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Preface

Fourth edition

The major difference between this fourth edition and its predecessor is the presentation of
the material in Chapter 3. The method of linearization of a system described in this chap-
ter has now been restricted to solution-input pairs that are constant in time (equilibrium
pairs) and the presentation of the analytical method of solving a linear system is restricted
to the linear systems that are time-invariant. We firmly believe that both these restric-
tions are a great improvement from a didactic point of view. Another important change
in this chapter concerns the introductory text, which we believe to be an improvement
in the sense that the connection with the previous chapter on modeling is now described
more explicitly. A change in Chapter 4 which is worth mentioning is given by the passage
where we deal with the duality between the concepts of controllability and observability.
We have given a qualitative interpretation of this phenomenon of duality which we believe
to be a useful addition to the merely symbolic method using the transposition of matrices.

Delft, November 2011 J.W. van der Woude, J.G. Maks and D. Jeltsema

Third edition

Compared to the second edition, the presentation of material in this third edition has
been changed significantly. For a start, based on feedback by students, certain topics,
like linearization, Routh’s criterion, interval stability, observer and compensator design,
have been discussed in some more detail than in the second edition. Further, in each
chapter theorems, lemmas, examples, and so on, are numbered consecutively now, and
exercises have been moved towards the end of chapters. Also additional exercises have
been included. Finally, errors and typos, found in the second edition, have been corrected.
A.A. Stoorvogel and J.G. Maks are greatly acknowledged for their remarks on the second
edition. We also thank VSSD for its willingness to publish these notes as a book. We
hope that this third edition will be as successful as the previous ones.

Delft, November 2004 G.J. Olsder and J.W. van der Woude
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vi Mathematical systems theory

Second edition

The main changes of this second edition over the first one are (i) the addition of a chapter
with MATLAB 1 exercises and possible solutions, and (ii) the chapter on ‘Polynomial
representations’ in the first edition has been left out. A summary of that chapter now
appears as a section in chapter 8. The material within the chapter on ‘Input/output repre-
sentations’ has been shifted somewhat such that the parts dealing with frequency methods
form one section now. Moreover, some exercises have been added and some mistakes
have been corrected. I hope that this revised edition will find its way as its predecessor
did.

Delft, December 1997 G.J. Olsder

First edition

These course notes are intended for use at undergraduate level. They are a substantial revi-
sion of the course notes used during the academic years 1983-’84 till 1993-’94. The most
notable changes are an omission of some abstract system formulations and the addition of
new chapters on modelling principles and on polynomial representation of systems. Also
changes and additions in the already existing chapters have been made. The main pur-
pose of the revision has been to make the student familiar with some recently developed
concepts (such as ‘disturbance rejection’) and to give a more complete overview of the
field.

A dilemma for any author of course notes, of which the total contents is limited by
the number of teaching hours and the level of the students (and of the author!), is what
to include and what not. One extreme choice is to treat a few subjects in depth and not
to talk about the other subjects at all. The other extreme is to touch upon all subjects
only very briefly. The choice made here is to teach the so-called state space approach in
reasonable depth (with theorems and proofs) and to deal with the other approaches more
briefly (in general no proofs) and to provide links of these other approaches with the state
space approach.

The most essential prerequisites are a working knowledge of matrix manipulations
and an elementary knowledge of differential equations. The mathematics student will
probably experience these notes as a blend of techniques studied in other (first and second
year) courses and as a solid introduction to a new field, viz. that of mathematical system
theory, which opens vistas to various fields of application. The text is also of interest to the
engineering student, who will, with his background in applications, probably experience
these notes as more fundamental. Exercises are interspersed throughout the text; the
student should not skip them. Unlike many mathematics texts, these notes contain more
exercises (61) than definitions (31) and more examples (56) that theorems (36).

For the preparation of these notes various sources have been consulted. For the first
edition such a source was, apart from some of the books mentioned in the bibliogra-
phy, ‘Inleiding wiskundige systeemtheorie’ by A.J. van der Schaft, Twente University of

1MATLAB is a registered trademark of The MathWorks, Inc.
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Technology. For the preparation of these revised notes, also use was made of ‘Course
d’Automatique, Commande Linéaire des Systèmes Dynamiques’ by B. d’Andréa-Novel
and M. Cohen de Lara, Ecole Nationale Supérieure des Mines de Paris. The contents of
Chapter 2 have been prepared by J.W. van der Woude, which is gratefully acknowledged.
The author is also grateful to many of his colleagues with whom he had discussions about
the contents and who sometimes proposed changes. The figures have been prepared by
Mrs T. Tijanova, who also helped with some aspects of the LATEX document preparation
system by means of which these notes have been prepared.

Parallel to this course there are computer lab sessions, based on MATLAB, by means
of which the student himself can play with various examples such as to get a better feel-
ing for concepts and for designing systems himself. This lab has been prepared by P.
Twaalfhoven and J.G. Braker.

Delft, April 1994 G.J. Olsder
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Chapter 1

Introduction

1.1 What is mathematical systems theory?

A system is part of reality which we think to be a separated unit within this reality. The
reality outside the system is called the surroundings. The interaction between system and
surroundings is realized via quantities, quite often functions of time, which are called
input and output. The system is influenced via the input(-functions) and the system itself
has an influence on the surroundings by means of the output(-functions).

surroundings

system

system
input output

reality

Figure 1.1 A system in interaction with its environment.

Three examples:

How to fly an aeroplane: the position of the control wheel (the input) has an influ-
ence on the course (the output).

In economics: the interest rate (the input) has an influence on investment behavior
(the output).

Rainfall (the input) has an influence on the level of the water in a river (the output).

In many fields of study, a phenomenon is not studied directly but indirectly through a
model of the phenomenon. A model is a representation, often in mathematical terms, of
what are felt to be the important features of the object or system under study. By the
manipulation of the representation, it is hoped that new knowledge about the modelled
phenomenon can be obtained without the danger, cost, or inconvenience of manipulating
the real phenomenon itself. In mathematical system theory we only work with models
and when talking about a system we mean a modelled version of the system as part of
reality.

Most modelling uses mathematics. The important features of many physical phe-
nomena can be described numerically and the relations between these features can be
described by equations or inequalities. Particularly in natural sciences and engineering,
properties such as mass, acceleration and forces can be described in mathematical terms.

1



2 Mathematica Systems Theory

To successfully utilize the modelling approach, however, knowledge is required of both
the modelled phenomena and properties of the modelling technique. The development of
high-speed computers has greatly increased the use and usefulness of modelling. By rep-
resenting a system as a mathematical model, converting it into instructions for a computer
and running the computer, it is possible to model larger and more complex systems than
ever before.
Mathematical system(s) theory is concerned with the study and control of in-

put/output phenomena. There is no difference between the terminologies ‘system the-
ory’ and ‘systems theory’; both are used in the (scientific) literature and will be used
interchangeably. The emphasis in system(s) theory is on the dynamic behavior of these
phenomena, i.e., how do characteristic features (such as input and output) change in time
and what are the relationships between them, also as functions of time. One tries to de-
sign control systems such that a desired behavior is achieved. In this sense mathematical
system(s) theory (and control theory) distinguishes itself from many other branches of
mathematics by the fact that is prescriptive rather than descriptive.

Mathematical system theory forms the mathematical base for technical areas such as
automatic control and networks. It is also the starting point for other mathematical sub-
jects such as optimal control theory and filter theory. In optimal control theory one tries to
find an input function which yields an output function that satisfies a certain requirement
as well as possible. In filter theory the input to the system, then being a so-called filter,
consists of observations with measurement errors, while the system itself tries to realize
an output which equals the ‘ideal’ observations, i.e., as much as possible without mea-
surement errors. Mathematical system theory also plays a role in economics (specially
in macro-economic control theory and time series analysis), theoretical computer science
(via automaton theory and Petri-nets) and management science (models of firms and other
organizations). Lastly, mathematical system theory forms the hard, mathematical, core of
more philosophically oriented areas such as general systems theory and cybernetics.

Example 1.1 [Autopilot of a boat] An autopilot is a device which receives as input the
heading t of a boat at time t (measured by an instrument such as a magnetic compass
or a gyrocompass) and the (fixed) desired heading c (reference point) by the navigator.
Using this information, the device automatically yields, as a function of time t, the posi-
tioning command u t of the rudder in order to achieve the smallest possible heading error
e t c t . Given the dynamics of the boat and the external perturbations (wind,
swell, etc.) the theory of automatic control helps to determine a control input command
u f e that meets the imposed technical specifications (stability, accuracy, response
time, etc.). For example, this control might be bang-bang:

u t
umax if e t 0
umax if e t 0

(The arrows in the left-hand picture in Figure 1.2 point in the positive direction of the
quantities concerned.) Alternatively, the control might be proportional:

u t Ke t

where K is a constant. It has tacitly been assumed here that for all e-values of interest,
umax Ke t umax. If this is not the case, some kind of saturation must be intro-
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αauto-

pilot ship

ue

u

e

c

α

perturbation

αc

α

Figure 1.2 Autopilot of a boat.

duced. The control law might also consist of a proportional part, an integrating part and a
differentiating part:

u t Ke t K
t
e s ds K

d
dt
e t (1.1)

where K, K and K are constants. This control law is sometimes referred to as a PID
controller, where P stands for the proportional part, I for the integrating part and D for the
differentiating part. The lower bound of the integral in (1.1) has not been given explicitly;
various choices are possible. In all these examples of a control law, a signal (the error in
this case) is fed back to the input. One speaks of control by feedback.

Automatic control theory helps in the choice of the best control law. If the ship itself
is considered as a system, then the input to the ship is the rudder setting u (and possibly
perturbations) and the output is the course . The autopilot is another system. Its input
is the error signal e and output is the rudder setting u. Thus, we see that the output of
one system can be the input of another system. The combination of ship, autopilot and
the connection from to c, all depicted in the right-hand side of Figure 1.2, can also be
considered as a system. The inputs of the combined system are the desired course c and
possible perturbations, and the output is the real course .

Example 1.2 [Optimal control problem] The motion of a ship is described by the differ-
ential equation

ẋ f x u t

where the so-called state vector x x1 x2
2 equals the ship’s position with respect

to a fixed reference frame, the vector u u1 u2
2 denotes the control and t is the

time. The superscript refers to ‘transposed’. If not explicitly stated differently, vectors
are always supposed to be column vectors. Although not specifically indicated, both x
and u are supposed to be functions of time. The notation ẋ refers to the time derivative
of the (two) state components. In this example one control variable to be chosen is the
ship’s heading u1, whereas the other one, u2, is the ship’s velocity. The problem now is to
choose u1 and u2 in such a way that the ship uses as little fuel as possible such that, if it
leaves Rotterdam at a certain time, it arrives in New York not more than 10 days later. The
functions u1 and u2 may depend on available information such as time, weather forecast,
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ocean streams, and so on. Formally, u u1 u2 must be chosen such that

t f

t0

g x u t dt

is minimized, where the (integral) criterion describes the amount of fuel used. The func-
tion g is the fuel consumption per time unit, t0 is the departure time and t f is the arrival
time.

Example 1.3 [Filtering] NAVSAT is the acronym for NAVigation by means of SATel-
lites. It refers to a worldwide navigation system studied by the European Space Agency
(ESA). During the 1980s the NAVSAT system was in the development phase with feasi-
bility studies being performed by several European aerospace research institutes. At the
National Aerospace Laboratory (NLR), Amsterdam, the Netherlands, for instance, a sim-
ulation tool was developed by which various alternative NAVSAT concepts and scenarios
could be evaluated.

Recently, the United States and the European Union have reached an agreement on
sharing their satellite navigation services, i.e., the current U.S. Global Positioning System
and Europe’s Galileo system, which is scheduled to be in operation by 2008. NAVSAT
can be seen as a forerunner of Galileo.

The central idea of satellite based navigation system is the following. A user (such as
an airplane, a ship or a car) receives messages from satellites, from which he can estimate
his own position. Each satellite broadcasts its own coordinates (in some known reference
frame) and the time instant at which this message is broadcast. The user measures the
time instant at which he receives this message on his own clock. Thus, he knows the time
difference between sending and receiving the message, which yields the distance between
the position of the satellite and the user. If the user can calculate these distances with
respect to at least three different satellites, he can in principle calculate his own position.
Complicating factors in these calculations are: i different satellites send messages at
different time instants, while the user moves in the meantime, ii several different sources
of error present in the data, e.g. unknown ionospheric and tropospheric delays, the clocks
of the satellites and of the user not running exactly synchronously, the satellite position
being broadcast with only limited accuracy.

The problem to be solved by the user is how to calculate his position as accurately as
possible, when he gets the information from the satellites and if he knows the stochastic
characteristics of the errors or uncertainties mentioned above. As the satellites broadcast
the information periodically, the user can update also periodically the estimate of his
position, which is a function of time.

1.2 A brief history

Feedback - the key concept of system theory - is found in many places such as in nature
and in living organisms. An example is the control of the body temperature. Also, so-
cial and economic processes are controlled by feedback mechanisms. In most technical
equipment use is made of control mechanisms.

In ancient times feedback was already applied in for instance the Babylonic water
wheels and for the control of water levels in Roman aqueducts. According to historian
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Otto Mayr, the first explicit use of a feedback mechanism has been designed by Cornelis
Drebbel [1572–1633], both an engineer and an alchemist. He designed the ‘Athanor’, an
oven in which he optimistically hoped to change lead into gold. Control of the temperature
in this oven was rather complex and the method invented by Drebbel could be viewed as
a feedback design.

Drebbel’s invention was then used for commercial purposes by his son in law, Au-
gustus Kuffler [1595–1677], being a contemporary of Christian Huygens [1629–1695]. It
was Christian Huygens who designed a fly-wheel for the control of the rotational speed of
windmills. This idea was refined by R. Hooke [1635–1703] and J. Watt [1736–1819], the
latter being the inventor of the steam engine. In the middle of the 19th century more than
75,000 James Watt’s fly-ball governors (see Exercise 1.4.2) were in use. Soon it was real-
ized that these contraptions gave problems if control was too rigid. Nowadays one realizes
that the undesired behavior was a form of instability due to a high gain in the feedback
loop. This problem of bad behavior was investigated J.C. Maxwell [1831–1879] – the
Maxwell of the electromagnetism – who was the first to perform a mathematical analysis
of stability problems. His paper ‘On Governors’ can be viewed as the first mathematical
article devoted to control theory.

The next important development started in the period before the Second World War,
in the Bell Labs in the USA. The invention of the electronic amplification by means of
feedback started the design and use of feedback controllers in communication devices.
In the theoretical area, frequency-domain techniques were developed for the analysis of
stability and sensitivity. H. Nyquist [1889–1976] and H.W. Bode [1905–1982] are the
most important representatives of this direction.

Norbert Wiener [1894–1964] worked on the fire-control of anti-aircraft defence dur-
ing the Second World War. He also advocated control theory as some kind of artificial
intelligence as an independent discipline which he called ‘Cybernetics’ (this word was
already used by A.M. Ampere [1775–1836]).

Mathematical system theory and automatic control, as known nowadays, found their
feet in the 1950s. Classic control theory played a stimulating role. Initially mathematical
system theory was more or less a collection of concepts and techniques from the theory
of differential equations, linear algebra, matrix theory, probability theory, statistics, and,
to a lesser extent, complex function theory. Later on (around 1960) system theory got its
own face, i.e., ‘own’ results were obtained which were especially related to the ‘struc-
ture’ of the ‘box’ between input and output, see the right-hand side picture in Figure 1.1.
Two developments contributed to that. Firstly, there were fundamental theoretical devel-
opments in the nineteen fifties. Names attached to these developments are R. Bellman
(dynamic programming), L.S. Pontryagin (optimal control) and R.E. Kalman (state space
models and recursive filtering). Secondly, there was the invention of the chip at the end
of the nineteen sixties and the subsequent development of micro-electronics. This led to
cheap and fast computers by means of which control algorithms with a high degree of
complexity could really be used.
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1.3 Brief description of contents

In the present chapter a very superficial overview is given of what system theory is and
the relations with other (mainly: technically oriented) fields are discussed. One could say
that in this chapter the ‘geographical map’ is unfolded and that in the subsequent chapters
parts of the map are studied in (more) detail.

In Chapter 2 modelling techniques are discussed and as such the chapter, strictly
speaking, does not belong to the area of system theory. Since, however, the starting point
in system theory always is a model or a class of models, it is important to know about
modelling techniques and the principles underlying such models. Such principles are for
instance the conservation of mass and of energy. A classification of the variables involved
into input (or: control) variables, output (or: measurement) variables, and variables which
describe dependencies within the model itself, will become apparent.

In Chapters 3, 4 and 5 the theory around the important class of linear differential
systems is dealt with. The reason for studying such systems in detail is twofold. Firstly,
many systems in practice can (at least: approximately) be described by linear differential
systems. Secondly, the theory for these systems has been well developed and has matured
during the last forty years or so. Many concepts can be explained quite naturally for such
systems.

The view on systems is characterized by the ‘state space approach’ and the main math-
ematical technique used is that of linear algebra. Besides linear algebra one also encoun-
ters matrix theory and the theory of differential equations. Chapter 3 deals specifically
with linearization and linear differential systems. Chapter 4 deals with structural proper-
ties of linear systems. Specially, various forms of stability and relationships between the
input, output and state of the system, such as controllability and observability, are dealt
with. Chapter 5 considers feedback issues, both state feedback and output feedback, in
order to obtain desired system properties. The description of the separation principle is
also part of this chapter.

Chapter 6 also deals with linear systems, but now from the input/output point of view.
One studies formulas which relate inputs to outputs directly. Main mathematical tools
are the theory of the Laplace transform and complex function theory. The advantage of
this kind of system view is that systems can easily be viewed as ‘blocks’ and that one
can build larger systems by combining subsystems. A possible disadvantage is that this
way of describing systems is essentially limited to linear time-invariant systems, whereas
the state space approach of the previous chapters is also suited as a means of describing
nonlinear and/or time-dependent systems.

In Chapters 3, 4, 5 and 6 ‘time’ was considered to flow continuously. In Chapter 7 one
deals with ‘discrete-time’ models. Rather than differential equations one now has differ-
ence equations which describe the model from the state space point of view. The most
crucial concepts of Chapters 4 and 5 are repeated here for such systems. The role of the
Laplace transform is taken over by the so-called z-transform. The theories of continuous-
time systems and of discrete-time systems are equivalent in many aspects, and therefore
Chapter 7 has been kept rather brief. Some modelling pitfalls when approximating a
continuous-time system by a discrete-time one are briefly indicated.

Chapter 8 shows some avenues towards related fields. There is an abstract point of
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view on systems, characterizing them in terms of input space, output space, and maybe
state space, and the mappings between these spaces. Also the more recently introduced
‘behavioral approach’ towards system theory is briefly mentioned. In this approach no
distinction is made between inputs and outputs. It is followed by a brief introduction
of polynomial matrices used to represent linear systems algebraically. Some remarks on
nonlinear systems – a class many times larger than the class of linear systems – will
be made together with some progress in this direction. Also other types of systems are
mentioned such as descriptor systems, stochastic systems, finite state systems, distributed
parameter systems and discrete event systems. Brief introductions to optimal control
theory, filter theory, model reduction, and adaptive and robust control will be given. In
those fields system theoretical notions introduced earlier are used heavily.

Lastly, Chapter 9 contains a collection of problems and their solutions that can be
used for a course on system theory. The problems are solved using the software package
MATLAB. For most of them also the MATLAB Control Toolbox must be used. The
nature of this chapter is clearly different from that of the others.

Books mentioned in the text and some ‘classics’ in the field of systems theory are
given in the bibliography. This book ends with an index.

1.4 Exercises

Exercise 1.4.1 The water clock (‘clepsydra’) invented by Ktesibios, a Greek of the third
century before Christ, is an old and very well known example of feedback control (i.e.,
the error is fed back in order to make corrections). Look this up and give a schematic
drawing of the water clock with control.

Exercise 1.4.2 Another example of an old control mechanism is Watt’s centrifugal gover-
nor for the control of a steam engine. Consult the literature and find out how this governor
works. See for instance [Faurre and Depeyrot, 1977].

Exercise 1.4.3 Determine how a float in the water reservoir of a toilet operates.

Exercise 1.4.4 Investigate the working of a thermostat in the central heating of a green-
house. Specify the controls and the measurements.

Exercise 1.4.5 Describe how feedback plays a role when riding a bicycle. What are the
inputs/controls and what are the outputs/measurements.

Exercise 1.4.6 Investigate the mechanism of your body to control its temperature. What
is the control action?



Chapter 2

Some Modelling Principles

In this chapter we present some tools that can be used in the modelling of dynamical
phenomena. This chapter does not give an exhaustive treatment of such tools, but it is
meant as an introduction to some of the underlying principles. One could argue that
modelling principles do not belong to the domain of mathematical system theory. Indeed,
in the latter theory one usually starts with a given model, perhaps built by an expert in the
field of application.

2.1 Conservation laws

One of the most fundamental modelling principles is the notion of conservation. The laws
derived from this notion follow from natural reasoning and can be applied everywhere.

For instance, when modelling physical phenomena, one often uses (even without re-
alizing) conservation of matter, conservation of electrical charge, conservation of energy,
and so on. But also in disciplines that are not so much physically oriented conservation
principles are used. For instance, in describing the evolution of a population, it can be
assumed that there is conservation of individuals, simply because no individuals can be
created or lost without reason. Similarly in economy, there always has to be conservation
of assets in one sense or the other.

Hence, conservation laws can be seen as laws based on reasoning and on counting.

2.2 Phenomenological principles

In addition to the conservation laws discussed above, often also so-called phenomenolog-
ical laws are used. These laws are obtained in an empirical way and depend very much
on the nature of the phenomenon that has to be modelled.

One example of such a law is Ohm’s law V RI relating the voltage V over a resistor
of value R with the current I that goes through the resistor. Ohm’s law is of importance
in modelling electrical networks. However, laws with a similar form occur in other disci-
plines like Fourier’s law on heat conductivity and Fick’s law on light diffusion. It is not by
reasoning that laws like Ohm’s law are derived; they are simply the result of experiments.
There is no reason why the voltage, the current and the resistance should be related as they
do in Ohm’s law. Nevertheless, it turns out to be part of the physical reality and therefore
it can be used in the modelling of dynamic phenomena. Many more phenomenological
laws exist, some of which are discussed in the next section.

2.3 Physical principles and laws

In this section we briefly discuss some of the most important laws and principles that hold
in (parts of) the physical reality.

8
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2.3.1 Thermodynamics

When modelling a thermodynamical phenomenon we can make use of three very funda-
mental laws and principles.

1. Conservation of energy.

2. The irreversibility of the behavior of a macroscopic system.

3. The absolute zero temperature cannot be reached.

The second law is often also expressed by saying that the entropy of a system cannot
decrease. The entropy is a measure for the disorder in a system.

We note that the first law is based on reasoning. If the law were not satisfied, then
some form of energy would be missing, and the law could be made to hold by simply in-
troducing the missing type of energy. The second and third law are based on experiments
and describe phenomenological properties.

2.3.2 Mechanics

When modelling mechanical phenomena we often, without realizing this, use some very
important laws and principles. One of these principles, the conservation of energy, has
already been discussed. Other forms of the conservation principle are also often used.
Furthermore, the following three laws (postulates) of Newton are very useful.

1. If there is no force acting on a point mass, then this mass will stay at rest, or it will
move with a constant speed along a straight line.

2. The force F on a point mass m and its position s are related by F m
d2s
dt2

.

3. action = reaction.

The first law was already known to Galileo, as the result of experiments that he had
carried out. The second law was formulated by Newton, using the differential calculus he
had developed.

Newton’s laws, especially the first one, are inspired by experiments. Originally, the
laws were developed for point masses and rectilinear movements. Gradually, versions of
his laws were developed for continuous media, rotational motions, in fluids, in gasses, and
so on. For instance, if a torque N with respect to some axis is applied to a body, and the

moment of inertia of the body around the axis is J, then N J
d2

dt2
, where

d2

dt2
denotes

the angular acceleration of the body around the used axis.
After Newton’s laws were available, also other approaches to describe the general

motion of mechanical structures were developed. One of these approaches, using the
concepts of kinetic and potential energy, leads to equations of motion which are known
as the Euler-Lagrange equations.
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2.3.3 Electromagnetism

When modelling electromagnetic phenomena, versions of laws that are expressed by the
four Maxwell equations can be used, complemented by the Lorentz equation.

In a medium with dielectric constant and magnetic susceptibility , the Maxwell
equations relating an electric field E, a magnetic field B, a charge density and a current
density are the following

div E
1

rot E
B
t

div B 0 rot B
E
t

In these equations all variables depend on time t and, in general, position x y z . Further-
more, E, B and are vectorial quantities, whereas is a scalar. The words ‘div’ and ‘rot’
stand for divergence and rotation, respectively. The first and third equation in the above
Maxwell equations express in a sense the conservation of electrical charge and ‘magnetic
charge’, respectively. In fact, div B 0 can be related to the fact that there do not exist
magnetic monopoles (isolated charges).

The force F on a particle with charge q moving with velocity v in a medium as de-
scribed above, with an electric field E and a magnetic field B, is given by the Lorentz
equation

F q E v B

Here denotes the cross product. Both F and v are vectors, and q is a scalar. All three
quantities will depend on time t and position x y z .

The above equations are very general in nature and are often too general for our pur-
poses. Therefore, other (more simplified) laws have been obtained from these equations.
Some of these laws for electrical networks are discussed below. These networks are built,
amongst others, from basic elements like resistors, capacitors and coils. For these ele-
ments the following relations have been established.

1. If a current of strength I is led through a resistor with value R, then the voltage drop
V over the resistor can be computed by Ohm’s law as illustrated in Figure 2.1.

V  =  R  I

I R

V

Figure 2.1 Ohm’s law.

2. If a current of strength I flows into a capacitor with capacity C, the voltage drop V
over the capacitor is related to I and C in the way shown in Figure 2.2.

3. Finally, if a current of strength I goes through a coil with inductance L, the voltage
drop V over the coil can be obtained as depicted in Figure 2.3.
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d V
d t

I

C
I

V

C =

Figure 2.2 Law for capacitor.

L

V  =  L d I
d t

I

Figure 2.3 Law for inductor.

The variables V and I in Figures 2.1, 2.2 and 2.3 are functions of time. The values R,
C and L are assumed to be time independent.

The above laws (rules) are phenomenological in nature. They are the results of ex-
periments. In addition to these laws, two other laws (rules) play an important role in the
area of electrical networks. These laws are called the ‘laws of Kirchhoff’, and can be
formulated as follows.

4. In any node of the network the sum of all the currents is zero.

5. In any loop of the network the sum of all the voltage drops is zero.

In both laws the direction of currents and voltage drops have to be taken into account.
Note that the Kirchhoff laws are of the conservation type. To explain these two laws we
consider the abstract network in Figure 2.4, with a source over which the voltage drop is a
constant equal to V . An arrow in the figure with an index i stands for an element through
which a current Ii floats that induces a voltage drop Vi, both in the direction of the arrow.

2V

1 4

53

Figure 2.4 Electrical network.

Then in the four nodes (also the source is considered to be a node) the following holds

I1 I2 I4 0 I2 I5 I3 0 I4 I5 0 I1 I3 0

For the three loops in the network it follows that

V V1 V2 V3 0 V V1 V4 V5 V3 0 V2 V4 V5 0
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2.4 Examples

In this section we give some examples of systems. The models underlying the examples
can be derived using the physical principles and laws discussed in the previous.

2.4.1 Inverted pendulum

Consider the inverted pendulum in Figure 2.5. The pivot of the pendulum is mounted on
a carriage which can move in the horizontal direction. The carriage is driven by a small
motor that at time t exerts a force u t on the carriage. This force is the input variable to
the system. The mass of the carriage will be indicated by M, that of the pendulum by m.

l

H

ϕ

s

mg

V

u

ϕ

Figure 2.5 Inverted pendulum.

In the pendulum the distance between the pivot and the center of gravity is l. In Figure 2.5
the variable H denotes the horizontal reaction force and V is the vertical reaction force in
the pivot. The angle that the pendulum makes with the vertical is indicated by . For the
center of gravity of the pendulum we have the following equations, which are in the spirit
of Newton’s second law.

m
d2

dt2
s l sin H m

d2

dt2
l cos V mg (2.1)

J
d2

dt2
Vl sin Hl cos (2.2)

The function s denotes the position of the carriage and J is the moment of inertia of the
pendulum with respect to the center of gravity. Clearly, s H and V depend on time t,
whereas m l g and J are constant. The pendulum has length 2l and if it has a uniform

mass distribution of
m
2l

per unit of length, then the moment of inertia around its center of

gravity is given by

J
m
2l

l

l

2d
1
3
ml2

The equation which describes the motion of the carriage is

M
d2s
dt2

u H (2.3)
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where u may depend on t, while M is constant. Elimination of H and V in the above
equations leads to

4l
3 ¨ gsin s̈cos 0
M m s̈ ml ¨ cos ˙ 2 sin u

(2.4)

where ˙ denotes the first derivative with respect to time, and ¨ the second derivative. So,

ṡ
ds
dt

and ¨
d2

dt2
.

The above two equations can also be written as a set of four first order differential
equations in ˙ s and ṡ.

In order to distinguish the above type differential equations from partial differential
equations, to be introduced shortly, one refers to the above type of differential equations
also as ordinary differential equations.

The equations of motion of the inverted pendulum can also be obtained as the Euler-
Lagrange equations using the following expressions for the total kinetic energy T and the
potential energy V

T
1
2
Mṡ2 1

2
m
2l

2l

0

ṡ ˙ cos 2 ˙ sin 2 d

V
m
2l
g

2l

0

cos d mgl cos

where T , in addition to the kinetic energy of the carriage, consists of the kinetic energy of
all the infinitesimal parts d of the pendulum at a distance from the pivot, 0 2l.
A similar remark holds with respect to the potential energy.

With the Lagragian L, defined as L T V , it follows after evaluation of the integrals
that

L
1
2
Mṡ2 1

2
mṡ2 mlṡ ˙ cos

2
3
ml2 ˙ 2 mgl cos (2.5)

The Euler-Lagrange equations describing the motion of the inverted pendulum can now
be obtained by working out the next equations

d
dt

L
˙

L
0

d
dt

L
ṡ

L
s

u

In these equations the variable L is considered to depend on ˙ s and ṡ, whereas the
latter variables depend on t. For instance, with T and V as above, this means that

L
˙

mlṡcos
4
3
ml2 ˙

d
dt

L
˙

mls̈cos mlṡ ˙ sin
4
3
ml2 ¨

and similarly for the other (partial) derivatives.

2.4.2 Model of a satellite

Consider the motion of a satellite with mass ms in a plane through the center of earth.
See also the picture in Figure 2.6. As the satellite will orbit around the earth, it is natural



14 Mathematical Systems Theory

θ

orbit

center earth

satellite
r

Figure 2.6 Satellite.

to give its position and velocity in terms of the polar coordinates r , and their time
derivatives ṙ ˙ , with the earth’s center located at the origin. Clearly, r ṙ and ˙ depend
on time t.

The velocity of the satellite has a radial component given by ṙ, and a tangential com-
ponent equal to r ˙ . To apply Newton’s laws, also the radial and tangential components
of the acceleration of the satellite are required. The radial component of the accelera-
tion is given by r̈ r ˙2, and the tangential component equals 2ṙ ˙ r ¨ . The previous
expressions for the radial and tangential components of the velocity and acceleration are
elementary and can be found in any textbook on mechanics.

When in orbit the satellite is attracted by the earth by the gravitational force. This force

has a radial direction and its magnitude equals G
mems

r2 , where me denotes the mass of the

earth and G stands for the gravitational constant. Assume that, in addition to gravity, the
satellite is also subjected to a radially directed force Fr, and a tangentially directed force
F . The force Fr is assumed to be directed away from the earth. Both Fr and F are
thought to be caused by thrust jets mounted on the satellite.

Application of Newton’s second law in the radial direction and the tangential direction
results in

ms r̈ r ˙2 G
mems

r2 Fr ms 2ṙ ˙ r ¨ F (2.6)

Remark 2.1 The above equations also can be obtained from the Euler-Lagrange equa-
tions. For that purpose, note that the kinetic energy T and the potential energy V of the
satellite are given as follows

T
1
2
ms ṙ2 r ˙ 2 V G

mems

r

Now define the Lagrangian as L T V , then the equations in (2.6) follow by working
out the next equations

d
dt

L
ṙ

L
r

Fr
d
dt

L
˙

L
rF

where rF must be interpreted as a torque due to the tangential force F .
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2.4.3 Heated bar

Consider a metal bar of length L which is insulated from its environment, except at the
left side where the bar is heated by a jet with heat transfer u at time t. For a picture, see
Figure 2.7. The temperature of the bar at time t and position r, with 0 r L, is denoted

0 L
r

u

Figure 2.7 Heated bar.

by T t r , i.e., r is the spatial variable. In order to be able to determine the thermal
behavior of the bar one must know T t0 r , 0 r L, the initial temperature distribution
at time t t0, and the heat transfer u t for t t0. The state of the system is the function
T t : 0 L . From physics it is known that T satisfies a partial differential equation

T t r
t

c
2T t r
r2 (2.7)

where c is a characteristic constant of the bar. At the left side of the bar we have

A
T t r
r r 0

u t (2.8)

where A is a measure for the area of the cross section of the bar. At the right side we have

T t r
r r L

0 (2.9)

because of the insulation there. The evolution of the state is described by the partial
differential equation (2.7) with boundary conditions (2.8) and (2.9). In this example the
input enters the problem only via the boundary conditions. In other problems the input
can also be distributed; see Exercise 2.5.10.

2.4.4 Electrical circuit

Consider the electrical network depicted in Figure 2.8, consisting of a resistor R, a capac-
itor C and a coil L. The network is connected to a source with constant voltage drop V
and the voltage drop over the capacity is measured. The current is denoted by I. If VR, VC
and VL denote the voltage drops over the resistor, the capacitor and the coil, respectively,
then it follows from the laws of electricity mentioned in the previous section, that

VR RI VC
1
C
Q VL L

dI
dt

where the variable Q denotes the electrical charge on the capacitor, which satisfies I
dQ
dt

. According to the Kirchhoff laws, V VR VC VL. Hence,

V RI
1
C
Q L

dI
dt

I
dQ
dt
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R

V
L

C

I

V c

Figure 2.8 RLC network.

Now rearranging these equations, it follows that

d
dt

Q
I

0 1
1
LC

R
L

Q
I

0
1
L

V VC
1
C 0

Q
I

Define u V , y VC and

x
Q
I

A
0 1
1
LC

R
L

B
0
1
L

C 1
C 0

where it must be emphasized that the newly definedC is a matrix (more specifically, here
a row matrix with two elements). It should not be confused with the capacity C. This is
an instance of the same symbol being used for different quantities.

With the above way of writing, the following description of the system is obtained

ẋ Ax Bu y Cx

Remark 2.2 Elimination of I from the equations above yields the following ordinary
linear differential equation with constant coefficients

L
d2Q
dt2

R
dQ
dt

1
C
Q V

This type of equation not only occurs in the modelling of electrical networks. Also in
other disciplines this type of equation may arise. For instance, when modelling a me-
chanical structure as depicted in Figure 2.9. The structure consists of a mass M connected

ext
M

sf

 k

wall

F

Figure 2.9 Mass-damper-spring system.

to a vertical wall by means of a spring with constant k and a damper with damping factor
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f . On the mass an external force Fext may be exerted. As the mass is moving horizon-
tally only, gravity does not play a role. If s denotes the displacement of the mass from
its equilibrium position, it follows from Newton’s second law that Ms̈ ks f ṡ Fext.
Hence,

Ms̈ f ṡ ks Fext

This equation is similar to the one derived for the electrical network above. Other exam-
ples of equations of this type can be found in modelling phenomena in disciplines like
acoustics, chemistry and hydraulics.

2.4.5 Population dynamics

Consider a closed population of humans in a country, or animals or organisms in nature.
Let N t denote the number of individuals in the population at time t. Assume that N t is
so large that it can be thought of as being a continuously changing variable. If B t t
and D t t denote the number of births and deaths, respectively, in the interval t t

, then conservation of individuals means that

N t N t B t t D t t

Let
B t t b t o D t t d t o

where o stands for a function that tends to zero faster than . The functions b t and
d t are called the birth rate and death rate, respectively. Moreover, assume that b t and
d t depend on N t in a proportional way, independent of time. Hence,

b t bN t d t dN t

for some constants b and d. This means that

N t N t b d N t o

Define r b d, divide by and take the limit for to zero. Then it follows that

Ṅ t rN t

This equation has as solution N t N t0 e
r t t0 . Hence, the number of individuals is

increasing (decreasing) when r 0 (r 0).
In general, the growth rate of a population depends on more factors than the above

mentioned birth and death rates alone. In particular, it often depends on how the internal
interaction is. For instance, if a country is densely populated, then the death rate may
increase due to the effects of competition for space and resources, or due to the high
susceptibility for deceases. Assuming that the population cannot consist of more than
K 0 individuals, the above model might be modified as

Ṅ r 1
N
K

N

where in the equation the dependency of N on t is omitted. The equation is also known as
the ‘logistic equation’.
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The model can further be modified in the following way. Assume that the species of
the above population are the prey for a second population of predators consisting of M t
individuals at time t. It is then reasonable to assume that r 0, and that the previous
equation has to be changed into

Ṅ r 1
N
K

N NM

with 0. The modification means that the rate of decrease of prey due to the presence
of predators is proportional to the number of predators, but also to the number of prey
itself. As a model for the predators the following can be used

Ṁ cM NM

with c 0 and 0. Together these two equations form a so-called ‘predator-prey
model’. Note that r 0 means that the population of the prey has a natural tendency to
increase, whereas because of c 0 the population of predators has a natural tendency to
decrease.

