = 20.0, Q_0 = 20.0, cosn = 0.85, M_b = 250.)

annotation (

Master of Science Thesis

108

Placement (visible = true, transformation (origin = {13.125, 18.8125}, extent
= {{-1, -1}, {1, 1}}, rotation = 0)));

OpenIPSL.TestFiles.Load_CGMES LOADB(V_b = 230., V_0 = 1.04263043478, angle_0
= -0.0318971, P_0 = 10.0, Q_0 = 10.0) annotation (

Placement (visible = true, transformation (origin = {14.4375, 16.625}, extent
= {{-1, -1}, {1, 1}}, rotation = 0)));

OpenIPSL.TestFiles.Load_CGMES LOADC(P_0 = 10.0, Q_0 = 10.0, V_0 =
1.0427826087, V_b = 230., angle_0 = -0.0314053, dP1 = 10.0, dQ1 = 10.0,
t_end_1 = 7, t_start_1 = 5) annotation (

Placement (visible = true, transformation (origin = {19.6875, 12.6875}, extent
= {{-1, -1}, {1, 1}}, rotation = 0)));

OpenIPSL.TestFiles.Load_CGMES LOADA(V_b = 230., V_0 = 1.04256956522, angle_0
= -0.0369459, P_0 = 30.0, Q_0 = 20.0) annotation (

Placement (visible = true, transformation (origin = {12.6875, 10.9375}, extent
= {{-1, -1}, {1, 1}}, rotation = 0)));

OpenIPSL.TestFiles.PFTransmission_Line L57(B = 0.000125, V_b = 230., G = 0.,
R = 0.04, X = 0.4) annotation (

Placement (visible = true, transformation (origin = {14.21875, 9.625}, extent
= {{-0.3, -0.2}, {0.3, 0.2}}, rotation = 0)));

OpenIPSL.TestFiles.PFTransmission_Line L46(B = 0.000125, V_b = 230., G = 0.,
R = 0.04, X = 0.4) annotation (

Placement (visible = true, transformation (origin = {10.5, 16.1875}, extent =
{{-0.3, -0.2}, {0.3, 0.2}}, rotation = 0)));

OpenIPSL.TestFiles.PFTransmission_Line L89(B = 0.000125, V_b = 230., G = 0.,
R = 0.04, X = 0.4) annotation (

Placement (visible = true, transformation (origin = {17.0625, 13.125}, extent
= {{-0.3, -0.2}, {0.3, 0.2}}, rotation = 0)));

OpenIPSL.TestFiles.PFTransmission_Line L78(B = 0.000125, V_b = 230., G = 0.,
R = 0.04, X = 0.4) annotation (

Placement (visible = true, transformation (origin = {17.0625, 9.625}, extent =
{{-0.3, -0.2}, {0.3, 0.2}}, rotation = 0)));

OpenIPSL.TestFiles.PFTransmission_Line L45(B = 0.000125, V_b = 230., G = 0.,
R = 0.04, X = 0.4) annotation (

Placement (visible = true, transformation (origin = {10.0625, 13.5625}, extent
= {{-0.3, -0.2}, {0.3, 0.2}}, rotation = 0)));

OpenIPSL.TestFiles.PFTransmission_Line L69(B = 0.000125, V_b = 230., G = 0.,
R = 0.04, X = 0.4) annotation (

Placement (visible = true, transformation (origin = {14.65625, 15.75}, extent
= {{-0.3, -0.2}, {0.3, 0.2}}, rotation = 0)));

OpenIPSL.TestFiles.Transformer T1(Sn = 250., Vbus1 = 20., Vbus2 = 230., Vn =
20., rT = 0.0, xT = 0.015) annotation (

Placement (visible = true, transformation (origin = {7, 16.6875}, extent =
{{-1, -1}, {1, 1}}, rotation = 0)));

OpenIPSL.TestFiles.Transformer T3(Sn = 150., Vbus1 = 20., Vbus2 = 230., Vn =
20., rT = 0.0, xT = 0.0144) annotation (

Placement (visible = true, transformation (origin = {18.375, 16.625}, extent =
{{-1, -1}, {1, 1}}, rotation = 0)));

OpenIPSL.TestFiles.Transformer T2(Sn = 200., Vbus1 = 20., Vbus2 = 230., Vn =
20., rT = 0.0, xT = 0.0144) annotation (

Placement (visible = true, transformation (origin = {16.1875, 6.125}, extent =
{{-1, -1}, {1, 1}}, rotation = 0)));

OpenIPSL.TestFiles.Exciter_ST1A_mod exciter_ST1A_mod1 ;
equation
connect (G1.n, G3.fref) annotation (
Line);
connect (G1.n, G2.fref) annotation (
Line);
connect (G1.pt0, G1.pt) annotation (
Line);
connect (G1.p, BUS1.p) annotation (

Master of Science Thesis

C-2 Model to model transformation 109

Line(points = {{5, 16}, {5, 16.1875}, {5.25, 16.1875}}, color = {0, 0, 255})
);

connect (exciter_ST1A_mod1.vee, G1.ve) annotation (
Line);
connect (G1.ve0, exciter_ST1A_mod1.VEE) annotation (
Line);
connect (G1.ut0, exciter_ST1A_mod1.UTT) annotation (
Line);
connect (G1.Vt, exciter_ST1A_mod1.utt) annotation (
Line);
connect (G1.ie, exciter_ST1A_mod1.ie) annotation (
Line);
connect (L46.n, BUS4.p) annotation (
Line(points = {{11, 16}, {9.625, 16}, {9.625, 16.1875}, {8.75, 16.1875}},

color = {0, 0, 255}));
connect (L46.p, BUS6.p) annotation (
Line(points = {{10, 16}, {11.375, 16}, {11.375, 16.1875}, {12.25, 16.1875}},

color = {0, 0, 255}));
connect (T1.n, BUS4.p) annotation (
Line(points = {{8, 17}, {8, 16.1875}, {8.75, 16.1875}}, color = {0, 0, 255})

