
Embedding polyhedral graphs

Lune van Santvoord

August 20, 2025

Embedding polyhedral graphs
by

Lune van Santvoord

Bachelor’s Thesis
Submitted to the Delft Institute of Applied Mathematics

Delft University of Technology

In partial fulfillment of the requirements of
the degree Bachelor of Science in Applied Mathematics

at the Delft University of Technology
to be defended publicly on Wednesday August 27, 2025 at 13:00 PM.

Student number: 5872952
Project duration: March 1, 2025 – August 27, 2025
Thesis committee: Dr. F.M. de Oliveira Filho, TU Delft, supervisor

Dr. E. Lorist, TU Delft
Cover drawing: Luna van den Elzen

A digital version of this thesis is available at http://repository.tudelft.nl/

© 2025 by Lune van Santvoord. All rights reserved.

http://repository.tudelft.nl/

Preface

”Graph drawing is not a single well-defined problem but an art, namely the art of describing what
a nice drawing of a graph means in the context of a particular application.”1

While I do agree with this quote, for me the first part suffices. This project reminded me again of
the art and beauty of mathematics aside from its applications.

I would like to thank Dr. F.M. de Oliveira Filho for supervising me during this project. He
provided me with initial stepping stones and advised me on making the right decisions. Additionally,
I would like to thank Dr. E. Lorist for joining the Bachelor’s Comittee. Finally, I would like to
thank Luna, for creating a beautiful cover drawing, and the rest of my friends and family who
challenged me to explain my thesis to them.

Lune van Santvoord
Amsterdam, August 2025

1From a chapter by R. Fleischer and C. Hirsch in a book by Kaufmann and Wagner (2003)

i

Lay Summary

Graphs are structures consisting of objects and relations between those objects. A drawing of
a graph is made by representing the objects as points and the relations as curves between their
endpoints. When a graph has a drawing where these curves only cross in their endpoints, the graph
is planar. One method of drawing a planar graph is by fixing an initial set of the objects in the
two-dimensional plane and by letting the relations behave as ideal rubber bands, letting the rest
of the vertices settle in equilibrium. This is called the rubber band representation. For a specific
type of graph, Tutte proved that this representation has certain characteristics. This research, by
adapting the problem corresponding to the rubber band representation, created several different
drawings while maintaining the characteristics given by Tutte.

ii

Abstract

Graphs are mathematical models that contain information about objects (vertices) and relations
between those objects (edges). A drawing, also called an embedding, of a graph is made by rep-
resenting the vertices as points in R2 and the edges as curves between their endpoints. When
these curves only intersect in their endpoints, the embedding is planar. Graphs that have such an
embedding are planar graphs. There is no fixed set of rules when it comes to drawing a graph.
So how to decide how a graph should be drawn? One method of drawing a graph is called the
rubber band representation, where some vertices are initially fixed as a strictly convex polygon on
the Euclidean plane and all remaining vertices are placed in the barycenter of their neighbours.
For the rubber band representation of 3-connected planar graphs, further referred to as the Tutte
embedding, Tutte’s theorem states that all connected regions that are bounded by edges (called
faces) are strictly convex, these faces do not contain vertices or edges. This research adapted the
optimization problem corresponding to the Tutte embedding by changing the objective function,
while making sure the embedding remained compliant with Tutte’s theorem. In doing so, new
methods for graph drawing can be examined and used in various areas, depending on the individ-
ual context and application of the drawing. Two types of objective functions were analysed. The
first type, based on existing research, minimizes the difference between the length of the edges and
their desired length. The second type was proposed by this research and minimizes the differences
between the surface area of all faces within the embedding. The first type of objective functions
yielded embeddings with a similar structure as the Tutte embedding, maintaining the symmetries
of the graph, but with different proportions. The embeddings that were yielded by the second type
of objective function were different. Some of which do not maintain the symmetric characteristics
of the graph. A notable feature is that for some graphs, there exist several local minima with
corresponding embeddings that are significantly different from each other. This report contains
the analysis of the different objective functions and their results. The results show that there are
multiple ways to draw 3-connected planar graphs compliant with Tutte’s theorem. Moreover, it
provides options for further analysis of the objective functions and paves the way for further re-
search possibilities.

Key words: graph drawing, 3-connected planar graph, planar embedding, rubber band repre-
sentation, Tutte’s theorem, optimization

iii

Contents

Preface i

Lay Summary ii

Abstract iii

Introduction 1

Chapter 1. Tutte’s embedding 3
1. Definitions 3
2. The Tutte embedding 4
3. Tutte’s theorem 6

Chapter 2. Changing the system 8
1. Drawing planar graphs as a physical system 8
2. Vertices as a convex combination of their neighbours 8
3. Existing energy functions 9

Chapter 3. A new optimization problem 11
1. Optimization method 11
2. The energy functions 12
3. A selection of polytopes 14

Chapter 4. Embedding polyhedral graphs 15
1. Minimizing Ek,m and Ed 15
2. Minimizing EF 17

Conclusion 22

Discussion 23

Bibliography 24

Appendix A. Results of Ek,m and Ed 25

Appendix B. Python code: Tutte embedding 27

Appendix C. Python code: Convex embeddings 35

Appendix D. Python code: Drawing 50

iv

Introduction

Graphs are abstract mathematical objects that are unknown to most people (Kaufmann &
Wagner, 2003). However, graphs appear not only in mathematics or computer science, they live
under the surface across many areas. There are various kinds of information that can be represented
by a graph. Think of railway systems, scheduling problems and biological networks such as the
phylogenetic tree in Figure 0.1.

Figure 0.1. The phyloge-

netic tree of the Nymphalidae

A graph is a structure containing objects and relations between these
objects. The objects are called vertices and the relations between the
vertices are called edges. It is possible for two objects to be related in
more than one way or for one object to be related to itself. In Figure
0.1, the T-junctions and the open ends are the vertices of the graph, and
the connections between these are the edges.

Because graphs are so widely occurring, the study on them, called
graph theory, is a major branch in mathematics. In addition, graphs
have a very visual structure. Therefore, Kaufmann and Wagner (2003)
emphasize the importance of the study of graph drawing ; representing
the vertices of a graph as points in R2, where related vertices are con-
nected by a curve. These curves do not contain any other vertices. A
drawing is also called an embedding. When none of the curves intersect,
it is called a planar embedding. A graph that has such an embedding is called a planar graph.

Creating suitable ways of graph drawing has a positive effect on its applications in computer
science, such as software engineering, data science, network design and graphical interfaces. But also
on applications in other areas, such as graphical data analysis in scientific areas and visualization
of information in general. (Kaufmann & Wagner, 2003)

Essentially, there are an infinite number of possible drawings of a single graph. To make a
suitable drawing of a graph, one has to account for the intended structure and meaning. For
example, the graph displayed in Figure 0.1 would be more difficult to interpret, with regard to
the evolutionary structure it contains, if all vertices were placed randomly (preserving the correct
connections). In addition, one could also consider the graph drawing problem from an aesthetic
point of view, which would lead to more subjectiveness.

All in all, a drawing is dependent on the individual and subjective nature of the graph, which
makes drawing in itself a difficult matter when considering the structure and meaning of the graph
(Kaufmann & Wagner, 2003).

However, it also makes the subject interesting. There are no fixed rules when it comes to
drawing a graph. The only importance is that the drawing is helpful to the viewer or user in regard
to ’reading’ the graph. Imagine trying to figure out a clustered map of a metro system in a large
city. Therefore, creating and improving algorithms for the graph-drawing problem is a dynamic
and demanding problem (Kaufmann & Wagner, 2003).

1

INTRODUCTION 2

One specific way to draw a graph is to take a selection of the vertices and fix them and the edges
between them. Now, imagine that all other edges behave as contracting rubber bands and let the
rest of the vertices be pulled by their edges. Consequently, these vertices will settle in equilibrium,
in fact, in the barycenter of their neighbours. Think of a dreamcatcher, where the crossings of the
rope are the vertices and the pieces of rope between these crossings are the edges. This drawing is
called the rubber band representation.

A graph is connected if there exists a sequence of edges between any two vertices. It is 3-
connected if it is connected and remains connected after removal of any two distinct vertices. In
1963, W.T. Tutte proved a theorem that states that for a 3-connected planar graph, the rubber
band representation of this type of graph has its own characteristics. The rubber band representa-
tion will be further referred to as the Tutte embedding. The Tutte embedding of a graph can easily
be obtained by solving a linear system that is derived from an optimization problem. Lovász (2009)
showed that this optimization problem could be intuitively adapted by using a set of various rubber
bands instead of one kind. Consequently, the question arises how to decide what kinds of rubber
bands should be used and, for each edge, what the corresponding kind should be. Hence, the main
question for this research reads as follows:

How can the optimization problem, that corresponds to the Tutte embedding of a 3-connected
planar graph, be adapted so that the embedding remains compliant with Tutte’s theorem?

To answer the research question, a new optimization problem is created. The optimization
problem is tested with several objective functions. Chapter 3 elaborates on this. The results will
be discussed in chapter 4. Chapter 1 first delves deeper into the Tutte embedding. In the second
chapter is explained how the original optimization problem is changed. This chapter also includes
some research on possible objective functions. Finally, the main research question will be answered
based on the results. Note that this report focusses only on the mathematics and will not qualify
the results as ’good’ or ’bad’, since this is a highly subjective matter and completely dependent on
the users preferences.

