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Abstract

Occupancy maps are used in automotive driving applications to understand the scene
around the vehicle using data from sensors like LIDAR and/or radar on vehicles. In
state-of-the-art work, pattern-coupled sparse Bayesian learning (PCSBL) was used to
estimate the occupancy map by leveraging spatial dependencies across grids in the
map for both single modalities and the fusion of multiple modalities. The PCSBL
method, however, has high computational complexity, making real-time implementation
challenging for large-scale grid maps. To address this limitation, we propose several
methods to improve the computational efficiency of PCSBL while maintaining mapping
accuracy. First, we utilize a precomputed lookup table to accelerate selection matrix
construction. Second, we implement adaptive resolution reduction based on sensor
measurements. Third, we develop two novel methods that exploit the narrow angular
interactions between measurements and the map regions to enhance computational
efficiency. The first method partitions measurements into spatially disjoint submaps
that enable parallel processing. The second method exploits the angular structure to
impose a block structure on the selection matrix, reducing computational overhead.
Experiments on the nuScenes and RADIATE public datasets show that the presented
methods reduce computational costs compared to the benchmark PCSBL and fusion-
based PCSBL methods while preserving detection accuracy.
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Introduction

With the improvement in sensor technology, algorithmic and computational advances,
perception tasks have become viable for autonomous vehicles. The deployment of
Advanced Driver-Assistance Systems (ADAS). With each step toward higher levels of
automation, the responsibility for perception, decision-making, and control is shifting
from the human driver to the vehicle itself. In fully autonomous systems at the most
stringent requirement level, vehicles must perceive, understand, and react to dynamic
and unpredictable environments without human intervention [I,2].

Giving control to vehicles, which transport humans and have the risk of colliding
with other humans or objects, raises the stakes and constraints to which this technology
has to perform. In order for autonomous vehicles to perform, they require an accurate
perception of their environment, which can be created using sensors such as LiDAR,
radar, or cameras [3]. This perception must be built in a timely manner. To illustrate
the importance, for a vehicle travelling at a modest speed of 40km/h or 11.1m/s. If
a pedestrian suddenly enters the vehicle’s path 10 m ahead, the system has less than
0.9seconds to update its environmental perception, plan an avoidance maneuver, and
execute it. This time requirement is exaggerated at higher speeds and when vehicles
are travelling in opposite directions (potentially towards each other). Therefore, ADAS
needs an accurate perception as fast as possible, allowing the ADAS to react to its
environment in time to prevent collisions of any kind that happen daily in unknown
dynamic scenarios. Any delay or failure in environmental understanding may result in
unsafe behaviour.

The occupancy grid framework is a prominent method for representing environments
in robotics [1]. It involves dividing the space into a regular grid of cells, where each
cell is assigned a probability indicating the likelihood of it being occupied, based on
input from sensor data. This mapping technique has been successfully used in a range
of robotic tasks, including multi-sensor data integration [5, 6], navigation and motion
planning [7], building maps while localizing the robot simultaneously [%], and tracking
dynamic objects in the environment [J].

1.1 Occupancy Grid Mapping

The occupancy grid mapping (OGM) framework discretises continuous space into dis-
crete cells within a grid containing N, rows and N, columns. Occupancy mapping
algorithms assign each cell a discrete occupancy state as either occupied or free. A 2D
occupancy grid can be represented as a flattened vector € {0, 1} where N = N, x N,
and zero and one refer to free and occupied cells. An example occupancy grid is shown
in Fig. 1.1.

The occupancy state of each cell is determined through the processing and inter-
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Figure 1.1: Occupancy grid of the environment around the ego vehicle sensor origin (red dot).
Occupied cells are shown in black and free cells in white, with index values displayed for the
flattened occupancy map.

pretation of sensor measurements. Different sensor modalities provide varying types of
information about the environment, each with distinct characteristics in terms of mea-
surement principles, detection capabilities, and associated uncertainties. The choice
and configuration of sensors, therefore, directly influence the accuracy and reliability
of the resulting occupancy grid representation.

1.2 Sensor Modalities

Using sensors to build a perception of the environment around the ego vehicle is a
difficult task. LiDAR, radar and camera modalities each have their own strengths and
weaknesses which can contribute a more holistic perception of the environment.

LiDAR is a sensor that can construct an accurate 3D point cloud by emitting laser
pulses and measuring the time it takes for the light scatter from surrounding objects
to reflect back to calculate the distance. LiDAR is able to emit thousands of pulses per
second, allowing for dense and accurate point clouds representing the shape of objects in
the line of sight with high detail. However, this reliance on light propagation introduces
several limitations. Performance deteriorates under adverse weather conditions—fog,
rain, and airborne dust scatter laser pulses before they reach physical objects, reducing
measurement, accuracy and range. Surface properties also pose challenges where dark,
specular, or transparent materials, such as black vehicles or glass panels, reflect insuf-
ficient light back to the sensor [3], reducing detection performance. LiDAR technology
remains substantially more expensive than alternative sensor modalities.

Radar, instead of light, emits microwave or radio pulses and measures the amount
of time it takes for returning pulses to calculate distances. Radar provides exceptional
robustness in adverse conditions, operating reliably through fog, rain and dust where



LiDAR fails. It provides velocity measurements via the Doppler effect for accurate
motion tracking and offers a longer range than LiDAR. However, radar suffers from
limited angular resolution, lower resolution, and suffers from ghost detections (false
detections cause by indirect paths of returning electromagnetic pulses).

Stereo vision systems reconstruct depth by analyzing disparities between two spa-
tially separated cameras, offering dense depth maps at relatively low cost. However,
they exhibit critical limitations for automated driving. Depth estimation suffers in low-
texture regions like asphalt or uniform walls due to poor visual correspondence match-
ing. Performance degrades significantly in challenging lighting conditions, including
low-light, high dynamic range, and glare environments. Depth accuracy decreases with
distance, limiting long-range perception, while adverse weather conditions like rain or
fog further reduce reliability. Despite avoiding LiDAR costs, stereo systems require
intensive real-time computation and lack the robustness necessary for safety-critical
autonomous driving applications.

In this project, camera modalities are excluded due to the reliability factors men-
tioned; instead, LIDAR and radar are used separately and fused together to create more
robust environmental perception.

1.3 Problem Statement

A widely used model-based approach in OGMs is the inverse sensor model (ISM) [10],
which assumes that each cell in the occupancy map is independent and uses ray casting
principles to inform occupancy states. This independence assumption enables fast pro-
cessing, with ray casting being the most computationally intensive component of the
algorithm. Various techniques have been developed to further accelerate ray casting.
Hierarchical structures like octrees and kd-trees reduce the number of cells traversed
during computation [!1-13], while approximate table-driven methods from localization
applications provide constant-time distance estimates at the expense of quantization
error [11]. Although originally developed for localization, these table-driven approaches
can be applied to OGM with the same performance benefits. However, the indepen-
dence assumption that enables ISM’s computational efficiency also introduces problems:
the method suffers from conflicts caused by inconsistent measurements and fails to ex-
ploit spatial structure in OGMs.

An alternative approach employs kernel-based methods, such as Gaussian process
OGMs [15], which capture spatial dependencies. Early implementations were compu-
tationally intensive. Subsequent work in [16] addressed this by introducing test-data
octrees, among other optimizations, to reduce computational load. Test-data octrees
differ from traditional octrees (3D) and quadtrees (2D) used in OGMs for storage com-
pression [| 7-20]—they dynamically decrease resolution as a preprocessing step based on
sensor measurements, thereby reducing computational load. Building on these compu-
tational improvements, the Bayesian generalized kernel (BGK) [21,22] method further
accelerates Gaussian process OGMs by incorporating optimizations from [16,23]. De-
spite these advances, Gaussian process OGMs still do not effectively handle the inherent
sparsity in occupancy maps.

A sparsity-aware OGM model was introduced in [21], where pattern-coupled sparse



Bayesian learning (PCSBL) [25] was applied to estimate block-sparse occupancy maps
by exploiting spatial structure using a single modality. This work was extended to
multi-modal fusion in [6]. While single modality PCSBL for OGM outperforms Gaus-
sian process OGMs and ISM in accuracy, its high computational complexity limits
its application to large OGMs, with the multi-modal fusion version being even more
computationally expensive. Therefore, this work aims to reduce the computational
complexity of the PCSBL methods for OGM.

In addition to model-based algorithms, deep learning-based approaches have also
been investigated in the literature. By leveraging large-scale autonomous driving sensor

datasets [20,27], deep learning models can be trained to infer occupancy grid maps with
classification or semantic information through learnable networks, using either single-
modality [28-38] or multi-modal sensor input. The computational complexity is then

dependent on the depth, layer sizes, and types of layers. However, deep learning models
typically require large annotated datasets, face challenges in generalization, and often
necessitate retraining when datasets or sensor types change. Moreover, they frequently
struggle with generating occupancy maps of varying sizes and resolutions, estimating
confidence in the maps, and handling sensor unreliability. Some studies have partially
addressed these issues—for instance, multi-scale maps are generated using coarse-to-fine
query structures [39—11], though they still require full-size feature computation. Other
approaches estimate uncertainty alongside occupancy mapping [28, 37,42]. Thus, we
work to improve the computational efficiency of the physics-informed PCSBL, which
does not require annotated data.

1.4 Project Contributions

In this work, we reduce the computational complexity of PCSBL [24] for OGMs for
LiDAR, radar, and the fusion of both modalities [6]. Our main contributions are as
follows:

e Acceleration techniques: We present three acceleration techniques for PCSBL:

1. Ray lookup table: We reduce the computation required to construct the selec-
tion matrix. Using K-d trees, precomputed ray traversals are accessed using
a nearest neighbor search, which are then used to efficiently compute the
sparse selection matrix.

2. Test-Data quadtrees: We extend the use of test-data quadtrees from [16]
to PCSBL. These quadtrees provide a scene-dependent adaptive resolution,
reducing the number of unknowns that need to be solved. To handle the
resulting inconsistent cell sizes, we modify PCSBL to ensure compatibility.

3. Measurement model exploitation: We leverage the unique structure of the
measurement model, where measurements influence only narrow angular re-
gions of the map. We introduce two methods: the partition and overlap
(PO) method, which splits measurements into submaps for parallel process-
ing, and the region-based cell permutation (CP) method, which reorganizes
the measurement matrix into a block structure using angular patterns for
faster computations.



e Fvaluation on real-world datasets: We evaluate our acceleration techniques on
the nuScenes and RADIATE public datasets [27,13] by comparing them with
benchmark PCSBL [6,241], BGK [21], and ISM [8]. For single-modality PCSBL,
run time is reduced from 12.9 s to 0.47 s (27x speedup), while multi-modal fusion
was accelerated from 14.6 s to 0.7 s (21x speedup), with no reduction in map
accuracy.

1.5 Outline

The report is organised as follows:

Chapter 2 - Introduces the background knowledge on occupancy grid mapping re-
lating to single modal PCSBL [24] and multi-modal fusion PCSBL [6].

Chapter 3 describes the novel computational efficiency improvements applied to
PCSBL, as well as methods extended from alternative OGM approaches.

Chapter 4 - ‘Evaluations and Results’ presents the real-world LiDAR and radar
datasets used to access sensor modalities and to construct ground truths. It also ex-
plains the metrics used in this project and justifies the parameters used in the accel-
erated PCSBL methods, and shows the quantitative and qualitative results comparing
the accelerated methods to the benchmark algorithms.

Chapter 5 ‘Conclusion and Future Work’ summarises the accelerations and the
findings of the accelerated methods, and provides insights on future work relating to
computational and occupancy map accuracy improvements.

1.6 Publications from this Thesis

Conference Paper

e Frank Harraway, Peiyuan Zhai, Geethu Joseph, and Ashish Pandharipande,
“Computationally-Efficient Sparsity-Aware Occupancy Grid Mapping for Auto-
motive Driving,” accepted by IEEE Sensors Conference, Oct 2025.

Journal Paper

e Frank Harraway, Peiyuan Zhai, Geethu Joseph, and Ashish Pandharipande,
“Accelerated Pattern-Coupled Sparse Bayesian Learning for Automotive Occu-
pancy Mapping,” IEEE Sensors Journal, Submitted Aug 2025.



Occupancy Grid Mapping
Preliminaries

To establish a foundation for understanding state-of-the-art PCSBL methods and their
application to occupancy grid mapping (OGM), this section first explains the input pre-
processing. The per-sensor measurement models that transform sensor measurements
into PCSBL-compatible format are described, followed by the algorithmic frameworks
underlying single-modal PCSBL for OGM [24]. Finally, multi-modal fusion sensor mea-~
surement models and algorithms are presented [0]. Given the computational challenges
this project addresses, existing optimization strategies successfully applied to PCSBL
implementations are also discussed.

2.1 Preprocessing steps of LIDAR and radar modalities

This section concerns preprocessing the sensor modalities to produce a 2D point cloud
containing M (M, Mg for LiDAR, radar) points, which can be used to estimate
occupancies for 2D OGM. The resulting point cloud is represented as:

p§ Pz,0 py,O
b Pz Py

p=|""|=]" P e rRMX (2.1)
7]\“/[71 2, M—1 Py,M-1

where the ith point p;

(2

has coordinates (p,;, py;) in the x-y plane.

2.1.1 LiDAR Preprocessing

In this project, LiDAR data is accessed in a preprocessed 3D point cloud format.
The raw LiDAR data contains numerous reflections from the road surface. These
ground-level reflections are undesirable since the ground plane provides no meaningful
information about occupancy. Consequently, points below a specified height threshold
are filtered out during preprocessing.

