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Abstract

Nanophotonics is the study of structures’ interaction with light with features at or below the
nanometer scale. It has gained the interest of many researchers, as it can be used to control the
flow of light very effectively in the design of, e.g., solar cells, highly efficient biosensors or lasers.
The design of such devices can be non-intuitive and complex and therefore computational tools like
topology optimization techniques have been used to improve their designs. However, the topology
optimization methods used in the literature often use a density-based representation of the geometry,
which often leads to jagged edges. It has been shown in the literature that jagged edges can deteriorate
the accuracy of simulation results. Using a level set method in combination with an enriched finite
element method offers a smoother boundary representation than the often used density-based methods.
This work aims to develop an analysis and level set optimization for 2D electromagnetic scattering and
eigenvalue problems using an enriched finite element method. Furthermore, we showcase that even
for a non-conforming discretization, the enriched finite element method achieves the same convergence
properties as the standard finite element method with fitted meshes. Finally, we perform topology
optimization on the design of both a 2D meta lens and 2D reflector, maximizing their ability to focus
light onto a point, using a level set method to define the geometry in combination with the enriched
method used in the analysis.
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Introduction

Over the last two decades the advancements in fabrication capabilities, which allowed for the manufac-
turing of structures at the micro- and nano-scales, has caused a rise of interest in nanophotonics—the
study of structures’ interaction with light with features at or below the nanometer scale [1]. Struc-
tures at this length scale can be used to control the flow of light in new ways that were not possible
before [2]. Nanophotonics has already found many potential applications such as solar cells [3], highly
efficient lasers [4, 5], biosensors [6-8], and the treatment or detection of diseases [9, 10]. Most of
these applications use a photonic crystal, which is an optical material that uses periodic structures
causing interference of light, also known as Bragg scattering, to create frequency bands in which light
is attenuated, also known as band gaps [11]. Using this, defects inside of this periodic structure can
be used to guide, confine or filter the flow light very effectively. Using photonic crystals in the design
of nanophotonics can be non-intuitive, hence why optimization, which is a design strategy where the
material layout in a defined space is optimized to achieve a design with better performance, has been
a prevalent tool in nanophotonics. During optimization, an objective function, which represents the
figure of merit, is maximized or minimized. Commonly, constraints are introduced to ensure that the
designs are feasible. A common optimization technique, parametric optimization [12-15], has been used
for optimizing the dimensions or shape for certain features of traditional designs. However, they can
only explore a limited range of designs, for which we do not know if their performance is anywhere near
the optimal performance. Moreover, for some aspects in nanophotonics, for example multi-frequency
applications or nonlinear phenomena, intuition-based design techniques becomes increasingly more dif-
ficult to apply [1]. A less constrained optimization method, shape optimization, has also been applied
to optimization nanophotonic devices [5, 16]. However, the commonly used photonic crystal structures
present in nanophotonic devices, which often contain many holes, are difficult to design for using shape
optimization since the topological properties must stay the same limiting the design space.

By using topology optimization, which allows for the nucleation of holes inside the domain, we can
freely change the material distribution for more complex and and non-intuitive designs. Various meth-
ods have been proposed in order to represent the material distribution inside of the domain. In the
commonly used density-based approaches a density value is used for each element in the discretization,
which is usually considered to be continuously between zero and one interpolating the properties of
the design material. The intermediate densities do not correspond to a realistic material which is why
a penalization scheme can be applied to make the intermediate values unfavorable for the optimizer,
although they already seem to be unfavorable in problems where large reflections are desired [17]. Oc-
casionally, a threshold filter is added to the design, creating so-called black-and-white designs without
any intermediate densities [18, 19]. Density-based topology optimization has been used for the design
of e.g., photonic crystal band gaps [20], resonant cavities [21-24], waveguides [25-27], and photonic
crystal modes with Dirac-like cones [28]. However, a disadvantage of this approach is the mesh depen-
dency of the geometry, i.e., every topology must conform to the edges of the original finite element
mesh. Material interfaces that are not aligned with element edges can only be represented with a



jagged edge or interpolated values, which have shown to deteriorate the accuracy band structure com-
putation in phononics [29]. Also, it has been shown that random spatial variations in photonic crystal
structures simulations, which might be similar to the jagged edges in a density-based approach, can
have a large impact on the efficiency of confinement and guiding of light [30—32]. This shows that it is
important to choose a method that can accurately model material interfaces during the optimization
of nanophotonic devices.

To reduce the mesh dependency on the material distribution, a level set function could be used
whose zero contour delineates the material interfaces, resulting in smoother and distinct interfaces.
Although a level set might always have a clear boundary, it still needs to be projected to the fi-
nite element mesh when doing analysis which can result in intermediate densities. This issue can be
solved by using an enriched finite element method that adds enrichments at material boundaries, i.e.,
one can enrich cut elements by adding enrichment functions on top of the standard finite element
formulation (h-FEM) to represent the material interface with an unfitted mesh. Examples of such
methods is the eXtended/Generalized FEM (X/GFEM) [33, 34], which can handle both strong and
weak discontinuities—discontinuities in the field itself or in its gradient, respectively. X/GFEM has
been used for electromagnetic analysis [35-39] and to optimize a magnetic actuator [40]. However,
using X/GFEM introduces some challenges, e.g., prescribing interface conditions or essential bound-
ary conditions need special formulations [41, 42]. Moreover, the shape function need to be chosen
carefully as they could degrade the accuracy of the method [41]. In the view of these limitations, the
Interface-enriched Generalized FEM (IGFEM) [43, 44] presents a viable solution to these problems.
Instead of adding enrichments to element nodes, in IGFEM the enrichments are assigned to new nodes
that are created along the discontinuities. The enriched nodes enhance the original nodal field with
enriched shape functions, which vanish at the nodes of the original mesh causing the original nodes to
keep its physical meaning. IGFEM has already been applied to the analysis [45, 46] and parametric
optimization [47] of electromagnetic problems using edge elements and showed promising results. The
level set-based optimization using IGFEM by moving the enriched nodes with the material interface
every iteration has been applied to optimize for compliance [48] and phononic band gap optimization
[29], but not yet to electromagnetic problems.

