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PREFACE

The energy transition seems to be raging through our economy and our society. It only seems fit-
ting that the Dutch should try to get the sea involved. I was lucky enough to be able contribute
to research in ocean wave energy. I was also lucky enough to have the opportunity to work at a
very clever, though complicated machine. The last nine months have thus been characterised by
learning, having the illusion of understanding, asking stupid questions, rediscovery, realising I was
wrong, asking again, and then, finally, understanding.

The past seven years have been a journey from freshman to engineer. This journey has been long,
interesting and sometimes harsh. However, I don’t regret a bit, as I can confidently say that I learned
very much, both as an engineer and as a person.

Especially during the harsh parts I wouldn’t have come out the other side without some people to
whom I owe thanks. For this thesis in particular, I owe great thanks to Henk Polinder, who was very
patient in guiding me in the process that ultimately yielded this thesis, Fred Gardner, who provided
the framework in which I was able fall and crawl back up a better engineer and Bauke Vriesema who
helped me countless times in understanding and improving the time domain model. I can’t even
begin to describe how much this man knows about Symphony. I also want to thank Arno Smets and
Peter Wellens for taking the time to read and judge my work.

I also want to thank Antonio Jarquin Laguna for providing me with guidance in multiple cases, and
to George Lavidas for being open to discussion about ocean wave energy any time. The same thanks
go to Jian Tan, who took the time to provide me with very valueable feedback. The same goes for
any graduates on the Symphony before me, who provided me with reports and guidance.

As any man in this world I owe big thanks to my mother, who dragged me through high school when
I saw it a a necessary evil, and my father, who taught me the fine art of doing what you deem good,
even if it’s against better judgement.The same amount of thanks I owe to my sisters who have saved
me more often than they may realise in the past seven years.

I also want to take the opportunity for a big shout-out to PH57, which has been my (sometimes)
loving home for almost five of the last seven years. Besides these guys, I owe thanks and apologies
to anyone who had to put up with some idiotic behaviour, bad moods, worse humour, and my
terrible taste in music while working. This includes, but is not limited to, every rower at DDS who
had to put up with my sense of humour after a day of work, the entire population of the Marine
Engineering hallway, the guys of Hornbach ("Je kan niet van een project spreken als je er niet voor
naar de Hornbach bent geweest!"), and in fact anyone with whom I had the pleasure of being in a
boat with the past seven years, the BUVVOV and supporters, and all fellow graduates with whom I
shared numerous angry, frustrated and sad cups of coffee. You know who you are.

M.J.G. Boonman
Delft, July 4, 2019
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SUMMARY

Ocean wave energy is one of the possible energy sources of the future. One possible way of harness-
ing ocean wave energy is by means of the Symphony wave power device. This thesis describes an
addition to the existing time domain modelling structure which provides the possibility to assess
body motions of the Symphony in operational and extreme conditions. Because the Symphony has
a cylindrical shape the direction of incoming waves does not matter and hence the real 3D situation
can be simplified to motion in the 2D plane.

The addition to the model has been based on rigid body dynamics and Newton’s laws of motion. The
interaction between the water and the Symphony has been derived based on Morison formulation
and linear wave theory. The resulting equations of motion are implemented in the exiting time
domain model and couplings with the operational model are made.

Based on data for two possible installation locations the operational conditions and extreme con-
ditions are assessed. From these calculations a clear overview of the expected mooring reaction
forces is obtained. From this it is concluded that several conventional mooring technologies are
compatible with the Symphony. The calculations also provide insight in the expected differences in
energy production between a rigidly restrained Symphony and a Symphony restrained with a single
mooring line. These differences are in fact so small that they fall within the uncertainty of the energy
calculations. In conclusion this thesis gives confidence in the current direction of development and
did not identify large problems for the Symphony operation when the Symphony conducts body
motions on the 2D plane.
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1
INTRODUCTION

The major part of global energy use is currently generated from fossil fuels, and the global energy
demand is still growing [3]. The use of fossil fuel comes at two major costs:

• the burning of fossil fuels releases carbon dioxide into the atmosphere, causing a potentially
devastating shift in earth’s climate [4].

• fossil fuels are utilised at a higher rate than they are naturally replenished, and thus they will
run out eventually [5].

These two drawbacks have been motivating mankind to find alternative energy sources increas-
ingly. Even before society was aware of the effects of climate change a rise in the price for oil (due
to scarcity and/or geopolitical conflict [6]) has been an impulse to invest in the development of
alternative energy sources. However, nowadays climate change is the main motivator for the devel-
opment of renewable energy sources [7].
Ocean wave energy is a possible source of renewable energy. Oceans cover more than two third of
the face of the earth and are in constant motion. This motion is associated with large amounts of
energy, making the oceans large reservoirs of energy as well as water [8]. In the search for alter-
native energy sources many have considered ways to extract some of the energy contained in the
wave motion [9]. It is important to note here that when this thesis refers to a "wave", this refers to
a wind-generated wave and not a tidal wave. Tidal energy is an interesting topic but falls outside of
the scope of this thesis.
The idea of ocean wave energy is not new: from the late 18th century mankind has had the idea to
extract this energy. French mathematician Pierre-Simon Girard had the idea to have a large floater
on the water, connected to a hinge on the shore. The motion of the rod which connected the floater
to the hinge could be used to compress a working fluid, which would then be able to drive all sorts
of machinery [10].
Since then various wave energy conversion concepts have been conceived and developed [9]. There
are various devices that are capable of tapping energy from waves, usually these are referred to as
Wave Energy Converters or WECs. WECs can be classified into different categories [11]. Various
comparison studies have been done on the potential of the different types of WECs [12, 13]. One
interesting type of WEC is the Wave Activated Body (WAB) type, which extracts ocean wave energy
by having a mass follow the motion of a the wave and damping that motion by means of some Power
Take Off (PTO). Usually a restoring force or spring force is also involved, preventing the moving body
from getting too far from it’s equilibrium position. A promising type of WAB is the submerged pres-
sure differential WAB [12]. The case study done by van der Jagt focusses on the Symphony Wave

1



2 1. INTRODUCTION

Power Device. This thesis will focus on the Symphony.

1.1. THE SYMPHONY WAVE POWER DEVICE

The Symphony is a project byTeamwork Technology. The Symphony is aimed to be deployed in
coastal waters. Currently locations off the coast of Leixões, Portugal and Den Helder, the Nether-
lands are under investigation.

Figure 1.1: visualisation of multiple Symphony devices [14]

The Symphony is excitated by pressure variations in time due to passing waves. This phenomenon
is referred to as the wave-induced pressure. The Symphony itself is naturally buoyant and fully
submerged. Hence, it floats under the waterline, restricted by some mooring arrangement. The
operation of the Symphony is explained in chapter 2.

As stated, research shows that the Symphony is a promising type of wave energy converter [12].
However, current modelling mainly focuses on the internal process of the Symphony. The device is
modelled under the assumption that the base is stationary. Secondly, only motions in the direction
of the centre line of the Symphony are modelled. This means that a fair estimate of the Symphony
operation can be made, but that motions in other directions are completely ignored in the opera-
tional model. This thesis aims to better assess the occurrence and effect of horizontal motion of the
Symphony in operation.

Several publications state that the performance of the WEC should also be considered when de-
signing WEC mooring [15, 16]. This suggests that mooring design of a WEC can influence the WEC
performance.
Another study already suggests a way to design an optimal mooring system for a submerged point
absorber, accounting for performance as well as for the more classical mooring requirements of
survivability and station keeping [17]. Muliawan et. al. [18] analyse the effects of mooring systems
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on the energy capture of a specific WEC using time domain simulation. This study also suggests
differences in energy production due to variation in mooring systems.

1.2. RESEARCH OBJECTIVE

Based on the research cited above it is to be expected that the performance of the Symphony will
be affected by horizontal motions. Three effects are chosen to assess in this thesis. The most im-
portant performance factor is in this case energy production, as that is the main function of the
Symphony. Therefore, the effect of incorporating horizontal motion in the existing simulation will
be assessed. Secondly, in order to deploy the Symphony, a clear idea of the required reaction forces
by the foundation is needed. Earlier research already gave an insight on the required reaction force
for the one-dimensional case [19], This thesis intends to extend that for the two-dimensional case.
This research will give an insight into the severity of the risk posed by this phenomenon for the
Symphony.

This will be achieved by answering the following research question:

What is the effect of horizontal motion of the Symphony on the performance and mooring
loads of the Symphony?

This question is answered by answering the following questions:

1. What are the relevant excitation forces on the Symphony in horizontal direction?

2. What motions will follow from this horizontal excitation?

3. What effects will these prior unconsidered horizontal motions have on the

• energy extraction

• mooring reaction forces

of the Symphony?

1.3. METHOD

To achieve the research goal and answer these research questions a model of the Symphony is de-
rived. This model is derived using linear wave theory and rigid body dynamics. This motion model
is combined with the existing operational model to obtain a model that takes into account hori-
zontal motion of the Symphony and assesses the internal operational process. The model will be
referred to as the derived model. This derived model will be able to output the mooring reaction
forces a a result of the elongation of a single mooring line and an assumed stiffness. These models
are compared using the same wave-seeds in both the existing operational model, which will be used
as a reference, and the derived model which takes into account the horizontal motions of the Sym-
phony. From the difference in the results between these models conclusions can be drawn regarding
the effect of taking into account horizontal motion of the Symphony.

1.4. REPORT STRUCTURE

Firstly, chapter 2 provides background for the research. Previous work, underlying theory and prac-
tical relevance of this work is adressed. Secondly a model of the system will be derived in chapter
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3. This model will be implemented with the existing operational model of the Symphony to come
to the new model of the Symphony. This process, and some steps to gain confidence in the derived
model, are described in chapter 4. The results of running the derived model under various circum-
stances will be presented and compared in chapter 5. Based on the results presented in chapter 5
different possible mooring technologies are discussed in chapter 6. Finally, chapter 7 draws final
conclusions from the results and gives recommendations with respect to Symphony design and fur-
ther research.
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RESEARCH BACKGROUND

This chapter provides the background of the research. First the frame of reference is introduced in
section 2.1. Several relevant terms associated with the Symphony are explained in section 2.2. The
different modelling cases are described in section 2.3. The working principle of the Symphony is
explained in section 2.4. Section 2.5 discusses previous work on the Symphony operation and body
motion. In order to derive a model, some assumptions and approximations are done and justified.
This is explained in section 2.6. Based on these assumptions and approximations the use of linear
wave theory is allowed to characterise waves. This is described in section 2.7. From this theory
the external forces acting on the Symphony are derived. The choice of modelling tool is justified in
section 2.8. Section 2.9 positions this thesis with respect to other work.

2.1. FRAME OF REFERENCE

Figure 2.1: Sketch of the frame of
reference

The frame or reference is chosen to be two dimensional. In this
two dimensional frame of reference the horizontal axis is called the
x-axis, the vertical axis is labelled y . φ and θ denote the angle of
the single mooring line of the Symphony and the angle of the Sym-
phony itself. Both angles are measured positive from vertical in the
clockwise direction. Adding to these coordinates, there is one local
coordinate: z. This coordinate denotes the local displacement of
the Symphony floater from its midposition. Figure 2.1 depicts the
frame of reference. From the description above it is clear that the
floater and the base undergo the same translation and rotation, and
that the only relative motion between floater and base is a result of
floater displacement along the local z-axis.

5
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2.1.1. WAVES

In order to understand the working principle of the Symphony it is
important to make some definitions clear about waves. The math-
ematical description of waves is explained in section 2.7. However,
three definitions are important:

• A wave’s crest; the highest point of a wave

• A wave’s trough; the lowest point of a wave

• The mean water level; the waterlevel if the water were at rest

Figure 2.2 sketches this.