Similarly, points above the height of the ego vehicle and points outside the bounds
of the occupancy grid are also removed. In this project, for computational efficiency,
the occupancy grid estimates are in 2D. Therefore, the point cloud must be projected
accordingly. The z-axis (height dimension) is discarded, projecting all remaining points
onto a single plane to create a bird’s-eye view representation for 2D occupancy grid

mapping.
2.1.2 Radar Preprocessing

The radar data is provided as range-azimuth images without Doppler or elevation
information. Since these images are susceptible to noise, the constant false alarm



rate (CFAR) technique is applied to detect valid points. The CFAR algorithm adapts
its detection threshold based on local noise estimates [11]. A detailed description is
provided in Appendix B. Since range-azimuth images already exist in a 2D plane, only
minimal preprocessing is required after CFAR detection. Points outside the occupancy
grid boundaries are filtered out, while the remaining detections can be directly used for
occupancy mapping.

2.1.3 Modality Fusion Preprocessing

When using LiDAR and radar together, each sensor has its own coordinate system
because of the distinct mounting points on the ego vehicle. The preprocessed point
clouds from subsection 2.1.1 and subsection 2.1.2 need to be rotated and translated to
align them to a common coordinate frame. Details on how we handle this registration
are given in Appendix C.

2.2 PCSBL for OGM

PCSBL for OGM consists of two fundamental components: encoding sensor information
into a usable format through sensor models, and estimating grid cell occupancies using
this encoded information. This section explains how sensor information is encoded
for the single-modality PCSBL [24] approach, followed by the occupancy estimation
process.

2.2.1 Single Modality PCSBL for OGM

Occupancy grid mapping aims to estimate the occupancy state of a vehicle’s surround-
ing environment from sensor measurements (reflection points). To this end, the envi-
ronment is discretized into a 2D grid with N cells. The collection of all cell occupancies
is represented by the vector = € {0, 1},

2.2.1.1 LiDAR Measurement Model

Light is emitted by a LiDAR sensor, reflected off an object, and then recorded at the
origin. There are no obstructions between the object and the sensor origin. Two pieces
of information can be inferred from each LiDAR reflection as seen by the red and green
cells in Fig. 2.1a. The cell from which the mth LiDAR reflection originates is occupied,
and the set of cells F,,, that the LIDAR beam to the mth reflection intersects are free.
The occupied cells are expressed in a linear equation as

Z mL[k] = Yocc; (22>

k€Om

where O,, is a set containing the single index of the cell that the LiDAR reflection
occupies. For example, in Fig. 2.1a, the occupied index is given by the set O,, € {7}.
The selected cell is then equated to yoe.. The value of y,.. is typically set to one, as it
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Figure 2.1: LiDAR measurements showing inferred occupied (green) and free (red) cells for
mth reflection; for sparse radar point clouds, cells within a A-wide region around each reflec-
tion are inferred occupied, and cells within the €2-shaped beam preceding the reflection are
inferred free. The cells show the indices of the flattened occupancy vector.

is expected that x[k| is occupied. Similarly, the set of free cells can be expressed as

> 2ilk] = Yiee, (2.3)

keFm

where Yoo 18 typically set to zero as the cells are inferred to be free. For example,
in Fig. 2.1a, the set of free cells are given by F,, € {8,14,15,21,22,28,29,35}. Each
LiDAR reflection provides two linear equations. Therefore My, LiDAR reflections can
represented as 2M, linear equations of @ in

Y, = ALwL + ng, (24)

where ny, ~ N(0,021I) is distributed noise with unknown variance of. The selection

matrix Ay, € {0,1}*Mt is defined by (2.2) and (2.3), where the support of the (2m—1)th
row of the selection matrix is @,, and that of the 2mth row is F,,.

2.2.1.2 Radar Measurement Model

In datasets [27,45], radar point clouds are considerably sparser than LiDAR, leading to
lower-quality occupancy maps. To address this, [24] applied an artificial enhancement
inspired by the Inverse Sensor Model [3]. For each radar point, a conical beam of
width €2 was constructed terminating in a region of width A around the reflection
point Fig. 2.1b. The terminal region (green cells) is denoted by O,, (occupied), and
the beam path cells (red cells) by F,,, (free).

Unlike LiDAR, which marks a single cell as occupied, the radar model labels all cells
in O,, to better represent the obstacles and address data sparsity. Therefore, for the
mth radar measurement, the set of cells around the measurement is formulated into
the linear equation

> @[k = Yoce| O, (2.5)

k€Om



where |O,,| is the number of elements within the set, which is used to weight the
measurement vector value. For example, in Fig. 2.1b the occupied set is given by
O € {1,2,6,7,8} with weight |O,,| = 5 on the measurement vector value. The beam
leading up to the measurement has the linear equation

> zrlk] = e (2.6)

kEFm

This is once again expressed as
Yr = ARTR + TR, (2.7)

where each element of ng ~ N (0,03 1) distributed noise with unknown variance o3.

Algorithm 1 Selection matrix construction for LiDAR and radar

Input: Reflection point coordinates {P}

Output: Selection matrix A and measurement vector y
1: for each measurement m =1,..., M do
2 O + occupied cell(LiDAR) or occupied cells(radar) at p,],
3 Fm + free cells along ray (LiDAR) or along beam (radar) preceding p,),
4: Set A2m,n]=1 Vne Oy
5: Set A2m+1,n|=1 VneF,
6:  Y[2m] < Yoce|Oml
7 y[2m + 1] < Yfree
8: end for

The single modality PCSBL algorithm applies identically to both LiDAR and radar
sensing modalities; we omit the subscripts L and R for brevity and use the general

notation x, y, A and o?. PCSBL aims to reconstruct the unknown map x for both
LiDAR and radar from y and A.

2.2.2 Single-Modality PCSBL

The PCSBL algorithm for a single modality (LiDAR or radar) imposes a two-layer
hierarchical prior distribution on the unknown . In the first layer,  ~ N(0, D)
follows a zero-mean is modeled as a zero-mean Gaussian vector with a diagonal precision
matrix D. To exploit the block structure, its nth diagonal element is

Din,n] = a[n] + Z alm], (2.8)

meﬁn

where a[n] is the nth cell precision hyperparameter, 8 € [0, 1] is the coupling parameter,
and L, is the direct neighbor set of the nth cell is. When the precision a[n] of the nth
cell is high, the occupancy value z[n] is likely to be close to zero, indicating it is a free
cell. Since the precisions are coupled via (3, they are spatially correlated, encouraging
adjacent cells to agree on the occupancy state. In the second layer, the cell precision
hyperparameters o and noise precision o2 are assigned Gamma hyperpriors

o ~ Gamma(a,b) and o %~ Gamma(c,d). (2.9)



To estimate @, the unknown hyperparameters o and o? are estimated iteratively

through the expectation-maximization (EM) algorithm [24,25]. In every iteration,
given the current hyperparameters, it first computes (Expectation (E) step) the poste-
rior mean f& and covariance ® of x as

d=(02ATA+ D), p=0dA"y, (2.10)

and then updates the hyperparameters o, 02 to maximize the model likelihood given
the measurements (Maximisation (M) step),

(1) ] a 2.11
L Rl 0] WED w01 1 (2.11)
1 R
(%)Y = m(“y — ApY|3
+ (07D " @D [n,n] DV [n, n] + 2d), (2.12)

n

where v € R" is the vector of second moments of entries of & given (o), a®,
and y. Iterations continue until convergence; the final map estimate is obtained by
thresholding f1

ﬂm:{a fln] <7 (2.13)

Algorithm 2 Occupancy grid map estimation using single modality PCSBL

Input: Selection matrix A, measurement vector y
Parameters: coupling g, Gamma parameters a,b,c,d > 0
threshold 7, max iterations T’
Output: Binary occupancy map &
t+<0, a®«1, (60«05
Precompute AT A and ATy
repeat
Update ® and 3" via (2.10) > E-step
Compute D® via (2.8)
Update a1 (62)(+1) via (2.11),(2.12) > M-step
t—t+1
until convergence or ¢t > T
Compute & by thresholding using 7

2.2.2.1 Zero Column PCSBL Optimisation

An observation was made in [16], the EM steps could be made more efficient based
on the sparsity of the measurements. When cells have no measurements or ray in-
tersections, the selection matrix A contains zero columns at corresponding indices.
These Z zero columns can be exploited to reduce computational complexity without
approximation.
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Zero columns in A produce zero rows and columns in AT A. This is important
because in the E-step (2.10) only diagonal elements from D remain non-zero in the
matrix Q = A" A + D:

* % 0 * 0

* % 0 * 0
Q=10 0 D[2,2] 0 0

* % 0 * 0

0 0 0 0 D[4,4].

This block structure enables us to partition @ and invert it more efficiently. The
dense submatrix (marked by x) can be inverted independently of the isolated diagonal
elements. We achieve this separation using a permutation matrix Pz. This matrix
permutes @ such that the dense and diagonal parts are separated. Here, Z contains
the indices of zero columns in A. In the example above, we have Z = {2,4}. The
permuted structure is represented as:
P:QP/ = [Q.Z/ ]
: Q:z

where @z, represents the dense submatrix corresponding to the complement of Z,
and @~ contains the isolated diagonal elements. The isolated matrix @ can now be
inverted separately of the diagonal in Q. The inverse is reconstructed as:

=
: Q_1] Pz

zZ

Q'=P;

The diagonal matrix Q z inverts with O(Z) complexity, reducing overall complexity
from O(N?3) to O((N — Z)3) + O(N?) + O(Z) where O(N?) is the computational cost
to permute the matrix to the desired form. This optimization’s effectiveness is scene-
dependent on which cells receive information.

2.2.2.2 Focus Regions

Additionally, another attempt to reduce the complexity is to reduce the number of cells
in the map in a structured way. Certain automotive datasets integrate GPS positioning
with digital road maps. This combined information enables selective occupancy grid
estimation, as demonstrated in [21], where road topology determines which grid cells
require estimation versus those that can be excluded from the mapping process.

The use of the focus mask in Fig. 2.2 allowed for the reduction of occupancies that
need to be calculated from 6400 to 4259, a 33% decrease in the number of cells.

2.3 Fusion PCSBL for OGM
Building on the single-modality PCSBL framework, this section explains how LiDAR

and radar measurement models and algorithms are fused using PCSBL-based common
sparse (CS) and common innovative sparse (CIS) approaches [0].

11



(a) (b)

Figure 2.2: Roadway and walkway shown as a mask in (a) and combined into a single focus
mask in (b) to reduce the number of occupancies that need to be computed

2.3.1 Fusion Measurement Model

PCSBL-based fusion, CS, and CIS rely on two separate measurement models relying
on separate assumptions about the occupancy map.

2.3.1.1 CS Measurement Model

Common sparse assumes the LiDAR @, and radar maps xr correspond to the same
map «, leading to a model that concatenates the LiDAR and radar measurements

_ |yl _ A nL| _

to jointly estimate the map & € RY where the linear equations for the LiDAR and
radar from (2.4) (2.7) are vertically stacked.
2.3.1.2 CIS Measurement Model

Unreliable sensors or misalignment between the sensors could lead to significant incon-
sistencies @y, and xR, therefore, CIS introduces error variables

T, = T, + TAL, TR = Te + TAR, (2.15)

where @, is the common part of the signal xa;, and xag are the error collectors for
LiDAR and radar respectively. The CIS measurement model is then formulated as

_ Y _ AL AL 0 mwc + g,
Yos = lys| = [Ar 0 Agr] [ 724 T |ng)” (2.16)
TAR
= AcisTcrs + ncrs;
where Acrg € REMLAMR)N and g € RN, Only x, is used to estimate the occupancy

grid map, and the error collectors are discarded. Once again using Acis and yqg we
use PCSBL to estimate the occupancy map @. (Acs, Yog and x in the case of CS).
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2.3.2 Fusion PCSBL

The fusion methods [6] extend on the [24] method using the measurement models in
(2.14) and (2.16).

The CS model in (2.16) allows us to directly apply the PCSBL algorithm. From the
measurement model, we have

p(y | x;a70-1%)0-12{) :N<ACS%C)7

where the corresponding noise covariance is

27 0
C = |1 2M . 2.17
0 UIQ{IQMR ( )

Then, the posterior mean and covariance of the Gaussian p(x|y; a, (67), (63)) during
the E-step is calculated as

Pos = ‘i’CS(UL_QAE + 0 AR )Ycs,

T —2 4T —2 4T -1 (2.18)
During the M-step, the noise variances for each modality are updated as
(2o — 2 g = Aval + (AL ALRE)
. 2c + 2My, ’ (2.19)
= (t) :
(02)(+D) — 2d + ||lyr — Arz||3 + tr(Ag AgPes)
" 2¢ + 2Mg '

and acg is updated in the same was as single-modality PCSBL in (2.11).

Similarly, CIS also uses the PCSBL framework with the common component .
following a Gaussian prior with a coupled precision. In contrast, the LiDAR and radar
error components xap, and xar are assumed to follow independent zero-mean Gaussian
priors. So, zcis ~ N (0, D&ls) where the precision matrix is given by

an’]+ 6 > acj], ifn’ <N,

jeﬁnl
Dersln,n] = 9 q = N, if N < n/ < 2N, (2.20)
aagr[n’ — 2N], if 2N < n/ < 3N.

