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Abstract
This masters thesis investigates the influence of various printing parameters on the shape memory

effect of 3D printed objects, with a focus on fixity and recovery rates. Through a series of experi-
mental tests, it was observed that printing temperature had minimal impact on fixity and recovery
rates. However, correlations were identified between fixity rate and layer height, as well as between
percentage infill and recovery rates. Lengthwise shrinkage, particularly prominent in samples with 0%
infill, was attributed to printing speed the formation of voids within the structure and layer height.
Higher printing speeds were found to compromise mechanical properties while facilitating enhanced
shape transformation responses. Additionally, changes in layer height led to observable alterations in
the printed object’s geometry, including bending and bulging, due to retained shape memory of the
filaments original form. Moreover, certain 100% infill samples exhibited an unexpected hardening phe-
nomenon akin to annealing. These findings underscore the intricate interplay of printing parameters
in determining shape memory properties, mechanical properties and highlight potential avenues for
optimization in 3D printing processes.

List of Symbols
The next list describes several symbols that will
be later used within the body of the document

Abbreviations

RF Fixity Rate

RR Recovery Rate

Tg Glass Transition Temperature

°C Degrees Celsius

AM Additive Manufacturing

CAD Computer Aided Design

dB decibels

DIW Direct Ink Writing

DLP Digital Light Processing

FDM Fused Deposition Modeling

FE Finite Elements

FEM Finite element method

HDT Heat Deflection Temperature

LCE Liquid Crystal Elastomer

LNG Liquid Natural Gas

MIT Molecular imprinting technology

ML Machine Learning

MPa Mega Pascals

MSLA Masked sterolithography

PETG Polyethylene Terephthalate Glycol

PLA Poly(Lactic Acid)

SLA Stereolithograpy

SLS Selective Laser Sintering

SMA Shape Memory Alloy

SMM Shape Memory Material

SMP Shape Memory Polymer
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Chapter 1

Introduction
In this research, we will design an experiment in order to investigate how the shape memory effect(SME)
of Poly-Lactic-Acid(PLA) can be influenced through adjusting basic printing parameters, such as layer
height, printing temperature, and nozzle velocity. We will begin with an introduction to 3D and 4D
printing for the reader and the SME of PLA in particular. Then we will quantify the shape memory
effect through the use of the fixity and recovery rates. We will then use a design of experiments(DoE)
to set up the experiment, proposing a systematic method for stimulating the SME of PLA, how the
parameters will be varied, the ranges in which these parameters will be varied, and designing a method
to record the necessary data, the fixity and recovery rates. The data will then be analyzed through
the use of Python to investigate if any significant relation exists within the parameters and which
parameter is the largest influence on the SME.

1.1 Additive manufacturing

3D printing fall in the category of additive manufacturing(AM), a defined ISO Term. It is defined
as: ”The process of joining materials to make parts from 3D model data, usually layer upon layer,
as opposed to subtractive manufacturing and formative manufacturing methodologies”[1]. A brief
introduction to 3D printing will help with developing a better understanding of the concept of 4D
printing. 3D printing started gaining traction when a patent was filed for the stereolithographic
process and was met with huge interest[2]. The 3D printing technology is currently used by consumer
communities and for rapid prototyping with various AM technologies such as, fused deposition modeling
(FDM), stereolithography (SLA), masked stereolithography (MSLA), selective laser sintering (SLS),
selective laser melting (SLM), jet 3D printing, direct ink writing, etc. [3]. 3D has a significant
benefit because it is possible to construct an object with high precision in a short time without extra
required tools, steps, and with little or no waste material[4]. 3D printing has attracted immense
interest from both industrial giants and academic institutions due to these features. 3D printing is a
multidisciplinary field and involves collaboration from fields of science such as material engineering,
mechanical engineering, medicine, etc. The developments in recent years have resulted in the ability to
create intricate and complex structures, that were impossible or challenging to construct before using
conventional techniques. [5][6][7][8][9][10][11]. The most commonly used techniques in 3D printing are
FDM and (M)SLA. FDM printers deposit molten material on a bed, layer by layer using a nozzle, with
layer heights commonly ranging from 0.05mm to 0.6mm. (M)SLA printers emit UV radiation with
high accuracy on liquid polymers which then harden in a controlled environment on a vertically moving
build plate with layer heights commonly ranging from 100µm to 5µm. 4D printing is the process of
3D printing a programmed form or structure which is able to either change or retain its form through
external influence[12]

1.2 Shape memory effect

The shape memory effect(SME) is a fascinating phenomenon exhibited by certain polymers, which
allows them to change their shape in response to external stimuli and return to their original shape
upon removal of the stimulus. These polymers are known as shape memory polymers (SMPs) and have
garnered significant interest in various fields due to their unique properties and potential applications.
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SMPs possess the ability to ”remember” and recover their original shape from a temporary shape
induced by an external trigger, such as heat, light, moisture, or electrical current. This shape recovery
occurs due to the presence of two main components in SMPs: a temporary shape and a permanent
shape. The temporary shape is set by deforming the polymer above its transition temperature, which
allows it to be easily manipulated and fixed into a new shape. When the SMP is exposed to the
triggering stimulus, it undergoes a phase transition and reverts back to its permanent shape. The
shape memory effect in polymers is primarily attributed to the presence of cross-linked networks
within the material. These networks enable the SMPs to exhibit a dual-phase behavior, with a rigid
and glassy state at low temperatures and a rubbery and elastic state at higher temperatures. This
unique characteristic allows the material to be deformed and recover its original shape by switching
between these two states.

1.3 4D printing

4D printing is an emerging technology that builds upon the principles of 3D printing by incorporating
the element of time as an additional dimension. It refers to the process of creating objects that can self-
transform or change their shape over time when subjected to external stimuli, such as heat, moisture,
light, or mechanical force. The ”4D” in 4D printing represents the fourth dimension, which signifies
the temporal aspect of the printed objects’ behavior. This dynamic behavior is achieved by printing
with smart materials that possess inherent properties allowing them to respond and adapt to specific
environmental conditions or triggers. These materials are typically programmable or possess shape
memory characteristics. The process of 4D printing involves designing and fabricating a structure using
materials with the desired properties. These materials may include shape memory polymers, hydrogels,
or composites that can undergo reversible changes in their shape, size, or stiffness. The printed object
is then subjected to the external stimulus, which activates the material’s response and causes the
intended transformation. Applications of 4D printing span across various fields, including engineering,
architecture, biomedicine, and aerospace. In architecture and construction, 4D printing enables the
creation of structures that can adapt to changing environmental conditions or have self-assembling
capabilities. In biomedicine, it holds the potential for developing advanced tissue engineering scaffolds,
drug delivery systems that can respond to specific physiological cues, cardiovascular implants[13], self-
bending stents and self-shrinking/tightening staples[14]. The aerospace industry can benefit from 4D
printing by creating lightweight components that can self-repair or adapt to different flight conditions.
Despite its potential, 4D printing is still in its early stages, and there are challenges to overcome. These
include refining the materials and printing techniques, ensuring reliable and precise control over shape
transformations, and developing robust design methods to optimize the printed objects’ performance.

1.3.1 Shape memory polymers

Some shape memory polymers can behave in different ways, some are commercially hard to acquire
or require extremely specific printing parameters in order to properly print a structure. Some of the
commercially available polymers, their activation temperatures and their main features are listed in
the table below1.1, from the work of Sun et al.[15]. Based on the properties of the SMP’s, earlier
research, availability of the material and costs, PLA will be the subject of this study.

1.4 Problem statement

A lot of SME research has been done with PLA polymer blends in order to exert control over the effect,
however, most research that is done with FDM printing of SMP all uses the same standard printing
settings. We are interested in how much influence the printer itself can have on the SME in order to be
able to control the SME to a higher degree since these findings could be applicable to other materials
as well.
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Polymer
Activation
Temperature

Main Features

ABS Tg: 105 °C Thermo-plastic, Excellent heating-
responsive SME

EVA Tg: 60 °C Thermo-plastic, Excellent
heating/chloroform-responsive SME

PC Tg: 142 °C Thermo-plastic, Excellent heating-
responsive SME

PCL Tm:55 °C Thermo-plastic, Bio-degradable, Ex-
cellent heating-responsive SME, Pro-
grammed at low temperatures

PEEK Tg: 155 °C Thermo-plastic, Excellent heating-
responsive SME

PLA Tg: 65 °C Thermo-plastic, Bio-degradable, Good
heating-responsive SME

PMMA Tg: 115 °C Thermo-plastic, Good heating/ethanol-
responsive SME

PS Tg: 65 °C Thermo-set; Good heating/acetone-
responsive SME

PTFE Tg: 65 °C °C Thermo-plastic, Excellent heating-
responsive SME, Two-step recovery
upon heating

PU Tg: 35 65 °C Thermo-plastic/thermo-set,
Biocompatible, Excellent
heating/ethanol/water-responsive
SME

PVA Tg: 30 °C Thermo-plastic, Excellent heating-
responsive SME, Water-responsive
SME

TPU Tm: 55 °C Thermo-plastic/vitrimer, Excellent
heating-responsive SME

Table 1.1: Summary of typical commercial shape memory polymers (SMPs)[15]
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1.5 Research Questions

The research questions that will be answered are:

• How to control the SME of PLA through printing parameters?

This will be answered through the following sub questions:

• What are the mechanical and chemical properties of PLA and at what temperature does the
SME occur?

• What are the printing parameters of an FDM printer and how will they be modified?

• How do we qualitatively describe the SME parameters?

• What test setup will be used to deform the test structure?

• What relations can be found between parameters?
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Chapter 2

Materials and Methods
Poly(lactic acid) (PLA), also referred to as polylactic acid or polylactide, is a thermoplastic polyester
known for its sustainable properties. Its backbone formula is represented as (C3H4O2)n or [–C(CH3)HC(=
O)O–]n. The structure of PLA exhibits a polymeric helix arrangement with an orthorhombic unit cell,
as depicted in Figure 2.1. It is worth noting that the name ”polylactic acid” is commonly used but
does not adhere to the IUPAC standard nomenclature, which specifies ”poly(lactic acid)”[16]. This
distinction is important as PLA is a polyester rather than a polyacid (polyelectrolyte) [17].

The increasing popularity of PLA stems from its ability to be economically produced from renewable
resources. In fact, in 2021, PLA achieved the highest consumption volume among all bioplastics
worldwide [18]. One prominent application of PLA is in the field of 3D printing, where it stands as the
most widely used plastic filament material. This preference arises from its advantageous characteristics,
including a low melting point, high strength, low thermal expansion, excellent layer adhesion, and
notable heat resistance when annealed. These properties collectively contribute to making PLA an
ideal material for 3D printing applications.

Figure 2.1: PLA molecule, where ”n” denotes the chain length, O represents Oxygen and and every
undefined part is Carbon

PLA belongs to the category of thermo-responsive shape memory polymers(SMPs) and as such
possess the SME when subjected to high temperatures. The underlying mechanism for the SME in
SMPs is the dual segment/domain system. The mechanism for the SME of a thermo-responsive SMP
is simplified and illustrated in Fig. 2.2. The SMP is usually much softer at high temperatures than
that at low temperatures and as such can be deformed. This deformation is also called ”programming”
of the structure.