CHAPTER 1

Tutte’s embedding

1. Definitions

We are looking at a graph G = (V,E), where V is the set of vertices and E is the set of edges
between those vertices.

For u, v ∈ V , let u be a neighbour of v if uv ∈ E. Then N(v) denotes the set of neighbours of
v, i.e., N(v) = {u ∈ V : uv ∈ E}. The degree of v, denoted d(v), is the number of neighbours of v,
that is, d(v) = |N(v)|.

Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic if there exists a bijection f : V → V ′

such that uv ∈ E if and only if f(u)f(v) ∈ E′

A drawing of a graph G is a representation of G, where the vertices of G are points in R2 and
the edges of G are curves between their endpoints.

A polygon is a sequence (x1, ..., xn) of distinct points in R2, such that the line segments between
x1 and xn and any two consecutive xis do not intersect, except at the endpoints. The line segments
enclose a connected region in R2.

A set S ⊆ R2 is convex if for any two points x, y ∈ S, S contains the line segment between x
and y. That is, for 0 ≤ λ ≤ 1, we have λx+ (1− λ)y ∈ S. The convex set S is strictly convex if no
three points of S on the boundary are collinear.

A point x in R2 is a convex combination of x1, ..., xk in R2 if x =
∑k

i=1 αixi, where α1, ..., αk

are constants in R such that αi ≥ 0 for all 1 ≤ i ≤ k and
∑k

i=1 αi = 1.

1.1. 3-connected planar graphs. In this paper, we are looking at a specific type of graph.
A graph G is planar if it has a drawing in R2 such that no edges cross in a point that is not a
vertex of G. This drawing is called a planar embedding of G. We will focus on straight-line planar
embeddings. Moreover, a face F of a graph is a maximal connected region in R2 that contains no
vertices or edges of G. The boundary of a face consists of the edges that enclose the region. The
outer face is the only face that is unbounded.

A straight-line embedding is given by an injective function f : V → R2; each edge uv ∈ E is
drawn as a line segment between f(u) and f(v). If the embedding is planar, these line segments
will only intersect at their endpoints.

Define a subdivision of a graph G as a graph where some edges of G are replaced by a path. Note
that the replacing edges and vertices are not in G. Kuratowski (1930) characterized planar graphs
as those that do not contain a subdivision of the non-planar graphs K5 and K3,3, the complete
graph on five vertices and the complete bipartite graph on six vertices. See Figure 1.1 for K5 and
K3,3 and an example of a subdivision of each.

Theorem 1 (Kuratowski, 1930). A graph G is planar if and only if G does not have a subgraph
that is isomorphic to a subdivision of K5 or K3,3.

3

2. THE TUTTE EMBEDDING 4

K5 K3,3

Subdivision of K5 Subdivision of K3,3

Figure 1.1

A non-empty graph G = (V,E) is connected if there is a path between any two vertices in G.
It is 3-connected if any two of its vertices can be joined by three independent paths. Two paths
are independent if they share no vertices, except those at the endpoints. This definition implies
that G is 3-connected if it is connected and remains connected after the removal of any two distinct
vertices. (Diestel, 2017)

The graphs used for this research are thus the 3-connected planar graphs. Now that the
relevant definitions have been discussed, the next section will give a detailed explanation of the
Tutte embedding as mentioned in the Introduction.

2. The Tutte embedding

2.1. Physical analogy. As mentioned in the Introduction, there are multiple ways to embed
a graph. In fact, there are an infinite number of ways to draw a graph. Tutte introduced an
embedding in 1962. The embedding is defined by a physical system.

Let G = (V,E) be a connected graph. Note that G is not necessarily 3-connected or planar.
Let V0 ⊆ V be the vertices of some face of a planar embedding of G. This face will be further
referred to as the outer face F0. Fix these vertices on the two-dimensional plane, such that the
bounded region inside the outer face forms a convex set in R2. Imagine that the edges behave as
rubber bands that tighten themselves. Now release all the vertices that are not in V0. This leads
to the vertices settling in equilibrium inside the region bounded by the outer face. Therefore, this
embedding is also known as the rubber band representation, but will further be referred to as the
Tutte embedding. We also use this definition since the rubber band representation is a more general
embedding that is also applicable to graphs that are not planar or 3-connected.

2. THE TUTTE EMBEDDING 5

2.2. Mathematical model. We have seen how the Tutte embedding is defined physically.
This embedding can be modeled mathematically such that the equilibrium positions are fairly easy
to calculate as a system of linear equations.

Let p: V → R2 be the function that assigns coordinates to the vertices in V . The edges
behaving as rubber bands mathematically corresponds to the total energy of G being minimized.
The total energy is given by:

(1.1) E(p) =
∑
uv∈E

∥p(u)− p(v)∥2.

Let p0: V0 → R2 be the function that fixes the vertices of the outer face. The equilibrium of the
vertex positions, where the total energy is minimal, is the solution of the following optimization
problem:

minimize E(p)
s.t. p(u) = p0(u) for all u ∈ V0.

(1.2)

This problem indeed has a unique optimal solution, since the function E is strictly convex.
Namely, for every p, q: V → R2 and every 0 ≤ λ ≤ 1, we have E(λp+(1−λ)q) < λE(p)+(1−λ)E(q).
Moreover, in (1.2), if ∥p(u)∥ for u /∈ V0 tends to infinity, so does E(p). Together with strict convexity,
this implies that the optimal solution is unique.

To continue, we are searching for the extreme point of a strictly convex function. Thus, the
optimal solution p satisfies ∇E(p) = 0. Write p(u) = (xu, yu). We now work out the partial
derivative of E(p) =

∑
uv∈E ∥(xu, yu)− (xv, yv)∥2 with respect to xu:

∂E(p)
∂xu

=
∑

vw∈E

∂

∂xu
∥(xv, yv)− (xw, yw)∥2

=
∑

vw∈E

∂

∂xu
((xv − xw)

2 + (yv − yw)
2)

=
∑

v∈N(u)

∂

∂xu
(x2

u + x2
v + 2xuxv)

=
∑

v∈N(u)

2(xu − xv).

Hence, if ∇E(p) = 0 we have

0 =
∑

v∈N(u)

2(xu − xv)

⇐⇒
∑

v∈N(u)

xu =
∑

v∈N(u)

xv

⇐⇒ d(u)xu =
∑

v∈N(u)

xv

⇐⇒ xu =
1

d(u)

∑
v∈N(u)

xv.

for every u ∈ V \ V0 and where d(u) is the degree of the vertex u ∈ V as defined in Section 1. The
similar holds when calculating the partial derivative with respect to yu. This means that optimal

3. TUTTE’S THEOREM 6

p is a solution to the following linear system:

(1.3)

p(u) = p0(u) for all u ∈ V0,

p(u) =
1

d(u)

∑
v∈N(u)

p(v) for all u ∈ V \ V0.

In other words, the position of every vertex not in V0 is the barycenter of its neighbours. Define
the 1-skeleton of a polyhedron as the graph whose vertices are the vertices of the polyhedron and in
which two vertices are adjacent if they belong to the same one-dimensional face of the polyhedron.
In Figure 1.2, the Tutte embedding of the 1-skeleton of three polyhedra are presented. Notice how
two embeddings of the same polyhedron are significantly different as a consequence of choosing
outer faces with different lengths.

Figure 1.2. The Tutte embedding of three polyhedra. In the top right the
1-skeleton of the icosahedron. The top middle and top left are the 1-skeleton of
the icosidodecahedron, with a different choice of outer face. On the bottom row
the three embeddings of the 1-skeleton of the rhombicosidodecahedron, again
with outer faces of a different length.

3. Tutte’s theorem

Thus, the rubber band representation is a means of displaying all types of graphs in the two-
dimensional plane. However, for the Tutte embedding specifically, Tutte (1963) proved that the
embedding is actually planar. The theorem is stated below. 1

1The proof is too elaborate to discuss in this paper and would distract from the current research, therefore it will

not be treated. A more detailed version can be found in Lovász (2009).

3. TUTTE’S THEOREM 7

Theorem 2 (Tutte, 1962). Let G = (V,E) be a 3-connected planar graph and F0 be a face of
some planar embedding of G. Let E0 be the edges in the boundary of F0, where V0 are the endpoints
of the edges in E0. Now define the graph C0 = (V0, E0). If p0: V0 → R2 is a straight-line embedding
of C0 that maps V0 to the vertices of a strictly convex polygon, then the Tutte embedding of G is
a straight-line embedding of G in which C0 forms the outer face and every inner face is a strictly
convex polygon.

In short, the theorem states that for the Tutte embedding of some 3-connected planar graph
G with outer face F0, every face inside the outer face is a strictly convex polygon. This can also
be seen in Figure 1.2. However, this implies that instead of the Tutte embedding, some other
embedding could be taken, where all vertices not in V0 are positioned inside the outer face, so that
all inner faces are convex polygons.

This follows from the proof of Tutte’s theorem (Lovász, 2009). The proof does not build on
the fact that p(u) is a solution to the linear system in equation (1.3). In fact, it suffices for p to be
a solution of a linear system where p(u) is a convex combination with non-zero coefficients of p(v)
for v in N(u).