Now assume that the number of prey is unbounded (K ). Think of anchovy as
prey and of salmon as predator. Assume that due to fishing at time t a fraction u1 t of the
anchovy is caught, and a fraction u2 t of the salmon. The previously derived predator-
prey model then has to be changed as follows

Ṅ rN NM Nu1 r M u1 N

Ṁ NM cM Mu2 N c u2 M

This type of model is well-known, and is also called a Volterra-Lotka model. If the
number of salmon is monitored in some way and is denoted y t , then the above model
can be described as a system

ẋ f x u y h x u

with x x1 x2 N M u u1 u2 and y M, and functions

f x u
r x2 u1 x1
x1 c u2 x2

h x u x2

2.4.6 Age dependent population dynamics

Consider again a population and let its size be denoted by N. To express N as a function
of the birth rate b, let P t r be the probability that somebody, born at time t r, is still
alive at time t (at which he/she has an age of r). Then

N t

t

P t t s b s ds

where s represents the time of birth. Assume that the functions P and b are such that this
integral is well defined. It is reasonable to assume that P t r 0 for r L for some L
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(nobody will become older than L). Then

N t

t

t L

P t t s b s ds

If P is continuous in its arguments and if b is piecewise continuous (a description of
piecewise continuity is given later), then the above integral exists.

Returning to the original integral and assuming that a function g exists such that g r
P t r , it follows that

N t

t

g t s b s ds

If this integral exists for all admissible birth rates b, then it will be shown later that it can
be associated with a time-invariant, strictly causal input/output system. The notions of
time-invariance and (strict) causality will be made precise later (in Sections 3.2 and 3.4).
Heuristically, time-invariance means that the absolute (calendar) time does not play any
role and causality means that the future does not influence the current behavior. For such
a system the probability that somebody is still alive at age r is determined by r only and
not by the time of birth.

2.4.7 Bioreactor

Consider a bioreactor as depicted in Figure 2.10. In the reactor there is biomass (or-

in biomass

+
sugar

DD

q q

q

p

Figure 2.10 Bioreactor.

ganisms) that is nourished with sugar (nutrition). Further, extra nutrition is supplied and
products are withdrawn. At time t denote

p t for the concentration of biomass in the reactor (g/l),

q t for the concentration of sugar in the reactor (g/l),

qin t for the concentration of sugar in the flow into the reactor (g/l),

D t for the flow of ‘sugar water’ through the reactor (1/sec), i.e., the fraction of its
contents that flows through the reactor per second.

The equations that govern the reaction inside the reactor are given as follows

d
dt

p
q

natural growth Dp
natural consumption Dq Dqin
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Note thatDp andDq are products (in mathematical sense). They stand for the amounts the
biomass and sugar, respectively, that are withdrawn from the reactor. The product Dqin
stands for the amount of sugar that is supplied to the reactor. To complete the mathemati-
cal description some empirical laws (or rules of thumb) on the relation between biomass
and sugar concentration will be used. Here these laws state that the growth of biomass
is proportional to its concentration and that its consumption of sugar is also proportional
to its concentration. Furthermore, it is assumed that these proportionalities only depend
on the sugar concentration. Hence, there are functions and , depending on the sugar
concentration, that determine the rate of growth of biomass and the consumption rate of
sugar, respectively, it the following way

d
dt

p
q

q p Dp
q p Dq Dqin

2.4.8 Transport of pollution

Consider a ‘one dimensional’ river, contaminated by organic material that is dissolved in
the water, see Figure 2.11. Once in the water, the material is degraded by the action of
bacteria. Denote

river
v

Figure 2.11 Pollution in river.

r t for the density of pollutant in the river at place r and at time t (kg/m),

v r t for the speed of pollutant and water in the river at place r and at time t (m/sec),

q r t for the flux of pollutant in the river at place r and at time t (kg/sec),

k r t for the rate of change by which the density of the pollutant is increased in the river
at place r and at time t (kg/(m sec)).

Conservation of mass can be expressed as

t
q
r

k

which has been obtained by considering the infinitesimal equality

r t dt dr r t dr q r t dt q r dr t dt k r t dtdr

Now two extreme cases can be considered.

1. There is only advection. Then , q and v are related by q v. This means that the
flux of pollutant is only due to transportation phenomena.
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2. There is only diffusion. Then and q are related by q
r

, where is some

constant depending on the place r and the time t. Diffusion means that everything
is smoothed.

When both diffusion and advection are taken into account then q v
r

. Assuming

that is a constant, independent of r and t, and that v does not depend on r, but only on
t, the conservation of mass equation can be written as

t r
v

r
k

2

r2 v
r

k

To model the action of bacteria that degrade the pollution, and to model the role of indus-
try, assume that k with independent of r and t, and with a measure for
the pollution in the river caused by the industry. Then it follows that

t

2

r2 v
r

Remark 2.3 With , v and constant the last equation can also formally be written as

ẋ Ax

where x and A
2

r2 v
r

is a linear mapping between appropriate function
spaces.

2.4.9 National economy

Consider the following simplified model of the national economy of a country. Let

y k be the total national income in year k,

c k be the consumer expenditure in year k,

i k be the investments in year k,

u k be the government expenditure in year k.

For the model of the national economy the following assumptions are made.

1. y k c k i k u k ,

2. The consumer expenditure is a fixed fraction of the total income of the previous year:
c k my k 1 with 0 m 1,

3. The investments in year k depend on the increase in consumer expenditure from year
k 1 to year k: i k c k c k 1 , where is some positive constant.

Note the first assumption is of the conservation type, whereas the other two assumptions
may be based on observations.
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With the above assumptions the evolution of the national economy can be described
as follows:

i k 1 c k 1 c k

c k 1 my k m i k c k m 1 c k mu k

If a state vector is defined as x k x1 k x2 k , with x1 k i k c k and x2 k
c k , then the state evolution equation is given by

x1 k 1
x2 k 1

0
m m 1

x1 k
x2 k

0
m

u k

and the output equation by

y k 1 1
x1 k
x2 k

u k

Thus, a linear time-invariant discrete-time system has been obtained as a model for the
national economy.

2.5 Exercises

Exercise 2.5.1 Consider the inverted pendulum in Section 2.4.1. Assume that the angle
of the pendulum with the vertical is measured. Let this measurement be denoted by

the variable y. So, y . Note that y as well as all the other variables ˙ s ṡ and u
are functions of time. Consider the vector x ˙ s ṡ , and find functions f x u and
h x u such that the inverted pendulum can be described as

ẋ f x u y h x u

Here ẋ
d
dt
x ˙ ¨ ṡ s̈ .

Exercise 2.5.2 Take the variable L as in (2.5) and derive the equations of motion of the
inverted pendulum in Section 2.4.1 by working out the given Euler-Lagrange equations.

Exercise 2.5.3 In the above exercise, the pendulum is assumed to be able to rotate around
its end point. Now assume that the pendulum can rotate around a given point somewhere
on its longitudinal axis, not necessarily the end point. Derive the equations of motion
of this modified inverted pendulum. Start with the (direct) approach of Section 2.4.1 and
verify your results with the approach using the Euler-Lagrange equations.

Exercise 2.5.4 In the inverted pendulum example of Section 2.4.1 the input is a force
exerted on the carriage. Now assume that the input is a torque exerted on the pen-
dulum around its pivot. Determine how the equations change with respect to those in
Section 2.4.1.

Exercise 2.5.5 In Section 2.4.1 the carriage moves horizontally. Now assume that the
carriage moves only in the vertical direction and that only vertical forces can be exerted,
while the gravity remains to act vertically. Investigate how the equations change with
respect to those in Section 2.4.1.
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Exercise 2.5.6 Consider the model of the satellite in Section 2.4.2. Assume that the dis-
tance r is measured and is denoted y. Further, introduce the vectors x r ṙ ˙ and

u
Fr

ms

F

ms
, and find functions f x u and h x u such that the model of the satellite

can be described as
ẋ f x u y h x u

Exercise 2.5.7 In Section 2.4.2, starting from the Lagrangian L T V, work out the
given Euler-Lagrange equations to obtain the equations of the motion of the satellite.

Exercise 2.5.8 Consider the electrical network depicted in Figure 2.12. Take Vin as in-

in

R

L

V

R

C

V

21
out

Figure 2.12 Bridge network.

put and Vout as output, and derive a state space model for the network using the laws
introduced in the Section 2.3.3. Note that Vout can be seen as a voltage drop in the ‘loop’
containing just the two resistors. Clearly, there are more such loops containing Vout .

Exercise 2.5.9 Consider the electrical network in Figure 2.13. Take the source voltage

u

LR

CC C

R

y

Figure 2.13 Electrical network.

as input u, the voltage over the most right capacitor as output y and derive a state space
model for the network using the methods of the Section 2.3.3.

Exercise 2.5.10 In the context of Section 2.4.3, consider the partial differential equation

T t r
t

c
2T t r
r2 u t r

and give an interpretation of u t r , seen as a distributed input/control function.

Exercise 2.5.11 For each of the models in Section 2.4.5, find the stationary situations.
These are situations in which the variables remain at a constant level and therefore have
(time) derivatives that are identically equal to zero.



24 Mathematical Systems Theory

Exercise 2.5.12 Let p denote the population density, and let it depend on time t and age
r. The number of people of ages between r and r dr at a certain time t is given by
p t r dr. Define the mortality rate t r in the following way: t r p t r drdt is the
number of people in the age class r r dr who die in the time interval t t dt . Prove
the infinitesimal equality

p t dt r dt dr p t r dr t r p t r drdt

and show that p satisfies the following partial differential equation

p
r

p
t

p (2.10)

Let the initial age distribution be given as

p 0 r p0 r 0 r 1

and the birth rate function as the boundary condition

p t 0 u t t 0

Here it assumed that the age r is scaled in such a way that nobody reaches an age r 1.
One can consider u t as the input to the system and as output y t for instance the number
of people in the working age, say between the ages a and b, 0 a b 1. This means
that

y t

b

a

p t r dr

Exercise 2.5.13 In Section 2.4.7, assume that the flow D of ‘sugar water’ into the reactor
is fixed, but that the sugar concentration qin in this flow can be controlled. Further,
assume that the concentration of sugar of the outgoing flow is measured. Now describe
the above process as a system with state, input and output.

Exercise 2.5.14 The same as the above question, but now the sugar concentration qin in
the incoming flow is fixed, and the amount of flow D can be controlled.

Exercise 2.5.15 In Section 2.4.9, suppose that the government decides to stop its expen-
diture from the year k 0 on. Hence, u k 0 for all k 0. Furthermore, suppose that
in the year k 0 the consumers do not spend any money and that the investments are 1
(scaled). So, c 0 0, i 0 1. Investigate how the total national income changes for
k 0.

Exercise 2.5.16 For the same model of the economy as in the above question, find the
stationary situations when u k 1 for all k, i.e., find those situations that will not change
anymore as the years pass by, when u k 1 for all k.



Chapter 3

Linear Differential Systems

3.1 Input-State-Output Descriptions

In Chapter 2 we have presented some tools to obtain a dynamical system model. In
general, such model can be formulated as a set of first-order differential and algebraic
equations of the form

ẋ t f x t u t t (3.1)

y t g x t u t t (3.2)

where x t n represents the state (vector) of the system, u t m represents the input
(vector), and y t p the output (vector). The functions f : n m n and
g : n m p denote the system vector field and output vector field, respectively.

As indicated in Chapter 1, the input u t can be seen as the variable by which the
state of the system can be influenced from the outside world, whereas the output y t
can be regarded as the variable by which information on the state of the system becomes
available to the outside world. For that reason, the input u t is often referred to as the
control, while the output y t is interpreted as the measurement. The set of equations
(3.1)–(3.2) is referred to as an input-state-output system.

A particular case of (3.1)–(3.2) arises when the vector functions f and g do not ex-
plicitly depend on time, i.e.,

ẋ t f x t u t (3.3)

y t g x t u t (3.4)

Systems of the form (3.3)–(3.4) are said to be time-invariant, whereas systems of the
form (3.1)–(3.2) are time-variant systems. For a precise definition of time-invariance,
we refer to Chapter 8.

In general, the functions f and g are non-linear. For linear systems, the input-state-
output system (3.1)–(3.2) takes the special form

ẋ t A t x t B t u t

y t C t x t D t u t

where A t is a n n matrix, referred to as the system matrix, B t is a n m matrix, re-
ferred to as the input matrix, the output matrixC t has the dimensions p n, and D t
is the feed-through matrix having dimensions p m. This type of systems is referred
to as linear and time-variant (LTV) systems. Hence, a linear and time-invariant (LTI)
system takes the form

ẋ t Ax t Bu t (3.5)

y t Cx t Du t (3.6)

25
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where A, B, C, and D are matrices with constant coefficients.
Linear systems form an important class of systems. First of all, linear systems can be

analyzed much easier than nonlinear systems. This is particularly true for linear and time-
invariant systems of the form (3.5)–(3.6) since, as we show in Section 3.3, the solution
can be expressed analytically in terms of the initial conditions and the input function.
Based on this solution, many important properties of the system can be studied. The
second reason for studying linear systems is that many practical systems can be accurately
modeled as linear systems or can be approximated by a linear system using a linearization
procedure as discussed in Section 3.2.

Remark 3.1 For ease of notation, we will often omit the time-dependency of the input,
state, and output functions, and simply write u, x, and y, instead of u t , x t , and y t ,
respectively.

3.2 Linearization

The linearization process of a non-linear time-invariant system is as follows. The pair
x u , with constant vectors x n and u m , is said to be an equilibrium pair for

(3.3) and (3.4), if
f x u 0 (3.7)

Clearly, with x u an equilibrium pair, the solution x̃ t of (3.3) for the initial condition
x̃ 0 x and input function ũ t u t 0, is given by x̃ t x t 0. Let x̃ t
z t x z t be another solution of (3.3) for the initial condition x̃0 z0 x z0
and input function ũ t v t u v t t 0. Hence,

d
dt

x̃ z f x̃ z ũ v x̃ 0 z 0 x z0 (3.8)

It then follows that

d
dt
z f x z u v z 0 z0 (3.9)

We assume that f is sufficiently smooth (for instance, f has continuous partial derivatives
up to order two) such that, according to the theorem of Taylor, the right-hand side f x
z u v in Equation (3.9) can be expanded as

f x z u v f x u
f
x
x u z

f
u
x u v higher order terms. (3.10)

Note that this is a vectorial expression. Written out in components, the terms in the above
are

f

f1
...
...
fn

z

z1
...
...
zn

d
dt
z

dz1

dt
...
dzn
dt

v

v1
...
...
vm
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f
x

f1
x1

f1
xn

...
...

fn
x1

fn
xn

f
u

f1
u1

f1
um

...
...

fn
u1

fn
um

If f x z u v in Equation (3.9) is replaced by Equation (3.10), and if z and v are
chosen to be ‘small’, so that the higher order terms can be ignored, we get the differential
equation and initial condition

ż
f
x
x u z

f
u
x u v z 0 z0 (3.11)

which describes approximately the relation between z and v, seen as deviations from x
and u , respectively. The coefficients of the matrices f

x x u and f
u x u are con-

stant because the linearization is done around a fixed equilibrium pair. Hence, the differ-
ential equation (3.11) is linear and of the form

ż Az Bv (3.12)

with

A
f
x
x u B

f
u
x u

The output function
y g x u y p

can also be linearized around the pair x u , assuming that g is sufficiently smooth. If
ỹ g x̃ ũ and ỹ w g x̃ z ũ v , then, with y g x u , it follows from the Taylor
series expansion that

y w g x u
g x u

x
z

g x u
u

v higher order terms,

and, therefore, as an approximation, we get

w
g x u

x
z

g x u
u

v

which we write as
w Cz Dv (3.13)

with

C
g
x
x u D

g
u
x u

Equations (3.12) and (3.13) together form the linearized system, i.e., the system linearized
around the equilibrium pair x u .

Remark 3.2 Note that, instead of linearizing around a fixed point, it is also possible to
linearize around a given solution pair x̃ t ũ t , satisfying ˙̃x t f x̃ t ũ t , and
ỹ t g x̃ t ũ t . In that case, the linearized system becomes time-varying, i.e.,

ż t A t z t B t v t

w t C t z t D t v t
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with

A t
f
x
x̃ t ũ t B t

f
u
x̃ t ũ t

C t
g
x
x̃ t ũ t D t

g
u
x̃ t ũ t

Example 3.3 Consider the nonlinear system equations

ẋ f x u y g x u x 2 u y

with

x
x1
x2

f x u
x2

ux1 x2
2 x1x2 6

g x u x3
1 x2 u2

Suppose ũ t u 3 t 0, then x̃1 t x1 2 and x̃2 t x2 0 t 0, is an equi-
librium solution. Subsequently, the linearization around the equilibrium pair 2 0 3
is computed as follows. Note that

f
x
x u

0 1
x2 u x1 2x2

f
u
x u

0
x1

so that

A
f
x
x u

0 1
3 2

B
f
u
x u

0
2

Likewise, it follows that

C
g
x
x u 12 1 D

g
u
x u 6

Hence, the linearized system becomes

ż
0 1
3 2

z
0
2

v w 12 1 z 6v

This system is time-invariant because all system matrices are independent of t.

Remark 3.4 Note that the starting point in Example 3.3 was a first order description and
an equilibrium pair x u around which the linearization was done. In many cases the
first order description is coming from a higher order description. Then, it is also possible
to first linearize the higher order description to obtain a linear higher order approximation
that subsequently can be transferred into a first order description. For instance, the system
in Example 3.3 may have been obtained from

¨ u ˙2 ˙ 6 y 3 ˙ u2

by introducing x1 and x2
˙ . Note that ˜ t 2 and ũ t 3 t 0, consequently

with ˙̃ t ¨̃ t 0 t 0, satisfy the above differential equation, i.e.,

¨̃ ũ ˜ ˙̃ 2 ˜ ˙̃ 6
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Assume that also ˜ s and ũ v satisfy the differential equation, where s v and all their
derivatives are small. Hence,

¨̃ s̈ ũ v ˜ s ˙̃ ṡ 2 ˜ s ˙̃ ṡ 6

Then, ignoring products and powers of s, v and their derivatives, it follows after some
manipulation that

s̈ ũs ˜v ˜ ṡ 3 s 2 ṡ 2 v

Introduction of z1 s and z2 ṡ yields

ż1 z2 ż2 3 z1 2 z2 2 v

or
ż Az Bv

with

z
z1
z2

A
0 1
3 2

B
0
2

The linearization of the output equation can be obtained similarly.

Remark 3.5 In the previous the distinction between variables like the state, input and
output, and their deviations from the given solutions around which the linearization is
done, is clearly indicated by the use of different symbols. Indeed, the state, input and
output are denoted by x u and y, respectively, whereas the deviations from the given
solutions are denoted by z v and w, respectively. However, in practice, this distinction is
often not supported by the notation. Often, both the state and its deviation from a given
solution are denoted by one and the same symbol, mostly x, and similarly for the input
and output. In those cases it should be clear from the context which meaning should be
attached to the variable x, being the true state or being the deviation from some given
solution.

Example 3.6 [Continuation of the inverted pendulum.] We start with the equations of
motion in Equations (2.4) of Section 2.4.1 which are repeated here.

4l
3 ¨ gsin s̈cos 0
M m s̈ ml ¨ cos ˙ 2 sin u

2 4

This system can be written as a set of four first order differential equations where the
state vector is defined as x ˙ s ṡ ; see Exercise 2.5.1. As indicated in Remark 3.4,
we either can linearize these first order differential equations as described above, or we
can first linearize Equations (2.4) and then afterwards construct a set of linear first order
differential equations. We will continue with the latter method. In Exercise 3.5.1 the
reader is asked to do the first method and to convince him/herself that the outcome is the
same. Linearization of (2.4) around the equilibrium pair x u with x 0 n and
u 0 , i.e.,

˜ t ˙̃ t s̃ t ˙̃s t 0 ũ t 0 t 0
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leads to (i.e., the nonlinear terms in (2.4) are replaced by their Taylor series expansion
around the chosen solutions up to and including the linear term)

4l
3

¨ g s̈ 0 M m s̈ ml ¨ u (3.14)

which can be viewed as two equations with the unknowns ¨ and s̈. These unknowns can
be solved and expressed in the other quantities ˙ s ṡ and u. This is left as an exercise
to the reader.

As in Remark 3.5, note the difference in meaning of the variables ˙ s ṡ and u in
Equations (2.4) and in Equations (3.14). In (2.4) the variables have the physical meaning
as described in Section 2.4.1, whereas in (3.14) the variables should be seen as deviations
from the chosen solutions. In general, these two meanings will be different. See also the
distinction between x u in Equations (3.3), and z v in Equations (3.11). However, since
here the zero solutions are chosen, the two meanings of the variables coincide.

Defining the state vector x ˙ s ṡ , Equations (3.14) can be rewritten as

dx
dt

0 1 0 0
a21 0 0 0
0 0 0 1
a41 0 0 0

x

0
b2
0
b4

u x
˙
s
ṡ

(3.15)

where

a21
3g M m
l 4M m

a41
3gm

4M m
b2

3
l 4M m

b4
4

4M m

If we take M 0 98 kg, m 0 08 kg, l 0 312 m and g 9 8 m/sec2, then Equa-
tion (3.15) becomes

ẋ

0 1 0 0
25 0 0 0
0 0 0 1
0 6 0 0 0

x

0
2 4
0
1

u (3.16)

If s and are the measured quantities, then the output function is

y
0 0 1 0
1 0 0 0

x (3.17)

3.3 Solution of a system of linear differential equations

In this section we briefly list the well-known results about the solution of a system of
linear differential equations. A more detailed treatment can be found in a text-book on
the theory of linear differential equations such as [3]. We restrict our attention to time-
invariant systems

ẋ Ax Bu (3.18)
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To describe the solution we need the definition of the exponential of a matrix. For a
given n n matrix A and a scalar t the exponential eAt is defined as the following power
series

eAt I At
1
2!
A2t2

1
3!
A3t3

k 0

Aktk

k!
(3.19)

It can be shown that the series is convergent for all A and t, so that eAt is a well-defined
n n matrix for all A and t.

The solution of the homogeneous system ẋ Ax with the initial condition x 0 x0
is given by

x t eAtx0 (3.20)

This solution can be explained by means of the flow diagram in Figure 3.1, representing

0

A

x

x

x
.

Figure 3.1 Flow diagram of ẋ Ax.

the differential equation with initial condition. The box with the integral sign represents
the integration of the incoming signal, here ẋ, starting with the initial condition x0 at
t 0, resulting in the outgoing signal, here x. Hence, this box represents x t x0
t
0 ẋ 1 d 1. The box with the matrix A represents the multiplication of the incoming

signal with A to yield the outgoing signal. Hence, here this box represents ẋ Ax. Now
going around once in this diagram, we get

x t x0

t

0

Ax 1 d 1

As x 1 can be expressed in the same way as x t , it follows that, by going around and
around in the diagram,

x t x0

t

0

Ax0d 1

t

0

A
1

0

Ax0d 2d 1

t

0

A
1

0

A
2

0

Ax0d 3d 2d 1

I At
1
2!
A2t2

1
3!
A3t3 x0 eAtx0
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The matrix eAt is called a transition matrix. The formula x t eAtx 0 shows that the
state x 0 is transferred to the state x t by the matrix eAt . It is easy to derive from this that
the transfer from the state x t0 to the state x t1 is accomplished by the matrix eA t1 t0 .

Now let’s have a look at the non-homogeneous system (3.18). The solution (3.20)
of the homogeneous system is modified by the addition of an integral over the interval
0 t caused by the input signal u. The solution of the system ẋ Ax Bu with the initial

condition x 0 x0 is given by

x t eAtx0

t

0

eA t s Bu s ds (3.21)

The exponential eAt obviously plays an important role in linear system theory. Many
papers have been published about what would be a good numerical procedure to calculate
this exponential. A possible procedure would be to use a finite number of the terms in the
series expansion in the definition in (3.19). This method works reasonably well as long
as the eigenvalues of A are close together. For more information and for more reliable
methods the reader is referred to [8]. We will now summarize the analytical method of
calculating eAt , which makes use of several concepts and theorems from linear algebra.

We start with the following lemma.

Lemma 3.7 If P is an invertible matrix, then eAt Pe P 1AP tP 1.

ProofWe will show that eP
1APt P 1eAtP.

eP
1APt I P 1APt

1
2!

P 1AP 2t2
1
3!

P 1AP 3t3

P 1P P 1APt
1
2!
P 1A2Pt2

1
3!
P 1A3Pt3

P 1 I At
1
2!
A2t2

1
3!
A3t3 P P 1eAtP

Suppose that A is diagonalizable, i.e., suppose an invertible matrix T exists such that
T 1AT D, where

D
1 0

. . .
0 n

The elements 1 n in D are the eigenvalues of A and the columns of T are the corre-
sponding eigenvectors. By means of Lemma 3.7 it now follows that

eAt Te T 1AT tT 1 TeDtT 1

The exponential eDt can easily be obtained by using the definition in (3.19) as

eDt

k 0

1
k!
Dktk

k 0

k
1 t
k

k! 0

. . .

0
k 0

k
n t
k

k!

e 1t 0
. . .

0 e nt
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Unfortunately not all square matrices are diagonalizable and therefore the method
described above cannot be used for arbitrary square matrices. Diagonalization of an n n
matrix is only possible if the matrix has n linearly independent eigenvectors. A sufficient
(but not necessary) condition for the latter to be the case is that all n eigenvalues of the
matrix are different. A non-diagonalizable matrix of size n n has therefore k n
different eigenvalues.

For the sequel the following notions are useful. The kernel (or null space) of a matrix
M, indicated by kerM, is defined as the set of all vectors x for which Mx 0. The image
(or column space) of a matrix M, indicated by imM, is the set of all linear combinations
of the columns of M. Clearly, both kerM and imM are linear spaces. A linear space
is the direct sum of two linear subspaces 1 and 2, notation 1 2, if each
x can be uniquely decomposed as x x1 x2 with x1 1 and x2 2. If M is a
square matrix its determinant will be denoted by detM.

For each eigenvalue i of a square matrix A two multiplicities are defined. Namely, the
algebraic multiplicity, which is the usual multiplicity of i as a root of the characteristic
polynomial det I A , and the geometric multiplicity of i, which is the dimension
of the eigenspace ker iI A . It can be shown for each eigenvalue that its geometric
multiplicity is less than or equal to its algebraic multiplicity.

Returning to the point of diagonalization, it is a well-known and fundamental result
from linear algebra that a square matrix A is diagonalizable if and only if for each eigen-
value of A the algebraic multiplicity is equal to the geometric multiplicity. Further, if a
square matrix A is not diagonaizable, the matrix can be transformed into a form, the so-
called Jordan form of A, that is close to a diagonal form. The latter result is stated in the
following theorems.

Theorem 3.8 Suppose that the n n matrix A has k different eigenvalues i with alge-
braic multiplicity mi, i 1 k. Then k

i 1mi n. Define i ker A iI
mi , then

1. the dimension of the linear vector subspace i is equal to mi i 1 k,

2. the n dimensional linear vector space n over the complex numbers is the direct
sum of the subspaces i i e

n
1 2 k.

For a proof of this theorem and other background material on matrix theory the reader
is, for instance, referred to [Lancaster and Tismenetsky, 1985]. If the n n matrix A has
n different eigenvalues, then each i, as defined in Theorem 3.8, is a one dimensional
subspace spanned by the eigenvector corresponding to i.

The following theorem is a consequence of Theorem 3.8.

Theorem 3.9 Suppose that the n n matrix A has k different eigenvalues i with alge-
braic multiplicity mi, i 1 k. Then a nonsingular matrix T exists such that

T 1AT J (3.22)

where J, the so-called Jordan form of A, has a block-diagonal structure defined as J
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diag J1 Jk , or equivalently

J

J1 0
J2

. . .
0 Jk

(3.23)

For each i 1 k, matrix Ji is of size mi mi, has i as its only eigenvalue and possibly
also has a block diagonal structure of its own, i.e., possibly Ji diag Ji1 Jili

, or
equivalently

Ji

Ji1 0
Ji2

. . .
0 Jili

(3.24)

where li is a positive integer, and where each subblock has the following form

Ji j

i 1 0 0

0 i 1
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 0 i

(3.25)

Example 3.10 Consider the matrix (already in Jordan form)

J

2 1
2

2 1
2

1 1
1 1

1
1

1

(3.26)

where the elements that are not explicitly specified are equal to zero. Then

J1
J11 0
0 J12

2 1
2

2 1
2

and

J2

J21 0 0
0 J22 0
0 0 J23

1 1
1 1

1
1

1
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Hence, the matrix has two different eigenvalues 1 2 and 2 1 with algebraic mul-
tiplicities m1 4 and m2 5, respectively. Note that the geometric multiplicities of 1
and 2 are 2 and 3, respectively. Further, l1 2 and l2 3 and the J11 J12 J21 J22 and J23
are as indicated above.

If the matrix T of Equation (3.22) is partitioned as T T1 T2 Tk , conform the
partitioning in Equation (3.23), then the columns of submatrix Tj form a basis for the
subspace j. Equation (3.22) yields that AT TJ. If the individual columns of T are
denoted by q1 qn, then the i-th column of AT equals Aqi. The i-th column of TJ
equals qi iqi 1, with i either 0 or 1, depending on the location of the i-th column in
J in relation to some appropriate Jordan block corresponding to eigenvalue . Hence

Aqi qi iqi 1 i 1 n with i 0 1 (3.27)

where is an eigenvalue and where i is either zero or one. If i 0, then qi is an
eigenvector of A and can be obtained by solving A iI qi 0. If i 1, then qi is
a so-called generalized eigenvector and can be obtained by solving A iI qi qi 1,
where qi 1 is a (generalized) eigenvector obtained earlier in a similar way.

Now we are in a position to calculate eAt , namely by

eAt TeJtT 1

Application of the definition of eJt , see (3.19), gives eJt diag eJ1t eJkt , and for each

block, eJit diag eJilt e
Jili
t

. Finally, for each subblock,

eJi jt e it

1 t t2
2!

tdi j 1

di j 1 !

. . .
. . .

. . .
...

. . .
. . . t2

2!

...
. . . t t2

2!
1 t

0 0 1

(3.28)

where di j is the dimension of Ji j. See Exercises 3.5.12 and 3.5.13 for a proof.

Remark 3.11 Please note that if q̃1 q̃di j
are the (generalized) eigenvectors belonging

to the Jordan block Ji j (and this block on its turn corresponds to the eigenvalue i), then

A iI
kq̃k 0 for k 1 di j. This can been proved as follows. For k 1 obviously

A iI q̃1 0 because q̃1 is an eigenvector (and not a generalized one). For k 2 we
can write A iI

2q̃2 A iI A iI q̃2 A iI q̃1 0, where we used Equa-
tion (3.27), with i, qi q̃2, qi 1 q̃1 and i 1, yielding that q̃1 A iI q̃2. The
proof by induction can be continued for higher values of k. Thus the vectors q̃1 q̃di j
span the linear subspace i as introduced in the statement of Theorem 3.8, in case there
is one Jordan block corresponding to the eigenvalue i. The vectors span part of this
subspace if there is more than one Jordan block corresponding to i.
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Example 3.12 This is a continuation of Example 3.6. Calculate the transition matrix for
the system given in Equation (3.16). The characteristic polynomial is 2 2 25 and
therefore the eigenvalues are 1 2 0 3 5 4 5. The eigenspace corresponding to
eigenvalue 0 is one dimensional, because the matrix A 1 2I has rank 3. So, in addition
to an eigenvector in the usual sense, an extra generalized eigenvector for the eigenvalue 0
is needed, which can be computed using Equation (3.27). The result of these computations
is given below.

J

0 1 0 0
0 0 0 0
0 0 5 0
0 0 0 5

eJt

1 t 0 0
0 1 0 0
0 0 e5t 0
0 0 0 e 5t

The matrices T and T 1 are

T

0 0 125 125
0 0 625 625
1 0 3 3
0 1 15 15

T 1 1
1250

30 0 1250 0
0 30 0 1250
5 1 0 0

5 1 0 0

and

eAt TeJtT 1

cosh 5t 1
5 sinh 5t 0 0

5 sinh 5t cosh 5t 0 0
3

125 1 cosh 5t 3
625 5t sinh 5t 1 t

3
25 sinh 5t 3

125 1 cosh 5t 0 1

where cosh 5t 1
2 e5t e 5t and sinh 5t 1

2 e5t e 5t . Observe that the first column of
T is an eigenvector of A in the usual sense and that the second column of T is a generalized
eigenvector of A, both for the eigenvalue 1 2 0.

Example 3.13 This is a continuation of Exercise 3.5.2. Calculate the transition matrix
for the system given in Equation (3.43) with 1. The characteristic polynomial is

4 2 and therefore the eigenvalues are 1 2 0 3 i 4 i. Like above, for the
eigenvalue 0 the eigenspace is one dimensional. Again an extra generalized eigenvector
for this eigenvalue needs to be computed. The result of the computations yields

J

0 1 0 0
0 0 0 0
0 0 i 0
0 0 0 i

eJt

1 t 0 0
0 1 0 0
0 0 eit 0
0 0 0 e it

The matrices T and T 1 are

T

0 2 1 1
0 0 i i
3 0 2i 2i
0 3 2 2

T 1

0 2
3

1
3 0

3 0 0 1
3
2

1
2 i 0 1

3
2

1
2 i 0 1
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and

eAt TeJtT 1

4 3 cos t sin t 0 2 2 cos t
3 sin t cos t 0 2 sin t

6t 6 sin t 2 2 cos t 1 3t 4 sin t
6 6 cos t 2 sin t 0 3 4cos t

where cos t 1
2 eit e it and sin t 1

2i e
it e it . It follows that the first column of

T is an eigenvector of A in the usual sense and the second column of T is a generalized
eigenvector of A, both for the eigenvalue 1 2 0.

For diagonalizable matrices A we can write

A TDT 1 v1 vn

1 0
. . .

0 n

w1
...
wn

(3.29)

where v1 vn are the columns of T (formerly we also used the notation qi for the
columns), being the eigenvectors of A, and where w1 wn are the rows of T 1. It
easily follows that A n

i 1 ivi wi. The product vi wi, of a column vi with a row wi, is an
n n matrix, called a dyad (a dyad has at most rank one). Then the matrix A is the sum
of n dyads. The same applies to the transition matrix, since it can be written as

eAt T

e 1t 0
. . .

0 e nt

T 1
n

i 1
e itvi wi (3.30)

The solution of ẋ Ax with x 0 x0 can therefore be written as

x t eAtx0

n

i 1
e itvi wi x0

n

i 1
ie it vi (3.31)

where i wi x0 is a scalar quantity. The solution of ẋ Ax (or of ẋ Ax Bu with u 0,
the reason why this solution is sometimes called the free response) is thus decomposed
along the eigenvectors, i.e., it is a linear combination of terms with exponential coeffi-
cients. The solution corresponding to only one eigenvector (i.e., x0 is such that i 0 for
some i and k 0 for k i) is called amode of the system. If the initial vector is aligned
with one eigenvector, then the corresponding solution is completely situated in the one
dimensional space spanned by this eigenvector. Generalizations of Equations (3.29) and
(3.30) to the non-diagonalizable case exist, but will not be treated here.

Tacitly we assumed that i and therefore vi were real in the treatment above. For
complex i and vi the formulation above can be adjusted as follows. Suppose i
is an eigenvalue of A ( and are real and i now denotes the imaginary unit) with a
corresponding eigenvector v r is, where r s n . It is clear that and r n are
the real parts of and v n , respectively, and and s n are the imaginary
parts of and v n , respectively. Denoting Re for the real part and Im for the
imaginary part of a variable or expression, it follows that Re Im Rev r
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and Rev s. Because A is real and Av v, also Av̄ ¯ v̄, where the upperbar denotes the
complex conjugate. Therefore, ¯ i is also an eigenvalue of A, with eigenvector
r is. Suppose that x0 lies in the subspace spanned by r and s. Then there exist a b
such that

x0 ar bs
1
2
a ib r is

1
2
a ib r is v ¯ v̄

where 1
2 a ib . The corresponding free response is

x t e tv ¯ e
¯ t v̄

If is written in polar form as
1
2i
pei , with p and real, then

x t
1
2i
p e t i v e

¯ t i v̄

p Im e t i v p Im e t i t r is

pe t r sin t scos t

3.4 Impulse response and step response

The solution of ẋ Ax Bu, with x t0 x0 is given by

x t eA t t0 x0

t

t0

eA t s Bu s ds (3.32)

Now let be given an output function of the form

y t Cx t Du t

Then we find the following relation between the output function y y t , the initial
state x0 and the input function u u t :

y t CeA t t0 x0

t

t0

CeA t s Bu s ds Du t (3.33)

Let the p m matrix K t s be defined by

K t s CeA t s B (3.34)

This is called the impulse response matrix of the system. We shall explain this termi-
nology below.