The entries of the precision vectors e, aar and aag follow the Gamma prior in (2.9),
with shape parameter a as ac, ar,, and ag, respectively. Then, the posterior mean and
covariance of xcrg in the E-step are calculated as

- T 1
keis = PesAcisC yorss

: setors » (2.21)
Pors = (AlLsC ' Acis + Dais)

13



The M-step update is given by

1
(of) D = m(zd + ly, — An(ze + zar) |l
~ (1)

+ tr(Ads Acis®ers)),

1
(op) Y = m@d + |lyr — Ar(z: + zar)|3
~ (1)

+ tr(Az;ISACIS‘I)CIS))'

and o is updated using (2.11) as in single-modality PCSBL, while the remaining aay,
and aag are updated using (2.11) with 5 = 0.

2.3.3 PCSBL Complexity Considerations

Having introduced the PCSBL algorithm, we next present a complexity analysis for
both single and multi-modal PCSBL.

2.3.3.1 Single Modality PCSBL

The main computational challenge in single-modality PCSBL arises from the matrix
inversion in the E-step (2.10). The precomputation A" A requires O(MN?) complex-
ity, while the matrix inversion step has O(N?3) complexity. Since the number of EM
iterations repeats the E-step T' times, the O(N?) matrix inversion complexity is further
magnified, making PCSBL computationally expensive for large-scale problems. Addi-
tional costs include constructing the selection matrix at O(MN) and computing ray
intersections at O(LM), where L is the average number of cells intersected per ray.

2.3.3.2 Fusion PCSBL

The CS fusion method retains the same structure and computational characteristics as
the single-modality PCSBL formulation in (2.18). However, it adds overhead from the
separate computation of A] Ay and Ay Ag, as well as from the additional noise update
in (2.19). CIS fusion includes this same overhead and further increases the cost due to
a three-times larger selection matrix used for the error collectors. This impacts both
the E-step in (2.21) and the noise update in (2.22).

The overall computational complexities, along with those of ISM [10] and BGK
[21], are summarized in Table 2.1. As evident from Table 2.1, PCSBL is the most
computationally demanding algorithm among model-based mapping methods, despite
its superior map accuracy. Therefore, our goal is to optimize the matrix computations
in both single- and multi-modal PCSBL, enabling fast and scalable occupancy mapping
by leveraging the inherent structure of the measurement model, without compromising
accuracy.
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Table 2.1: Order of Complexity Comparison

Algorithm Computational complexity
Single modality LiDAR, O(TN3 + My, N?)

Single modality radar O(TN3 + MgN?)

CS and CIS fusion O(TN3 + (My, + Mg)N?)
BGK O(N log(My,))

ISM O(LMy,)

2.4 Summary

This chapter has established the foundation for occupancy grid mapping using PCSBL
methods, covering both single modality and multi-modal fusion approaches. We began
by detailing the essential preprocessing steps required for LiDAR and radar sensor
modalities, including ground filtering, CFAR detection, and coordinate frame alignment
necessary for effective sensor fusion, where sensor coordinate frames must be equivalent.

For both single and multi-modal PCSBL for OGM the sensor measurements are
then used to construct the linear measurement system of equations through appropriate
sensor models. We then present the PCSBL algorithm, demonstrating how it leverages
this linear system of equations (A and y) to estimate occupancy states using a two-
layer hierarchical Bayesian model that exploits spatial coupling to recover block-sparse
occupancy patterns. The PCSBL framework is then explained how it estimates the
occupancy map « from the linear system of equations. The extension of the algorithm to
the multi-modal is also outlined. The two distinct fusion approaches: CS fusion assumes
identical maps across modalities, and CIS fusion, which introduces error collectors to
handle sensor inconsistencies. Finally, we analyze the computational complexity of each
method to understand its respective trade-offs.

The concepts presented in this chapter form the technical foundation upon which
the subsequent computational improvements will be developed.
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Computationally Efficient
PCSBL

Several techniques are introduced to improve the computational efficiency of PCSBL
for OGM for single modalities and the fusion of multiple modalities. PCSBL for OGM
involves two primary stages: constructing the selection matrix for the linear system
(2.4), and estimating the occupancy vector . An efficient method for constructing
the selection matrix using a ray lookup table is introduced, test-data quadtrees are
extended to PCSBL to reduce the number of occupancies to estimate, and two strate-
gies manipulating the selection matrix are presented to accelerate the estimations of
occupancies for PCSBL. The first, PO, parallelises the processing of sub-maps derived
from measurements. The second, CP, improves the efficiency of matrix operations by
permuting the columns A to exploit spatial structure.

The implementation proceeds by querying the ray lookup table with preprocessed
measurements to extract relevant rays. These rays determine the adaptive quadtree
resolution. The varying resolution in combination with PO or CP is then used to
construct the exploited measurement matrix A. The resulting selection matrix is fed
into PCSBL to produce the occupancy map.

Selection Matrix Construction Occupancy Estimation

.S . 7 [ Comsmuet |0 I

| Ray lookup exploited A (PO or | | I| PCSBL exploiting |!

| table CP) —# selection matrix (PO ||

Query M I lor CP with quadtrees)||

| measurements, T I | |

I to get M rays (hit + |

! |

! |
|

I
I
and free cells) _ |
Measurements Calculate test dgta I/ Occupancy Map
quadtree resolution | | |
I

Figure 3.1: Processing pipeline of PCSBL acceleration methods.

3.1 Ray Lookup Selection Matrix Construction

Building A € {0,1}2*Y is computationally costly. Firstly, it is expensive to calculate
the ray intersections online, and secondly, the construction of the selection matrix itself
is computationally expensive. Thus, we generate U points for all of the N cells in the
grid. We then create a lookup table for these points using a kd-tree. The cell indices
that rays from the origin to each point intersect are precomputed according to the
LiDAR model in Fig. 2.1a and the radar model in Fig. 2.1b. Sensor measurements are
then used to query the closest point and its associated precomputed ray, as illustrated in
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Fig. 3.2a. This is an approximation; Fig. 3.2b shows that it is possible for quantization
error where free cells can be identified incorrectly, but the hit cells will always be
identified correctly. This method reduces the computational complexity required to
obtain the rays from O(LM) to O(M log(UN)). The memory complexity is O(UN L)
where L is the average number of cells intersected by the rays to the precomputed
points. Practically, an occupancy grid with N = 16384 cells and U = 25 points per
cell requires only 150 MB of memory to store all the necessary intersections. Further,

o  Points with precomputed ray \
: : >< Measurement \

. @ Closest pr puted ray to \x
(a) Uniformly spaced points with (b) Comparison of precomputed
precomputed rays. ray intersections to true ray in-

tersections.

Figure 3.2: (a) Precomputed rays sampled at uniformly spaced endpoints, with a spatial tree
used to find the closest precomputed point for each measurement. (b) Comparison between
the precomputed ray (black line) and the true ray (green line) from the ego centre (red dot):
red cells highlight incorrectly identified free cells.

using measurements to access the precomputed rays, the selection matrix for LIDAR
and radar can then be constructed using the compressed sparse row format, reducing
the complexity from O(MN) to O(||A||o), where || A||o refers to the number of nonzero
elements in A.

In practice, the precomputed free and occupied cell indices {O;}7% ! and {F;} Y41
are given as input, along with the UN precomputed points organized within a spatial
kd-tree structure. To construct the selection matrix, the kd-tree is queried to identify
the closest precomputed point to each measurement, then uses the corresponding pre-
computed indices to populate the nonzero entries in the selection matrix, following the
procedure outlined in Algorithm 3. Using the precomputed rays to construct the se-
lection matrix can extended to radar by pre-computing {O;}/4 " and {F;}% " using
the model described in Fig. 2.1b.

3.2 Test-Data Quadtrees

Quadtrees in the 2D case or Octrees in the 3D case are common in OGM applications.
The technique was initially used to reduce the memory usage of occupancy maps by
varying the resolution of the stored maps [12,17]. However, updating occupancy val-
ues on trees suffers from an access complexity when compared to typical arrays [10].
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Algorithm 3 Fast selection matrix construction

Input: Reflection point coordinates boldsymbol P, spatial tree,
{(’)i}iU:]\éfl, {]-'i}iUzjgfl > occupied/free index-sets for each grid point
Output: Selection matrix A and measurement vector y

1: Query spatial tree to find closest points indexing precomputed occupied/free index-sets.
2: for each query point m=0,...,M —1 do

3: Set A2m,n|=1 Vne Oy

4: Set A2m+1,n]=1 VneF,

5: y[Qm] A yocc|0m|

6: y[2m + 1] < Yfree

7: end for

Therefore, in the case of computational speed test-data, Quadtrees were first applied
in [10] to reduce the number of test points &* (occupancies) to infer to increase time
performance instead of reducing memory consumption.

Quadtrees are hierarchical structures where each node contains four leaf nodes. In
occupancy grid mapping, each leaf in the quadtree is used to represent a spatial partition
within some spatial region. By pruning a node, the resulting leaf’s spatial region is four
times larger, and it reduces the total spatial partitions that need to be represented. In
Fig. 3.3, this hierarchical tree structure is illustrated, as well as the decision-making
process in deciding whether a node can be pruned. Sensor measurements are typically
sparsely grouped, as they appear where objects are sensed; therefore, in the space
between the sensor and the sensed objects, the ray cast model samples many free space
points in these regions where no measurements are recorded. For this reason, it is not
necessary to represent the grid at a high resolution, as it is very likely that those cells
will be estimated to be free and not occupied. Thus, using quadtrees, the resolution
can be lowered, reducing the computational load.

[[] Measured reflection
l []Sampled free cells l
|:| Nothing

A S — Ij |i|
boddbb bbb ddbdade 6444 EL &4

Figure 3.3: A depth two quadtree before and after pruning. Branches containing only sampled
free cells are pruned as shown by the diagonal red line.

The quadtree is populated with the measurements and the sampled free space points
along the rays cast to the measured points, as illustrated in Fig. 3.4. If across all the
leaves within a node, there are only sampled free cells, then the node is pruned.

3.2.1 Test-Data Quadtrees with PCSBL and Ray Lookup Tables

First, we query the precomputed ray lookup table to retrieve occupied and free cells
along each ray path. Second, we populate the quadtree with occupancy states as shown
in the first grid in Fig. 3.4. Finally, we prune any node whose four child leaves (cells)
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[- ] Measured reflection
° [[] Sampled free cells
[ ] Nothing

Figure 3.4: Adaptive grid resolution using quadtrees refines the grid based on spatial data.
In the grid on the left, the blue grid shows quadtree nodes at one level higher. Measurements
(crosses) populate the quadtree, marking cells with measurements as occupied (green dots)
and preceding cells along rays (dotted lines) as free (red cells). Homogeneous nodes are
pruned to larger cells.

contain only free states, as demonstrated in the second grid in Fig. 3.4. After pruning,
cells vary in size, which reduces the effective number of unknowns N in the map vector,
improving the algorithm complexity.

With varying resolution of the grid cells, standard row indexing is no longer appli-
cable; however, row-major ordering is maintained for vectorizing the 2D map to a map
vector. Additionally, because of the varying resolution of the grid cells, the number
of neighbours of each cell also varies. Thus, the coupling pattern based on the direct
neighbours £, for the nth cell needs to be modified as illustrated in Fig. 3.5b. In the
single- and multi-modal PCSBL algorithms, this has implications for (2.8), (2.11), and
(2.20). Furthermore, it is observed that pruned cells are more likely to be free cells.

0|1)2(3]|4|5([6]7

819 |10(11)1213 (14|15

16|17 18 19(20|21|22

23 (24 252728129

30(31(32(33 34 | 35 10[11 2527 18

36 (37 (38(39 171 g [12] B3f a4 | 35

40 |41 4223 24 25( 139 32133 34

44 | 45 32[33 4 39

46147148149
(a) Indexing of quadtree struc- (b) Neighbours with indices of 18th,
ture 34th, and 33rd cells

Figure 3.5: Indexing of the occupancy grid after pruning the quadtree.

Larger cells at higher pruning levels have more neighbours, which can disproportion-
ately influence free space information. Thus, only one level of pruning is recommended.
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3.3 Exploiting the Measurement Model

We present methods to reduce mapping computation by exploiting LiDAR’s angular
structure. We propose two approaches—PO, parallel processing of sub-maps from
measurements, and CP, optimising matrix operations by permuting A’s columns by
angular region.

3.3.1 Partition and Overlap

One method is partitioning the measurements into K discrete angular regions based on
angular LIDAR measurement regions, as shown in Fig. 3.6a for K = 4. This reduces the
number of columns in A by a factor of K as fewer grid cells are considered. Then the
PCSBL algorithm can be applied to each region with lower complexity. This reduces
the total complexity to approximately O(TN3/K? + MN?/K).

A: i e «: ! -
A ar e | 3 1 .t N 3 1
~ ..—WH e R - wjgme : = f= ]
T | e C e . R
-I"J"J ‘* n"‘“"’ u’J ﬁ es i
: "4!;. m LS Lx L’:n-
$ T B | 3
x? .“mw £ e
Vo e, iy .o
(a) No overlap (b) Overlap

Figure 3.6: Partitioning LIDAR measurements into K = 4 regions with (a) no overlap in the
regions defined by four different colours and (b) overlap in the defined regions coloured in
purple

For K independent maps, the pattern coupling across the region boundaries is lost.
This can be alleviated by partitioning and overlapping measurements as illustrated in
Fig. 3.6b. After estimating the mean fi,, and variance o (diag(®y)) for each of the k
regions, overlapping regions are fused using Bayesian fusion for the nth cell

A~ ZTeRn g;[z]
Mmerged[n] = Z—T1[]7 (31)

r€Rn o2[n]

where R,, denotes the set of regions that overlap at the nth cell. The resulting merged
mean map fl,.q.q 18 then thresholded to yield the final binary occupancy estimate &.
Overlapping regions require the estimation of occupancy in cells belonging to overlap-
ping regions to be processed repeatedly, increasing the cell count N and computational
complexity compared to measurement partitioning without overlapping regions.