By changing the weights of the convex combination, different drawings can be obtained. This
could be useful for certain applications or from the aesthetic point of view. However, if the linear
system changes, it will not be a solution to ∇E(p) = 0. So, how does this affect the calculation of
the total energy of the graph? The next chapter will investigate this question.

CHAPTER 2

Changing the system

Before going into the problem at hand, a short note will be made on drawing planar graphs as
a physical system. There are various types of graphs with different applications. Moreover, there
are various ways of drawing them and various means to qualify a drawings of some graph (Kamada
& Kawai, 1989; Kaufmann & Wagner, 2009). However, this report will treat only the part relevant
to this research.

1. Drawing planar graphs as a physical system

Firstly, we are working with planar graphs. Planarity is a pleasant characteristic when it
comes to drawing graphs. A planar embedding has no crossings, making it more accessible and
comprehensible to the human eye (Purchase, 1997).

Secondly, the rubber band representation is a physical system of objects and rubber bands.
Methods based on physical analogies are practical for several reasons: they are very intuitive and
easily comprehensible and programmable (Brandes, 2001). Moreover, for graphs up to around fifty
vertices, these methods often deliver satisfying results.

The optimization problem can be a general version. The function that is minimized can then
be an adaptable component depending on the characteristics. Still, how such a physical model
should be defined, depends on the context and characteristics of the graph, but this report will not
elaborate on this.

For this research, the optimization problem places vertices in a convex combination of its
neighbours. Subsequently, the function that minimizes the energy, called the objective function, is
to be defined. Several definitions of the objective function will be treated in Chapter 3. But first,
the optimization problem itself will be explained.

2. Vertices as a convex combination of their neighbours

Recall the 3-connected planar graph G = (V,E), with an outer face containing the vertices V0.
In Chapter 1 was discussed how Tutte’s theorem still holds when the vertices not in V0 are placed
as a convex combination of their neighbours instead of being the barycenter. More intuitively, this
new representation can be considered as a variant on the Tutte embedding, where the edges are
defined by different types of rubber bands.

Consequently, these coefficients can be interpreted as a certain pulling force of one vertex on
another. We will define a new system that is similar to the barycentric linear system in (1.3). Let
αuv be the coefficient that corresponds to the force of the vertex v that pulls on u. We assume∑

v∈N(u) αuv = 1 and αuv > 0, to prevent collinearity of more than two vertices. We also assume

αuv ̸= αvu to create a more general problem. Then the desired pα will satisfy the following linear
system:

8

3. EXISTING ENERGY FUNCTIONS 9

(2.1)

pα(u) = p0(u) for all u ∈ V0,

pα(u) =
∑

v∈N(u)

αuv · pα(v) for all u ∈ V \ V0.

However, as mentioned in the first chapter, changing the images of the vertices of V will change
the function for the total energy, since it now also depends on αuv. Unfortunately, reversing the
calculations of the barycentric linear system in the system in (2.1) does not provide an energy
function that corresponds to the convex linear system. This is only possible when considering a
less general version in which the alphas are symmetric (Lovász, 2009).

Therefore, the optimization problem as in (1.2) will be considered, where p is replaced by pα and
the alphas are non-symmetric. Subsequently, instead of the energy function E(p), various functions
will be considered. In Section 3, some possible energy functions will be discussed. In the meantime,
a short note on finding the outer face.

2.1. Choosing the outer face. It has been made clear how the Tutte embedding works and
how the embedding could be adapted from barycentric into convex. However, it is implied that the
outer face has been given in advance.

When this is not the case, Lovász (2009) suggests using a depth-first search spanning tree in
the graph. This tree has the property that for every edge of the graph, both of its endpoints lie on
a path starting at the root of the tree. In short, this spanning tree T can then be used to find an
initial face, by finding a specific minimal path in T that can be closed by an edge not in T . Then
the initial face is given by attaching this edge to the path.

For this research, the input data that is used already contains all faces of the graph. This will
be further explained in Section 3

3. Existing energy functions

The choice of a suitable energy function depends on the individual context of a graph and
its purpose. The study on what is desirable is too broad for this report. Nevertheless, a few cri-
teria are generally accepted. It is agreed upon that vertices should be well-distributed over the
area and adjacent vertices should be close (Brandes, 2001). As mentioned earlier, minimizing the
number of edge crossings is also considered a criteria, but is clearly not a problem in the planar case.

Kamada and Kawai (1989) consider these criteria for their optimization algorithm for drawing
general graphs. They create an energy function that calculates the positions p of the vertices by
minimizing the difference between the desirable length of all edges and the distance between the
vertices. Their function looks as follows:

(2.2) EKK(p) =
∑

u,v∈V

c

d(u, v)2
(∥p(u)− p(v)∥ − luv)

2,

where c is a scaling constant and d(u, v) the length of the shortest path between the vertices u and
v. The desired distance between u and v is represented by luv, it is calculated as the product of
the desired edge length L and the length of the shortest path between two vertices. When working
on a display with restricted side length L0, L is calculated as

L0/ max
u,v∈V

d(u, v).

3. EXISTING ENERGY FUNCTIONS 10

Kamada and Kawai created an algorithm for general graphs. Therefore, in combination with
the convex property of the inner faces, the function in (2.2) is well applicable to the problem in this
research. In fact, it is similar to Tutte’s energy function when considering an ideal length of zero,
letting c/d(u, v)2 = 1 and summing only over adjacent vertices.

Dividing by the squared length of the shortest path at the beginning of the equation, helps to
control the influence that two (non-)adjacent vertices exert on each other. However, the desired
distance luv is not directly usable for this research, since the outer face is fixed and all vertex po-
sitions are a convex combination of their neighbours. This value could depend on several factors,
such as the length and diameter of the outer face or the maximum length of the shortest path. The
desired length could also be taken as a function of the mean edge length from the original Tutte
embedding. More on the choice of this desired distance can be found in Chapter 3.

The objective function in (2.2) resembles the family of objective functions as described by
Cohen (1997):

(2.3) Ek(p) = (
∑

u,v∈V

l2−k
uv)−1 ·

∑
u,v∈V

1

lkuv
(∥p(u)− p(v)∥ − luv)

2,

where k ∈ {0, 1, 2}. For k = 0, no distinction is made between long and short distances when
minimizing the difference between the final distance and the desired distance between two vertices.
If k = 1, two vertices with a larger desired distance are allowed to deviate more from this distance
in their final positions than two vertices with a smaller desired distance. When k = 2, only errors
are penalized that are proportionally large compared to the desired distance. (Cohen, 1997) This
last case is the most similar to EKK depending on how exactly the desired distance is defined.

It would appear that, by penalizing longer distances between vertices, the energy function in
(2.2) results in less cluttered embeddings that have fewer small angles (Brandes, 2001).

In the next chapter, it will be explained how the functions as described by Kamada and Kawai
and Cohen will be used in this research.

CHAPTER 3

A new optimization problem

In this chapter, the energy functions that are used for this research are discussed. Given a
3-connected planar graph G = (V,E), a set V0 ∈ V and weights α, recall that pα: V → R2 is
defined as in (2.1). We want to solve the following optimization problem on the variables α, where
E is some energy function:

(3.1)

minimize E(pα)
s.t. pα(u) = p0(u) ∀u ∈ V0,

pα(u) =
∑

v∈N(u)

αuv · pα(v) ∀u ∈ V \ V0,

αuv > 0 ∀u, v ∈ V,∑
v∈N(u)

αuv = 1 ∀u ∈ V \ V0.

The first two constraints form the linear system that needs to be solved.
The input is a 3-connected planar graph G = (V,E) on n vertices, m edges and l faces. An

outer face F0 is given. The first step is to fix the positions of the vertices V0 of the outer face. The
outer face will be embedded as a regular polygon around a central point (x0, y0), with the vertices
located at the boundary of a circle with radius r. The coordinates of the positions of the vertices
of V0 will be calculated as follows:

xi = x0 + r · cos(i · φ),
yi = y0 + r · sin(i · φ),

for 1 ≤ i ≤ |V0| and where φ = 2π/|V0| is the central angle between two adjacent vertices.

1. Optimization method

In Python, scipy.optimize.minimize package is used, in particular, the ’COBYLA’ method.
The solver requires two arguments, the function that has to be minimized and an initial guess in
the form of a vector of length q, where q is the number of independent variables.

All α’s are placed in an n x n-matrix W , such that for every edge uv in G, the element Wij

corresponds to αuv, where u is the i-th vertex and v the j-th vertex. These α’s are the independent
variables. Therefore, the initial guess vector w has length q = 2 ·m, where m was the number of
edges of G. w contains real numbers from the interval [0, 1).

11

2. THE ENERGY FUNCTIONS 12

However, the alphas must satisfy αuv > 0 and
∑

v∈N(u) αuv = 1. To ensure this, they are

’transformed’ in the following manner:

α̃uv = 1 + w2
uv

αuv =
α̃uv∑

v∈N(u) α̃uv

Subsequently, the linear system found in equation 3.1 is solved in the form of a matrix equation
Ax = b, where the elements of A are defined as

(3.2) Auv =

−Wuv, if v ∈ N(u)
1, if u = v
0, else

for all u not in V0. And b is the vector so that

(3.3) bu =

{
p0(u), if u ∈ V \ V0

0, else

for all u in V0. Consequently, the vector x of length n corresponds to the two-dimensional coordi-
nates of the vertices.