Suppose a time t0 exists such that x0 x t0 0. We are only interested in the
system for t t0 and assume u s 0 for s t0. Then Equation (3.33) can be written as

y t u t

t

K t s u s ds Du t (3.35)
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where is a mapping which maps an m-dimensional input function u, which is supposed
to be zero before some time t0, to a p-dimensional output function y. Note that is a lin-
ear mapping, and that K t s andD provide a characterization of the external description
of the system. This is also referred to as the external behavior of the system. See Chap-
ter 8 for a discussion on the external description and behavior. Heuristically speaking, an
external description refers to the situation where the input function is directly mapped to
an output function, without the use of an internal state x. This ‘intermediate’ state has
been eliminated.

Now let us assume that D 0. Then Equation (3.34) becomes

y t

t

K t s u s ds (3.36)

The matrix function K t s has the following interpretation. Suppose the input function
is u t t t1 ei, where ei is the i-th basis vector in m (the i-th column of the m m
identity matrix) and t t1 is the so-called delta function defined as

t t t1 dt t1

for any continuous function . Heuristically, the t t1 function can be defined as the
limit for n of the sequence of functions

fn t t1

n
2

for t t1
1
n

0 for t t1
1
n

The output for such an input for t t1 is given by

y t

t

K t s s t1 eids K t t1 ei ith column of K t t1

The columns of K t t1 can be interpreted as the response of the system (being the output)
at time t t1 caused by an impulse shaped input function (i.e., a function) at time t1.
This is the reason why K t s is called the impulse response matrix.

Note that the matrix K t s CeA t s B does in fact depend on a single variable, viz.
the variable t s. Instead of K t s one often writes G , where is understood to be
equal to t s, i.e.,

G CeA B (3.37)

Often t is used instead of , which of course is not the same variable as the t in K t s .
Another important response matrix is the so-called step response matrix. Instead of

an impulse shaped input function now a step shaped function will be applied. Such a step
function, or Heaviside function, H t t1 is defined as

H t t1

1 for t t1

0 for t t1
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Note that H t t1 does belong to the class of admissible input functions (piecewise
continuous functions), whereas one has to be very careful with impulse functions (strictly
speaking, the delta function does not satisfy the conventional definition of a function).
Also note that a step function is an integrated version of the impulse function, i.e.,

H t t1

t

s t1 ds

The output corresponding to the step function H t t1 ei is, assuming that the system
starts at the origin at a time t0 in the past, is for t t1 given by

y t

t

K t s H s t1 eids

t

t1

K t s eids

t

t1

K t s ds ei

The matrix that appears on the right hand side between brackets is called the step
response matrix of the system, and will be denoted by S t t1 . Denoting the second
variable by s we obtain the following definition of the step response matrix:

S t s
t

s
K t d (3.38)

The two partial derivatives of S are easily seen to satisfy

t
S t s K t s (3.39)

s
S t s K t s (3.40)

Example 3.14 We start with the linearized Equation (3.6) of the satellite dynamics; see
Exercise 3.5.2. Assume that both the angle and the distance r are measured and pro-
cessed to yield r and t ( and are constants, r and are functions of time.)
Hence,

y
r

t

1 0 0 0

0 0
1

0
x (3.41)

Take for the constants 1 and 1. The impulse response matrix for this system is
(see Example 3.13 for the calculation of eAt )

G t CeAtB
sin t 2 2cos t

2 2cos t 3t 4sin t

The external description (3.36) does not only hold for strictly causal linear differential
systems, as is shown by the following example (for a description of (strict) causality, see
Remark 3.16).
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Example 3.15 Consider a single-input single-output system of the form

y t
1
T

t

t T

u s ds

which is sometimes called a moving average. This system is linear, time-invariant and
the impulse response function is

G

1
T

for 0 T

0 for T and 0

This is an example of an infinte-dimensional linear system. The state space of this system
is a function space.

In Equation (3.36) the upper bound of the integral is t. However, if a given system
description requires that we have to write

y t K t s u s ds or y t G t s u s ds (3.42)

with the upper bound instead of t, then we are dealing with a so-called non-causal
system, see also below.

Remark 3.16 The formal definition of causality will be given in Chapter 8. Heuristi-
cally, it means that the current evolution of a system cannot depend on phenomena which
will happen in the future. For state space descriptions (strict) causality can be character-
ized as follows. For a strictly causal system the present state only depends on the past
states and past inputs. If a system is only causal (and not strictly causal), then the present
state is only allowed to depend on the past states and the past and present input. A system
that is not causal is called a non-causal system. In such a system the present state is
allowed to depend on, for instance, future inputs.

The relation in Equation (3.42) does not define a system according to the definitions
given here. The causal systems form a subclass of the class of systems described by (3.42)
by requiring

K t s 0 for t s or G 0 for 0

The external behavior of a linear differential system is completely determined by the
matrices K t s and D. We show that different triples A B C of system matrices can
produce the same impulse response matrix K t s .

Let T : n n be an invertible basis transformation of the state space n such that
x Tz. Then the transformed coordinate state vector z T 1x satisfies the equations

ż T 1ẋ T 1Ax T 1Bu T 1ATz T 1Bu
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y Cx Du CTz Du

Hence the triple A B C is sent by T to the triple T 1AT T 1B CT . A straightforward
computation of the impulse response matrix for the transformed system yields

CTeT
1ATtT 1B CTT 1eAtTT 1B CeAtB

which shows that the impulse response matrix does not change under a basis transforma-
tion. This of course should be expected since the choice of a new basis in the state space
should not change the external behavior of a system. These considerations are formalized
in the following definition.

Definition 3.17 Two linear systems

ẋ Ax Bu
y Cx Du

˙̃x Ãx̃ B̃u
y C̃x̃ D̃u

are called equivalent if an invertible linear mapping T : n n exists such that

Ã T 1AT B̃ T 1B C̃ CT D̃ D

Obviously this notion of equivalence is concerned with the triples A B C only (the
matrix D plays no role). Note that C̃eÃt B̃ CeAtB for all equivalent triples Ã B̃ C̃ and
A B C .

Equivalent systems are defined on a state space of the same dimension. It is also
possible for two systems on state spaces of different dimensions to have the same impulse
response matrix. A trivial example of this is obtained by adding a vector equation which
does not affect the output. For instance,

ẋ Ax Bu
˙̂x Fx̂ Gu

with y Cx Du

written as
d
dt

x
x̂

A 0
0 F

x
x̂

B
G

u

y C 0
x
x̂

Du

Apparently, there can be no upper-bound on the dimension of a realization of a given im-
pulse response matrix. However, under reasonable conditions a lower bound does exist.
If a triple A B C realizes a given impulse response matrix G t , it will be called amini-
mal realization if there exists no realization of G t on a state space of lower dimension.
The minimum dimension is called the order of the impulse response matrix.

A well-known branch of system theory is concerned with the realization problem:
given the external description of a system, such as for instance determined by the mapping

introduced in Equation (3.35), determine a state space description. For linear time-
invariant finite dimensional differential systems this problem boils down to the following:
given the impulse response matrix G t D t (see Exercise 3.5.16 for the extra term
D t ) find an n nmatrix A, n mmatrix B and a p nmatrixC such thatG t CeAtB,
where also n is to be determined. Note that a realization of an impulse response matrix
G t , if it exists, is not unique (any equivalent system will do).
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3.5 Exercises

Exercise 3.5.1 Note that x̃ t 0 4 and ũ t 0, for all t 0, is a solution pair of the
system description obtained in Exercise 2.5.1. Follow the approach in the beginning of the
present chapter to obtain the linearization around the above solution pair and compare
the result with Example 3.6.

Exercise 3.5.2 This is a continuation of Section 2.4.2. Consider a satellite of unit mass in
earth orbit specified by its position and velocity in polar coordinates r ṙ ˙ . The input
functions are a radial thrust u1 t and a tangential thrust u2 t . Newton’s laws yield

r̈ r ˙2 g
r2 u1

¨ 2 ˙ ṙ
r

1
r
u2

(Compare Equation (2.6) with ms 1 u1 Fr u2 F and Gme g.) Show that, if
ũ1 t ũ2 t 0, for all t 0, then r̃ t (constant), ˜ t t is constant), with

3 2 g, is a solution, and that linearization around this solution with z1 t r t
z2 t ṙ t z3 t t t z4 t ˙ t v1 t u1 t v2 t u2 t

leads to

dz
dt

0 1 0 0
3 2 0 0 2

0 0 0 1
0 2 0 0

z

0 0
1 0
0 0
0 1

v (3.43)

Exercise 3.5.3 Given the state description

ẋ1 x2 x2 1 u1 cosu2
ẋ2 u1 sinx2
y x1 u2

2 ex2

Show that for u1 0, u2 1 a solution is given by x1 1, x2 0, y 3. Linearize the
state equations and the output equation around this solution and write the result in matrix
form (ż Az Bv w Cz Dv).

Exercise 3.5.4 Consider the state-space system

ẋ1 x6
1 x2

ẋ2 x1 u

y1 x2
2

y2 x1

with input u, outputs y y1 y2 , and state x x1 x2 .

1. Determine the equilibrium point(s) of the state-space system for u 1.

2. Linearize the system for u 1. Take v as input and w as output of the linearized
system.
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Exercise 3.5.5 Consider the state-space system

ẋ1 x2
2u1

ẋ2 x1 u2

ẋ3 1 x2

y x1

with inputs u u1 u2 , output y, and state x x1 x2 x3 .

1. Determine the equilibrium point of the state-space system for u1 0 and u2 1.

2. Linearize the system around the equilibrium point found under a). Take v as input
and w as output of the linearized system.

Exercise 3.5.6 Given the differential equations

ẋ1 t x2 t
ẋ2 t x1 t x2

2 t u t

and the output function y t x1 t . Show that for ũ t cos2 t a solution of the differ-
ential equations is x̃1 t sin t x̃2 t cos t. Linearize the state equations and the output
function around this solution and write the result in matrix form. Is the linearized system
time-invariant?

Exercise 3.5.7 For t 1, the following nonlinear system is given.

ẋ1 t tx2 t u t

ẋ2 t
1
t
x1 t

y t
x2

1 t
t2

x2
2 t

1. Show that if u t sin t, then x1 t t sin t en x2 t cost form a solution of the
state equations.

2. Linearize the system, including the equation for y t , around the above solution.

Exercise 3.5.8 A tractor with n 2 axles connected to it (if n is even then these axles
can be interpreted as n 2 2 wagons), see Figure 3.2, follows a linear track, i.e., the
middles of all axles (including the two axles of the tractor) are approximately on one line l.
Each wagon is connected by means of a pole to the hook-up point of the preceding wagon.
This hook-up point is exactly in the middle of the rear axle of this preceding wagon. The
distances of the middles of all axles to line l are not exactly zero (due to perturbations)
and are indicated by x1 xn; the distance of the midpoint of the two front wheels of
the tractor to the line is x1 and the distance of the middle of the last axle, furthest away
from the tractor, to the line is xn. With these ‘distances’ is meant the distance vertical to
the line l. The tractor moves with unit speed forward. The (scalar) control is the angle
that the front wheels of the tractor make with respect to the symmetry axis of the tractor
(with u 0 the tractor moves in a straight line (not necessarily line l). It is assumed that
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x
123n xx xxn-1

l

Figure 3.2 Tractor with carts.

the distance between two successive middles of axles equals 1. Show that the linearized
equations (around xi 0 i 1 n, and u 0) are given by

dx
dt

1 1 0 0
1 1 0 0
0 1 1 0 0
...

. . .
. . .

...
0 1 1 0
0 0 1 1

x

0
...
...
...
0

u (3.44)

for some appropriate (depending on the scaling of the steering wheels). What are
the linearized equations of motion if the tractor moves with speed 1 in the backward
direction?

Exercise 3.5.9 Consider the following system (with only scalar quantities).

ẋ t et x t u t
y t x t

1. Is the system time invariant?

2. Apply the transformation et . Hence, the time scale is changed. Is the trans-
formed system time invariant? How are the two answers related?

Exercise 3.5.10 Calculate eAt if

1. A
0 0
0 0

4. A
1 2
2 1

2. A
0 1
0 0

5. A
1 0

1 1

3. A
1 0
0 2

6. A
5 9
1 1
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Exercise 3.5.11 If A1 and A2 commute (i.e., A1A2 A2A1 , then e
A1 A2 t eA1t eA2t .

Prove this. As a hint, prove first that d
dt e

A1t eA2t A1 A2 e
A1t eA2t . Give a counterexam-

ple if A1 and A2 do not commute.

Exercise 3.5.12 Consider the n n matrix

N

0 1 0 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 0 1
0 0

So N has zeros everywhere except for the diagonal directly above the main diagonal,
where it has ones. Using Equation (3.19) prove that

eNt

1 t t2
2!

tn 1

n 1 !
. . .

. . .
. . .

...
. . .

. . . t2
2!

. . . t
0 1

Exercise 3.5.13 Let matrix Ji j be as in Theorem 3.9 and assume that it has size di j di j.
Note that Ji j iI N, where I is the di j di j identity matrix and where N is a di j
di j matrix as in Exercise 3.5.12. Using Exercise 3.5.11 prove the expression for e

Ji jt in
Equation (3.28).

Exercise 3.5.14 Let be given the n-th order system ẋ Ax with

A

0 1 0 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 0 1
p0 p1 pn 2 pn 1

Show that the characteristic polynomial of A, i.e., det sI A , is given by

sn pn 1s
n 1 p1s p0

If is an eigenvalue of A, then prove that the corresponding eigenvector is

1 2 n 1
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Exercise 3.5.15 Show that a Jordan form of the system matrix A of Exercise 3.5.8 (the
tractor example) equals

J

0 1 0 0
0 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
...

. . .
. . .

. . . 0
... 0 1 1
0 0 0 1

Exercise 3.5.16 Show that for linear systems with D 0, the impulse response can be
defined as K t s D s t , where is the delta function.

Exercise 3.5.17 Let be given two linear differential systems in a series interconnection,
as depicted in Figure 3.3 The in- and outputs are scalar functions and the impulse re-

System System

u uy y
22

21
11 =

Figure 3.3 Series interconnection of systems.

sponse functions of the two systems are Ki t s i 1 2. Prove that the impulse response
function of the series connection is given by

K t

t

K2 t v K1 v dv

Exercise 3.5.18 Verify the equalities in Equations (3.39) and (3.40).

Exercise 3.5.19 Consider a real n n matrix A with characteristic polynomial p s
det sI A , written as p s sn an 1s

n 1 a1s a0. The purpose of this exercise
is to prove the theorem of Cayley-Hamilton, i.e., to show that p A 0, where p A
An an 1A

n 1 a1A a0I, and I and 0 denote the n n identity and zero matrix,
respectively. Therefore, let A have Jordan form J, as in Theorem 3.9. Show that p s
also is the characteristic polynomial of J. Consider the di j di j subblock matrix Ji j as in
(3.25) and let qi j s be its characteristic polynomial, i.e., qi j s det sI Ji j . Clearly,

qi j s s i
di j . Prove that qi j Ji j 0 and that qi j s divides p s . Next show that

p Ji j 0. Finally, conclude that p J 0 and, consequently, that p A 0.

Exercise 3.5.20 Let ẋ Ax Bu y Cx Du and ˙̃x Ãx̃ B̃u y C̃x̃ D̃u be two
systems. Show that if AT T Ã B T B̃ CT C̃ and D D̃, for some matrix T , then
the two systems are not necessarily isomorphic, but do have the same impulse response
matrix.
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Exercise 3.5.21 Below you will find a number of statements. For each of statements
determine whether it is true or false. Make your answer plausible by means of a simple
reasoning or (counter)example.

1. Every system has a finite dimensional state space.

2. The linearization of a system around a time-varying solution always results in a
time-dependent linearization.

3. Every system can only have a finite number of equilibrium points.

4. The next two matrices have the same Jordan form

0 1 0
1 0 0
0 0 1

i 0 0
0 1 0
0 0 i

5. The next two matrices have the same Jordan form

0 1 0
1 0 0

0 0 1

1 0 0
0 1 0
0 0 1

6. The next two matrices have the same Jordan form

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

7. The next two matrices have the same Jordan form

0 1 0 3
0 0 2 0
0 0 0 2
0 0 0 0

0 1 0 3
0 2 0 0
0 0 0 2
0 0 0 0

8. If A1 A2 are two n n matrices such that A1 A2 A1 A2 A2
1 A2

2, then

eA1t eA2t e A1 A2 t .



Chapter 4

System Properties

4.1 Stability

Several concepts of stability for differential equations exist. They can be distinguished
according to stability corresponding to autonomous systems (related to the state vector)
and to stability corresponding to systems with inputs and outputs (where the stability
is defined in terms of these inputs and outputs). The next four sections deal with the
first mentioned concept of stability, the subsequent fifth section deals with input/output
stability. Proofs of the theorems related to Routh’s criterion and interval stability are not
given here. They make an extensive use of complex function theory and fall outside the
scope of this book. However, references to papers with short/simple proofs of Routh’s
criterion and interval stability are included.

4.1.1 Stability in terms of eigenvalues

Definition 4.1 Consider the first order differential equation ẋ f x , with x n , and
write x t x0 for its solution at time t, given the initial condition x 0 x0.

A vector x which satisfies f x 0 is called an equilibrium point.

An equilibrium point x is called stable if for every 0 a 0 exists such that
if x0 x then x t x0 x for all t 0.

An equilibrium point x is called asymptotically stable if it is stable and, moreover,
a 1 0 exists such that lim

t
x t x0 x 0, provided that x0 x 1.

An equilibrium point x is unstable if it is not stable.

In this definition is an arbitrary norm; usually the Euclidean norm is used. Intuitively,
stability means that the solution remains in a neighborhood of the equilibrium point and
asymptotic stability means that in addition the solution converges to the equilibrium point,
provided the initial point is sufficiently close to this equilibrium point. Instability means
that, no matter how close starting to the equilibrium point, there always exists at least one
solution that ‘diverges’ away from this equilibrium point.

In the definition of asymptotic stability, both requirements make sense. Indeed, there
do exist examples (though not straightforward) of differential equations for which x is an
unstable equilibrium point, while a 1 0 exists such that limt x t x0 x 0 for
x0 x 1. In these examples, although there is convergence to the equilibrium point
x , this convergence is at the expense of large deviations from x .

For the linear differential equation ẋ Ax, we will take as equilibrium point the origin
x 0 (though there will be others if detA 0). We will call the linear differential
equation ẋ Ax, or even the n n matrix A, asymptotically stable, stable or unstable, if
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Figure 4.1 Stability and asymptotic stability.

the origin x 0, seen as an equilibrium point, is asymptotically stable, stable or unstable,
respectively.

Note that the notions of asymptotic stability, stability and instability do not depend on
the chosen basis. Hence, if a differential equation is asymptotically stable with respect to
one basis, it is asymptotically stable with respect to any basis, and similarly for stability
and instability. Therefore, to investigate stability issues, one possibility is to move to a
basis on which the description is as simple as possible. This is in fact done in the proof of
the next theorem.

For the next theorem, recall the notions of algebraic and geometric multiplicity of
an eigenvalue from page 33. Also recall that Re denotes the real part of the complex
number .

Theorem 4.2 Consider the differential equation ẋ Ax, with A an n n matrix having k
distinct eigenvalues 1 k, implying that k n. The origin x 0 is

Asymptotically stable if and only if Re i 0 for all i 1 k.

Stable if and only if Re i 0 for all i 1 k, and for each eigenvalue i on the
imaginary axis, i.e., with Re i 0, the algebraic multiplicity and the geometric
multiplicity are the same.

Unstable if and only ifRe i 0 for some i 1 k, or there is an eigenvalue i on
the imaginary axis for which the algebraic multiplicity is larger than the geometric
multiplicity.

Proof In the proof use is made of the formula

eAt TeJtT 1 (4.1)

where J is Jordan form of A. It is easily verified that if all eigenvalues have real parts less
than zero, all the elements of eJt converge to zero for t . Therefore, in that situation,
also the elements of eAt approach zero and subsequently the solution x t eAtx0 also
approaches zero. If some eigenvalues have real part zero, the situation is slightly more
subtle. The subblocks Ji j in J with Re i 0 still do not cause any problem (since eJi jt 0
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as t ), but the subblocks with Re i 0 may disturb stability. In the latter case, in the
matrix

eJi jt e it

1 t t2
2!

0
. . .

. . .
. . .

...
. . .

. . . t2
2!

. . . t
0 0 1

(4.2)

the factor e it remains bounded (but does not approach zero, because with Re i 0 it
follows that e it 1), whereas the elements in the matrix do not all remain bounded,
due to entries like t 1

2! t
2, etc, which appear when the size of Ji j is ‘greater’ than 1 1. In

that case initial conditions do exist such that the resulting solution becomes unbounded.
Therefore, if the size of some Ji j corresponding to an eigenvalue on the imaginary axis is
‘greater’ than 1 1, there is no stability. If the size of all subblocks Ji j corresponding to
eigenvalues with real part zero is 1 1, then stability is guaranteed. The condition given
in the second statement of the theorem exactly expresses the fact that all such subblocks
have size 1 1.

Example 4.3 Consider the matrices in Exercise 3.5.10. The first one is stable, the fifth
one is asymptotically stable, the others are unstable.

Example 4.4 The results of Theorem 4.2 do not hold for time-varying systems as is
shown by the solution of the next differential equation

d
dt

x1
x2

4a 3ae8at

ae 8at 0
x1
x2

where a is a real parameter. The eigenvalues of the ‘system’ matrix are 1 a and 2
3a (they happen to be constants, i.e., they do not depend on time) and hence for a 0
both eigenvalues have real parts less than zero. However, the exact solution, with initial
condition x1 0 x10 and x2 0 x20, is given by

x1 t
3
2
x10 x20 e

5at 1
2
x10 3x20 e

7at

x2 t
1
2
x10 3x20 e

at 1
2
x10 x20 e

3at

which is unstable for any nonzero a. Indeed, take, for instance, x10 1 x20 1. Then
x1 t e7at and x2 t e at . Hence, there exists an initial condition for which the
solution diverges away from the origin, being the only equilibrium point of the differential
equation. This conclusion holds for both a 0 and a 0. If a 0 the ‘system’ matrix
equals the zero matrix and any point is equilibrium point and is also stable.

Definition 4.5 Consider the n dimensional system ẋ Ax. The stable subspace for this
system is the (real) subspace of the direct sum of those linear subspaces i (see Theo-
rem 3.8) that correspond to eigenvalues of A in the open left half-plane (i.e., eigenvalues
with real parts less than zero). The unstable subspace is defined similarly, then corre-
sponding to eigenvalues with nonnegative real parts.
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Note that it follows from the above definition that the state space n is the direct sum
of the stable subspace and the unstable subspace.

4.1.2 Routh’s criterion

The eigenvalues of A are the zeros of its characteristic polynomial. This polynomial will
be denoted here by det sI A sn pn 1s

n 1 p1s p0. By means of a criterion,
known as Routh’s criterion, the asymptotic stability of A can be checked directly by
considering the coefficients pi i 0 1 n 1, without calculating the zeros of the
polynomial explicitly. In terms of numbers of numerical operations, calculation of the
location of the eigenvalues is much more expensive than Routh’s criterion, which only
checks whether the eigenvalues lie in the open left half-plane (and does not calculate the
precise location of the eigenvalues).

For a polynomial ansn an 1s
n 1 a1s a0, with an 0, the criterion works as

follows (no proof is given here; a simple proof can be found in [Meinsma, 1995]). First
arrange the coefficients ai i 0 1 n, into two rows in the following way.

an an 2 an 4
an 1 an 3 an 5

where, if needed, a 1 is defined to be zero. Next, compute subsequent rows to obtain the
following table

an an 2 an 4
an 1 an 3 an 5
bn 2 bn 4 bn 6
cn 3 cn 5 cn 7
dn 4 dn 6 dn 8

...
...

...

where the coefficients bi ci di, etc., are defined as follows

bn 2

an 1an 2 anan 3

an 1
bn 4

an 1an 4 anan 5

an 1

cn 3

bn 2an 3 an 1bn 4

bn 2
cn 5

bn 2an 5 an 1bn 6

bn 2

dn 4

cn 3bn 4 bn 2cn 5

cn 3
dn 6

cn 3bn 6 bn 2cn 7

cn 3
...

...

Like for a 1, if in the above computations coefficients show up that have a negative index,
then these coefficients are defined to have a zero value.

Clearly, the computation of a next row breaks down if the first element of the lastly
computed row is a zero. Therefore, the scheme is just continued until a zero in the first
column has been encountered. It can be shown easily that this certainly will happen when
the n 2 -nd row is to be computed. However, observe that this may also happen earlier,
possibly even in the second row, when an 1 0. Note that the first row always starts
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with a nonzero, because it is assumed that an 0. The so-called Routh table is the table
consisting of all the rows obtained/computed in the way as described above. Hence, the
Routh table consists of at most n 1 rows, and the first column of the Routh table only
contains nonzero elements!

Routh’s criterion
The roots of the polynomial ansn an 1s

n 1 a1s a0, with an 0, all have a
negative real part if and only if the Routh table consists of n 1 rows and all the elements
in the first column of the table have the same sign, i.e., all elements of this column are
either positive or negative.

Example 4.6

1. Consider the polynomial p s a3s
3 a2s

2 a1s a0. Then n 3 and the associ-
ated Routh table looks like

a3 a1
a2 a0
b1
c1

with b1
a2a1 a3a0

a2
and c1

b1a0

b1
a0. According to Routh’s criterion the

roots of p s all have negative real part if and only if a3 a2 b1 and c1 are nonzero
and have the same sign.

2. Consider the polynomial p s s5 3s4 5s3 5s2 4s 2. The polynomial
can be factorized as s2 1 s 1 s2 2s 2 , showing that it has roots located
at s i s 1 and s 1 i. Hence, not all roots of the polynomial have a
negative real part. This also follows from the associated Routh table. This table
looks like

1 5 4
3 5 2
10
3

10
3

2 2

Since the degree of p s is 5, i.e., n 5, it follows that the Routh table cannot be
developed far enough. Hence, the associated polynomial does not have all its roots
in the open left half-plane.

3. Consider the polynomial p s s4 s3 s2 3s 4. It follows from numerical
methods that p s has roots at s 0 758 0 701i. Hence, not all roots of the
polynomial lie in the open left half-plane. Again, the associated Routh table can be
used to show this. This table looks like

1 1 4
1 3
4 4
4
4
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Although the full table can be computed not all elements in the first column have
the same sign. Hence, the associated polynomial does not have all its roots in the
open left half-plane.

4.1.3 Lyapunov stability

Determining whether or not all solutions of a particular linear differential equation (time-
invariant or time-dependent) remain bounded, or go to zero as t tends to infinity, can
be quite difficult. It is possible to derive some useful sufficiency conditions which, if
satisfied, guarantee that all solutions will be bounded, or even approach zero. To this
end, we will introduce certain scalar functions of x and t, and study their evolution in
time. The basic idea has its roots in classical mechanics, where stability criteria involving
the scalar notion of energy are quite useful. A mechanical system can defined to be
stable if its energy remains bounded. Lyapunov developed this idea and, consequently,
the corresponding theory bears his name.

Let us concentrate here on time-invariant linear differential equations of the form
ẋ Ax. The scalar function V x t , defined as x t Px t , for some positive-definite
matrix P, will be regarded as a ‘generalized’ energy associated with the system. Recall
that a square matrix P is called positive-definite if it is symmetric and if a Pa 0 for all
a 0. Furthermore, note that because of the time-invariance the function V x t does
not need to depend on t explicitly. In a system which is asymptotically stable the energy
should strictly decay with time, i.e., the next derivative should be negative

d
dt
V x t ẋ t Px t x Pẋ t x t PA A P x t

and hence, if Q
def

PA A P is positive-definite, the energy does decrease with time
as long as x t 0. Indeed, it will be shown below that if Q 0, then limt V x t 0.

Above, the starting point was a positive-definite matrix P such that hopefully the
matrix Q, defined as PA A P, is also positive definite. This order is in contrast with
the next theorem, where the starting point is a positive-definite matrix Q and a positive-
definite matrix P is looked for that satisfies A P PA Q.

Theorem 4.7 All eigenvalues of the matrix A have negative real part if and only if for
any given positive-definite matrix Q there exists a positive-definite matrix P that satisfies

A P PA Q (4.3)

Proof Sufficiency. From the existence of the matrix P we will prove that all eigenvalues
of A have negative real parts. Suppose that a matrix P 0 exists such that (4.3) holds and
let Ax x for some non-zero vector x. Multiplication of equation (4.3) with x̄T on the
left and x on the right yields

x̄T ATPx x̄TPAx x̄TQx
¯ x̄T Px x̄TPx x̄TQx

¯ x̄T Px x̄TQx

Since x̄T Px 0 and x̄TQx 0, ¯ 2Re must be strictly negative.
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Necessity. From the asymptotic stability of A it will be shown that (4.3) has a solution
P 0. If A is such that Re i 0 for all eigenvalues i, then it can be shown that a suitable
matrix P is given by

P
0
eA tQeAtdt

Due to the asymptotic stability of A this integral will exist, and due to the fact that Q
is positive-definite, it follows that P is also positive-definite. Finally, by substitution, it
follows that

A P PA
0
A eA tQeAtdt

0
eA tQeAtAdt

0

d
dt

eA tQeAt dt

eA tQeAt
0

Q

Equation (4.3) is referred to as a Lyapunov equation. Note that the equation is a linear
equation and can, in principle, be treated by elementary techniques from linear algebra.
Once a solution has been found, it can be tested for its positiveness (and uniqueness).

4.1.4 Interval stability

In this section polynomials of the form p s a0 a1s an 1s
n 1 sn will be

studied, and again the interest is whether the zeros belong to the open left half-plane.
The novelty here is that the coefficients ai are not exactly known. Indeed, it will be
assumed that only the lower bounds ai and upper bounds ai for each ai are known, i.e.,
ai ai ai , i 0 1 n 1. The central question is: if ai and ai , i 0 1 n 1 are
known, and arbitrary coefficients ai subject to ai ai ai are chosen, what can be said
about the location of the roots of p s ? What conditions should be imposed on ai and ai
such that the roots lie in the open left half-plane? These questions are related to robustness
issues of linear systems, since quite often the exact numerical values of the coefficients ai,
i 0 1 n 1, will not be known, but these values are only known approximately by
means of upper and lower bounds. Sometimes an uncertain polynomial as above will be
denoted as p s a , where a is a vector containing the coefficients ai of the polynomial. If
ai ai ai , then p s a can be seen as an element of an interval polynomial, that will
be denoted by p s a a , where a and a are vectors that contain the lower and upper
bound of each ai, i.e., p s a a a0 a0 a1 a1 s an 1 an 1 s

n 1 sn.

Definition 4.8 Associated with the interval polynomial

p s a a a0 a0 a1 a1 s an 1 an 1 s
n 1 sn

are the following four polynomials, the so-called Kharitonov polynomials

p s a0 a1 s a2 s
2 a3 s

3 a4 s
4 a5 s

5 a6 s
6 sn

p s a0 a1 s a2 s
2 a3 s

3 a4 s
4 a5 s

5 a6 s
6 sn

p s a0 a1 s a2 s
2 a3 s

3 a4 s
4 a5 s

5 a6 s
6 sn

p s a0 a1 s a2 s
2 a3 s

3 a4 s
4 a5 s

5 a6 s
6 sn



56 Mathematical Systems Theory

It will turn out that the four Kharitonov polynomials play a crucial role in the stability
of p s a , with the vector a arbitrary, but subject to ai ai ai , i 0 1 n 1. In-
deed, the following can be shown (a simple proof can be found in [Minnichelli, Anagnost
and Desoer, 1989])

Theorem 4.9 Let p s a a be an interval polynomial as described above. Then for
any vector a with ai ai ai , i 0 1 n 1, the polynomial p s a has all its zeros
in the open left half-plane if and only if the four Kharitonov polynomials have all their
zeros in the open left half-plane.

Example 4.10 Suppose that the next interval polynomial is given

p s a a 15 19 20 24 s 2 3 s2 s3

Then the four Kharitonov polynomials are

p s 15 20s 3s2 s3

p s 19 20s 2s2 s3

p s 15 24s 3s2 s3

p s 19 24s 2s2 s3

To study the stability of these four polynomials, we can for instance use Routh’s criterion.
If we do so, it turns out that these four polynomials are indeed stable, i.e., they have all
their zeros in the open left half-plane. From Theorem 4.9 it follows that p s a has all
its zeros in the open left half-plane for all vectors a a0 a1 a2 with a0 15 19 a1
20 24 a2 2 3 .

4.1.5 Input-output stability

This type of stability refers to the effects of input functions. It centers around the idea
that every bounded input should produce a bounded output provided that the underlying
system can be regarded stable. Such a stability is called input-output stability. An input
function u is called bounded if a constant c exists such that u t c for all t. One has
a similar definition for the bounded-ness of the output function y. Let us give the formal
definition.

Definition 4.11 The system

ẋ t A t x t B t u t
y t C t x t D t u t

is BIBO stable (BIBO stands for bounded input, bounded output) if for all t0, with zero
initial conditions at t t0, every bounded input defined on t0 gives rise to a bounded
output on t0 . The system is called uniformly BIBO stable if there exists a constant k
such that for all t0, if x t0 0 and u t 1 for all t t0, then y t k for all t t0.
Then k clearly is independent of x0.



4. System Properties 57

BIBO stability is often also referred to as external stability, in contrast to asymptotic
stability of ẋ t A t x t , which is often referred to as internal stability. For time-
invariant systems, i.e., linear systems with constant matricesA B C andD, it can be shown
that a system is BIBO stable if and only if 0 G t dt , where G t CeAtB, i.e.,
the impulse response of the system apart from the additional term D t , and denotes
some appropriate matrix norm. Note that the matrix D does not play a role, because its
contribution cannot result in an unbounded output when the input is bounded. Further, it
can be shown that if a system is internally stable then it is also externally stable. Without
additional requirements, the converse need not to be true; see Exercise 4.5.16. Actually,
for the converse to be true, the concepts introduced in the following two sections play an
important role.

Other types of input-output stability exist, for instance, related to the requirement that
input and output functions must be L2-functions (functions which are measurable and
square-integrable), but we will not continue further in these directions.

4.2 Controllability

Controllability is a fundamental concept in mathematical system theory, as is the concept
of observability. Controllability will be treated in this section and observability will be
introduced in the next section. The two concepts play an essential role in the design and
control of systems, as will become clear in the sequel. We will confine ourselves to linear,
time-invariant differential systems, as introduced in Chapter 3. Consider therefore

ẋ Ax Bu (4.4)

y Cx Du

with x n , u m and y p . The constant matrices have appropriate sizes. The
space of admissible input functions will be the class of piecewise continuous (vector-)
functions. This space will occasionally be denoted as U . The solution of (4.4) at time t,
for the initial condition x 0 x0 and input function u, will be written as x t x0 u and
the corresponding output as y t x0 u . Then, it can be shown that (see Exercise 4.5.15)

x t x0 u eAtx0

t

0
eA t s Bu s ds (4.5)

y t x0 u CeAtx0

t

0
CeA t s Bu s ds Du t

The system (4.4) will sometimes be referred to as the system A B C D , for the sake
of brevity.

Definition 4.12 The system A B C D is called controllable if for any two states x0 x1
n , a finite time t1 0 and an admissible input function u exist such that x t1 x0 u x1.

Hence, a system is controllable if an arbitrary state x1
n can be reached starting

from an arbitrary state x0
n , in finite time t1, by means of the application of a suitable

admissible input function u. Sometimes controllability is only defined for final states x1



58 Mathematical Systems Theory

being equal to the origin. In that case, it would be more appropriate to talk about null-
controllability. The ‘reverse’ concept of null-controllability, i.e., being able to reach an
arbitrary state starting from the origin is called reachability. For differential systems
A B C D , the two additional controllability concepts are equivalent to controllability as

defined in Definition 4.12; see Exercise 4.5.28. Hence, if a differential system is reach-
able, then it is also controllable and null-controllable, etc. As all three controllability
concepts are equivalent, we will stick to Definition 4.12. The previous equivalence does
not hold for discrete-time systems; see Chapter 7. (The essence is that the transition ma-
trix for discrete-time systems does not necessarily have full rank, consequently yielding
that null-controllability is easier fulfilled than ‘full’ controllability.)

Controllability will be characterized in terms of the matrices A and B. From the ex-
pression for x t x0 u in (4.5) it is clear thatC and D do not play any role. Define

R B AB A2B An 1B (4.6)

which is an n nm matrix consisting of n blocks AjB j 0 1 n 1, and which is
called the controllability matrix. The image of R, denoted as imR (see page 33 for this
notation), is called the controllable subspace. This name will become clear later on.

The next lemma is useful in the development of conditions for the controllability of a
system.