20



3.3.2 Region-Based Cell Permutation

In the benchmark PCSBL [24], the measurement model operates on row-indexed grids
(Fig. 3.7a). As shown in Fig. 3.7a, LiDAR rays from distinct angular sectors (e.g.,
top vs. bottom) intersect mutually disjoint sets of cells. Consequently, the selection
matrix is structurally split in the middle (dotted line in Fig. 3.7b); map cell indices are
equivalent to selection matrix column indices. If the measurements are sorted angularly,
a two block structured matrix can be realized as shown in Fig. 3.7c.

0 N 5 |4 1 "]
6|7 K9 1011 i -
sl W I
nfo s We| |

Figure 3.7: (a) LiDAR occupancy-mapping indexing scheme for the 1-region case, and (b—c)
the corresponding selection matrices with nonzero entries in blue. In (a), free cells are marked
in blue along the ray originating at the ego center (red dot) and the reflection (green point)
cell is marked in red.

Exploiting this property further, the row-based indexing can be permuted to a
Kregion-based indexing, where each region is defined by an angular sector around
the ego center. For K = 4, the reindexing shown in Fig. 3.8a produces a four-block
structure in A (Fig. 3.8b), with nonzero entries of the selection matrix perfectly within
each block. Consequently, A" A is block-diagonal. The computational complexity is
reduced through block matrix operations in several areas: precomputation of A"y and
AT A, efficient residual computation for the noise variance update in (2.12), and most
significantly, optimized matrix inversion for posterior covariance and multiplication
operations in the mean expectation steps in (2.10). This achieves the same complexity
reduction described in subsection 3.3.1.

It can be shown that permuting the columns of the selection matrix does not affect
the final result of (2.10) because the inversion of the columns of a matrix transposed and
multiplied with itself is permutation invariant. Applying the permutation matrix P to
the selection matrix Since inversion is permutation-invariant, permuting the columns
of the selection matrix does not affect the final result of (2.10). In particular, if we
apply the permutation P to the selection matrix,

Ap = AP, (3.2)
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(a) 4-Region row-major indexing (b) 4-Region selection matrix

Figure 3.8: (a) LiDAR occupancy-mapping indexing scheme for the 4-region case, and (b)
the corresponding selection matrix. In (a), region row-major indexing is shown for regions
defined by distinct colours. In (b) the

then inverting the Gram matrix of Ap yields

(ALAp) ' = (PTATAP)”

1

= P L(ATA) (P (3.3)
By left- and right-multiplying by P and P the original inverse is recovered:
P(ALAp) 'PT = PP 1(ATA) ' (PT)'PT = (ATA)! (3.4)

7 8

Rows

Columns

(a) 6-Regions row-major indexed (b) 6-Regions selection matrix

Figure 3.9: (a) LiDAR occupancy-mapping indexing scheme for the 6-region case, and (b)
the corresponding selection matrix. In (a), six distinct index regions are shown, and rays may
traverse multiple regions before reaching a reflection point.

Furthermore, for K > 4 in the LIDAR measurement model, the region boundaries
can pass through grids, and the LiDAR ray may intersect cells belonging to multiple
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regions. For example, the LiDAR ray in Fig. 3.9a results in a A matrix like in Fig. 3.9b
where certain rows have nonzero entries spanning multiple regions. In the case of the
radar measurement model, due to the beam width, no matter the number of regions,
the corresponding beam/ray can intersect multiple regions, as shown in Fig. 3.8a. This
breaks the block structure and hinders the use of block matrix operations. This can be
dealt with by discarding the elements outside the blocks to retain the block structure.
Alternatively, we split rows spanning multiple regions to enforce the block structure so
that no information is discarded. Fig. 3.10 shows an example where a row with support
falling in two regions is split into two rows.

Region1 Region 2

Region 1 | Region 2 10 0 0 1

1 0 1 0 1/0 O s 0 Blockk =1
A=|0 1|1 o] y=|[0|,A°=|0 o1 0|y =]0

0 01 o 1 0 0/0 1 1 Block k =2

0 0/0 1 0 0 00 1 0

Figure 3.10: Splitting LiDAR measurements that span multiple regions: the original matrix
A (left) has a row with overlapping elements (in red). This row is split at the boundary and
shifted into the appropriate blocks to form the block-structured matrix A® (right), introducing
additional measurements (see highlighted rows below the dotted line).

Comparing PO and CP, CP improves the computational performance of PCSBL
while preserving full coupling across the K regions, eliminating an extra fusion step.

A brief overview is now provided on how PCSBL exploits the resulting blocks
through modifications to the posterior covariance and posterior mean when using an
exploited CP selection matrix. Following the original formulation in (2.12), the residual
for the kth block becomes:

lyi — Awu ™3, (35)
where y, and i, is the subset of the measurements corresonding to the kth block. The

posterior mean and covariance from the original formulation (2.10) are correspondingly
modified to

~ (1) _ _ _
& = (7)Y A] A, + D) (3.6)
and ©
) = (078 Ay, (3.7)

The exact implementation of these equations is shown in Algorithm 4.

3.3.2.1 Extension of Selection Matrix Exploitation for Fusion

The PO method extends easily to multi-modal fusion methods, while CP requires more
consideration. For fusion-based PCSBL variants (CIS and CS), the CP method can
be directly applied. CS maintains the same selection matrix structure in (2.14), where
columns correspond to cells of a single occupancy map, enabling the same region-based
cell permutation. The permuted CS selection matrix creates a block diagonal AgSACS,
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Algorithm 4 Occupancy grid map estimation using PCSBL-CP

Input: Permuted selection matrix A, measurement vector y, number of regions K
Parameters: coupling g, Gamma parameters a,b,c,d > 0
Output: Binary occupancy map &
t«0, a1 ()0 05
Pre-compute K blocks (A} A) and A/ y,
repeat
Compute D® via (2.8)
Update a®, (6%)® via (2.11), (2.12), compute the residual block-wise via (3.5)
Update 39 blodk-wise via (3.6)
Update a® block-wise via (3.7)
t+—t+1
until convergence
Compute & via (2.13)

,_.
@

and the residual and trace calculations in (2.19) exploit identical structures as single-
modality PCSBL-CP, this is illustrated in Fig. 3.11a. Structurally, CP application to
CS fusion mirrors the single-modality case, utilizing the same block structures in (2.18)
for block inversions, matrix operations, and residual computations in (2.19).
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(a) AlgAcs (b) AlsAcis

Figure 3.11: Structure of (a) AlgAcs and (b) AljqAcrs after region-based cell permutation
(K = 16) of selection matrices Ay, and Ag.

This is not the case for CIS due to the altered measurement model described in
(2.16) and illustrated in Fig. 3.11. With the addition of the residual variables, the
columns no longer correspond to the cells of a single occupancy map. To restore a
block-diagonal structure in AljqAcrs, we permute

[xc[l]xc[N] xAL[l]" .TAR[NH )

.Q?AL[N] :L’AR[l] . (38)

so that the triplets (z.[t], zar[i], zar[i]) appear consecutively for i = 1,..., N. The
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permuted vector is given by
[2c[1] xaL[l] @ar[l] ... 2[N] zaL[N] zar[N]], (3.9)

which enforces block-diagonality in AligAcis by eliminating cross—terms between dif-
ferent columns belonging to separate regions.

3.3.2.2 Quadtrees and region-based cell permutation

The adaptive resolution quadtree method is applied on top of region-based cell permu-
tation. The method could be applied directly without any modifications; however, if a
node were pruned directly on a region border, when calculating the free cells and in-
serting them into the selection matrix, even more rays would intersect multiple regions
due to the less smooth regions caused by pruning. This would ultimately lead to more
measurements in our selection matrix as a result of the splitting of the measurements
in Fig. 3.10. The solution to this is to add another step in the pruning logic. If a node

i
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fEd
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+
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HHH
HHH

(a) One region (b) Six regions

Figure 3.12: For a single region, the quadtree is pruned as illustrated in (a). However, when
dealing with multiple regions, nodes are only pruned if they are entirely contained within a
single region.

falls on the boundary of a region, then this node is prevented from pruning. Thus,
when comparing Fig. 3.12a and Fig. 3.12b, it is visible that the lower half of the map
has a higher resolution along the boundaries because of the prevention of node pruning.

3.4 Summary

This chapter presents computational acceleration techniques for PCSBL in occupancy
grid mapping, addressing the algorithm’s computational burden. A ray lookup table
construction method using spatial k-d trees reduces computational complexity, fol-
lowed by the use of the CSR sparse matrix construction technique. The integration of
quadtree adaptive resolution maintains efficiency with variable-resolution grids, requir-
ing modified indexing and coupling structures to work with PCSBL. Two measurement
exploitation strategies, PO and CP, leverage the measurements’ angular interactions
with the map to reduce the precomputation complexity of the matrices required for
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EM in PCSBL, as well as the EM steps themselves. When combining quadtree meth-
ods with region-based approaches, pruning constraints prevent nodes spanning region
boundaries from being pruned to avoid measurement splitting, resulting in higher res-
olution along boundaries. The complexity contributions are outlined in Table 3.1.

Table 3.1: Order of Complexity Comparison

Algorithm Initial Complexity Accelerated Complexity
PCSBL O(TN® + MN?) O(T Y 4 MN2)
Selection Matrix O(MN + ML) O(||(Allo) + M log(UN))

PCSBL Fusion ~ O(TN® + (M, + Mg)N?)  O(TY5 + MutMm)N?
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Evaluations and Results

Using the real-world automotive datasets nuScenes [27] and RADIATE [13], this work
uses LiDAR and radar modalities to compare the accelerations discussed in Chapter 3
with the benchmark algorithms, PCSBL [0, 24], fusion PCSBL [6], BGK [21], and
ISM [5].

This chapter first explains the evaluation details for occupancy grid maps. The
datasets are presented along with their provided modalities and ground truths, fol-
lowed by a discussion of how the metrics combine with ground truths to quantify algo-
rithm performance on occupancy maps. Second, the chapter presents experiments that
justify the chosen parameters for the accelerated methods (PO, CP, and ray lookup
selection matrix construction). Finally, the chapter presents comprehensive qualitative
and quantitative results, including occupancy grid map quality and time complexity
results on both datasets using the justified acceleration parameters.

4.1 Evaluation

This section describes the evaluation framework used to assess the proposed methods.
First, the datasets are presented, including the ground truth data and sensor modalities
employed. This is followed by an explanation of the quantitative metrics that utilize
the ground truth data for performance assessment. Finally, the experimental settings
and configurations used to evaluate the methods are detailed.

4.1.1 Datasets
4.1.1.1 nuScenes

The nuScenes dataset scenes [27] are recorded in either Boston or Singapore. Both of
these locations are home to dense traffic. The goal of the dataset is to introduce rich,
multi-modal sensor data to support the development of robust perception algorithms,
particularly those capable of performing reliably under adverse weather and challenging
real-world driving conditions. Additionally, to support the development of machine
learning methods, it consists of a rich set of 3D ground truth bounding boxes for the
classes specified in Table 4.1.

It consists of 6 cameras, 5 MIMO radars, and 1 LiDAR, which together provide a full
360-degree field of view around the ego vehicle, as illustrated in Fig. 4.1. The platform
is also equipped with GPS and an IMU for precise localization and motion estimation.
With the map expansion for nuScenes, the map can be classified into its semantic layers,
making it possible to specify the smaller focus regions around the ego vehicle where
occupancies must be estimated, an optimisation discussed in subsubsection 2.2.2.2.
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Table 4.1: Object Classes in the nuScenes Dataset

Class Name Sub Class Names

Animal Animal

Movable Object Barrier, Debris, Push/Pull-able, Traffic cone
Static Object Bicycle rack

Vehicle Bicycle, Bendy bus, Rigid bus, Car, Construction vehicle, Ambulance,
Police vehicle, Motorcycle, Trailer, Truck

Human Adult, Construction worker, Personal mobility, Police officer, Stroller,
Wheelchair

We use the roadway and walkway layers to include humans as well as vehicles in the
occupancy map.
The radar and lidar are provided as a point cloud as illustrated in Fig. 4.2. Un-

— X-axis
Downward — Y-axis
® upward —» Z-axis

Figure 4.1: nuScenes ego vehicle showing all the sensors and their locations on the ego vehicle

fortunately, the preprocessed radar point cloud in the nuScenes dataset is excessively
sparse. This sparsity often results in surrounding objects containing no radar points at
all, as reported in previous studies [24, 18]. Therefore, we omit radar-based evaluation
on nuScenes due to this known limitation.