Now, the scipy solver will minimize over a function. This is the energy function of the op-
timization problem found in (3.1). The solver returns the optimized vector w, which is used to
determine the final and optimal positions of all vertices, based on the chosen function. Note that
by the definition of α and the manner in which the linear system is solved, each iteration of the
solver always satisfies Tutte’s theorem.

For this research, as mentioned in the previous chapter, several functions will be considered
and tested. The next section will elaborate on the decision on different types of energy functions.

2. The energy functions

In section 3 was explained how the energy function could be defined. In this section will be
elaborated on the different energy functions that are used for this particular research.

2.1. Euclidean distance between vertices. This first energy function is based on the func-
tions from Kamada and Kawai (1989) and Cohen (1997), as described in the previous chapter.
For all vertex combinations, the function calculates the deviation from the desired distance of the
distance between the final positions of the vertices. The function does not consider when both
vertices are part of the outer face. For k ∈ {−1,−2,−3}, we have:

Ek,m(pα) =
∑

u,v∈V
u∨v∈V \V0

c(u, v)k · (∥pα(u)− pα(v)∥2 − l2uv)
2,

where c(u, v) is a function that controls the influence that two distinct vertices u and v exert
on each other. luv is the desired distance between u and v. Note that the Euclidean distance,
∥pα(u)− pα(v)∥, and luv are squared. This is for computational reasons. Moreover, the fraction
at the beginning of equation (2.3) has no additional value to this research, since it only scales the
value of the energy function. In addition, for this research, the value of Ek,m is only important for
comparisons. Therefore it is not necessary that it perfectly imitates a physical situation.

A specific case is when k and luv are equal to zero. Then minimizing Ek,m would yield the same
embedding as the Tutte embedding, aside from the value of E .

2. THE ENERGY FUNCTIONS 13

In lieu of c(u, v), we could consider taking the length of the shortest path, d(u, v), or the desired
distance, luv (Kamada & Kawai, 1989; Cohen, 1997). Subsequently, the amount of influence that
two (non-)adjacent vertices exert on each other can be controlled by setting an integer value for
the constant k in c(u, v)k. By considering a larger value, the deviation for vertices that are further
away is weighed less heavy than for vertices that are closer together.

For the desired distance luv, the value as described in Section 3 could be considered, that is:

(3.4) luv =
m · L0

maxu,v∈V d(u, v)
· d(u, v),

where L0 is taken as the diameter of the outer face and m is a scaling constant. This diameter is
calculated as the Euclidean distance between the two vertices of the outer face where the shortest
path in the outer face is maximal.

Another method we suggest is to consider luv as the square root of the mean length M of the
inner edges and to let the summation in E(pα) only go over the inner edges. Write Ein for all edges
of E that are not part of the outer face. M is calculated as follows:

(3.5) M =
1

|Ein|
∑

u,v∈V
uv∈Ein

∥pα(u)− pα(v)∥2.

This energy function forces the lengths of the inner edges to differ as little as possible from each
other.

To calculate the shortest distance d(u, v), the Bellman-Ford Algorithm is used. The Bellman-
Ford algorithm finds the shortest path between a starting vertex u and all other vertices of the
graph. The algorithm works both for unweighted and for weighted graphs. The input for the
algorithm is the vertex u and data on the weights of the edges, for example, in the form of an
adjacency matrix. This is a matrix D, such that the entry Duv is some constant duv whenever u
and v in V are adjacent and 0, otherwise. The diagonal of D consists solely of zeros. duv = 1 for
all edges uv ∈ E if the graph is unweighted.

2.2. The surface area of the inner faces. Finally, a somewhat different method to calculate
the positions is presented. Instead of minimizing the energy as a function of final and desired
distances, we bring forward a function that minimizes the differences between the surface area of
all inner faces.

Recall that we are working in R2. Since all faces are convex polygons, the areas can be calculated
using the fact that a convex polygon Pn = (x1, ..., xn) can be written as a union of n− 2 triangles,
namely, ∆x1x2x3, ∆x1x3x4, ..., ∆x1xn−1xn. These triangles will be further referred to as inner
triangles. See Figure 3.1 for an elementary example. The area T of a triangle with edges of length
a, b and c, is calculated using Heron’s formula:

T =
√

s(s− a)(s− b)(s− c),

where s is the semiperimeter of the triangle, calculated as 1
2 (a+ b+ c). and the length of an edge

is calculated as the Euclidean distance between the two endpoints of that edge.
Subsequently, the area of a convex polygon Pn = (x1, ..., xn) can be computed as the sum of the
areas of the n-2 inner triangles of Pn:

(3.6) A(Pn) =

n−2∑
i=1

Ti

3. A SELECTION OF POLYTOPES 14

Now, for a graph G, the faces F0, F1, ..., Fl of G are defined as the faces of the original Tutte
embedding, where F0 is the outer face and Fi for 1 ≤ i ≤ l are the inner faces. The mean surface
area of the inner faces is calculated as the area of F0 divided by l, the number of inner faces. The
energy function is defined as follows:

EF (pα) =
l∑

i=1

(
A(F0)

l
−A(Fi))

2.

It appears in the formula as if EF does not depend on pα. This is not the case however, as the
surface area of the inner faces depends on the positions of the vertices as opposed to each other.

Figure 3.1. A pentagon as a union of three inner triangles

3. A selection of polytopes

In the next chapter, the results of the different energy functions, as discussed above, will be
presented. But first, this section elaborates on the graphs that will be used as input.

Recall that in Tutte’s theorem, the graphs are required to be planar and 3-connected. By
a theorem of Steinitz (1922), these graphs are isomorphic to the 1-skeleton of a 3-polytope. A
restatement of Steinitz’ theorem, by Grünbaum, implies that these types of graphs can be converted
into convex polyhedra (Duijvestijn & Federico, 1981). 3-connected planar graphs are therefore
referred to as polyhedral graphs. Unfortunately, Steinitz’ theorem has not been proven for polytopes,
the generalization of polyhedra to any dimension.

Hence, the input graphs will be a selection of several polyhedral graphs. These polyhedral
graphs are highly symmetric, under rotation and/or under reflection. It is important in graph
drawing to maintain a symmetric structure when it exists. As symmetry is a valuable characteristic
(Kamada & Kawai, 1989).

In Chapter 1, the Tutte embeddings of three polyhedra were presented. In the next chapter, the
embeddings of some polyhedral graphs will be calculated as a consequence of the different energy
functions. This will also be done for other polyhedral graphs.

CHAPTER 4

Embedding polyhedral graphs

Each embedding of a graph has a value of the corresponding energy function. But, for different
energy functions, it would not make sense to compare the values, since they’re calculated in a
different way. For completeness, the energy of the embedding will also be calculated as the energy
of the Tutte embedding:

E(pα) =
∑
uv∈E

∥pα(u)− pα(v)∥2.

However, this does not indicate anything about the quality of the embedding. In this chapter,
we will see that a lower energy does not imply a ’better’ embedding. Partly because, as was shortly
mentioned in the introduction, the quality of an embedding is subject to a number of factors, such
as individual context and structure of the graph, intended use and aesthetics. This research will not
assess the quality of an embedding, it merely reports on the results of the various energy functions.

All energy functions are functions of pα. The value of the energy function also depends on
the side length of the display. The vertices are placed inside a square display with fixed length
L0 = 700. If another value is taken for L0, the energies corresponding to the different values of L0

cannot be compared.

1. Minimizing Ek,m and Ed
For k ∈ {−1,−2,−3}, recall the function

(4.1) Ek,m(pα) =
∑

u,v∈V
u∨v∈V \V0

c(u, v)k · (∥pα(u)− pα(v)∥2 − l2uv)
2.

This function is tested on the 1-skeleton of the icosahedron. Due to lack of computational
power, it was not possible to test this function on more polyhedral graphs. The limit to the number
of function evaluations of the COBYLA method was set at 100000.

luv as a function of d(u, v). First, we consider c(u, v) = d(u, v) and

luv =
m · L0

maxu,v∈V d(u, v)
· d(u, v).

The time complexity of Ek,m is O(n2).1 In Table A.1 in Appendix A, the energy values are
presented for m ∈ {1, 0.75, 0.65, 0.5}.

The values of Ek,m are very large due to the value of L0 and because every vertex combination
is considered (except when both vertices are part of the outer face). These numbers an sich don’t
say much about the embedding. Figure A.1 in Appendix A shows the embeddings corresponding
to the values in Table A.1.

1Note that this is only the time complexity of the energy function itself, not of the full program.

15

1. MINIMIZING Ek,m AND Ed 16

Apart from the embedding corresponding to E−1,1, all embeddings have the same structure
as the Tutte embedding. For m ∈ {1, 0.75}, some vertices are very close to the outer face. For
k ∈ {−1,−2} and m ∈ {0.65, 0.5}; some edges are very short. These embeddings might therefore
be more difficult to read with the naked eye.