The dual-segment/domain system of a thermoresponsive SMP, which is responsible for its SME,
mentioned earlier consists of shape fixing and switching parts. Fig.2.3. The shape-fixing parts are the
structural feature or domain i.e. the SMP network’s net points responsible for dimensional solidity
during the deformation and recovery cycles, as shown in Fig.2.3. They can be chemically cross-linked
due to covalent bonds or formed through physical entanglement due to intermolecular interactions. The
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Figure 2.2: Illustration of the mechanism of the SME in thermo-responsive SMP. (a) Hard at low
temperature; (b) easily deformed at high temperature; (c) hard again after cooling; (d) temporary
(deformed) shape after constraint removed; (e) shape recovery upon heating.[19]

shape-swapping parts, which are relevant when deformation occurs, are often long chains of the polymer
existing between the shape-fixing parts (net points) and aids in storing the elastic strain that is exerted
during the deformation. This enables elastic recoiling during the recovery cycle [20]. Conformational
entropy drives the transitions within the SMP networks to the chemical/physical cross-links known as
junction density and chain entanglement/stretching[21]. In Fig.2.3, at the start of the programming
cycle, that is, the conformational entropy is high at low temperatures. when the temperature rises
over the glass transition temperature (Tg) during the deformation phase the chain mobility increases,
and the polymer softens. After that, the entanglement/stretching is generated, and during cooling,
the entropic energy decreases. During the recovery cycle, when the deformed sample is reheated, the
polymeric chain mobility increases again. The polymer regains its original shape by returning to a
thermodynamically favored state by releasing the stored entropy, showing the SME.

Below are some commonly discussed mechanical properties of PLA[23][24][25][26][27][28]:

• Tensile Strength: PLA exhibits good tensile strength, which refers to its ability to withstand
pulling forces without breaking. The tensile strength of PLA typically ranges from 50 to 70
megapascals (MPa). However, it should be noted that the tensile strength of PLA can vary
depending on the specific grade, processing conditions, and testing methods.

• Young’s Modulus: Young’s modulus, also known as the elastic modulus, characterizes a material’s
stiffness or resistance to deformation under an applied force. PLA has a relatively high Young’s
modulus, typically ranging from 3 gigapascals (GPa). This property makes PLA relatively rigid
and less prone to elongation.

• Flexural Strength: The flexural strength of PLA refers to its resistance to deformation when
subjected to bending forces. PLA generally exhibits good flexural strength, typically averaging
100 MPa. This property is crucial in applications where PLA components need to withstand
bending or flexing without fracturing.

• Elongation Break: the elongation at break of PLA falls in the range of 2% to 7%. This means
that PLA can typically stretch or deform up to 2% to 7% of its original length before breaking
under tensile stress at room temperature.

It’s important to note that both the mechanical and thermal properties of PLA can be influenced
by various factors, including molecular weight, processing techniques, blending with other materials,
and post-processing treatments like annealing. PLA annealing is a known heat treatment process in
which the internal stress of the material caused by production on a 3D printer is minimized, and thus
higher strength of printed parts is achieved[29]. Additionally, different manufacturers may offer PLA
grades with specific mechanical properties tailored for different applications.
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Figure 2.3: Mechanism of shape memory effect in thermoresponsive shape memory polymer[22].
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Below are some commonly reported thermal properties of PLA[23][28]:

• Melting Point: The melting point of PLA is typically about 180°C. However, it is worth noting
that PLA is a semi-crystalline polymer, and its melting behavior can be influenced by factors
such as molecular weight and crystallinity.

• Glass Transition Temperature: The glass transition temperature (Tg) of PLA is usually around
55 to 60°C. The Tg represents the temperature at which PLA transitions from a rigid, glassy
state to a softer, rubbery state.

• Heat Deflection Temperature: HDT refers to the temperature at which a material deforms under
a specified load. It is an indicator of the heat resistance of the material.

– At 0.46 MPa the HDT averages 82.9 °C

– At 1.8 MPA the HDT averages 76.1 °C

2.1 Experiment Design

For this experiment the theory of the design of experiments will be used. Design of experiments (DOE)
is a systematic and structured approach used to plan, conduct, analyze, and optimize experiments. It
involves carefully designing the experimental conditions and variables to gather meaningful data and
draw reliable conclusions. The main goals of DOE are to efficiently explore the relationships between
factors and their effects on a response variable, identify significant factors, and optimize the process or
system under investigation. Using this method we will investigate the effect the initial conditions, i.e.
the printing parameters, also called the independent variable, has on the dependent variable, i.e. the
fixity and recovery rate. Three parameters are expected to influence the SME of the material, which
are the printing temperature, the infill percentage and the layer height. Our variables are as follows:

• Dependent variables:

– fixity rate

– recovery rate

• Independent variables:

– Printing temperature

– Infill percentage

– Layer height

Three important criteria for the experimental plan have to be satisfied: validity, reliability and
replicability:

• In the context of Design of Experiments (DOE) refers to the extent to which the experimental
results accurately represent the true effects of the factors being studied. It is essential to ensure
that the experimental design and procedures used in DOE produce valid and reliable results.
Validity can be further broken down into three key points:

– Internal validity refers to the degree to which the observed effects can be attributed to the
manipulated factors and not to other extraneous factors or sources of bias. To enhance
internal validity, it is important to control or eliminate potential confounding variables that
could influence the response variable. Randomization, blocking, and the use of control
groups or baseline measurements are some strategies to enhance internal validity in DOE.
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– External validity refers to the generalizability of the experimental findings to the larger
population or real-world scenarios. It is important to design experiments that are repre-
sentative of the target population or relevant operating conditions. However, it is often
challenging to achieve high external validity due to the need for controlled experimental
conditions. Therefore, researchers should carefully consider the trade-off between internal
and external validity when designing experiments.

– Construct validity refers to the extent to which the experimental design and procedures ac-
curately measure or manipulate the intended factors or constructs of interest. This involves
ensuring that the chosen factors and their levels are conceptually and operationally valid.
Construct validity can be enhanced by using well-established measurement techniques, val-
idated instruments, and ensuring the appropriate manipulation of factors.

• Reliability is about repeatability. If someone else would run these experiments similar results
have to be found.

• The term replicability means that someone else has to be able to perfectly replicate this experi-
ment through the documentation provided.

These three criteria have to be satisfied in order to have a proper experimental plan. Through this
plan answers are sought to the following questions:

• Is there a relation between the printing parameters used during the operation of an FDM printer
and the SME of PLA:

– For different temperatures

– For different percentages of infill

– For different layer heights

The implementation of a full factorial design in scientific investigations confers notable advantages.
This approach systematically evaluates all conceivable combinations of factor levels, leading to an
extensive comprehension of the main effects and interactions of each factor on the response variable.
Through this comprehensive evaluation, no factor or interaction is overlooked during the analysis pro-
cess, ensuring a thorough investigation. Moreover, the full factorial design enables effective detection
and estimation of interactions between factors, which is crucial for comprehending the complexity of
the investigated system. This aspect contributes significantly to understanding the interplay between
factors and their combined impact on the response variable. From a statistical perspective, the full
factorial design demonstrates a high level of efficiency compared to other experimental designs. By
evaluating all potential factor combinations, it facilitates precise estimation of main effects, interac-
tions, and response variable variability, resulting in more accurate statistical inferences and reliable
conclusions. Additionally, the full factorial design exhibits robustness and generalizability in the pres-
ence of uncontrolled variables or variations in experimental conditions. The exploration of the entire
factor space enhances the assessment of the effects of factors, ensuring that the obtained results are rep-
resentative and applicable across a broader range of operating conditions. This characteristic enhances
the reliability and validity of the findings derived from the full factorial design approach.

A full factorial analysis of the parameters which are used by the FDM printer will be done with
the following ranges:

• Printing Temperature in [°C]

– 190, 200, 210

• Infill percentage in [%]

– 0, 50%, 100%
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• Layer height in [mm]

– 0.1, 0.2, 0.3

The resulting amount of experiments are shown in table 2.1.

Table 2.1: Experiments created by applying full factorial method using pythons doepy library
Experiment nr. Print Temperature Infill Layer Height

1 190.0 0.0 0.1
2 200.0 0.0 0.1
3 210.0 0.0 0.1
4 190.0 0.5 0.1
5 200.0 0.5 0.1
6 210.0 0.5 0.1
7 190.0 1.0 0.1
8 200.0 1.0 0.1
9 210.0 1.0 0.1
10 190.0 0.0 0.2
11 200.0 0.0 0.2
12 210.0 0.0 0.2
13 190.0 0.5 0.2
14 200.0 0.5 0.2
15 210.0 0.5 0.2
16 190.0 1.0 0.2
17 200.0 1.0 0.2
18 210.0 1.0 0.2
19 190.0 0.0 0.3
20 200.0 0.0 0.3
21 210.0 0.0 0.3
22 190.0 0.5 0.3
23 200.0 0.5 0.3
24 210.0 0.5 0.3
25 190.0 1.0 0.3
26 200.0 1.0 0.3
27 210.0 1.0 0.3

For the experiment, a CAD model has been made for both the testing structure and the sample
to be tested. The testing structure will be printed in PETG, which is a robust polymer that will be
printed at 260 degrees Celsius and has a TG of 75 degrees Celsius [30]. As such when the PLA is heated
above the glass transition temperature the testing structure will be unaffected, while the sample will
have transitioned to its rubbery state allowing it to be bent. The structure has a blue moving part
which is guided by a slot in the bottom plate. It is the only part which is printed separately. The
entire gray structure will be a single print. A fixed angle of 45 degrees is the endpoint of this arc. This
ensures that every experiment will always have the same angle in it. When measuring the sample the
left most inner corners will be used. Both the top and bottom side of the sample will be measured
and then averaged. The angle the sample will take when deformed will be 38.5 from these points. The
testing sample will have the dimensions of 150mm x 20mm x 10mm, see Fig. 2.4 and will be printed
27 times, with different settings as according to Table 2.1. The other print parameters which will be
constant can be found in Table 2.2.The load which is applied on the sample by the testing structure will
be perpendicular to the z-axis of the 3D print, which means it is perpendicularly loaded on the layer
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Printing parameters
Nozzle diameter 0.4 [mm]
Perimeter printing speed 45 [mm/s]
Infill printing speed 80 [mm/s]
Bed temperature 60 [°C]
Minimum shell thickness 0.7 [mm]
Number of perimeter layers 3
First layer height 0.1 [mm]
Number of bottom layers 7
Number of top layers 9
seam position nearest

Table 2.2: Printing parameters

Figure 2.4: The sample which will be tested

lines. The heating will take place with a induction plate which can maintain a constant temperature
above the glass transition point. Boiling water cannot exceed a temperature of 100 degrees celsius and
has been chosen as the heating medium.

The FDM printer that will be used is a Prusa MK3 with a 0.4mm extrusion nozzle. The brand of
PLA used for this experiment is ”MTB3D PLA filament 1.75mm 1kg”. A camera will be used to take
pictures of the samples before programming, after programming, and after recovery.