(a) LiDAR point cloud (b) Radar point cloud

Figure 4.2: Illustration of the nuScenes birds eye view LiDAR (a) and radar (b) modalities
with ground truth boxes (pink boxes outlined in blue) within the focus area (pale blue) with
the ego vehicle (dark red) facing the right depicted by the red arrow.
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4.1.1.2 Radar Dataset In Adverse Weather

The RAdar Dataset In Adverse weaThEr (RADIATE) recorded in Edinburgh, Scotland
[13] is a dataset providing LiDAR, radar, and GPS in varying weather conditions (rain,
snow, fog, sun, and night). The goal of the dataset is to use radar in situations where
vision or LiDAR systems may fail. The RADIATE dataset provides annotated scenes
with Pedestrian and Vehicle classes Table 4.2. The annotations are provided as 2D
bounding boxes. Additionally, the dataset is not as accurately annotated as nuScenes,
with many scenes omitting bounding boxes for vehicles and pedestrians; therefore, the
scenes used to evaluate the accelerated methods are selected carefully. Thus, there are
fewer accurately annotated scenes than nuScenes.

Table 4.2: Object Classes in the RADIATE Dataset

Class Name Sub Class Names
Vehicle Bicycle, Car, Van, Truck, Bus, Motorbike
Pedestrian Single pedestrian, Group of pedestrians

The dataset consists of a single 360° scanning radar, a 360° LiDAR (same model
as the nuScenes LiDAR), and a single front-facing stereo camera. Automotive radar

Navtech Radar
- s 4 cm CTS 350-X
X j v W 25cm Velodyne o 7=l :

HDL-32e - i~

Velodyne ;
HDL-32¢ /@)~
LiDAR

_‘
/ ZED
/ Stereo Camera

Navtech Radar CTS 350-X

Figure 4.3: RADIATE ego vehicle showing all the sensors and their locations on the ego
vehicle

systems commonly use MIMO technology with multiple transmitters and receivers to
detect the direction of arrival. While cost-effective, these systems suffer from poor
azimuth resolution, resulting in blurry cross-range images that may lack sufficient de-
tail for object recognition or precise scene mapping. Scanning radar offers improved
azimuth resolution by mechanically rotating the antenna to measure each direction
sequentially, but this approach suffers from slower update rates of 4Hz. As a result,
slight synchronization offsets between the LIDAR and radar modalities can occur, lead-
ing to some misalignments in the sensor data. The bounding box annotations are more
accurately aligned with the radar modality.

The 3D LiDAR information is provided in point cloud form as shown in Fig. 4.4a,
whereas the radar range-azimuth image Fig. 4.4b is not. Due to how the LiDAR is
placed on the ego vehicle roof in Fig. 4.3, the scan radar obstructs the LiDAR line of
sight towards the back left, leaving a dead zone. Due to the radar being a scan radar,
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only 2D radar information is obtained. To extract a 2D point cloud, CFAR is used as
explained in section 2.1.

(a) LiDAR point cloud (b) Radar Cartesian range-azimuth map

Figure 4.4: Tllustration of the RADIATE birds-eye view LiDAR and radar modalities with
ground truth boxes. The ego vehicle is facing upwards as depicted by the red arrow.

4.1.2 Evaluation Metrics

To evaluate the accuracy of the maps after applying the acceleration techniques dis-
cussed in Chapter 3 three metrics are used. Intersection over bounding box (IoBB),
angular scan normalised mean squared error (AS-NMSE), and the free space error.

4.1.2.1 Angular Normalised Mean Squared Error

The AS-NMSE from [21] is a metric that evaluates how accurately driveable areas and
surrounding obstacle boundaries are identified. This is accomplished by casting virtual
rays outward in all directions, with one ray every degree for a complete 360-degree view
around the vehicle. For each ray, the distance is measured from the vehicle to where
the ray first hits an occupied cell in the estimated occupancy map. These distances
are then compared to the corresponding distances the same rays would travel in the
ground truth map, yielding

1d—d|

AS-NMSE = :
|||

(4.1)

A~

where the collection of all 360 distance measurements forms the vectors d (estimated
distances) and d (ground truth distances). The angular scans with virtual rays with
both ground truth distances and the estimated distances are illustrated in Fig. 4.5a
and Fig. 4.5b, respectively.
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Figure 4.5: Figure illustrating the (a) ground truth (pink cells)angular scan and the (b)
angular scan on the estimated occupancy mask (black cells) around the ego vehicle (red cells)
within the focus area (pale blue)

4.1.2.2 Intersection Over Bounding Box

[oBB is a metric used to quantify the level of spatial coverage of objects that the
estimated occupancy map has for each and every ground truth object. In a scene, the
IoBB can be represented as a vector v € RVi-bozes  with a value for each ground truth
box. The ith object is defined as

hi _ ‘/Intersection—i (42>
Vai—i

where Vipiersection—i is the number of occupied cells in the estimated occupancy map
Fig. 4.6b that intersect with the ith object ground truth box shown in Fig. 4.6a and
Var—i is the number of cells in the ith ground truth box. Therefore, the ith object has
a loBB value h; € [0,1]. An object is considered detected if the [oBB value is greater
than zero.

4.1.2.3 Detection Rate

Thus, using the IoBB for each object in a given scene, the detection rate is defined as
the number of objects with non-zero IoBB divided by the total number of ground truth
boxes in the scene

1P llo

Detection Rate = .
Vthboxes

(4.3)
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. ‘ by = 0.167
1 1
(a) Ground truth with (b) Estimated occupancy (c) Intersection
single object map

Figure 4.6: IoBB metric illustrated for a map with two objects. IoBB quantifies the inter-
section between the ground truth box for each object with IDs 0 and 1 and the estimated
occupancy map as a fraction of the number of intersecting cells divided by the total number
of cells in the bounding box.

4.1.2.4 Free Space Error

The free space error is the number of false positives—points incorrectly estimated as
occupied outside the ground truth boxes—divided by the total number of cells outside
the ground truth boxes:

#False Positives

. 4.4
#Cells outside ground truth boxes (44)

Free Space Error =

For example in Fig. 4.6, the free space error is % = 0.08. This metric evaluates the
accuracy of free space representation in regions beyond the angular scan coverage.
Such accuracy is crucial for path planning algorithms that rely on out-of-line-of-sight
occupancy estimates when computing future trajectories. It also allows us to identify
when an occupancy algorithm introduces additional error into its estimations.

4.1.3 Experimental Setting

This section discusses the parameters relevant to the evaluation of accelerated PCSBL
variants. Different parameters are used for each dataset, while the overlapping param-
eters between the accelerated PCSBL variants and the benchmark PCSBL variants, for
both single- and multi-modal PCSBL, are outlined.

For the nuScenes dataset, the map parameters are defined in Table 4.3a. Since
digital map information is provided, a square map centered around the ego vehicle
is selected, while the narrower digital road geometry determines the actual area of
interest. Consequently, the map can contain up to 6400 cells, although the actual
number is typically much lower.

In contrast, the RADIATE dataset does not provide digital map information. There-
fore, a fixed rectangular region around the ego vehicle is defined to emulate a straight
road. Furthermore, because the stereo camera visuals are front-facing and crucial for
evaluating scene results, the region is positioned to include only minimal space behind
the ego vehicle.
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Table 4.3: Map parameters for the nuScenes and RADIATE datasets.

(a) nuScenes parameters (b) RADIATE parameters
Parameter Value Parameter | Value
N (scene road geometry dependent) | 6400 N 3200
Ny, Ny 80, 80 Nz, Ny 40, 80
grid size 0.5m grid size 0.5m

The parameters for benchmark single and multi-modal PCSBL as defined in [0, 2]
are highlighted in Table 4.4. The alternate methods, BGK [21] and ISM [8], have their
parameters along with their implementation details outlined in Appendix A.

Table 4.4: List of parameters used in single and multi-modal PCSBL and the measurement
model.

Parameter | Description Value
Yfrees Yoce Labels for the Proposed Measurement Models 0,1
153 PCSBL coupling parameter 1
a,b,c,d Gamma Prior Parameters 0.5,107%,107%, 106
Q Beam Width for and Radar Measurement Model 2°
A Obstacle Thickness for and Radar Measurement Model 2 grid cells
T Threshold 0.3
e, ar,, ar, | CIS gamma Parameters 0.5, 1.3, 1.3

The parameters regarding the accelerations are not yet defined. The PCSBL variants
employ approximate ray lookup for selection matrix construction using the selected U,
whereas benchmark methods from [0,8,21,21] use exact ray casting. All methods are
implemented in Python running on a Ryzen AI 9 365 CPU.

4.2 Acceleration Method Parameter Evaluation

This section presents experiments that inform the selection of parameters for the ac-
celeration methods listed in Table 4.5. To evaluate these parameters, 40 scenes from
the nuScenes dataset are used, chosen specifically for their high presence of pedestrians
and vehicles captured by the LiDAR sensor.

Table 4.5: PCSBL Acceleration Parameters

Parameter Description
U Ray lookup number of points per cell
K Measurement model exploited the number of regions
Overlap Number of overlapping cells between each of the k regions
Measurement Splitting | split measurements with rays overlapping in multiple regions
Quadtree Pruning The adaptive resolution is capped at one level of pruning
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4.2.1 Ray Look-Up Table

The ray lookup table is used to optimize selection matrix construction speed and re-
quires the number of points per cell U to be selected. However, excessively large values
of U lead to prohibitive memory requirements due to the increased storage needed for
precomputed rays. Therefore, U is chosen to use memory efficiently while preserving
performance relative to online computation of the rays.

Box plots for different U values are illustrated in Fig. 4.7 and Fig. 4.8. From the

0.6 T -1 — 1 __ -1 1.0

AS-NMSE

bt &
Detection Rate

PCSBL U=1 PCSBL U=4 PCSBL U=9 PCSBL U=16 PCSBL U=25 PCSBL
Algorithms

Figure 4.7: Distribution of AS-NMSE and the proportion of detected objects in ground-truth
maps over 40 densely populated nuScenes samples, shown for varying numbers of uniformly
sampled precomputed points U per cell.

AS-NMSE and proportion of detection in Fig. 4.7 alone, it may be difficult to select
U. With four points per cell, the performance appears to have approximately the
same AS-NMSE as the benchmark PCSBL while outperforming it in the proportion of
detections.

For this reason, the freespace error metric in Fig. 4.8 is more informative. It can
be observed that 4 points per cell introduces the most error, whereas 16 or 25 cells per
grid perform almost the same as the benchmark PCSBL across all the metrics. Thus,
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Figure 4.8: Distribution of AS-NMSE and the proportion of detected objects in ground-truth
maps over 40 densely populated nuScenes samples, shown for varying numbers of uniformly
sampled precomputed points U per cell.

either 16 or 25 points is a desirable choice.

We observe that the runtime remains largely unaffected by increasing the number
of points per cell. The computational boost comes from both the ray lookup and the
common sparse row technique used to construct the selection matrix. This behaviour
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Figure 4.9: Time complexity for construction of selection matrix. (a)Time complexity as the
number of cells changes for M = 5000 and (b) as the number of measurements changes for
N = 6400

is illustrated in Fig. 4.9a, which shows experimental results for the time complexity
of measurement matrix construction. To achieve an accurate and much faster approx-
imation of online ray computation, the ray lookup method uses U = 25 points per
cell.

4.2.2 Exploiting the Measurement Model

The PO and CP methods both make use of regions to reduce the complexity of PCSBL.
Furthermore, PO has an overlap between cells to be considered, and CP has splitting
or no splitting of measurements. The CP method is evaluated for K = 4,8, 16,25 and
30 regions for the grid resolution specified in Table 4.3a. The regions are visualised in
Fig. 4.10, where, notably, after 16 regions, for the selected grid parameters, the borders
become significantly more irregular than for K = 4,8 and 16.

K=4 K=8 K=16 K=25

Figure 4.10: Map partitioned regions for increasing numbers of regions.

To aid in parameter selection, mean maps (before thresholding to & with equation
(2.13)) for 40 separate samples are generated for each method with different parame-
ters. The mean maps are then evaluated at various threshold values 7, producing the
occupancy estimates. At each threshold, the metrics discussed in subsection 4.1.2 are
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computed and averaged across the 40 samples. The methods are only evaluated on
LiDAR, and the time results shown for the methods in this section do not include the
time required for constructing the selection matrix.

4.2.2.1 Region-Based Cell Permutation

The CP method is evaluated across multiple regions with and without the splitting
approach in Fig. 4.11b . For 4 regions, both variants achieve identical performance to
benchmark PCSBL since no LiDAR rays intersect multiple regions. This provides com-
putational acceleration while maintaining mathematical equivalence to the benchmark
method.

As the number of regions increases, the computational complexity of the CP method
decreases. However, both CP variants exhibit higher free space error compared to
benchmark PCSBL, while simultaneously achieving improved detection rates. This
trade-off indicates that selecting the optimal number of regions requires careful consid-
eration rather than simply maximizing the region count.

The splitting method preserves free space information that would otherwise be lost
in the non-splitting approach, leading to consistently superior AS-NMSE performance
compared to the non-splitting variant. This can be observed by the fact that the
splitting method typically has lower AS-NMSE than the non-splitting variant. By
splitting measurements into separate artificial measurements, the splitting approach
artificially inflates the measurement count (M, or Mg) in the denominator of the noise
variance update equation (2.12), while the residual term in the numerator remains
unchanged. This manipulation results in underestimated noise variance, which in turn
produces slightly elevated occupancy estimates. This consistent bias toward higher
occupancy values is observed in Fig. 4.11, both when comparing the splitting method
against its non-splitting counterpart and against the benchmark PCSBL method when
using the same 7.

The number of regions is decided as K = 16, as it is observed in Fig. 4.11 that for
more regions than 16, the AS-NMSE can increase relative to benchmark PCSBL and
the free space error increases disproportionately.