In this thesis, we propose a 2D IGFEM-based analysis in combination with a level set based topol-
ogy optimization method, based on the methods presented in van den Boom et al. [48], to perform
nanophotonic design with a clean material boundary representation [48]. Contrasting with the work
of Zhang et al. [47], where the degrees of freedom are assigned to the edges of finite elements (edge
elements), in this work we assign the degrees of freedom to the nodes of finite elements (nodal ele-
ments) [47]. Using the standard finite element formulation with nodal elements can sometimes result in
spurious solutions because the divergence conditions, which usually do not appear explicitly in the sys-
tem equations, are not satisfied [49]. Edge elements are commonly used in this situation because they
always satisfy the divergence conditions [50, 51]. However, the 2D formulation of Maxwell’s equations,
where only the out-of-plane electric and magnetic fields are solved, can be handled by the standard
finite element formulation without the use of edge elements, as there will only be weak discontinu-
ities [49]. Thus using nodal elements is still valid in this case with the added benefit of being easier to
implement. First, a 2D IGFEM-based electromagnetic analysis is proposed for harmonic scattering and
eigenvalue problems. Next, a band structure analysis is performed on photonic crystal designs taken
from Joannopoulos et al. [11] using A-FEM and IGFEM [11]. Furthermore, a convergence analysis
is performed on a simple Mie scattering problem for h-FEM and IGFEM, demonstrating a optimal
convergence rate for both. At last, we formulate the optimization problem taken from Christiansen
and Sigmund [52] for maximizing light intensity concentration and use it to design a meta lens and a
reflector, yielding similar design as in the literature [52].



An interface-enriched finite
element method for
electromagnetic analysis and
optimization of 2D problems

The first part of this section will elaborate on the formulation of the analysis which can be used for
band structure and scattering analysis. Also, a level set optimization for electromagnetic problems
using IGFEM will be described. The second part will present three example problems to verify the
implementation of the analysis and optimization. The final section contains a short conclusion and
discussion of the results.

2.1 Simulation

The simulation domain 2, shown on the right in Fig. 1, is composed of a dielectric domain {25 and
a vacuum domain 2, such that 2 = 2q U 2, and 24 N 2, = 0. We assume there to be no sources
inside of the domain, meaning the electric current density (J) is zero. Finally, the interface between
the dielectric and vacuum domain, defined by a level set function ¢, is denoted by I'* and the outer
boundary is denoted by I°.

The electromagnetic boundary value problem in strong form can be formulated with the time-
harmonic Maxwell’s equations [49]:

VxE=—jwB in £2, (1)
V x H = jwD in 0, (2)
V-D=0 in 02, (3)
V-B=0 in 2, (4)

where E and H are the electric and magnetic fields, D and B are the electric and magnetic flux
density, w is the frequency and j is the complex number. At the interface of two different materials,



the interface conditions need to be satisfied

A x (B1—E2) =0 on I', (5)
fi- (D1 —Ds) =0 on I, (6)
Ax(H —H)=0 on I, (7)
fi-(By—Bs)=0 on I'. (8)

The variables in these equations are independent of time because the harmonic component in the form
of a complex potential can be suppressed. For linear and isotropic media, the following constitutive
relations hold [53]:

D = ¢E, (9)
B = uH, (10)

where € is the permittivity and p is the permeability. These can be defined by

€ = €r€o, (11)
W= firpto, (12)

where ¢, and pu, are called the relative permittivity and permeability. These constants are taken
relative to the vacuum permittivity and permeability, which are denoted by €p and po. Substituting
(9) and (10) into (1) and (2) respectively yields:

lV xE=—jwH in {2, (13)
i
1v x H = jwE in £2, (14)
€

Taking the curl of (13) and substituting (2) to eliminate H yields

Hr

1 w2 .
Vx| —=VxE fer(—) E=0 in §2, (15)
c
and doing the same procedure for (14) with respect to H gives

1 w)? .
Vx(;VXH)—uT (;) H=0 in £2. (16)
These equations are called the vector wave equations. Both can be used to solve for an eigenvalue
problem where w is the unknown eigenvalue and E or H the unknown eigenvector. Eigenvalue analysis
is often used within nanophotonics to perform band structure analysis on a photonic crystal, which
shows the frequencies of the eigenmodes for all propagation directions and wavelengths, defined by
the wave vector k. This can be used to find the band gaps created by periodic photonic crystal
structures. If w is known, the vector wave equation is turned into a scattering problem where E or

Q/

F()

Fig. 1: An illustration of the simulation domain using IGFEM showing a dielectric 24 with material interface I'?, defined
by a level set function ¢. The dielectric is surrounded by a vacuum 2, and outer boundary I'°. The inset shows the
discretization around the material interface that is non matching to the mesh. Here, the grey nodes « represent the original
mesh nodes and the white nodes O represent enriched nodes.