Lemma 4.13 imAkB imR for all k 0.

Proof The assertion for k 0 1 n 1 follows from the definition of R. If

p det I A n pn 1
n 1 p0

is the characteristic polynomial of A, then the theorem of Cayley-Hamilton, which is
well known in matrix theory, states that p A 0 (see also Exercise 3.5.19), resulting in

An pn 1A
n 1 pn 2A

n 2 p1A p0I (4.7)

Hence, An is a linear combination of Aj with scalar weights p j, j 0 1 n 1.
Multiplying (4.7) by A and substitution of An as in (4.7) leads to

An 1 pn 1 pn 1A
n 1 pn 2A

n 2 p1A p0I

pn 2A
n 1 p1A

2 p0A

Therefore, An 1 also is a linear combination of Aj with scalar weights, j 0 1 n 1.
With induction it can be shown that Ak, for all k n, can be written as such a com-
bination. Consequently, AkB, for all k n, can be written as a linear combination of
B AB An 1B. Hence, for all k n, the columns of AkB can be written as a linear
combination of the columns of B AB An 1B. So, also for all k n, it follows that
imAkB imR.

Theorem 4.14 The following statements are equivalent.

1. The system A B C D is controllable.
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2. R has rank n.

3. imR n.

Proof The equivalence of statements 2 and 3 is well known from linear algebra. We
continue with the proof of the implication 1 2. Assuming that rank R n, we will
show that the system A B C D is not controllable. For each admissible input function
u t 0 t t1, with t1 0, we have that

x t1 0 u
t1

0
eA t1 s Bu s ds

t1

0
I A t1 s

A2

2!
t1 s 2 Bu s ds

B
t1

0
u s ds AB

t1

0
t1 s u s ds

A2B
t1

0

t1 s 2

2!
u s ds

Note that all integrals in the last expression are constant (weight) vectors. Hence, the
above expression shows that x t1 0 u is a linear combination of the columns of the ma-
trices B AB A2B . According to Lemma 4.13, it follows that x t1 0 u imR for each
input function u. If rank R n, then imR n (there are points which cannot be reached
from x0 0) and an n-vector a 0 exists such that a R 0. Therefore, a x t1 0 u 0
for all admissible input functions u, which means that the system cannot be steered in the
direction of a. Any reached state is always perpendicular to a if the system started at the
origin. Hence, the system is not controllable.

Now we will prove the implication 2 1. Suppose rank R n. First, it will be shown
that starting from x0 0 each point x1

n can be reached in an arbitrarily short time
t1 0. Later, the case of an arbitrary initial point x0 will be considered.

For an arbitrary time t1 0, define the symmetric n n matrix K as

K
t1

0
e AsBB e A sds (4.8)

It will be shown in Lemma 4.15 that matrix K is invertible. Now take an arbitrary x1
n

and define the input function

u t B e A tK 1e At1x1

If this input is applied to the system with initial condition x0 0, then

x t1 0 u
t1

0
eA t1 s BB e A sK 1e At1x1ds

eAt1
t1

0
e AsBB e A sds K 1e At1x1

eAt1KK 1e At1x1

x1
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Lastly, if x0 is arbitrary, the input function ũ will be constructed as follows. Consider
the state x1 eAt1x0

n . According to the previous part of this proof a control ũ exists,
which steers the system from the origin to x1 eAt1x0

n , i.e.,

x t1 0 ũ
t1

0
eA t1 s Bũ s ds x1 eAt1x0

Hence, for this input function ũ it follows that

x1 eAt1x0

t1

0
eA t1 s Bũ s ds

So, for time t1 0 and arbitrary chosen states x0 x1, a control input ũ has been found that
steers the system from x0 at time t 0 to x1 at time t t1, which clearly implies that the
system is controllable.

Lemma 4.15 Assume that A and B are such that the matrix R defined in (4.6) has full
(row) rank. Then the matrix K as defined in (4.8) is invertible.

Proof Suppose that matrix K is not invertible. Then Ka 0 for an n-vector a 0, and
hence also a Ka 0, or equivalently

t1

0
a e AsBB e A sa ds 0

t1

0
a e AsB 2ds 0 a e AsB 0 s 0 t1

The last equivalence follows because a e AsB is a continuous function of s. In fact, it
is easy to see that the function a e AsB can be differentiated with respect to s infinitely
many times. Differentiating the function n 1 times, and subsequently substituting
s 0, gives

a e AsB 0 a B 0
a Ae AsB 0 a AB 0

...
...

...
a An 1e AsB 0 a An 1B 0

This gives that a R 0 with a 0, which is impossible because rank R n. Therefore,
K must be invertible.

Controllability of a system is determined by the matrices A and B, as Theorem 4.14
tells us. Therefore, we will also speak of the controllability of the pair A B . The con-
dition rank R n is called the rank condition for controllability. In case m 1, i.e., the
input is a scalar, the matrix R is a square n n matrix and controllability is equivalent
to detR 0. Please note that Theorem 4.14 does not say anything about t1 0. It just
follows that the final point can be reached in arbitrarily short time if it can be reached
at all (of course, for smaller t1, the norm of the input function will increase). See also
Exercises 4.5.26 and 4.5.27.
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Example 4.16 Consider the satellite dynamics of (3.43) and take 1. The controlla-
bility matrix is

R

0 0 1 0 0 2 1 0
1 0 0 2 1 0 0 2
0 0 0 1 2 0 0 4
0 1 2 0 0 4 2 0

and rank R 4 by inspection. Hence, the satellite system is controllable. Suppose now
that u1 0 and the controllability-question is asked with respect to u2 only. Denote the
related controllability matrix by R2. Then

R2

0 0 2 0
0 2 0 2
0 1 0 4
1 0 4 0

By inspection rank R2 4 and hence u2 on its own is able to manoeuver the satellite
to arbitrary positions (from a pragmatic point of view, the initial and final point x0 and
x1 should be chosen such that the linearized Equations (3.43) make sense for these and
intermediate points). Suppose now that u2 0 and the question is whether u1 alone is
able to take care of the controllability. For that purpose consider the related controllability
matrix, denoted by R1,

R1

0 1 0 1
1 0 1 0
0 0 2 0
0 2 0 2

which has rank 3. Hence, the system with u2 0 is not controllable!

Example 4.17 To study a system it is often useful to try to bring the system into a stan-
dard form, i.e., an elementary form that the system can be put in by changing the basis in
the state space. Below two standard forms will be presented.

(i) A system in controllability form, with x̃ n u , is a system that is described
by

˙̃x t

0 0 p0

1
. . . p1

0
. . .

. . .
...

...
. . .

. . .
...

0 1 0 pn 2
0 0 0 1 pn 1

x̃ t

1
0
...
...
0
0

u t

(4.9)

y t q0 q1 qn 1 x̃ t

For this system the controllability matrix equals the n n identity matrix. Hence, control-
lability of the system is immediate, also explaining the name ‘controllability form’.
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(ii) A system in controller form, with x̄ n u , is a system that is described by

˙̄x t

0 1 0 0

0
. . .

. . .
...

...
. . .

. . .
...

...
0 0 0 1
p0 p1 pn 2 pn 1

x̄ t

0
0
...
...
0
1

u t

(4.10)

y t q0 q1 qn 1 x̄ t

For this system the controllability matrix looks like

0 0 1
... 1
...

0 1
...

1

where the ’s represent numbers that are not relevant in the present context. Since the
controllability matrix clearly has rank n, this system is always controllable, irrespective
of the values of the coefficients qi and pi. The name ‘controller form’ comes from the fact
that the form is very useful in the design of state feedback controllers.

It can be shown that any controllable system ẋ Ax Bu y Cx, with A an n n
matrix, B an n 1 matrix andC a 1 n matrix, always can be brought into ‘controllability
form’ or ‘controller form’, by applying an appropriate basis transformation. In fact, see
Exercise 4.5.22 for the transformation into the controllability form, and the transformation
into the controller form will be treated in Lemma 5.4.

Example 4.18 Controllability can also be studied in terms of flow diagrams. For in-
stance, consider the flow diagram in Figure 4.2. This system is not controllable because
x1 cannot be influenced by u. Its state space description is (see also Exercise 4.5.20)

ẋ
a1 0
1 a2

x
0
1

u

Also from its controllability matrix it follows that the system is not controllable.
The system in Figure 4.3 is controllable. Its state space description is

ẋ
a1 0
1 a2

x
1
0

u

Clearly, its controllability matrix has rank 2, so the system is controllable.



4. System Properties 63

2

u

1

1 2x

a

x

a

Figure 4.2 Uncontrollable system.

u

1

1 2

2

x

a

x

a

Figure 4.3 Controllable system.

If the system A B with state space n is not controllable, then those points of n

which are reachable (starting from the origin) are exactly all vectors of imR. Indeed,

imR x1
n there exist t1 0 and u U such that x1 x t1 0 u

whereU denotes a set of admissible control functions, like, for instance, the set of piece-
wise continuous (vector-)functions. Because of the above characterization, imR is gen-
erally also referred to as the reachable subspace, implying that the names ‘controllable
subspace’ and ‘reachable subspace’ actually refer to the same subspace.

An algebraic proof of the above characterization will not be given, instead imR will
be interpreted in a geometric way. Therefore, first define

Definition 4.19 A linear subspace n is calledA-invariant if A , i.e., Av
for all v .

Then the next theorem follows.

Theorem 4.20 imR is the smallest linear subspace of n such that

1. imB imR,

2. imR is A-invariant.

Proof First it will be shown that imR satisfies properties 1 and 2. Clearly imB imR,
because R B AB An 1B . Furthermore,

A imR A im B AB An 1B im AB A2B AnB
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A consequence of the Cayley-Hamilton theorem is that the columns of AnB can be ex-
pressed as a linear combination of the columns of B AB An 1B. Therefore,

A imR im B AB An 1B imR

It remains to be shown that imR is the smallest subspace that satisfies points 1 and 2.
Suppose now that a linear subspace is given which satisfies points 1 and 2. It will be
shown that imR . Because imB and A , the next inclusions follow by
induction.

imAB A imB A

imA2B A imAB A
...

...
...

imAn 1B A imAn 2B A

Therefore,

imR im B AB An 1B imB imAB imAn 1B

Hence, imR is contained in every linear subspace that satisfies points 1 and 2 of the
theorem statement. Therefore, in the sense of subspace inclusions, imR is the smallest
linear subspace that is A-invariant and contains imB.

It is well known from linear algebra that if a linear subspace is A-invariant, it can be
used to transform matrix A into a block upper triangular form. To obtain this, assume that

is an A-invariant subspace in n . To rule out some trivial cases, assume that 0 k n,
where k dim . Then there exist k vectors q1 qk in n that form a basis for . This
basis can be extended by n k additional vectors qk 1 qn in n to form a basis for
n . Now write T q1 qk qk 1 qn , then T is an n n matrix that is invertible.

Next consider the matrix Ã defined by Ã T 1AT , or AT TÃ. Then it easily follows
that

Ã
Ã11 Ã12
0 Ã22

with Ã11 Ã12 and Ã22 matrices of size k k k n k and n k n k , respectively.
The 0 represents a zero matrix of size n k k and is a consequence of the A-invariance
of .

Next, let G be an n l matrix such that imG and define G̃ T 1G, with T as
above. Then,

G̃
G̃1
0

where G̃1 is an k l matrix.
Dually, let H be an t n matrix such that kerH (see page 33 for the meaning of

kerH) and define H̃ HT , with T as above. Then,

H̃ 0 H̃2
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where H̃2 is an t n k matrix.

Now assume that imR, i.e., is the controllable subspace and as such is the
smallest A-invariant subspace that contains imB. Again, to rule out trivial cases, assume
that 0 k n, where dim imR k or, equivalently, rank R k. Let T be the basis
transformation matrix as described before, i.e., T is made up of the vectors of a basis for

and the extension towards a basis for n . Then

Ã
Ã11 Ã12
0 Ã22

B̃
B̃1
0

(4.11)

with Ã11 Ã12 Ã22 and B̃1 matrices of size k k k n k n k n k and k m,
respectively. The 0’s represent zero matrices of suitable sizes. It then follows that R̃
T 1R, where R is the controllability matrix of the pair A B and R̃ is the same for the pair
Ã B̃ , i.e., R B AB A2B An 1B and R̃ B̃ ÃB̃ Ã2B̃ Ãn 1B̃ . Moreover,

it follows from (4.11) that

R̃
B̃1 Ã11B̃1 Ãn 1

11 B̃1
0 0 0

Because T is an invertible matrix it is clear that rank R rank R̃ k, and, consequently,
rank B̃1 Ã11B̃1 Ãn 1

11 B̃1 k. The Cayley Hamilton theorem applied to Ã11 yields
that rank B̃1 Ã11B̃1 Ãk 1

11 B̃1 k, implying that the pair Ã11 B̃1 is controllable.
From the above it follows that a system of the form

ẋ Ax Bu
y Cx Du

which is not controllable, by a change of basis given by x T x̃ (or x̃ T 1x), with matrix
T based on imR as described above, can be transformed into a system of the form

˙̃x1 Ã11x̃1 Ã12x̃2 B̃1u
˙̃x2 Ã22x̃2

y C̃1x̃1 C̃2x̃2 Du

(4.12)

where the pair Ã11 B̃1 is controllable. In the above description the submatrices in (4.11)
show up, together with C̃ CT C̃1 C̃2 and D.

Example 4.21 Consider the pair A B with

A

0 1 0 0
3 0 0 2
0 0 0 1
0 2 0 0

B

0
1
0
0

The system corresponding to the pair was considered in Example 4.16. It represents a
satellite with only one input, namely the thrust in the radial direction. According to its
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controllability matrix R, in Example 4.16 denoted by R1, the system is not controllable.
The columns of R also give the next three vectors that span imR

0
1
0
0

1
0
0
2

0
1
2

0

If these vectors are identified with q1 q2 and q3, respectively, then q4 must be chosen
independent of q1 q2 and q3. We choose q4 2 0 0 1 . Now define

T q1 q2 q3 q4

0 1 0 2
1 0 1 0
0 0 2 0
0 2 0 1

and hence

T 1 1
10

0 10 5 0
2 0 0 4
0 0 5 0
4 0 0 2

Calculating T 1AT and T 1B gives

Ã T 1AT

0 0 0 7 5
1 0 1 0
0 1 0 0 5
0 0 0 0

B̃ T 1B

1
0
0
0

The partitioning in blocks as given by (4.11) is clearly visible. The pair Ã11 B̃1 , with

Ã11

0 0 0
1 0 1
0 1 0

B̃1

1
0
0

is controllable since

rank B̃1 Ã11B̃1 Ã2
11B̃1 rank

1 0 0
0 1 0
0 0 1

3

Instead of checking controllability by computing the rank of the controllability matrix
R, some other tests on controllability can be applied. One of these tests is described
below. However, first a preliminary result is stated and proved. In the following theorem
row (eigen)vectors are used instead of the more common column (eigen)vectors.



4. System Properties 67

Theorem 4.22 The pair A B , where A is a real n n vector and B an n m matrix, is
not controllable if and only if a nonzero row vector q and a scalar exist such that

qA q qB 0 (4.13)

In other words, A B will be controllable if and only if there is no row eigenvector of A
that is orthogonal to imB.

Proof Sufficiency. If there exists a vector q 0 such that qA q qB 0, then

qAB qB 0
qA2B qAB 0

...
qAn 1B qAn 2B 0

so that,
qR q B AB An 1B 0

which means that R has linearly dependent rows. It then follows that the rank of R is less
than n, implying that A B is not controllable.

Necessity. We have to show that A B not controllable implies the existence of a
nonzero row vector q satisfying (4.13). Denote the rank of R by k, then we have here that
k n. Assume that the pair A B has been put in the block form of (4.11). Then it is
clear that the following vector q is perpendicular to imB

q 0 z

k n k

where z is an arbitrary row vector consisting of n k components. It is perhaps not hard
to guess that we should choose z as a row eigenvector of A22

zA22 z

because then
qA 0 z A 0 zA22 0 z 0 z q

Therefore, we have shown how to find a row vector q satisfying (4.13) and this completes
the proof.

With the use of Theorem 4.22 the next important result can be proved.

Theorem 4.23 Consider the pair A B , where A is an n n matrix and B an n m
matrix. Then the following statements are equivalent.

1. The pair A B is controllable.

2. rank sI A B n for all s .
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3. rank I A B n for all eigenvalues of matrix A.

Proof The equivalence of statements 2. and 3. follows straightforwardly. Namely, if the
rows of sI A B are linearly dependent, so are the rows of sI A, implying that s
is an eigenvalue of A. In that case, there is an eigenvalue of A such that the rows of
I A B are linearly dependent, just take s. In terms of ranks it means that if

rank sI A B n for some s , then rank I A B n for some eigenvalue
of matrix A. Since the converse immediately follows, the equivalence of statements 2.

and 3. has been proved.
If sI A B has rank n for all s , then for any s there doesn’t exist a nonzero

row vector v such that v sI A B 0 i.e., such that vA sv and vB 0. But then, by
Theorem 4.22, the pair A B must be controllable. So, statement 2. implies statement 1.

Assume that rank I A B n for some eigenvalue of A. Then there exists a
nonzero row vector q such that q I A B 0. Hence, qA q and qB 0. By The-
orem 4.22 it follows that the pair A B is not controllable. Hence, statement 1. implies
statement 3.

Theorem 4.23 is known as the Hautus test for controllability. It provides a test for
controllability which requires the computation of the eigenvalues of matrix A and (at
most) n rank tests of matrices of size n n m . Testing the controllability by means of
the controllability matrix requires the construction of this matrix and the test of its rank
as a matrix of size n nm. Clearly, depending on n m and the fact whether or not the
eigenvalues of A are available, and partially coincide, the test resulting from Theorem
4.23 may be more efficient than the test via the controllability matrix. This is also true
if the computation of powers of the matrix A is numerically troublesome. This is, for
instance, the case when the eigenvalues of A are not all of the same order.

Example 4.24 The starting point here is Equation (2.7) of the heated bar

T t r
t

c
2T t r
r2 (4.14)

with 0 r L and t 0, where we will assume now that c 1 and L 1. In this example
the temperature can be controlled at both ends of the bar, i.e., at r 0 by means of u1, and

T1 T2 . . . Ti 1 Ti Ti 1 . . . Tn

1
n

Figure 4.4 Discretization of heated bar.

at r 1 by u2. We are going to discretize the interval of the location parameter r into n
discrete subintervals, each of length 1 n, see Figure 4.4. The temperature on the interval
i 1 n r i n is assumed to depend on t only and is indicated by Ti, i 1 2 n.
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If we use standard approximations for the second order derivative with respect to r with
step size 1

n , we obtain the following model, consisting of ordinary differential equations

dT1

dt
n2 u1 2T1 T2

...
dTi
dt

n2 Ti 1 2Ti Ti 1 i 2 3 n 1

...
dTn
dt

n2 Tn 1 2Tn u2

Then we get the following finite dimensional model

1
n2

d
dt

T1
...
Ti
...
Tn

2 1 0 0
. . .

. . .
. . .

1 2 1
. . .

. . . 2
. . .

0 0 1 2

T1
...
Ti
...
Tn

1 0
...

...
0 0
...

...
0 1

u1
u2

(4.15)

By checking the controllability matrix of this finite dimensional system (see Exercise
4.5.29), it is easily verified that the system is controllable. Hence, in theory one can steer
to any temperature profile. (Is controllability maintained if n , or in other words, is
the system (4.14) controllable? Formally, controllability for partial differential equations
has not yet been defined and we will not give the definition.) Intuitively, however, it
should be clear that a temperature profile with a discontinuity, for instance,

T t r 0 for 0 r 1 2 and T t r 1 for 1 2 r 1

at a certain time t, can never be achieved in practice.

4.3 Observability

We now turn to another fundamental concept in system theory, namely observability.

Definition 4.25 The system A B C D is observable if a finite time t1 0 exists such
that for each admissible input function u, it follows from y t x0 u y t x1 u for all
t 0 t1 , that x0 x1.

A system is called observable if the initial state x0 can be constructed from the knowledge
of u and y on the interval 0 t1 for some finite t1 0. Because u is given, once x0 is
known, the state x on the whole interval 0 t1 can be determined. In other words, the
external behavior of an observable system restricted to some interval of positive length
uniquely determines the state on this time interval.

As with controllability there are several definitions possible for observability. A
slightly different one would be that a system is observable if for any two states x0 x1, with
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x0 x1, an admissible input u and a time t1 0 exist such that y t x0 u and y t x1 u are
not the same on 0 t1 . The latter definition means that a control can be found such that x0
and x1 (ultimately) can be distinguished from each other through the output. Definition
4.25, however, assumes that x0 and x1 can be distinguished for any control if x0 x1. It
turns out that for linear systems both definitions are equivalent (no proof).

It will be shown that observability of a linear system A B C D can be completely
characterized by the matrices A and C. Define the np n matrix W , called the observ-
ability matrix, as

W

C
CA

...
CAn 1

Lemma 4.26 Let the vector x n be such that Cx CAx CAn 1x 0. Then
CAkx 0 for all k 0.

Proof For k 0 1 n 1 the statement is immediate. A consequence of the Cayley-
Hamilton theorem is that, for each k n, the kth power of A is a linear combination of Aj,
j 0 1 n 1, with scalar weights, see also Lemma 4.13. Therefore, for all k n

CAk 0 kC 1 kCA n 1 kCA
n 1

for certain scalars j k, and hence it follows for all k 0 that

CAkx 0 kCx 1 kCAx n 1 kCA
n 1x 0

Theorem 4.27 The following statements are equivalent.

1. System A B C D is observable.

2. W has rank n.

3. kerW 0.

Proof The equivalence of statement 2 and 3 is obvious. We continue with proof 2 1.
Let rank W n. Given an arbitrary time t1 0 and an arbitrary admissible control u,
assume that y t x0 u y t x1 u for all t 0 t1 . We will show that these assumptions
will lead to x0 x1. The equality y t x0 u y t x1 u implies

CeAtx0

t

0
CeA t s Bu s ds Du t

CeAtx1

t

0
CeA t s Bu s ds Du t

and henceCeAtx0 CeAtx1, i.e.,

CeAt x0 x1 0
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for all t 0 t1 . If the latter expression is differentiated n 1 times with respect to t,
and if then t 0 is substituted, we get subsequently

CeAt x0 x1 0 C x0 x1 0
CAeAt x0 x1 0 CA x0 x1 0

...
...

...
CAn 1eAt x0 x1 0 CAn 1 x0 x1 0

(4.16)

The result can be written asW x0 x1 0. SinceW is an np n matrix and rankW n,
we have that x0 x1 is the zero vector, implying that x0 x1.

Now we will prove the direction 1 2. Suppose rankW n. Then it will be shown
that the system is not observable. Under the condition that rankW n, the n columns of
the matrix W are linearly dependent. Hence, vectors x0 x1 exist, with x0 x1, such that
W x0 x1 0. This means that

C x0 x1 CA x0 x1 CAn 1 x0 x1 0

Application of Lemma 4.26 yieldsCAk x0 x1 0 for all k 0. Subsequently, it follows
for all t that

CeAt x0 x1
k 0

tk

k!
CAk x0 x1 0 or CeAtx0 CeAtx1

Now adding to both sides t
0Ce

A t s Bu s ds Du t , where u is an admissible control, it
follows that y t x0 u y t x1 u for all t and all admissible controls. Hence, the system
is not observable.

Observability is completely determined by the matrices A and C and therefore we
will sometimes speak of the observability of the pair C A . The system A B C D is
observable if and only if the system A 0 C 0 , i.e., ẋ Ax y Cx, is observable. The
condition rankW n is called the rank condition for observability. In case of a single-
output system W is a square n n matrix, and C A being observable is then equivalent
to detW 0.

If C A is observable, the interval 0 t1 in Definition 4.25 may be chosen arbitrarily
small, as long as t1 0 (the differentiations in (4.16) should be possible). Furthermore,
if knowledge of u and y on 0 t1 leads to unique determination of x0, then also x t for
all t 0 t1 is known. Hence, given the initial conditions x0 and the known input u, the
solution of the state equation is uniquely determined.

Example 4.28 Consider again the satellite dynamics described in Exercise 3.5.2 and the
output equations given in Example 3.14. Take 1, then

A

0 1 0 0
3 0 0 2
0 0 0 1
0 2 0 0

C
1 0 0 0
0 0 1 0
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The observability matrix is

W

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
3 0 0 2
0 2 0 0
0 1 0 0
6 0 0 4

which has rank 4. Therefore, the system is observable and the state x t t 0 t1 , can be
constructed if we are given the measurement y and the input u of the system on the interval
0 t1 with 0 t1. (We have not considered the question of how the actual construction

of the state should take place; we have proved, however, that it is unique. The actual
construction is the subject of Section 5.2, which deals with observers). Suppose that only
y2 can be measured. The corresponding observability matrixW2 is

W2

0 0 1 0
0 0 0 1
0 2 0 0
6 0 0 4

which is nonsingular. Therefore, the state is uniquely determined if only y2, together with
u, is available over the interval 0 t1 , for an arbitrary t1 0. If only y1 is available, then

W1

1 0 0 0
0 1 0 0
3 0 0 2
0 1 0 0

and W1 has rank 3. This system is non-observable! Hence, no matter how large the
interval 0 t1 is taken, from output y1 alone, together with input u, the whole state cannot
fully be constructed.

Though the properties of controllability and observability are different, the rank con-
ditions are rather similar, which is expressed in the following theorem.

Theorem 4.29

A B is controllable if and only if B A is observable.

C A is observable if and only if A C is controllable.

Proof A B controllable rank B AB An 1B n

rank B AB An 1B n rank

B
B A

...
B A n 1

n
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B A is observable.
The proof of the second assertion is similar.

The statements in this theorem are symbolic statements which express the fact that
the properties of controllability and observability are dual properties. Let’s have a closer
look at what this actually means in terms of the systems involved.

Consider the system ẋ Ax Bu with x t0 0 The state at time t1 is given by

x t1
t1

t0

eA t1 s Bu s ds

Now think of this formula as the definition of a linear mapping , say, which sends the
function u to the state x t1 . It then follows that controllability of A B means that this
mapping is onto (surjective).

Secondly, consider the system ẋ Ax y Cx, which generates the output signal

y t CeA t t0 x0

This defines a linear mapping , say, which sends the state x0 to the function y and ob-
servability of C A means that this mapping is one-to-one (injective).

Now the adjoint of is the linear mapping that sends a state vector v to the function
BT eA

T t1 t v BT e AT t t1 v. By comparing this with the definition of the mapping
we find that A B is controllable if and only if BT AT is observable. Note that the
minus sign in AT has not been included in the statements of Theorem 4.29. Although
this minus sign is not important in the algebraic context of Theorem 4.29 it does have a
specific meaning in the context of so-called adjoint systems, which we shall now explain.

Let be given the system ẋ Ax on the state space n . The adjoint of this system is
defined as ż AT z żT zTA, which has the dual space n as its state space.
The solutions of the two systems with x t0 x0 and zT t1 zT1 are given by

x t eA t t0 x0

zT t zT1 e
A t1 t

from which we see that the solution of the adjoint system propagates backward in time.
The dual properties of controllability and observability deal with processes that propagate
forward in time (construcion of state x1 in future) and backward in time (reconstruction
of state x0 in past), respectively.

Theorem 4.29 enables us to formulate results for observability by dualizing results that
have already been proved for controllability. An example of this process of dualization is
given by the following Theorem (dualization of Theorem 4.20).

Theorem 4.30 kerW is the largest linear subspace in n such that

1. kerW kerC,

2. kerW is A-invariant.
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In the context of the above theorem, kerW is the largest linear subspace that satisfies
points 1 and 2 of the theorem statement, in the sense that every linear subspace that is
A-invariant and is contained in kerC, must be contained in kerW .

The linear subspace kerW is called the non-observable subspace. Elements of kerW
are exactly those states that cannot be distinguished from the origin by only looking at the
output. An application of Theorem 4.30 is the following. A basis q1 qk qk 1 qn
in n exists such that kerW span q1 qk . With respect to this basis A has the form
(take T q1 qk qk 1 qn ):

Ā T 1AT
Ā11 Ā12
0 Ā22

(4.17)

with Ā11 Ā12 and Ā22 matrices of size k k k n k and n k n k , respectively.
Because kerW kerC, with respect to this basis,

C̄ CT 0 C̄2 (4.18)

with C̄2 a matrix of size p n k , Furthermore, the pair C̄2 Ā22 is observable.
It now follows that a system of the form

ẋ Ax Bu
y Cx Du

which is not observable, by a change of basis given by x T x̄ (or x̄ T 1x), with matrix
T based on kerW as above, can be transformed into a system of the form

˙̄x1 Ā11x̄1 Ā12x̄2 B̄1u
˙̄x2 Ā22x̄2 B̄2u

y C̄2x̃2 Du

(4.19)

where the pair C̄2 Ā22 is observable. In the above description the submatrices in (4.17)

and (4.18) show up, together with B̄ T 1B
B̄1
B̄2

and D. Compare the above form

with the form obtained in (4.12).

The next alternative conditions for observability easily follow by dualizing the results
in Theorem 4.23, yielding the Hautus test for observabililty.

Theorem 4.31 Given an n n matrix A and a p n matrix C, the following statements
are equivalent.

The pair C A is observable.

rank
sI A
C

n for all s .

rank
I A
C

n for all eigenvalues of matrix A.
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The connection between the input and output (with x 0 0 and D 0) is given by

y t

t

0

CeA t s Bu s ds

whereCeAtB is the impulse response matrix. Now suppose that A B is not controllable,
then a basis in n exists such that

Ã
Ã11 Ã12
0 Ã22

B̃
B̃1
0

C̃ C̃1 C̃2 (4.20)

see (4.12). On this basis, ÃkB̃
Ãk11B̃1

0
for all k 0, and consequently

eÃt B̃
k 0

Ãktk

k!
B̃ k 0

Ãk11t
k

k! B̃1

0

eÃ11t B̃1
0

The second part of the state space (i.e., the complement of imR in n ) will not be influ-
enced by the control, and particularly not by an impulsive control. The conclusion is that
only the controllable subspace of n will play a role in the impulse response matrix. This
also follows from the fact that the impulse response of the system A B C D is the same
as the impulse response of the system Ã11 B̃1 C̃2 D . This statement follows from the
next equality, which is a direct consequence of 4 20 .

CeAtB C̃1e
Ã11t B̃1

Recall that CeAtB C̃eÃt B̃ as consequence of Definition 3.17. Hence, the impulse re-
sponse is completely determined by the submatrices corresponding to the controllable
part of the original system.

Similarly, suppose C A is not observable, then a basis in n exists (not necessarily
the same as above) such that

Ā
Ā11 Ā12
0 Ā22

C̄ 0 C̄2 B̄
B̄1
B̄2

(4.21)

see (4.19). Please be aware of the fact that the Ãi j in (4.20) and the Āi j in (4.21) will in
general be different. In this basis

CeAt 0 C̄2e
Ā22t andCeAtB C̄2e

Ā22t B̄2

The first part of the state space (i.e., kerW ) does not play any role in the impulse re-
sponse matrix. Now it follows that the impulse response is completely determined by the
submatrices corresponding to the observable part of the original system.

Combining the above two observations, it can be shown that the impulse response is
completely determined by the submatrices corresponding to the part of the original system
that is both controllable and observable, see also Exercise 4.5.33.
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4.4 Realization theory and Hankel matrices

In this section we consider single-input single-output systems only. The quantities

gi CAi 1B i 1 2 3 (4.22)

which are called the Markov parameters, determine the external description of the sys-
tem

ẋ Ax Bu y Cx (4.23)

The Markov parameters show up in the power series expansion of the impulse response

G t CeAtB
i 0
CAiB

ti

i!
(4.24)

From this latter equation it follows that

gi
di 1

dti 1G t
t 0

We form the so-called Hankel matrix of size ,

H
def

g1 g2 g3 g4 g

g2 g3 g4 g 1

g3 g4

...

g4

...
...

...
...

...
g g 1 g 1

(4.25)

Theorem 4.32 Given the sequence g1 g2 g3 there exists a finite-dimensional real-
ization of the form (4.23) of order n (i.e., the state space is n) if and only if

detH n i n i 0 for all i 1 2

If, moreover, det H n n 0, then n is the order of any minimal realization of the sequence
g1 g2 g3 .

The proof will not be given here; though not difficult, it is somewhat tedious. It can
for instance be found in [Chen, 1984]. The last column of H n 1 n 1 is a linear
combination of the first n columns, and, consequently, coefficients p0 p1 pn 1 must
exist such that for the jth component, j 1 n n 1, it follows that

p0g j p1g j 1 pn 1g j n 1 g j n 0

Also without proof it is stated that, given g1 g2 g3 such that the conditions men-
tioned in Theorem 4.32 are satisfied, a possible realization of the underlying system in
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state space space form is

A

0 1 0 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 0 0 1
p0 p1 pn 2 pn 1

B

g1
g2
...
...
gn

C

1
0
...
...
0

The realization is not unique, as basis transformations will give other realizations.

4.5 Exercises

Exercise 4.5.1 Investigate the (asymptotic) stability of the system matrices A correspond-
ing to the inverted pendulum in Example 3.6, and the satellite in Exercise 3.5.2.

Exercise 4.5.2 Show that the equilibrium point x̄ 0 of the scalar nonlinear system ẋ
x x2 is asymptotically stable for each 0 and unstable for 0. The linearized

system (linearized around the equilibrium point x̄ 0), however, is stable for 0. How
is this explained?

Exercise 4.5.3 Following Definition 4.5 compute the stable and unstable subspace of the
matrix

0 1 0 0 0
0 0 0 0 0
0 0 2 1 0
0 0 0 2 0
0 0 0 0 2

Exercise 4.5.4 Using (3.28) give the general solution of the equations

ẋ1 x1 x2
ẋ2 x2 x3
ẋ3 x3

where is a real parameter. From the obtained general solution, derive statements on the
(asymptotic) stability or instability of the origin for various values of , i.e., 0 0
and 0, and compare the results with Theorem 4.2.

Exercise 4.5.5 Let A be a real n n matrix and I the n n identity matrix. Prove that, if

M
A I
0 A

then eMt
eAt teAt

0 eAt

Exercise 4.5.6 Consider the equations

ẋ1 x2 x3
ẋ2 x1 x4
ẋ3 x4
ẋ4 x3

Using Exercise 4.5.5, determine the general solution of the above equations. Next derive
results on the (in)stability of the origin and compare them with Theorem 4.2.



78 Mathematical Systems Theory

Exercise 4.5.7 Consider the Example 4.6.1 and assume that a3 0. Prove that all
the roots of p s have a negative real part if and only if a3 a2 a1 a0 are positive and
a2a1 a3a0 .

Exercise 4.5.8 Apply the criterion of Routh to p s 6
k 1 ks

6 k. What is your conclu-
sion?

Exercise 4.5.9 For which value(s) of k has the equation 3 3 2 3 k 0 only roots
with negative real parts?

Exercise 4.5.10 For which k does the polynomial p s s4 2s3 ks2 s 3 have
all its roots in the open left half-plane?

Exercise 4.5.11 Modify the criterion of Routh to obtain a criterion to test whether or not
a given polynomial has all its roots in the open right half-plane.

Exercise 4.5.12 Let A and Q be given n n matrices. Assume that all eigenvalues of A
have negative real parts. Then prove that the matrix P given by

P

0

eA tQeAtdt

is well defined. (Hint: first show that, without loss of generality, it may be assumed that A
is in Jordan form and next consider a general element Pi j of P.) Further show that if Q is
a positive-definite matrix, so is P.

Exercise 4.5.13 Consider the interval polynomial 1 2 3 4 3 2 3 and investi-
gate its stability. Note that the term 3 2 can be interpreted as 3 3 2.

Exercise 4.5.14 Consider the polynomial k 4 2 2 3. Investigate if the poly-
nomial has all its roots in the open left half-plane for all k 1 9 . Do this by means
of Routh’s criterion, but also by means of Kharitonov’s criterion, where terms like 2 2

should be interpreted as 2 2 2, etc.

Exercise 4.5.15 Verify by substitution that the expression for x t x0 u in (4.5) is the
solution of ẋ Ax Bu, given the initial condition x 0 x0 and the input function u.

Exercise 4.5.16 Consider the system described by

ẋ
1 0

0 2
x

1
0

u y 1 1 x

Show that the system is externally stable (i.e., BIBO stable), but not internally stable (i.e.,
asymptotically stable). Explain this by investigating the controllability and observability
of the system.

Exercise 4.5.17 Investigate whether the system described in Equation (3.16) - the in-
verted pendulum - is controllable.
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Exercise 4.5.18 Investigate whether the following pairs of matrices are controllable.

1. A
1 0
0 2

B
1
1

,

2. A
1 0
0 2

B
0
1

,

3. A
1 0
0 1

B
1
2

,

4. A
a1 0
a2 0

B
1
1

,

5. A
0 l
l 0

B
1
0

,

6. A
1 0

0 1
0 0

B
b1
b2
b3

,

7. A
0 0

0 1
0 0

B
b1
b2
b3

.