Figure 2.2: Sketch of the meaning of a wave crest, trough and the mean water level

2.1.2. SEA STATES

Real waves in real water are usually irregular. Irregular waves can be defined by defining a sea state.
The sea state consists of two numbers: a wave height and a period. This thesis uses significant wave
height Hs the energy period Te of the sea state. Using Hs and Te and a spectrum the irregular wave
can be approximated using several regular waves, all with their own amplitude and frequency. These
amplitudes and frequencies are determined using a spectrum. This thesis uses the JONSWAP spec-
trum for the Den Helder location and the Bretschneider spectrum for the Leixões location. Adding
these regular components gives an irregular periodic signal. For more information on sea states and
wave spectra the reader is kindly referred to [20].

2.2. THE SYMPHONY

In order to understand the Symphony working principle and its motions it is important to clarify
some definitions. This section clarifies some part names, definitions and specific terms.

BREAKDOWN

Currently the Symphony design is such that the floater can make a four meter stroke, from z = -2
to z = 2. If the floater position would exceed these boundaries, the Symphony could suffer extreme
of even fatal damage. Hence, the Symphony is said to break down when this occurs. The model
is programmed in such a way that when the floater position exceeds this boundary the model is
terminated at that time step and a breakdown message is returned.
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CUT OUT WAVE HEIGHT

The cut out wave height is the highest wave height at which the Symphony does not break down. It
is to be expected that the rated power occurs at a sea state with the cut out wave height. The cut out
wave height can be different for different wave periods.

SURVIVAL MODE

For sea states higher than the operational sea state the Symphony will not generate energy. In order
to protect the operational parts from large excursions and impacts the Symphony is shut down in-
stead, and the floater is locked in a certain position. The model allows to define a survival position
z-survival of the floater. For the outputs generated in this report z-survival = 0. 1

2.3. CASE DESCRIPTION

The model derived in this thesis is applied to two installation cases mentioned in chapter 1. These
cases are described in this section.

2.3.1. LEIXÕES

The first location is based on a previous motion analysis off the coast of Leixões, Portugal. Based on
previous work the water depth is assumed to be 100m [21].

CHARACTERISTIC SEA STATES

Based on previous work [19] the wave spectrum at Leixões is assumed to be a Bretschneider spec-
trum. For the Leixões location the full scatter diagram given in table D.1 is used to determine 5
characteristic sea states. This is done by clustering several groups of sea states close to the diago-
nal in the scatter diagram together. This is visualised in table D.2. The resulting characteristic sea
states and their occurrences are given in table 2.1. Together these sea states account for 90.2% of
the waves. Based on previous work done by Leijten the maximum operational sea state (cut out sea
state) is expected to be around Hs = 5m [19].

Sea State Hs[m] Te [s] Occurrence [%]
1 1.0 6.0 34.3
2 2.25 9.0 38.1
3 3.5 10.0 11.8
4 4.75 12.0 5.0
5 7.5 13.0 1.1

Table 2.1: Characteristic sea states for the Leixões location

SURVIVAL CONDITIONS

The survival sea state for the Leixões location is determined at Te = 18s and Hs = 15m. The survival
sea state at a location is the highest sea state that can be reasonally expected at that location [21].
The highest current for survival is estimated at 1 m/s. However, steady currents in coastal waters

1At the moment of finalising this thesis the design of the Symphony is not finalised yet. Ultimately, a z-survival of -2 is
expected. z-survival = 0 is assumed to ensure enough buoyancy using the current dimensions.
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usually don’t have large velocities perpendicular to the coast, but usually run parallel to the coast.
Because the coast of Leixões is at the open ocean the survival wave is expected perpendicular to the
coast. Hence, in the 2D approach of this thesis, the current does not affect the survival situation.

2.3.2. DEN HELDER

The second location is based on intentions of deploying the Symphony in Dutch territorial waters
close to Den Helder. The location of the site is depicted in figure 2.3. The local water depth at the
site is estimated to be 35 metres. The wave spectrum for the North Sea is assumed to be a JONSWAP
spectrum [22].

Figure 2.3: Location of the Den Helder site. Survival sea state is valid at the location of the black star. The colour scale
gives the water depth [23]

CHARACTERISTIC SEA STATES

For the Den Helder location the characteristic sea states are taken from literature [24]. These char-
acteristic sea states account for 99.7% of the waves. The characteristic sea states for the Den Helder
location are given in table 2.2.

Sea State Hs[m] Te [s] Occurrence [%]
1 0.5 4.72 40.7
2 1.5 5.58 39.4
3 2.5 6.44 14.1
4 3.5 7.29 4.3
5 4.5 8.13 1.2

Table 2.2: Characteristic sea states for the Den Helder location

The cut out wave height is again expected to be around at Hs = 5m.

SURVIVAL CONDITIONS

For the Den Helder site a survival sea state has been chosen based on work by Lavidas [25]. The
parameters of the survival sea state are Hs = 8.7m and Te = 12.6s. The current for survival is esti-
mated at 50 cm/s [26]. Because of the specific situation in the north sea the survival wave and the
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current could very well come from the same direction [27]. Therefore, for the Den Helder case, the
survival case is ran for a steady current at 0 m/s, -0.5 m/s and 0.5 m/s to assess the survival case for
the neutral tidal condition and the worst and best case tidal condition.

2.4. WORKING PRINCIPLE OF THE SYMPHONY

Figure 2.4: Schematic
representation of the
Symphony parts 2

To be able to achieve the research goal the working principle of the Symphony
must first be understood. Figure 2.4 gives a schematic representation of the
longitudinal cross section of the Symphony. The concept is based on the
changing pressure of water under the surface of a wave. When a wave crest
passes, the pressure in the water under the crest rises. Similarly, the pressure
falls under a wave trough. because of the assumption that the diameter of
the Symphony is small compared to the wavelength this can be interpreted
to cause a uniform pressure oscillation at the location of the top of the Sym-
phony. Because the the top of the floater is perceived as an equivalent disk
this pressure oscillation can be perceived as an harmonic excitation force on
the floater of the Symphony. This force is perpendicular to the equivalent disk
and thus always acts in the direction of the centreline of the Symphony. Apart
from this external excitation force there are also internal forces that act on the
floater. The first force is related to the floater position and is a result of a pres-
sure rise of the air in the spring chamber and in the floater itself and pushed
the floater up when it is pushed down. This can thus be seen as a spring force.
The second internal force is related to the floater velocity and is a result of the
resistance of the generator and the turbine. By cleverly designing the Sym-
phony it is ensured that in the quasi-static situation the resulting force will
always push the floater to it’s midposition. In other words, the floater will os-
cillate around the midposition and energy is removed from the motion by the
velocity-dependant (and thus damping) internal force component related to
the generator and turbine. This process is described step-by-step below:

Let’s assume a wave crest passes. The pressure on the equivalent disk rises, so a downward force
acts on the floater (2). The floater starts to move downwards, rolling the structural membranes
(5) downwards. Because the gap between the base (1) and the inner wall of the floater is smaller
than the gap between the outside of the spring chamber (4) and the inner wall of the floater the
volume enclosed by the membranes decreases. This causes the pressure in the membranes to rise,
driving a water flow through the turbine (3) into the spring chamber. The turbine drives a generator,
generating electricity. This flow causes the water level in the spring chamber to rise. The pressure
of the air above the water in the spring chamber rises with the water level (the air is compressed in
a smaller volume). This provides a restoring force; the air will push back against the water, acting
as a spring. If the crest has passed and the trough is above the Symphony the pressure on the top
of the floater will fall. This drop in downward force combined with the built up pressure in the
spring chamber causes an upwards resulting force on the floater, accelerating it in upward direction.
Upon this upward motion, water is pushed through the turbine again, driving the turbine and the
generator and generating electricity. These steps are visualised in figure 2.5. This mass-spring-
damper system is cleverly designed to have a natural frequency matching the wave frequency, in
order to be able to extract as much energy as possible. More information on the exact operation of
the Symphony and the tuning of the natural frequency can be found in previous work [19, 28].

2base (1), floater (2), turbine (3), spring chamber (4), and structural membranes (5)
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Figure 2.5: Schematic visualisation of the Symphony operation [14]

2.5. PREVIOUS WORK ON THE SYMPHONY

Because the development history of the Symphony already spans multiple years it is important to
look at previous work. The Symphony specifically has been subject to several studies. These studies
provide valuable insights for this thesis.

2.5.1. MOTION ANALYSIS

One study in particular looks at similar effects as this study and is therefore important to study
thoroughly. This study has been completed in 2016 at InnoSea [21].The study was done in the frame
of WP2 of the WETFEET project and takes the Symphony to be a single cylinder and analyses the
motion of this cylinder using potential flow theory and Morison formulation [29]. In this analysis a
three dimensional model is meshed and time domain simulations are conducted.
This study gives several interesting outputs and some reason for further research.
Firstly the relative motion of the two bodies is neglected. This means that only the behaviour of an
equivalent, inert body is assessed. From the introduction of this thesis we know that the Symphony
changes volume under the influence of changing pressure in the water around it and the reaction of
the PTO-turbine assembly. This volume changing will be influenced by the horizontal motion, and
the other way around.

2.5.2. HYDROMECHANICAL ANALYSIS

In an effort to estimate the magnitude of horizontal effects some calculations using boundary el-
ement method software (WAMIT) with respect to horizontal hydromechanical forces have already
been done. These calculations yielded surge loads in the order of several kilonewtons per meter of
wave amplitude. These loads vary with frequency and Symphony submersion depth.
It must be noted that in these calculations the Symphony was represented by a single cylinder.

Figure 2.6 shows a significant area of interest in the frequency interval from 0.5 rad/s to 1.8 rad/s,
where surge loads per metre wave height exceed 3 kN/m. This corresponds with waves between T =
12 s and T = 3.5 s with the peak at 1 rad/s or T = 2∗π s (≈ 6.28 s) and approximately 6.5 kN/m.
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Figure 2.6: Surge loads on the Symphony at different instalment depths and exciting frequencies. Wave amplitude had
been set to 1 metre

If we calculate the Keulegan-Carpenter number [2] for this case using a horizontal flow velocity am-
plitude of 0.55 m/s (assuming deep water an a submersion depth of 6 metres), a period of 6 seconds
and a characteristic length of 1.5 metres (the diameter of the Symphony) we obtain equation 2.1

Nkc =
uT

L
= 0.55∗6

1.5
= 2.2 (2.1)

Where u, T and L denote the flow velocity amplitude, oscillating period of the flow (and the wave)
and the characteristic length of the cylinder, respectively. The Keulegan-Carpenter number is used
as a measure to indicate whether inertia forces or drag forces dominate the motion of an object. Lit-
erature suggests a Keulegan-Carpenter number of 8 to be the upper limit of the inertia-dominated
region [30]. For a preliminary analysis it is thus justified to neglect drag forces. Based on the calcu-
lation above it is to be expected that surge loads on the restrained Symphony in survival mode are
close to the values presented in figure 2.6.
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2.6. ASSUMPTIONS AND APPROXIMATIONS

This thesis uses the following assumptions:

• The Symphony is small compared to the wave

• the Symphony is always fully submerged

• viscosity is ignored

• flow is assumed to be irrotational

• the fluid is incompressible

• the fluid is homogenous

Because of these assumptions the use of the Froude-Krilov assumption and linear wave theory is
allowed.

2.6.1. FROUDE KRILOV APPROXIMATION

The Froude Krilov approximation states that if a body is sufficiently small compared to the length
of the incident wave the influence of the body on the wave can be neglected. In mathematical
terms: if l

λ << 1 then the diffraction potential and the radiated wave potential can be ignored. When
l
λ << 1 is true is of course debateable; what is "sufficiently small"? Different references give different

answers to this question. MIT [31] suggests 2π∗l
λ = 1 as the upper boundary of the validity of the

Froude-Krilov approximation; or l
λ < 1

2π . In the case of the Symphony, which operates in waves of
a dominant period of around 10s [19] and has a characteristic length l (diameter) close to 1.5 m
this approximation can be made, as a deep water wave with a period of 10 seconds has a length of
156 m and 1.5

156 < 1
2π . If the diameter of the Symphony would be increased and reach one sixth of the

wavelength the Froude Krilov approximation will lose it’s validity and so will the derived model. This
corresponds with a diameter of λ2π which, in the case of a 156 m wave, corresponds to a diameter
of approximately 25 metres.