Yu et al.[31] has done a similar experiment,as shown in Fig. 2.6, and used the following SM cycle:
In the programming step, the SMP is stretched to a target strain ėmax (20%) with a constant loading
rate (0.01∗s−1) at the programming temperature Td, followed by a specified holding time at Td before
being cooled to the shape-fixing temperature TL (20 °C) at a rate of q (2.5 ∗ C ∗min−1). Once TL is
reached, the specimen is held for 1 hour and then the tensile force is removed. In the free recovery
step, the temperature is increased to the recovery temperature Tr at the same rate of cooling and
subsequently stabilized for another 50 min. They discovered that the shape fixity is improved when
increasing the holding time and at higher temperatures. Usually there is a small bouncing back of the
material upon unloading, as shown in Fig. 2.6, which causes some loss in shape fixing. The shape
fixity Rf and shape recovery Rr are defined as follows[32][33]:

Rf = ϵu/ϵm (2.1)

Rr = ϵr/ϵm (2.2)

Where ϵu is the angle the programmed sample has when cooled down, ϵm is the desired programmed
angle, and ϵr is the recovered angle
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Figure 2.5: Isometric view of the testing structure. The gray parts are 1 print. The blue part will be
printed separately and slotted in place afterward. The green part is the testing sample. Direction of
the applied force and resulting movement have been highlighted.

Figure 2.6: (a) A schematic illustration of the thermomechanical history of the programming and free
recovery process in an SM cycle. (b) A typical free recovery curve as a function of time.[31]

14



When combining all the earlier mentioned materials and methods the experiment will run as follows:

• The sample will be FDM printed with parameters according to table 2.1.

• A picture will be taken of the sample.

• The sample’s dimensions will be measured with calipers

• The sample will be heated to 100 degrees Celsius.[28]

• The sample will be slotted into the testing structure and be bent under a 45-degree angle.

• The sample will be held in place until cooled down sufficiently[31]

• The sample will be left to cool down to room temperature.

• A picture will be taken of the cooled-down sample.

• The sample will be heated to 100 degrees Celsius and a timer is set to track the time to recovery.

• A picture will be taken of the recovered sample when it has been cooled down to room temper-
ature.

The time required for the sample to heat up above and to cool down below its glass transition
temperature is largely dependent on the percentage of infill. Times used in this experiment are recorded
in the table below2.3.

Infill [%] Heating time [min] Cooling time [min] Recovery Time [min]
100 2 4 2
50 1 2 1
0 0.33 0.67 0.33

Table 2.3: critical time steps in the experiment
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2.2 Data Analysis

Data has to be extracted from the pictures taken during the experiment. This process consists of
manually measuring the relevant angles and any other irregular deformations that may have occured.
The data obtained from the experiment will then be analyzed and investigated using Python and the
pandas, glob, matplotlib, numpy, scipy, IPython, and statistics libraries. For analysis of the experi-
ments, interest lies in the degree to which the independent variable changes the dependent variable.
Variables can be related by a linear relationship that is additive across the two data samples. Such a
relationship is called covariance. First all independent variables will be examined in order to determine
whether these are significantly correlated though the Pearson’s correlation. The Pearson’s correlation
coefficient (r) is calculated as the covariance of the dependent and independent divided by the product
of the standard deviation of each data sample. It is the normalization of the covariance between the
two variables to give an interpretable score with a range of [-1,1]. A value of -1 indicates a negative
correlation, when the independent variable increases the dependent variable decreases, whereas a value
of 1 indicates a positive correlation. When the independent variable increases the dependent variable
also increases[34][35].

cov(X,Y ) = (sum(x−mean(X)) ∗ (y −mean(Y ))) ∗ 1/(n− 1) (2.3)

r =
covariance(X,Y )

stdv(X) ∗ stdv(Y )
(2.4)

If the Pearson’s correlation indicates correlation, a linear regression, also known as ordinary least
squares, will be made for the independent variables to compare with the experiment results. Regression
analysis is used in order to predict a continuous dependent variable from a number of independent
variables [36]. A linear regression allows us to estimate how the dependent variable changes as the
independent variable is changed. This analysis estimates parameters by minimizing the the sum of
the squared errors following equation 2.5. Where equation 2.6 is form of the desired linear fit to the
observed data [36].

SSD =

n∑
i=1

[yi − yfi]
2 =

n∑
i=1

[yi − (axi + b)]2 (2.5)

y = a+ bx (2.6)

Where ’y’ is the dependent variable, ’b’ is gradient of the independent variable and ’a’ which is a fixed
number.

In order to test the accuracy of the regression line a t-test is performed in python between the
observed data and the regression line. A t-test can be used to determine if two sets of data are signif-
icantly different from each other. This hypothesis test will produce a p-value and a t-value. A high
p-value indicates that the two sets of data have the same mean. A high t-value indicates that large
differences exists between the two sets.[37]

Following from the Pearson’s correlation coefficient an coefficient of determination(R2) is formu-
lated. it is a means of accuracy for a regression line which ranges from 0-1. R2 is a statistical measure
of fit that indicates how much variation of a dependent variable is explained by the independent vari-
able in a regression model. An R2 of 1, indicates that 100% of the outcomes can be explained by the
regression model.[38]
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Additionally a root mean squared deviation (RMSD), also known as the root mean squared er-
ror(RMSE), is calculated to further investigate the accuracy of the model. The RMSD is a measure
of the differences between values of a model and observed values. The lower the value, the better the
accuracy is. It has to be noted that the RMSD is scale dependant. It is calculated by taking the
difference between each predicted and observed value, squaring each difference, summing them up and
dividing the by the number of observed values.[39] This becomes equation 2.7.

RMSD =

√
(

∑
(xe − xo)2

n
) (2.7)

If the Pearson’s correlation coefficients of two or three of the data sets are significant, a multiple lin-
ear regression will be applied to further investigate the relationship between variables[40]. When com-
paring two independent variables with one dependent variable this multiple linear regression method
will construct an trendline with an equation in the form of:

q = a+ bx+ cy + dz (2.8)

Where ’q’ is the dependent variable, ’b’, ’c’, and ’d’ the gradients of the independent variables, and ’a’
which is a fixed number.
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Chapter 3

Results and Discussion

3.1 Results

Using the pictures that were taken during the experiment the angles have been measured, as seen in
Fig. 3.1-3.2, and converted to fixity- and recovery rates. After the data of the experiment had been
extracted scatter plots were made with groups of the independent variables vs the dependent variable
for visual inspection which can be found below. Both 2D (fig.[3.3, ..., 3.14]) and 3D plots have been
created in order to visually inspect the found data. The 3D plots are accompanied by a regression plane
in order to better visualize the data. The covariance has been calculated for all independent variables
and can be found in table 3.1 below. A linear regression has been made based on Pearson’s correlation
coefficient and visual inspection of the scatter plots. Based on the Pearson’s correlation coefficients
found in table 3.1 only the relation between the fixity rate and layer height, and recovery rate and
infill could correlate with values of 0.57 and -0.83 respectively. The temperature does not seem to have
any correlation associated with it. The following equations 3.1 and 3.2 have been constructed through
linear regression. These linear regression lines have been plotted with their corresponding data points
in fig. 3.22 and 3.21 below.

FixityRate = 0.889 + 0.307x (3.1)

Where x stands for the Layer Height in millimeters

RecoveryRate = 0.949− 0.001x (3.2)

Where x stands for the Infill in %

Both these have been analyzed through the statistical t-test and p-test, root mean squared error,
and the coefficient of determination. The results can be found below in table 3.2. Multiple linear
regression has not been deemed useful for the acquired data with regards to the statistical data relating
to the fixity rate and the layer height.

Independent Variable Dependent Variable Pearson’s correlation coefficient
Layer Height Fixity Rate 0.57
Layer Height Recovery Rate -0.01

Printing Temperature Fixity Rate 0.15
Printing Temperature Recovery Rate -0.10

Infill Fixity Rate 0.39
Infill Recovery Rate -0.83

Table 3.1: Pearson’s correlation coefficients

Regression of t-test p-test RMSE Coefficient of determination
Fixity Rate 43.82 0.00 0.035 0.33

Recovery Rate 5.55 0.00 0.027 0.69

Table 3.2: Statistical analysis of the regression fit
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Figure 3.1: Measuring the fixed angle the sample has during the experiment using SolidWorks

Figure 3.2: Measuring the recovered angle the sample has during the experiment using SolidWorks
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Figure 3.3: Fixity Rate of Infill regarding to Layer Height. The 0.1 mm samples have, on average, a
lower fixity rate than the 0.3 mm samples

Figure 3.4: Fixity Rate of Infill regarding to Printing temperature. No relation between the points
seem to be present
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Figure 3.5: Fixity Rate of Layer Height regarding to Infill. 0% infill samples score on average lower
on fixity rate than the 50% and 100% samples

Figure 3.6: Fixity Rate of Layer Height regarding to Printing Temperature. No relation seems present
from the data set
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Figure 3.7: Fixity Rate of Printing Temperature regarding to Infill. No relation seems present from
the data set

Figure 3.8: Fixity Rate of Printing Temperature regarding to Layer Height. No relation seems present
from the data set
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Figure 3.9: Recovery Rate of Infill regarding to Layer Height. A strong linear relation seems apparent
from the displayed data set

Figure 3.10: Recovery Rate of Infill regarding to Printing Temperature. A strong linear relation seems
apparent from the displayed data set
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Figure 3.11: Recovery Rate of Layer Height regarding to Infill. On average the 0% infill samples have
a better recovery rate than the 50% and 100% infill samples

Figure 3.12: Recovery Rate of Layer Height regarding to Printing Temperature. On average the 0%
infill samples have a better recovery rate than the 50% and 100% infill samples
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Figure 3.13: Recovery Rate of Printing Temperature regarding to Infill. No relation seems present in
this data set

Figure 3.14: Recovery Rate of Printing Temperature regarding to Layer Height. No relation seems
present in this data set
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Figure 3.15: 3D plot for Recovery rate with a regression plane sorted by infill[%]. For recovery rate
no apparent relation can be seen, with minimal deviations within the plane

3.2 Discussion

From the results we can state that the printing temperature does not affect either the fixity rate or
recovery rate to such a degree that is apparent from the tests we have run. The correlation between
the fixity rate and the infill can be explained by the line structure that forms between every filled line.
For a rectilinear infill pattern, every line in a 100% infill structure is surrounded by 4 other lines(except
for the outer lines) which helps to keep each other in check and distribute stress evenly. This structure
takes more effort to deform since there is more material that can resist this change to form, but when
cooled down can keep its form in a more stable state.