For E−3,m and m ∈ {0.65, 0.5}; the optimizer found an optimal solution. Hence, for E−3,0.65

and E−3,0.5, the program was run four more times. The energy values are presented in Table 4.1.
In the table, it is shown that for both values of m, the difference between the values of the local
minima is negligible (< .001%).

function
Ek,m E evaluations

52944642316 2114886 80688
52944642353 2114887 95038
52944642447 2114882 86448
52944642720 2114886 82693
52944642798 2114887 92936

function
Ek,m E evaluations

69866593921 2045579 79809
69866593943 2045592 55902
69866593959 2045571 65620
69866594353 2045577 78724
69866595855 2045571 70064

Table 4.1. Values of local minima of E−3,0.65 (left) and E−3,0.5 (right).

In Figure 4.1, the embeddings corresponding to the minimum local minima of E−3,0.65 (left)
and E−3,0.5 (right) are shown. The embeddings have the same structure as the Tutte embedding.
Therefore, we could compare the value of E in the table with the energy value of the Tutte embedding
of the icosahedron. For the Tutte embedding, the value of the total energy is E = 2004545. All
values of E in Table 4.1 are higher than the energy value of the Tutte embedding. This is due to
the fact that the inner edges are longer than in the Tutte embedding. The local minima of E−3,0.5

are closest to the energy value of the Tutte embedding.

Figure 4.1. Embeddings of local minimum of E−3,0.65 (left) and E−3,0.5 (right)

luv as the mean length of the inner edges. Now, we consider the desired distance luv as
the square root of the mean length M of all inner edges Ein, multiplied by scaling constant d. That
is, luv =

√
d ·M , where

M =
1

|Ein|
∑

u,v∈V
uv∈Ein

∥pα(u)− pα(v)∥2.

2. MINIMIZING EF 17

In this case, we let the summation in Ek,m only consider the inner edges, so for all u, v ∈ V we set
c(u, v) = 1 (or k = 0). The new function, denoted as Ed(pα), looks as follows:

(4.2) Ed(pα) =
∑

u,v∈V
u∨v∈V \V0

(∥pα(u)− pα(v)∥2 − d ·M)2.

Denote the degree of an arbitrary vertex as w. Ed has a time complexity of O(w · n+m). The
program was run for d = (0.3, 0.4, ..., 1). The energy values are presented in Table 4.2.

function
d Ed E evaluations
1.0 20946040380 2313247 100000
0.9 21497488571 2306995 ”
0.8 23091036766 2289290 ”
0.7 25573529434 2241381 ”
0.6 28656604484 2235747 ”
0.5 32929407096 2189918 ”
0.4 37541978132 2148955 ”
0.3 42725555006 2127882 ”

Table 4.2. Energy values corresponding to Ed for d = (0.3, 0.4, ..., 1).

See Figure A.2 in Appendix A for the embeddings corresponding to the values in the table
above. For d > 0.5, some edges are very short compared to the rest of the edges. These embeddings
do not maintain the symmetry by rotation of 120 degrees, only by reflection in one altitude. For
d ∈ {0.3, 0.4}, the structure of the embeddings is similar to the Tutte embedding.

The embeddings of the energy functions Ek,m (except for E−1,1) and Ed for d ∈ {0.3, 0.4} are very
similar to the Tutte embedding, in the sense that they have the same structure and are symmetric
under rotation of 120 degrees. The embeddings of E−3,m form ∈ {0.65, 0.5} seem slightly unnatural.
The face in the middle is large compared to the faces adjacent to it. The embeddings of Ed, for
d ∈ {0.3, 0.4} come across as more natural.

However, whether one embedding is better than the other, completely depends on its applica-
tion. It could also depend on the computational power of the user. The time complexity of Ed is
O(w ·n+m), which is usually2 faster than O(n2), the time complexity of Ek,m. However, Ed doesn’t
reach a local minimum in 100000 function evaluations, while it is unclear in what amount these
values differ from a local minimum. It should therefore be tested how many function evaluations
are needed to reach a local minimum, or in what amount the COBYLA method makes a difference
after 100000 evaluations.

2. Minimizing EF
The second function is as discussed in Section 2.2. LetG a polyhedral graph with faces F0, ..., Fl,

l ∈ N. The area of a face Fi for i ∈ {1, ..., l} is given by A(Fi) as defined in (3.6). The energy is

2considering the polyhedral graphs

2. MINIMIZING EF 18

calculated as follows:

(4.3) EF (pα) =
l∑

i=1

(
A(F0)

l
−A(Fi))

2.

The time complexity of EF is O(l·n+l). The polyhedral graphs that will be used as input are the
1-skeleton of the icosahedron, the cuboctahedron, the dodecahedron and the rhombic dodecahedron.
Note that from now on, the 1-skeleton is always implied when a polyhedron is mentioned.

2.1. Icosahedron. The Tutte embedding of the icosahedron was presented in Figure 1.2. The
icosahedron has 12 vertices, 30 edges and 20 faces. In Table 4.3, the values of twenty local minima
of EF are presented. The table shows that for the icosahedron, the energy function often reaches a
minimum value below two. All twenty optimizations were successful.

function function
EF E evaluations EF E evaluations

♢ 0.244957 2555576 20542 ∗ 1.752328 2342381 28901
□ 0.381891 2476721 12380 ∗ 1.805990 2342320 20803
♢ 0.407046 2555572 11322 ∗ 1.846196 2320984 21664
□ 0.560016 2476703 8364 □ 2.103554 2440271 38487
∗ 0.781168 2321010 21192 □ 2.498724 2440259 30731
♢ 1.013991 2590656 27284 □ 2.623326 2440256 28999
∗ 1.157301 2320993 16457 □ 2.931048 2440250 27942
∗ 1.249863 2320994 18774 ∗ 3.143116 2362445 24540
∗ 1.299521 2321009 19612 □ 3.747607 2440230 33813
∗ 1.623418 2321006 22612 □ 4.121620 2440225 35961

Table 4.3. Energy values of twenty local minima of EF for the icosahedron.

The results of the embedding can be subdivided in three categories regarding the embedding.
The first category, represented by a lozenge, is characterized by having one outer vertex for which
the middle inner neighbour is further away than the other two inner neighbours, such that the outer
vertex and its three inner neighbours form a diamond shape. The second category is represented
by a square. This category contains an irregular triangle that has an inner triangle. The asterisk
represents the third and last category. This category has a tilted regular triangle in the middle
and all other faces are placed such that the embedding is approximately symmetric by a 120-degree
rotation. The other two categories are not symmetric by rotation and none of the categories are
symmetric by reflection in one of the altitudes.

Of each category, an embedding is presented in Figure 4.2. On the left, the characterizing
outer vertex is in the top right corner. The middle embedding has two triangles in the middle
of the embedding and two triangles adjacent to the right middle triangle. These four form the
characterizing triangle with an inner triangle. The right embedding has a symmetric structure with
a tilted regular triangle in the middle.

The two leftmost embeddings have the lowest values of EF and the four most optimal embed-
dings are in these categories. However, in these embeddings it is not apparent that the original
graph has a symmetric structure, while it was mentioned that embeddings of a symmetric graph
should maintain symmetry. In the third embedding and the corresponding category, this symmetry
is respected. This shows that a more optimal solution p does not necessarily give a more desired
embedding.

2. MINIMIZING EF 19

♢0.244957 □0.381891 ∗0.781168

Figure 4.2. Three embeddings of the icosahedron, with corresponding local min-
imum values of EF

2.2. Cuboctahedron. A cuboctahedron has 12 vertices, 24 edges and 14 faces, of which 8
have length three and the remaining 6 have length four. For both face lengths, the program was
run once with 1000000 function evaluations and five times with 100000 evaluations. Unfortunately,
none returned a success. The energy values are presented in Table 4.4.

function
EF E evaluations

1245663 1809625 1000000
2665713 1806329 100000
2718840 1805798 ”
2829952 1805914 ”
2941403 1805188 ”
3042463 1805290 ”

function
EF E evaluations

119371736 2297361 1000000
126766437 2283895 100000
126918985 2283659 ”
127126078 2283367 ”
127828289 2282085 ”
128011536 2281632 ”

Table 4.4. Minimization results of EF for the cuboctahedron with |F0| = 3 (left)
and |F0| = 4 (right).

In the left table, the result of 1000000 function evaluations is less than half of the lowest result
of 100000 evaluations. In the right table, this difference is less than six percent. This shows that
increasing the number of function evaluations tenfold, does not necessarily result in a significant
improvement in minimizing the value of the energy function.

Contrary to the icosahedron, for each length of the outer face, all embeddings of the cuboc-
tahedron corresponding to the values in Table 4.4 are approximately symmetric under rotation by
360/|F0| degrees. In Figures 4.3 and 4.4, the embeddings corresponding to the 1000000 function
evaluations are presented.

Figure 4.3. Embeddings of Tutte (left) and
the lowest value of EF (right).

Figure 4.4. Embeddings of Tutte (left) and

the lowest value of EF (right).

2. MINIMIZING EF 20

2.3. Dodecahedron. A dodecahedron has has 20 vertices, 30 edges and 12 faces of length
five. Due to long runtime, the program was run only twice. Both minimizations delivered a local
minimum. The energy values are presented in Table 4.5 and the embedding corresponding to the
lowest value of EF is shown in Figure 4.5, together with the Tutte embedding of the dodecahedron.

function
EF E evaluations

0.755094 1293957 14421
1.248657 1321090 14707

Table 4.5. Local minima
of EF for the dodecahedron

Figure 4.5. Tutte embedding (left) and the
embedding corresponding to the lowest value
of EF (right).