2.6.2. MOORING ARRANGEMENT

To be able to assess the behaviour of the Symphony under wave loading a first assumption about
the mooring arrangement must be made. Initially the mooring is assumed to consist of a single line
that always has tension (no slacking) and is connected to a single, fixed point on the seabed (the
anchor). Assuming a considerable tension in the line, it is a fair first assumption to assume the line
to be "straight", in other words: there are no significant bends in the line. This is in accordance with
the representation in figure 2.1.

2.6.3. DRAG FORCES

In order to be able to account for drag forces a simplified approach is used. In line with Morison
formulation, the drag force is calculated as Fd = −1

2Cdρv |v |. Here v is the velocity in the direction
of interest and Cd denotes the drag coefficient for that direction. ρ is the density of the medium, in
the case of this thesis water unless indicated differently.
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2.7. WAVE CHARACTERISATION

In order to clearly explain the working principle of the Symphony it is useful to clearly describe the
way a wave is characterised and described in this thesis.

This thesis uses linear wave theory or Airy wave theory [20] to characterise waves. Irregular waves
are simulated by taking the superposition of several, harmonic wave components. This section gives
relevant expression which are obtained from linear wave theory, that will later be used to calculate
the excitation forces the Symphony experiences. All expressions below are derived from Holthuijsen
[20].

When a wave passes the water under the wave experiences an ongoing change in pressure. This
thesis limits itself to the following time- and position dependant variables:

• the wave-induced pressure pd yn

• the wave-induced horizontal pressure gradient d p
d x

• the wave elevation η

• the horizontal component of the orbital velocity u

The vertical component of the orbital velocity is neglected.

The velocity potential is given by

Φ(x, y, t ) = ωA

k
∗ cosh(k ∗ (y +h))

si nh(kh)
∗ cos(ωt −kx +ψ) (2.2)

where A is the amplitude of the wave, ω is the frequency of the wave in r ad/s, ψ is the phase angle

of the wave in r ad , k is the wave number in r ad
m , h is the water depth in meters and cosh(k∗(y+h)

si nh(k∗h)
is a dimensionless number which is often referred to as the "depth-effect". This number effectively
provides information on how much the effect of the wave will decrease with the position nearing the
seabed. This thesis will refer to this number as fd or the depth effect. As seen from the mathematical
expression this is a function of position y and water depth h as well as the wave number k. For large
h (deep water) this number approaches ek y .

From the definition of the velocity potential in (2.2) the following expressions follow for the wave
elevation:

η(x, t ) = A∗ si n(kx −ωt +ψ) (2.3)

The wave-induces pressure and the associated pressure gradient are obtained by solving Bernoulli’s
equation:

p =−ρ∗
(1

2
(∇Φ)2 + ∂Φ

∂t
+ g ∗h

)
(2.4)

From which the first term is non-linear and the last term is static. Because we are interested in the
dynamic effect and deriving a linear model, these terms are omitted and (2.5) yields:

p(x, y, t ) =−ρ∂Φ
∂t

= ρ∗ A∗ω2

k
∗ cosh(k ∗ (y +h))

si nh(kh)
∗ si n(ωt −kx +ψ) (2.5)

Because ω2 = kg ∗ t anh(kh) this equation develops to

p(x, y, t ) = ρ∗ A∗ g ∗ t anh(kh)∗ cosh(k ∗ (y +h))

si nh(kh)
∗ si n(ωt −kx +ψ) (2.6)
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which, when using the goniometric identity t anh(x)
si nh(x) = 1

cosh(x) yields equation 2.7

p(x, y, t ) = ρ∗ A∗ g ∗ cosh(k ∗ (y +h))

cosh(k ∗h)
∗ si n(ωt −kx +ψ) (2.7)

Deriving the pressure oscillation with respect to x yields

d p

d x
(x, y, t ) =−ρ∗ A∗ω2 ∗ cosh(k ∗ (y +h))

si nh(k ∗h)
∗ cos(ωt −kx +ψ) (2.8)

Deriving the velocity potential with respect to x yields the expression for the horizontal component
of the orbital velocity of water particles u:

u(x, y, t ) = A∗ω∗ cosh(k ∗ (y +h))

si nh(k ∗h)
∗ si n(ωt −kx +ψ) (2.9)

Using these equations the external forces on the Symphony can be calculated.

2.8. CHOICE OF METHOD

Section 1.3 already presented the chosen method to answer the research question. This section ex-
plains the choice of method for this project. First of all, because the operation of the Symphony is
described by a set of non linear differential equations, a time domain model must be used [28]. Two
time domain simulation options are considered to simulate the model derived in chapter 3. The
first option is using the time domain model used by Teamwork Technology. It has been subject to
several Msc. theses and is improved by multiple graduate interns in that process [19, 28, 32, 33]. The
model has been monitored throughout the years by senior engineer dr. ir. Vriesema.
The second option is the WEC-Sim package developed by the National Renewable Energy Labora-
tory (NREL) and Sandia National Laboratories [34]. This package has been used by van der Jagt [12]
for his comparison study. WEC-Sim is supported by multiple publications.
Both models operate in a MATLAB/Simulink environment. The in house model consists of a Simulink
model that is run from a set of MATLAB scripts and functions. WEC-Sim uses a Simulink environ-
ment simulating rigid body dynamics and is also operated from the MATLAB environment.

The descriptions above give confidence in the performance and validity of both modelling options.
The choice for one of these options can hence be made on more practical grounds: What is the most
straight forward option to implement? What has the most value for follow-up research?
At this point in the process it is important to point out that the most complicated part of the Sym-
phony is the PTO arrangement. The PTO arrangement makes up the bulk of the existing model.
Using WEC-Sim would imply that, apart from the actual answering of the research question in this
thesis, the entire model has to be translated from the current form into WEC-Sim. In consultation
with management at Teamwork Technology and earlier graduates on the subject it has been deemed
unrealistic to do this properly together with the actual research. This has lead to the choice to use
the in house model of the Symphony operation.
However, this comes at a price. the WEC-sim environment offers some nice options to calculate
hydrodynamic forces. These options are not present in the in house model. Hence, in implement-
ing the derived model the hydromechanical forces have to be derived separately. This is done using
linear wave theory, as can be seen from chapter 3.

2.9. POSITION IN THE RESEARCH FIELD

This thesis of course does not stand alone. The introduction has already referred to some work
that suggests that performance and mooring should be assessed together. This thesis applies these
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more general statements to the Symphony with an assumed mooring arrangement. The assumed
single line mooring system is combined with the existing model built by previous work [19, 28, 32,
32], thus extending the modelling environment for the Symphony specifically. This thesis uses the
theory described in this chapter together with Newton’s laws of motion to make this extension of
the modelling environment of the Symphony.

2.10. CONCLUSION

This chapter has described the frame of reference that is used for the model derived in this thesis.
The wave characterisation used in the model has been described, and the nature of the associated
excitation forces were explained from linear wave theory. Several assumptions and approximations
and associated boundaries to the validity of the model were presented and justified. The chosen
modelling method is presented and justified. Lastly, this chapter has explained the position of this
thesis with respect to other literature and work.





3
PHYSICAL MODELS

In order to assess the motion of the Symphony without conducting experiments a physical model
has to be derived. This physical model will be derived in this chapter. The model will be derived step
by step, starting with a very simple model, adding detail with every iteration. The starting point will
be the existing model. Firstly, in section 3.1 the external forces are expressed based on the theory
presented in chapter 2. Section 3.2 shortly describes the existing model which will be incorporated
in the final model. The first model, having only one degree of freedom, is described in section 3.3.
Based on this model the final model is derived in section 3.5.

3.1. EXTERNAL FORCES ON THE SYMPHONY

Because this thesis focuses on the body motion of the Symphony this section will limit itself to the
relevant excitation forces being the horizontal drag force, the horizontal pressure force and the as-
sociated moments.

The Symphony is also constrained by its mooring arrangement, which exerts a mooring force on the
Symphony. Lastly, the Symphony is subject to gravity buoyancy in the vertical direction.

3.1.1. DRAG FORCE

Horizontal drag force is calculated using the relative velocity of the water with respect to the Sym-
phony as

Fd ,x = 1

2
∗ρ∗ (u − vS)2 ∗Cd (3.1)

where vS is the horizontal translational velocity of the Symphony with respect to the frame of refer-
ence.

3.1.2. PRESSURE FORCE

Pressure force or Froude-Krilov force is calculated as

~FF K =−
∫

p~ndS (3.2)

17
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The equation above expresses the Froude-Krilov force to be the integral over the surface of interest
of the pressure multiplied by the normal vector of the surface. For a object fully submerged in water
which is at rest the vertical component simplifies to

~FF K =
∫

p~ndS = ρ∗ g ∗∇= Fb (3.3)

The last expression in (3.3) is also known as Archimedes’ law. ∇ denotes the volume of the sub-
merged body, ~Fb denotes the buoyancy force acting on the object. Archimedes’ law is usually used
in the vertical direction. However, the pressure in water that is at rest is equal to −ρg y at a certain

height y . Therefor we can write the pressure gradient d p
d y as −ρg . Hence, (3.3) can be rewritten as

Fy = Fb = ρ∗ g ∗V =−V ∗ d p

d y
(3.4)

This last expression tells us that if a body is in a fluid where a pressure gradient is present the body as
a whole will experience a force equal to the pressure gradient times its own volume, in the opposite
direction of the pressure gradient. In other words; the object is pushed from high to low pressure. If
we draw up this equation in another dimension we get

Fx =−d p

d x
∗∇ (3.5)

From (2.8) a pressure gradient at a given time and a given coordinate is known. If the pressure gra-
dient is assumed to be constant over the volume of the Symphony this horizontal adaptation of
Archimedes’ law can be used to compute the horizontal wave-induced pressure force on the Sym-
phony.

(3.5) is written in a way that the pressure gradient is constant in space. Because the pressure gradient
is dependent of the velocity potential it is a function of space. Taking this space dependency into
account, but assuming long waves (hence the pressure gradient is constant in x-direction) and an
upright position of the object yields

Fx =−
∫ l

0

d p

d x
(l )dl ∗ A (3.6)

Where A is the cross sectional area of the object and l is the position along the length of the object.
From this representation a simplification can be made for the pressure force, representing it as a
single force acting in a single position.

In the case of the Symphony the point of action along the Symphony length has to be corrected for
the local floater position z. This is done by shifting the point of action of the force with 1

2 ∗ z.

The pressure force is assumed to act in the centre of the side area of the Symphony. This is because
the force is calculated as a pressure integrated over a surface, and the side area of the Symphony is
the area perpendicular to the direction of the pressure force.

The depth effect of the wave force components is taken at one third of the equilibrium length below
the top of the floater in equilibrium position, and is assumed to be constant.

Of course there is also an excitation in the vertical direction. Firstly, because the floater has no con-
tinuous wetted surface, a correction in hydrostatic force must be made. Let’s assume the Symphony
to be in a vertical position; see figure 1.1. Clearly, the base experiences a net upward hydrostatic
force, and the floater experiences a net downward hydrostatic force. For the excitation of the floater
we are primarily interested in the floater forces. To calculate the correct hydro static force three
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forces have to be added: the force on the bottom of the floater itself, the force on the outer half
of the bottom of the lower membrane and the force on the top of the floater. Because the Sym-
phony is symmetric about its z axis the first two can be said to work in the upward (towards positive
z) direction and the last one can be said to work in downward (towards negative z) direction. All
three forces are calculated by integrating the pressure over the surfaces they work on. Because of
aforementioned symmetry this can be simplified to multiplying the pressure with the horizontal
projection of the surface. For the top of the floater the hydrostatic pressure at a predefined pressure
point will be taken to act over an equivalent disk at that height.