Exercise 4.5.19 Are the equations of motion of the tractor and cart (Exercise 3.5.8) con-
trollable when the combination moves in forward direction? Same question, but now the
combination moves in backward direction.

Exercise 4.5.20 Consider the flow diagrams in Figures 4.2 and 4.3. Note that the initial
conditions are not specified/included in the diagrams. Verify that the diagrams indeed
yield the two systems given in Example 4.18. See also Figure 3.1 and the text that sur-
rounds this figure.

Exercise 4.5.21 Consider the matrix pair

A
4 4 2
3 3 2
3 2 3

B
5
2
2

1. Is the pair A B controllable?

2. Which vectors span the controllable subspace?

3. Show that the controllable subspace is A-invariant.

Exercise 4.5.22 Consider a controllable system ẋ Ax Bu y Cx, with A an n n
matrix, B an n 1matrix andC a 1 n matrix. Let T be the corresponding controllability
matrix, i.e., T B AB A2B An 1B . Then T is square and invertible. Show that the
triple T 1AT T 1B CT represents the system in controllability form, defined in (4.9).
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Exercise 4.5.23 Write the non-controllable pairs of Exercise 4.5.18 in the form of (4.11).

Exercise 4.5.24 Using a suitable basis transformation, bring the following pair into the
form of (4.11)

A

1 1 1 1
2 3 1 0
2 3 1 2

0 1 1 0

B

1
0
0
0

Exercise 4.5.25 We are given a scalar input system ẋ Ax Bu, i.e., u , that is
controllable. Suppose that a control of the form u Kx v is applied, where K is an
1 n matrix and v is a ‘new’ control, which again is a scalar. The new system is then
characterized by the pair A BK B . Prove that this new system is also controllable.

Exercise 4.5.26 On page 60, after the proof of Lemma 4.15, it is claimed that a smaller
t1 leads to a large u (in norm). Can you make this plausible?

Exercise 4.5.27 Consider the system described by ẋ Ax Bu, with A n n and B
n m. Following the proof of Theorem 4.14, prove that controllability, as defined in

Definition 4.12, is equivalent to the following: given any t1 0, for any two states x0 x1
n , a control function u can be found such that x1 x t1 x0 u , i.e., x1 is the state at time

t1, starting from state x0 at time t 0 and applying input function u. Please note the
difference with Definition 4.12.

Exercise 4.5.28 Using the alternative characterization of controllability given in Exer-
cise 4.5.27, show that controllability, reachability and null-controllability are equivalent
for linear time-invariant continuous-time systems.

Exercise 4.5.29 Verify the controllability of the heated bar model in (4.15) and show that
the controllability is independent of the chosen discretization step 1

n .

Exercise 4.5.30 A nonsingular coordinate transformation x T x̄, (sending A to T 1AT
and C to CT) does not destroy observability. Show this. If the observability matrix of the
transformed system is denoted by W̄ , then WT W̄ .

Exercise 4.5.31 Investigate whether the inverted pendulum, as given by the Equations
(3.16) and (3.17) is observable. Repeat this investigation if only one of the measurements
i.e., either y1 t or y2 t is available.

Exercise 4.5.32 Consider the pair

A
2 0 0

1 2 0
3 1 1

C 3 1 1

and, using a suitable basis transformation, write it in the form of (4.17) and (4.18).
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Exercise 4.5.33 Consider the system ẋ Ax Bu, y Cx, given by the matrices

A

3 1 3 2
2 2 0 2
7 0 3 7
1 1 3 2

B

1
3

0
1

C 1 2 0 1

For this system

1. compute the controllable subspace,

2. compute the non-observable subspace,

3. determine a Kalman decomposition (see also Example 5.7), i.e.,

start with the basis vectors which span the intersection of the controllable
subspace and the non-observable subspace,

append to these vectors new basis vectors such that the controllable subspace
is spanned,

next add to first set of basis vectors new basis vectors such that the non-
observable subspace is spanned,

add more basis vectors, if necessary, such that the whole state space is spanned,

finally, write the system with respect to the obtained basis.

4. compute the impulse response.

Exercise 4.5.34 Suppose that the Hankel matrices H satisfy the conditions given
in the statement of Theorem 4.32. Prove that H n n WR, where W and R are the
observability and the controllability matrices, respectively, and that, if detH n n 0,
any n dimensional state space realization is both controllable and observable.

Exercise 4.5.35 Consider the system described by

ẋ Ax Bu y Cx

with A n n B n 1 and C 1 n . Let H be the Hankel matrix, defined in
(4.25), made up of the Markov parameters gi CAi 1B i 1, see (4.22). Now prove that
rank H i n rank H i n 1 for all i 1.

Exercise 4.5.36 Below you will find a number of statements. For each of statements
determine whether it is true or false. Make your answer plausible by means of a simple
reasoning or (counter)example.

1. If a non-linear system ẋ f x u has two different solution pairs x̃1 ũ1 en x̃2 ũ2 ,
then the linearization around both solution pairs must be either stable or unstable.

2. Asymptotic stability can be lost under linearization.
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3. The linear system ẋ A t x, with A t a time-varying n n matrix, is asymptotically
stable if and only if all (‘time-varying’) eigenvalues of A t lie in the open left half-
plane.

4. The roots of 5 2s3 6s 2s2 s4 all have a negative real part.

5. The eigenvalues of the matrix

0 1 0
0 0 1
4 8 2

all have a negative real part.

6. The roots of s3 4s2 2s K all have a negative real part for all K satisfying
0 K 8.

7. If A B is a controllable pair, so is the pair A BF B for any suitable matrix F.

8. If the pair A B is controllable, then also the pair A2 B is controllable.

9. If the pair A2 B is controllable, then also the pair A B is controllable.

10. If A1 B and A2 B are controllable pairs, then so is the pair A1 A2 B .

11. If A B1 and A B2 are controllable pairs, then so is the pair A B1 B2 .

12. The controllable subspace corresponding to the pair A B is A2-invariant.

13. The linear system ẋ Ax, with A a constant n n matrix, is stable if and only is all
eigenvalues of A lie in the closed left half-plane.

14. If A contains identical eigenvalues, then there is no suitable matrix B such that the
pair A B is controllable.

15. Let A be an n n matrix and B an n m matrix with m 2. If b is a column of B
and the pair A b is controllable, then also the pair A B is controllable.

16. The controllable subspace of the system ẋ Ax Bu y Cx is the largest A-
invariant subspace that contains the image of B.

17. Controllability of a linear time-invariant system is basis dependent.

18. Let C
c1
c2

be a 2 n matrix with c1 and c2 two 1 n rows. If the pair C A

is observable, then at least one of the pairs c1 A and c2 A is also observable.

19. The non-observable subspace of the system ẋ Ax Bu y Cx is the smallest
A-invariant subspace in the kernel of C.

20. Let A be an n n matrix such that rankA n 1 and let C be a 1 n matrix. Then
the pair C A can not be observable.
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21. Observability can be lost under linearization.

22. Let ẋ Ax Bu y Cx be a linear system with x n , u y . If the controllable
subspace is contained in the non-observable subspace, the impulse response of the
system is identically equal to zero.

23. A system can not be simultaneously unstable, controllable and observable.

24. A system can not be simultaneously uncontrollable and unobservable.

25. A linear time-invariant system whose step response function g t satisfies lim
t

g t

0 can not be asymptotically stable.

26. Let H n n be the n n Hankel matrix corresponding to the impulse response of
the system ẋ Ax Bu y Cx with x n and u y . The element of H n n in
row i and column j is given by CAi 1Aj 1B.

27. The ‘maximal’ realization problem is a meaningful problem.



Chapter 5

State and Output Feedback

5.1 Feedback and stabilizability

In Example 1.1, on the autopilot of a boat, the control function u was expressed in known
quantities such as to obtain a good steering behavior of the ship. A possible control law
had the form u K e, where K is a constant and e is the difference between the actual
and the desired heading. One can imagine that the desired heading has been set by the
helmsman and that the actual heading is continuously measured (can then be seen as an
output of the ship dynamics). Also, with manual control by the helmsman (when the au-
topilot is not in use) the helmsman is aware of the current heading and makes corrections
if this heading deviates from the desired heading. In both situations the output (the mea-
surement/observation) is fed back to the input (the control). Such a control mechanism
is a form of feedback control, or, equivalently, closed-loop control (the output is con-
nected to the input, so that the ‘loop’ is closed, and the system governs itself). In contrast
to closed-loop control there also exists open-loop control. In a system with open-loop
control the control action (the function u) is independent of the output.

Example 5.1 An automatic toaster (i.e., a toaster that switches off automatically) is a
system with open-loop control, because it is controlled by a timer (the function u is an
on-off function). The time required to make ‘good’ toast must be estimated by the user,
who is not a part of the system. Control over the quality (say color) of toast (with color
seen as the output) is removed once the timer has been set. One could design a toaster
with a feedback control, where the color of the toast is continuously measured and this
measurement is connected to the switch of the heating element.

We will now turn to a more mathematical treatment of the feedback principle. Suppose
we are given a system described by

ẋ Ax Bu
y Cx

with x n u m y p , and A B C real matrices of appropriate sizes. Suppose
furthermore that the system is unstable and that the whole state is measured/observed,
i.e.,C I. To focus the ideas, think of the inverted pendulum introduced in Section 2.4.1,
and worked out in Example 3.6, with every state component being measured. Given an
initial perturbation x0 0 (x0 0 corresponds to the unstable equilibrium of the carriage
situated at s 0 and the pendulum vertically upwards with both carriage and pendulum
at rest), one could calculate a time function u : 0 such that the solution of ẋ
Ax Bu x 0 x0 will converge to 0 as t . Such an open-loop control will be not
very practical, since future perturbations are not taken into account.

Instead, one could think of a feedback control and, more specifically, of a linear feed-
back control

u t Fx t (5.1)

84
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where, in general, F is an m n matrix (in the context of Example 3.6, F is an 1 4
matrix). The state x then satisfies

ẋ Ax BFx A BF x (5.2)

The matrix F must be chosen such that the closed-loop system (5.2) has a desired behavior
(if possible), for instance, being asymptotically stable. A control law of the form (5.1) is
called state feedback.

If the state is not available, one might feed back the output, i.e., u Hy, where H is a
suitably chosen m p matrix. The state x will then satisfy

ẋ Ax BHy Ax BHCx A BHC x

Such a control is called output feedback. It is clear that state feedback is at least as
powerful as output feedback.

Sometimes one would like to have the possibility of influencing the system after (state)
feedback has been applied. A candidate for the control law is then

u Fx Gv

where v is the new input and G is a matrix of appropriate size. One could, for instance,
think of stabilizing the inverted pendulum (keeping the pendulum vertical), while the
carriage must be moved from one position to the other (by means of v).

x

G x =  Ax  +  Bu

F

uv
.

Figure 5.1 System with state feedback and new controls.

The input u Fx is a control law. If it is viewed as a (static) system itself with x as
input and u as output, the control law is called a (static) compensator. The word ‘static’
is occasionally added to stipulate that the control at time t only depends on the state at
time t.

The dynamic behavior of a system can be influenced by means of a compensator.
We want to use this influence to stabilize the system around an unstable equilibrium
point. This stabilization issue will be the main topic of this chapter, though there are other
system properties that can also be influenced by means of a compensator. Conditions on
the matrices A and B will be given such that the new matrix A BF is asymptotically
stable when an appropriate matrix F is chosen. Therefore, we first define the following.
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Definition 5.2 The system ẋ Ax Bu, or also the pair A B , is stabilizable if there
exists a real m n matrix F such that Re 0 for all eigenvalues of A BF.

We recall that controllability of a system is equivalent to the ability that the system
can be steered from any initial state to any final state in some finite time by applying an
appropriate control. Null-controllability is the ability to steer a system from an arbitrary
initial state to zero in some finite time. Stabilizability can be shown to be equivalent to
the ability that any initial state can be steered to zero by applying an appropriate control
that however may need to be defined over an infinitely long time interval.

The following theorem provides a sufficient condition for a system to be stabilizable.
The theorem is one of the milestones in the history of system theory and has played a
fundamental role in its development.

Theorem 5.3 Consider the linear system ẋ Ax Bu, with x n u m and A B real
matrices of appropriate sizes. Then, the system is controllable if and only if for each
polynomial r n rn 1

n 1 r1 r0, with real coefficients rn 1 r1 r0,
there exists a real m n matrix F such that det I A BF r .

Hence, if A B is controllable, the characteristic polynomial of A BF can be as-
signed arbitrarily by a suitable choice of F . Therefore, the zeros of the characteristic
polynomial, which are identical to the eigenvalues of A BF , can be placed at any loca-
tion (provided that complex eigenvalues occur in conjugate pairs). A particular location is
the open left half of the complex plane, implying that when ẋ Ax Bu is controllable, the
system is also stabilizable (the converse statement is not necessarily true). Theorem 5.3
is sometimes called the pole-assignment theorem.

Proof of Theorem 5.3. (The proof will only be given for single-input systems.)
Necessity. In this part we prove that, if the system is not controllable, a matrix F with

the required property does not exist. First, assume that for each arbitrary r of the form
as given in the statement of the theorem a matrix F exists such that det I A BF
r and that the system ẋ Ax Bu is not controllable. Then, a basis transformation
matrix T can be found such that (see Equation (4.11) on page 65),

Ã T 1AT
Ã11 Ã12
0 Ã22

B̃ T 1B
B̃1
0

(5.3)

If we transform an arbitrary feedback matrix F correspondingly to F̃ FT and partition
the latter conveniently as F̃1 F̃2 , then

Ã B̃F̃
Ã11 Ã12
0 Ã22

B̃1
0

F̃1 F̃2

Ã11 B̃1F̃1 Ã12 B̃1F̃2
0 Ã22

and the characteristic polynomial is

det I Ã B̃F̃ det
I Ã11 B̃1F̃1 Ã12 B̃1F̃2

0 I Ã22

det I Ã11 B̃1F̃1 det I Ã22
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The latter is based on the well-known identity from linear algebra

det
P Q
0 R

detP detR

where P and R are square matrices and Q has an appropriate size.
It follows that whatever the choice of F is, the polynomial det I Ã22 always is a

factor of the characteristic polynomial of Ã B̃F̃ , and cannot be chosen arbitrarily. Since
the characteristic polynomials of Ã B̃F̃ and A BF are the same, the characteristic
polynomial A BF also cannot be chosen arbitrarily. Hence, a contradiction has been
obtained and therefore ẋ Ax Bu is controllable.

Sufficiency. In this part we prove that an F with the required properties can be found
if the system is controllable. Now we assume that A B is controllable and we will show
that for each r a unique 1 n matrix F exists such that det I A BF r .
Towards this end, we assume that by means of a coordinate transformation A and B can
be brought in the controller form, introduced on page 62, and defined as

Ā

0 1 0 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . 0

0 0 1
p0 p1 pn 1

B̄

0
...
...
...
0
1

(5.4)

It will be proved in the next lemma that such a coordinate transformation exists. Take
F̄ p0 r0 p1 r1 pn 1 rn 1 , then Ā B̄F̄

0 1 0 0
...

. . .
. . .

...
...

. . . 0
0 0 1
p0 p1 pn 1

0
...
...
0
1

p0 r0 p1 r1 pn 1 rn 1

0 1 0 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . 0

0 0 1
r0 r1 rn 1

and therefore det I Ā B̄F̄ r (see Exercise 3.5.14). It is clear that F̄ is unique.
A coordinate transformation does not change the eigenvalues (i.e., eigenvalues of A BF
are exactly the same as the eigenvalues of T 1 A BF T , where T is an invertible matrix,
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for instance such that Ā T 1AT and B̄ T 1B) and the result therefore also holds true
for the original system, which was possibly not in the controller form.

In the proof of Theorem 5.3 we used the following lemma.

Lemma 5.4 If A B , with m 1, is a controllable pair, then a basis transformation T
exists, det T 0, such that Ā T 1AT and B̄ T 1B are in the controller form, defined
in Equation (5.4). The elements pi in matrix Ā, 0 i n 1, are the coefficients in the
characteristic polynomial of A, i.e., det I A n pn 1

n 1 p1 p0.

Proof A new basis q1 qn in n is constructed as follows:

qn B

qn 1 AB pn 1B Aqn pn 1qn

qn 2 A2B pn 1AB pn 2B Aqn 1 pn 2qn (5.5)

...

q1 An 1B pn 1A
n 2B p1B Aq2 p1qn

Because the pair A B is controllable, span B AB An 1B n , and therefore,
by construction, also span q1 q2 qn n . Indeed, by induction it follows that
span qn k qn 1 qn span B AB AkB , for all k 0 1 n 1. Hence, q1
q2 qn is a basis. Let T be the corresponding basis transformation matrix, then
T q1 q2 qn and T 1B T 1qn 0 0 0 1 B̄, see (5.4). Furthermore,
from the second till the last equation of (5.5), we obtain

Aqn qn 1 pn 1qn

Aqn 1 qn 2 pn 2qn
...

Aq2 q1 p1qn

and we can write (using again the last equation of (5.5), and Cayley-Hamilton)

Aq1 A An 1B pn 1A
n 2B p1B

AnB pn 1A
n 1B p1AB

An pn 1A
n 1 p1A p0I p0I B p0B p0qn

Now, for i 1 2 n, the vectors Aqi have been expressed as linear combinations of
the vectors q j j 1 2 n. From the expressions we see directly that AT TĀ or

Ā T 1AT , with Ā given as

Ā

0 1 0 0
...

... 1
...

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 1
p0 p1 p2 pn 1
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Since expressions for Ā and B̄ have been found, as in (5.4), the proof is done.

The proof of Theorem 5.3 provides an algorithm for finding an 1 n matrix F̄ that
gives the system the desired properties, i.e., the desired characteristic polynomial. To-
wards this end, the system A B is first transformed to Ā B̄ T 1AT T 1B , the
controller form, defined in (5.4). With respect to this form F̄ is obtained in a trivial way.
With respect to the original basis, F can be obtained by computing F̄T 1. Exercise 5.5.3
gives an alternative algorithm.

Example 5.5 Consider the system of the inverted pendulum described by Equation (3.16).
Since this system is controllable (see Exercise 4.5.17), it can be made asymptotically sta-
ble using an appropriate feedback matrix F f1 f2 f3 f4). Of course, in order for the
associated feedback control to be realizable, all components of the state vector must be
known (in the next section we will see what can be done if, for example, only the output
y is known). The matrices A and B are given by

A

0 1 0 0
25 0 0 0
0 0 0 1
0 6 0 0 0

B

0
2 4
0
1

Matrix A has eigenvalues 0 2 5 and -5 (see Example 3.12) and the uncontrolled system
u 0 is not stable. The characteristic polynomial of A is 4 25 2. Suppose we want

to choose F in such a way that the eigenvalues of A BF are 1 2 and 2 i. Then
the associated desired characteristic polynomial r is 1 2 2 4 5

4 7 3 19 2 23 10. In order to construct F we could use the algorithm in proof
of Theorem 5.3, or the formula in Exercise 5.5.3. Another more direct method is that F ,
written as f1 f2 f3 f4 , must be chosen such that det I A BF r . This gives
the equation

det

1 0 0
25 2 4 f1 2 4 f2 2 4 f3 2 4 f4

0 0 1
0 6 f1 f2 f3 f4

4 7 3 19 2 23 10

Hence, it follows that

4 2 4 f2 f4
3 f3 25 2 4 f1

2 23 56 f4 23 56 f3
4 7 3 19 2 23 10

and the associated feedback components are therefore

f3
10

23 56
f4

23
23 56

f1
1

2 4
44

10
23 56

f2
1

2 4
7

23
23 56

Example 5.6 Let be given the system (in controller form)

ẋ
0 1 0
0 0 1
2 3 1

x
0
0
1

u
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If the input is chosen as u t f1 f2 f3 x t , with fi i 1 2 3, constants, for what values
of the fi is the closed-loop system asymptotically stable? Substitution of the feedback law
results in

ẋ
0 1 0
0 0 1

2 f1 3 f2 1 f3

x

The characteristic polynomial of this system matrix is (see Exercise 3.5.14)

3 1 f3
2 3 f2 2 f1 0

Since the exact location of the zeros is not important, we will use the criterion of Routh
(see Section 4.1.2) to obtain conditions for fi i 1 2 3 which will guarantee asymptotic
stability. The resulting Routh table is

1 3 f2
1 f3 2 f1

2 f1

where
1

1 f3
1 f3 3 f2 2 f2 . Necessary and sufficient condi-

tions for asymptotic stability are therefore

1 f3 0
2 f1 0
1 f3 3 f2 2 f1

Example 5.7 Let be given the system ẋ Ax Bu y Cx with

A

1 2 0 3
0 2 0 0
2 1 3 3
0 2 0 4

B

2
1
1
1

C 0 1 1 1

1. Is the system controllable? What is the controllable subspace?

2. Is the system observable? What is the non-observable subspace?

3. Is the system stabilizable?

4. Write the system in terms of basis vectors which are chosen according to the fol-
lowing rules (and in the order specified):

start with the vectors that span the intersection of the controllable subspace
and the non-observable subspace,
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append to these vectors new basis vectors such that the controllable subspace
is spanned,

next add to first set of basis vectors new basis vectors such that the non-
observable subspace is spanned,

add more basis vectors, if necessary, such that the whole state space n , with
n 4, is spanned,

finally, write the system with respect to the obtained basis.

5. Can you design a control law u Fx such that the feedback system has its eigen-
values in 1 1 3 and 4, respectively? The same question again, but now the
eigenvalues must be located in 1 1 2 and 3, respectively.

Answer question 1. The controllability matrix equals

R

2 3 5 9
1 2 4 8
1 1 1 1
1 2 4 8

which has rank 2. Hence, the system is not controllable. The controllable subspace is
spanned by the first two columns of R, which is equivalent to

imR span

1
1
0
1

1
0
1
0

Answer question 2. The observability matrix equals

W

0 1 1 1
2 3 3 1
8 9 9 1

26 27 27 1

which has rank 2. Hence, the system is not observable. The non-observable subspace is
spanned by two linearly independent vectors x for which Wx 0. Two such vectors are
1 1 0 1 and 0 1 1 0 , so that

kerW span

1
1
0
1

0
1
1

0

Answer question 3. If one calculates the eigenvalues of A, they turn out to be
1 2 3 and 4 and, hence, A is (asymptotically) stable. The system is therefore

(trivially) stabilizable.
Answer question 4. The intersection of the controllable subspace and the non-

observable subspace is spanned by the vector v1
def

1 1 0 1 . The controllable subspace
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is spanned by v1 and v2, with v2
def

1 0 1 0 , and the non-observable subspace is spanned

by v1 and v3, with v3
def

0 1 1 0 . Finally, 4 is spanned by v1, v2, v3 and v4, with

v4
def

1 0 0 0 . If we choose the basis transformation matrix T v1 v2 v3 v4 , then

Â T 1AT

2 0 2 0
0 1 0 2
0 0 4 0
0 0 0 3

B̂ T 1B

1
1
0
0

Ĉ CT 0 1 0 0

Answer question 5. Matrices Â and B̂ are of the form

Â
A11 A12
0 A22

B̂
B1
0

The eigenvalues of A22 will not change if a feedback law is introduced. Therefore, what-
ever (linear) feedback law is implemented, the eigenvalues at locations 3 and 4 (the
eigenvalues of A22), cannot be influenced. Hence, a design with the second set of re-
quirements (eigenvalues at 1 1 2 3) is impossible, whereas a design subject to
the first set of requirements (eigenvalues at 1 1 3 4) is possible. Indeed, in the
latter case, first determine the 1 2 matrix F1 such that the eigenvalues of A11 B1F1
are equal to 1 2 . It is easily seen that F1 1 0 . Next, take any arbitrary 1 2
matrix F2, and compute F F1 F2 T 1. Then F is such that A BF has eigenvalues
at 1 1 3 4.

The conclusion of the previous is that A BF can be made asymptotically stable if
A B is controllable and provided state feedback is possible, i.e., the output y equals the

state. If y Cx and C is not invertible, then the problem of making A BHC asymptot-
ically stable by means of a suitable choice of H is far more difficult. Hardly any general
theorem exists with respect to this situation. In the next section we will consider the prob-
lem of reconstructing the state x out of past measurements y such that the reconstructed
state will be available for feedback purposes.

We conclude this section with two remarks. The first remark provides necessary and
sufficient conditions for a system ẋ Ax Bu, or simply the pair A B , to be stabilizable.
A proof of the conditions can be found in [Trentelman, Stoorvogel and Hautus, 2001],
Chapter 3. The second remark is concerned with the uniqueness of an eigenvalue assign-
ing feedback in case m 1.

Remark 5.8 Consider the pair A B , where A is a real n n matrix and B a real n m
matrix. Then the following statements are equivalent.

1. The pair A B is stabilizable.

2. rank sI A B n for all s with Res 0.

3. rank I A B n for all eigenvalues of matrix A with Re 0.
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Remark 5.9 Consider the controllable pair A B , where A is an n n matrix and B an
n m matrix. Then, the requirement that F is such that A BF has a certain desired
characteristic polynomial r results in n constraints (the n coefficients of r ) that
need to be satisfied. If m 1, then F contains n parameters. Hence, in that case there are
as many degrees of freedom as there are constraints, and it turns out that F is uniquely
determined. See also the sufficiency part of the proof of Theorem 5.3. If m 1, then
F contains nm n parameters. In that case there are more degrees of freedom than
constraints, implying that F will not be uniquely determined.

5.2 Observers and state reconstruction

Many procedures for the control of systems are based on the assumption that the whole
state vector can be observed. In such procedures the control law is of the form u Fx
(or u Fx Gv). In many systems, however, not the whole state vector can be observed.
Sometimes very expensive measurement equipment would be necessary to observe the
whole state, specifically in physical systems. In economic systems very extensive, statisti-
cal measurement procedures would be necessary. Sometimes, also, it is simply impossible
to obtain measurements of the whole state if some internal variables cannot be reached.
Think for instance of a satellite, where, because of the weight problems, hardly any mea-
surement equipment (for the temperature, for instance) can be built in the satellite. Once
in orbit, the satellite is too far away to measure certain quantities from the earth. In all
these cases, control must be based on the available information, i.e., the output y Cx.
An auxiliary system will be built, called the observer, which has as input both the control
u and the output y of the real system, and which has as output an approximation x̂ of the
state vector x of the real system. An observer for the system ẋ Ax Bu y Cx, is
assumed to be a system itself, of the form

ż Pz Qu Ky

x̂ Sz Tu Ry

observer

x  =  Sz  +  Tu  +  Ry

real

systemx  =  Ax  +  Bu

y  =  Cx

y

z  =  Pz  +  Qu  +  Ky

uu

y

x
^

.

.

^

Figure 5.2 System and general observer.
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In the flow diagram in Figure 5.2 the observer, the real system and the connections
between these systems have been drawn. The vector z is the state of the observer. The
matrices P Q K S T and R are to be determined. Think of a real system as the satellite in
orbit, where x cannot easily be measured, and only measurements of a few state variables,
such as position and distance, are available. The observer is an auxiliary system on earth
(a computer program, for instance) from which all variables are easily accessible.

Recall that we want an observer for the unknown state x. It turns out that we can
construct such an observer by taking S I T R 0. This yields that x̂ z and that
the state of the observer has the role of an approximation of the unknown state x, i.e.,
˙̂x Px̂ Qu Ky.

If at all possible, the observer should at least satisfy the following requirements:

1. The difference x t x̂ t must converge to zero as t , irrespective of the initial
condition conditions x 0 x0 x̂ 0 x̂0, and the applied control function u.

2. If x̂ t0 x t0 at a certain time instant t0, then it should hold that x̂ t x t for
all t t0 and every control function u. Hence, once the observer has the correct
estimate of the real state, then this estimate should remain correct for the future, no
matter which control is applied.

We now have

d
dt

x x̂ Ax Bu Px̂ Qu Ky

Ax Bu Px̂ Qu KCx

A KC x Px̂ B Q u

The second requirement formulated above now yields that

B Q A KC P

The observer then has the form

˙̂x Ax̂ Bu K y ŷ in which ŷ Cx̂ (5.6)

Apparently, the observer very much looks like the original system. It is a duplicate of the
real system, apart from an additional input term K y ŷ , which can be interpreted as a
correction term.

In order for the first requirement to be satisfied we consider how the difference e t
def

x t x̂ t behaves as t . We have

ė
d
dt

x x̂ A KC e

and so the requirement that limt e t 0, for any initial e 0 , means that the matrix
A KC must be asymptotically stable. This brings us to the following definition, where
A B and C are real matrices of size n n n m and p n, respectively.

Definition 5.10 The system ẋ Ax Bu y Cx, or also the pair (C,A), is detectable if
there exists a real n p matrix K such that Re 0 for all eigenvalues of A KC.
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^

K

x  =   Ax  +  Bu

y  =   Cx

y

y

x

u

^

ŷ  =  Cx

^

^
^

^
x  =  Ax  +  Bu  +  K (y  -  y)

.

.

Figure 5.3 System and state observer.

The following theorem provides a sufficient condition for the pair C A to be de-
tectable.

Theorem 5.11 For each polynomial w n wn 1
n 1 w1 w0, with real

coefficients w0 w1 wn 1, there exists a real n p matrix K such that det I A
KC w if and only if the pair C A is observable.

Proof By Theorem 4.29 the pair C A is observable if and only if the pair A C
is controllable. Theorem 5.3 states that the pair A C is controllable if and only if
for each polynomial w , as mentioned in the statement of this theorem, there exists a
matrix F such that det I A C F w . Choose K F , then

det I A KC det I A C K w

Theorem 5.11 gives a necessary and sufficient condition such that the eigenvalues of
A KC can be chosen at will. However, in observer design one is satisfied when all eigen-
values are in the open left half-plane (and the eigenvalues are not necessarily at arbitrarily
prescribed places). This is of course a weaker requirement for which observability is a
sufficient, but not a necessary condition. For instance, consider the matrix pair

A
1 0
0 1

C 1 0

which is not observable. The eigenvalues of A KC, with K k1 k2 , are the zeros of

det I A KC 1 k1 1

If we choose k1 1, both zeros are in the open left half-plane and an observer can be con-
structed whose state converges to the real state vector for t . One of the eigenvalues,
i.e., 1, is fixed and cannot be chosen at will.
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Example 5.12 This example is a continuation of Example 5.5 of the inverted pendulum.
We assume that only measurements of the position of the carriage are available, such that
A B and C are given by

A

0 1 0 0
25 0 0 0
0 0 0 1
0 6 0 0 0

B

0
2 4
0
1

C 0 0 1 0

The observability matrix is

W

0 0 1 0
0 0 0 1
0 6 0 0 0
0 0 6 0 0

Clearly, rankW 4, so that Theorem 5.11 can indeed be applied.
Suppose we want to construct an observer such that the eigenvalues of A KC are

situated in the points 1 2 and 1 i. This means that K, written as k1 k2 k3 k4 ,
must be determined such that

det I A KC det

1 k1 0
25 k2 0
0 0 k3 1
0 6 0 k4

1 2 1 i 1 i 4 4 3 7 2 6 2

Hence,

4 k3
3 25 k4

2 25k3 0 6k1 0 6k2 25k4
4 4 3 7 2 6 2

which gives the solution

k3 4 k4 32 k1
106
0 6

176 67 k2
802
0 6

1336 67

The observer has the form

˙̂x

0 1 0 0
25 0 0 0

0 0 0 1
0 6 0 0 0

x̂

0
2 4
0
1

u

176 67
1336 67

4
32

y 0 0 1 0 x̂

The solution of this observer, in combination with the solution of the original system,
satisfies lim

t
x̂ t x t 0.

Theorem 5.11 states that observability is a sufficient condition for a pair C A to be
detectable. A necessary and sufficient condition for a pair C A to be detectable is most
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easily given when A and C are expressed with respect to a particular basis such that they
have a form as in (4.17) and (4.18), respectively, i.e.,

Ā
Ā11 Ā12
0 Ā22

C̄ 0 C̄2

where the pair C̄2 Ā22 is observable. Then, detectability of the pair C A is equivalent
to condition that the matrix Ā11 is asymptotically stable. See also Exercise 5.5.7.

Detectability can alternatively be investigated as in the following remark, see [Trentel-
man, Stoorvogel and Hautus, 2001], Chapter 3.

Remark 5.13 Consider the pair C A , where A is a real n n matrix and C a real p n
matrix. Then the following statements are equivalent.

1. The pair C A is detectable.

2. rank
sI A
C

n for all s with Res 0.

3. rank
I A
C

n for all eigenvalues of matrix A with Re 0.

5.3 Separation principle and compensators

Observers were introduced because of lack of knowledge of the whole state vector. This
state vector was used in a feedback loop such as to give the system certain desired prop-
erties. We are now going to combine the feedback concept with that of the observer. Let
u Fx be a feedback law that makes

ẋ Ax BFx A BF x

asymptotically stable. For the implementation of this feedback knowledge of the whole
state is required. However, in many cases the whole state is not fully known, but only a
partial state in the form of y Cx. Assume further that an estimate x̂ by an observer is
available, then we have to be content with the control law u Fx̂, instead of u Fx. In
this section we are going to see where such a control law leads to. Therefore, consider the
system

ẋ Ax Bu
y Cx

(5.7)

with x n u m and y p . As always the matrices A B C are real and of appropriate
sizes.

Now let F be a real m n matrix such that the eigenvalues of A BF are at desired
locations and use the matrix in the control law

u Fx̂ (5.8)

where x̂ is the state of an observer of the form

˙̂x Ax̂ Bu K y ŷ
ŷ Cx̂

(5.9)
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with x̂ n and with K a real n p matrix such that the eigenvalues of A KC are at
desired locations.

Then the combination of control law (5.8) and observer (5.9) results in a system of the
form

˙̂x A BF KC x̂ Ky
u Fx̂

(5.10)

The obtained system is called a (dynamic) compensator, or also (dynamic) controller. It
has state x̂ and is fed by measurements y of the system (5.7) and produces controls u for
the system (5.7). Hence, such a compensator closes the ‘loop’ and makes that system and
compensator together form a new system with no inputs and outputs anymore, see also
Figure 5.4.

In order to distinguish the compensator (5.10) from the static compensator introduced
earlier, the one in (5.10) is sometimes called a dynamic compensator, to indicate that the
control produced at time t not only depends on output fed into the compensator at time t,
but also on previous output values.

original system

(dynamic) compensator

u y

Figure 5.4 Schematic closed-loop system.

Connecting compensator (5.10) to system (5.7), using that u Fx̂ and y Cx, it
follows that

ẋ Ax BFx̂
˙̂x KCx A BF KC x̂

As indicated above, the combined system has no inputs and outputs anymore, and has
a state that is the combination of the state of the original system and the state of the
compensator. Writing

xc
x
x̂

Ac
A BF
KC A BF KC

with the subscript ‘c’ standing for ‘combined’, it follows that

ẋc Acxc

To see how the combined system behaves, observe that

Ac
I 0
I I

A BF BF
0 A KC

I 0
I I
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where I and 0 denote the identity and zero matrix, respectively, of size n n. Also note
that left and right matrices, in the above right hand side, are each others inverse. It then
follows that the characteristic polynomial of the matrix Ac satisfies

det I Ac det
I A BF BF

0 I A KC

det I A BF det I A KC

implying that the set of eigenvalues of Ac is the union of the sets of eigenvalues of A BF
and A KC, where in each set the multiplicities of the eigenvalues are taken into account.

The latter aspect can also be shown by noting that

x
e

I 0
I I

x
x̂

with e x x̂. Then expressing the equations in terms of x and e, instead of x and x̂, it
follows that

ẋ A BF x BFe
ė A KC e

(5.11)

or, equivalently,
d
dt

x
e

A BF BF
0 A KC

x
e

(5.12)

The set of eigenvalues of this system is equal to the union of the set of eigenvalues of
A BF and the set of eigenvalues of A KC. Since only a coordinate transformation
has been performed, it once more follows that the eigenvalues of Ac are obtained by
combining the eigenvalues of A BF and A KC.

The previous illustrates that the eigenvalues of the overall system are equal to those
obtained with a state feedback and those obtained by constructing a state observer. It is
important to note that the feedback law and the observer can be designed independently!
When putting together the original system and observer, with a feedback of the observer
state, the eigenvalues do not interfere. This principle is called the separation principle.

The total system of the original system, observer and feedback law is summarized in
the flow-diagram depicted in Figure 5.5. The two subsystems surrounded by a dotted line
are the original system and the compensator.

Example 5.14 We will now conclude with the example of the carriage with the inverted
pendulum. A state feedback law was designed in Example 5.5 and an observer in Exam-
ple 5.12. Hence, the eigenvalues of A BF are as given in Example 5.5 and the eigenval-
ues of A KC are as in Example 5.12. However, these eigenvalues were chosen more or
less at will.

In order to investigate the behavior of the combined system and the influence of the
choice of the eigenvalues a number of simulations have been done. In the pictures in
Figure 5.6 some of the results are depicted. In all experiments the (unknown) initial state
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^

compensator

original  system

F

B

A

K

C

B C

A

yx
u

y

x

^

Figure 5.5 System and compensator in closed-loop.

and the initial value for the state estimate are taken to be

x 0

2
0
0
0

x̂ 0

0
0
0
0

respectively. Hence, the pendulum does not start in its equilibrium position and needs to
be controlled in order not to fall. Indeed, the angle of the pendulum with the vertical does
not start at zero, as x1 0 2. The control u will be based on the measurement y, being
only x3. To see the effect of the compensator, Figure 5.6 contains plots against time of x1
and its estimate x̂1, for three cases.