The embedding of EF in Table 4.5 is not symmetric. However, it could be that there are other
local minima that have a more symmetric structure. It is also possible to add a component to the
function that decreases the difference in length of certain edges, for example the five inner edges
that are connected to the outer face.

2.4. Rhombic dodecahedron. This graph has 14 vertices, 24 edges and 12 faces of length
four. The energies of five local minima of EF are displayed in Table 4.6.

function
EF E evaluations

0.062918 1630478 5405
0.493646 1665179 4291
0.574753 1599025 7012
0.949214 1614787 4212
1.204026 1602275 5926

Table 4.6. Energy values of five local min-
ima of EF for the rhombic dodecahedron.

The values of EF are quite close to zero. However, in Figure 4.6, it can be seen that none
of the embeddings are symmetric. They do have some symmetric characteristics, for example,
the embedding corresponding to EF = 0.574753 is almost symmetric in the y-axis. By adding
constraints on the x and/or y coordinates of specific vertices or on the distance between two
vertices, the embedding could be forced to be (more) symmetric. For example, a constraint could
be added that enforces vertices with equivalent y-coordinates in the Tutte embedding, to maintain
this characteristic in the new embedding that is created by minimizing EF .

2. MINIMIZING EF 21

Tutte 0.062918 0.493646

0.574753 0.949214 1.204026

Figure 4.6. The Tutte embedding and five embeddings correspond-
ing to the local minima in Table 4.6.

We have seen several embeddings corresponding to different energy functions. The energy
functions Ek,m and Ed yielded embeddings that have the same structure as the Tutte embedding.
The embeddings of the icosahedron are mostly symmetric by a 120-degree rotation and reflection
in the altitudes. Depending on the input graph and choice of outer face, these functions will most
likely maintain the structure of the Tutte embedding and its symmetries.

EF yields different embeddings than the Tutte embedding, some of which are symmetric by
rotation of 120 degrees, but not by reflection, depending on the input. However, by adding extra
constraints, it is possible to manipulate the embedding to satisfy the users needs while maintaining
compliance with Tutte’s theorem. One could also add factors that distinguishes between face lengths
or between whether a face is adjacent to the outer face. For example, in the embeddings of the
icosahedron and the cuboctahedron with outer face length three, the three faces adjacent to the
outer face are more elongated than all other faces. Consequently, they are a bit more difficult to
distinguish with the naked eye.

In addition, it turns out that the lowest energy value does not always yield the best embedding.
Moreover, due to the way the optimization problem was encoded, the number of function evaluations
could be limited while still yielding an embedding that is compliant with Tutte’s theorem. This
could also be less time-consuming if an approximation to a local minimum is satisfactory.

Conclusion

The Tutte embedding is a way to draw a 3-connected planar graph, where every vertex is
positioned as the barycenter of its neighbours. Such an embedding can be made easily by solving a
linear system that is obtained from an optimization problem, as discussed in Chapter1. Tutte proved
that every face of the embedding is drawn as a convex polygon. The main goal of this research was
to change the optimization problem corresponding to the Tutte embedding, so that the embedding
of a local minimum of the objective function remains compliant with Tutte’s theorem.

To achieve this, a new optimization problem was created in such a way that every iteration
would be compliant with Tutte’s theorem. For the optimization problem, three different objective
functions were tested: Ek,m, Ed and EF , given in Chapter 4. The first two resulted in embeddings
that have a similar structure as the Tutte embedding, maintaining the symmetric qualities of the
polyhedral graph. By changing the values for k, m and d, or by changing luv or c(u, v), the
embedding can be influenced based on personal or contextual preferences.

The embeddings of EF had a completely different structure than the Tutte embedding. Un-
fortunately not always maintaining the symmetric properties of the polyhedral graph, but these
properties could be enforced by adjusting the energy function or the constraints. Some of the em-
beddings did have symmetric characteristics, which gives an interesting view on the possibilities
regarding the subject at hand.

A distinction between the energy functions is that EF is more generally deployable. The other
two functions are subject to a desired edge length, which causes a possible difference in optimal
values of k, m and d, depending on the polyhedral graph. These functions therefore need an extra
check after creating an embedding.

Returning to the main goal of this research. Whether the quality of an embedding is sufficient,
depends completely on the context, application or other factors. But this research showed that
there are various ways of drawing 3-connected planar graphs while maintaining compliance with
Tutte’s theorem. One could create embeddings using one of the given functions, but is also free to
add extra constraints or to create a more personal energy function according to ones needs.

22

Discussion

A huge challenge for this research was the lack of computational power. This precluded a larger
data set on which more analysis could have been executed. Three elements would have contributed
to this research. Firstly, having more local minima of an energy function creates a more detailed
image of the function and gives more insight in the embeddings. Secondly, a faster runtime gives a
possibility to run the code more often with a different number of function evaluations. Then, per
polyhedral graph, it could be investigated around what number of evaluations, the minimization
stagnates and if this correlates, for example, with the amount of vertices, edges or faces. Lastly, the
functions that depend on a desired edge length could have been tested on more polyhedral graphs.

Although the results that were created for this research were sufficient to answer the main
question, there are a lot of graphs that are left untested. Think of more complex polyhedra such
as the icosidodecahedron, the truncated dodecahedron and rhombicosidodecahedron (Figure 1.2).
Besides graphs, other variations on the problem were also mentioned. It is possible to add extra
constraints to influence positions of vertices, to make a distinction between face lengths in the
function EF or to some other extent. It is also possible to change the energy functions by changing
the desired edge length luv in Ek,m, the desired surface area of a face in EF or by adding scaling
factors that depend on the variables or graph components.

When it comes to further research, this research opened some doors. One could study the
amount of symmetry in the embeddings. Moreover, an interesting dimension could be the interaction
between an energy function and characteristics of the graph, such as the length of the outer face, the
number of inner faces, vertex degrees and more. Another option is to investigate what the influence
would be of fixing the outer face as an irregular strictly convex polygon. Furthermore, this research
could be combined with a specific sector or type of application of graph embeddings. Subsequently,
the embeddings can be qualified based on contextual, aesthetical or other properties.

23

Bibliography

Brandes, U. (2001). Drawing on physical analogies. In Lecture notes in computer science (pp.

71–86). https://doi.org/10.1007/3-540-44969-8 4

Cohen, J. D. (1997). Drawing graphs to convey proximity. ACM Transactions on Computer-Human

Interaction, 4 (3), 197–229. https://doi.org/10.1145/264645.264657

Diestel, R. (2017). Graph theory. Graduate Texts in Mathematics 173, (5th ed.), Springer, Berlin.

Duijvestijn, A. J. W., & Federico, P. J. (1981). The number of polyhedral (3-connected planar)

graphs. Mathematics of Computation, 37 (156), 523-532. https://doi.org/10.1090/s0025-5718-1981-0628713-3

Kamada, T., & Kawai, S. (1989). An algorithm for drawing general undirected graphs. Information

Processing Letters, 31 (1), 7–15. https://doi.org/10.1016/0020-0190(89)90102-6

Kaufmann, M., & Wagner, D. (Eds.) (2003). Drawing graphs: methods and models. In Springer

eBooks (p. 312). https://doi.org/10.1007/3-540-44969-8

Kuratowski, C. (1930). Sur le problème des courbes gauches en Topologie. Fundamenta Mathemat-

icae, 15(1), 271–283. https://doi.org/10.4064/FM-15-1-271-283

Lovász, L. (2009). Geometric Representations of Graphs. [PDF] https://webspace.science.uu.nl/

∼neder003/2MMD30/lecturenotes/L3/geomrep lovasz.pdf

Purchase, H. (1997). Which aesthetic has the greatest effect on human understanding? In Lecture

notes in computer science (pp. 248–261). https://doi.org/10.1007/3-540-63938-1 67

Steinitz, E. (1916). Polyeder und Raumeinteilungen, von Ernst Steinitz. In Encyklopädie der

mathematischen Wissenschaften. 1-13

Tutte, W.T. (1963). How to draw a graph. Proceedings of the London Mathematical Society, 13,

743–767.

24

https://doi.org/10.1007/3-540-44969-8_4
https://doi.org/10.1145/264645.264657
https://doi.org/10.1090/s0025-5718-1981-0628713-3
https://doi.org/10.1016/0020-0190(89)90102-6
https://doi.org/10.1007/3-540-44969-8
https://doi.org/10.4064/FM-15-1-271-283
https://webspace.science.uu.nl/~neder003/2MMD30/lecturenotes/L3/geomrep_lovasz.pdf
https://webspace.science.uu.nl/~neder003/2MMD30/lecturenotes/L3/geomrep_lovasz.pdf
https://doi.org/10.1007/3-540-63938-1_67

APPENDIX A

Results of Ek,m and Ed

function
k m Ek,m E evaluations success
-1 1 298919546745 2679819 100000 false
-1 0.75 125389869053 2288921 100000 false
-1 0.65 122006938239 2148199 100000 false
-1 0.5 142832885063 2050500 100000 false
-2 1 142461811712 2598785 100000 false
-2 0.75 72296680865 2232266 100000 false
-2 0.65 75173359253 2128887 100000 false
-2 0.5 95099678129 2047445 100000 false
-3 1 77325010327 2546311 100000 false
-3 0.75 47681695487 2196581 100000 false
-3 0.65 52944642353 2114887 95038 true
-3 0.5 69866593959 2045571 65620 true

Table A.1. Results of minimizing Ek,m for k ∈ {−1,−2,−3} and m ∈
{1, 0.75, 0.65, 0.5}

25

A. RESULTS OF Ek,m AND Ed 26

Figure A.1. Embeddings corresponding to the values in Table A.1.