H are the resulting electric and magnetic field, respectively. For 2D problems, where we assume no
variations in the medium and fields with respect to the z direction, (15) and (16) can be rewritten to
the inhomogeneous scalar vector wave equations

o (10 o (10 w)? .
[81’ (p@x) +87y <p8y) —l—q(z) ]u—O in £2, (17)

where for out-of-plane polarization for the electric field, u = E., p = u, and ¢ = ¢, and for in-
plane polarization of the electric field, u = H., p = ¢, and ¢ = p,. The out-of-plane and in-plane
polarizations for the electric field are also known as Transverse Magnetic (TM) and Transverse Electric
(TE) polarization respectively.

The weak form of (17) can be written as

1 0’Ui Bu, 1 87}1 auz
Z/ T be T oy 9y 0t Z/ L viui 42 =0 Yo € Vo, (18)

i=d,v i=d,v

The trial function v; and weight function u; are both taken from the function space
voz{ueﬁ(n),u\m e H' (), vl :O,i:d,v}, (19)

where £2(£2) is the space of square-integrable functions and H* (£2;) is the first-order Sobolev space.

The discretization of the domain when using IGFEM is done without any knowledge of the material
distribution inside of the domain. The set of nodes of the original mesh will be assigned to standard
Lagrangian shape functions. Next, a level set function ¢(x) is used to define the material interfaces
where its sign corresponds to the dielectric and vacuum domains. By placing new enriched nodes at
the intersection of the zero contour of the level set function and element edges of the original mesh,
the material interfaces can be resolved properly. This process is shown in Fig. 1. The location of these
enriched nodes x,, can be found by

b(x;)
p(wx) — d(x;)
which is the linear interpolation of the level set function between the supporting nodes z; and x;
on the intersected edge from the original mesh [48]. The degrees of freedom corresponding to the
enriched node will then be assigned to an enriched shape function, shown in Fig. 2, which is then
added to the original formulation. The elements that are cut by a material interface are subdivided
into smaller elements such that the change of material can be properly represented while not changing
the underlying mesh. Following a Bubnov—Galerkin approach, the IGFEM approximation can then be

written as [48]
= Z Ni(z)U; + Z sithi (@), (21)

i€y €Ly

(K — x;), (20)

Tn =I5 —

standard FEM enrichment

where u” is the approximated solution and ¢; and t,, are the index sets corresponding to the original
and enriched nodes respectively. The first term consists of the standard finite element formulation—
the superposition of the shape functions N,(x) multiplied by the corresponding degrees of freedom
U; for every node in t;. The second term consists of the enriched finite element formulation—the
superposition the weakly discontinuous shape functions v;(x) multiplied by the corresponding degrees
of freedom «; and a scaling factor s; that helps with producing a well-conditioned system [44] for every
node in (.

After the domain is discretized into finite elements, (18) is integrated element wise using Gauss
points. The local stiffness matrix is computed on each integration element £ as

k. = jeBTDe(pE)Bd£7 (22)

and the local mass matrix as
m, = / jeds NN de, (23)

where IN contains the values of the shape functions (and enrichment functions if the integration element
is enriched) of the nodes in support of the elements, B contains their spatial derivatives and D, is the
constitutive matrix. A further explanation of these equations is given in van den Boom et al. [48]. The
linear set of equations KU — w?> MU = 0 is finally obtained by standard procedures

K:Ake, M:Ame, (24)
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Fig. 2: A schematic of the IGFEM approximation, where s;c; is the scaled enriched DOF and ; is the corresponding
enrichment function, @, is the coordinate of the enriched node and z; and x; are the coordinates of the supporting nodes.
The discontinuity and enriched nodes are given a blue color.

where /\ denotes the standard finite element assembly process combining local element matrices into a
global matrix, K and M are the global stiffness and mass matrix, U is the solution vector containing
both standard and enriched degrees of freedom.

2.1.1 Periodic boundary conditions

As previously discussed a band structure analysis can be performed on a periodic photonic crystal
structure to find band gaps. For this analysis it is assumed that the boundaries of the domain are
periodic—the repeating element of the photonic crystal, also known as the unit cell, is repeated in-
finitely. To enforce this boundary condition, a Bloch-Floquet boundary condition is used on the outer
boundary I'° of the domain connecting the fields on two opposing boundaries with the expression

u(zs) = e u(zn), (25)

where a is the lattice vector, which describe the spatial frequency and direction of the periodic boundary
and x,, and xs are the coordinates of a main and a subordinate node, respectively. These nodes are
on either side of two connected boundaries and are separated by exactly one lattice vector a. When
using an enriched formulation, the enriched degrees of freedom a; do not correspond directly to the
electric or magnetic field at the location of the enriched node. Instead, the original degrees of freedom
in support of the enriched node must also be taken into account as shown in (21). Substituting (21)
into (25) yields

eika 1
as = s:9s(xs) Z Ni(@®m)Ui + Sm¥m@Tmom | — s:s(2s) ZNi(wS)Ui’ (26)

1€LmM i€Ls

where ¢, and s are the sets of main and subordinate nodes, respectively [42].

2.1.2 Symmetry conditions

Within computational electromagnetics, the Dirichlet and Neumann boundary conditions represent
perfect electric or magnetic conducting surfaces depending on the polarization of the light, which are
non-physical materials with infinite conductivity. In this work these types materials are not consid-
ered, however these boundary conditions can still be used as symmetry or asymmetry conditions to
reduce computational time in symmetric problems. The homogeneous Dirichlet boundary condition
will impose a asymmetry condition and the homogeneous Neumann boundary condition will impose a
symmetry condition, for both TM and TE polarization problems [54].