To preserve the AS-NMSE performance when using this acceleration method, the
splitting method is used with 16 regions; however, to achieve comparable free space
error, the threshold is adjusted from the original 7 =0.3 to 7¢p =0.35. For brevity, CP
is used to refer to PCSBL with K = 16 regions with the splitting method.

As shown in Fig. 4.12, computational benefits extend beyond 16 regions, though
runtime improvements exhibit diminishing returns as the number of regions increases.
At higher grid resolutions (smaller grid sizes), additional regions become viable due to
the smoother region boundaries that emerge from increased spatial discretization.

4.2.2.2 Partition and Overlap

Now, the overlap and number of regions for the PO method are decided, where the
results are formatted (number of regions)-PO-(Overlap cells), in Fig. 4.13 and Fig. 4.14.
Notably, when using PO, each region is computed separately, with smaller regions than
in the benchmark PCSBL; the sparsity level in each regional map may vary significantly
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Figure 4.11: Performance evaluation across varying numbers of regions K for CP using 40
nuScenes samples, with metrics re-evaluated at each threshold value. (a) Standard approach
without splitting measurements overlapping multiple regions. (b) Modified approach where
measurements overlapping multiple regions are split.

based on the scene. This may be the reason for the increased freespace error. Since
both PO and CP employ similar region-based principles, evaluation focuses on two
representative values: K =4 and K = 16.

Beyond 4 regions, this approach discards the same information as the non-splitting
variant of CP, resulting in poorly informed free space estimates along the borders of
each region, and there is no information sharing across the regions. The fusing of regions
based on less informed estimates fails to improve the AS-NMSE, as demonstrated by
the 16-region case in Fig. 4.14. This effect is evident when comparing the minimal
impact of overlap for 4 regions against the notably larger AS-NMSE increase observed
for 16 regions with overlap. In the case of 16 regions, increasing the overlap marginally
increases the detection rate as well as the free space error.

The introduction of overlapping regions creates a computational trade-off, as in-
creasing the number of regions K simultaneously increases the number of occupancies
that must be estimated. This is evident from Fig. 4.15, where the 16-region, 4-cell
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Figure 4.14: Performance evaluation for K = 16 regions using 40 nuScenes samples, with
varying overlap and metrics re-evaluated at each threshold
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overlapped variant takes nearly as long as 4 regions with 2 cells overlapped.
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Figure 4.15: Runtimes across 40 samples for 4 and 16 regions PO methods, for varying
numbers of overlapping cells. Compared with the benchmark PCSBL.

At this stage, it is already evident that the CP, which has coupling along the region
boundaries and therefore no need for these overlapping cells, is computationally more
efficient and also does not have the issue of varying sparsity per region, resulting in a
lower free space error. While CP may be faster than PO, PO is easier to implement.
The partition overlap method is tested using K = 16 and an overlap of two cells
is chosen to highlight the added computational complexity and the threshold is once
again shifted 7pp = 0.35. For brevity, PO is used to refer to PCSBL with K = 16
regions and a two cell overlap.

4.3 Results

Using the identified parameters, we now quantitatively and qualitatively evaluate the
accelerated PCSBL variants against the benchmark methods. All PCSBL variants use
K = 16 regions for PO and CP accelerations. We evaluate our methods across two
datasets with different modality focuses. For nuScenes, we evaluate single-modality
methods on LiDAR data, including the CP method, the PO method with a two-cell
overlap, and the quadtree-accelerated CP method (QCP). The benchmark methods
are BGK [21], ISM [8], and baseline PCSBL [24]. The RADIATE dataset is used to
evaluate the fusion methods as well as the single modality radar PCSBL.

4.3.1 Results on nuScenes

We compare single modality LiDAR on a single scene and provide statistical results
over 200 scenes. Fig. 4.16 and Table 4.6 show evaluations on scene 204 from nuScenes,
with My, = 6231 LiDAR measurements and a map of N = 2926 cells. Quantitative
results from Table 4.6 show that the PCSBL variants run up to 20 times faster than the
benchmark PCSBL and achieve the same detection rate while incurring only a marginal
increase in free space error and AS-NMSE.
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4.3.1.1 nuScenes Scene 204 Frame 0

Front Left Front Right

Back Left Back Right
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Figure 4.16: Occupancy mapping comparison on nuScenes scene 204, frame 0. Inputs include
ego vehicle camera views (a) and the LiDAR scan with object IDs (b). Occupancy maps
for benchmark and accelerated variants (c-h) show the ego vehicle (dark red), ground truth
boxes (pink), estimated occupancy (black), and road mask (pale blue). The vehicle front
faces right.
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Table 4.6: Results of Model Comparison on nuScenes LiDAR scene 204 frame 0

Methods
Metric ID | posBL. CP PO QCP || BGK ISM
0 1.000 1.000 1.000 1.000 0.000  0.000
1 1.000 1.000 1.000 1.000 0.500  0.000
2 0.000 0.000 0.000 0.000 0.000  0.000
3 1.000 1.000 1.000 0.500 1.000  0.000
4 0.188 0.313 0.292 0.271 0.396  0.479
5 0.027 0.054 0.027 0.054 0.108  0.081
IoBB 6 0.279 0.279 0.279 0.279 0.492  0.459
7 0.028 0.028 0.028 0.028 0.028  0.000
8 0.500 0.500 0.500 0.500 0.750  0.000
9 0.500 0.500 1.000 1.000 0.500  0.500
10 0.500 0.500 0.500 0.500 0.500  1.000
11 0.348 0.348 0.348 0.348 0.696  0.565
12 0.750 0.750 0.750 0.750 0.500  0.250
13 0.333 0.333 0.333 0.333 0.472  0.667
Detected Targets 13/14 13/14 13/14 13/14 12/14 8/14
AS-NMSE 0.244 0.274 0.271 0.280 0.445 0.394
Freespace Error 0.045 0.051 0.053 0.048 0.079  0.067
Time (s) 8.254 0.428 1.420 0.411 0.165 0.178

Although BGK and ISM have good IoBB and runtimes, they suffer from poor free space
error and lower AS-NMSE because of inaccurate edge detection. PCSBL outperforms
BGK and ISM on all metrics, despite lower IoBB for large objects (e.g., targets 4, 6,
11, and 13). The higher IoBB values of BGK and ISM for large objects come at the
expense of increased false alarms and failure to detect many pedestrians. PCSBL and
its variants are significantly better at pedestrian detection. Meanwhile, BGK misses
one pedestrian (target 0), and ISM misses two (target 0 and 3). Finally, the CP method
is significantly closer to BGK and ISM in terms of runtime than the benchmark PCSBL.

4.3.1.2 Statistical Results

Further, Fig. 4.17 and Table 4.7 show the statistical performance of the methods aver-
aged over 200 random scenes from nuScenes. Fig. 4.17 shows that the proposed PCSBL
variants achieve similar performance compared to the benchmark PCSBL. It also shows
that the BGK and ISM have higher AS-NMSE and lower detection rate compared to
the PCSBL and its variants, which is similar to the observations in scene 204. The
results in Table 4.7 show that across the three PCSBL algorithms, the proposed meth-
ods perform similarly to benchmark PCSBL, while the fastest PCSBL variant runs on
average 27 times faster than benchmark PCSBL.
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Figure 4.17: Distribution of the proportion of detected objects and AS-NMSE in the ground
truth maps over 200 random LiDAR nuScenes samples.

Table 4.7: Mean runtime over 200 random LiDAR nuScenes samples.

Method PCSBL CP PO QCP | BGK ISM
Time (s) 12.990 0.672 1.405 0.474 | 0.170 0.167

4.3.2 Results on RADIATE

For RADIATE, we evaluate both radar-only methods (PCSBL, CP, QCP) and fusion-
based methods combining LiDAR and radar. The fusion-based methods include CS and
CIS [6] along with their CP and QCP accelerated variants (CP-CS, QCP-CS, QCP-CIS,
CP-CIS). PO is omitted as it has been shown that CP performs the same or better in
most cases while being faster.

We evaluate single-modal and multi-modal PCSBL, presenting single scene results,
statistical results over 40 samples, and time complexity as a function of the number
of cells. Radar modalities from city scene 3-7 are used to compare the accelerated
methods. Additionally, LiDAR and radar modalities from city scene 3-0 are used to
compare the accelerated CS and CIS to the benchmark versions in Fig. 4.19, where
minimal differences are observed, the same as with the single modality PCSBL.

4.3.2.1 RADIATE Scene 3-7 Frame 120

This scene is used to evaluate the radar modality on benchmark algorithms PCSBL [24],
ISM [8], and BGK, as well as the QCP and CP accelerated variants. The scene within
the grid parameters specified in Table 4.3b contains Myr = 1720 radar measurements.
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Figure 4.18: Radar-only occupancy mapping comparison on RADIATE City Scene 3-7, frame
120. Shows ego vehicle camera view (a), radar points (b), and occupancy maps for various
accelerated and benchmark methods with ground truth boxes (pink/green outlines).

All methods successfully eliminate false CFAR detections directly ahead of the ve-
hicle. However, their performance varies significantly in other areas. BGK and ISM
demonstrate excellent computational efficiency on radar data but struggle with pedes-
trian detection in occupancy mapping. BGK fails to detect pedestrians (targets 72,
73, 74) and misses vehicle target 68, while ISM only fails to detect pedestrian target
73. The PCSBL variants consistently detect all pedestrians and vehicles, with closely
matched IoBB values across variants. However, target 59 proves challenging for most
methods. While faster methods like BGK and ISM offer computational advantages,
the accelerated PCSBL variants provide the most comprehensive and accurate detec-
tion results
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Table 4.8: Results of RADIATE Scene City-3-7 Frame 120 for Radar only

Methods
Metric ID PCSBL QCP CP BGK ISM
1 0.422 0.400 0.422 0.156 0.244
2 0.500 0.472 0.500 0.500 0.500
59 0.015 0.015 0.015 0.062 0.062
64 0.025 0.025 0.025 0.225 0.075
65 0.317 0.381 0.317 0.365 0.333
66 0.191 0.213 0.149 0.106 0.149
67 0.520 0.560 0.540 0.480 0.580
68 0.217 0.167 0.200 0.000 0.017
IoBB 69 0.451 0.463 0.488 0.268 0.317
70 0.314 0.255 0.275 0.118 0.137
71 0.354 0.417 0.438 0.500 0.417
72 0.167 0.133 0.133 0.467 0.167
73 0.750 0.250 0.250 0.000 0.000
74 0.250 0.125 0.125 0.000 0.125
75 0.500 0.500 0.500 0.000 0.250
76 0.500 0.750 0.750 0.500 0.750
7 0.667 0.667 0.667 0.667 0.667
78 0.750 0.750 0.750 0.000 0.250
Detected Targets 18/18 18/18 18/18 13/18 17/18
AS-NMSE 0.229 0.234 0.239 0.411 0.364
Free-Space Error 0.085 0.084 0.086 0.090 0.071
Time (s) 6.115 0.623 0.745 0.093 0.087

4.3.2.2 RADIATE Scene 3-0 Frame 275

LiDAR and radar modalities from city scene 3-0 are used to compare the accelerated
CS and CIS to the benchmark versions in Fig. 4.19, where minimal differences are
observed, the same as with the single modality PCSBL. The similarity in performance
between the methods is reinforced by the closeness of the AS-NMSE free-space error in
Table 4.9, and most of the IoBB values are mostly the same or very close for different
objects across the PCSBL fusion variants. The scene consists and Mj, = 5702 LiDAR
and Mg = 1245 radar measurements. The acceleration methods on CS fusion decreased
the runtime by more than 10 times with CP and 22 times with QCP. Benchmark CIS
runs approximately 17 times faster with QCP-CIS, but is still very slow at 12.2 seconds.
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Figure 4.19: Occupancy mapping comparison on RADIATE City Scene 3-0, frame 275.
Modalities include ego vehicle camera view (a), radar points (b), and LiDAR points (c)
with object IDs in red. Occupancy maps for benchmark methods PCSBL (d), CS (f), CIS

(g) and their accelerated variants (e,h,i) show estimated occupancy with ground truth boxes
(pink/green outlines).
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Table 4.9: Results of RADIATE Scene City-3-0 Frame 275 for Radar and Fusion of LiDAR
and Radar

Methods
Metric ID [PCSBL QCPJ|| CS CP-CS QCP-|| CIS CP-CIS QCP-
radar radar CS CIS

118 | 0432 0.409([0.375 0.364 0.386 || 0.375  0.352  0.330
159 | 0.105 0.118|(0.224 0.237 0.237|| 0.224 0.224 0.211
162 | 0.260 0.260 || 0.260 0.260 0.260 || 0.260  0.260  0.260
163 | 0.268 0.232(/0.286 0.304 0.304 | 0.286 0.286 0.286
166 | 0.402 0423 /0445 0.423 0.394 || 0.445 0409 0.372
167 | 0.180 0.197|[0.115 0.164 0.098 || 0.115  0.147  0.049
ToBB 168 | 0.160 0.180 | 0.100 0.080 0.100 || 0.060 0.060 0.080
169 | 0.298 0.213([0.149 0213 0.170 || 0.149  0.213  0.149
170 | 0.271 0.288 ([ 0.237 0.237 0.237 || 0.237  0.237 0.237
172 | 0.113 0.094 || 0.019 0.019 0.019 || 0.019  0.019 0.019
173 | 0.000 0.000 || 0.056 0.056 0.056 | 0.056 0.056 0.056
175 | 0.000 0.000 || 0.000 0.000 0.000 || 0.000 0.000  0.000
176 | 0.200 0.200 || 0.200 0.200 0.200 || 0.200  0.200  0.200
Detected | 11/13 11/13|[12/13 12/13 12/13|] 12/13 12/13 12/13
AS-NMSE | 0243 0.200 |[0.091 0.092 0.093 || 0.103 0.094 0.101
Free-Space | 0.055 0.058 || 0.068 0.069 0.070 || 0.068 0.069 0.063
Runtime(s) | 7.405 0.610((14.989 1.412 0.669|/210.241 22.621 12.221

4.3.2.3 Statistical Results

Further, Fig. 4.20 and Table 4.10 show the statistical performance of the multi-modal
and radar PCSBL methods averaged over 40 scenes from RADIATE. It is clear that the
single- and multi-modal accelerations perform closely to the PCSBL benchmarks [6,24]
methods while outperforming the BGK [21] and ISM [8] benchmarks in Fig. 4.20.
Notably, the QCP acceleration method on CS more significantly altered the AS-NMSE
than the CP method alone.
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Figure 4.20: Distribution of the proportion of detected objects and AS-NMSE in the ground
truth maps over 40 RADIATE samples.