Row values from top to bottom corresponding to k = -1,-2,-3; Column
values from left to right corresponding to m = 1, 0.75, 0.65, 0.5.

1.0 0.9 0.8 0.7

0.6 0.5 0.4 0.3

Figure A.2. Embeddings corresponding to the values in Table 4.2.

APPENDIX B

Python code: Tutte embedding

import CanvasApp as CA

from math import sin, cos, sqrt, trunc

import numpy as np

import scipy as sp

import scipy.linalg

from tkinter import *

from random import randint

class Graph:

def __init__(self, nverts, medges):

self.nverts = nverts

self.medges = medges

self.neighbors = [set() for i in range(nverts)]

self.faces = []

def add_edge(self, u, v):

self.neighbors[u].add(v)

self.neighbors[v].add(u)

27

B. PYTHON CODE: TUTTE EMBEDDING 28

def add_face(self, corners):

face = set(corners)

self.faces.append(face)

def face_lengths(self):

lengths = set()

for face in self.faces:

if len(face) not in lengths:

lengths.add(len(face))

return lengths

def sort_face(self, face):

cycle = []

current = face.pop()

cycle.append(current)

while len(face) != 0:

f = face.pop()

if f in self.neighbors[current]:

cycle.append(f)

current = f

else:

face.add(f)

return cycle

def choose_outer_face(self, length):

for face in self.faces:

B. PYTHON CODE: TUTTE EMBEDDING 29

if len(face) == length:

sorted_face = self.sort_face(face)

return sorted_face

def make_dict(self):

face_dict = dict()

for f in self.faces:

l = len(f)

if l in face_dict:

face_dict[l].append(f)

else:

face_dict[l] = [f]

return face_dict

def read_graph(filename):

with open(filename, ’r’) as infile:

lines = [s for s in infile]

n = int(lines[0])

m = 0

G = Graph(n, m)

for s in lines[1:]:

if s[0] == ’F’:

B. PYTHON CODE: TUTTE EMBEDDING 30

face = set()

fields = s.split()

for i in range(1, len(fields)):

face.add(int(fields[i]))

G.add_face(face)

if s[0] == ’E’:

m += 1

fields = s.split()

G.add_edge(int(fields[1]), int(fields[2]))

G.medges = m

return G

class TutteEmbedding:

def __init__(self, G, F0):

self.G = G

self.n = G.nverts

width = height = 800

radius = 350

ox = width / 2

oy = height / 2

B. PYTHON CODE: TUTTE EMBEDDING 31

Positions of all vertices in F0

self.F0_positions = {}

F0 = list(F0)

pi = 3.14159265

theta0 = pi / 2

for i, v in zip(range(len(F0)), F0):

self.F0_positions[v] = (ox + radius*cos(theta0 + i*2*pi/len(F0)),

oy + radius*sin(theta0 + i*2*pi/len(F0)))

self.F0 = set(F0)

def standard_vector(self):

return np.ones(self.G.nverts ** 2)

def compute_alphas(self, w):

n = self.n

W = np.zeros((n, n))

for u in range(n):

for v in range(n):

W[u, v] = w[u * n + v]

return W

B. PYTHON CODE: TUTTE EMBEDDING 32

def compute_positions(self, W):

F0 = self.F0

G = self.G

n = self.n

Create system.

Coordinates of u are in positions 2*u and 2*u + 1.

A = np.zeros((2 * n, 2 * n))

b = np.zeros(2 * n)

for u in range(n):

if u not in F0:

total_weight = 0

for v in G.neighbors[u]:

A[2*u, 2*v] = -W[u][v]

A[2*u + 1, 2*v + 1] = -W[u][v]

total_weight += W[u][v]

A[2*u, :] /= total_weight

A[2*u + 1, :] /= total_weight

else:

(x, y) = self.F0_positions[u]

b[2*u] = x

b[2*u + 1] = y

B. PYTHON CODE: TUTTE EMBEDDING 33

A[2*u, 2*u] = A[2*u + 1, 2*u + 1] = 1

Compute LU decomposition and compute positions

self.lu_dec = sp.linalg.lu_factor(A)

sol = sp.linalg.lu_solve(self.lu_dec, b)

Assemble array with coordinates of each vertex

x = [(sol[2 * u], sol[2 * u + 1]) for u in range(n)]

return x, A

def main():

files = [’cuboctahedron’, ’dodecahedron’, ’icosahedron’,

’rhombic_dodecahedron’, ’icosidodecahedron’,

’rhombicosidodecahedron’]

f = 5

name = files[f]

graph = name + ’.dat’

G = read_graph(graph)

faces_dict = G.make_dict()

print("Face lengths: ", set(faces_dict.keys()))

print(faces_dict)

l, f = input("Type length and face number: ",).split()

f0 = faces_dict.get(int(l))[int(f)]

F0 = G.sort_face(f0)

B. PYTHON CODE: TUTTE EMBEDDING 34

print(’G is a ’, name)

print(’G has ’, G.nverts, ’ vertices and’, G.medges, ’ edges’)

print(’F0 = ’, F0)

The embedding

embedding = TutteEmbedding(G, F0)

Original Tutte Embedding and energy

x, A = embedding.compute_positions(np.ones((G.nverts, G.nverts)))

E = 0

for u in range(G.nverts):

for v in rG.neighbors[u]:

if u < v:

norm_sq = (x[u][0] - x[v][0]) ** 2 + (x[u][1] - x[v][1]) ** 2

E += norm_sq

print(E)

make drawing

root = Tk()

title = str(name) + ’; F0 = ’ + str(F0) + ’; Tutte = ’ + str(trunc(E))

root.title(title)

app = CA.App(title, G.nverts, G.neighbors, x, root)

root.mainloop()

main()

APPENDIX C

Python code: Convex embeddings

import CanvasApp as CA

from math import sin, cos, sqrt, trunc

import numpy as np

import scipy as sp

import scipy.linalg

import sys

from tkinter import *

from random import randint

class Graph:

def __init__(self, nverts, medges):

self.nverts = nverts

self.medges = medges

self.faces = []

self.sorted_faces = []

self.neighbors = [set() for i in range(nverts)]

self.adj_matrix = [[0] * nverts for i in range(nverts)]

self.BF = [[] * nverts for i in range(nverts)]

def add_edge(self, u, v):

35

C. PYTHON CODE: CONVEX EMBEDDINGS 36

self.neighbors[u].add(v)

self.neighbors[v].add(u)

self.adj_matrix[u][v] = 1

self.adj_matrix[v][u] = 1

def add_face(self, corners):

face = set(corners)

self.faces.append(face)

def sort_face(self, fac):

cycle = []

face = fac.copy()

current = face.pop()

cycle.append(current)

while len(face) != 0:

f = face.pop()

if f in self.neighbors[current]:

cycle.append(f)

current = f

else:

face.add(f)

return cycle

def choose_outer_face(self, length):

for face in self.faces:

if len(face) == length:

C. PYTHON CODE: CONVEX EMBEDDINGS 37

sorted_face = self.sort_face(face)

return sorted_face

def sort_faces(self, F0):

self.sorted_faces.append(F0)

for f in self.faces:

if f != set(F0):

face = self.sort_face(f)

self.sorted_faces.append(face)

return self.sorted_faces

def make_dict(self):

face_dict = dict()

for f in self.faces:

l = len(f)

if l in face_dict:

face_dict[l].append(f)

else:

face_dict[l] = [f]

return face_dict

returns list of shortest distances to all vertices from vertex u

def bellman_ford(self, source, matrix):

C. PYTHON CODE: CONVEX EMBEDDINGS 38

distances = [float(’inf’)] * self.nverts

distances[source] = 0

for i in range(self.nverts - 1):

for u in range(self.nverts):

for v in self.neighbors[u]:

if distances[v] > distances[u] + matrix[u][v]:

distances[v] = distances[u] + matrix[u][v]

return distances

def BF_array(self, matrix):

return [self.bellman_ford(u, matrix) for u in range(self.nverts)]

def read_graph(filename):

with open(filename, ’r’) as infile:

lines = [s for s in infile]

n = int(lines[0])

m = 0

G = Graph(n, m)

for s in lines[1:]:

if s[0] == ’F’:

face = set()

fields = s.split()

C. PYTHON CODE: CONVEX EMBEDDINGS 39

for i in range(1, len(fields)):

face.add(int(fields[i]))

G.add_face(face)

if s[0] == ’E’:

m += 1

fields = s.split()

G.add_edge(int(fields[1]), int(fields[2]))

G.medges = m

G.BF = G.BF_array(G.adj_matrix)

return G

class TutteEmbedding:

def __init__(self, G, F0, fun, sorted_faces):

self.G = G

self.n = G.nverts

self.fun = fun

self.F0 = F0

self.sorted_faces = sorted_faces

Positions of the vertices in F0

C. PYTHON CODE: CONVEX EMBEDDINGS 40

self.F0_positions = {}

radius = 350

ox = oy = 400

pi = 3.14159265

phi = 2 * pi / len(F0)

for i, v in zip(range(len(F0)), F0):

self.F0_positions[v] = (ox + radius * cos(pi/2 + i*phi),

oy + radius * sin(pi/2 + i*phi))

self.f0 = set(F0)

def standard_vector(self):

return np.ones(self.G.nverts ** 2)

def random_vector(self):

x = np.zeros(self.G.nverts ** 2)

for i in range(self.G.nverts ** 2):

x[i] = np.random.random()

return x

def compute_alphas(self, w):

n = self.n

C. PYTHON CODE: CONVEX EMBEDDINGS 41

W = np.zeros((n, n))

for u in range(n):

for v in range(n):

W[u, v] = 1 + w[u * n + v] ** 2

return W

def compute_positions(self, W):

f0 = self.f0

G = self.G

n = self.n

Create system.