The wave excitation of the floater in z direction is calculated in a similar way. However, extra steps
are involved. Because an irregular wave is modeled by different wave components with different
amplitudes and frequencies the wave force for all wave components are calculated separately, with
their own depth effect and phase angle and then all force components are added. The same proce-
dure can be followed to calculate the force on the bottom of the base.

3.1.3. MOORING FORCES

The mooring force consists of a static and a dynamic part. The static part is calculated by calculat-
ing the distance between the anchor and the centre of the bottom of the base. This distance, the
momentary mooring line length, is divided by the unstretched mooring line length. This elonga-
tion is multiplied by the static mooring line stiffness. The dynamic part is calculated by taking the
time derivative of the mooring line elongation and multiplying by an artificial dynamic mooring line
stiffness. This artificial damping ensures that energy is extracted from the oscillation of the mooring
line length. Without this damping the mooring line itself would be excitated in its axial elongation,
but it would not be damped in this mode. This would pose a possible threat to the model stability.
Both forces can only pull; that is, they can only act in the negative x- and y direction.

3.2. EXISTING MODEL

Figure 3.1: Schematic representation of the ex-
isting model

The existing model considers the Symphony as a single
degree of freedom system. The base is hereby fixed to the
frame of reference. Figure 3.1 gives a visual representa-
tion of the model. It is important to note that coordinate
z is measured from the equilibrium position of the floater.
Secondly, the drawing might suggest that the Symphony
is founded on the seabed. In reality, this is not true. The
Symphony is assumed to float at that depth under the sea
surface, independent of the water depth. From this pic-
ture and the explanation above it can be concluded that
this existing model assumes the Symphony does not ex-
perience any motion other than the floater moving up
and down along the z axis.
This motion is modelled in quite some detail. For this
description it suffices to say that the Symphony can be
seen as a mass-spring-damper system, which is excited
by an excitation force which is based on linear wave the-
ory. This excitation force is computed based on the wave-
induced pressure at the horizontal surfaces of the floater
(see (2.7). The same calculation is done at the positions
of the bottom of the floater and the bottom of the membrane with the corresponding areas. For a
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more detailed description of this model the reader is referred to previous descriptions [19, 33].

This existing model brings about the major part of this research, loosely formulated in the following
question: What happens horizontally?

3.3. SINGLE DEGREE OF FREEDOM MODEL

The first models presented in this chapter are one-dimensional. This means that the Symphony
only has one degree of freedom. The first model of the Symphony considers the Symphony as a
rigid cylinder with mass m, height H and diameter D connected rigidly to a massless, stiff, slender
rod which is in connected to a hinge on the seabed. The centre of mass and centre of buoyancy of
the SWPD are assumed to coincide on the centreline of the device, a distance Lp from the anchor.
The degree of freedom can be perceived as the angle θ the device makes with vertical.

Figure 3.2: Schematic representation of the sin-
gle degree of freedom

Following from the degree of freedom the system has an-
gular velocity θ̇ and angular acceleration θ̈. The rotational
inertia I is given by I = m ∗L2

p . This system is depicted in
figure 3.2.

The equation of motion of the shown system is given by
(3.7).

I ∗ θ̈ = Mnet (3.7)

in which

Mnet = Mexc +Mdr ag +Mr es (3.8)

which yields:

θ̈ = Mexc +Mdr ag +Mr es

I
(3.9)

If we state that the excitation moment is equal to the hor-
izontal wave induced force on the body corrected for an-
gle θ and multiplied by radius Lp . The excitation moment
can then be calculated using (3.5) and using M = F ∗Lp .
This yields (3.10).

Mexc = d p

d x
∗∇∗Lp ∗ cos(θ) (3.10)

The drag moment Mdr ag is calculated assuming small an-
gles so we can say that

Mdr ag = Fdr ag ∗Lp (3.11)

and

Fdr ag = 1

2
ρCd A(u − v)∗|u − v | (3.12)

and
v = Lp ∗ θ̇ (3.13)
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Combining equations 3.11, 3.12 and 3.13 and rearranging yields for the drag moment:

Mdr ag = 1

2
LpρCd A(u − θ̇∗Lp )|u − θ̇∗Lp | (3.14)

The restoring moment is the result of the net buoyancy of the SWPD (difference between buoyancy
and weight) working vertical out of the vertical line that passes through the hinge. This yields the
following restoring moment:

Mr es = (ρ∗∇−m)∗ g ∗Lp ∗ si n(θ) (3.15)

3.4. DISCUSSION OF THE SINGLE DEGREE OF FREEDOM MODEL

The model described in section 3.3 provides a useful insight in the dynamics of the Symphony body
motions. Using this representation of the Symphony an easy estimate of the natural frequency of the
system can be made by using the relation for the undamped natural frequency of a single pendulum.
For a hanging pendulum the undamped natural frequency is given by

ωn =
√

g

Lp
=

√√√√ Fdown
m

Lp
(3.16)

The Symphony is essentially an upside-down hanging pendulum. Hence, the undamped natural
frequency can be expressed as

ωn =

√√√√ ρg∇−mg
m

Lp
=

√√√√ Fb,net

m

Lp
(3.17)

This last equation can be used to gain confidence in the derived model by solving the undamped
natural frequency analytically for the used parameters and comparing the two obtained natural
frequency with an undamped free vibration simulated by the numerical model, see section 4.4.
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3.5. MULTI DEGREE OF FREEDOM MODEL

Figure 3.3: Schematic representation of the
multi degree of freedom model

As stated earlier, the Symphony and its mooring are more
complicated than projected in the models above. There-
fore a multi degree of freedom model has been derived. In
explaining the multi degree of freedom model it is impor-
tant to consider how the model will be implemented later.
The existing operational model is solved in the time-
domain. Because the model predicting the Symphony
body motions has to run together with this operational
model it will also be solved in the time domain. Thus, it
is useful to be able to define the Symphony position for
each time step. Because the Symphony is modelled as a
2D shape with finite dimensions in a 2D plane it is possi-
ble to define the position of the Symphony for each time
step using four coordinates: the x- and y-position of the
fairlead, denoted by x f l and y f l , respectively, the angle
if the Symphony with vertical (θ) and of course the local
floater position z. This is depicted in figure 3.3. For clar-
ity, the fairlead is indicated by the red dot.

In the time domain model, each of the four coordinates
has to be determined in order to be able to move on to
the next time step. In addition to the existing operational
model governing the relative floater motion the model
that takes care of the Symphony body motion has to de-
termine three motions:

• the horizontal translation of the Symphony x

• the vertical translation of the Symphony y

• the rotation of the Symphony about its centre of
mass θ

Combining these three motions will yield a new situation
for the next timestep. This is done by calculating the resulting forces in x- and y-direction and the
moment about the centre of mass and calculating the three accelerations independently. Then the
body acceleration is integrated twice, determining the new location of body. Integrating the angular
acceleration twice allows the calculation of the new angle θ and the fairlead position.

The equations for each of these motions are given below:

ẍbod y =
Σ(Fx )

ms ym
(3.18)

ÿbod y =
Σ(Fy )

ms ym
(3.19)

θ̈ = Σ(M)

Is ym
(3.20)
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3.5.1. HORIZONTAL FORCES

Σ(Fx ) is calculated by the following equation:

Σ(Fx ) = FF K +Fdr ag ,x +Fspan,x (3.21)

in which:

FF K = d p

d x
∗∇(z) (3.22)

acting in the centre of buoyancy of the Symphony,

Fdr ag ,x = 1

2
∗ρ∗Cd ∗|u − ẋ|u − ẋ ∗ Asi de (z)∗ si n(θ) (3.23)

acting in the centroid of the sidearea of the Symphony and

Fspan,x =−S ∗ si n(φ) (3.24)

Acting in the fairlead. The vertical forces are shown in figure 3.4.

Figure 3.4: Horizontal forces acting on the Symphony
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3.5.2. VERTICAL FORCES

Σ(Fy ) is calculated by the following equation:

Σ(Fy ) = Fb,net +Fdr ag ,y +Fspan,y (3.25)

in which:

Fb,net = ρ∗ g ∗∇(z)−ms ym ∗ g (3.26)

acting in the centre of buoyancy of the Symphony,

Fdr ag ,y =−1

2
∗ρ∗Cd ∗|ẏ |ẏ ∗ Asi de (z)∗ si n(θ) (3.27)

acting in the centroid of the side area of the Symphony and

Fspan,y =−S ∗ cos(φ) (3.28)

acting in the fairlead.

The vertical forces are shown in figure 3.5.

Figure 3.5: Vertical forces acting on the Symphony
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Line tension S is calculated by

S = l − lmoor i ng0 ∗km + dl

d t
∗km,d yn (3.29)

Here, again, values lower than zero of each of the terms are neglected.

The buoyancy force is calculated as:
Fb =∇(z)∗ρ∗ g (3.30)

3.5.3. OPERATIONAL FORCES AND SPAN FORCE CORRECTION

In the model description above one issue is not yet addressed; the working forces of the Symphony.
These working forces are already described in section 2.4. This section explains how these forces
are handled in the model. From Newton’s third law of motion we can state that any upward (in the
positive z-direction) force on the floater is associated with a force of the same magnitude in the op-
posite direction. The same holds for a downward force on the floater. Consequently, if we assume
that φ and θ are always close to each other (see appendix B for an example), we can approximate
the following: All positive resulting force on the floater (base pushes the floater up) is associated
with a deduction of the span force of the same magnitude. Correspondingly, any pulling force by
the floater on the base leads to an additional mooring line span force.

Secondly, the wave force that acts at the top of the floater also acts at the bottom of the base. This
force, the wave-induced pressure integrated over the surface of the bottom of the base, is be added
to the mooring span force.

3.5.4. MOMENTS

The net moment about the centre of mass Σ(M) is calculated as

Σ(M) = MFF K +MFb +Mdr ag +MFspan +Mθ (3.31)

all separate moments are calculated multiplying the force by the distance between their line of ac-
tion and the centre of mass:

MFF K = FF K ∗ rCoB (z)− rCoM (z) (3.32)

MFb = Fb ∗ (rCoB (z)− rCoM (z))∗ si n(θ) (3.33)

MFdr ag = Fdr ag ,x ∗ (rCo A(z)− rCoM (z))∗ cos(θ)−Fdr ag ,y ∗ (rCo A(z)− rCoM (z))∗ si n(θ) (3.34)

MFspan = Fspan,y ∗ rCoM ∗ si n(θ)−Fspan,x ∗ rCoM ∗ cos(θ) (3.35)

Subscripts CoM, CoB and CoA denote the centre of mass, centre of buoyancy and distance to the
centroid of the side area. All radii r are measured along the centreline of the Symphony from the
fairlead. These radii are a function of floater displacement z. The inertia of the Symphony, the
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sidearea of the Symphony and the displacement of the Symphony are also functions of z. These
functions of z are further described in appendix A.

In order to make an effort to simulate the damping effect on the pitch motion of the Symphony
resulting from the rotation about the centre of mass an extra damping moment is added to the total
moment. This moment is calculated as follows:

Let’s imagine that the Symphony rotates about it’s centre of gravity. The local translational velocity
of every horizontal slice of the Symphony is then calculated as θ̇ ∗R with R the absolute distance
between the slice and the slice at the location of the centre of gravity. The local force per length
can be calculated as 1

2ρ(θ̇ ∗R)2Cd D where D is the local diameter. The local moment per length
associated with this force is then calculated as 1

2ρ(θ̇∗R)2Cd D ∗R. The total moment by this drag
force is then calculated by integrating from the centre of mass in upward direction and in downward
direction to the top and bottom end of the Symphony. Hence,

Mtop =
∫ top

CoM

1

2
ρ(θ̇∗R)2Cd D ∗RdR (3.36)

Mbot tom =
∫ bot tom

CoM

1

2
ρ(θ̇∗R)2Cd D ∗RdR (3.37)

For the top part the local diameter is always the floater diameter because the bottom of the floater is
always below the centre of mass. For the bottom part the diameter shifts from the floater diameter
to the base diameter at the position of the bottom of the floater.