Lengthwise shrinkage has occurred in multiple samples, profoundly so in the 0% infill samples.
Shrinkage of 0% up to 30% have been found during testing. This can be linked to the printing speed
of the sample, which refers to the speed in mm/s with which the print-head moves during filament
deposition. This effect has been studied by Rajkumar et al.[41] and Kauffman et al.[42] previously.
They observed that higher printing speeds promote poor print quality with regards to shrinkage rates
in multiple materials. For lower printing speeds lower shrinkage strain has been found as seen in fig
3.23

This phenomenon can be attributed to the sparse deposition of material, which leads to an in-
crease in voids within the structure and a reduction in adhesion properties between adjacent lines.
Consequently, this diminishes the mechanical performance of the printed object [43][44]. The voids
which can form can be seen in fig. 3.24 where a PLA sample has been cut through perpendicular to
the print direction. Nonetheless, it was observed that higher printing speeds facilitated an enhanced
shape transformation response, despite the concurrent decrease in mechanical properties. One of the
solutions to this problem could be to print with a different nozzle which has a larger nozzle diameter.
This change in nozzle size leads to an increase in extrusion width. Less lines have to be printed side
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Figure 3.16: 3D plot for Fixity rate with a regression plane sorted by infill[%]. A linear relation
between the fixity rate and the layer height seems apparent. Temperature might be loosely related.

Figure 3.17: 3D plot for Fixity rate with a regression plane sorted by temperature[°C]. A relation
between the fixity rate and layer height is apparent. There might also be a relation between fixity rate
and the infill
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Figure 3.18: 3D plot for recovery rate with a regression plane sorted by temperature[°C]. A clear
relation between the recovery rate and infill is displayed. The layer height does not seem to influence
the recovery rate

Figure 3.19: 3D plot for fixity rate with a regression plane sorted by layer height [mm]. A minor
relation seems visible in the data set. between the infill and fixity rate. Temperature does not affect
the fixity rate
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Figure 3.20: 3D plot for recovery rate with regression plane sorted by layer height [mm]. A relation
between the recovery rate and infill is visible within the data set. Temperature does not affect the
recovery rate

Figure 3.21: Linear regression of the Infill related to the Recovery Rate. A linear relation is apparent
within this data set as displayed
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Figure 3.22: Linear regression of the Layer Height related to the Fixity Rate. A relation is apparent
within this data set as displayed. It’s form seems likely linear. Some of the lowest recorded fixity rates
are a result of shrinkage of material which could be further researched how to make a correction factor
related to the shrinkage in order to make a more accurate model

by side in order to realize the same geometry which leads to a lower probability of included voids as
shown in fig. 3.25

Rajkumar et al. [41] also concluded based on other work that self-bending action is dominated by
the print direction of the top layers. When infill density is decreased the top layers can shrink more
because they have less material surrounding them which entails fewer constraints to deformation. This
effect can be seen in fig. 3.26 and fig. 3.27 of my experiment. Multiple 0% infill samples printed
at 0.1mm layer height exhibited this self-bending behaviour. At 0.2mm and 0.3mm this effect was
significantly less noticeable.

When increasing the layer height from 0.1mm to 0.3mm using a sample of the same dimensions
will results in a increase in total number of deposited lines. PLA filaments will increase their length
and decrease their diameter from 1.75mm to 0.4mm during extrusion[45], however part of its previous
form is retained by the SME. This causes the effect that for samples printed at 0.3mm a noticeable
increase in their height was found during testing ranging from 0.5 to 2 mm. The layers try to expand
to their previous spooled form which entails an increase in diameter of each individual layer line. This
theory is further supported two more observations made during testing: the tips of the samples printed
at a layer height of 0.3mm bend up and outwards and when printed at 0% infill the print begins to
resemble a tube like shape. Because the corners of the samples are weaker bound in their plane they
have the tendency to move out of plane due to the swelling/SME that occurs. The tube like shape
with the walls starting to bulge outwards, such as in fig. 3.29, probably occurs due to the SME, the
layer lines start to expand, shrinking their length and increasing their thickness. Because there is no
central structure binding the walls together the walls start to expand outwards to relieve their own
stress. The 0% degree also displayed a concave surface that probably occurs due to the swelling and
expanding of the sides. When these start to deform the top and bottom side also want to deform,
but the perimeters of the top and bottom side are forced inward due to the expanding walls. This
causes the top and bottom side to expand inwards. This swelling also caused the samples to grow in
size beyond what was able to fit under the bridge part of the testing structure and it was necessary to
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Figure 3.23: Effect of printing speed on the shrinkage strain [41]. Material from: Rajkumar, A.R.;
Shanmugam, K, Additive manufacturing-enabled shape transformations via FFF 4D printing, pub-
lished (2018)
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Figure 3.24: Defect appearance on a PLA specimen: (a) material voids between adjacent lines. Reused
from [43]

Figure 3.25: Lower extrusion width (on top) and higher extrusion width (on bottom) compared for a
given dimension L. Reused from [43]
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Figure 3.26: 0% infill sample printed at a layer height of 0.1mm after the programming step. Notice
the concave top layers of the sample and the bulging sided

Figure 3.27: 0% infill sample printed at a layer height of 0.1mm after the programming step. This
sample also has concave top layers and out of plane curving ends
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Figure 3.28: 0% infill sample printed at 0.3mm layer height after the recovery step. The sample is
exhibiting swelling and bulging of the sides. the short end have become concave

Figure 3.29: 0% infill sample printed at 0.3mm layer height after the recovery step as seem from above.
exhibiting swelling and bulging of the sides
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Figure 3.30: Effect of heat treatment on bending stress. Reused from [46]

remove this part of the testing structure as a result.
Two 100% infill samples became extremely hard and tough when submitted to the programming

cycle. After two minutes in the water, which was the same as the other 100% infill samples, they
became hard to the touch and extremely hard to bend. So much so that a part of the testing structure
shattered because of the required force to bend the sample. The fixity rate was so low that the values
have not been used in the rest of the experiment. Recovery was not possible after cooling and heating
the two samples.

Kartal et al.[46] have studied the effect of annealing of PLA under different circumstances. They
annealed samples for 30, 60 or 90 minutes at a temperature of 70, 85 and 100 degrees celcius. Fur-
thermore they stated that:”According to the results, it has been shown that with increasing heat
treatment temperature and duration, there are significant improvements in the mechanical properties
of PLA plastics, such as tensile strength, elastic modulus, Shore D hardness value, and bending stress.
In particular, applying heat treatment at 85°C and for 90 minutes enabled PLA plastics to achieve
the highest mechanical properties”[46]. The 100 degree Celcius annealed samples reach a Shore D
hardness value of 75-76, as opposed to the average of 69 [47]. The Bending stress also increased to
77 93 MPa.Particularly, after applying a thermal treatment of 85 °C and 90 minutes duration, the
highest flexural stress values (93 MPa) were reached for PLA plastics, as shown in Fig. 3.30. This
annealing process is probably what happened on a small scale to the 100% infill prints when comparing
the findings of the study done by Kartal et al. and my observations.
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Chapter 4

Conclusion
The research questions that were stated in the beginning of this paper were as follows

• How to control the SME of PLA through printing parameters?

This will be answered through the following sub questions:

• What are the mechanical and chemical properties of PLA and at what temperature does the
SME occur?

• What are the printing parameters of an FDM printer and how will they be modified?

• How do we qualitatively describe the SME parameters?

• What test setup will be used to deform the test structure?

• What relations can be found between parameters?

The following answers and conclusions have been found during this study. The SME of PLA is possible
to influence and control when applying different values of the infill and layer height used for the testing
structure. The printing temperature does not seems to have a significant influence on either the fixity
or recovery rate. This means that the printing temperature can be adjusted independently of the
required effect of the SME. The infill mainly affects the recovery rate of the samples and the layer
height mainly affects the fixity rate of the samples. Depending on the application a focus can be made
on either property. When the structure has to fit through a narrow opening the fixity rate can be
more important than the recovery rate. Vice versa when the final state of the structure is critical to
the application, such as a stent placed in a body, a focus should be on maximizing the recovery rate.
PLA is quite a resilient material, while being cheap and widely available. The SME of PLA occurs
around 65 °C. The fixity rates and recovery rates have been described in eq. 2.2 and 2.1 as ratios of
desired and resulting angles in order to quantitatively describe the effects the printing parameters have
on the SME. The testing structure has been displayed in Fig.2.5. The found relations between fixity
rate and layer height, and recovery rate and infill both seem linear in nature. These relation can be
used for constructing a model with which expected behaviour of 4D printed parts and structures can
be predicted. Which in turn enables better options for designing parts.

4.1 Future prospects and reflection

The results of this thesis offer new insights on the interplay between the dependent (fixity and recovery
rate) and independent (printing temperature, layer height and infill) variables which can be leveraged
for future research in 4D printing. The printing temperature has no apparent affect on either the
fixity rate or recovery rate and as such does not influence the quantified aspects of the shape memory
affect of PLA. This leaves room for the user to adjust the extrusion temperature based on mechanical
properties required for the application, since characteristics such as tensile strength can be influences
by this parameter as shown by Ansari et al.[48]. Correlation between the fixity rate and layer height,
as well as recovery rate and infill have been observed, analyzed and discussed. A linear regression has
been found for these correlations showcased in equation 3.1 and 3.2. These regressions could be used to
construct a comprehensive model to simulate expected behaviour of 4D printed parts and structures.

The lengthwise shrinkage which was prominent in the 0% infill samples are attributed to the
printing speed, especially of the top layers as shown in earlier studies done by Rajkumar et al.[41]
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and Kauffman et al.[41]. This shrinkage is attributed to voids inside the structure due to the speed,
however while it compromises mechanical properties the structure does have a stronger shape memory
effect. One solution to increase or decrease the amount of voids inside of a structure is to extrude
material through a differently sized nozzle. This can increase or decrease the amount of self-bending
action the 4D printed part experiences. Further research could be done with applying different printing
speeds to different parts of a structure to pre-program a structure with shape memory effects.

When the layer height increased the printed samples expanded more due to the shape memory
effect the PLA has in its filament form, a round 1.75mm diameter spooled wire. This expansion leads
to observable changes in the samples geometry, including bending, bulging and shrinking. The type
of geometry change is linked to both the infill and layer height, since an internal structure restricts
movement of the geometry. Further research could focus on the geometry changes and at what critical
levels of infill drastic changes in behaviour can be found, in particular at the 0% to 15% infill levels.

When heating the 0.1mm, 100% infill samples above the glass transition temperature a chance to
accidentally anneal the samples can occur. The root cause for this is once again the voids which can
be introduced during printing. At a small layer height with a 100% structure the entire structure has
a low number of voids in its system. When heated the layers will start to merge together and start
to form a solid part and with that change its accompanying mechanical properties[46]. While this is
great for structural integrity, it also reduces the shape memory effect. Further research can investigate
how this annealing can be applied for 4D structures that have to bear loads when placed.

When regarding how the findings of this paper can be applied in practice we look at three industries:
The aerospace, medical and automotive industry. In the aerospace industry lightweight and durable
components are critical, The ability to control shape memory effect of 4D printed structures could
change and optimize design and manufacturing processes. For example a 4D printed wing structure
could be designed with properties tailored to specific flight conditions, such as temperature in order to
optimize performance and fuel efficiency[49]. In the medical field the exciting possibility of personalized
healthcare through 4D printed implants could be possible. Medical practitioners can fine tune printing
parameters in order to achieve an optimal balance between fixity rate, recovery rate and mechanical
properties tailored to the patient[50]. For instance, orthopedic implants can be designed to expand or
contract to fit the contours of a patient´s bone, enhancing stability and promoting faster healing. In
the automotive industry manufacturers can apply the found knowledge to produce components with
shape memory properties to improve crash-worthiness and energy absorption during incidents[51]. For
example 4D printed bumpers or similar crash structures could be designed to deform during an accident
and return to their original shape when heated.