2.1.3 Absorbing boundary conditions

The finite element analysis used in this work uses a limited sized domain, which has the issue of
waves possibly reflecting from the outer boundary of the simulation domain and creating nonphysical
results. To make sure this does not happen, an absorbing boundary condition can be used to make sure
outgoing waves are attenuated before they hit the boundary. A commonly used boundary condition
for attenuating outgoing waves is the absorbing boundary condition (ABC). This method exists in
different orders, increasing in complexity and in efficiency as the order increases. In this work however,
the absorbing boundary condition is modelled using Locally-Conformal Perfectly Matched Layers (LC-
PML), as described in [55]. LC-PML adds an absorbing region 2pu1, at the edges of the simulation



domain such that 2pyr N 24 = @, which will absorb any outgoing waves before they hit the boundary of
the domain. The disadvantage of the LC-PML compared to the ABC is that the LC-PML will increase
the number of unknowns because of the added space around the simulation domain. The reason of
using LC-PML, however, is that it has improved accuracy [56] and it works for any shaped boundary as
long as it is convex, making it applicable to more complex problems using only a single formulation [55].
The LC-PML method is based on complex coordinate stretching where each coordinate @ within the
PML region (2pm1.) is mapped to & with a complex coordinate transformation

=+ —F(ORO) (27)

where k = w,/eu. A visualization of the LC-PML is shown in Fig. 3, which shows the associated
variables for an arbitrary coordinate inside the PML region. The function 7(¢) is the unit vector
defined by
n(¢) = (z — o) /¢ (28)
where x is the coordinate of the closest point on the inner PML boundary (FPML) and ( is the
distance between o and x defined by ¢ = || — xo||. Because of the convexity of the PML boundary,
@o is uniquely defined. Furthermore, the function f(¢) is a monotonically increasing function of ¢,
being zero at the inner boundary to prevent numerical reflections. It is given by
w
Q)= Lw_l (29)
w ||y — xo|

where v is a positive parameter and w is a positive integer that determines the decay rate inside of
the PML region. x; is the position of point P;, which is the intersection of the outer PML boundary
(I"°) and a line passing through zo and x.

Fig. 3: A visualisation of the implementation of LC-PML. Here, the shaded region is the PML region, x is and arbitrary
coordinate inside this region that has its own points ¢ and 1 on the inner and outer boundary of the PML region respectively.
Furthermore, 7(¢) is the normalized vector from Py to P and ¢ is the distance between Py and P.

2.1.4 Source conditions

Sources from outside of the domain, like plane waves, are often implemented by adding an extra term
to the formulation of the ABC which was also briefly discussed in Sec. 2.1.3. But because our domain is
surrounded by a PML boundary condition, we cannot implement it this way since the wave would have
to travel through the absorbing boundaries. Instead, we use the scattered field formulation, where the
total electric field u is decomposed into the incoming field @ (the incident field produced without the
scatterer) and the scattered field u® (the resulting field produced by imposing the equivalent current
on the surface inside the domain) [55, 57, 58]. The current should, however, not be imposed on 2pmr..
Using the scattered field formulation adds another source term to the right hand side of (17)

. 0 (190 0 (10 w\?| _
f{am (pax>+8y<p8y>+q(0)}u’ forx € 2\ 2pmL (30)

where # is the incident field. The incident field can be arbitrary, but usually is chosen to be a plane
wave because the scatterer is away far enough from the source. In the case of a plane wave, the incident
fields E. and H. can both be described as

u(x) = up exp [—jko (x cos g + ysing)], (31)



where ko = w,/€oflo, uo is the amplitude and ¢ is the incident angle of the plane wave with ¢ = 0 being
along the positive = axis with the positive rotation direction being counter-clockwise. When using an
enriched formulation, the enriched degrees of freedom «; do not correspond directly to the electric or
magnetic field at the location of the enriched node. Instead, the original degrees of freedom in support
of the enriched node must also be taken into account as shown in (21). The enriched incoming field
terms @; are calculated as the difference between the interpolated incoming field from the original mesh
nodes and the actual value at the enriched node location, i.e.,

] _; alx) — (U
@ = oy | 8@ = 3 Ni(@)U, (32)

where x; is the coordinate of the enriched node, ;(x) is the enrichment function associated with
enriched node x;, N;(z) and Uj are the values of the shape functions and corresponding degrees of
freedom of the original nodes with index set ¢5,. To regain the total field, the computed scattered field
and incoming field can be added together. The addition of the scattered and incoming field inside of
the PML region will not create a physical result, so after the addition, the total field is multiplied with
a transformation matrix T, setting all field values inside of the PML region to zero:

TU (x) = U(x),
. (33)
where U (z) = 0, V& € Qpumr.

The matrix T' can also be used for applying the source term in (30). The left hand side of (17) can be
used for the calculation of the source terms as well, resulting in the system

(M -w’K)U° =-T [(M - w’K)U]J. (34)

2.1.5 Far-field calculation

A common use for electromagnetic scattering problems is to investigate the Radar Cross Section (RCS),
which describes the reflections of an incident plane wave by a scatterer. The RCS is defined by
2
|
o (35)

2D = lim 271’R
R—o00 ‘ﬂ|

where uf is the scattered far-field and R is the observation radius from the scatterer and should satisfy
R > 2D/Xo, where D is the largest dimension of the scatterer and Xg is the wavelength in vacuum [55].
The far-field v’ can be calculated by using Huygens surface equivalence principle by surrounding the
scatterer with a circular interface I'! and then calculating and integrating the surface electric and
magnetic current densities over this interface. The integration over I'? is done by computing the sum
over the element edges along the interface, as shown in Fig. 4. With these equivalent currents, the
electric and magnetic far-field can be calculated with [55]

ko - iy . o , ] .
uf = ﬁeﬂ/éle ko Rt E (e cos @ + hY sin B) wpelF(FecosOtyesind) Ay
s

ecLy

1 kO —j3n/4 —jkoR AT 0 Ay 0 jk(ze cos 04y sin 0)
i PR — - ~ e ¢ ¢ Aée’
+ jw” 860uo7rR6 e Z e oz + N By Ue€

ecLy

(36)

where ¢y are the set of element edges along T 7. is the outward facing normal vector of the eth
element edge, 0 is the observation angle, u., r. and y. are the total field strength and coordinates
evaluated at the midpoint of the eth element edge respectively, Af¢ is the length of the element edge.
For TM polarization v = E, and for TE polarization v = H.. Note that when using IGFEM, I'¥ can
be created by using a separate enriched interface and thus the discretization can still happen without
any prior knowledge about the geometry inside the domain.