Hence (3.36) develops to

Mtop = 1

2
ρθ̇2Cd D f l

∫ top

CoM
R3dR (3.38)

and (3.37) is split into the part above the bottom of the floater but below the centre of gravity and
the part below the bottom of the floater:

Mbot =
1

2
ρθ̇2Cd D f l

∫ b f l

CoM
R3dR + 1

2
ρθ̇2Cd Db

∫ bot tom

b f l
R3dR (3.39)

where bfl denotes the bottom of the floater.
Combining and forcing the correct sign gives

Mθ =−|θ̇|
θ̇

∗ (|Mtop |+ |Mbot tom |) (3.40)

3.6. CONCLUSION

Several models of the Symphony have been derived. The simple model derived in section 3.3 can
be used to estimate the undamped natural frequency of the system. When final model presented
in section 3.5 is implemented, simulated natural frequencies can be compared to analytic results of
the simplified model. If these values are close that gives confidence in the results of the model. The
final model described in section 3.5 is implemented in chapter 4.



4
MODEL IMPLEMENTATION

In chapter 3 a model describing the 2D body motion of the Symphony has been derived. As stated
in chapter 2 a lot of modelling has already been done in prior research related to the Symphony.
Therefore the derived model can be added to the existing modelling structure to be able to assess
the effects of the horizontal motions of the Symphony. This means the derived model will be imple-
mented in the existing Matlab/Simulink structure.

In order to explain the implementation of the body motion part of the model firstly the existing
model structure will be explained briefly. Then the body motion model with the appropriate cou-
plings with the existing model will be explained.

4.1. EXISTING SIMULINK MODEL

Figure 4.1: Block diagram of the existing Simulink
model 1

The existing model is based on solving the differen-
tial equation which governs the motion of the floater
relative to the base numerically. This equation is
one-dimensional and is based on Newton’s second
law of motion: F = m ∗a which yields a = F

m for the
acceleration. The velocity is then calculated by inte-
grating the acceleration and integrating once more
yields the position. The time domain model does
this numerically, which means that every timestep
all forces are calculated and divided by the moving
mass. The resulting acceleration is assumed con-
stant over the timestep and integrated twice to ob-
tain the velocity and position. The new position,
velocity and acceleration in turn are inputs for the
forces for the next timestep. The observant reader
might notice that this implies an algebraic loop in
the model, which is in fact true. This loop was iden-
tified during the the research and a method to elimi-
nate the loop has been proposed. However, for some
cases the algebraic loop is needed to be able to calculate the correct values with the model. In these
cases Simulink solves the loop iteratively. The block diagram of the existing Simulink model is given
in figure 4.1.

27
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4.2. BODY MOTION MODEL

Figure 4.2: Block diagram of the derived body motion model

Based on section 3.5 the body motion model
has been implemented in Simulink.
The schematic of this model is depicted in fig-
ure 4.2 2. The diagram clearly shows that for
each degree of freedom the velocity is calcu-
lated from the equation of motion (EOM). Then
the total translation and rotation is solved in
the motion combination block and the new sit-
uation is input for the next time step. Using
this new situation the new forces and moments
are determined as a function of the state of the
Symphony and time. filler text filler text filler
text filler text filler text filler text filler text filler
text filler text filler text filler text filler text filler
text filler text filler text filler text filler text filler
text filler text filler text filler text filler text filler
text filler text filler text filler text filler text filler
text filler text filler text filler text filler text filler
text filler text filler text filler text filler text filler text filler text filler text filler text filler text filler text
filler text filler text filler text filler text filler text filler text

4.3. COUPLED MODEL

Figure 4.3: Block diagram of the derived Simulink model 2

With both models working separately the mod-
els can be coupled. This coupling is done by ex-
changing information between the models ev-
ery time step. The exchanged information con-
sists of the floater position and the resulting
force on the floater from the operational model
to the body motion model and the x-position of
the top of the floater, the angle of the Symphony
and the y position of the fairlead from the body
motion model to the operational model. In
the operational model, the external forces on
the floater are influenced by the height of the
Symphony (affecting the hydrostatic pressures
on the different parts) and the x position of
the Symphony, affecting the momentary wave-
induced pressure at the position of the floater.
Because the dominating wave force acting on
the Symphony is the wave force in the top of
the floater the used x position is that of the top
of the floater. The height of the different parts is
calculated using the height of the fairlead above
the seabed and correcting for the local floater
position z and the angle of the Symphony θ.

2Please note that this is a schematic and not the actual Simulink model. Single lines may represent multiple variables.
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4.4. TESTING THE MODEL

In order to confirm that the implemented model gives reliable outputs it has to be tested in some
way. For practical reasons experiments to validate this model are not an option. Hence, the next
best way to gain confidence in this model is to test it against existing modelling and to compare it
with simple cases that can be estimated analytically.

4.4.1. SIMULATION TIME STEP

The time step is initially inherited from the previous iterations of the operational Symphony models,
which is 0.01s. Looking at figures 4.5 and 4.6 0.01s seems to be sufficiently small for the motion
simulation of the Symphony. However, one very stiff element, the mooring line, is introduced. When
doing a time domain simulation it is sensible to have a time step that is much smaller than the
natural period of the system. In this case the worst case scenario (highest natural frequency) is

the Den Helder case. The axial natural frequency of the system is approximated by ωn =
√

km
m =√

11.9∗106

20∗103 = 24.4 r ad
s = 3.9H z which corresponds to a natural period of Tn = 1

f = 1
3.9 = 0.26s which is

26 time steps. Hence, the time step is small enough with respect to this natural frequency. Therefore
the time step of 0.01s which was inherited from previous iterations can be maintained. Running the
model at this time step confirms that it is stable and that the relevant motions indeed oscillate slow
enough to be facilitated by the 0.01s time step, see figure 4.4.

Figure 4.4: Time trace of normalised Symphony motions. Den Helder location, Hs = 1.5m, Te = 5.5s. Angle θ in degrees
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4.4.2. SIMULATION RUN TIME

Mean relative error

Run time (s) Leixões
200 20%
400 8%
700 5%

1300 5%
1900 2%
2500 2%

Run time (s) Den Helder
200 20%
400 7%
700 5%

1300 5%
1900 2%
2500 2%

Table 4.1: Mean relative error of
Symphony power for different run
times at both locations. The first 100
seconds of the results are always dis-
carded

In order to produce reliable outputs the model has to be run several
times, and with a sufficiently long duration. In line with previous
research [21] a run time of 1300 seconds discarding the first 100 sec-
onds to avoid influence of transient effects as a result of starting the
model seems to be reasonable. However, in order to verify that this
is also valid for this model a short study is undertaken. The out-
put power of the Symphony is selected as normative output. The
model is run 10 times for one sea state using several run times. The
power output of every run is compared to the mean of all runs with
that simulation time. The resulting mean relative errors are given in
table 4.1. This mean relative error (MRE) is defined as the mean of
the relative difference between the outputs of the 10 individual runs
and the mean of those ten outputs. For n runs this is calculated as

MRE =
∑i=n

i=1 |
out putn

meanout put −1|
n

The full results of the runs conducted to determine a reliable run
time are listed in appendix C. From table 4.1 1900 seconds it can
concluded that until 1900 seconds the performance seems to in-
crease significantly. Hence, a duration longer than 1900 seconds is
not required. This is in line with the suggestion in literature that
between 15 and 30 minutes (900 and 1800 seconds) is a reasonable
length for a sea state [20].

4.4.3. TESTING AGAINST THE EXISTING MODEL

With consistency and stability of the model assured it is important to compare the results of the
implemented model with those of the existing model in order to assure that no errors in the integra-
tion between the models are made. To do this comparison the new Simulink model has been fitted
with a set of switches which restrain the x, y and θ degrees of freedom. For this comparison the
characteristic sea states given in tables 2.1 and 2.2 are used. For every sea state a wave seed is gen-
erated ten times. This wave seed is used to run the new Simulink model and the existing Simulink
model. Then the results are compared. This comparison yields identical results for all runs. Hence,
the model still simulates the Symphony operation correctly.

4.4.4. DECAY SIMULATION

As stated in section 3.4 confidence in the model can be gained by comparing results of an undamped
free oscillation of the body motion model to the analytical solution of that oscillation for the single
degree of freedom model. Because this thesis has two location which are of particular interest this
will done for both locations. The locations are described in more detail in section 2.3. For this
comparison it suffices to know that the water depths are 35 and 100 metres, respectively. This yields
pendulum lengths Lp,35 = 35−dclr −Ls ym,max+rCoM ,eq = 24.5m and Lp,100 = 35−dclr −Ls ym,max+
rCoM ,eq = 89.5m The estimates for the natural frequency for these water depths with the Symphony
locked in its equilibrium position (z = 0) are calculated below

ωn,35m =

√√√√ Fb,net ,eq

ms ym

Lp,35
=

√
59000
17500

24.5
= 0.371

r ad

s
= 0.059H z
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This corresponds with a natural period of 1
0.059 = 16.9s. Figure 4.5 gives the time trace for the hori-

zontal oscillation of the symphony body according to the implemented numerical model. From the
figure the natural period can be estimated around 17.5s. For the Leixões location the same calcula-

Figure 4.5: timetrace of the free horizontal oscillation of the symphony in survival mode in 35m water depth 3

tion applies:

ωn,100m =

√√√√ Fb,net ,eq

ms ym

Lp,100
=

√
59000
17500

89.5
= 0.194

r ad

s
= 0.031H z

This corresponds with a natural period of 1
0.031 = 32.3s. Figure 4.6 gives the time trace for the hori-

zontal oscillation of the symphony body according to the implemented numerical model.From the
figure the natural period can be estimated at 32s.

As can be seen above the modelled values of the natural frequencies are close to the results obtained
by running the simulation. This gives confidence in the validity of the body motion model.

4.5. COMPARING SURGE LOADS

Section 2.5.2 presents model results for surge loads on the restrained Symphony in survival mode.
The time trace for this situation ran in the implemented model is given in figure 4.7. From the figure

3The small ripple on the large oscillation is due to the rotation in the θ degree of freedom
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Figure 4.6: time trace of the free horizontal oscillation of the symphony in survival mode in 100m water depth 3

it can be seen that the surge load amplitude is 5 kN at a submersion of 6 meters and a monochro-
matic wave of 1 meter amplitude and 5 seconds period. This is close to the values presented in 2.5.2.

4.6. CONCLUSION

The implementation of the model in the Matlab/Simulink environment has been described. Simple
simulations have been compared to analytic solutions of simple cases in order to gain confidence in
the model. Also one simulated case has been compared to results in previous work. In the presented
comparisons the results by the implemented model match the analytical results good enough to
gain confidence in the correctness of the model. Hence, this model can be used to estimate hori-
zontal Symphony motion in the 2D plane and associated mooring reaction forces.
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Figure 4.7: time trace of surge loads on the restrained Symphony. Wave period is 5 seconds, amplitude 1 meter





5
RESULTS

This chapter presents the model results. Firstly, the input parameters that are not yet discussed are
explained. Then the results for both cases and both locations are presented and discussed.

5.1. MODEL INPUT PARAMETERS

For running the model several inputs have to be chosen. The characteristic sea states are given in
section 2.3. In addition to the sea states the mooring line properties have to be estimated. Prelimi-
nary runs show expected maximal reaction forces close to 100 kN. It is appropriate to wield a safety
factor of 3 for these kind of loads so for a priliminary estimate the line should be designed to have
a break load of at least 300 kN. Assuming the line to fail when the yield stress is reached and a yield
stress of 300 MPa this yields an equivalent cross sectional area of 0.3M N

300MPa = 1000mm2 1. If the line
material is assumed to have a Youngs’ modulus of 200 GPa then the line stiffness is equal to k = AE

L
which for the Leixões case equals 2.44 kN/mm and for the Den Helder case 11.90 kN/mm.