Coordinates of u are in positions 2*u and 2*u + 1.

A = np.zeros((2 * n, 2 * n))

b = np.zeros(2 * n)

for u in range(n):

if u not in f0:

total_weight = 0

for v in G.neighbors[u]:

A[2*u, 2*v] = -W[u][v]

A[2*u + 1, 2*v + 1] = -W[u][v]

total_weight += W[u][v]

C. PYTHON CODE: CONVEX EMBEDDINGS 42

A[2*u, :] /= total_weight

A[2*u + 1, :] /= total_weight

else:

(x, y) = self.F0_positions[u]

b[2*u] = x

b[2*u + 1] = y

A[2*u, 2*u] = A[2*u + 1, 2*u + 1] = 1

Compute LU decomposition and compute positions

self.lu_dec = sp.linalg.lu_factor(A)

sol = sp.linalg.lu_solve(self.lu_dec, b)

Assemble array with coordinates of each vertex

x = [(sol[2 * u], sol[2 * u + 1]) for u in range(n)]

return x, A

def triangle_area(self, u, v, w):

a = np.sqrt((u[0] - v[0]) ** 2 + (u[1] - v[1]) ** 2)

b = np.sqrt((v[0] - w[0]) ** 2 + (v[1] - w[1]) ** 2)

c = np.sqrt((w[0] - u[0]) ** 2 + (w[1] - u[1]) ** 2)

s = 0.5 * (a + b + c)

area = np.sqrt(s*(s-a)*(s-b)*(s-c))

C. PYTHON CODE: CONVEX EMBEDDINGS 43

return area

def compute_areas(self, faces, positions):

returns list of surface area of all faces

pos = positions

S = []

for face in faces:

s = 0

u = face[0]

for i in range(1, len(face) - 1):

v, w = face[i], face[i+1]

s += self.triangle_area(pos[u], pos[v], pos[w])

S.append(s)

return S

def energy(self, pos, A):

global counter

counter += 1

sys.stdout.write(f"\r{counter}")

sys.stdout.flush()

’’’Different energy functions’’’

C. PYTHON CODE: CONVEX EMBEDDINGS 44

fun = self.fun

G = self.G

n = self.n

f0 = self.f0

E = 0

if fun == ’KK’:

BF = G.BF

max_BF = 0

calculates max length of shortest path

for u in range(n):

for i in BF[u]:

if i > max_BF:

max_BF = i

L0 = 700

L = 0.5 * L0 / max_BF # desired edge length

for u in range(n):

for v in range(n):

if u < v and (u not in f0 or v not in f0):

dist_uv = BF[u][v]

l_uv = L * dist_uv

l_uv_sq = l_uv ** 2

norm_sq = (pos[u][0] - pos[v][0]) ** 2

+ (pos[u][1] - pos[v][1]) ** 2

C. PYTHON CODE: CONVEX EMBEDDINGS 45

E += (dist_uv ** -3) * ((norm_sq - l_uv_sq) ** 2)

if fun == ’neighdist’:

total_dist = k = 0

edge_lengths = []

for u in range(G.nverts):

for v in G.neighbors[u]:

if u < v and (u not in f0 or v not in f0):

norm_sq = (pos[u][0] - pos[v][0]) ** 2

+ (pos[u][1] - pos[v][1]) ** 2

edge_lengths.append(norm_sq)

total_dist += norm_sq

k += 1

mean_sq_dist = 0.7 * total_dist/k

for i in range(len(edge_lengths)):

E += ((mean_sq_dist) - edge_lengths[i]) ** 2

if fun == ’surFace’:

faces = G.faces # list of sets

S = self.compute_areas(G.sorted_faces, pos)

C. PYTHON CODE: CONVEX EMBEDDINGS 46

mean_area = S[0] / (len(faces) - 1)

for i in range(1, len(faces)):

E += (mean_area - S[i]) ** 2

return E

def __call__(self, w):

W = self.compute_alphas(w)

pos, A = self.compute_positions(W)

energy = self.energy(pos, A)

return energy

def create_model(files, f):

name = files[f]

graph = name + ’.dat’

G = read_graph(graph)

print(’G is a’, name)

print(’G has’, G.nverts, ’vertices,’, G.medges, ’edges and’,

len(G.faces), ’faces.’)

C. PYTHON CODE: CONVEX EMBEDDINGS 47

faces_dict = G.make_dict()

print("Face lengths: ", set(faces_dict.keys()))

print(faces_dict)

l, f = input("Type length and face index: ",).split()

f0 = faces_dict.get(int(l))[int(f)]

F0 = G.sort_face(f0) # list

sorted_faces = G.sort_faces(F0)

funs = [’KK’, ’neighdist’, ’surFace’]

print(funs)

function = str(input(’Choose a function over which to minimize: ’,))

print(’F0 = ’, F0)

print(’minimized: ’, function)

return G, F0, name, function, sorted_faces

def optimizer(G, embedding):

Optimized embedding

opt = {’disp’:True, ’maxiter’:100000}

vec = embedding.random_vector()

sol = sp.optimize.minimize(embedding, vec, method=’COBYLA’, options=opt)

weights = embedding.compute_alphas(sol.x)

x, A = embedding.compute_positions(weights)

calculate original energy to compare

E = 0

C. PYTHON CODE: CONVEX EMBEDDINGS 48

for u in range(G.nverts):

for v in G.neighbors[u]:

if u < v:

norm_sq = (x[u][0] - x[v][0]) ** 2 + (x[u][1] - x[v][1]) ** 2

E += norm_sq

print(’E = ’, E)

return sol, weights, x, A, E

def main():

files = [’cuboctahedron’, ’dodecahedron’,

’icosahedron’, ’rhombic_dodecahedron’]

f = 2

G, F0, name, function, sorted_faces = create_model(files, f)

call optimizer

embedding = TutteEmbedding(G, F0, function, sorted_faces)

sol, weights, x, A, E = optimizer(G, embedding)

possible print statements

print(’sol =’, sol)

print(’weights =’, weights)

print(’positions =’, x)

C. PYTHON CODE: CONVEX EMBEDDINGS 49

make drawing

root = Tk()

title = str(name) + ’; F0 = ’ + str(F0) + ’; ’ + str(function)

+ ’ = ’ + str(trunc(sol.fun)) + ’, E = ’ + str(trunc(E))

root.title(title)

app = CA.App(title, G.nverts, G.neighbors, x, root)

root.mainloop()

counter = 0

main()

APPENDIX D

Python code: Drawing

file: CanvasApp.py

from tkinter import *

class App:

def __init__(self, title, n, neighbors, positions, master):

self.n = n

self.neighbors = neighbors

self.title = title

Canvas

self.width = self.height = 800

self.radius = 350

outer = Frame(master)

outer.pack()

left = Frame(outer)

left.pack(side = LEFT)

self.canvas = Canvas(left, width = self.width, height = self.height)

50

D. PYTHON CODE: DRAWING 51

self.canvas.pack(side = LEFT)

self.canvas.config(background="white")

make the drawing.

self.make_drawing(positions)

def make_drawing(self, positions):

self.edges = []

x = positions

Clear canvas.

for i in self.canvas.find_all():

self.canvas.delete(i)

for u in range(self.n):

r = 1 # 5

self.canvas.create_oval(x[u][0]-r, x[u][1]-r, x[u][0]+r,

x[u][1]+r, fill="black")

for v in self.neighbors[u]:

if u < v:

h = self.canvas.create_line(x[u][0], x[u][1],

x[v][0], x[v][1])

self.edges.append((h, u, v))

,

	Preface
	Lay Summary
	Abstract
	Introduction
	Chapter 1. Tutte's embedding
	1. Definitions
	2. The Tutte embedding
	3. Tutte's theorem

	Chapter 2. Changing the system
	1. Drawing planar graphs as a physical system
	2. Vertices as a convex combination of their neighbours
	3. Existing energy functions

	Chapter 3. A new optimization problem
	1. Optimization method
	2. The energy functions
	3. A selection of polytopes

	Chapter 4. Embedding polyhedral graphs
	1. Minimizing Ek,m and Ed
	2. Minimizing EF

	Conclusion
	Discussion
	Bibliography
	Appendix A. Results of Ek,m and Ed
	Appendix B. Python code: Tutte embedding
	Appendix C. Python code: Convex embeddings
	Appendix D. Python code: Drawing