Table 4.10: Mean runtime over 40 RADIATE samples.

Method PCSBL QCP BGK ISM CSs CP-CS QCP- CIS CP-CIS QCP-
radar radar CS CIS

Time(s) 6.871 0.623 0.093 0.088 14.593 1.481 0.709 | 208.483 20.884 8.771
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4.3.2.4 Time Complexity

The runtime performance is analyzed in Fig. 4.22 and Fig. 4.21 across varying cell
counts N. Performance was evaluated on frame 275 (city-3-0, RADIATE dataset) using
LiDAR within a 20x20m ego vehicle grid, with map resolution varied by adjusting cell
size.

PCSBL and its variants have more computational cost associated with the number
of cells; therefore, only the number of cells is varied because it is more informative than
varying the number of measurements. First, the zero column and quadtree accelerations
are compared on PO and CP in Fig. 4.21, and then all the accelerations are compared
to the benchmark methods from [6,8,21,21] in Fig. 4.22.
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Figure 4.21: Time complexity analysis comparing accelerated methods for (a)single modality
(b)fusion PCSBL variants with and without zero column optimisations (Z) across varying
grid resolutions. Single-modality methods use LiIDAR measurements, while fusion methods
use LiDAR and radar measurements from RADIATE scene city 3-0 frame 275.

At very low resolutions, Fig. 4.21a reveals that applying zero column methods to the
already efficient CP and QCP algorithms introduces computational overhead, result-
ing in longer execution times compared to their baseline implementations. However,
this overhead becomes negligible as the problem size grows beyond approximately 1000
cells, at which point the benefits of zero column elimination become pronounced. The
effectiveness of the zero column optimization is particularly evident when comparing
CP(Z) to QCP, where the runtime performance becomes nearly equivalent, demon-
strating that zero column elimination provides acceleration benefits comparable to the
test-data quadtree for the CP method. The PO method also appears to benefit more
significantly from the zero column method than CP, likely because the difference be-
tween CP and PO runtime stems from the increased number of occupancies PO needs
to estimate.

The fusion methods in Fig. 4.21b demonstrate different acceleration benefits de-
pending on the fusion approach. For CS fusion, both zero-column optimization and
quadtrees (CS-CP, CS-QCP, CS-CP(Z), CS-QCP(Z)) provided notable runtime im-
provements comparable to their single-modality performance. However, for CIS fusion,
the zero column optimisation yielded only marginal, almost invisible gains in total
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computational runtime. This reduced effectiveness in CIS fusion may stem from the
computational overhead of the permutation of the three times larger selection matrix.
Additionally, quadtree accelerations show significant performance gains only at higher
resolutions when applied to multi-modal fusion, unlike in single-modal cases. Using
multiple modalities introduces more occupied states into quadtree nodes, reducing the
chance that nodes contain only free space and making cell pruning less effective. Despite
this, significant performance gains are still realised.

Now, comparing all the accelerated PCSBL variants to the benchmark methods
applied in Fig. 4.22. The accelerated methods demonstrate superior performance com-
pared to BGK and ISM when estimating occupancy for relatively small numbers of
cells. However, as the cell count increases, the QCP and CP methods exhibit less
favourable scaling characteristics than BGK and ISM. PO, which requires calculation
of a larger number of occupancies, operates significantly slower than CP while maintain-
ing a notable performance advantage over PCSBL. The accelerated CS fusion methods
achieve runtime performance levels that are close to the accelerated single-modality
counterparts. In contrast, CP-CIS and its quadtree variant have runtime performance
characteristics that align more closely with the benchmark CS PCSBL than with the
other accelerated methods.

The accelerated methods demonstrate superior performance compared to BGK and
ISM when estimating occupancy for relatively small numbers of cells. However, as the
cell count increases, the QCP and CP methods exhibit less favourable scaling character-
istics than BGK and ISM. The CP and PO methods exhibit better scaling behaviour
with increasing N due to their O(N3/K?) complexity versus O(N?) for benchmark
PCSBL. While both accelerated methods significantly outperform PCSBL, PO operates
more slowly than CP due to additional occupancy calculations and separate selection
matrix overhead.
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Figure 4.22: Time complexity analysis comparing benchmark and accelerated methods across
varying grid resolutions. Single-modality methods use LiDAR measurements, while fusion
methods combine LiDAR and radar measurements from RADIATE scene city 3-0 frame 275.
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4.4 Summary

This chapter began by presenting the evaluation techniques, the selection of parameters
for the acceleration methods, and the resulting performance in terms of runtime and
the evaluation metrics described earlier.

The nuScenes and RADIATE datasets were introduced, detailing the provided
ground truth data, map information, and sensor modalities. nuScenes offers LIDAR
and radar data, but only the LiDAR modality is evaluated due to the overly sparse
preprocessed radar point cloud. In contrast, RADIATE is used to evaluate both radar
alone and LiDAR-radar fusion. Its radar data is captured from a mechanically scan-
ning radar in range—azimuth format, enabling improved azimuth resolution compared
to typical automotive MIMO radars, and allowing for custom preprocessing to generate
the desired input.

The evaluation metrics—AS-NMSE, IoBB (with the related detection rate), and free
space error—were explained, along with the occupancy grid map (OGM) parameters
for map size and resolution. Parameters for the benchmark single-modality and multi-
modal fusion methods were also outlined.

Using the specified map parameters, the acceleration methods were tuned to select
optimal configurations. This included choosing the number of points U = 25 per
cell for the ray lookup table, justifying the use of the splitting method for CP, and
selecting K = 16 regions for both PO and CP, with the CP threshold adjusted upward
to maintain comparable free space error. At this stage, it was already observed that
CP is faster than PO with no need for the additional overlap across regions that PO
introduces.

The selected parameters were then applied for a full comparison against benchmark
methods on both datasets. On nuScenes, LiDAR-only evaluation over 200 samples
demonstrated that the accelerated PCSBL variants produce occupancy maps of very
similar quality to the benchmark PCSBL while achieving an average 27x speed-up. The
PO method with overlap was noted to be significantly more computationally expensive
due to the larger number of occupancies that must be calculated.

On RADIATE, both single-modality radar and LiDAR-radar fusion were evaluated.
For CS fusion, runtime was improved by 20x to sub-second execution times, while CIS
fusion with QCP achieved a 17x speed-up but remained slower overall (> 20s). Across
both datasets, the accelerations maintained detection rates and AS-NMSE close to the
benchmarks, with only minor increases in free space error.

Finally, a time complexity analysis was performed for varying grid cell counts. The
accelerated single-modality and CS fusion PCSBL variants outperformed all benchmark
methods at lower map resolutions. CIS was still relatively slow even after applying
accelerations. At higher resolutions, BGK and ISM scaled more favourably.
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Conclusion and Future Work

5.1 Conclusion

PCSBL for OGM offers state-of-the-art mapping performance but suffers from cubic
scaling in the number of cells, leading to high computational cost. This thesis addressed
these bottlenecks by introducing practical accelerations that maintain mapping quality
while substantially reducing runtime.

We introduced an approximate raycasting with a sparse matrix construction method
to speed up the selection matrix construction, extended test-data quadtrees to PCSBL
to accommodate variable map resolution, and proposed two computationally efficient
PCSBL techniques (PO and CP) that exploit the selection matrix for OGM reconstruc-
tion. The fast selection matrix construction reduces the computational complexity of
the selection matrix

Evaluations on the nuScenes and RADIATE datasets demonstrated that these
methods maintain detection accuracy and AS-NMSE comparable to benchmark single-
modality and fusion PCSBL approaches, while significantly reducing runtime and only
marginally increasing free space errors. Among the acceleration techniques, the CP
method is more computationally efficient than the PO method, since PO calculates
more cell occupancies due to overlapping regions. Unlike PO, CP preserves the sparsity
level by not computing independent sub-maps. Furthermore, CP is further accelerated
using quad trees; for single-modality methods, this acceleration has minimal impact
on the quality of the maps for single-modality PCSBL. However, for fusion methods
and single modality radar, QCP acceleration affects AS-NMSE or detection rate more
than the CP acceleration technique. These effects are slight, and the worst accelerated
methods still outperform BGK and ISM in quality but do not scale as well with in-
creasing map resolution in time complexity. Accelerated single-modality PCSBL and
CS fusion methods achieve sub-second runtimes at practical grid resolutions. Although
CIS methods also benefit from acceleration with notable runtime improvements, they
remain too slow for practical use.

The CP and PO methods achieve a quadratic reduction in cubic complexity based
on the number of regions. Test-data quadtrees reduce computational overhead by
reducing the number of cells requiring occupancy estimation. The CSR selection matrix
construction makes the complexity dependent on the sparsity of the matrix, while the
ray lookup table improves the complexity from linear scaling in both measurements
and cells to linear scaling in measurements with logarithmic scaling in cells.

To conclude, the accelerations introduced in this work substantially reduce runtime
for both single- and multi-modal fusion PCSBL, with minimal impact on metrics. Al-
though PCSBL has been significantly sped up, further research outlined in section 5.2
could yield even greater efficiency, which may be important for edge devices.
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5.2 Future work

e Polar grids instead of rectangular grid: Using polar grids would completely sepa-
rate measurement rays (in the case of LIDAR, not radar due to the beam sensor
model), meaning that measurements within the selection matrix cannot intersect
multiple regions, where the region would perfectly align with a subset of angu-
lar sectors. Therefore, the number of regions K can be increased while remaining
mathematically the same as the benchmark PCSBL algorithms. Using polar grids
may make it infeasible to use quad trees in their current form. Trees could still
be used to spatially define polar grid cells; however, this is a direction that would
require investigation. It is worth noting that while polar grids do not adapt its
resolution dynamically based on the scene like quadtrees, they do have variable
resolution due to the increasing size in cells radially. Cells closer to the vehicle
are smaller, and cells further away are larger.

Figure 5.1: Radially indexed polar grid

e [terative temporal PCSBL: Currently this work has only taken into account static
occupancy grid maps, and therefore calculates T iterations per map, however
passing prior information from the previous frame may help PCSBL converge
faster at the following time step allowing the number of iterations to reduce from
the constant static map number of iterations.

o Selection matrix values experimentation: Instead of having only binary {0,1}
values within the selection matrix, the values corresponding to measurement rays
can be weighted continuously within [0, 1] based on their intersection geometry
with grid cells. The weighting could be determined by the fractional length a ray
intersects a cell, providing a more accurate representation of the measurement’s
influence on each grid cell.

e [nversion-free methods: With matrix inversion being the most computationally ex-
pensive part of PCSBL, inversion-free methods offer significant potential for com-
putational acceleration. Generalised Approximate Message Passing [19] (GAMP)
was briefly investigated as an alternative that approximates the posterior distribu-
tion rather than computing the MAP estimate directly, thereby eliminating matrix
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inversion requirements. It is well known that GAMP requires a well-conditioned
A matrix, something which our selection matrix is not. However, using the frac-
tional values previously mentioned could improve the condition of the selection
matrix.
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Occupancy Grid Map Methods

A.1 Inverse Sensor Model

This appendix outlines the key assumptions underlying ISM, describes its occupancy
state update mechanism, presents the complete algorithm, and specifies the parameters
used in its implementation.

The ISM algorithm, implemented from [%] a extended version of vanilla ISM [1],
makes use of the same sensor model outlined in Fig. 2.1b. However, ISM makes two
problematic assumptions that simplify computation at the expense of accuracy. First,
it assumes each cell in the occupancy grid is independent of every other cell:

pla) = [] plaln])) (A1)

Second, it extends this assumption to state that given a set of measurements, each
cell remains independent of every other cell in the map. These assumptions are not
necessarily valid since occupancy grid cells often form part of larger physical structures.
Nevertheless, these independence assumptions significantly simplify the model, enabling
fast computation of occupancy grid maps.

A.1.1 Log-Odds Update Rule

ISM employs a log-odds representation to iteratively update occupancy probabilities
in a numerically stable and computationally efficient manner. Using the same sensor
model as radar for PCSBL (Fig. 2.1b) with beam width © and object thickness A, the
algorithm processes each measurement as follows:

For cells within the conical beam leading up to the terminal points (free space
region):

gm [n] = gm—l[n] + gfreea Efree - 1Og (&ﬁ) (AQ)
For cells in the terminal region where measurements are detected (occupied space):
Cnln] =l a[1] + Coces oo = log (225 (A3)

Here, /,,[n] denotes the log-odds of occupancy for cell n after processing the m-
th measurement. The terms py.. and pgee represent the inverse sensor model like-
lihoods: peec = p(z[n] = 1|p,,) (likelihood of occupation given measurement) and
Diree = p(x[n] = 0|p,,,) (likelihood of being unoccupied given measurement).