);
connect (T1.p, BUS1.p) annotation (
Line(points = {{6, 17}, {6, 16.1875}, {5.25, 16.1875}}, color = {0, 0, 255})

);
connect (G2.pt0, G2.pt);
connect (G2.ve, G2.ve0);
connect (G3.pt0, G3.pt);
connect (G3.ve0, G3.ve);
connect (T3.n, Bus9.p) annotation (
Line(points = {{18.375, 16.625}, {17.0625, 15.3125}}, color = {0, 0, 255}));
connect (T3.p, BUS3.p) annotation (
Line(points = {{18.375, 16.625}, {17.0625, 17.9375}}, color = {0, 0, 255}));
connect (T2.n, Bus7.p) annotation (
Line(points = {{16.1875, 6.125}, {17.0625, 8.3125}}, color = {0, 0, 255}));
connect (T2.p, BUS2.p) annotation (
Line(points = {{16.1875, 6.125}, {17.9375, 7.0}}, color = {0, 0, 255}));
connect (LOADC.p, Bus8.p) annotation (
Line(points = {{19.6875, 12.6875}, {17.0625, 10.9375}}, color = {0, 0, 255})

);
connect (LOADA.p, BUS5.p) annotation (
Line(points = {{12.6875, 10.9375}, {11.375, 10.9375}}, color = {0, 0, 255}))

;
connect (LOADB.p, BUS6.p) annotation (
Line(points = {{14.4375, 16.625}, {12.25, 16.1875}}, color = {0, 0, 255}));
connect (G2.p, BUS2.p) annotation (
Line(points = {{21.0, 6.5625}, {17.9375, 7.0}}, color = {0, 0, 255}));
connect (G3.p, BUS3.p) annotation (
Line(points = {{13.125, 18.8125}, {17.0625, 17.9375}}, color = {0, 0, 255}))

;
connect (L57.n, BUS5.p) annotation (
Line(points = {{14.21875, 9.625}, {11.375, 10.9375}}, color = {0, 0, 255}));
connect (L57.p, Bus7.p) annotation (
Line(points = {{14.21875, 9.625}, {17.0625, 8.3125}}, color = {0, 0, 255}));
connect (L89.n, Bus8.p) annotation (
Line(points = {{17.0625, 13.125}, {17.0625, 10.9375}}, color = {0, 0, 255}))

;
connect (L89.p, Bus9.p) annotation (
Line(points = {{17.0625, 13.125}, {17.0625, 15.3125}}, color = {0, 0, 255}))

;
connect (L78.n, Bus8.p) annotation (

Master of Science Thesis

110

Line(points = {{17.0625, 9.625}, {17.0625, 10.9375}}, color = {0, 0, 255}));
connect (L78.p, Bus7.p) annotation (
Line(points = {{17.0625, 9.625}, {17.0625, 8.3125}}, color = {0, 0, 255}));
connect (L45.n, BUS5.p) annotation (
Line(points = {{10.0625, 13.5625}, {11.375, 10.9375}}, color = {0, 0, 255}))

;
connect (L45.p, BUS4.p) annotation (
Line(points = {{10.0625, 13.5625}, {8.75, 16.1875}}, color = {0, 0, 255}));
connect (L69.n, Bus9.p) annotation (
Line(points = {{14.65625, 15.75}, {17.0625, 15.3125}}, color = {0, 0, 255}))

;
connect (L69.p, BUS6.p) annotation (
Line(points = {{14.65625, 15.75}, {12.25, 16.1875}}, color = {0, 0, 255}));
annotation (
uses(OpenIPSL (version = "1.0.0")));
end Test_system ;

Master of Science Thesis

	Cover Page
	Acknowledgement
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Main Matter
	Introduction
	Background
	CGMES-CIM
	Dynamic profile in CGMES-CIM

	Problem definition
	Motivation
	Goals and research questions
	Contributions
	Approach and thesis outline

	Modelica power system library
	Introduction to Modelica
	Main characteristics
	Softwares based on Modelica

	Modelling environment
	Attributions and equations
	Simulation parameters

	Application example
	Modelica libraries
	Modelica standard library (MSL)
	Open-Instance Power System Library

	PowerFactory based Modelling
	DIgSILENT PowerFactory
	PowerFactory Models
	Synchronous generator
	Loads
	Transformer
	Transmission line
	Exciter system
	Overexcitation Limiter
	Speed-Governing System
	Steam Turbine system
	OLTC
	Asynchronous machine

	CIM based initialization for dynamic simulation
	Standards for Model Information Exchange
	Common information model standards
	CIM UML
	CGMES files
	CGMES-CIM based initialization of Modelica grid models
	Method 1: Initialization of Modelica based grid models
	Method 2: Model to model transformation

	Result discussion
	Considered test system
	Model Validation
	Simulation set-up
	Synchronous Generator
	Excitation system
	Governor system
	Load
	Transformer
	Transformer tap changers
	Complete model

	CGMES-CIM based Initialization in Modelica
	CGMES-CIM to Modelica converter

	Conclusions and future scope
	Conclusion
	Future scope and recommendations

	Appendices
	
	Synchronous generator
	Parameters and equations
	Generator code

	Load
	Transmission Line
	Governor
	Exciter
	OLTC

	
	Grid parameters
	Validation results of uncontrolled generator
	Generator validation with excitation system
	Generator validation with exciter and governor system
	Complete Model

	
	CGMES based Initialization
	Model to model transformation