Another purpose for the 4D printed parts could be in the bearing industry. Plastic bearings
are widely used, but can be prone to certain issues, such as degradation and extreme loads. When
applying 4D printing a structure can be made with inclusions for self-lubricating properties and self
healing capabilities for an extended lifetime of the bearing.

The found relations can also be useful for applications regarding space travel. One of the issues
with space travel is weight, because the heavier the system is that will be launched, more fuel and
resources have to be spent in order to achieve flight to outer space. When a part has to adjust to
different surroundings, such as temperature or pressure, a 4D printed part which is able to control its
shape and function based on these stimuli can help with lowering the overall weight of a space faring
vessel.

Large scale applications such as self assembling furniture could be realised. When a material with
a suitable glass transition point is chosen, it could be possible to have an entire closed arrive within
a flat package which has to be opened, left inside a room of the appropriate temperature, which will
start the SME and the closet will self assemble without further help. The found relations could be
used to find a combination of fixity rate, recovery rate and required mechanical properties to enable
such a design.

The fashion industry could experience a major upheaval with the possibility to have clothing or
accessories which are able to transform based on the current situation. Think of earrings shaped like
a flower which are able to open and close based on the surrounding temperature. Shoes could be

37



designed in order to deliver more comfort and start to open up when the temperature starts to rise
to allow more air in and preventing sweaty feet. A chain mail structure like shirt could be printed
which can shrink and expand based on temperature and humidity in order to enhance the wearing
experience of the user. Keeping its structure closed in cold temperatures and creating gaps within the
meta structure to enhance breath-ability of the clothing.

The practical implications of this research extend across diverse industries, offering opportunities
for innovation and advancement. By leveraging the power of 4D printing, researchers and engineers
can unlock new possibilities for flexible designs, performance optimization, and personalized solutions,
ultimately shaping the future of additive manufacturing and 4D printing technology.
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Appendix B

Python code

B.1 Graphs and statistics sorted by layer height

# -*- coding: utf-8 -*-

"""

Created on Fri Feb 9 17:07:53 2024

@author: besov

"""

# -*- coding: utf-8 -*-

"""

Created on Tue Apr 26 11:25:11 2022

@author: besov

"""

import pandas as pd

import glob

import matplotlib.pyplot as plt

import numpy as np

from scipy import stats

# Loading all files from folder into workable python lists

li = []

dfs = pd.read_csv(r’C:\Users\besov\OneDrive\School\Thesis\python\data lh.csv’);

data= dfs.values

li.append(dfs)

list1 = li[0]

infill=[None] * len(list1)

temp=[None] * len(list1)

lh=[None] * len(list1)

fru=[None] * len(list1)

frl=[None] * len(list1)

rru=[None] * len(list1)

rrl=[None] * len(list1)

for num in range(0 , len(data)):

temp[num] = data[num, 3]

infill[num] = data[num, 2]

lh[num] = data[num, 1]

fru[num] = data[num, 4]
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frl[num] = data[num, 5]

rru[num] = 180 - data[num, 6]

rrl[num] = 180 - data[num, 7]

#taking average of measure angles from the top and bottom

def mean(numbers):

return float(sum(numbers)) / max(len(numbers), 1)

rr = [mean(i) for i in zip(rru,rrl)]

def mean(numbers):

return float(sum(numbers)) / max(len(numbers), 1)

fr = [mean(i) for i in zip(fru,frl)]

fr= [x/38.5 for x in fr]

#rr = list(set(rr) - 180)

rr= [x/180 for x in rr]

’’’

#plot of data

fig=plt.figure(dpi=500)

plt.scatter(temp[0:9], fr[0:9], label=’Fixity Rate 0.3 [mm]’)

plt.scatter(temp[9:18], fr[9:18], label=’Fixity Rate 0.2 [mm]’)

plt.scatter(temp[18:26], fr[18:26], label=’Fixity Rate 0.1 [mm]’)

plt.ylabel(’Fixity Rate [$_u/_m$]’)

plt.xlabel(’Temperature in Degrees [C]’)

plt.title(’Fixity Rate of Temperature regarding to Layer Height’)

plt.legend(bbox_to_anchor=(1.05, 1), loc=’upper left’, borderaxespad=0)

plt.show()

fig=plt.figure(dpi=500)

plt.scatter(temp[0:9], rr[0:9], label=’Recovery Rate 0.3 [mm]’)

plt.scatter(temp[9:18], rr[9:18], label=’Recovery Rate 0.2 [mm]’)

plt.scatter(temp[18:26], rr[18:26], label=’Recovery Rate 0.1 [mm]’)

plt.ylabel(’Recovery Rate [$_r/_m$]’)

plt.xlabel(’Temperature in Degrees [C]’)

plt.title(’Recovery Rate of Printing Temperature regarding to Layer Height’)

plt.legend(bbox_to_anchor=(1.05, 1), loc=’upper left’, borderaxespad=0)

plt.show()

fig=plt.figure(dpi=500)

plt.scatter(infill[0:9], fr[0:9], label=’Fixity Rate 0.3 [mm]’)

plt.scatter(infill[9:18], fr[9:18], label=’Fixity Rate 0.2 [mm]’)

plt.scatter(infill[18:26], fr[18:26], label=’Fixity Rate 0.1 [mm]’)

plt.ylabel(’Fixity Rate [$_u/_m$]’)
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plt.xlabel(’Infill in [%]’)

plt.legend(bbox_to_anchor=(1.05, 1), loc=’upper left’, borderaxespad=0)

plt.title(’Fixity Rate of Infill regarding to Layer Height’)

plt.show()

fig=plt.figure(dpi=500)

plt.scatter(infill[0:9], rr[0:9], label=’Recovery Rate 0.3 [mm]’)

plt.scatter(infill[9:18], rr[9:18], label=’Recovery Rate 0.2 [mm]’)

plt.scatter(infill[18:26], rr[18:26], label=’Recovery Rate 0.1 [mm]’)

plt.ylabel(’Recovery Rate [$_r/_m$]’)

plt.xlabel(’Infill in [%]’)

plt.legend(bbox_to_anchor=(1.05, 1), loc=’upper left’, borderaxespad=0)

plt.title(’Recovery Rate of Infill regarding to Layer Height’)

plt.show()

’’’

from sklearn import linear_model

x = list (zip(infill, temp))

X = pd.DataFrame(x, columns = [’infill’, ’temp’])

y = rr

regr = linear_model.LinearRegression()

regr.fit(X, y)

print(regr.coef_)

asdf = regr.predict(X)

coeff_df = pd.DataFrame(regr.coef_, X.columns, columns=[’Coefficient’])

e=coeff_df.to_numpy()[1:2]

f=coeff_df.to_numpy()[0:1]

d=regr.intercept_

x = [0, 50, 100]

y = [190, 200, 210]

Xx,Yy = np.meshgrid(x,y)

Zz = (d + f*Xx + e*Yy)

zdata = rr

ydata = temp

xdata = infill
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fig = plt.figure(dpi=1200)

ax = plt.axes(projection=’3d’, proj_type = ’ortho’)

surf = ax.plot_surface(Xx, Yy, Zz,cmap=’Dark2’, label=’Regression plane’, alpha=0.5);

ax.scatter3D(xdata[0:9], ydata[0:9], zdata[0:9], color=’blue’, depthshade=True, label=’layer height 0.3 [mm]’);

ax.scatter3D(xdata[9:18], ydata[9:18], zdata[9:18], color=’black’, depthshade=True, label=’layer height 0.2 [mm]’);

ax.scatter3D(xdata[18:26], ydata[18:26], zdata[18:26], color=’red’, depthshade=True, label=’layer height 0.1 [mm]’);

#ax.view_init(45, 45)

#ax.invert_xaxis()

plt.legend(bbox_to_anchor=(0.15, 1), loc=’upper right’, borderaxespad=0)

ax.set_xlabel(’Infill [%]’, fontsize=6)

ax.set_ylabel(’Printing temperature [°C]’, fontsize=6)

ax.set_zlabel(’Recovery rate’, fontsize=6)

plt.title(’3D plot for recovery rate with regression plane sorted by layer height [mm]’)

plt.show()

from sklearn import linear_model

x = list (zip(infill, temp))

X = pd.DataFrame(x, columns = [’infill’, ’temp’])

y = fr

regr = linear_model.LinearRegression()

regr.fit(X, y)

print(regr.coef_)

asdf = regr.predict(X)

coeff_df = pd.DataFrame(regr.coef_, X.columns, columns=[’Coefficient’])

e=coeff_df.to_numpy()[1:2]

f=coeff_df.to_numpy()[0:1]

d=regr.intercept_

x = [0, 50, 100]

y = [190, 200, 210]
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Xx,Yy = np.meshgrid(x,y)

Zz = (d + f*Xx + e*Yy)

zdata = fr

ydata = temp

xdata = infill

fig = plt.figure(dpi=1200)

ax = plt.axes(projection=’3d’, proj_type = ’ortho’)

surf = ax.plot_surface(Xx, Yy, Zz,cmap=’Dark2’, label=’Regression plane’, alpha=0.5);

ax.scatter3D(xdata[0:9], ydata[0:9], zdata[0:9], color=’blue’, depthshade=True, label=’layer height 0.3 [mm]’);

ax.scatter3D(xdata[9:18], ydata[9:18], zdata[9:18], color=’black’, depthshade=True, label=’layer height 0.2 [mm]’);

ax.scatter3D(xdata[18:26], ydata[18:26], zdata[18:26], color=’red’, depthshade=True, label=’layer height 0.1 [mm]’);

#ax.view_init(45, 45)

#ax.invert_xaxis()

plt.legend(bbox_to_anchor=(0.15, 1), loc=’upper right’, borderaxespad=0)

ax.set_xlabel(’Infill [%]’, fontsize=6)

ax.set_ylabel(’Printing temperature [°C]’, fontsize=6)

ax.set_zlabel(’Fixity rate’, fontsize=6)

plt.title(’3D plot for fixity rate with regression plane sorted by layer height [mm]’)

plt.show()
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’’’

#fig=plt.figure()

#plt.scatter(lh[0:9], fr[0:9], label=’Fixity Rate 0.3mm’)

#plt.scatter(lh[0:9], rr[0:9], label=’Recovery Rate 0.3mm’)

#plt.scatter(lh[9:18], fr[9:18], label=’Fixity Rate 0.2mm’)

#plt.scatter(lh[9:18], rr[9:18], label=’Recovery Rate 0.2mm’)

#plt.scatter(lh[18:26], fr[18:26], label=’Fixity Rate 0.1mm’)

#plt.scatter(lh[18:26], rr[18:26], label=’Recovery Rate 0.1mm’)

#plt.ylabel(’Angle in degrees’)

#plt.xlabel(’Layer Height in mm’)

#plt.title(’Experiment with layer height of 0.3mm and ’)

#plt.legend(bbox_to_anchor=(1.05, 1), loc=’upper left’, borderaxespad=0)