Recall from Example 3.6 that x is the state in the linearized version of the inverted
pendulum model. Hence, x must been seen as the deviation from the solution in the
original nonlinear model around which the linearization has been done. As such x1 0 2
must been seen as an initial deviation of of 2 ‘units’ from ˜ , which has a stationary value
equal to zero. Because of the linear character of the linearized model the magnitude of
a ‘unit’ is irrelevant. However, in the scope of the present example it may be natural to
choose degree as unit for x1.

In the first experiment the eigenvalues of A BF and A KC are taken as specified
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Figure 5.6 Simulation results for various choices of eigenvalues.

in Examples 5.5 and 5.12, respectively, i.e., A BF 1 2 2 i and
A KC 1 1 1 i , where M denotes the set of eigenvalues of the

square matrix M, taking the multiplicities into account. From the top plot of Figure
5.6 it is clear that x̂1 tends to look like x1 as time passes by. From time 7 both
signals more or less coincide. Also it can be seen that both signals tend to zero as
time passes by. However, note that, compared to their initial values, both signals
undergo large deviations, approximately ranging from 25 to 20. Also x1 starts
off in the wrong direction as the signal initially starts with increasing. Apparently,
the control action is poor because it is based on an estimate of the state that initially
is far from perfect. The control action becomes better once the estimate of the state
starts to improve.

In the second experiment the eigenvalues of A BF are unchanged, but the eigen-
values of A KC are shifted to the left over a distance of 5 by computing a new ma-
trix K. Hence, A BF 1 2 2 i and A KC 6 6 6 i .
From the middle plot of Figure 5.6 it is clear that x̂1 tends to look like x1 as time
passes by. Now before time 2 both signals more or less coincide. It can also be seen
that both signals go to zero as time passes by. Now note that both signals undergo
smaller deviations, approximately ranging from 4 to 4. Again x1 starts off in the
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wrong direction, but is corrected faster than above as the state estimation is done
quicker. The control action has improved because the estimate of the state on which
it is based has become better sooner than in the first experiment.

In the last experiment the eigenvalues for A BF are again unchanged, but the
eigenvalues of A KC are now shifted to the left over a distance of 10 by using
a suitable matrix K. Hence, A BF 1 2 2 i and A KC

11 11 11 i . From the bottom plot of Figure 5.6 it is clear that x̂1 tends to
look like x1 as time passes by. Now before time 1 both signals more or less coincide.
Also it can be seen that both signals go to zero as time passes by. Now note that
both signals undergo again smaller deviations, approximately ranging from 3 to

3. Clearly, the control action has again improved because the estimate of the state
on which it is based has become better even sooner than in the second experiment.

5.4 Disturbance rejection

Consider a linear time-invariant system with m l inputs, partitioned as u v , and p q
outputs, partitioned as y z , described by

ẋ Ax Bu Ev y C1x z C2x (5.13)

where u m is the usual control and v l is to be interpreted as a ‘disturbance’.
Further, y p is the usual measurement, while z q can be seen as an output that has
to be regulated. For the sake of simplicity, we assume thatC1 I and, hence, y x in this
brief section. The disturbance cannot be measured directly (one only measures y) and the

+

z

y

v

u
u

Figure 5.7 Closed loop system with disturbances.

objective is to design a feedback law

u Fx ū

(more generally, u is a function of y and of ū) such that v has no effect whatsoever on
the output z, no matter what ū or the initial condition x 0 of (5.13) are. In Figure 5.7 the
closed-loop system is depicted.

Example 5.15 Consider the system

ẋ1 x2 u

ẋ2 v

z x1
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The disturbance is not decoupled from the output as is easily seen (take for instance u 0).
If one applies the feedback law u x2 ū, however, one gets

z t x1 0
t

0
ū s ds

which is independent of v.

In general terms, we wish to have that z t , defined by

z t Ce A BF tx 0 C
t

0
e A BF t s Bū s Ev s ds

is independent of v for some matrix F . This is equivalent to the requirement that

C
t

0
e A BF t s Ev s ds 0

for all functions v and all times t 0. This requirement can shown to be equivalent to
the requirement that F is such that C A BF kE 0 for all k 0. The problem of the
existence and the computation of such F is known as the disturbance rejection problem.
The equivalence of the requirements will not be shown here, but the proof resembles the
proof of Lemma 4.15. More details can, for instance, be found in [Wonham, 1985].

5.5 Exercises

Exercise 5.5.1 Consider the one dimensional model ẋ t u t t 0, with x 0 1 and
the following two options for the (one dimensional) control function:

1. u t e t ,

2. u t x t .

The first option refers to an open-loop control, the second one to a closed-loop control.
Show that in both cases the state satisfies x t e t . Which of the two control options
would you prefer if there are disturbances in the initial condition of the system, i.e., x 0
1 with 0, and if the aim of the control is to have limt x t 0?

Exercise 5.5.2 Show that the linear time-invariant system ẋ Ax Bu (u is not neces-
sarily a scalar, i.e., m 1) is stabilizable if and only if its unstable subspace (see Defi-
nition 4.5) is contained in its controllable subspace imR, see text above Lemma 4.13).
Hint: assume A and B are given with respect to a basis in n such that they have a form
as in Equation (4.11).

Exercise 5.5.3 Consider the linear time-invariant system ẋ Ax Bu, with A an n n
matrix and B an n 1 matrix. Assume that the system is controllable and let r
n rn 1

n 1 r1 r0, with ri , for i 0 1 n 1. Prove that the feedback
matrix F such that det I A BF r can be determined by means of the next
expression:

F 0 0 1 B AB An 1B
1
r A

where r A An rn 1A
n 1 r0I.
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Exercise 5.5.4 Consider the non-controllable realization

ẋ

2 1 0 0
0 2 0 0
0 0 1 0
0 0 0 1

x

0
1
1
1

u

Is this realization stabilizable? Is it possible to find a vector F such that the feedback law
u Fx causes the eigenvalues of the feedback system to be situated at 2 2 1 1,
or at 2 2 2 1, or at 2 2 2 2?

Exercise 5.5.5 Consider the equations of motion of an airplane in a vertical plane. See
Figure 5.8. If the units are scaled appropriately (forward speed equal to one, for instance),
then these equations are approximately

˙ sin
¨ u

ḣ sin

where

h is the height of the airplane with respect to a certain reference height,

is the flight angle,

is the angle between the reference axis of the airplane and the horizontal,

u is the rudder control.

u

v

h

θ

α

γ

Figure 5.8 Airplane model.

One must design an automatic pilot to keep h constant (h should be kept stationary) in the
presence of all kinds of perturbations such as vertical gusts.

Determine the stationary value of the other relevant variables.

Linearize the equations of motion and write them as a set of first order differential
equations.

Show that the designer who proposes a feedback of the form u kh, where k is a
suitably chosen constant, cannot be succesful.
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Prove that a feedback of the form u k1h k2 , with suitably chosen constants k1
and k2, ‘does the job’, i.e., the resulting closed-loop system is asymptotically stable.

Exercise 5.5.6 Consider the dynamics of the satellite as given in Example 4.28. If only
a scalar measurement is allowed (i.e., either y1 or y2) which one would you choose such
that observability holds? Construct an observer for this measurement such that the eigen-
values of the matrix A KC are all situated in 1.

Exercise 5.5.7 Prove that the linear time-invariant system ẋ Ax Bu y Cx, is de-
tectable if and only if its non-observable subspace is contained in its stable subspace
(compare Exercise 5.5.2).

Exercise 5.5.8 Show that detectability is the dual concept of stabilizability, i.e., A B is
stabilizable if and only if B A is detectable.

Exercise 5.5.9 Consider Exercise 3.5.8 of the tractor. Show that if the combination of
tractor and wagons moves in forward direction (with constant speed), then one has de-
tectability if x1 is observed (whereas the other xi-values are not observed). If this com-
bination would move in backward direction, then detectability is assured if of all state
components only xn is observed.

Exercise 5.5.10 Show that (5.12) can equivalently be written as

d
dt

x̂
e

A BF KC
0 A KC

x̂
e

where the relationship between x̂, x and e is defined as usual, i.e., e x x̂.

Exercise 5.5.11 On the straight line connecting the earth with the moon a point (in Figure
5.9 indicated by L) exists where the gravitational force exerted by the earth on a satellite,
with mass m, equals (i.e., neutralizes) the gravitational force exerted by the moon and the
centrifugal force (due to the rotation of the satellite around the earth). The equations of
motion of the satellite in the neighborhood of L are

ẍ 2 ẏ 9 2x 0

ÿ 2 ẋ 4 2y u

where u F m 2 . On its turn, F is the force, exerted by a rocket, on the satellite in the
y-direction. Moreover, 2

29 radians/day.

1. Write the system as a linear dynamical system in first order form and show that the
equilibrium point x ẋ y ẏ 0 is unstable.

2. Investigate the controllability and/or stabilizability of this system.

3. Determine a linear state feedback such that the eigenvalues of the closed-loop sys-
tem are located in 3 4 3 3 i.
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Moon
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y

x
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Figure 5.9 Earth-moon model.

4. Suppose that only y is available for measurements. Is it possible to stabilize the
system by means of an output feedback u t y t ? (Answer: no, it is not possi-
ble).

Exercise 5.5.12 [Disturbance rejection] Consider the model

d
dt

˙
0 1 0
1 2 1

0 0 1
˙

0
1
1

0
0
1

f

y 1 0 0 ˙

which describes the movement of a ship. See also Figure 5.10. The variable is the roll
angle, ˙ its time derivative and is the lateral velocity. The control represents the
rudder angle and the function f represents the (unknown) influence of the lateral waves
on the ship movement. Please note that other possible movements of the ship, such as
pitching and yawing, are not included in this simple model.

A time-varying roll angle causes sea-sickness and one wants to design a feedback

law Fx, where x
def ˙ , such that is (completely) independent of the function

f , whatever its values may be. Is it possible to construct such a matrix F? To this end,
parametrize F and investigate whether the controllable subspace characterized by the
matrix pair A BF E , where

A
0 1 0
1 2 1

0 0 1
B

0
1
1

E
0
0
1

is contained in the kernel of C, where C 1 0 0 .

Exercise 5.5.13 The following system is given.

ẋ
1 0 2

0 3 0
1 0 0

x
1
1
0

u

y 1 0 0 x
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Figure 5.10 Ship model.

1. Show that the system with u 0 is not stable.

2. Show that the system is stabilizable.

3. Compute a feedback u Fx such that all eigenvalues of the closed-loop system are
located in 1, 2, en 3.

4. Show that the system is not observable.

5. Is the system detectable? Explain your answer.

Exercise 5.5.14 Consider the linear time-invariant system ẋ Ax Bu y Cx with

A

2 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2

B

1
0
0
0
0

C 2 0 0 0 1

In the following use a computer package like MATLAB, MAPLE 1, or so.

1. Compute the eigenvalues of A. Is the system (asymptotically) stable?

2. Compute a matrix F such that the eigenvalues of A BF are located at 1 2
i 3 2 i. You can use Exercise 5.5.3 for this. Explain how controllability plays a
role in these computations.

3. Compute a matrix K such that the eigenvalues of A KC are located at 3 4 5
5 2 i. How can you use Exercise 5.5.3 now? What is the role of observability?

4. Give a state observer for the system using the above computed matrix K.

1MAPLE is a registered trademark of Waterloo Maple Inc
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5. Combine the state observer with the above computed matrix F to obtain a dynamic
compensator for the system.

6. Illustrate the separation principle by computing the eigenvalues of the matrix de-
scribing the interconnection of the system and the dynamic compensator.

Exercise 5.5.15 Below you will find a number of statements. For each of statements
determine whether it is true or false. Make your answer plausible by means of a simple
reasoning or (counter)example.

1. If the pair A B is a stabilizable, then so is the pair A BF B for any suitable
matrix F.

2. If the sets of eigenvalues of A and A BF are completely disjoint, the pair A B is
controllable.

3. If A is asymptotically stable and the pair A B is stabilizable, then the pair A B
is also controllable.

4. If B is an n m matrix and A is an n n matrix such that rank A n m, then the
pair A B can not be stabilizable.

5. Let A be an n n matrix and C a p n matrix. Then the pair C A is detectable if
and only if the pair C A3 is detectable.

6. Let A be an n n matrix and C a p n matrix. Then C A is a detectable pair
if and only if the eigenvalues of A KC can be placed everywhere in the open left
half-plane by a suitable choice of the n p matrix K.

7. Every system that is stabilizable, is also detectable.

8. Every system that is detectable, is also observable.

9. Every system that is controllable, is also stabilizable.

10. Every system that is stabilizable, is also asymptotically stable.

11. Every system that is asymptotically stable, is also detectable.

12. Stabilizability and detectability for linear time-invariant systems are dual notions.

13. The minimal realization of a system is stabilizable and detectable.

14. A system that is stabilizable and observable, does not have to be a minimal system.

15. If the pair A B is controllable, then so is the pair A BKC B for any suitable
matrix K.

16. If the pair C A is detectable, then so is the pair C A BKC for any suitable
matrix K.



Chapter 6

Input/Output Representations

The input/output representation of a system refers to a description where the input is di-
rectly related to the output, without other intermediate functions or variables such as the
‘state’. We already have encountered such a description in Section 3.4 on impulse re-
sponse functions or matrices. By means of the function K t s the input function was
directly related to the output function. The description was obtained by the elimination of
the state vector. In this chapter, and in Chapter 8.2, other useful input/output representa-
tions of systems will be discussed.

6.1 Laplace transforms and their use for linear time-invariant systems

Until now most of the systems were described by means of differential equations and al-
gebraic equations with time as the underlying independent parameter. For this reason such
systems are also said to be described in the time domain. Especially, linear time-invariant
systems were studied in the previous chapters. However, for linear time-invariant systems
also other ways of description exist as well. For instance, using the Laplace transform
the linear equations of such systems can be transformed into new linear equations in the
Laplace domain. There the underlying independent parameter can be interpreted as a
complex-valued frequency and for that reason the description in the Laplace domain is
also called a description in the frequency domain. In the current section the details of the
description of a linear time-invariant system in the frequency domain will be presented

The Laplace transform of a piecewise continuous function f : 0 , denoted as
F f , is defined as

F s f t

0

f t e stdt (6.1)

If f O ebt for t , i.e., f grows (at most) at an exponential rate (b is a constant),
then the integral exists, not only for all real s b, but also for all complex s with Res b.
The latter is due to the identity f t e st f t e Res t . Therefore, the domain of the
function F can be extended to all s with Res b, yielding that F then is a complex
valued function such that

F : s Re s b

In this chapter the parameter s will always be complex valued. The extension of the
previous to vector valued functions f : 0 n is straightforward.

f t f1 t fn t F1 s Fn s F s

The extension to matrix valued functions is also componentwise.

109



110 Mathematical Systems Theory

Consider a linear time-invariant strictly causal differential system given by its impulse
response matrixG, see Section 3.4. Then the relation between input u and output y is given
by

y t

t

G t u d

For simplicity we assume u 0 for 0 and hence

y t

t

0

G t u d (6.2)

Hence, the output y can be seen as the convolution of the impulse responseG and the input
u, both possibly matrix/vector valued. Suppose that y u and G have Laplace transforms,
to be denoted by Y U and H, respectively, i.e.,

Y s

0

y t e stdt U s

0

u t e stdt H s

0

G t e stdt

then the transformation of (6.2) yields

Y s H s U s (6.3)

The p m matrix H s is called the transfer matrix of the system. It gives a very simple
description of the system. The property that (6.3) is the Laplace transform of (6.2) is
called the convolution theorem. It is assumed that the reader is familiar with this property
and, more generally, with the theory of Laplace transforms, for more details, see [3].

IfG t O ebt for t , the transfer matrix is only defined for Res b. The theory
of Laplace transforms tells us that H s is analytic for Res b and then complex function
theory tells us that a unique analytic continuation of H s exists. A unique matrix exists
for all s , that is analytic in the complex plane, except for a number of isolated points,
and that is identical toH s for Res b. In the remainder we will not distinguish between
H s and its analytic continuation.

If X s is the Laplace transform of x t , then

ẋ t

0

ẋ t e stdt x t e st

0
0

x t se stdt x 0 sX s

The Laplace transform of the equation

ẋ Ax Bu x 0 x0

therefore is
sX s x0 AX s BU s (6.4)

yielding
X s sI A 1x0 sI A 1BU s
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If we also transform the output equation y Cx to Y s CX s , and assume that x0 0,
then

Y s C sI A 1BU s H s U s (6.5)

Recall that the impulse response equals G t CeAtB. Comparison with

y t

t

0

CeA t Bu d

see Equation (6.2), leads to

H s CeAtB C Is A 1B (6.6)

The theory of analytic continuation can be illustrated clearly with respect to the latter
equation. At first instance H s is only defined for Res max Re i , where i are the
eigenvalues of A. The expression C Is A 1B, however, is well defined for all s ,
except for possibly the points s 1 2 n, where Is A is singular. Please note
that it is not necessarily true that all eigenvalues of A cause H s to be singular, since, by
multiplying Is A 1 with C and B, some factors may cancel. In system theory, points
whereH s does not exist are called the poles of the transfer functionH s . Equation (6.6)
states that the transfer matrix is the Laplace transform of the impulse response matrix.

Example 6.1 Consider the system which describes the dynamics of the satellite (see also
Example 3.14 and Exercise 3.5.2). The system is given by

A

0 1 0 0
3 0 0 2
0 0 0 1
0 2 0 0

B

0 0
1 0
0 0
0 1

C
1 0 0 0
0 0 1 0

The transfer matrix for this system is

H s G t
sin t 2 2cos t

2 2cos t 3t 4sin t

1
s2 1

2
s

2s
s2 1

2
s

2s
s2 1

3
s2

4
s2 1

1
s2 1

2
s3 s

2
s3 s

s2 3
s4 s2

A new method has now been found to calculate the transition matrix. The Laplace
transforms of ẋ Ax with x 0 x0 and x t eAtx0 are

X s sI A 1x0 X s eAt x0

respectively, for any x0
n . Therefore, it follows

eAt 1 sI A 1

where 1 denotes the inverse Laplace transform. The matrix function sI A 1 is
called the resolvente of the matrix A.
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6.2 Connection of systems

The description of systems by means of transfer matrices is useful if one wants to connect
systems. If we are given two systems by means of the transfer matrices H1 s and H2 s ,
respectively, as depicted in Figure 6.1, then the parallel connection is given as shown

U (s)

H (s)

Y (s)

1

2U (s)
1 2

2
H (s)

Y (s)1

Figure 6.1 Two subsystems with transfer matrices H1 s and H2 s .

in Figure 6.2, where the symbol + denotes addition of all incoming signals. Note that

H (s)
1

U(s)

2
H (s)

Y(s)

.

Figure 6.2 Parallel connection of systems described by H1 s and H2 s .

in the parallel connection both subsystems have the same input, and that the output of
the parallel connection is the sum of the outputs of its two subsystems. In formula, the
transfer matrix of the parallel connection, denoted by H s , is equal to H1 s H2 s .

The series connection is as depicted in Figure 6.3. Note that in the series connection
the output of one subsystem acts as the input to the other subsystem. Hence, these input
and output need to be of the same size. In formula, H s H2 s H1 s , where H s now

H (s)
1

Y(s)

2
H (s)

U(s)

Figure 6.3 Series connection of systems described by H1 s and H2 s .

denotes the transfer matrix of the series connection. Please note that for multi-input multi-
output systems, the product of thematrices H2 s andH1 s is in general not commutative,
i.e., in general H1 s H2 s H2 s H1 s , such that the order in which the systems are
connected is important. The reader may convince him/herself that the description of a
series connection, starting from two state space descriptions, is far more difficult.

The feedback connection is given as depicted in Figure 6.4. In frequency domain
terms, if the signal that enters H1 s is called V s , then the transfer matrix of the overall



6. Input/Output Representations 113

H (s)
1

U(s)

H (s)
2

V(s) Y(s)

.

Figure 6.4 Feedback connection of systems described by H1 s and H2 s .

system, again denoted by H s , can be calculated as follows.

V s U s H2 s Y s
Y s H1 s V s

Y s H1 s U s H2 s Y s

Solving for Y s yields

Y s I H1 s H2 s
1H1 s U s

and therefore
H s I H1 s H2 s

1H1 s (6.7)

In the connections considered above it was tacitly assumed that the number of inputs and
the number of outputs were such that the described connections made sense.

6.3 Rational functions

Let us consider the transfer matrix H s G t C Is A 1B in more detail. The
inverse Is A 1 can in principle be obtained by applying Cramer’s rule, the result of
which is

Is A 1 1
p s

q11 s q1n s
...

...
qn1 s qnn s

where p s is the characteristic polynomial of A. We write p s as

p s sn pn 1s
n 1 p1s p0

with p0 p1 pn 1 . For all i j 1 2 n, the elements qi j s are determinants of
n 1 n 1 submatrices of Is A, and consequently are polynomials in s of degree at

most n 1. Therefore, the elements of Is A 1 are rational functions of s, i.e., functions

of the form
qi j s
p s

.

In general, a rational function is defined as the quotient of two polynomials. It
is called strictly proper if the degree of the numerator polynomial is smaller than the
degree of the denominator polynomial. If the rational function is given by h s , then an
equivalent definition of being strictly proper is that lim s h s 0. If this limit is finite,
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but not necessarily zero, then one speaks of a proper rational function. Written as a
quotient of two polynomials, a rational function is proper if and only if the degree of the
numerator polynomial is less than or equal to the degree of the denominator polynomial.

It easily follows that the elements of a transfer matrix H s are strictly proper rational

functions. Indeed, from the above it follows that H s can be written as 1
p s

R s , where

R s is an p m matrix with as elements polynomials of degree at most n 1, and with
p s a scalar polynomial of which the degree is n. As defined earlier, poles of H s are
points where H s has a singularity, i.e., points s0 where lims s0

H s does not exist.
The eigenvalues of A, being the roots of p s , are the only candidates for poles, but not
necessarily all of them are poles.

Example 6.2 If

A
0 2
1 3

B
2
1

C 0 1

then

Is A 1 s 2
1 s 3

1
s 3

s 1 s 2
2

s 1 s 2

1
s 1 s 2

s
s 1 s 2

The matrix Is A 1 has poles in s 1 and s 2. However,

C Is A 1B
1

s 1

and has only one pole, namely in s 1.

In the context of transfer matrices, the underlying systems are said to be stable if all of
the associated poles have a negative real part. In fact, compared with notions of stability
in Section 4.1, it would have been more consistent to call these systems asymptotically
stable. However, it is common practice to say that a system described by a transfer matrix
is stable if all its poles have a negative real part. Note that this notion of stability is closely
related to the BIBO stability introduced in Section 4.1.

Example 6.3 We are given two linear, stable, single-input single-output systems 1 and

2, with transfer matrices (actually transfer functions) h1 s and h2 s , respectively. Prove,
or, if not true, give a counterexample for, each of the following three assertions.

1. The series connection is stable.

2. The feedback connection is stable.

3. The parallel connection is stable.

Answer question 1. For i 1 2, suppose that hi s
qi s
pi s

, and that common factors

have been deleted, so that the poles of system i are the roots of pi s . Stability now
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means that these roots are located in the open left half-plane, see also the above remark.

The transfer function of the series connection equals
q1 s q2 s
p1 s p2 s

. Perhaps some factors in

numerator and denominator will cancel, but the roots of the remaining denominator form
a subset of the set of roots of p1 s and p2 s , and therefore lie in the open left half-plane.
Hence, the series connection is stable.
Answer question 2. The feedback connection is not necessarily stable as shown by

the (counter)example. Consider

h1 s
1

s 1
h2 s

4
s 1

The transfer function of the feedback connection is

h s
h1 s

1 h1 s h2 s
s 1

s 1 2 4
s 1

s 3 s 1

which represents an unstable system, since it has a pole with nonnegative real part at
s 1.
Answer question 3. The parallel connection is stable again. A proof can be given

along the same lines as the proof of the stability of the series connection.

So far we have concentrated on strictly causal linear systems, i.e., with D 0 If
D 0, and assuming x0 0, then (see also Exercise 3.5.16),

y t

t

0

CeA t B D t u d

H s C sI A 1B D t C sI A 1B D

If we consider this transfer matrix in detail, it turns out that its elements are proper func-
tions, which are not all strictly proper, because the degree of the numerator of at least one
element will now be equal to the degree of the denominator (otherwise we would have
that D 0).

The following example shows that also transfer matrices exist of which the elements
are not rational functions at all.

Example 6.4 The transfer function for the moving average system, treated in Exam-
ple 3.15, is

H s

0

G t e stdt
1
T

T

0

1 e stdt
1 e sT

sT

This is not a rational function.

It can be shown that for all proper rational transfer matrices H s , matrices A B C and D
exist such that H s C Is A 1B D. Hence, to such transfer matrices linear time-
invariant differential systems correspond. In the next section the latter will be proved for
transfer functions, to which single-input single-output systems can be associated.
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6.4 Transfer functions and transfer matrices

In this section we will mainly consider single-input single-output linear differential sys-
tems. The transfer matrix is therefore a scalar function, called the transfer function, and
it will be indicated by h s instead of the more general H s , which will be used later
on to indicate the multi-input multi-output case. In this section we will also assume that
h s is proper, i.e., the degree of the numerator is less than or equal to the degree of the
denominator. Without loss of generality h s can be written more explicitly as

h s
q s
p s

qks
k qk 1s

k 1 q0

sn pn 1s
n 1 p0

(6.8)

with k n, and where the coefficient of the highest power of s in the denominator is equal
to one. (Polynomials with the coefficient of the highest power equal to one are called
monic polynomials.) It is well known that a polynomial can be factorized in a number of
linear factors equal to the degree of the polynomial. Hence, we can write

h s
q s
p s

c s b1 s b2 s bk
s a1 s a2 s an

(6.9)

with c and ai bi for i 1 2 k, where k n. We will assume that q s and
p s do not have any common factors. If so, they can be cancelled. The roots of the
denominator p s , i.e., a1 a2 an, are called the poles of the transfer function, and
b1 b2 bk, i.e., the roots of q s , are called the zeros of the transfer function. Suppose
the input is given by

u t
es0t for t 0
0 for t 0

then the Laplace transform of the output can be written as

Y s
c s b1 s bk
s a1 s an

1
s s0

If s0 bi, for i 1 k, then a partial fraction decomposition of Y s yields

Y s 1

s a1

2

s a2

n

s an
n 1

s s0
i (6.10)

where, for reason of simplicity, we assumed that all poles ai have multiplicity one, and,
moreover, that s0 ai, for all i 1 2 n. The inverse Laplace transform of (6.10) yields

y t 1e
a1t ne

ant
n 1e

s0t

The first n terms of the right-hand side of this expression are the free modes of the system.
The last term is a consequence of the input.

If now s0 bi, for some i, say i 1, then

Y s
c s b1 s bk
s a1 s an

1
s b1

c s b2 s bk
s a1 s an

1

s a1

n

s an i



6. Input/Output Representations 117

The frequency s0 of the input signal does not show up in the output signal; only the free
modes are excited. So it follows that the zeros of a system are those frequencies in the
input signal which do not form part of the output signal.

Definition 6.5 If all eigenvalues i have a negative real part, the time constant of the
corresponding system is defined as 1 maxi Re i .

Definition 6.6 The single-input single-output system ẋ Ax Bu y Cx is said to be a
non-minimum phase system if at least one of its zeros has positive real part.

Example 6.7 Consider the system with transfer function

s 1
s2 5s 6

3
s 2

4
s 3

This is a non-minimum phase system. If the Heaviside function is applied to the system,
which was at rest for t 0, then it is straightforward to show that the output is

y t
3
2

1 e 2t 4
3

1 e 3t t 0

Of course y 0 0, and one sees that y 1 6 0. So, a positive input leads to a
positive output in the long run. For a stabilizing output feedback it is therefore tempting
to consider u t ky t , with k 0, to counteract the output with the input. However, one
also has ẏ 0 1 0. Hence, the sign of y t for small values of t is different from the
sign of y t for large values of t. This is sometimes felt to be counter-intuitive and leads
to problems if one wants to apply an output feedback control of the form u t ky t .
Hence, non-minimum phase systems require careful attention if one wants to apply such
an output feedback.

Example 6.8 Continuation of the satellite example (see Examples 3.14 and 6.1, and Ex-
ercise 3.5.2). We consider a version of the dynamics where there is only one input variable
and one output variable, namely u2 and y2, respectively. The matrices involved are (with

1):

A

0 1 0 0
3 0 0 2
0 0 0 1
0 2 0 0

B

0
0
0
1

C 0 0 1 0

The transfer function of this system is (see Example 6.1):

s2 3
s4 s2

The zeros of this system are s 3 and s 3. These ‘frequencies’ (strictly speak-
ing, there is no oscillation at all, since s 3 correspond to real exponential functions)
cannot appear in a component of the output signal. However, because the system is not
stable, see Exercise 4.5.1, the free modes excited by the input will not die out.
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We already know that a single-input single-output system ẋ Ax Bu y Cx Du,
gives rise to a transfer function (a 1 1 matrix)

h s C Is A 1B D (6.11)

which is a proper rational function. In the following theorem it will be shown that the
reverse also holds.

Theorem 6.9 Consider a transfer function h s and assume that it is a proper rational
function. Then there exists an n n matrix A, an n 1 matrix B, a 1 n matrix C and a
1 1 matrix D such that (6.11) is satisfied.

Proof Assume a rational function h s
q s
p s

is given with deg q s deg p s , where

degq s denotes the degree of the polynomial q s , and similarly for deg p s . FirstD
will be constructed. There are two possibilities:

1. if degq s deg p s , then take D 0.

2. if degq s deg p s , then

h s
q s
p s

qnsn qn 1s
n 1 q0

sn pn 1s
n 1 p0

qn sn pn 1s
n 1 p0

p s

qn 1 qnpn 1 s
n 1 q0 qnp0

p s

qn
q̄ s
p s

(6.12)

where deg q̄ s deg p s . Take D qn in this case.

In order not to complicate the notation, q̄ s will again be written as q s , so that we can

continue with
q s
p s

, degq s deg p s , and withD already defined. Hence, we will write

p s sn pn 1s
n 1 p0 q s qn 1s

n 1 q0

If Y and U are the Laplace transforms of y and u, respectively, then they are connected
according to Y s h s U s , or, equivalently,

p s Y s q s U s

which is a shorthand notation for

snY s pn 1s
n 1Y s p0Y s qn 1s

n 1U s q0U s (6.13)

We start with a special polynomial q s , namely q s is a constant and for this constant
we choose 1. Hence, q s q0 1. Since such a system is different from the original one,
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we will denote its output by z, with Laplace transform Z, instead of y, which is preserved
for the output of the original system. Then

snZ s pn 1s
n 1Z s p0Z s U s

which is the Laplace transform of

dn

dtn
z t pn 1

dn 1

dtn 1 z t p0z t u t (6.14)

with initial values z 0 ż 0 z n 1 0 0. Here we used the following proper-
ties of Laplace transforms of derivatives.

f t s f t f 0

f t s2 f t s f 0 f 0
...

Equation (6.14) can be written as a set of first order differential equations

ż t
z̈ t

...

...
z n t

0 1 0 0
... 0

. . .
...

...
...

. . . 0
0 0 0 1
p0 p1 pn 2 pn 1

z t
ż t

...

...
z n 1 t

0
...
...
0
1

u t

Thus, a linear differential system ẋ Ax Bu y Cx, with state x z ż z n 1 ,
has been obtained with

A

0 1 0 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
0 0 0 1
p0 p1 pn 2 pn 1

B

0
...
...
0
1

C 1 0 0 (6.15)

The latter is a realization of the transfer function h s
1
p s

. Note that the eigenvalues

of A are the poles of h s , because det Is A p s (see Exercise 3.5.14).
We now consider the general case with an arbitrary numerator polynomial q s of

degree n. Inverse Laplace transformation of (6.13) yields (with the initial values of all
appropriate derivatives of u and y equal to zero)

dn

dtn
y t pn 1

dn 1

dtn 1 y t p0y t qn 1
dn 1

dtn 1 u t q0u t (6.16)

The solution z t of (6.14) will now be related to the solution y t of (6.16). To that end,
because z t satisfies (6.14), q0z t satisfies

dn

dtn
q0z t pn 1

dn 1

dtn 1 q0z t p0 q0z t q0u t (6.17)
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Differentiation of (6.14) and subsequent multiplication by q1 leads to

dn

dtn
q1ż t pn 1

dn 1

dtn 1 q1ż t p0 q1ż t q1u̇ t (6.18)

Continuing this way, we get ultimately

dn

dtn
qiz

i t pn 1
dn 1

dtn 1 qiz
i t p0 qiz

i t qiu
i t

for i 0 n 1. If we add all these n equations, the result is

dn

dtn
q0z q1ż qn 1z

n 1 p0 q0z q1ż qn 1z
n 1

q0u q1u̇ qn 1u
n 1 (6.19)

If (6.16) and (6.19) are compared, we see that the unique solution y t of (6.16), with
y 0 ẏ 0 y n 1 0 0, is equal to q0z q1ż qn 1z

n 1 . A realization

of h s
q s
p s

therefore is

A

0 1 0 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
0 0 0 1
p0 p1 pn 1

B

0
...
...
0
1

C q0 q1 qn 1 (6.20)

with state variable x z ż z n 1 .
Other realizations exist, i.e., other triples of matrices A B C are possible that corre-

spond to the same transfer function. Indeed, as explained in section 3.4, a coordinate
transformation in the state space does not change the transfer function.

Example 6.10 In Example 6.8 a particular part of the satellite model is discussed that has
transfer function

s2 3
s4 s2

According the ideas above, a realization of this function is

ẋ

0 1 0 0
0 0 1 0
0 0 0 1
0 0 1 0

x

0
0
0
1

u y 3 0 1 0 x

Clearly, this realization is different from the one given in Example 6.8.

Example 6.11 Consider the two systems (x u y ):

1 : ẋ x 2u y 2x

2 : ẋ 2x 3u y x
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v z
Σ1 2Σ

Figure 6.5 Scheme of two coupled systems.

What are the transfer functions of these two systems? Subsequently, these systems are
coupled to each other as indicated in Figure 6.5. The input and output of this combined
system are called v and z, respectively. What is the transfer function that describes the
relation between v and z? Give also a state space description of this combined system.
Answer. The transfer functions of 1 and 2 are

h1 s
4

s 1
h2 s

3
s 2

respectively. In order to determine the transfer function of the coupled system, we define
yi t to be the output of system i. Then we formally get

Y2 s h2 s Y1 s Y1 s h1 s V s Y2 s Z s Y1 s Y2 s

from which it follows that

Z s
h1 s 1 h2 s

1 h1 s h2 s
V s

Substitution of h1 s and h2 s leads to the transfer function

4s 4
s2 3s 14

A state space description is

ẋ
0 1
14 3

x
0
1

v z 4 4 x

6.5 More on realizations

6.5.1 Flow diagrams

The realization in (6.20) has a special name, namely the standard controllable realiza-
tion, or the controller form, and was already met in (5.4). The procedure given in the
previous section to obtain a realization can also be visualized by means of a flow dia-
gram, as depicted in Figure 6.6, (in this diagram n 3 and the notation z i refers to the

i-th derivative of z). In the diagram the box denotes integration, which is a shorthand

notation for the system ẋ u y x, with transfer function 1
s , and the boxes pi and
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(1)

-p

-p

-p

q

q

q

u z

y

(3)

0

1

2

0

1

2

z z
(2)

z

Figure 6.6 Flow diagram of realization.

qi denote multiplication with the coefficient inside the box. The diagram also indicates

how the system could be realized in practice (i.e., be built) if we have devices (building
blocks) at hand which integrate, add and multiply. This is exactly what is done in an
analog computer.

Superficially, we could also implement or build this system by means of differentia-
tors. The starting point would then be the design or flow diagram as depicted in Fig-
ure 6.7. The flow diagram between u and z is (take n 3) and therefore, by superposition,

(3)

-p

-p

-p

2

1

0

(2)
zz z z

.
u

Figure 6.7 Flow diagram of input part.

a diagram as in Figure 6.8 results. This flow diagram also describes the system character-

ized by h s
q s
p s

. However, now differentiators, i.e., the blocks d
dt , have been used.

As will be explained in Example 6.21, differentiators are technically difficult to build.
Because integrators can be realized much easier, a flow diagram with integrators instead
of differentiators is to be preferred.
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..

-p

-p

-p

2

1

0

u

q

q

q

0

1

2

d d

d

=y

dt dt

dt

q

0
q q

1
+z z +

2
z

.

. .. .

Figure 6.8 Flow diagram of combination.

6.5.2 Alternative realizations

In addition to the above given standard controllable realization, other useful realizations
exist. One of them carries the name of standard observable realization. We will not
discuss it here extensively. We only give it here for sake of completeness for the transfer
function (6.8) with qn 0. Then this realization is given by

A

0 0 p0
1 0 0 p1
...