Note that vanilla ISM would compute only the current measurement’s contribution
without maintaining the running belief represented by the £,,_;[n] term.
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A.1.2 Probability Conversion and Thresholding

The final occupancy probability estimate for each cell is computed by converting from

log-odds:
1

1+ exp({n])’

The binary occupancy grid x is then obtained by thresholding each probability
estimate to either 0 (unoccupied) or 1 (occupied) using the threshold 7igy.

plxln] =1) =1 (A.4)

Algorithm 5 ISM
M—1

Input: Reflection point coordinates {pm },,—o
Parameters: Beam width 2, object thickness A, ISM parameters pgee, Poce, and £
Output: Binary occupancy grid map X

1: for each measurement m do

2: for each grid cell n do

3: if n is inside the conical beam of p,, then

4: b [n] — Em_l[n] + liree

5: end if

6: if n is one of the conical beam’s terminal points then
7 L [n] — fm,l[n] + loce

8: end if

9: end for
10: end for

11: for each grid cell n do
12: Compute p(z[n] = 1) using Equation A.4

13: end for
14: Compute binary occupancy grid X via threshold 7gm

From the algorithm, it follows that the complexity of ISM is given by O(M L), where
L denotes the average number of cells within the beam per update, for M measurements.

Table A.1: ISM Parameters

Parameter | Description Value
Q Beam Width 2°
A Obstacle Thickness 2 grid cells
Poces Phree Occupancy and Non-occupancy Probabilities 0.8, 0.2
TISM Threshold 0.5
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A.2 Bayesian Gaussian Kernels

This appendix section explains how occupancies are represented in BGK [21], how the
training data used to inform these occupancies is constructed, and how the occupancies
are updated using spatial correlation methods. The complete BGK process is summa-
rized in Algorithm 6, which utilizes the parameters outlined in Table A.2.

BGK [21], unlike ISM, expresses correlation between neighbouring cells, enabling
more sophisticated spatial reasoning. While the BGK algorithm allows estimation of
occupancy at any continuous point, the OGM framework is adopted for computational
efficiency, considering discrete points where each cell is defined at the cell centre p} =

(D> Pyn)-

A.2.1 Probabilistic Cell Representation

Each grid cell is modelled using a Beta probability distribution Beta(«, ), providing
uncertainty quantification through the variance term. The mean and variance at each
grid cell are given by:

(A.5)

o*[n] = : (A.6)

A.2.2 Training Data Construction

To update the Beta parameters that inform occupancy values, BGK constructs training
data using ray casting principles similar to PCSBL and ISM. The process involves
sampling multiple points along rays from the sensor origin to each measured sensor point
p,,. Free space points are sampled every 7g. meters along each ray and receive free
space labels (zero), while the measurement endpoint p,, itself receives an occupied label
(one). This generates a training dataset P containing My training points p,; (where i
indexes all training points, including both free space samples and measurements) with
corresponding binary labels y;.

A.2.3 Spatial Correlation Through Kernel Functions

BGK incorporates spatial correlation between cells through a kernel function. This
kernel considers only training points p,; within distance [ of the query point p;, defined

as:
2+cos(27r%) d 1 . d ]
—L(1-9)+ 2r4 d<l
k(popy) =4 { 5 (17 1) g sin(2r9) ’ (A7)
d>1,
where the Euclidean distance between any training point p; and cell centre is:
d = [|p; — ppll2- (A.8)
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The kernel length parameter [ determines the extent of spatial correlation—Ilarger val-
ues increase the influence region, allowing distant observations to affect a query cell’s
occupancy estimate.

A.2.4 Parameter Updates

Using the kernel weights, the Beta parameters for each cell are updated by incorporating
both the training data and prior beliefs through parameters o and Sy:

aln] = a0+ > kp,,p3) ol (A9
] = o+ >, kpo i) (1= 4l (A.10)

For each query cell n, M,,, denotes the number of training points within kernel distance
[ of the current query point p}. The updated Beta parameters are then used to calculate
the expected mean and variances for each cell using equations (A.5) and (A.6). Finally,
the binary occupancy grid x is obtained by thresholding each mean p[n| using the
threshold mgqk.

Algorithm 6 Bayesian Gaussian Kernel (BGK)

Input: Measurements {p,,}*=1, query centres {p} =}
Parameters: kernel length [, scale o, priors «q, By, free-space sampling resolution rfee
Output: Occupancy map &

1: Initialize a[n] = ap, B[n] = By for all n

2: for each measurement p,, do

3 Sample free space points with y = 0 every rpee meters along the ray to p,,
4 Assign y = 1 to the measurement point p,, itself

5: Insert all training points (p;, ;) into a kd-tree spatial index

6: end for

7. for each query cell center p;, do

8 Query points and labels within distance [ from kd-tree (size M)
9: Compute weights k(p;, p) via Eq. (A.7)

10: Update aln| and B[n| using (A.9),(A.10)

11: Compute p(n), o(n) via Egs. (A.5), (A.6)

12: end for

13: Compute binary occupancy grid & via the threshold 7pgx

From the algorithm it can be seen that the complexity of BGK is given by
O(N log(My)) where N is the total number of cells and log(Mry) is cost of querying
the points for each cell.
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Table A.2: BGK parameters

Parameter | Description Value
0o Kernel scale 0.1

ag, Bo Beta prior parameters 0.001
l Kernel length 1m
Ttree Free space ray sampling resolution 1m
TBGK Threshold 0.5
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Constant False Alarm Rate

CFAR is first explained for use with a range-azimuth image, after which the the pa-
rameters are provided in a table Table B.1 for the algorithm explained in Algorithm 7.

Radar signals have noise levels which vary significantly, thus it is not a simple task
to separate the true signal from the noise. Within a range-azimuth image which is
represented in polar form E € RNRangeXNazimuth  ywhere Nrange X Nazimuth 1 the radar
image resolution. CFAR then iterates through each angular portion of the range-
azimuth image (takes each azimuth direction e; where i = 1,2,. .., Nyimun) and then
calculates a variable threshold in order to classify elements within the current azimuth
direction as signal or noise. The threshold is determined by calculating the noise
power for each cell under test, which is the specific range-azimuth cell currently being
evaluated for the presence of a target. Each cell in the radar image is sequentially
treated as the cell under test, and the local noise characteristics around that cell are
analyzed to determine an appropriate detection threshold. The threshold for the j-th
range cell in the i-th azimuth direction is given by:

T:lj] = €62 (B.1)

where 67 ; is the estimated noise power for the cell under test at position (7, j) and e is

the threshold factor given by
€ = Nypain (P /N — 1) (B.2)

The noise power is estimated for each cell under test by averaging the neighbouring
training cells, where the training cells are not immediately adjacent but have a set of
guard cells between the cell under test and the training cells as illustrated in Fig. B.1.
Thus, for each azimuth direction e;, the local noise power is estimated by convolving

Cell Under Test (CUT)

Training cells Training cells

\ /

Gaurd
Cells

Figure B.1: CFAR training mask m,ain for cell under test noise estimate
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the training mask with the signal power corresponding to the current azimuth direction

1
&2 = convolve(mtram, \ez' |2)7 (B‘?’)

7
train

where 6'? € R¥range represents the vector of local noise power estimates for each range
cell in the i-th azimuth direction.
Thereafter, for each azimuth direction ¢, the threshold vector is calculated by
element-wise multiplication:
T; = 66'12, (B4)

and the detections are classified by performing element-wise comparison between the
signal power and threshold vectors:

o il < ml)
"] {17 el = 7l B

where w; € {0,1}"ranze represents the binary detection vector for the i-th azimuth
direction, and j indexes the range cells. The complete detection matrix is then W =

I:w1’ wz’ . 7wNazimuth] e {07 1}NRange><Nazimuth_

Algorithm 7 CFAR Detection Algorithm

Input: Range-azimuth image E € RVRangeXNazimuth
Parameters: Number of training cells Niyain, Number of guard cells Ngyarq, false alarm
rate P,
Output: Detection matrix W € {0, 1}VRange X Nazimutn
Compute threshold factor € using (B.2)
for i = 1 to Nagimuth do
Extract azimuth direction: e; < E[:, 1]
Estimate local noise power &7 using (B.3)
Compute threshold vector 7; using (B.4)
Classify detections w; using (B.5)
W[:, Z] — w;
end for
return Detection matrix W

Table B.1: List of parameters used in CFAR algorithm for range-azimuth radar image

Parameter | Description Value
Nirain Number of train cells 150
Nguard Number of guard cells 90

P, false alarm rate 0.2
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Multi-Sensor Coordinate
Registration

This appendix describes the coordinate transformation process to register LIDAR point
clouds to the radar coordinate frame for multi-sensor fusion.

In multi-sensor systems, different sensors operate in separate coordinate frames be-
cause of their physically separated locations. To fuse LIDAR and radar data effectively,
all measurements must be expressed in a common coordinate system using a rigid body
transformation. Techniques used can be found in [50].

In this project, radar is used as the origin, and the LiDAR coordinate frame is
therefore registered with the radar coordinate frame.

C.1 Transformation Parameters

The spatial relationship from the LiDAR to the radar is characterized by calibrated
parameters, rotation and translation vectors:

I'ior = [Txyrya TZ]T tior = [tmatyatz}T~ (C1>

C.2 Rodrigues Formula

The rotation vector risgr is a compact representation where the vector direction indi-

cates the rotation axis and the magnitude indicates the rotation angle. To apply this

rotation to points, we convert it to a 3 x 3 rotation matrix using Rodrigues formula.
First, extract the rotation angle and axis:

[reer|l = /72 + 72 + 72 (rotation angle in radians) (C.2)

u = rior/||rror || = [ta vy, u.]”  (unit rotation axis) (C.3)

Create the skew-symmetric matrix K from the unit axis:

0 —u, wy
K=| u, 0 —u,
—Uy Uy 0

The rotation matrix is then computed as:

R =TI+ sin(|rier) K + (1 — cos([|rer])) K?
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C.3 Homogeneous Transformation

Rotation requires matrix multiplication while translation requires vector addition. To
combine both operations into a single matrix multiplication, we use homogeneous coor-
dinates—a mathematical technique that represents 3D points as 4D vectors by adding
a fourth coordinate with value 1.

This allows us to encode both rotation and translation in a unified 4 x 4 transfor-

mation matrix:
R tior
T — c R4 X4
L2R < OT 1

The upper-left 3 x 3 block contains the rotation matrix, the upper-right column
contains the translation vector, and the bottom row ensures proper homogeneous co-
ordinate handling.

C.4 Point Cloud Transformation

Transform LiDAR points Pjig.: € RM*3 to radar coordinates using homogeneous coor-
dinates:
Step 1: Convert to homogeneous coordinates (denoted by superscript "):

Pl = [Pridar, 1] € RM* (C.4)

where 1, is a column vector of ones with length M, augmenting each 3D point to 4D.
Step 2: Apply transformation using matrix multiplication:

T

Pﬁdar-in-radar - (TL2R ’ (Pﬁdar)T) (C.5)

Step 3: Extract the transformed 3D coordinates:
Phidar-in-radar = Pﬁdar—in—radar[:v 3] e RM>3 (C.6)
where [:,: 3] notation extracts the first three columns, converting back from homoge-

neous to Cartesian coordinates.

The result Pligarinradar represents the LIDAR point cloud expressed in the radar
coordinate frame, enabling consistent multi-sensor fusion algorithms to use the syn-
chronised point clouds.

65



	Abstract
	Acknowledgments
	Introduction
	Occupancy Grid Mapping
	Sensor Modalities
	Problem Statement
	Project Contributions
	Outline
	Publications from this Thesis

	Occupancy Grid Mapping Preliminaries
	Preprocessing steps of LiDAR and radar modalities
	LiDAR Preprocessing
	Radar Preprocessing
	Modality Fusion Preprocessing

	PCSBL for OGM
	Single Modality PCSBL for OGM
	Single-Modality PCSBL

	Fusion PCSBL for OGM
	Fusion Measurement Model
	Fusion PCSBL
	PCSBL Complexity Considerations

	Summary

	Computationally Efficient PCSBL
	Ray Lookup Selection Matrix Construction
	Test-Data Quadtrees
	Test-Data Quadtrees with PCSBL and Ray Lookup Tables

	Exploiting the Measurement Model
	Partition and Overlap
	Region-Based Cell Permutation

	Summary

	Evaluations and Results
	Evaluation
	Datasets
	Evaluation Metrics
	Experimental Setting

	Acceleration Method Parameter Evaluation
	Ray Look-Up Table
	Exploiting the Measurement Model

	Results
	Results on nuScenes
	Results on RADIATE

	Summary

	Conclusion and Future Work
	Conclusion
	Future work

	Occupancy Grid Map Methods
	Inverse Sensor Model
	Log-Odds Update Rule
	Probability Conversion and Thresholding

	Bayesian Gaussian Kernels
	Probabilistic Cell Representation
	Training Data Construction
	Spatial Correlation Through Kernel Functions
	Parameter Updates


	Constant False Alarm Rate
	Multi-Sensor Coordinate Registration
	Transformation Parameters
	Rodrigues Formula
	Homogeneous Transformation
	Point Cloud Transformation