#plt.show()

print(np.corrcoef(lh[0:18], fr[0:18]))

print(np.corrcoef(lh, rr))

print(np.corrcoef(temp, fr))

print(np.corrcoef(temp, rr))

print(np.corrcoef(infill, fr))

print(np.corrcoef(infill, rr))

from sklearn import linear_model

from sklearn.metrics import mean_squared_error, r2_score

st=lh

st=np.array(st)

ste = st.reshape(len(st), 1)

regr = linear_model.LinearRegression()

regr.fit(ste, fr)

stress = regr.predict(ste)

fig = plt.figure(dpi=500)

plt.plot(ste, stress, label=’Linear Regression’)

plt.scatter(lh, fr, color=’green’, label=’Fixity Rate’)

plt.ylabel(’Fixity Rate [$_u/_m$]’)
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plt.xlabel(’Layer Height in [mm]’)

plt.title(’Linear Regression of Layer Height and Fixity Rate’)

plt.legend(bbox_to_anchor=(1.05, 1), loc=’upper left’, borderaxespad=0)

# The mean squared error

print(’Infill stats’)

print(’Root Mean Squared Error:’, np.sqrt(mean_squared_error(fr, stress)))

# The coefficient of determination: 1 is perfect prediction

print("Coefficient of determination (R2): %.2f" % r2_score(fr, stress))

corravg = np.corrcoef(fr, st)

print(’Pearson\’s correlation avg :’, corravg[:,1])

print(’’)

print(’Linear regression in the form of y=a+bx’)

print(’a=’, regr.intercept_)

print(’b=’, regr.coef_)

#print(’mean =’, np.mean(rr))

#print(’standard deviation =’, np.std(rr))

print(’’)

t_value,p_value=stats.ttest_ind(st,stress)

print(’t-value for two tailed test is %f’%t_value)

print(’p-value for two tailed test is %f’%p_value)

#print(’mean =’, np.mean(stress))

#print(’standard deviation =’, np.std(stress))

’’’

B.2 Graphs and statistics sorted by printing temperature

# -*- coding: utf-8 -*-

"""

Created on Fri Feb 9 17:07:53 2024

@author: besov

"""

# -*- coding: utf-8 -*-

"""

Created on Tue Apr 26 11:25:11 2022

@author: besov

"""

import pandas as pd

import glob

import matplotlib.pyplot as plt

import numpy as np

from scipy import stats
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# Loading all files from folder into workable python lists

li = []

dfs = pd.read_csv(r’C:\Users\besov\OneDrive\School\Thesis\python\data temp.csv’);

data= dfs.values

li.append(dfs)

list1 = li[0]

infill=[None] * len(list1)

temp=[None] * len(list1)

lh=[None] * len(list1)

fru=[None] * len(list1)

frl=[None] * len(list1)

rru=[None] * len(list1)

rrl=[None] * len(list1)

for num in range(0 , len(data)):

temp[num] = data[num, 3]

infill[num] = data[num, 2]

lh[num] = data[num, 1]

fru[num] = data[num, 4]

frl[num] = data[num, 5]

rru[num] = 180 - data[num, 6]

rrl[num] = 180 - data[num, 7]

#taking average of measure angles from the top and bottom

def mean(numbers):

return float(sum(numbers)) / max(len(numbers), 1)

rr = [mean(i) for i in zip(rru,rrl)]

def mean(numbers):

return float(sum(numbers)) / max(len(numbers), 1)

fr = [mean(i) for i in zip(fru,frl)]

fr= [x/38.5 for x in fr]

#rr = list(set(rr) - 180)

rr= [x/180 for x in rr]

’’’
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fig=plt.figure(dpi=500)

plt.scatter(infill[0:8], fr[0:8], label=’Fixity Rate Temp 210 [°C]’)
plt.scatter(infill[8:17], fr[8:17], label=’Fixity Rate Temp 200 [°C]’)
plt.scatter(infill[17:26], fr[17:26], label=’Fixity Rate Temp 190 [°C]’)
plt.ylabel(’Fixity Rate [$_u/_m$]’)

plt.xlabel(’Infill in [%]’)

plt.title(’Fixity Rate of Infill regarding to Printing Temperature’)

plt.legend(bbox_to_anchor=(1.05, 1), loc=’upper left’, borderaxespad=0)

plt.show()

fig=plt.figure(dpi=500)

plt.scatter(lh[0:8], fr[0:8], label=’Fixity Rate Temp 210 [°C]’)
plt.scatter(lh[8:17], fr[8:17], label=’Fixity Rate Temp 200 [°C]’)
plt.scatter(lh[17:26], fr[17:26], label=’Fixity Rate Temp 190 [°C]’)
plt.ylabel(’Fixity Rate [$_u/_m$]’)

plt.xlabel(’Layer Height in [mm]’)

plt.title(’Fixity rate of Layer Height regarding to Printing Temperature’)

plt.legend(bbox_to_anchor=(1.05, 1), loc=’upper left’, borderaxespad=0)

plt.show()

fig=plt.figure(dpi=500)

plt.scatter(infill[0:8], rr[0:8], label=’Recovery Rate Temp 210 [°C]’)
plt.scatter(infill[8:17], rr[8:17], label=’Recovery Rate Temp 200 [°C]’)
plt.scatter(infill[17:26], rr[17:26], label=’Recovery Rate Temp 190 [°C]’)
plt.ylabel(’Recovery Rate [$_r/_m$]’)

plt.xlabel(’Infill in [%]’)

plt.title(’Recovery Rate of Infill regarding to Printing Temperature’)

plt.legend(bbox_to_anchor=(1.05, 1), loc=’upper left’, borderaxespad=0)

plt.show()

fig=plt.figure(dpi=500)

plt.scatter(lh[0:8], rr[0:8], label=’Recovery Rate Temp 210 [°C]’)
plt.scatter(lh[8:17], rr[8:17], label=’Recovery Rate Temp 200 [°C]’)
plt.scatter(lh[17:26], rr[17:26], label=’Recovery Rate Temp 190 [°C]’)
plt.ylabel(’Recovery Rate [$_r/_m$]’)

plt.xlabel(’Layer height in [mm]’)

plt.title(’Recovery rate of Layer Height regarding to Printing Temperature’)

plt.legend(bbox_to_anchor=(1.05, 1), loc=’upper left’, borderaxespad=0)

plt.show()

’’’

from sklearn import linear_model

x = list (zip(infill, lh))

X = pd.DataFrame(x, columns = [’infill’, ’lh’])
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y = fr

regr = linear_model.LinearRegression()

regr.fit(X, y)

print(regr.coef_)

asdf = regr.predict(X)

coeff_df = pd.DataFrame(regr.coef_, X.columns, columns=[’Coefficient’])

e=coeff_df.to_numpy()[1:2]

f=coeff_df.to_numpy()[0:1]

d=regr.intercept_

x = [0, 50, 100]

y = [0.1, 0.2, 0.3]

Xx,Yy = np.meshgrid(x,y)

Zz = (d + f*Xx + e*Yy)

zdata = fr

ydata = lh

xdata = infill

fig = plt.figure(dpi=1200)

ax = plt.axes(projection=’3d’, proj_type = ’ortho’)

surf = ax.plot_surface(Xx, Yy, Zz,cmap=’Dark2’, label=’Regression plane’, alpha=0.5);

ax.scatter3D(xdata[0:8], ydata[0:8], zdata[0:8], color=’blue’, depthshade=True, label=’printing temperature 210 [°C]’);
ax.scatter3D(xdata[8:17], ydata[8:17], zdata[8:17], color=’black’, depthshade=True, label=’printing temperature 200 [°C]’);
ax.scatter3D(xdata[17:26], ydata[17:26], zdata[17:26], color=’red’, depthshade=True, label=’printing temperature 190 [°C]’);

#ax.view_init(45, 45)

#ax.invert_xaxis()

plt.legend(bbox_to_anchor=(0.15, 1), loc=’upper right’, borderaxespad=0)

ax.set_xlabel(’Infill [%]’, fontsize=6)

ax.set_ylabel(’Layer height [mm]’, fontsize=6)

ax.set_zlabel(’Fixity rate’, fontsize=6)

plt.title(’3D plot for fixity rate with regression plane sorted by printing temperature [°C]’)
plt.show()
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x = list (zip(infill, lh))

X = pd.DataFrame(x, columns = [’temp’, ’lh’])

y = rr

regr = linear_model.LinearRegression()

regr.fit(X, y)

print(regr.coef_)

asdf = regr.predict(X)

coeff_df = pd.DataFrame(regr.coef_, X.columns, columns=[’Coefficient’])

e=coeff_df.to_numpy()[1:2]

f=coeff_df.to_numpy()[0:1]

d=regr.intercept_

x = [0, 50, 100]

y = [0.1, 0.2, 0.3]

Xx,Yy = np.meshgrid(x,y)

Zz = (d + f*Xx + e*Yy)

zdata = rr

ydata = lh

xdata = infill

fig = plt.figure(dpi=1200)

ax = plt.axes(projection=’3d’, proj_type = ’ortho’)

surf = ax.plot_surface(Xx, Yy, Zz,cmap=’Dark2’, label=’Regression plane’, alpha=0.5);

ax.scatter3D(xdata[0:8], ydata[0:8], zdata[0:8], color=’blue’, depthshade=True, label=’printing temperature 210 [°C]’);
ax.scatter3D(xdata[8:17], ydata[8:17], zdata[8:17], color=’black’, depthshade=True, label=’printing temperature 200 [°C]’);
ax.scatter3D(xdata[17:26], ydata[17:26], zdata[17:26], color=’red’, depthshade=True, label=’printing temperature 190 [°C]’);

#ax.view_init(45, 45)

#ax.invert_xaxis()

plt.legend(bbox_to_anchor=(0.15, 1), loc=’upper right’, borderaxespad=0)
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ax.set_xlabel(’Infill [%]’, fontsize=6)

ax.set_ylabel(’Layer height [mm]’, fontsize=6)

ax.set_zlabel(’Recovery rate’, fontsize=6)

plt.title(’3D plot for recovery rate with regression plane sorted by printing temperature [°C]’)
plt.show()
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’’’’