5.2. OUTPUT VALUES

The values of interest are the following:

• mean output power

• maximum horizontal mooring reaction force (Fx,max )

• maximum vertical mooring reaction force (Fy,max )

• magnitude of the expected worst case reaction force (Fwc )

• angle of the expected worst case reaction force (αwc )

Of these values, the mean output power does not apply to the survival case because the Symphony
does not produce any power when in survival mode.

For the operational case a series of sea states from zero to the cut out sea state will be simulated to
provide a useful set of numbers to be used in choosing the operational envelope of the Symphony.
For the survival case only the survival sea state will be simulated as the survival case cannot be
chosen but is a property of the deployment location.

1Material properties are chosen based on common values [35]

35



36 5. RESULTS

Sea state Power (W) Fx,max (N) Fy,max (kN) Fwc (kN) αwc (degrees)
1 108 370 71.6 61.3 0.37
2 1486 1189 77.9 62.7 1.07
3 2865 1936 77.6 75.0 1.83
4 0 0 0 0 0
5 0 0 0 0 0

Cut out 9073 3501 92 78.1 2.21

Table 5.1: Results for the characteristic sea states at the Leixões location

For all of the outputs the model has been run three times with the same sea state, but a unique wave
seed. For the power the mean of the three runs is taken, for the reaction forces the maximum of the
three runs is taken.

5.3. RESULTS

The results are presented in the following sections. Only the results of the survival case and the char-
acteristic sea states are presented in this section. For the full output matrices please see appendices
E and F.

5.3.1. LEIXÕES

This section presents the results for the characteristic sea states and the survival case (Te =18s, Hs =
15m) for the Leixões location.

SURVIVAL CASE

Output value
Fx,max 10.7 kN
Fy,max 63.7 kN

Fwc 57.6 kN
αwc 10.7°

Table 5.2: Outputs for
the Leixões survival
case

Table 5.2 gives the maximum loads for the survival case. In order to properly
visualise these loads polar a plot iss produced. This plot gives the time trace of
the force vector. Every point on the line gives the magnitude of the force at a
certain point in time and the corresponding angle op the force at that point in
time. This way it is easily identified where the bulk of the loads are. one polar
plot from the simulations done to assess the Leixões survival case is given in
figure 5.1.

OPERATIONAL CASE

The results for the characteristic sea states are given in table 5.1. The zeros for
the fourth and fifth sea state denote a Symphony breakdown. From the full
power diagram in table F.1 the cut out sea state for Leixões had been deter-
mined at Hs = 7.5m and Te = 5.5s2. This sea state has been added to the results to determine the
maximal operational loads.

Using these outputs, the rated power for the Symphony at this location3 and the occurencies of the
characteristic sea states (table 2.1) a capacity factor of the Symphony for this location can be com-
puted. This is done by calculating the energy the Symphony is expected to generate in a year and
dividing by the theoretical maximum annual power production defined by the rated power times

2Based on the force and power diagram given in appendix E Hs = 7.5, Te = 5.5 is chosen as the cut out sea state. This is to
ensure the estimates to be conservative

3The rated power for a location is defined as the highest output power in the scatter diagram for that location
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Figure 5.1: Polar plot of the required mooring reaction forces for the Leixões survival case
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the length of a year. If the rated power is taken as 9073W4 for Leixões location this yields a capacity
factor of

Cp = 8766∗ (0.344∗108+0.381∗1486+0.118∗2865)

8766∗9073
= 0.1083 = 10.38%

MOTIONS

The model also determines the motions of the Symphony. Table5.3 gives the maximum horizontal
excursion of the fairlead for the characteristic sea states and the survival conditions in Leixões. Time
traces of the motions are given in appendix H.

Maximum Symphony horizontal excursion (m)
Characteristic sea state 1 0.55
Characteristic sea state 2 1.89
Characteristic sea state 3 3.07
Characteristic sea state 4 no data
Characteristic sea state 5 no data
Survival case 17.7m

Table 5.3: Horizontal excursion of the Symphony fairlead for characteristic sea states and survival conditions for the
Leixões location. Cells with no data are above cut out seastate

COMPARISON OF THE MOVING AND THE RESTRAINED SYMPHONY

Figure 5.2: Extra water column due to Symphony motion

To compare the energy yield of the restrained Symphony and the moving Symphony several model
runs have been conducted. The expectancy is that a difference in energy yield between the moving

4the 9073 watt belonging to sea state Hs = 7.5m and Te = 5.5s is selected rather than the 10953 watt belonging to Hs = 9.5m
and Te = 4.5s because the latter is an isolated value in the power matrix and therefore highly unlikely



5.3. RESULTS 39

Mean index power (%)
Sea state Moving Restrained Restrained with extra water column

1 100 97.27 99.27
2 100 100.52 100.78
3 100 99.36 100.41
4 100 no value no value
5 100 no value no value

Table 5.4: Mean index power for different sea states fir the Leixões location

Symphony and the restrained Symphony can be explained by the vertical displacement of the top
of the floater, effectively adding an extra "wave" to the excitation forces, expressed as an extra water
column.
For all characteristic sea states a ten wave seeds are generated. For every wave seed the Symphony
model is run. From the results of the first run the time trace of the vertical displacement of the top
of the floater with respect to the restrained situation is calculated. See figure 5.2. Then the model
for the restrained Symphony is ran, with this extra water column height added to the water column
responsible for the hydro static forces on the floater.
Table 5.4 gives the results for the characteristic sea states for the Leixões location. The index power
is defined as the mean power resulting from the restrained model divided by the power resulting
from the moving model with the same wave seed. Table 5.4 Gives the mean index power (MIP) for
the characteristic sea states for Leixões.
From the results it can be concluded that the difference in energy yield is very small. It is in the
same order of magnitude as the error that was accepted in the process of justifying the time step.
Hence, the only real conclusion that can be drawn from these simulation is that incorporating the
horizontal motion in the Symphony modelling does not matter a great deal for the energy produc-
tion. For the lowest sea state the extra water column indeed seems to correct the difference between
the moving and restrained Symphony, however, in the other sea states this relation does not seem
to hold. The differences are too small compared to the inconsistencies of the model output to draw
any real conclusion other that that the energy production is not greatly affected.

MAXIMUM EXPECTED LOADS

From the two previous sections the maximum expected loads for the mooring can be identified. It
is interesting to see that the vertical maximum expected required mooring forces are in fact reached
in operational conditions and not in survival conditions. This might feel counter intuitive, but can
be explained. As already mentioned by Leijten [19] the floater pulls the base upward in operation.
In survival condition, this extra (mainly vertical) force is not present. Hence, the maximum required
vertical reaction forces are significantly lower in the survival case than in the operational case. The
maximum expected loads are listed in table 5.5.

Load occurs in magnitude angle with respect to vertical
Maximum horizontal survival condition 10.7 kN 90 degrees

Maximum vertical operational condition5 95.4 kN 0 degrees
Expected worst case survival condition 57.6 kN 10.7 degrees

Table 5.5: Maximum expected loads for the Leixões location

5Maximum values from table E.3 is taken
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5.3.2. DEN HELDER

Current velocity
Quantity 0 m/s 0.5 m/s -0.5 m/s

Fx,max 30.7 kN 53.0 15.0 kN
Fy,max 72.9 kN 88.0 73.3 kN

Fwc 80.9 kN 97.6 60.0 kN
αwc 30.6° 32.9 21.7°

Table 5.6: Outputs for the Den Helder survival case

The results for the Den Helder case are pre-
sented below.

SURVIVAL CASE

Table 5.6 gives the maximum loads for the Den
Helder survival case. Again, polar plots have
been made to visualise the loads. The polar
plots from the simulations done to assess the
Leixões survival case are given in figure 5.3.

Figure 5.3: Polar plot of the required mooring reaction forces for the Den Helder survival case
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OPERATIONAL CASE

The results for the characteristic sea states are
given in table 5.7. Again, zeros are present at a sea state which is apparently above the cut out sea
state as the model predicts a breakdown of the symphony at that sea state. Again, the cut out sea
state is determined at Hs = 4.5m and Te = 8s6 and ran to complete the results.

Sea state Power (W) Fx,max (N) Fy,max (kN) Fwc (kN) αwc (degrees)
1 11 315 61.9 60.0 0.32
2 207 1717 76.6 63.6 1.43
3 2043 3517 79.6 50.4 4.37
4 3767 7093 80.0 59.2 7.30
5 0 0 0 0 0

Cut out 5071 7848 80.4 68.0 7.85

Table 5.7: Results for the characteristic sea states at the Den Helder location

Using the same procedure as in section 5.3.1 and taking a rated power of 5964W7 the capacity factor
for the Den Helder location can be calculated as

Cp = (0.407∗11+0.394∗207+0.141∗2043+0.043∗3767)

5964
= 0.0899 = 8.99%

MOTIONS

The model also determines the motions of the Symphony. Table 5.8 gives the maximum horizontal
excursion of the fairlead for the characteristic sea states and the survival conditions in Den Helder.
Time traces of the motions are given in appendix I.

Maximum Symphony horizontal excursion (m)
Characteristic sea state 1 0.09
Characteristic sea state 2 0.52
Characteristic sea state 3 1.27
Characteristic sea state 4 2.03
Characteristic sea state 5 no data
Survival case no current 7.5
Survival case positive current 10.3
Survival case negative current 5.8

Table 5.8: Horizontal excursion of the Symphony fairlead for characteristic sea states and survival conditions for the Den
Helder location. Cells with no data denote Symphony breakdown; so this sea state is above cut out

COMPARISON OF THE MOVING AND THE RESTRAINED SYMPHONY

Again, the moving and restrained Symphony are compared. Mean index powers are given in table
5.9. From the results it is again clearly seen that the difference in energy yield is quite small. Again,
we can concluded that the incorporation of the Symphony body motions in the operational model
does not have a large impact on the energy yield by the Symphony.

6The cut out sea state for Den Helder is outside the chosen range of the power diagram. It has been determined by
running some small power matrices around the expected cut out sea state. Time traces for the cut out sea state are given
in figures F.2 and F.1

7based on table G.1
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Mean index power (%)
Sea state Moving Restrained Restrained with extra water column

1 100 99.27 99.92
2 100 97.68 98.34
3 100 102.82 101.83
4 100 102.90 102.00
5 100 100.47 100.1

Table 5.9: Mean index power for different sea states for the Den Helder location8

MAXIMUM EXPECTED LOADS

From the two previous sections the maximum expected loads for the mooring can be identified. It
is interesting to see that the maximum expected vertical reaction forces required bot the mooring
are in fact reached in operational conditions and not in survival conditions. This might feel counter
intuitive, but it can be explained. As already mentioned by Leijten [19] the floater pulls the base
upward in operation. In survival condition, this extra (mainly vertical) force is not present. Hence,
the maximum required vertical reaction forces are significantly lower in the survival case than in the
operational case. The maximum expected loads are listed in table 5.10.

Load occurs in magnitude angle with respect to vertical
Maximum horizontal survival condition 30.7 kN 90 degrees

Maximum vertical operational condition 92.5 kN 0 degrees
Expected worst case survival condition 80.9 kN 30.6 degrees

Table 5.10: Maximum expected loads for the Den Helder location

5.4. CONCLUSION

From the model results it can be concluded that the maximum vertical mooring forces for both
cases occur in operational conditions. The calculated maximum vertical mooring forces are close
to the forces proposed by Leijten [19]. The difference with Leijtens results can be attributed to the
fact that the wave force on the base is now also accounted for. These forces were neglected in his
previous work.
From the results it can also be seen that the maximum vertical forces for different water depths are
close to each other. This was to be expected, because the time domain model designs the Symphony
spring characteristic so that a certain maximum is not exceeded [19].
The maximum horizontal and maximum inclined loads occur in survival conditions for both cases.
This is explained by the larger horizontal excursions in survival mode. Because the horizontal excur-
sion is larger, the mooring line angleφ becomes larger, making for a larger horizontal component in
the mooring reaction force. Particularly in shallower waters (Den Helder case) the horizontal com-
ponent becomes large. This is due to two effects of shallow water: (1) the mooring line is shorten,
making the angle φ larger at a certain horizontal excursion (x = l ∗ si n(φ)) and (2) the depth effect
described in section 2.7 is larger at a certain depth below the sea level than in deeper waters, making
the horizontal excitation larger and with that the horizontal excursions.