. . .
. . .

. . .
...

... 1 0 pn 2
0 1 pn 1

B

q0
q1
...

qn 2
qn 1

C 0 0 0 1 (6.21)

We will continue this section with yet another realization that also realizes a rational

function h s
q s
p s

, with degq s deg p s , as a linear differential system. The method

is based on the following partial fraction decomposition of h s , where the ai are the poles
of h s , which, for the time being, are assumed to be real and to have multiplicity one,

h s
q s
p s

1

s a1

2

s a2

n

s an

A realization of h s is then given by

ẋ

a1 0 0

0 a2
. . .

...
...

. . .
. . . 0

0 0 an

x

1
1
...
1

u y 1 2 n x

which can be depicted in a block diagram as shown in Figure 6.9. This realization is
called a diagonal realization. The original n-th order system has been decoupled into n
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n

U(s)

s - a

1

1

1 γ

Y(s)

2

1

s - 

s - 

1

2

n

a

a

γ

γ

.

Figure 6.9 Diagonal realization.

independent subsystems. The blocks with the contents
1

s ai
are shorthand notation for

the flow diagram depicted in the right-hand side of Figure 6.10.

i

1
s - a

a

i

means .

Figure 6.10 Implementation of an elementary building block.

If, instead of the above, p s has real roots of multiplicity larger than one, say s a
has multiplicity two, then partial fraction decomposition leads to

h s
s a s a 2

These terms can be realized jointly as shown in Figure 6.11. If the outputs of the two

2
δ

γ

s - a s  - a

x x1
1 1

Figure 6.11 Realization of more a general element.

blocks with integrators are denoted by x2 and x1, as indicated in the figure, then a state

space realization of
s a s a 2 is

d
dt

x1
x2

a 1
0 a

x1
x2

0
1

u y x
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The system matrix A is now a Jordan block of size 2 2 for the eigenvalue a. Similar
results hold if a is a real root of p s with a multiplicity higher than two.

If p s contains factors of the form s2 bs c with b2 4c 0, such that a further
decomposition in real factors is impossible, then the following shows a possible way to
obtain a flow diagram. As an example, consider the transfer function given by

h s
s 2

s2 2s 5

The denominator cannot be decomposed any further into real factors. Then h s can be
written as

h s
s 2

s 1 2 4

1
s 1

1 22

s 1 2

1
2

2
s 1 2

1 22

s 1 2

and a flow diagram can be given as in Figure 6.12. If the output of the two blocks

2

U(s) 1
2

-2

Y(s)x

xs + 
1

1
1

s + 1
1
2

Figure 6.12 Flow diagram of an irreducible transfer function.

with integrators are denoted by x1 and x2, as indicated in the figure, then a state space
realization is

d
dt

x1
x2

1 2
2 1

x1
x2

0
1

u y
1
2

1
x1
x2

6.5.3 Example

Example 6.12 We are given the system

d
dt

x1
x2
x3

1 0 1
0 1 1
0 0 0

x1
x2
x3

1 0
2 1
0 1

u1
u2

y1
y2

1 0 0
0 1 0

x1
x2
x3

This is a model of a turbo-propeller engine, see also Figure 6.13, where

x1 y1 is the deviation of the rotating speed from its nominal value at the desired
steady-state operating point,

x2 y2 is the deviation of the turbine-inlet temperature from its nominal value,



126 Mathematical Systems Theory

x3 is the deviation of the fuel rate from its nominal value,

u1 is the deviation of the propeller blade angle from the nominal value,

u2 is the time-derivative of the fuel rate.

propeller combustion

chamber

compressor

turbine

Figure 6.13 Turbo-propeller engine model.

Consider the following questions.

1. Determine the transfer matrix of the system.

2. One wants to decouple the inputs and the outputs. That is, the first input should
only influence the first output and the second input should only influence the second
output. For the decoupling to be true, what properties must the transfer matrix
satisfy?

3. Instead of with u, we are going to control the system by means of w 2 , where
u 2 , x 3 , w 2 and an auxiliary variable v 2 are related to each other as

u Gv v Fx w

Determine constant matrices G and F such that the new system, with input w and
output y, is decoupled.

Answer question 1. The transfer matrix is calculated from H s C sI A 1B. It
equals

H s
1

s 1
1

s s 1
2

s 1
1
s

Answer question 2. H s must be a diagonal matrix (which is not the case here).
Answer question 3. With the new input (and output), the system equations can be

written as

ẋ A BGF x BGw (6.22)

y Cx

Write

G
g1 g2
g3 g4

F
f1 f2 f3
f4 f5 f6
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From the impulse response of system (6.22) at time t 0, it follows that since y1 x1
must not depend on w2, a requirement is that g2 0. Similarly, y2 x2 must not depend
on w1, which leads to 2g1 g3 0. The element g4 can be chosen freely. Hence, a
possible choice for G is

G
1 0
2 1

With this G we get

A BGF
1 f1 f2 1 f3
f4 1 f5 1 f6

2 f1 f4 2 f2 f5 2 f3 f6

By choosing f2 0 and f3 1 0, the requirement that x1 is not influenced by x2 and x3
has been taken care of. Similarly, by choosing f4 0 and f6 1 0, x2 is not influenced
by x1 and x3. The remaining elements f1 and f5 can be chosen freely. For instance, take
f1 f5 0. Hence,

F
0 0 1
0 0 1

With this choice of F and G, the system becomes

d
dt

x1
x2
x3

1 0 0
0 1 0
0 0 1

x1
x2
x3

1 0
0 1
2 1

w1
w2

y1
y2

1 0 0
0 1 0

x1
x2
x3

which is clearly decoupled.

6.6 Transfer functions and minimal realizations

6.6.1 Realizations of single-input single-output systems

In this first subsection some further results on realizations of single-input single-output
systems are presented. The next subsection deals with realizations of multiple-input
multiple-output systems.

Theorem 6.13 Let p s be a polynomial of degree n and let q s be a polynomial whose
degree is at most n. Then a realization with state space n of the transfer function

h s
q s
p s

is both controllable and observable if and only if the polynomials q s and p s do not
have common factors.
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Proof The proof will only be given for transfer functions which allow a diagonal realiza-
tion, i.e., the system matrix A is diagonal. The proof consists of two parts. First, we will
prove that, given controllability and observability, there are no common factors. Subse-
quently, we will prove that, if the system is not controllable and/or not observable, there
are common factors. Together these two parts then prove the theorem.

Necessity. Consider the diagonal realization

A

1 0 0

0 2
. . . 0

...
. . .

. . . 0
0 0 n

B

b1
b2
...
bn

C c1 c2 cn (6.23)

with corresponding transfer function

h s
q s
p s

n

i 1

gi
s i

(6.24)

The scalars bi and ci satisfy bici gi, but are otherwise arbitrary. The controllability
matrix is

R

b1 b1 1 b1
2
1 b1

n 1
1

b2 b2 2 b2
2
2 b2

n 1
2

...
...

...
...

bn bn n bn n bn n 1
n

and

det R det

1 1
2
1

n 1
1

1 2
2
2

n 1
2

...
...

...
...

1 n
2
n

n 1
n

n

i 1
bi (6.25)

The determinant in the right-hand side of (6.25) is the so-called determinant of Van der
Monde and it can be shown (the proof is by induction with respect to the size of the
matrix; the proof will not be given here) that this determinant is equal to

1 i j n
j i (6.26)

(Note that, for instance, 1 i j 3 j i 2 1 3 1 3 2 , and that

1 i j n j i consists of 1
2n n 1 factors.)

Hence, detR 0 if and only if i j for all i j with i j, and bi 0 for all i. The
latter requirement is quite obvious. If bi 0 for some i, then the i-th component of the
state is not excited by the input, and cannot belong to the controllable subspace.

Hence, realization (6.23) is controllable if and only if i j for all i j with i j, and
bi 0 for all i. With the same argument it can be shown that the realization is observable
if and only if i j for all i j with i j, and ci 0 for all i. For a controllable and
observable realization of the form (6.23), ci 0 and bi 0 for all i, and therefore gi 0
for all i. This implies that there are no common factors in h s .
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Sufficiency. Now suppose that the realization is not controllable. Then, according to
(6.25) and (6.26), either i j for some i j with i j, or bi 0 for some i, or both.
Without loss of generality, assume that either 1 2, or b1 0, or both. In all three
cases, h s can be rewritten as follows

h s
n

i 1

gi
s i

n

i 2

g̃i
s i

hred s

where ‘red’ stands for reduced. Indeed, in all three cases g̃i gi for 3 i n, and
g̃2 g1 g2 when 1 2, and g̃2 g2 otherwise. Hence, h s can be written as a
proper rational function with a denominator of degree (at most) n 1, implying that the
numerator and denominator of h s contain some common factor. A similar statement
follows starting from a realization that is not observable.

Hence, an n dimensional realization of h s
q s
p s

, with deg p s n degq s , that

is not controllable or not observable, implies that p s and q s contain a common factor.

Example 6.14 Consider the system

d
dt

x1
x2
x3

1 2 1
0 1 0
1 4 3

x1
x2
x3

0
0
1

u y 1 1 1
x1
x2
x3

(6.27)

The matrices R andW for this system are

R
0 1 4
0 0 0
1 3 8

W
1 1 1
2 3 2
4 7 4

Both R and W are singular! Even one of them being singular would be sufficient to
conclude that the transfer function contains some common factor. Indeed, based on the
non-controllability, it follows that the numerator and denominator of h s have a common
factor s 1 , and the non-observability implies that the numerator and denominator of
h s have a common factor s 2 . The transfer function is

h s
s 1 s 2
s 1 s 2 2

1
s 2

Hence, the input-output behavior of the system given by the realization (6.27) with a three
dimensional state space can also be realized by a realization with a one dimensional state
space. Such a realization is (x is one dimensional)

ẋ 2x u y x

A realization of which the dimension of the state is minimal is called a minimal realiza-
tion.
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6.6.2 Realizations of multiple-input multiple-output systems

Until now most of the realizations concerned single-input single-output systems. In this
subsection a generalization of (6.20) towards multiple-input multiple-output systems is
discussed and some additional results are presented.

To present a generalization of (6.20), assume that H s is the transfer matrix of a
system with m inputs and p outputs. Hence, H s is an p m matrix. Each entry of H s
can be written in the form of (6.12). Leaving the ¯ notation, it follows that all obtained
expressions can be combined in such a way that

H s D
1
p s

Q s

with D p m and

p s sn pn 1s
n 1 p1s p0

Q s Qn 1s
n 1 Q1s Q0

where p0 p1 pn 1 and Q0 Q1 Qn 1
p m . Hence, all the pi’s are scalars

and all theQi’s are p mmatrices. Without proof we now state that the following matrices
A B C, together with D, form a realization of H s , i.e., H s D C sI A 1B,

A

0 I 0 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
0 0 0 I
p0I p1I pn 1I

B

0
...
...
0
I

C Q0 Qn 1 (6.28)

where all the 0’s denote m m zero matrices and the I’s are m m identity matrices.
Hence, the matrix A consists on nm rows and nm columns. Matrix B has nm rows and m
columns, and matrix C has p rows and nm columns. Note that the bottom ‘block’ row of
A consists of matrices of the form piI.

As an alternative to the above method, all the individual nonzero entries in the transfer
matrix H s can first be seen as single-input single-output systems and each of them
can be realized according to one of the methods described before. Next all obtained
realizations can be combined together in a large realization of the original multiple-input
multiple-output system. This approach is illustrated by means of the following example.

Example 6.15 Consider the transfer matrix

H s
h11 s 0
h21 s h22 s

0 h32 s
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with

h11 s
s2 4s 6
s2 3s 2

h21 s
1

s 3 s 2

h22 s
3s2 4s 7

s 1 3 h32 s
s 2

s2 4s 5

Note that

h11 s 1
s 4

s2 3s 2
h21 s

1
s 2

1
s 3

h22 s
3s2 4s 7

s3 3s2 3s 1
h32 s

1
s 2

1 1
s 1 2

Hence, h11 s can be realized by means of the standard controllable realization

A11
0 1
2 3

B11
0
1

C11 4 1 D11 1

For h21 s a diagonal realization can be obtained with

A21
2 0

0 3
B21

1
1

C21 1 1 D21 0

A standard observable realization for h22 s is given by

A22

0 0 1
1 0 3
0 1 3

B22

7
4
3

C22 0 0 1 D22 0

Finally, h32 s can be realized, in the way as described on page 125, by

A32
2 1

1 2
B32

1
0

C32 1 0 D32 0

With the realizations for the individual nonzero entries of the transfer matrix H s , the
latter can be realized by means of A B C and D made up of the obtained realizations.
After some book keeping, it follows that here these matrices may look like

A

A11 0 0 0
0 A21 0 0
0 0 A22 0
0 0 0 A32

B

B11 0
B21 0
0 B22
0 B32

C
C11 0 0 0
0 C21 C22 0
0 0 0 C32

D
D11 0
D21 D22

0 D32
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where all 0’s are zero matrices of suitable sizes. Indeed, with these A B C and D, it
follows that D C sI A 1B

D11 C11 sI A11
1B11 0

D21 C21 sI A21
1B21 D22 C22 sI A22

1B22
0 D32 C32 sI A32

1B32

H s

where all I’s stand for identity matrices of suitable sizes. Hence, it follows that H s
D C sI A 1B with

A

0 1
2 3

2 0
0 3

0 0 1
1 0 3
0 1 3

2 1
1 2

B

0
1
1
1

7
4
3
1
0

C
4 1

1 1 0 0 1
1 0

D
1
0 0

0

where the unspecified entries in A B C and D are zero.

Both methods presented above to obtain a realization of a multiple-input multiple-
output system, in general, will yield a realization with a state space that is too large. As
in the single-input single-output case, by restricting an obtained realization to the part
that is controllable and observable a minimal realization results of smallest dimension.
This smallest dimension is clearly of interest, and can also be defined and determined as
follows.

Definition 6.16 If H s is a matrix of which the entries are proper rational functions,
then we will say that the McMillan degree of H s is n if H s has a realization D
C Is A 1B with A having size n n, and no realizations exist with matrices A having a
size k k where k n.

The following theorem, of wich the proof will not be given, provides an algorithm for
calculating the McMillan degree.

Theorem 6.17 Given any p m matrix H s of which the entries are proper rational
functions, and given that H s has the expansion

H s L0 L1s
1 L2s

2 L3s
3
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then the McMillan degree n of H s is given by n rankL r r , where

L
def

L1 L2 L3 L

L2 L3 L4 L 1

L3 L4 L5 L 2
...

...
...

. . .
...

L L 1 L 2 L 1

with r being the degree of the least common multiple of all denominators of H s .

6.7 Frequency methods

6.7.1 Oscillations

So far we assumed that input and output functions are real functions (vectors). From the
control point of view it turns out to be useful to admit complex functions. Therefore, we
take now the complex valued input function

u t
0 for t 0
estc for t 0

with s and c a complex vector. If x 0 0, then the corresponding output function
will be

y t

t

0

G t es cd

t

0

G r es t r cdr

t

0

G r e srdr estc

t

0

G e s d u t

If we consider the limit of t , and assume that the integral converges to H s , for Res
sufficiently large, then

y t H s u t

This somewhat weird looking expression must be viewed as the approximate equality of
two (complex valued) time functions, where H s is a proportionality factor in which s
has a specific numerical value.

Since u t estc ce t cos t isin t , with s i and , the input
function u represents an oscillation. If 0 Gi j d for each elementGi j of the matrix
G, then 0 G e s d exists for Res 0 and, more explicitly, for all s i with .
If an input u t cei t is applied, an output y t H i u t results for large t. The
function ei tc c cos t isin t is called a harmonic oscillation and H i ei tc is
the stationary response on the harmonic oscillation ei tc. The matrix H i is called
the frequency response matrix. The difference between y t and the stationary response
is called the transient behavior. If 0 Gi j d for all i j, then this behavior tends
to zero as t . It follows from the section on stability that 0 Gi j d for all i j,
when Re i 0 for all eigenvalues i of A.
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u
C

LR

.

.

Figure 6.14 Basic electrical network.

Remark 6.18 If, in the definition of the Laplace transform as given by (6.1), one confines
oneself to s on the imaginary axis, i.e., s i , with being real, then one obtains a
version of the Fourier transform. (Two different versions of Fourier transforms exist in
the sense that, depending on the application, the lower bound of the integral is either 0 or

.)

The next section gives more information on the frequency responses.

6.7.2 Nyquist and Bode diagrams

In this subsection we confine ourselves to single-input single-output linear differential
systems with a transient behavior that goes to zero as t . For the frequency response
we can write

h i h i eiargh i

The stationary response of u t u ei t , with u is

y t h i u ei t h i u ei t argh i (6.29)

Now consider u sin t as a sinusoidal input signal and treat it as the imaginary part
of u t . Then, if we take the imaginary parts of (6.29), the stationary response of

Im u t Im u ei t u sin t

equals

Im y t Im h i u ei t argh i

h i u sin t argh i (6.30)

The stationary response is also sine-shaped, with amplitude h i u . The phase of
the oscillation is increased with argh i . A linear time-invariant system with transfer
function h s transforms a sinusoidal signal with frequency into another sinusoidal
signal with frequency by multiplying the amplitude by h i , called the gain, and
increasing the phase by argh i , called the phase-shift.

Example 6.19 Consider the electric network depicted in Figure 6.14 (compare the exam-
ple of Section 2.4.4). For the state we choose x1 q (charge of the capacitor) and x2



6. Input/Output Representations 135

(magnetic flux of the induction coil). If i is the current and v the voltage, then it follows
that

ẋ1 q̇ i 1
L

ẋ2 ˙ v Ri 1
Cq u R

L
1
Cq u

Thus

A
0 1

L
1
C

R
L

B
0
1

C 1
C 0

(do not confuse the output matrix with the capacity C) and

h s C Is A 1B
1

LCs2 RCs 1
h i

1
LC 2 1 iRC

The poles of h s are the zeros of s2 R
L s

1
LC . It is straightforward to show that both

poles have a negative real part. Hence, if an input signal u sin t is applied, then

y t h i u sin t argh i

Further, the gain and the phase-shift are given by

h i
1

1 LC 2 2 R2C2 2

arg h i arctan
RC

1 LC 2

In general, if a linear combination of sinusoidal signals, possibly of different frequen-
cies, is applied to the system, then the output will be linear combination of sinusoidal
signals with the same frequencies as in the input signal.

Frequency response functions are used frequently in network analysis, automatic con-
trol and acoustics. There are two well-known methods to display h i graphically and to
get an impression of the properties of the system by studying these graphs. The methods
will be discussed briefly here. Many design techniques are based on these methods.

1. The Nyquist diagram or polar plot. The function h i is plotted as a curve in the
complex plane, parametrized by (varying from 0 to ). If we think of h s as a
function mapping from the complex plane into the complex plane, then the Nyquist
diagram is the image of the positive imaginary axis under h.

2. The Bode diagram or the logarithmic diagram. In this case h is represented by
two graphs. Namely, the amplitude plot: ln h i as a function of ln , and the
phase plot: argh i as a function of ln .

In Figure 6.15 the Nyquist diagram and the Bode diagram of the system with transfer
function 1 1 Ts , with T 0 being a constant, are given as an example. Please note
that the scale of ln h i is expressed in so-called decibels dB . The graph of h i
versus (or ln ) indicates which frequencies can pass the system and also with what
gain. The system can thus be interpreted as a filter for the input signals. In the first of the
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Figure 6.15 Nyquist diagram (upper left) and Bode diagrams (right) of 1
1 Ts .
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Figure 6.16 Four types of filters.

four plots on a row in Figure 6.16 only the low frequencies will pass the system, whereas
the higher frequencies are cut off. Such a filter is called a low frequency filter. The
other figures show other kinds of filters; they are self-explanatory. The bandwidth B of a
system is defined as that range of frequencies (of the input signal) for which the system
will respond satisfactorily.

A simple application of a low frequency filter is the following. Noise signals consist
usually of high frequency signals. If we want to get rid of this noise, a low frequency filter
can be used. As a consequence, those parts of the input signal related to high frequencies
will be cut off.

Example 6.20 Consider the feedback system of the configuration (two blocks in the for-
ward loop and unity feedback) depicted in Figure 6.17. In the figure H1 s is the transfer
function of a given system (in practice sometimes also called plant). We want to design a
controller H2 s such that the overall feedback system has pleasant characteristics. The
controller is characterized by its transfer function, which can be chosen by the designer.
It is easily shown that the transfer function of the overall system is given by

Y s H s U s with H s I H1 s H2 s
1
H1 s H2 s
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.H (s)H (s)
U(s) Y(s)

12

Figure 6.17 Two blocks in forward loop.

A possible design criterion could be that Y s must be as close as possible to U s , i.e.,
the output tries to follow the input. This is called tracking. A possibility to achieve a
good tracking system is to design H2 s in such a way that H1 s H2 s is ‘large’ in some
sense, since then I H1 s H2 s

1H1 s H2 s I and subsequently Y s U s . For
frequency considerations the variable s is replaced by i , and then S is defined as

S I H1 i H2 i
1

and is called the sensitivity operator. If u t and y t are scalar, such that S is a 1 1
matrix, then the corresponding system is said to have good sensitivity characteristics if

1 H1 i H2 i

for all 0, with 0 the bandwidth of interest, and where is a (large) positive
function.

Example 6.21 [The differentiator] Suppose y t
du t
dt

t . Then for u 0 0

Y s

0

e st du
dt
dt u t e st

0
s

0

u t e stdt sU s

The transfer function is s, which is a non-proper rational function, because it can be

interpreted as
s
1

. Since the degree of the numerator is larger than that of the denominator,

this is a non-causal system. Such a system cannot be realized technically (if u is
known up to time t, then the derivative at the end point t does not exist). Furthermore,
it is clear that h i , such that higher frequencies are amplified more than lower
frequencies. For the phase, we get arg i 2 for all frequencies.

Consider (6.7) with H1 s representing a single-input single-output system of which
we write the transfer matrix (i.e., transfer function) now as h1 s rather than H1 s , and
with H2 s being the unit feedback, i.e., H2 s 1. It is assumed that h1 s is strictly
proper and that it does not have poles on the imaginary axis (the latter assumption is not
very essential, but it simplifies the analysis to come). Equation (6.7) then becomes

h s
h1 s

1 h1 s

Consider the mapping h i , where runs from to , and where h i then
describes a curve in the complex domain (compare this with the Nyquist diagram). For
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this curve, to be called , starts at the origin, and for it ends at the
origin again. Therefore, we will include the origin in such that it becomes a closed
curve. Assume that the real point 1 in the complex plane is not part of the curve .

Theorem 6.22 Under the assumptions formulated above, the number of encirclements of
the real point 1 in the complex plane by the curve , if this curve is traversed clockwise,
is equal to the number of unstable poles of the closed-loop system minus the number of
poles of the open-loop system.

The open-loop system here refers to the system characterized by h1 s , and the closed-
loop system, characterized by h s , refers to this system controlled by means of the unit
feedback. One speaks of unstable poles if they are located in the right half-plane. This
theorem is a simplified version of a more general theorem which is known as the Nyquist
criterion. It can be used for checking whether the closed-loop system is stable.

The proof of the Nyquist criterion will not be given here, but it is based on the follow-
ing theorem in complex function theory (known as Cauchy’s theorem).

Theorem 6.23 Assume that h is a rational (or, more generally, a meromorphic) function
having no poles or zeros on a simple closed curve . Assume in addition that is
oriented clockwise. Then, with h s denoting d

dsh s , the expression

1
2 i

h s
h s

ds

is equal to the number of poles of h minus the number of zeros of h, both only counted in
the region bounded by .

The assumption that the feedback system had to be a unit system, as made above, is
not as limited as it might seem at first hand. Assuming only single-input single-output
systems, we write for (6.7),

h s
h1 s

1 h1 s h2 s

h1 s h2 s

1 h1 s h2 s
h 1

2 s

which can thus be viewed as a system in series, where the two subsystems are character-
ized by h1 s h2 s 1 h1 s h2 s

1
and h 1

2 s , respectively, provided that both are well
defined. The first of these two subsystems represents a system characterized by h1 s h2 s
controlled be means of a unit feedback. Thus the stability study of a system with a general
feedback function can be transformed to a stability study of a system with unity feedback
and some additional requirements such as the existence of the system characterized by
h 1

2 s .

6.8 Exercises

Exercise 6.8.1 Consider the dynamics of the inverted pendulum as given in Equation (3.16)
and assume that the position of the carriage is measured, i.e.,

y 1 0 0 0 x
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In Example 3.12 the transition matrix was calculated for this problem. Show that the
impulse response function and transfer function are given by, respectively,

G t 0 48sinh 5t H s
2 4

s2 25

Exercise 6.8.2 Design a system of the form ẋ Ax Bu y Cx, with a suitably chosen
initial condition x 0 , such that the input u t e 3t t 0 yields the output y t
e t 2e 2t t 0. Hint: it follows from the theory treated in Section 6.4 that a possible
transfer function is

h s
s 3

s 1 s 2

Exercise 6.8.3 Two unit masses are connected by springs, characterized by constants k1
and k2 respectively, as shown in Figure 6.18. The position of the masses are indicated by

wall

mass 2 mass 1
u

q
2

k
2

k
1

q
1

Figure 6.18 System of two masses and two springs.

q1 and q2, respectively. To mass 1 we can apply a force u (the input). The output is the
position of mass 1, i.e., y q1. The equations describing this system are

q̈1 u k1 q1 q2

q̈2 k1 q1 q2 k2q2

Show that the zeros of this system are i k1 k2 , i.e., they correspond to ‘real’ fre-
quencies!

Exercise 6.8.4 In Example 6.7, show that application of an input in the form of a Heavi-
side step function indeed yields the output function given in the example.

Exercise 6.8.5 Show that the controller form of the system with the two connected springs
in Exercise 6.8.3 equals

ẋ

0 1 0 0
0 0 1 0
0 0 0 1
k1k2 0 2k1 k2 0

x

0
0
0
1

u

y k1 k2 0 1 0 x
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Exercise 6.8.6 Consider the system given by the external description

d3y
dt3

4
d2y
dt2

5
dy
dt

2y 2
d2u
dt2

6
du
dt

5u

Determine the transfer function (take all necessary initial conditions equal to zero) and
give a partial fraction decomposition of this function. Show that the decomposition can
be depicted in a flow diagram as in Figure 6.19. If the output of the local subsystems are

1

U(s)

Y(s)x x

s + 2

s + 1 s + 

x3

21

1

1
1

.
.

Figure 6.19 Interconnected system build of elementary blocks.

called x1 x2 and x3, as indicated, give a description in state space form with the vector x
as state. Prove that

dx̄
dt

0 1 0
0 0 1
2 5 4

x̄
2
2
3

u y 1 0 0 x̄

is another state space description of the same system. Show that a nonsingular 3 3
matrix T exists such that with the transformation x T x̄ one state space description can
be obtained from the other. Matrix T can be interpreted as a basis transformation in state
space.

Exercise 6.8.7 If the triple A B C , with A an n n matrix, B an n 1 matrix and C an

1 n matrix, is a realization of the transfer function
q s
p s

, prove that the degree of q s

equals k if and only if CAiB 0 i 0 1 n k 2 and CAn k 1B 0.

Exercise 6.8.8 Consider the transfer function

h s
s a

s b 2 c2

with a b c . Follow the ideas on page 125 to obtain a flow diagram that realizes the
transfer function.

Exercise 6.8.9 Given the flow diagram depicted in Figure 6.20, determine the transfer
function of the overall system. For which value(s) of is the system BIBO stable?
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αU(s) Y(s)

1

s  + 3

2

1

1

s  +

s  +

..

Figure 6.20 Interconnected system build of elementary blocks.

Exercise 6.8.10 Determine a realization of the transfer matrix

H s

s
s2 2s

0 0

0 0
s 1
s 1 3

0
s2 1

s 3 s 2
0

Exercise 6.8.11 Can you design a system of the form ẋ Ax Bu y Cx, with a suitably
chosen initial condition x 0 , such that the input u t sin t yields the output y t sin t?
(Note that if the output equation would have been of the form y Cx Du, the answer
would be affirmative, almost trivially. However, the design requires here that D 0).
If your answer is affirmative (which it should be) what conditions should the transfer
function h s satisfy?

Exercise 6.8.12

Consider the transfer matrix

H s 1
s 2 s 3 s 4

1
s 3 s 4 s 5

Determine a realization ẋ Ax Bu, y Cx of H s with x 6 u 2 en y
by realizing each component of H s separately and by combining the results.

Determine an alternative realization of H s with x 4 u 2 en y by ob-

serving that H s 1
s 3 s 4

1
s 2

1
s 5 , by realizing separate factors and

by combining the results appropriately.

Does there exist a realization ẋ Ax Bu, y Cx of H s with x 3 u 2 and
y ? If so, determine such a realization. If not, explain why not.

Exercise 6.8.13 In the electrical network in Figure 6.21 the variable u denotes source
voltage and y denotes the voltage drop over the most right capacitor. Determine the
transfer function describing the relation between u and y, and give a state space descrip-
tion, i.e., give a realization, of the network. The two resistors both have value R, the value
of the coil is L and the three capacitors each have value C. Note that the network can be
seen as an interconnection of copies of the network in Figure 6.14 with L 0 or R 0.
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u

LR

CC C

R

y

Figure 6.21 Electrical network.

Exercise 6.8.14 Consider the PID controller described in (1.1) and determine its transfer
function. Show that the controller is a non-causal system for K 0. Next assume that
K 0 and determine a realization of the transfer function of the PID controller (actually
a PI controller, because K 0).

Exercise 6.8.15 Below you will find a number of statements. For each of statements
determine whether it is true or false. Make your answer plausible by means of a simple
reasoning or (counter)example.

1. If H s is the transfer matrix of a linear time-invariant system, then

H s
G s
s

where G s is the Laplace transform of the step response of the system.

2. The gain of the system ẋ 2x 4u y 3x is given by
12
2 4

.

3. The poles of the continuous-time system ẋ Ax Bu y Cx, with A B and C
matrices of suitable sizes, not always coincide with the eigenvalues of the matrix A.

4. The series connection of a stable system and an unstable system can result in a
stable system.

5. The parallel connection of a stable system and an unstable system always results in
a stable system.

6. It is possible that the linear system ẋ Ax bu y cx, with A b c constant matri-
ces, x n and u y , does contain poles, but no zeros.

7. The zeros of the transfer matrix of the system ẋ Ax Bu y Cx, with A an n n
matrix, B an n m matrix and C a p n matrix, coincide with the eigenvalues of A.

8. The gain h i of a stable single-input single-output system is not greater than
one, for any frequency .

9. The feedback interconnection of two stable systems can be unstable.

10. The linear system ẋ Ax bu y cx, with A b c constant matrices, x n and
u y , always contains more poles than zeros.
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11. There exists a system ẋ Ax Bu y Cx, with A an n n matrix, B an n 1matrix,
C a 1 n matrix and a suitable initial state x 0 x0

n , such that y t e 2t ,
while u t e t .



Chapter 7

Linear Difference Systems

For most of the theory in Chapters 3, 4 and 5 for linear differential equations, an analogue
exists for discrete-time systems of the form

x k 1 A k x k B k u k
y k C k x k D k u k

k 0 1 2 (7.1)

where x k n u k m and y k p denote the state, the input and the output,
respectively, at time k. Further, A k B k C k and D k are matrices of suitable sizes.
The index/counter k can in the context of discrete-time systems be interpreted as the time
variable and is usually assumed to be integer valued and to start from 0. If the matrices
A k B k C k and D k do not depend on time k, i.e., A k A B k B C k C and
D k D for all k 0, then the time-invariant version of (7.1) is given by

x k 1 Ax k Bu k
y k Cx k Du k

k 0 (7.2)

where x k u k and y k are as before, and where A B C and D are constant matrices of
dimensions n n n m p n and p m, respectively.

For other kinds of linear system descriptions, such as in Chapter 6 and Section 8.2,
also discrete-time analogues exist. Concerning such analogues only the z transform, as
the counterpart of the Laplace transform, will be dealt with here.

Linear difference equations often arise by discretizing linear differential equations.
The reasons for such a discretization can be many. Here are some examples.

1. The analysis must be performed on a digital computer which, because of its discrete-
time behavior, is more apt to discrete-time systems than to continuous-time sys-
tems.

2. One does not want to control the system by a continuous varying input function.
Instead, one wants to keep the input function constant for intervals of fixed length
(easier to implement). These so-called sampling periods will be indicated by

0 2 2 3

The input u is constant on each of these periods.

3. The output can only be measured at time instants 0 2 .

In this chapter we will - very briefly - show what the discrete-time analogues are of
some of the concepts already introduced for continuous-time systems.

The solution of the homogeneous difference equation

x k 1 A k x k x k n k 0 (7.3)

144
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can be written as
x k d k 0 x 0 k 0 (7.4)

where the transition matrix d is given by

d k j
A k 1 A k 2 A j k j
I k j

(7.5)

This transition matrix is the unique solution of the matrix difference equation

d k 1 j A k d k j k j with d j j I

If the matrices A k do not depend on time, i.e., A k A for all k 0, then (7.3) goes
over in

x k 1 Ax k x k n k 0 (7.6)

resulting in

d k j Ak j k j (7.7)

Please note that the transition matrix d is not necessarily nonsingular, the latter in con-
trast to the transition matrix for continuous-time systems. This is related to the fact that
(7.3) and (7.6) are not necessarily well defined in backward time. For instance, if A in
(7.6) is invertible, then d k j is invertible and d k j d j k 1. See also Exer-
cise 7.1.1.

Conditions for stability (the definition of stability is much the same as in Defini-
tion 4.1) are given in the following theorem (no proof is given since the line of thought is
the same as in the proof of Theorem 4.2).

Theorem 7.1 Given is the time-invariant linear difference equation (7.6) with A an n n
matrix with different eigenvalues 1 k k n .

The origin x 0 is asymptotically stable if and only if i 1 for all i 1 k.

The origin x 0 is stable if and only if i 1 for all i 1 k and for each
eigenvalue i on the unit circle, i.e., with i 1, the algebraic multiplicity and the
geometric multiplicity are the same.

The origin x 0 is unstable if and only if i 1 for some i 1 k, or there
is an eigenvalue i on the unit circle for which the algebraic multiplicity is larger
than the geometric multiplicity.

Example 7.2 Consider the model of a national economy as developed in Example 2.4.9.
The system matrix is

A
0
m m 1

(7.8)

The characteristic polynomial is 2 m 1 m . The system is for instance asymp-
totically stable for 1 and 0 m 1. It is unstable if 1 and m 1. For 1 and
m 1 it is also unstable.



146 Mathematical Systems Theory

The characteristic polynomial corresponding to x k 1 Ax k , see (7.6), is given by
det zI A zn pn 1z

n 1 p1z p0. To see whether the roots of this polynomial
all have modulus less than one, i.e., are all located in the open unit disc in the complex
plane, the following simplified version of the criterion of Jury can be used, see [Gajı́c
and Lelı́c, 1996]. This criterion can be seen as a discrete-time counterpart of the Routh
criterion.

To introduce the criterion of Jury, let p z anzn an 1z
n 1 a1z a0 be a

given polynomial and make the following table, which, in principle, consists of n 1
rows. Determine/compute

an an 1 a2 a1 a0
bn 1 bn 2 b1 b0
cn 2 cn 3 c0
dn 3 dn 4

...
...

where the coefficients bi ci di, etc, are computed as described below.

bi ai 1 1an 1 i for i 0 1 n 1 with 1
a0
an

ci bi 1 2bn 2 i for i 0 1 n 2 with 2
b0
bn 1

di ci 1 3cn 3 i for i 0 1 n 3 with 3
c0
cn 2

...
...

...

Similarly as for the Routh table in Section 4.1.2, the computation of a next row in the
above table breaks down if the first element of the lastly computed row is zero. Therefore,
the above scheme is just continued until a row starting with a zero has been encountered.
If such a row is not encountered all n 1 rows can be determined. The table consisting of
all the rows obtained in the way just described will be referred to as the simplified Jury
table. Now the next theorem can be stated.

Jury’s criterion
The roots of the polynomial anzn an 1z

n 1 a1z a0, with an 0, all have a
modulus less than one, i.e., all are located in the open unit disc in the complex plane, if
and only if the simplified Jury table consists of n 1 rows and all the elements in the first
column of the table have the same sign.

Example 7.3

1. Consider p z z with and 0. Then z is the root of
p z , and it is located in the open unit disc in the complex plane if and only if

1 1. The latter is easily seen to be equivalent to 2 2. Now observe
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that the simplified Jury table is given by

2

where 1 . Again it is easily seen that the elements in the first column of this
table both have the same sign if and only if 2 2.

2. Consider p z z2 2z 5. The simplified Jury table is given by

1 2 5
24 8

21 1
3

where 1 5 and 1
8

24 . Clearly, not all elements in the first column of this table
have the same sign, implying that not all roots of p z are inside the open unit disc.
This also follows from direct calculation. Indeed, p s z 1 2 4, so that the
roots of p z are 1 2i, which are both located outside the open unit disc.