#plot of data

fig=plt.figure()

plt.scatter(temp[0:9], fr[0:9], label=’Fixity Rate 0.3mm’)

plt.scatter(temp[0:9], rr[0:9], label=’Recovery Rate 0.3mm’)

plt.scatter(temp[9:18], fr[9:18], label=’Fixity Rate 0.2mm’)

plt.scatter(temp[9:18], rr[9:18], label=’Recovery Rate 0.2mm’)

plt.scatter(temp[18:26], fr[18:26], label=’Fixity Rate 0.1mm’)

plt.scatter(temp[18:26], rr[18:26], label=’Recovery Rate 0.1mm’)

plt.ylabel(’Angle in degrees’)

plt.xlabel(’Temperature in Degrees [C]’)

plt.title(’Experiment with layer height of 0.3mm and ’)

plt.legend(bbox_to_anchor=(1.05, 1), loc=’upper left’, borderaxespad=0)

plt.show()

fig=plt.figure()

plt.scatter(infill[0:9], fr[0:9], label=’Fixity Rate 0.3mm’)

plt.scatter(infill[0:9], rr[0:9], label=’Recovery Rate 0.3mm’)

plt.scatter(infill[9:18], fr[9:18], label=’Fixity Rate 0.2mm’)

plt.scatter(infill[9:18], rr[9:18], label=’Recovery Rate 0.2mm’)

plt.scatter(infill[18:26], fr[18:26], label=’Fixity Rate 0.1mm’)

plt.scatter(infill[18:26], rr[18:26], label=’Recovery Rate 0.1mm’)

plt.ylabel(’Angle in degrees’)

plt.xlabel(’Infill in [%]’)

plt.legend(bbox_to_anchor=(1.05, 1), loc=’upper left’, borderaxespad=0)

plt.title(’Experiment with layer height of 0.3mm’)

plt.show()

fig=plt.figure()

plt.scatter(lh[0:9], fr[0:9], label=’Fixity Rate 0.3mm’)

plt.scatter(lh[0:9], rr[0:9], label=’Recovery Rate 0.3mm’)

plt.scatter(lh[9:18], fr[9:18], label=’Fixity Rate 0.2mm’)

plt.scatter(lh[9:18], rr[9:18], label=’Recovery Rate 0.2mm’)

plt.scatter(lh[18:26], fr[18:26], label=’Fixity Rate 0.1mm’)
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plt.scatter(lh[18:26], rr[18:26], label=’Recovery Rate 0.1mm’)

plt.ylabel(’Angle in degrees’)

plt.xlabel(’Layer Height in mm’)

plt.title(’Experiment with layer height of 0.3mm and ’)

plt.legend(bbox_to_anchor=(1.05, 1), loc=’upper left’, borderaxespad=0)

plt.show()

#print(np.corrcoef(lh, fr))

#print(np.corrcoef(lh, rr))

#print(np.corrcoef(temp, fr))

#print(np.corrcoef(temp, rr))

#print(np.corrcoef(infill, fr))

#print(np.corrcoef(infill, rr))

from sklearn import linear_model

from sklearn.metrics import mean_squared_error, r2_score

st=temp

st=np.array(st)

ste = st.reshape(len(st), 1)

regr = linear_model.LinearRegression()

regr.fit(ste, rr)

stress = regr.predict(ste)

#fig = plt.figure(dpi=1000)

plt.plot(ste, stress, label=’linear regression average stress’)

plt.scatter(temp, rr, color=’black’, label=’average stress time corrected’)

# The mean squared error

print(’Infill stats’)

print(’Root Mean Squared Error:’, np.sqrt(mean_squared_error(rr, stress)))

# The coefficient of determination: 1 is perfect prediction

print("Coefficient of determination (R2): %.2f" % r2_score(rr, stress))

corravg = np.corrcoef(rr, st)

print(’Pearson\’s correlation avg :’, corravg[:,1])

print(’’)

print(’Linear regression in the form of y=a+bx’)

print(’a=’, regr.intercept_)

print(’b=’, regr.coef_)

#print(’mean =’, np.mean(rr))

#print(’standard deviation =’, np.std(rr))

print(’’)

t_value,p_value=stats.ttest_ind(st,stress)
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print(’t-value for two tailed test is %f’%t_value)

print(’p-value for two tailed test is %f’%p_value)

#print(’mean =’, np.mean(stress))

#print(’standard deviation =’, np.std(stress))

’’’

B.3 Graphs and statistics sorted by infill

# -*- coding: utf-8 -*-

"""

Created on Fri Mar 22 14:00:05 2024

@author: besov

"""

# -*- coding: utf-8 -*-

"""

Created on Fri Feb 9 17:07:53 2024

@author: besov

"""

# -*- coding: utf-8 -*-

"""

Created on Tue Apr 26 11:25:11 2022

@author: besov

"""

import pandas as pd

import glob

import matplotlib.pyplot as plt

import numpy as np

from scipy import stats

# Loading all files from folder into workable python lists

li = []

dfs = pd.read_csv(r’C:\Users\besov\OneDrive\School\Thesis\python\data infill.csv’);

data= dfs.values

li.append(dfs)

list1 = li[0]

infill=[None] * len(list1)

temp=[None] * len(list1)

lh=[None] * len(list1)

fru=[None] * len(list1)

frl=[None] * len(list1)

rru=[None] * len(list1)
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rrl=[None] * len(list1)

for num in range(0 , len(data)):

temp[num] = data[num, 3]

infill[num] = data[num, 2]

lh[num] = data[num, 1]

fru[num] = data[num, 4]

frl[num] = data[num, 5]

rru[num] = 180 - data[num, 6]

rrl[num] = 180 - data[num, 7]

#taking average of measure angles from the top and bottom

def mean(numbers):

return float(sum(numbers)) / max(len(numbers), 1)

rr = [mean(i) for i in zip(rru,rrl)]

def mean(numbers):

return float(sum(numbers)) / max(len(numbers), 1)

fr = [mean(i) for i in zip(fru,frl)]

fr= [x/38.5 for x in fr]

#rr = list(set(rr) - 180)

rr= [x/180 for x in rr]

’’’

#plot of data

fig=plt.figure(dpi=500)

plt.scatter(temp[0:7], fr[0:7], label=’Fixity Rate Infill 100 [%]’)

plt.scatter(temp[7:16], fr[7:16], label=’Fixity Rate Infill 50 [%]’)

plt.scatter(temp[16:26], fr[16:26], label=’Fixity Rate Infill 0 [%]’)

plt.ylabel(’Fixity Rate [$_u/_m$]’)

plt.xlabel(’Temperature in Degrees [C]’)

plt.title(’Fixity Rate of Temperature regarding to Infill’)

plt.legend(bbox_to_anchor=(1.05, 1), loc=’upper left’, borderaxespad=0)

plt.show()

fig=plt.figure(dpi=500)

plt.scatter(lh[0:7], fr[0:7], label=’Fixity Rate Infill 100 [%]’)

plt.scatter(lh[7:16], fr[7:16], label=’Fixity Rate Infill 50 [%]’)

plt.scatter(lh[16:26], fr[16:26], label=’Fixity Rate Infill 0 [%]’)

plt.ylabel(’Fixity Rate [$_u/_m$]’)

plt.xlabel(’Layer Height in [mm]’)

plt.title(’Fixity Rate of Layer Height regarding to Infill’)

plt.legend(bbox_to_anchor=(1.05, 1), loc=’upper left’, borderaxespad=0)
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plt.show()

fig=plt.figure(dpi=500)

plt.scatter(temp[0:7], rr[0:7], label=’Recovery Rate Infill 100 [%]’)

plt.scatter(temp[7:16], rr[7:16], label=’Recovery Rate Infill 50 [%]’)

plt.scatter(temp[16:26], rr[16:26], label=’Recovery Rate Infill 0 [%]’)

plt.ylabel(’Recovery Rate [$_r/_m$]’)

plt.xlabel(’Temperature in Degrees [C]’)

plt.title(’Recovery Rate of Printing Temperature regarding to Infill’)

plt.legend(bbox_to_anchor=(1.05, 1), loc=’upper left’, borderaxespad=0)

plt.show()

fig=plt.figure(dpi=500)

plt.scatter(lh[0:7], rr[0:7], label=’Recovery Rate Infill 100 [%]’)

plt.scatter(lh[7:16], rr[7:16], label=’Recovery Rate Infill 50 [%]’)

plt.scatter(lh[16:26], rr[16:26], label=’Recovery Rate Infill 0 [%]’)

plt.ylabel(’Recovery Rate [$_r/_m$]’)

plt.xlabel(’Layer Height in [mm]’)

plt.title(’Recovery Rate of Layer Height regarding to Infill’)

plt.legend(bbox_to_anchor=(1.05, 1), loc=’upper left’, borderaxespad=0)

plt.show()

’’’

’’’

from sklearn import linear_model

from sklearn.metrics import mean_squared_error, r2_score

fig=plt.figure(dpi=500)

st=infill

st=np.array(st)

ste = st.reshape(len(st), 1)

regr = linear_model.LinearRegression()

regr.fit(ste, rr)

stress = regr.predict(ste)

#fig = plt.figure(dpi=1000)

plt.plot(ste, stress, label=’Linear Regression’)

plt.scatter(infill, rr, color=’black’, label=’Recovery Rate’)

plt.ylabel(’Recovery Rate [$_r/_m$]’)

plt.xlabel(’Infill in [%]’)

plt.title(’Linear Regression of Infill and Recovery Rate’)

plt.legend(bbox_to_anchor=(1.05, 1), loc=’upper left’, borderaxespad=0)

# The mean squared error

print(’Infill stats’)
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print(’Root Mean Squared Error:’, np.sqrt(mean_squared_error(rr, stress)))

# The coefficient of determination: 1 is perfect prediction

print("Coefficient of determination (R2): %.2f" % r2_score(rr, stress))

corravg = np.corrcoef(rr, st)

print(’Pearson\’s correlation avg :’, corravg[:,1])

print(’’)

print(’Linear regression in the form of y=a+bx’)

print(’a=’, regr.intercept_)

print(’b=’, regr.coef_)

#print(’mean =’, np.mean(rr))

#print(’standard deviation =’, np.std(rr))

print(’’)

t_value,p_value=stats.ttest_ind(st,stress)

print(’t-value for two tailed test is %f’%t_value)

print(’p-value for two tailed test is %f’%p_value)

#print(’mean =’, np.mean(stress))

#print(’standard deviation =’, np.std(stress))

’’’

’’’

x = list (zip(temp, lh))

X = pd.DataFrame(x, columns = [’temp’, ’lh’])

y = fr

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=7, random_state=0)

from sklearn.linear_model import LinearRegression

regressor = LinearRegression()

a=regressor.fit(X_train, y_train)

stress = regressor.predict(X)

regressor = LinearRegression()

a=regressor.fit(X_train, y_train)

coeff_df = pd.DataFrame(regressor.coef_, X.columns, columns=[’Coefficient’])

b=coeff_df.to_numpy()[1:2]

a=coeff_df.to_numpy()[0:1]

d=regressor.intercept_

#x = np.linspace(0,0.4,10)

#y = np.linspace(0.05,0.240,10)
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x = [190, 200, 210]

y = [0.1, 0.2, 0.3]

Xx,Yy = np.meshgrid(x,y)

Zz = (d + a*Xx + b*Yy)

zdata = fr

ydata = lh

xdata = temp

fig = plt.figure(dpi=1200)

ax = plt.axes(projection=’3d’, proj_type = ’ortho’)

surf = ax.plot_surface(Xx, Yy, Zz,cmap=’Dark2’, label=’Regression plane’, alpha=0.5);

#surf._facecolors2d = surf._facecolor3d

#surf._edgecolors2d = surf._edgecolor3d

#fng._facecolors3d= ’black’

#fng._edgecolors3d= ’black’

#surf._facecolors3d= ’black’