2.2 Optimization

The topology optimization methodology in this work combines a level set function to describe the
topology with the IGFEM-based analysis procedure described in the previous sections for the analysis.
The procedure of defining the material interfaces is the same as described in Sec. 2.1. When using
finer meshes, having a design variable on every node of the mesh will allow for very thin and complex



Fig. 4: A schematic showing the eth element with its edge along I'! and the associated variables

structures that are not realistic. To counter that, compactly supported Radial Basis Functions (RBF)
are used [48]
_ 4 _ Ve =z
O;(r;) =1 —r;)" (4r; +1), where r; (x,x;) = —-——), (37)
Ts
where 7, is the radius of support. Using RBFs the level set function can be interpolated as

o(@) = Oi(@)si, (38)

i€Ls

where s contains the indices of all design variables s;. RBFs give the design variables on every node
a range of influence over other design variables nearby, which acts as a way to make the design less
complex—similarly to a density filter in density-based topology optimization. For more details, the
reader is referred to van den Boom et al. [48].

2.2.1 Objective and sensitivities

As an example, we implement a figure of merit to focus light onto a chosen point, subject to an
incoming plane wave. This figure of merit has been taken from Christiansen and Sigmund [52], where
they use a density-based topology optimization approach. It can be formulated as the weighted sum
of light intensity |Ez\2 at chosen nodes in the mesh. The general optimization problem can then be

written as
min ¥ = —E?PEZ
d

subject to (M(d) - wQK(d)) E; =- (M(d) - wQK(d)) E., (39)
dmin S d S dmax

with P being a diagonal matrix which selects and weight the points at which to maximize the light
intensity, o'l is the conjugate transpose and dmin and dmax are the lower and upper bounds of the
design variables d, which are used to prevent the level set function from becoming too steep. The
optimization problem is solved using the Method of Moving Asymptotes (MMA) [59], which also
requires the sensitivities of the objective with respect to the design variables. These can be calculated
with

oV 0¥ OFE. 0¢;

asi a aEz,k 8¢>j adi'

The first term on the right-hand side of (40) is the derivative of the objective function with respect to
the electric field values

(40)

o
OF, 1

where * is the complex conjugate. The second term is the derivative of the electric field, with respect
to every level set value, which can be calculated by solving the linear equation

2 OE; |, oM 20K s oM 20K\ = 2 OF. 1
(M- ) 5 = (a¢j - acbj)EZ*’“‘T K&m v aqu) Bont (M=) 557

(42)

to find the derivative of the scattered field, after which the derivative of the incoming field can be
added to get the the total field derivative with respect to every level set value. For a more detailed
explanation of the sensitivities see Appendix A, which also contains a verification of the analytical
sensitivities using a finite difference scheme. Because this equations has the same left-hand side as
(34), factorization of the system matrix, for example an LU decomposition, can be reused for efficiency.

= —2E} ,,, Pouk, (41)




Finally, the third term is the derivative of the nodal level set values with respect to the design variables,
which is defined as

09 _ ot

where © is the matrix defined in (37).

2.3 Results

In this section, three example problems will be presented. First, an eigenvalue analysis will be per-
formed to find the band structures of photonic crystal designs from the literature. Then, a Mie
scattering problem is solved and a convergence analysis is done for both the standard finite element
method (h-FEM) and IGFEM, to check the implementation of the source conditions and absorbing
boundary conditions. Finally, an optimization taken from the literature of a 2D metalens and reflector
is done to test the implementation of the level set-based optimization using IGFEM.

2.3.1 Band structure analysis

First, a band gap analysis is performed on a photonic crystal unit cells with a circular inclusion, taken
from Joannopoulos et al. [11], using both h-FEM and IGFEM [11]. A illustration of the problem is
shown in Fig. 5, where b is the radius of the circular inclusion, § is the angle between the lattice vectors
a; and az, 21 and {22 are domains with relative permittivity €¢,1 and €2 respectively, and I'B' and
I'®? are the Bloch-Floquet boundary conditions. In all examples ||a1|| = ||az|| = a, where a is also
known as the lattice constant. As discussed earlier, in order to compute the complete band structure
of a photonic crystal, an eigenvalue analysis must be done for all wave vectors k. However, because of
the translational and rotational symmetry of the photonic crystal lattice, the wave vectors that need
to be considered can be reduced significantly. This collection of wave vectors is called the irreducible
brillioun zone.

a

Y
ai

z x

4

Fig. 5: On the left: an illustration of a photonic crystal unit cell for an arbitrary lattice with angle 8 and a circular inclusion
with radius b. On the right: the computational domain and boundary conditions used for the simulation.

As a first example, we perform the band structure analysis of a square lattice with b = 0.2a, 8 = 90°,
er1 = 8.9 and €2 = 1. Fig. 6 shows the unit cell with the corresponding (irreducible) brillioun zone on
the left, together with the computed band structure for both TM and TE modes, using either h-FEM
or IGFEM with a mesh size of Ah = 3a/100, on the right. It can be seen that the band structure
results obtained using h-FEM and IGFEM are very similar.