8Running the fifth sea state the Symphony model detected a Symphony break down in three instances. MIP is calculated
using the other six values
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MOORING DESIGN DISCUSSION

Based on the resulting mooring reaction forces presented in chapter 5 a short investigation of the
possible mooring solutions has been conducted [36, 37]. Several possible mooring solutions are
presented and discussed. The different possibilities are compared and a recommendation for the
two considered locations is done.

6.1. SUITABLE MOORING TECHNOLOGIES

This section presents several suitable technologies that can be used to facilitate the mooring line of
the Symphony. Based on these descriptions possible mooring solutions are described in section 6.3.

6.1.1. DEADWEIGHT ANCHOR

A deadweight anchor is used to withstand large vertical loads: the deadweight can withstand ver-
tical loads equal to the submerged weight of the anchor. However, a deadweight anchor’s only re-
sistance against horizontal forces is based on friction between the soil surface and the deadweight.
This friction force is calculated by some friction factor multiplied by the contact area between the
deadweight and the soil surface and the pressure between the surface and the deadweight. Typi-
cally these friction factors are in the order of 10%. This poses possible problems in the case of large
inclined loadings, where the pressure between the soil surface and the deadweight is less than the
submerged weight and a considerable horizontal load is applied. Secondly, a force vector that is
out of line with the gravity (a load that has a horizontal component) is asociated with a moment
around one of the corners of the deadweight. This poses possible problems when large horizontal
or inclined loads are applied. The moment associated with the loading force vector could be larger
than the restoring moment which is equal to the half width of the deadweight multiplied by its sub-
merged weight when the deadweight is still flat. If this occurs the deadweight can start rotating
and might be tipped over. Thirdly, a deadweights mass and therefore its submerged weight is de-
termined by its relative density (the difference between the material density and the water density)
and its volume. The dominant component of the horizontal loads on the Symphony are a result of
the wave induced pressure gradient. This force scales linearly with the objects’ volume (see equa-
tion 3.5. In shallow water the pressure gradient oscillation still has a considerable amplitude which
could provoke a negative design spiral: large horizontal loads lead to a large required volume, which
would lead to bigger horizontal loads et cetera. This is especially problematic in shallow (coastal)
waters. A very heavy gravity anchor has a considerable volume. Concrete has an underwater weight
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in the order of 25 kN/m3. A gravity anchor of considerable underwater weight would have a consid-
erable volume as well. Especially in shallow water this will pose problems, because the horizontal
pressure gradient at the seabed-level is still considerable. When a gravity anchor of considerable
weight an thus volume will be used, the horizontal force on the anchor will be considerable as well.
This would call for an even heavier anchor, which would in turn have a larger volume, meaning the
horizontal force will be larger et cetera. Hence a gravity anchor is not adviseable in shallow water.

6.1.2. DRIVEN PILE

A driven pile mooring resists vertical loadings thanks to the submerged weight of the pile itself and
the friction between the pile and the soil. The resistance against horizontal loading originates from
the resistance of the pile and the soil against deformation. Especially in cohesive soils driven piles
can resist large loadings. Literature points out that tension pile foundations and suctions anchors
are the principle method of installation for existing offshore structures and thus are a good option
to consider for offshore energy producers as well. Looking at other research

6.1.3. DRAG ANCHOR SINGLE POINT MOORING (DASP)

Drag anchors are dragged into the soil and can withstand serious horizontal loads. However, a drag
anchor has little to no resistance to vertical loads. In order to translate the vertical loads to horizon-
tal loads three anchors can be dragged to a central point, usually in 120 degree angles, where the
lines are connected. A vertical load to this central point will lift the point and the three lines will lift
up from the soil which will rotate the force vector in the line (which is always in line with the line)
and they will all have a vertical component. The drag anchors need to have a very large horizontal
capacity compared to the vertical loads on the mooring point because of the large angle between
the anchor line and vertical.

6.1.4. SUCTION PILE

A suction pile is a (usually circular) hollow steel pile with a closed top end and and open bottom
end. In order to install a suction pile it is lowered onto the seabed and water is drained from the
pile using an Remotely Operated Vehicle (ROV). When the water is drained from the inside of the
pile a large resulting force due to the hydrostatic pressure on the top of the pile pushes the pile in.
Suction piles can withstand loads due to the friction between the soil and the suction anchor and
the resistance of the soil and the pile itself against deformation. Because the working of a suction
pile is based on the water column on top of the pile suction piles are particularly fit for use in deep
waters.

6.1.5. GRAVITY INSTALLED ANCHOR (GIA)

A GIA is dropped from a considerable height above the seabed and penetrates the soil due to the
velocity it gained during the drop. This type of mooring is easily installed and can withstand both
horizontal and vertical loads in a similar way as the other two pile type moorings. However, it can
only be used in soft soils and a considerable water depth is needed to build up sufficient velocity
which could render it incompatible for shallow, coastal waters.
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6.1.6. VERTICAL LIFT ANCHOR ( VLA)

Vertical lift anchors are similar to drag anchors. However, during installation the anchor is rotated in
such a way that is can withstand both vertical and horizontal loads. These anchors are suitable for
deep sea moorings. However, they are not particularly fit to handle loads that change in direction.
As the horizontal loads on the Symphony changes direction with the wave frequency, this might
pose a problem for this mooring type.

6.1.7. SUCTION EMBEDDED ANCHOR (SEA)

The last mooring possibility that will be discussed is the suction embedded anchor. This type of
anchor is pushed in the ground by a follower in a similar way a suction pile is installed. However, if
the suction embedded anchor is at the desired depth, the follower is removed and the anchor itself
is brought into the vertical loading mode. This type of mooring is suitable for cohesive soils and
can’t be used in sandy soils.

6.2. COMPARISON OF THE MOORING OPTIONS

Based on the presented mooring possibilities and consultation with several industrial players for
both locations the mooring options are shortly discussed below. Table 6.1 gives the applicability to
different situation of different mooring types

deadweight driven pile DASP suction pile GIA VLA SEA
non-cohesive soils + + + + x x x
cohesive soils + + + + + + +
deep waters + + + + + + +
shallow waters - + + + + + +

Table 6.1: Applicability of different mooring types in different situation. + means good, - means not so good and x means
not possible.1

6.3. POSSIBLE MOORING SOLUTIONS

With an idea of the required mooring reaction forces (as can be seen from the results presented in
chapter 5 this varies per location) and the overview of suitable solutions in section 6.1 mooring so-
lutions can be proposed. As mentioned in section 2.6 the mooring design was initially assumed as
a single line and a gravity anchor. However, as seen in chapter 5 the horizontal loads are consid-
erable. Gravity anchors are not capable of withstanding large horizontal loads, without being very
heavy themselves [38]. Section 6.1 describes why a gravity anchor, at least in shallow waters, might
not be the best option.

6.3.1. SINGLE TECHNOLOGY SOLUTIONS

From section 6.1 the following single technology mooring solutions can be suitable for the Sym-
phony:

• Driven Pile

1No hard definition is given for deep and shallow water. However, it stands to reason to have this boundary at half the
wave length [20].
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• Suction Pile

• Gravity Installed Anchor

• Suction Embedded Anchor

These solutions are all restricted by the restrictions already noted in section 6.1.

6.3.2. MULTIPLE ANCHOR SINGLE POINT MOORING

If one wants to use a drag embedment anchor to provide a suitable mooring for the Symphony the
large vertical loads need to be translated to horizontal loads in order to load the drag embedment
anchor in the direction in which it can withstand large loads. This can be done by dragging several
angles from different directions to a single point and connecting the lines near the seabed. This
way a stable point near the seabed is created. The simplest case is three anchors under 120°with
each other. This way the arrangement is symmetric over the lines coinciding with the three mooring
chains (see figure 6.1). The maximum purely vertical load that can be withstood by this arrangement
(still assuming symmetry) is calculated as Fu = 3∗Fmax,chai n∗si n(γ) with Fmax,chai n the maximum
allowable tension in one chain (limited by the maximum allowable pull force of the anchor and the
break load of the chain) an γ the angle of the chain with horizontal. The maximum horizontal load
is equal to Fmax,chai n .

Figure 6.1: example of the spread of drag embedment anchors

6.3.3. DEAD WEIGHT INTEGRATED ANCHORS

Because the angle γ should usually be kept below 10°[36] the vertical load can be expected to domi-
nate the required dimensions for this system In order to be able to design more efficiently the above
described system can be combined with a dead weight of some kind. Especially a large, flat disk
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with a high density (steel or concrete) can be useful to reduce the required vertical strength of the
anchor system by "hanging" the dead weight from the Symphony mooring line. When the required
vertical mooring force exceeds the submerged weight of the dead weight, it will want to lift from the
sea bed. From that moment the anchors will have to contribute to the vertical mooring force. If the
underwater weight of the deadweight is cleverly chosen at the maximum vertical mooring reaction
force (close to 100kN, see chapter 5) the anchors will only have to withstand the horizontal forces
resulting form Symphony motions. Assuming an underwater weight of 70kN/m3 this would be a
steel disk with a volume of 1.42 m3. To give an idea of what such a disk could look like; such a disk
could measure 0.10x2.12m (height x radius).
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CONCLUSIONS AND RECOMMENDATIONS

Using the results presented in chapter 5 the research question can be answered.

7.1. SYMPHONY MOTION

The derived model is capable of predicting the motion of the Symphony in a given sea state. For the
Leixões en Den Helder location the Symphony motion has been predicted using the derived model.
Chapter 5 presents the results. For the operational cases in Leixões and Den Helder the maximum
excursions are listed in table 7.1

Maximum horizontal excursion (m) Leixões location Den Helder location
Operational 3.07 2.03
Survival 17.7 10.3

Table 7.1: horizontal excursion of the Symphony fairlead for characteristic sea states and survival conditions

It is interesting to see that the excursion in Den Helder, despite the lower sea states, comes close to
that in Leixões. However, this can be explained by the fact that the water at the Den Helder location
is shallower, making the wave forces at the instalment depth are relatively higher than they are in
Leixões. This is expressed in the depth effect explained in section 2.7.

7.2. EFFECT OF INCORPORATION BODY MOTION ON ENERGY PRODUCTION

As stated in sections 5.3.1 and 5.3.2 the effect on energy production is very limited. A effort has been
made to explain what little difference that has been found. One possible explanation is that the extra
water column on top of the Symphony is accountable for a difference in energy production. For the
smallest sea states the simulation results seem to confirm this hypotheses. In larger sea states there
is no real consistency in this pattern. From the results it can be concluded that the difference in
energy production between the moving Symphony and the restrained Symphony are very small.

7.3. MOORING REACTION FORCES

On the mooring reaction forces this research has presented a useful model to estimate required
mooring reaction forces for a Symphony wave power device in a certain region. Table 7.2 presents
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these expected maximal loads the expected loads for the Symphony at the Leixões and Den Helder
locations.

Quantity Leixões location Den Helder location
Maximum expected horizontal load 10.7 kN 30.7 kN
maximum expected vertical load 95.4 kN 92.5 kN
Worst case expected inclined load 57.6 kN 80.9 kN
Worst case expected inclined load angle 10.7° 30.6°

Table 7.2: Maximum expected loads for both cases

7.4. MOORING AND DESIGN RECOMMENDATIONS

Sections 6.1 and 6.3 give an overview of possible mooring design options for the Symphony. In the
current stage of development it is neither sensible nor possible the make a general choice for the
"right" mooring solution, as this will vary from location to location. Also cost of installation will
play a role in this decision, which also varies with the design of the to be installed Symphony(s).
In the design of the Symphony it is important to have enough net buoyancy in the survival mode.
If the Symphony has little net buoyancy it can be seen from the equations in section 3.5 that the
restoring forces will be small, making the symphony make very large excursions.