#fng._edgecolors2d= ’black’

ax.scatter3D(xdata[0:7], ydata[0:7], zdata[0:7], color=’blue’, depthshade=True, label=’0 [%]’);

ax.scatter3D(xdata[7:16], ydata[7:16], zdata[7:16], color=’green’, depthshade=True, label=’50 [%]’);

ax.scatter3D(xdata[16:26], ydata[16:26], zdata[16:26], color=’red’, depthshade=True, label=’100 [%]’);

plt.legend(bbox_to_anchor=(1.05, 1), loc=’upper left’, borderaxespad=0)

ax.set_xlabel(’Temperature [°C]’)
ax.set_ylabel(’Layer height [mm]’)

ax.set_zlabel(’Fixity rate’)

plt.title(’3D plot for fixity rate with regression plane’)

plt.show()

’’’

from sklearn import linear_model

x = list (zip(temp, lh))

X = pd.DataFrame(x, columns = [’temp’, ’lh’])

y = fr

regr = linear_model.LinearRegression()

regr.fit(X, y)

print(regr.coef_)

asdf = regr.predict(X)

coeff_df = pd.DataFrame(regr.coef_, X.columns, columns=[’Coefficient’])

e=coeff_df.to_numpy()[1:2]
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f=coeff_df.to_numpy()[0:1]

d=regr.intercept_

x = [190, 200, 210]

y = [0.1, 0.2, 0.3]

Xx,Yy = np.meshgrid(x,y)

Zz = (d + f*Xx + e*Yy)

zdata = fr

ydata = lh

xdata = temp

fig = plt.figure(dpi=1200)

ax = plt.axes(projection=’3d’, proj_type = ’ortho’)

surf = ax.plot_surface(Xx, Yy, Zz,cmap=’Dark2’, label=’Regression plane’, alpha=0.5);

ax.scatter3D(xdata[0:7], ydata[0:7], zdata[0:7], color=’blue’, depthshade=True, label=’infill 0 [%]’);

ax.scatter3D(xdata[7:16], ydata[7:16], zdata[7:16], color=’green’, depthshade=True, label=’infill 50 [%]’);

ax.scatter3D(xdata[16:26], ydata[16:26], zdata[16:26], color=’red’, depthshade=True, label=’infill 100 [%]’);

plt.legend(bbox_to_anchor=(0.15, 1), loc=’upper right’, borderaxespad=0)

ax.set_xlabel(’Printing temperature [°C]’, fontsize=6)

ax.set_ylabel(’Layer height [mm]’, fontsize=6)

ax.set_zlabel(’Fixity rate’, fontsize=6)

plt.title(’3D plot for fixity rate with regression plane sorted by infill [%]’)

plt.show()

x = list (zip(temp, lh))

X = pd.DataFrame(x, columns = [’temp’, ’lh’])

y = rr

regr = linear_model.LinearRegression()

regr.fit(X, y)

print(regr.coef_)

asdf = regr.predict(X)

coeff_df = pd.DataFrame(regr.coef_, X.columns, columns=[’Coefficient’])

e=coeff_df.to_numpy()[1:2]

f=coeff_df.to_numpy()[0:1]

d=regr.intercept_
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x = [190, 200, 210]

y = [0.1, 0.2, 0.3]

Xx,Yy = np.meshgrid(x,y)

Zz = (d + f*Xx + e*Yy)

zdata = rr

ydata = lh

xdata = temp

fig = plt.figure(dpi=1200)

ax = plt.axes(projection=’3d’, proj_type = ’ortho’)

surf = ax.plot_surface(Xx, Yy, Zz,cmap=’Dark2’, label=’Regression plane’, alpha=0.5);

ax.scatter3D(xdata[0:7], ydata[0:7], zdata[0:7], color=’blue’, depthshade=True, label=’infill 0 [%]’);

ax.scatter3D(xdata[7:16], ydata[7:16], zdata[7:16], color=’green’, depthshade=True, label=’infill 50 [%]’);

ax.scatter3D(xdata[16:26], ydata[16:26], zdata[16:26], color=’red’, depthshade=True, label=’infill 100 [%]’);

plt.legend(bbox_to_anchor=(0.15, 1), loc=’upper right’, borderaxespad=0)

ax.set_xlabel(’Printing temperature [°C]’, fontsize=6)

ax.set_ylabel(’Layer height [mm]’, fontsize=6)

ax.set_zlabel(’Recovery rate’, fontsize=6)

plt.title(’3D plot for recovery rate with regression plane sorted by infill [%]’)

plt.show()

#print(np.corrcoef(rr, temp))

’’’

fig = plt.figure(dpi=500)

ax = plt.axes(projection=’3d’, proj_type = ’ortho’)

ax.scatter3D(xdata[0:7], ydata[0:7], zdata[0:7], color=’blue’, depthshade=True, label=’0 [%]’);

ax.scatter3D(xdata[7:16], ydata[7:16], zdata[7:16], color=’green’, depthshade=True, label=’50 [%]’);

ax.scatter3D(xdata[16:26], ydata[16:26], zdata[16:26], color=’red’, depthshade=True, label=’100 [%]’);

#ax.view_init(45, 45)

surf = ax.plot_trisurf(xdata[0:7], ydata[0:7], zdata[0:7],cmap=’Blues’, label=’Regression plane’, alpha=0.5);

surf = ax.plot_trisurf(xdata[7:16], ydata[7:16], zdata[7:16],cmap=’Greens’, label=’Regression plane’, alpha=0.5);

surf = ax.plot_trisurf(xdata[16:26], ydata[16:26], zdata[16:26],cmap=’Reds’, label=’Regression plane’, alpha=0.5);

#ax.invert_xaxis()

plt.legend(bbox_to_anchor=(1.05, 1), loc=’upper left’, borderaxespad=0)

ax.set_xlabel(’Temperature [°C]’)
ax.set_ylabel(’Layer height [mm]’)

ax.set_zlabel(’Recovery rate’)
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plt.title(’3D plot for recovery rate’)

plt.show()

fig = plt.figure(dpi=500)

ax = plt.axes(projection=’3d’, proj_type = ’ortho’)

zdata = fr

ydata = lh

xdata = temp

ax.scatter3D(xdata[0:7], ydata[0:7], zdata[0:7], color=’blue’, depthshade=True, label=’0 [%]’);

ax.scatter3D(xdata[7:16], ydata[7:16], zdata[7:16], color=’green’, depthshade=True, label=’50 [%]’);

ax.scatter3D(xdata[16:26], ydata[16:26], zdata[16:26], color=’red’, depthshade=True, label=’100 [%]’);

#ax.view_init(45, 45)

surf = ax.plot_trisurf(xdata[0:7], ydata[0:7], zdata[0:7],cmap=’Blues’, label=’Regression plane’, alpha=0.5);

surf = ax.plot_trisurf(xdata[7:16], ydata[7:16], zdata[7:16],cmap=’Greens’, label=’Regression plane’, alpha=0.5);

surf = ax.plot_trisurf(xdata[16:26], ydata[16:26], zdata[16:26],cmap=’Reds’, label=’Regression plane’, alpha=0.5);

#ax.invert_xaxis()

plt.legend(bbox_to_anchor=(1.05, 1), loc=’upper left’, borderaxespad=0)

ax.set_xlabel(’Temperature [°C]’)
ax.set_ylabel(’Layer height [mm]’)

ax.set_zlabel(’Fixity rate’)

plt.title(’3D plot for fixity rate’)

plt.show()

’’’
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’’’

fig=plt.figure()

plt.scatter(temp[0:7], rr[0:7], label=’RR Infill 100%’)

plt.scatter(temp[7:16], rr[7:16], label=’RR Infill 50%’)

plt.scatter(temp[16:26], rr[16:26], label=’RR Infill 0%’)

plt.ylabel(’Recovery Rate’)

plt.xlabel(’Temperature in Degrees [C]’)

plt.title(’Experiment with layer height of 0.3mm and ’)

plt.legend(bbox_to_anchor=(1.05, 1), loc=’upper left’, borderaxespad=0)

plt.show()

fig=plt.figure()

plt.scatter(infill[0:9], fr[0:9], label=’Fixity Rate 0.3mm’)

plt.scatter(infill[0:9], rr[0:9], label=’Recovery Rate 0.3mm’)

plt.scatter(infill[9:18], fr[9:18], label=’Fixity Rate 0.2mm’)

plt.scatter(infill[9:18], rr[9:18], label=’Recovery Rate 0.2mm’)

plt.scatter(infill[18:26], fr[18:26], label=’Fixity Rate 0.1mm’)

plt.scatter(infill[18:26], rr[18:26], label=’Recovery Rate 0.1mm’)

plt.ylabel(’Angle in degrees’)

plt.xlabel(’Infill in [%]’)

plt.legend(bbox_to_anchor=(1.05, 1), loc=’upper left’, borderaxespad=0)

plt.title(’Experiment with layer height of 0.3mm’)

plt.show()
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fig=plt.figure()

plt.scatter(lh[0:9], fr[0:9], label=’Fixity Rate 0.3mm’)

plt.scatter(lh[0:9], rr[0:9], label=’Recovery Rate 0.3mm’)

plt.scatter(lh[9:18], fr[9:18], label=’Fixity Rate 0.2mm’)

plt.scatter(lh[9:18], rr[9:18], label=’Recovery Rate 0.2mm’)

plt.scatter(lh[18:26], fr[18:26], label=’Fixity Rate 0.1mm’)

plt.scatter(lh[18:26], rr[18:26], label=’Recovery Rate 0.1mm’)

plt.ylabel(’Angle in degrees’)

plt.xlabel(’Layer Height in mm’)

plt.title(’Experiment with layer height of 0.3mm and ’)

plt.legend(bbox_to_anchor=(1.05, 1), loc=’upper left’, borderaxespad=0)

plt.show()

#print(np.corrcoef(lh, fr))

#print(np.corrcoef(lh, rr))

#print(np.corrcoef(temp, fr))

#print(np.corrcoef(temp, rr))

#print(np.corrcoef(infill, fr))

#print(np.corrcoef(infill, rr))

from sklearn import linear_model

from sklearn.metrics import mean_squared_error, r2_score

st=infill

st=np.array(st)

ste = st.reshape(len(st), 1)

regr = linear_model.LinearRegression()

regr.fit(ste, rr)

stress = regr.predict(ste)

#fig = plt.figure(dpi=1000)

plt.plot(ste, stress, label=’linear regression average stress’)

plt.scatter(infill, rr, color=’black’, label=’average stress time corrected’)

# The mean squared error

print(’Infill stats’)

print(’Root Mean Squared Error:’, np.sqrt(mean_squared_error(rr, stress)))

# The coefficient of determination: 1 is perfect prediction

print("Coefficient of determination (R2): %.2f" % r2_score(rr, stress))

corravg = np.corrcoef(rr, st)
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print(’Pearson\’s correlation avg :’, corravg[:,1])

print(’’)

print(’Linear regression in the form of y=a+bx’)

print(’a=’, regr.intercept_)

print(’b=’, regr.coef_)

#print(’mean =’, np.mean(rr))

#print(’standard deviation =’, np.std(rr))

print(’’)

t_value,p_value=stats.ttest_ind(st,stress)

print(’t-value for two tailed test is %f’%t_value)

print(’p-value for two tailed test is %f’%p_value)

#print(’mean =’, np.mean(stress))

#print(’standard deviation =’, np.std(stress))

’’’

67