As a second example, we perform the band structure analysis of a hexagonal lattice with b = 0.48a,
B = 60° €1 = 1 and €2 = 13. Fig. 7 shows the unit cell with the corresponding (irreducible)
brillioun zone on the left, together with the computed band structure for both TM and TE modes,
using either h-FEM or IGFEM with a mesh size of Ah = 3a/100, on the right. Again there is almost
no difference between the result obtained using h-FEM and IGFEM. Comparing all band structure
results to the band structures shown in Joannopoulos et al. [11], it can be noted that they are very
similar as well [11].

2.3.2 Mie scattering problem

Next, we verify the implementation of the electromagnetic scattering problem in 2D using both A-FEM
and IGFEM. This can be done using Mie scattering, which describes the scattering of a electromagnetic
plane wave with a cylinder. The dielectric cylinder has a radius m with relative permittivity ¢, = 2
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Fig. 6: On the left: an illustration of the square periodic unit cell with its corresponding (irreducible) brillioun zone. On
the right: the obtained TM and TE band structure using both A-FEM and IGFEM.
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Fig. 7: On the left: an illustration of the hexagonal periodic unit cell with its corresponding (irreducible) brillioun zone.
On the right: the obtained TM and TE band structure using both h-FEM and IGFEM.

surrounded by vacuum (€, = 1) layer with thickness ¢, = 0.4m. A PML layer with thickness tpmr =
0.7m is placed at the edges of the domain to absorb outgoing waves. An illustration is shown in
Fig. 8 where {24 is the dielectric, {2, is the surrounding background medium, 2pnmy, is the PML region,
'Y is the homogeneous Neumann boundary condition for symmetry and I'! is the Huygens surface.
We introduce a plane wave with wavelength A = m and angle of incidence ¢ = 7/2 (towards the
positive y direction). The solutions to Mie scattering problems can also be calculated with analytical
equations. Using wave transformation, a plane wave with unity magnitude and angle of incidence @
can be expressed in terms of cylindrical waves

exp [—jko (wcos @ +ysin@)] = Y j " Julkop)e’ ¥, (44)

n=-—oo

where J,, is the nth order Bessel function of the first kind and p and ¢ are the radial coordinate and
the azimuth. Using this assumption, the scattering of a plane wave by a dielectric cylinder can be

calculated with

s __ n=-—o0o
u =

Eoo - ann(kp)ej"(‘p_@ — j_"Jn(kop)ej"(‘p_@ for p<m

n=—

S anH (kop)e?™ ) for p>m (45)
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Fig. 8: On the left: an illustration of the Mie scattering problem with dimensions. On the right: the computational domain
and boundary conditions used for the simulation.

where the terms a,, and b,, are given by
/DI (kom)In(km) — \/qIn(kom)J;, (km)
an = —J
VBHS (kom) I (km) — /GHS (kom)J}, (km)

b — j—(n+1) 2D .
mhom /BH (kom)Jn (km) — /GHS (kom) T (km)

(46)

(47)

where, for a TM polarized plane wave u® = E, p = u, and ¢ = €., while for a TE polarized plane
wave v®° = Hj, p = ¢ and q = p, [57, 60]. J,, is the derivative of the nth order Bessel function of
the first kind, Hy(f) and H7(L2)' are the nth order Hankel function of the second kind and its derivative
respectively. Note that these equations are an approximation as the scattered field is a superposition
of the terms in the summation in (45) [57], where increasing the amount of terms will yield a better
result. In this thesis we choose n € [—100...100].

£l
3

0

Fig. 9: The electric field norm of the scattered field for TM polarization obtained using h-FEM (on the left) and using
IGFEM (on the right).

First, we consider the Mie scattering problem for a TM polarized plane wave. The problem is
solved using h-FEM together with a mesh which is conforming to the geometry. The same problem
is solved with a mesh which is nonconforming to the geometry, using IGFEM to resolve the field in
the elements cut by the dielectric inclusion. Fig. 9 shows the scattered field for both methods with a
mesh size of Ah = A/10. Fig. 10 shows the result of the Mie scattering problem for a TE polarized
plane wave. Using the exact solution presented (45) we study the element-wise error with respect to
the analytical solution, which is given by

lu —ul]| fe(u —uM T (u—u)de

ul| T lul2de

llellc2 = (48)
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Fig. 10: The electric field norm of the scattered field for TE polarization obtained using h-FEM (on the left) and using
IGFEM (on the right).
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Fig. 11: The £2-norm of the element-wise error for TM polarization obtained using h-FEM (on the left) and using IGFEM
(on the right).
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Fig. 12: The £2-norm of the element-wise error for TE polarization obtained using h-FEM (on the left) and using IGFEM
(on the right).
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Fig. 11 and Fig. 12 show the element-wise error in the scattered field for TM and TE polarization,
respectively. The error in the PML region is not taken into account since the solution in that region

is considered nonphysical.
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Fig. 13: On the left: The convergence of the £2-norm of the error for the TM polarization case. On the right: The

convergence of the £2-norm of the error for the TE polarization case.

Next, a convergence analysis is done using both h-FEM and IGFEM, where the £2-norm of the
error is accumulated over all elements for increasing mesh sizes Ah = A/10, /10, A/25, A/50 and
A/100. The global measure of error in the £?-norm using h-FEM and IGFEM is plotted against the
total number of degrees of freedom for both the TM and TE polarization cases in Fig. 13. In all cases,
the convergence rate is equal to a slope of —1, which is the optimal rate for the £?-norm. This means
that the optimal convergence of h-FEM is recovered using the IGFEM method for electromagnetic
problems. Note that despite the optimal convergence rate, the accuracy of IGFEM is slightly lower
than h-FEM.