7.5. RECOMMENDATIONS FOR FURTHER RESEARCH

As mentioned in section 7.2 there might be an effect on the optimal tuning of the Symphony when
considering horizontal motion. In fact, energy production seems to decrease. This could be due
to the fact that the Symphony moves with the wave, throwing the wave phase experienced by the
Symphony a bit off of the expected phase. Therefore, the Symphony is not optimally tuned for the
wave phase it experiences. However, the differences are too small to say anything conclusive about
this hypothesis. Further research could shed more light on this.



A
SYMPHONY PROPERTIES DEPENDING ON

THE FLOATER POSITION

This appendix explains the relation between several properties of the Symphony and the floater
position. As far as positions are concerned, they are measured along the centreline of the Symphony,
starting at the bottom of the base. Also see figure A.1.

Figure A.1: Measurement of locations
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A.1. CENTRE OF MASS

The centre of mass is determined by assuming the floater and base have their centre of mass halfway
their length and the centre of mass of the water is at the top of the base. This last assumption is
reasonable because the spring tank, which holds most op the water, is situated there.
All moments are calculated and added. This total moment is divided by the total mass, yielding the
centre of mass of the total structure. The development of the centre of buoyancy when the floater
moves is shown in figure A.2.

Figure A.2: Development of the centre of mass of the Symphony as a function of z
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A.2. BUOYANCY

The buoyancy of the Symphony is found by calculating the volume enclosed by the floater and the
volume enclosed by the part of the base that sticks out of the floater. This is determined by sub-
tracting the overlapping length from the total base length and then multiplying by the base cross
sectional area. The relation with the floater position is shown in figure A.3.

Figure A.3: Development of the buoyancy of the Symphony as a function of z



54 A. SYMPHONY PROPERTIES DEPENDING ON THE FLOATER POSITION

A.3. NET BUOYANCY

The net buoyancy is calculated by subtracting the total weight of the Symphony from the buoyancy.
The dependency on the floater position is depicted in figure A.4.

Figure A.4: Development of the net buoyancy of the Symphony as a function of z
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A.4. CENTRE OF BUOYANCY

The centre of buoyancy is determined by finding the individual centres of volume of the base and
the floater. Then, again, moments are calculated and divided by the total buoyancy, yielding the
total centre of buoyancy. The dependance on the floater position is shown in figure A.5.

Figure A.5: Development of the centre of buoyancy of the Symphony as a function of z
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A.5. SIDE AREA

The side area of the Symphony is found by taking the area of the side view of the floater and adding
the length of the part of the base that is sticking out, multiplied by the base diameter. This relation
with the floater position is shown in figure A.6

Figure A.6: Development of the side area of the Symphony as a function of z
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A.6. CENTRE OF SIDEAREA

The location of the centre of side area (the assumed acting point of the drag force) is found by finding
the centres of area of the sideviews of the floater and the part of the base that is sticking out of the
floater and again, using a moment and the total side area, the

Figure A.7: Development of the centre of the side area of the Symphony as a function of z
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A.7. INERTIA

The inertia is calculated by dividing both the Symphony base and floater in 20 equal slice. Each
slice is assumed to account for the same amount of mass. The distance between every slice and the
centre of mass is calculated. Then the moment of inertia of every slice is calculated by I = m ∗ r 2.
All individual moments of inertia are added to obtain the total moment of inertia. The development
of the moment of inertia when the floater is moved is shown in figure A.8. The contribution of the
water to the rotational inertial of the body is neglected.

Figure A.8: Development of the inertia of the Symphony as a function of z



B
COMPARISON MOORING LINE AND

SYMPHONY ANGLE

Figure B.1: Time trace of Symphony angle (theta) and mooring line angle (phi) with vertical. Angles in degrees. Den
Helder, Hs = 1.5m, Te = 7s.
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C
OUTPUTS USED TO DETERMINE MEAN

RELATIVE ERROR

Runtime 200 seconds 400 seconds 700 seconds
Instance Power (W) % mean Power (W) %of mean Power (W) % of mean

1 140 80% 178 88% 205 102%
2 140 80% 227 113% 205 102%
3 172 98% 199 99% 196 97%
4 145 83% 216 108% 226 112%
5 172 98% 179 89% 190 94%
6 280 160% 205 102% 212 105%
7 187 107% 219 109% 198 98%
8 150 86% 177 88% 213 106%
9 233 133% 208 104% 186 92%

10 132 75% 203 101% 185 92%
Mean 175 100% 201 100% 201 100%
MRE 20% 7% 5%

Runtime 1300 seconds 1900 seconds seconds 2500 seconds
Instance Power (W) % mean Power (W) %of mean Power (W) % of mean

1 196 97% 192 97% 201 101%
2 193 95% 197 100% 202 102%
3 196 97% 201 102% 192 96%
4 214 106% 207 105% 193 97%
5 212 105% 200 101% 199 100%
6 229 113% 190 96% 212 106%
7 196 97% 202 102% 196 98%
8 193 96% 196 99% 203 102%
9 192 95% 191 97% 198 100%

10 197 98% 199 101% 197 99%
Mean 202 100% 197 100% 199 100%
MRE 5% 2% 2%

Table C.1: Outputs for multiple runs using different model runtimes. For MRE definition see section 4.4.2. All runs are
done using the Den Helder location and a seastate of Hs = 1.5m, Te = 5.5s, first 100s of output are discarded
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Runtime 200 seconds 400 seconds 700 seconds
Instance Power (W) % mean Power (W) %of mean Power (W) % of mean

1 865 61% 1470 96% 1487 103%
2 2275 159% 1478 97% 1593 110%
3 1154 81% 1654 108% 1415 98%
4 1369 96% 1878 123% 1502 104%
5 1435 101% 1301 85% 1383 96%
6 1265 89% 1587 104% 1499 104%
7 1965 138% 1565 102% 1425 98%
8 1363 95% 1340 88% 1536 106%
9 1454 102% 1409 92% 1273 88%

10 1134 79% 1612 105% 1366 94%
Mean 1428 100% 1529 100% 1448 100%
MRE 20% 8% 5%

Runtime 1300 seconds 1900 seconds 2500 seconds
Instance Power (W) % mean Power (W) %of mean Power (W) % of mean

1 1319 90% 1423 98% 1404 96%
2 1435 98% 1440 99% 1456 99%
3 1467 100% 1436 99% 1496 102%
4 1551 106% 1400 97% 1396 95%
5 1461 99% 1486 103% 1514 103%
6 1432 97% 1455 100% 1487 102%
7 1519 103% 1495 103% 1457 100%
8 1520 103% 1518 105% 1424 97%
9 1624 111% 1407 97% 1475 101%

10 1365 93% 1426 98% 1530 105%
Mean 1469 100% 1449 100% 1464 100%
MRE 5% 2% 2%

Table C.2: Outputs for multiple runs using different model runtimes. For MRE definition see section 4.4.2. All runs are
done using the Leixoes location and a seastate of Hs = 2.25m, Te = 9.0s, first 100s of output are discarded



D
SCATTER DIAGRAM LEIXÕES LOCATION

Table D.1: Scatter diagram for the Leixões location [19]

Table D.2: Clustered scatter diagram for the Leixões location. The alternation blue and red areas give the clusters. The
wave height and energy period are estimated based on the middle of every cluster, emphasised by the orange cells.
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E
FULL OUTPUTS LEIXÕES

Table E.1: Full power diagram for the Leixões location. Hs in meters, Te in seconds, power in watts. Sea state 9.5m, 4.5s is
ignored because it is isolated from the rest of the diagram
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Table E.2: Full maximal horizontal reaction force diagram for the Leixões location. Hs in meters, Te in seconds, forces in
newton. Sea state 9.5m, 4.5s is ignored because it is isolated from the rest of the diagram

Table E.3: Full maximal vertical reaction force diagram for the Leixões location. Hs in meters, Te in seconds, forces in kilo
newton. Sea state 9.5m, 4.5s is ignored because it is isolated from the rest of the diagram
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Table E.4: Full maximal worst reaction force diagram for the Leixões location. Hs in meters, Te in seconds, forces in kilo
newton. According angles in table E.5. Sea state 9.5m, 4.5s is ignored because it is isolated from the rest of the diagram

Table E.5: Full maximal worst reaction force diagram for the Leixões location. Hs in meters, Te in seconds, angles in
degrees. According forces in table E.4. Sea state 9.5m, 4.5s is ignored because it is isolated from the rest of the diagram
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Figure E.1: Horizontal and vertical loads on the foundation for a single wave seed in the Leixões cut out sea state
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Figure E.2: time traces of the horizontal force acting on the Symphony and the Symphony horizontal motion for a single
wave seed in the Leixões cut out sea state





F
FULL OUTPUTS DEN HELDER

.

Table F.1: Full power diagram for the Den Helder location. Hs in meters, Te in seconds, power in watts. Sea state 9.5m,
4.5s is ignored because it is isolated from the rest of the diagram
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Table F.2: Full maximal horizontal reaction force diagram for the Den Helder location. Hs in meters, Te in seconds, forces
in newton. Sea state 9.5m, 4.5s is ignored because it is isolated from the rest of the diagram

Table F.3: Full maximal vertical reaction force diagram for the Den Helder location. Hs in meters, Te in seconds, forces in
kilo newton. Sea state 9.5m, 4.5s is ignored because it is isolated from the rest of the diagram
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Table F.4: Full maximal worst reaction force diagram for the Den Helder location. Hs in meters, Te in seconds, forces in
kilo newton. According angles in table F.5. Sea state 9.5m, 4.5s is ignored because it is isolated from the rest of the diagram
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Table F.5: Full maximal worst reaction force diagram for the Den Helder location. Hs in meters, Te in seconds, angles in
degrees. According forces in table F.4. Sea state 9.5m, 4.5s is ignored because it is isolated from the rest of the diagram
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Figure F.1: Horizontal and vertical loads on the foundation for a single wave seed in the Den Helder cut out sea state
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Figure F.2: time traces of the horizontal force acting on the Symphony and the Symphony horizontal motion for a single
wave seed in the Den Helder cut out sea state



G
EXTRA OUTPUTS DEN HELDER

.

Table G.1: Extra power diagram for the Den Helder location. Hs in meters, Te in seconds, power in watts. Sea state 9.5m,
4.5s is ignored because it is isolated from the rest of the diagram
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Table G.2: Extra maximal horizontal reaction force diagram for the Den Helder location. Hs in meters, Te in seconds,
forces in newton. Sea state 9.5m, 4.5s is ignored because it is isolated from the rest of the diagram

Table G.3: Extra maximal vertical reaction force diagram for the Den Helder location. Hs in meters, Te in seconds, forces
in kilo newton. Sea state 9.5m, 4.5s is ignored because it is isolated from the rest of the diagram



H
HORIZONTAL MOTION PLOTS LEIXÕES

Figure H.1: time trace for the horizontal fairlead motion for Leixões, Hs = 1.0m, Te = 6.0s
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Figure H.2: time trace for the horizontal fairlead motion for Leixões, Hs = 2.25m, Te = 9.0s

Figure H.3: time trace for the horizontal fairlead motion for Leixões, Hs = 3.5m, Te = 10.0s



I
HORIZONTAL MOTION PLOTS DEN HELDER

Figure I.1: time trace for the horizontal fairlead motion for Den Helder, Hs = 0.5m, Te = 4.72s
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82 I. HORIZONTAL MOTION PLOTS DEN HELDER

Figure I.2: time trace for the horizontal fairlead motion for Den Helder, Hs = 1.5m, Te = 5.58s

Figure I.3: time trace for the horizontal fairlead motion for Den Helder, Hs = 2.5m, Te = 6.44s
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Figure I.4: time trace for the horizontal fairlead motion for Den Helder, Hs = 3.5m, Te = 7.29s
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