Finally, the RCS is calculated with R = 100 m using the Huygens surface equivalence principle for
increasing mesh sizes Ah = A/10, A/10, A/25, A/50 and A/100. The analytical solution presented in
(45) can also be used for verifying the RCS results. Fig. 14 and Fig. 15 show the RCS obtained with
both h-FEM and IGFEM for TM and TE polarizations, respectively. It can be seen that as the mesh
size decreases, the computed RCS gets closer to the analytically calculated RCS.

3
101 E3 101 1
100 ¢ 100 ¢
n n
2 107t 2107t
o Ah = \/10 o Ah = )/10
07 Ah=A/25 07 Ah=2)/25
— Ah = )\/50 — Ah = )/50
1073 +—— Ah = )\/100 1073 +—— Ah = 1/100
------ analytical ------ analytical
0 /2 ™ /2 ™

scattering angle

scattering angle

Fig. 14: The analytical and numerical RCS for TM polarization with decreasing mesh sizes obtained using h-FEM (on the

left) and using IGFEM (on the right)

2.3.3 Optimizing for energy concentration

Now that the IGFEM-based analysis has been verified, we consider the optimization problem studied
by Christiansen and Sigmund [52], where the performances of both a 2D meta-lens and a reflector sub-
ject to an incoming plane wave, are maximized. An illustration of the problem and the computational
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Fig. 15: The analytical and numerical RCS for TE polarization with decreasing mesh sizes obtained using h-FEM (on the
left) and using IGFEM (on the right)

domain for both optimization problems is shown in Fig. 16. We choose the height of the domain as
h and width as w = 2h. The height of the dielectric substrate {2q is ha = 0.1h, the height of the
design area (24es is hdges = 0.075h, and the thickness of the PML layer surrounding the domain 2pwr,
is tpmr = 0.175h. ry is the chosen focal point of the lens/reflector, §2, is the surrounding background
medium, and I'N is the homogeneous Neumann boundary condition for symmetry. The two initial
designs used in both optimization problems are shown in Fig. 17, where the designs on the top and

bottom will be referred to as the first and second initial design, respectively.
w

o Tt - T

hdcs 'Qdes
s [ |
y 0

! (0,0) tpML 2pn1,

z €T

Fig. 16: On the left: an illustration of the optimization problem with dimensions. On the right: the computational domain
and boundary conditions used for the simulation.

Fig. 17: The first and second initial design used for both the metalens and reflector optimization

First, we maximize the light intensity |E|* for a metalens at the focal point ry with coordinate
x5 = (0,0.6h). We introduce a plane wave with wavelength A = 0.175h and an angle of incidence
@ = 7/2 (towards the positive y direction). The dielectric material has a relative permittivity of
€, = 2 and is surrounded by vacuum (e,=1). The mesh size is equal to Ah = A/(10¢,) everywhere
except for the design area (24.s where it is equal to Ah = \/20.

Secondly, we maximize the light intensity |E§ for a reflector at the focal point r¢ with coordinate
xy = (0,0.5h). We introduce a plane wave with wavelength A = 0.175h and angle of incidence
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Fig. 18: The optimized metalens design starting from the first initial design together with the resulting electric field
intensity
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Fig. 19: The optimized metalens design starting from the second initial design together with the resulting electric field
intensity.

@ = —7/2 (towards the negative y-direction). The dielectric material has a relative permittivity of
€, = 1.36 — 6.085 and is surrounded by vacuum (e, = 1). The mesh size is equal to Ah = \/(10¢,)
everywhere except for the design area {24 where it is equal to Ah = A/20.

Fig. 18 shows the optimized metalens design and resulting electric field intensity. Both initial
designs resulted in very similar optimized design and performance, as can be seen in Fig. 20 on the
left. However, the fact that the optimized performance and designs are not exactly the same for
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Fig. 20: On the left: the convergence of the metalens objective function for both initial designs. On the right: the
convergence of the reflector objective function for both initial designs

the two initial design indicates that this is non-convex optimization. The same optimization problem
was solved using a density-based optimization approach taken from Christiansen and Sigmund [52],
using various filter radii. The maximum light intensity obtained is ~ 7.2, whereas the maximum field
strength using our method is ~ 8.2.

Fig. 19 shows the optimized reflector design and the resulting electric field intensity. The first initial
design resulted in a slightly better performance, but since the optimized design contained non-feasible
geometry (in the form of floating material) the second initial design was chosen as the best result. Just
like the metalens optimization, the results of the reflector optimization indicate that this is non-convex
optimization. Again, the same optimization problem was solved using a density-based optimization
approach taken from Christiansen and Sigmund [52], using various filter radii. The maximum light
intensity obtained is ~ 12.1, whereas the maximum field strength using our method is ~ 14.1.

2.4 Summary and conclusion

First, we presented a 2D IGFEM-based analysis for electromagnetic problems. This method allows for
the simulation of different geometries without the need to generate a geometry conforming mesh.

Secondly, a band structure analysis was performed on photonic crystal designs taken from Joannopou-
los et al. [11] using h-FEM and IGFEM, both showing similar results to the literature [11]. On top of
that, a convergence analysis was done on a Mie scattering problem for both TM and TE polarization
cases, which showed that IGFEM recovered the optimal convergence of h-FEM. Moreover, a far-field
analysis was done, which also showed correct results for both A-FEM and IGFEM.

Finally, a 2D IGFEM-based level set optimization method was presented, which can be used as an
alternative to density based optimization methods commonly found in the literature. An optimization
was performed where the ability of a 2D meta-lens and a 2D reflector to focus light onto a chosen
point, was maximized. The results of both methods showed similarities with the designs found in the
literature, which implies that the IGFEM-based level set optimization is well suited for optimizing
photonic devices. It can be seen that for both optimization problems the results obtained using the
level set optimization combined with the IGFEM analysis are slightly better than the results obtained
using density-based optimization taken from the literature.

In conclusion, this work presents the first level set topology optimization for electromagnetic prob-
lems using IGFEM. Moreover, it shows the flexibility of IGFEM for simulating electromagnetic prob-
lems without the need of geometry conforming meshes, which is especially useful for optimization
problems. Finally, from the optimization examples we can conclude that the proper interface represen-
tation throughout the optimization of IGFEM can help with convergence to better optimized designs
for some optimization problems.

17



Reflection

The planning for this project at the point of handing in my literature review was very different to
the actual result. I did not manage to implement the nanocavity optimization from Wang et al. [22],
because for this optimization problem a 3D simulation was needed which would have taken a lot more
time to implement. Instead it was changed to a more simple optimization which can be done with a
2D simulation and is still pretty close (in my opinion) to the original goal. Also, I did not manage to
make the optimization robust to spatial variations, which was also planned at the start. This, because
my project had already been going on for very long at the point I finally got the optimization working,
at which point ending the project on a different optimization problem was the best option. The
formulation also changed, using the scattered field formulation with PML instead of using absorbing
boundary conditions.

Probably the most important point I noticed for me to improve upon is communication. When
there were no results to be shown or if I was stuck on a problem, I often did not reach out in time.
Doing so often resulted in getting stuck on problems for longer and getting less motivated for the
project. Towards the end of the project I tried to improve my communication, but I know that it is
still something that needs further improvement.

The overall planning of this project was also not that great. I barely took any extra time into
account for the time that is going to be lost if I get stuck on anything and/or something does not
work. Also I did not have a plan B for every step in my project, e.g., a plan B for if I failed to
make the simulation formulation work and a plan C for if I failed to make the cavity and the band
gap optimization work. Spending time on these failed attempts and needing to find an alternative
cost a lot of time. Also it did take some time to learn the code in Hybrida. Knowing how the code
works is of course necessary to make additions to it, but also for debugging. Sometimes the use of
complex numbers within the implementation of electromagnetics caused some issues that were difficult
to predict as these often did not give an error message to locate the issue. Set-backs and problems will
always happen in a project and I should have taken that into account more by making back-up plans
for all of the steps or allocate more time for every step.

Although 2D simulation can approximate in-plane devices with in-plane light propagation, 3D sim-
ulation allows for the simulation of many different photonic applications. For future implementation,
it would thus be useful to extend the code to 3D. However, this would be quite challenging as it would
either need a different formulation when using nodal elements or the implementation of (enriched) edge
elements. After that, the implementation of new figure of merits for optimization would be easier in
comparison as the framework of the 2D optimization could be reused for the most part.

Overall, doing this research project has definitely been a learning experience for me. Even though
I did not achieve my original goal and took more time for my project than intended, I think the final
result of this project is still good. Lastly, I want to thank Dr. Richard A. Norte and Dr. Alejandro M.
Aragén and both their groups for their kindness, patience, and help towards me during this project.
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Sensitivity Analysis

The sensitivity to the optimization problem defined in Eq. 39 can be calculated with
oV 0V OE.; 0¢;

= . 49
od, ~ 9F., 06, 0d; (49)
The first term is the derivative of the figure of merit with respect to the electric field values
ov X
= —2E%, P, 50
9B k (50)

where " is the complex conjugate. The second term is the derivative of the electric field, with respect
to every level set value, which can be calculated by first solving the linear equation
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to find the derivative of the scattered field, after which the derivative of the incoming field can be
added to get the the total field derivative with respect to every level set value. Here, FE, denotes the
incoming electric field. The derivative of the system matrix with respect to a design variable can be

calculated with 8M aK 5 PYI
2 Me 2 e T
ob; 0 Z Z ( ox, 8:(:1) b5’ (52)

l€v; e€rl

where ¢; is the set of enriched nodes which are influenced by the level set value ¢;, ¢; is the set of
integration elements in the support of the enriched node x; and

ox Tk

o ) gy, (5)

; (p(z;) — d(xk))

which is the design velocities of enriched node x;, where x; and x; are the supporting nodes on the
intersected edge from the original mesh. The term OE.;/d¢; only has nonzero values in ¢;, which can
be calculated by

oa; i) 0z 3581
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where the term N;(x;)/0x; is the change in shape function values at «; when the enriched node moves

and Qu(x;)/0x; is the change in the incoming field value at x; when the enriched node moves, which
can be calculated by

ou(x)
ox

= —jkouo exp [—jko (2 cos @ + y sin @)] [ng ﬂ . (55)



Note that the enriched node scaling 1/(s;1;(;)) that is present in Eq. 32 is set to 1 during optimization,
hence why it is left out. Finally, the third term is the derivative of the nodal level set values with

respect to the design variables, which is defined as

0¢ 7
— =0 56
9d (56)
Then we also check our analytical sensitivities by computing the absolute relative error with respect
to finite difference sensitivities. The absolute relative error is defined as:

W ow/od|

where W, is the sensitivity for node i calculated with the finite difference. This relative error was
calculated for 5 non-zero design variables, the position of which are showed in Fig. 21. The resulting
error shows the expected result where step sizes that are too large or small will result in a large error.
For these 5 nodes, the optimal finite difference step size seems to be around Ad; = le—8 m.
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Fig. 21: The absolute relative error §; between sensitivities at 5 nodes calculated analytically or with a forward finite

difference scheme for different step sizes Ad;.
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