3. Consider p z z2 2 z 1, with , and determine the simplified Jury table
of p z . Note that in fact only the first two rows of this table can be established.
Indeed, the table is given by

1 2 1
0 0

where 1 1. Hence, p z does not have all its roots inside the open unit disc. In
fact, the roots of p z are 2 1, so that for 1 both roots are real,
with one root is strictly inside and the other is strictly outside the unit disc. For

1 1 , p z has its roots on the boundary of the unit disc.

4. Consider p z 8z3 12z2 6z 1. Because p z 1 2z 3 all roots of p z
are located in the open unit disc. This conclusion also follows by Jury’s criterion.
Indeed the simplified Jury table looks like (approximately)

8 0000 12 0000 6 0000 1 0000
7 8750 11 2500 4 5000
5 3036 4 8214
0 9205

where 1 0 1250 2 0 5714 and 3 0 9091. Clearly, the whole table can
be computed and the elements of the first column all have the same sign, so that by
Jury’s criterion all roots of p z are located in the open unit disc.

The solution of the inhomogeneous state equation in (7.1)

x k 1 A k x k B k u k k 0

for x 0 x0 can be written as

x k d k 0 x0

k 1

j 0
d k j 1 B j u j k 0 (7.9)
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Note that this expression is comparable to the similar expression for continuous-time
systems, see also Exercise 7.1.3. If x0 0, then the output vector

y k C k x k D k u k

in (7.1) can be written as

y k
k

j 0
Kd k j u j k 0 (7.10)

where the impulse response matrix is given by

Kd k j
C k d k j 1 B j k j

D k k j

For (7.2), i.e., for the time-invariant version of (7.1), the general solution of the state
equation reads

x k Akx 0
k 1

j 0
Ak j 1Bu j k 0 (7.11)

see also Exercise 7.1.4, and the impulse response matrix is given by

Kd k j
CAk j 1B k j

D k j

As far as the actual computation of d k j or Kd k j is concerned, for constant A
(and B, C and D), this can be done by writing A in its Jordan normal form by means of a
coordinate transformation. This will be illustrated later on in Example 7.7.

The role of the Laplace transformation for continuous-time systems is played by the
so-called z-transformation for discrete-time (time-invariant and linear) systems. Sup-
pose v k k 0 1 2 , is a sequence of (real or complex) numbers. The z-transform of
this sequence is defined as

V z
k 0

v k z k z (7.12)

where only those values of z will be considered for which this sum converges.
If V z exists for a value z z0, then it will exist for all z with z z0 . If V z is

known, the sequence v k , k 0 1 2 can be recovered in several ways. One way is
to look it up in a table of z-transforms. Another way is to write V z as a power series
expansion in z 1 and subsequently to identify the coefficients of the terms in this series
expansion with v k , see (7.12). Still another way is provided by the following theorem
(no proof is given here).

Theorem 7.4 If

V z
k 0

v k z k
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converges for z z0 , then

v k
1

2 i
V z zk 1dz k 0

where is a closed contour in the complex plane, to be traversed counterclockwise, in
the area z z0 , around the origin (take for instance a circle with radius r z0 ).

Example 7.5 Let a 0 be a given number and consider the sequence

v k
ak k 2
0 k 0 1

Then define for z

V z
k 0

v k z k

k 2

akz k

Hence, formally

V z
a2

z2

a
z

V z

so that for all z a

V z
a2

z
1

z a

Conversely, let V z be as given in the last expression. Note that by partial fraction it
follows that

V z
a

z a
a
z

Observe that for z a
a

z a
is a compact expression for the series

a
z

a2

z2

a3

z3

a4

z4

so that for z a

V z
a2

z2

a3

z3

a4

z4
k 2

ak

zk

implying that indeed

v k
ak k 2
0 k 0 1

Consider the state equation x k 1 Ax k Bu k in (7.2). For successive values
of k multiply both sides of the equation by z k k 0 and add the results of both sides to-
gether. The right-hand side then simply yields AX z BU z , where X z k 0 x k z

k

andU z k 0 u k z
k. The left hand side equals

x 1 x 2 z 1 x 3 z 2
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which formally can be written as zX z zx 0 . Hence,

zX z zx 0 AX z BU z

If we solve for X z , the result is

X z zI A 1BU z zI A 1zx 0 (7.13)

The z-transformation of y k Cx k Du k yields

Y z CX z DU z (7.14)

where Y z k 0 y k z
k. The combination of (7.13) and (7.14), with x 0 0, gives

Y z C zI A 1B D U z

The matrixC zI A 1B D is called the transfer matrix of the (discrete-time) system
described in (7.2).

Suppose u k is a periodic (complex-valued) input signal of the form

u k u0e
ik k 0 with

As is well known from the theory of difference equations, the general solution of

x k 1 Ax k Bu0e
ik k 0 (7.15)

can be written as the combination of any (arbitrary) solution of the inhomogeneous dif-
ference equation (7.15) and the general solution of the homogeneous equation x k 1
Ax k k 0. Because of the special form of the inhomogeneity, it is well known that we
can assume a solution of (7.15) to be of the form

x k x0e
ik k 0 (7.16)

assuming that ei is no eigenvalue of A. (If the latter is not the case, the choice for the
form of a solution of (7.15) has to be modified, but the technique to follow remains the
same.) Then substitution of (7.16) into (7.15) gives the following condition on x0

ei x0 Ax0 Bu0 so that x0 Iei A 1Bu0

The general solution of (7.15) therefore is given by

x k Iei A 1Bu0e
ik Akx̃0

with x̃0 an arbitrary vector in n . The vector x̃0 can be determined by the initial condition
of the system. If the system is asymptotically stable, then limk Akx̃0 0, and for large
values of k

x k Iei A 1Bu0e
i
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The above right hand side, i.e., Iei A 1Bu0e
i k 0 is called the stationary re-

sponse of the state, when the input signal is u0e
ik k 0. The expression Akx̃0 k 0 is

called the transient behavior. The stationary response of the output is

C Iei A 1B D u0e
ik H ei u0e

ik

This formula (for single-input single-output systems) is the discrete-time analogue of for-
mula (6.29). Note once more that here the stationary response is completely determined
by values of the transfer matrix on the unit circle (in the continuous-time case: on the
imaginary-axis). Note that for the stationary response to show up the system must be
asymptotically stable!

Confining ourselves to single-input single-output systems, the transfer function can
be written as

h z d
q z
p z

(7.17)

with
q z qn 1z

n 1 q1z q0
p z zn pn 1z

n 1 p1z p0

A state space realization corresponding to (7.17) is

x k 1

0 1 0 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
... 0 1 0
0 0 1
p0 p1 pn 1

x k

0
...
...
...
0
1

u k

y k q0 q1 qn 1 x k d u k

The derivation is exactly the same as for the continuous-time case. Block diagrams for
discrete-time time-invariant linear systems can be drawn similarly as in the continuous-
time case. See Figure 7.1. The only difference is that the integrator must be replaced by
an operator defined by x k x k 1 . This operator is sometimes called the delay

operator or the backward delay operator. Its inverse
def 1, i.e., x k x k 1 ,

is called the forward delay operator.

Example 7.6 Consider a simplified version of the national economy that is studied in
Example 2.4.9. The model now is

x k 1 px k ru k (7.18)

y k x k

The scalar y k is the total national income in year k and the scalar u k is the expenditure
in year k, with p and r constants. It is assumed here that 0 p 1. The transition matrix
is

d k j pk j
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x(k+1) = Ax(k) + Bu(k):

dx/dt x

x(k) x(k-1)
Δ

B

A

x

+

+ Δ

A

x(k)x(k+1)

u

u(k)
B

dx/dt =Ax + Bu:
dx/dt 

Figure 7.1 Difference continuous-time and discrete-time systems.

The general solution of (7.18) for x 0 x0 is

x k pkx0

k 1

j 0
pk j 1 r u j (7.19)

The impulse response function is

Kd k j
pk j 1 r k j
0 k j

and the transfer function, for z p, is given by

h z
r

z p

Suppose that the expenditures are equal to some constant u0, i.e., u k u0 for k
0 1 2 . Then, for z 1,

U z
k 0

u0z
k 1

1 1
z

u0
z

z 1
u0
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The z-transform of the response of the output (assuming x0 0) is, for z max p 1 ,

Y z h z U z
r

z p
z

z 1
u0

In order to find y k k 0 we will use the second method mentioned earlier, i.e., by
means of a power series expansion. Factorization of h z U z gives

Y z
p

z p
1

z 1
r

1 p
u0

with, for z max p 1 ,

p
z p

p
z

1
p
z

p
z

2

1
z 1

1
z

1
1
z

1
z

2

and hence, for z max p 1 ,

Y z
k 1

r
1 p

1 pk u0z
k

By definition, Y z k 0 y k z
k, and therefore

y k

0 for k 0

r 1 pk

1 p u0 for k 1

This result can also be obtained by using (7.19) directly; see Exercise 7.1.12.

Example 7.7 We are given the discrete-time linear time-invariant system

x k 1
1
5

0 1
4 5

x k
0
1

u k

y k 2 1 x k

Determine the transition matrix, impulse response function and the transfer function of
this system.
Answer. The system matrix A has two eigenvalues, 1

1
5 and 2

4
5 . Hence, it

follows that A is invertible and, consequently, so is the requested transition matrix. If the
two eigenvalues are the diagonal values of the diagonal matrix , i.e., diag 1 2 ,
and if two corresponding eigenvectors v1 and v2 are put together to form the matrix T ,
i.e., T v1 v2 , we get for the transition matrix

d k j Ak j T k jT 1

1 1
1 4

1
5
k j 0

0 4
5
k j

1 1
1 4

1
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4
3

1
5
k j 1

3
4
5
k j 1

3
1
5
k j 1

3
4
5
k j

4
3

1
5
k j 4

3
4
5
k j 1

3
1
5
k j 4

3
4
5
k j

The impulse response can be calculated according to Kd k j C d k j 1 B for
k j, yielding

Kd k j
1
3

1
5

k j 1 2
3

4
5

k j 1

For j k we have Kd k j 0, since there is no direct throughput term in the system.
The transfer function follows from h z C zI A 1B and it equals

z 2
5

z2 z 4
25

Remark 7.8 Note that with and T as above, the impulse response and the transfer func-
tion can easily be obtained through Kd k j CT k j 1 T 1B and h z CT zI

1 T 1B , respectively. In these expressions, CT simply is the product of C and T ,
whereas T 1B can be seen as the solution of the equation T B for the unknown .
Hence, not the complete inverse T 1 needs to be determined, only the solution of the
equation T B. Clearly, k j 1 and zI 1 can be determined very easily.

The time-discrete, time-invariant, linear system (7.2), characterized by the matrices
A B C D , is called controllable if for each x0 x1

n a time k 0 and a sequence
u 0 u 1 exist, such that x k x0 u x1, where x k x0 u stands for the state at time
k, starting with initial condition x 0 x0 and having applied an input sequence u. The
system is called observable if a time l 0 exists, such that for any sequence of controls
u it follows that

y k x0 u y k x1 u for k 0 1 l implies x0 x1

The conditions for controllability and observability, in terms of matrices A B C and
D, are the same as in the time-continuous case. This will be shown in Theorem 7.10 and
7.11 below.

Sometimes one distinguishes between null-controllability x1 0 and reachability
x0 0 . It can be shown that ‘standard’ controllability, i.e., with arbitrary x0 and x1, is as

strong as reachability (see also the proof of Theorem 7.10), whereas null-controllability
is not as strong as ‘standard’ controllability.

Example 7.9 The system

x k 1
0 1
0 0

x k
1
0

u k

is null-controllable, but not controllable.

Theorem 7.10 The time-discrete, time-invariant, linear system (7.2), in the context of
controllability issues also referred to as the pair A B , is controllable if and only if

rank B AB An 1B n (7.20)
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Proof Consider the state equation in (7.2) and recall that the solution at time k, given
initial state x 0 and control sequence u, is given by

x k Akx 0
k 1

j 0
Ak j 1Bu j

It follows that x k Akx 0 can be written as a linear combination of the columns of
B AB A2B Ak 1B. From Lemma 4.13 it then follows that, for any k 0, the vector
x k Akx 0 is an element of the column space of

R B AB An 1B

If the system is controllable then for any two vectors x0 x1
n there is a time k and

a sequence of controls such that x 0 x0 and x x1. This especially holds for x0 0.
Then, the vector x A x 0 x can be chosen to have any value, implying that
the column space of R must be n , or, equivalently, rankR n.

Conversely, if the column space of R is n , and x0 x1
n are two arbitrarily chosen

vectors, then there exist controls u 0 u 1 u n 1 , such that

x n Anx 0
n 1

j 0
An j 1Bu j

The obtained sequence of control brings the state from x0 at time k 0 to x1 at time k n.
Hence, the system is controllable.

Theorem 7.11 The time-discrete, time-invariant, linear system (7.2), in the context of
observability issues also referred to as the pair C A , is observable if and only if

rank

C
CA
...

CAn 1

n (7.21)

Proof Consider the equations in (7.2). Recall that the output at time k, given initial
state x0 and control sequence u, is described by

y k x0 u CAkx0

k 1

j 0
CAk j 1Bu j Du k

Hence, y k x0 u y k x1 u for 0 k l if and only if CAkx0 CAkx1 for 0 k l,
which in turn is equivalent to

C
CA

...
CAl

x0 x1 0
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Note that the latter is only possible for x0 x1 (or x0 x1 0 if and only if the columns
of the matrix

C
CA

...
CAl

are linearly independent. By an elementary reasoning, using the theorem of Cayley
Hamilton, it follows that the last statement is equivalent to the rank condition in the state-
ment of the current theorem.

Example 7.12 We are given the single-input single-output system

x k 1 Ax k b k u k y k c k x k

Note that the vectors b and cmay depend on k. At each time instant k only one component
of the state vector can be controlled, i.e., all components of b are zero except for one,
which equals 1. The user of the system may choose the position of this latter component
and this position may be k-dependent. Extend the notion of controllability in the obvious
way to systems of the form (7.1) and consider the following questions.

1. Give an example (at least three dimensional) such that

if the user chooses the same b k vector for each k, then the system is not
controllable and in addition,

if b k does depend on k in a suitable way (the component which equals 1 is
not always the same one), the system is controllable.

2. Does for each matrix A a suitable sequence of b k vectors exist such that the system
is controllable?

Answer question 1. Consider

A
1 0 0
0 1 0
0 0 1

b
1
0
0

This system is not controllable. If one chooses, however,

b 0
1
0
0

b 1
0
1
0

b 2
0
0
1

then each point x 3 can be reached from any x 0 and thus the system is controllable.
Answer question 2. No, if the state has dimension 3 and A is the zero matrix, it is

easily seen that with any sequence of b vectors controllability is not possible.
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Because the conditions for controllability and observability for time-invariant linear
discrete-time systems and continuous-time systems are the same, many of the results
for the latter type of systems also hold for the former type of systems. For instance,
the alternative tests for controllability and observability in Theorems 4.23 and 4.31 for
continuous-time systems also hold for discrete-time systems. Also the following eigen-
value assignment results directly follow from Chapter 5.

Theorem 7.13 Consider the time-discrete system (7.2), or specifically the pair A B ,
with A a real n n matrix and B a real n m matrix. Then, the system (7.2), or the pair
A B , is controllable if and only if for each polynomial r n rn 1

n 1

r1 r0, with real coefficients rn 1 r1 r0, there exists a real m n matrix F such that
det I A BF r .

Theorem 7.14 Consider the time-discrete system (7.2), or specifically the pair C A ,
with A a real n n matrix and C a real p n matrix. Then, the system (7.2), or the pair
C A , is observable if and only if for each polynomial w n wn 1

n 1

w1 w0, with real coefficients wn 1 w1 w0, there exists a real n p matrix K such
that det I A KC w .

Clearly, when a system is controllable then the eigenvalues of A BF can be placed
anywhere in the complex plane and when it is observable the eigenvalues of A KC can
be placed anywhere in the complex plane. In particular, in both cases the eigenvalues can
be placed in the open unit disc. However, if a system is not controllable it may be still
possible that the eigenvalues of A BF can be placed in the open unit disc. Therefore,
in the context of discrete-time systems, the system is called discrete-time stabilizable
if by a suitable F all the eigenvalues of A BF can be placed in the open unit disc.
Dually, a discrete-time system is called discrete-time detectable if by a suitable K all the
eigenvalues of A KC can be placed in the open unit disc.

Now the following discrete-time versions of Remarks 5.8 and 5.13 can be proved. The
proofs are, however, omitted here.

Remark 7.15 Consider the pair A B , where A is a real n n matrix and B a real n m
matrix. Then the following statements are equivalent.

1. The pair A B is discrete-time stabilizable.

2. rank zI A B n for all z with z 1.

3. rank I A B n for all eigenvalues of matrix A with 1.

Remark 7.16 Consider the pair C A , where A is a real n n matrix and C a real p n
matrix. Then the following statements are equivalent.

1. The pair C A is discrete-time detectable.

2. rank
zI A
C

n for all z with z 1.

3. rank
I A
C

n for all eigenvalues of matrix A with 1.
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We will conclude this chapter with some remarks on the discretization of continuous-
time systems resulting in discrete-time systems. Quite often the phenomenon one wants to
study is continuous-time. It may happen that one only has measurements at discrete-time
instants, which might be a reason to model the phenomenon as a discrete-time system.
Also, for numerical purposes, a discrete-time model of a continuous-time phenomenon
has often advantages over a continuous-time model.
Sampling consists in replacing a continuous-time signal x t , t , by the

series of values x i , i 2 1 0 1 2 , where 0 is the length of the sam-
pling interval. A choice to be made is how large should be. A very large will
definitely lead to loss of information (it will be difficult to get an idea of the original
continuous-time signal by solely observing the sampled signal). A very small does not
seem very efficient from a numerical point of view. The following theorem, called Shan-
non’s sampling theorem, though it is also named after Nyquist, tells how large can be
chosen without loosing information.

Theorem 7.17 If the function x t is band-limited, i.e., a number W 0 exists such that
X i 0 for W, then no information is lost by sampling with a period less than
or equal to W. Here X denotes the ‘two-sided’ Laplace transform of x, i.e., X s

x t e stdt. See also Remark 6.18.

If one would sample with some period notwithstanding the fact that high-frequency
components are present in the continuous-time signal (i.e., frequencies greater than ),
then the high-frequency components are not distinguishable from low-frequency com-
ponents. Therefore in the calculations, effects of these high-frequency components, not
accounted for because of the sampling period chosen, will be attributed to low-frequency
components. This phenomenon is called aliasing.

7.1 Exercises

Exercise 7.1.1 Show that the transition matrix d k j corresponding to (7.3) is not in-
vertible if and only if A l is not invertible for some l j j 1 k 1.

Exercise 7.1.2 For each of the following matrices A, investigate if (the origin for) x k
1 Ax k k 0, is stable, asymptotically stable or unstable. Do this not only by ap-
plication of Theorem 7.1, but also by solving the corresponding equations for a suitably
chosen initial x 0 .

A

1
2 0 0
0 0 1

3
0 1

3 0
A

1
2 0 1
0 4 0
0 0 1

2

A
1 0 0
0 0 1
0 1 0

A
1 1 1
0 0 1
0 1 0

Exercise 7.1.3 Show by substitution that the expression in (7.9) satisfies the inhomoge-
neous state equation in (7.1), i.e., x k 1 A k x k B k u k .
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Exercise 7.1.4 Prove that the expression in (7.11) is the solution of the state equation
in (7.2), i.e., x k 1 Ax k Bu k , given initial state x 0 and sequence of controls
u k k 0. For instance, use induction with respect to k.

Exercise 7.1.5 In a certain country the weather forecast takes place as follows. The
percentage of sunshine per day is measured. At day k there has been ak% sunshine. The
forecast for the day thereafter is made according to

âk 1 6ak 3ak 1 ak 2 10

where âk 1 is the forecast. Write the system in state space form for this forecast where
the percentage of sunshine today is the input and where the forecast for tomorrow is the
output. What is the dimension of the state?

Exercise 7.1.6 We are given the discrete-time system

x k 1
0 1
2 3

x k
0
1

u k

y k 2 1 x k

Determine the transition matrix, impulse response function and the transfer function of
this system. Suppose the ‘periodic’ input signal u k 1 k k 0, is applied to the
system. What is the output response (take x 0 as the zero state)? Why is the output signal
not periodic?

Exercise 7.1.7 Consider the discrete-time system

x k 1 Ax k Bu k x n u

For this system
rank B AB An 1B r n

Prove that the state x can be steered from the initial point x 0 x0 to the final point x1
in at most r steps if it is known that

x0 x1 im B AB An 1B

Exercise 7.1.8 In econometrics one works a lot with so-calledARMAmodels. They will
be briefly introduced in this exercise.

Consider U z k 0 u k z
k and Y z k 0 y k z

k, where u k k 0 and

y k k 0 are given sequences. Show that if Y z z 1U z then y k u k 1
u k for all k 1 and y 0 0.

For the so-called moving average (MA) model

Y z qn 1z
1 qn 2z

2 q1z
n 1 q0z

n U z

derive two different types of realizations; one in state space form with matrices A B
and C, and the other in block diagram form with blocks as in Figure 7.1, where, if
necessary, initial values can be taken zero.
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The same question as above, but now with respect to the so-called autoregressive
(AR) model

1 pn 1z
1 p1z

n 1 p0z
n Y z U z

Given a mixed or ARMA model

Y z
U z

qn 1z
1 qn 2z

2 q1z
n 1 q0z

n

1 pn 1z
1 pn 2z

2 p1z
n 1 p0z

n

qn 1z
n 1 qn 2z

n 2 q1z q0

zn pn 1z
n 1 pn 2z

n 2 p1z p0

show how to merge the block diagrams of the MA and AR models just obtained, so
as to obtain a realization of the ARMA model. Is it possible to construct realizations
with no more than n delay-operators?

Exercise 7.1.9 Consider the linear discrete-time time-invariant system

x k 1 Ax k Bu k y k Cx k

with

A

2
3 1 0 0

0 1 0 0
0 1 1 1
0 0 0 2

3

B

0
1
0
0

C 0 0 1 0

Using eigenvalues of A, and their multiplicities, if necessary, determine whether

the system is asymptotically stable, just stable or unstable.

the system is controllable,

the system is observable,

the system is discrete-time stabilizable,

the system is discrete-time detectable.

Exercise 7.1.10 Using Jury’s criterion determine if the following polynomial has all its
roots inside the open unit disc in the complex plane.

p z 4z4 6z3 2z2 z 1

Exercise 7.1.11 Consider the polynomial

p z 4z2 8 z 1

with a real parameter. Apply Jury’s criterion to determine for which values of the
polynomial has all its roots inside the open unit disc in the complex plane. Verify your
results by means of the known formula for the roots of p z .
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Exercise 7.1.12 Consider the simplified version of the national economy given in Exam-
ple 7.6. Assume that x 0 0 and u k u0 for all k 0. Then show by application of

(7.10) that y 0 0 and y k r 1 pk

1 p u0 for all k 1.

Exercise 7.1.13 Compute the z-transform of the sequence v k defined by

v k
1
2

k
1 k k 3

1
2

k
k 0 1 2

Exercise 7.1.14 Compute the discrete-time sequence v k k 0 , corresponding to the
z-transform given by

V z
1

z a z b

with a b a b.

Exercise 7.1.15 Consider the discrete-time system x k 1 Ax k Bu k , y k Cx k
with

A
1
2 0
0 1

4
B

1
1

C 1 1

Compute the stationary response of the output of the system for the ‘periodic’ input se-
quence u k eik with .

Exercise 7.1.16 Determine a realization of the transfer matrix

h z
z3

z3 3z2 2z 1

Exercise 7.1.17 Consider the discrete-time system x k 1 Ax k Bu k , y k Cx k
with

A
1
6

0 5
1 6

B
1
1

C 2 1

Compute the transition matrix, the impulse response and the transfer function of the sys-
tem.

Exercise 7.1.18 Let z s be complex numbers such that z s 1
s 1 . Then prove that z 1

if and only if Res 0. Next show that a polynomial p z with real coefficients has all its
roots in z 1 if and only if p s 1

s 1 , as function of s, has all its roots in Res 0. Finally,
show that if

p z anz
n an 1z

n 1 a1z a0

with real coefficients ai i 0 1 n, and an 0, then p z has all its roots in z 1 if
and only if the polynomial

an s 1 n an 1 s 1 n 1 s 1 a1 s 1 s 1 n 1 a0 s 1 n

has all its roots in Res 0, which can be verified by means of Routh’s criterion. Using
this equivalence, verify the outcome of Exercise 7.1.10.
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Exercise 7.1.19 Below you will find a number of statements. For each of statements
determine whether it is true or false. Make your answer plausible by means of a simple
reasoning or (counter)example.

1. The Z-transform of the series u k k 0 , with u k 1
2
k for all k 0, is

given by
2z

2z 1
.

2. The discrete-time system x k 1 Ax k Bu k y k Cx k , with A B and C
matrices of suitable sizes, is unstable if and only if the modulus of every eigenvalue
of A is larger than one.

3. There exists no discrete-time system x k 1 Ax k Bu k , with A an n n
matrix and B an n m matrix, for which controllability and null-controllability are
equivalent.

4. For a discrete-time system x k 1 Ax k Bu k , with A and B matrices of
suitable sizes, null-controllability and discrete-time stabilizability are equivalent.

5. If A has all eigenvalues inside the open unit disc and A KC has all eigenvalues
outside the open unit disc, with A C and K matrices of suitable sizes, then the pair
C A is observable.

6. There is a real n n matrix A such that simultaneously the continuous-time system
ẋ t Ax t and the discrete-time system x k 1 Ax k both are stable, but not
asymptotically stable.



Chapter 8

Extensions and Some Related Topics

8.1 Abstract system descriptions

The input at time t will be denoted by u t and the output by y t . For the input func-
tion, resp. output function, as functions of time we write u and y . If no misunder-
standing is possible these functions are simply written as u and y. The time will either
be continuous (t T with T or T t0 ), or be discrete (t T with T or
T t1 t2 tn ). If T we talk about continuous-time systems, if T we
talk about discrete-time systems.

Two ways exist in order to describe the dynamic behavior of systems, namely an
external and an internal description. The external description considers the system as an
input/output map, i.e., y t f u t , where y t denotes the output at time t when the
input function u has been applied to the system. If a system is described by means of the
internal, or state space form, description, another quantity, the state x, is introduced. Later
on in this section we will see the usefulness of this concept.

Definition 8.1 [of the external description.] A system in input/output form is defined as

I O T U U Y Y F

where

i) T is the time axis (i.e., T or or a subset of or ).

ii) U is the set of input values; this set is called the input space. Quite often U m,
or U is a subset of m.

iii) U is a set of functions from T U; U is the set of admissible input functions;
clearly U f f : T U .

iv) Y is the set of output values. Usually Y p; Y is called the output space.

v) Y is the set of functions from T Y .

vi) F is a mapping fromU to Y , i.e., F :U Y. The mapping F defines the relation be-
tween input and output functions. If u U, then Fu is the resulting output function.
Its value at time t is denoted by Fu t . The mapping F is called the input/output
function or the system function. It is assumed that F is causal, i.e., if u1 u2 U
and u1 t u2 t for t t with t T , then Fu1 t Fu2 t and therefore
also Fu1 t Fu2 t for all t t .

Definition 8.2 The system I O is called linear if U, Y , U and Y are linear vector spaces
(for example U m, Y p) and if F :U Y is a linear mapping. The latter require-
ment means that if u1 u2 U, then F u1 u2 Fu1 Fu2 and F u1 Fu1 for all

.

163
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Definition 8.3 The system I O is called time-invariant (or stationary) if

i) T is closed with respect to addition, i.e., if t1 t2 T then also t1 t2 T ,

ii) U and Y are invariant with respect to the shift operator S T , defined by
S u t u t and S y t y t for all t T , i.e., S U U and S Y Y
for all T .

iii) S F FS for all T .

To say it in a simple way, a system is time-invariant if a shift along the time axis yields an
equivalent system. If t u t leads to an output t y t , then t u t should result
in t y t . If a signal is applied one hour later, we get the same response, except for
a delay of one hour.

Definition 8.4 The system I O is called memoryless (or static) if a function f exists,

f :U T Y such that Fu t f u t t . This means that Fu at time t only depends
on u t and not on the past (or future) of u.

Example 8.5 A mass m moves along a straight line and is connected to a wall by means
of a spring with characteristic constant k. There is friction which is a function of the
speed of the mass. The friction is modelled as a damper with characteristic f . An external
force u t acts on the mass. See Figure 8.1. Classical mechanics tells us that, if we
want to describe the motion of the mass from a time instant t1 onwards, while the force
u t t t1, is being exerted, the position and velocity of the mass at time t1 should be
known. The state of this system therefore is the vector

x t
q t
v t

where q denotes the position and v the velocity.

m

qf

 k

wall

u

Figure 8.1 Mass-spring-damper system.

Example 8.6 Two persons play the game of goose. As time variable we denote the num-
ber of times n that both persons have thrown the die (n is increased by 1 after both persons
had a turn). This is a discrete-time system. As input at time n we define

u n
number of spots on the die at n-th throw of first person

number of spots on the die at n-th throw of second person
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The state can be defined as

x n
position of first person’s marker on the board at time n

position of second person’s marker on the board at time n

For simplicity reasons we have assumed that the rule ‘pass your turn’ does not exist. If
this rule would be allowed, what could then be defined as the state of the system?

Definition 8.7 [of the internal description of a system] (or, equivalently, of a system in
state space form). A system in state space form is defined as

M T U U Y Y X r

where

i) T , U, U, Y and Y are the same as in the definition of the external description.

ii) X is the state space. Quite often X n, or X is a subset of n .

iii) : T 2 X U X, whereby T 2 t1 t0 T 2 with t1 t0 . The mapping is
called the state evolution function. The quantity t1 t0 x0 u denotes the state at
time t1, which was obtained by applying the input u U and starting from the state
x0 at time t0. The function must:

a) be consistent, i.e., t t x u x.

b) satisfy the semi-group property, i.e.,
t2 t1 t1 t0 x0 u u t2 t0 x0 u .

c) be determinate, i.e., if u1 u2 U and u1 t u2 t , t0 t t1, then
t1 t0 x0 u1 t1 t0 x0 u2 .

iv) r : T X U Y is the output function (or measurement function or observation
function) y t r t x t u t . It is the value of the output at time t if the system is
in state x t and u t is the input at time t. The function r x u , must belong
to Y .

Definition 8.8 M is called linear if U, Y , U, Y , and X are linear vector spaces and if

i) the mapping t1 t0 : X U X is jointly linear in both arguments, i.e., if
t1 t0 x0 u x and t1 t0 x̃0 ũ x̃ then t1 t0 x0 u x for all ,

and t1 t0 x0 x̃0 u ũ x x̃.

ii) the mapping r t : X U is jointly linear in both arguments.

Definition 8.9 M is called time-invariant if t1 t2 T for any t1 t2 T , StU U,
StY Y for all t T , and if, moreover,

i) t1 t t0 t x0 u t1 t0 x0 Stu for all t T ,
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ii) r t x u is independent of t, and therefore can be written as r x u .

Example 8.10 Suppose that the relationship between input function u and output function
y is the following: y t u t , where is a positive constant. The state x for this
system should be such that, given x at time t and u s with s t, the future states x at
times s t and future outputs y at times s t are uniquely determined. The function y
is only determined for s t if u s , s t is given. Therefore the state must contain
enough information such as to determine y s during the interval t t . Therefore the
state at time t, i.e., x t , should at least contain the part of the function u defined on the
interval t t . It turns out that the state equals this function:

x t u t t

where u t t denotes the restriction of u to the interval t t .

Definition 8.11 The system M is called autonomous if U consists of only one element.

The setU in the above definition is never empty as ‘no control’ can be interpreted as ‘the
only control’.

So far we talked about the external description and the state space form description
of a system. Some words will be devoted now as to how one description can be derived
from the other. Suppose M T U U Y Y X r is a description in state space form.
In order to obtain the corresponding I O the essential idea is to eliminate x from the
mappings and r. Suppose for simplicity that M is time invariant. Choose a t0 T and
a x0 X (think of an initial time and an initial state) and define

Fu t r t t0 x0 u u t for all t t0

Thus we obtained a system

I O

T t0 U U Y Y F

The time axis can be extended to the whole T by defining

x t x0 u t u0 y t y0 for all t t0

where u0 and y0 are constants in U and Y , respectively. For every choice we get in
principle another F . The state x0 will usually be interpreted as an equilibrium for the
system. A natural choice for x0 is the zero element of X . Similarly choices for u0 and
y0 are the zero elements of U resp. Y . If, in addition, t0 is chosen close to in case
T , we say that the system is in equilibrium or at rest at ‘t ’.

The reverse problem as how to obtain M from I O is far more difficult. Now one
has to create a state x X , instead of to eliminate x. For linear systems this problem has
been solved satisfactory. A whole theory has been built around the ‘creation’ of the state
space X and it is called realization theory.
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8.1.1 Behavioral modelling

Recently a new modelling philosophy has been developed which states, in an abstract way,
that signals, rather than the equations which generate these signals, is the essential result
of a modelling procedure. One looks at systems as devices or ‘black boxes’. Instead of
trying to understand how a device is put together and how its components work in detail,
we are told to concentrate on its behavior, on how it interacts with its environment.

Definition 8.12 A dynamical system is a triple T , where T represents the
time-axis, is the signal space and T is the behavior, where T denotes the set
of all functions from T to .

Suppose one has a set of m scalar equations fi x t ẋ t ẍ t 0, i 1 2 m,
where x x1 xn . Assume that the fi-functions are defined in such a way that math-
ematically well defined solutions x of the differential equations exist. In this example, T
is the real axis, is the set of all possible x values and is the set of all solutions to
the differential equation. Instead of having a description by means of differential and/or
algebraic equations only, one could also add inequalities.

Based on this philosophy, many concepts introduced in the earlier chapters, are phrased
in a more general setting. For a neat introduction, the reader is referred to [Willems, 1991].

8.2 Polynomial representations

Chapter 6 is mainly devoted to systems descriptions in the Laplace domain. The emphasis
has largely been on single-input single-output systems. The polynomials (either in the
denominator or in the numerator) in the transfer matrix determine the system. As such
one can also speak about ‘polynomial representations’ of systems. This view turns out to
be particularly useful for systems with multiple inputs and outputs. The belief is that it
is easier to work with polynomials (of varying degree) than with state space descriptions
in which the dimensions of the states differ. One can show that the ‘modelling power’,
which we will not formally define here, of state space representations and of polynomial
representations of systems are equivalent, i.e., phenomena which can be described in one
setting, can also be described in the other.

Polynomial matrices are a means of representing linear ordinary differential equa-
tions with constant coefficients. The differentiation operator d

dt is then represented by the
(Laplace) variable s. Also linear time-invariant discrete-time system can be represented
by means of polynomial matrices. Then the variable s stands for the delay operator
introduced Chapter 7.

Definition 8.13 A polynomial matrix (in s) is a matrix of which the entries are polyno-
mials in the variable s.

Definition 8.14 A linear time-invariant system is said to be described in polynomial form
if the relation between the input vector u, of dimension m, and the output vector y, of
dimension p, is of the form

P s Q s u
y R s

(8.1)
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where P Q and R are polynomial matrices of sizes n̄ n̄, n̄ m and p n̄, respectively.
The vector , having n̄ components, is called the partial state.

It should be emphasized that , u and y in (8.1) are considered to be suitably defined vector
functions of time. They are not vector functions in the Laplace domain. Equations (8.1)
simple are (possibly higher order) differential or difference equations, that are related to
each other.

Example 8.15 The classical equation of a force F acting on a point mass with mass m is
(F is the input, x the output)

mẍ F

This equation allows at least two polynomial representations. For instance,

ms2
1 F

y 1

with the one dimensional partial state 1 x, and

s 1
0 ms 2

0
1

F

y 1 0 2

with the two dimensional partial state 2 x ẋ .

If one compares the dimension of the partial state with the dimension n of the state vector
in the state space description, one can conveniently restrict oneself to n̄ n, hence the
name partial state. From the example we see that two in some sense equivalent poly-
nomial representations do not necessarily have partial states with the same dimension.
For sake of completeness we now give a formal definition of ‘equivalence’, but warn the
reader that it is somewhat technical and that it will not be used explicitly anymore in this
text.

Theorem 8.16 The two systems

i :
Pi s i Qi s u

y Ri s i
i 1 2 (8.2)

with the same number of inputs and the same number of outputs, and of which the partial
states 1 and 2 have dimension n1 and n2, respectively, are equivalent if polynomial
matrices M1 M2 N1 and N2 of sizes n1 n2, n2 n1, n1 m and n2 m, respectively,
exist such that the following two systems

S1 :
P1 s 1 Q1 s u

2 M2 s 1 N2 s u
y R1 s 1

(8.3)
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S2 :
1 M1 s 2 N1 s u

P2 s 2 Q2 s u
y R2 s 2

(8.4)

have identical solutions (i.e., the same input applied to both systems yields identical out-
puts, provided that one chooses the initial conditions suitably).

Definition 8.17 The transfermatrix of system (8.1) is defined by H s R s P 1 s Q s .

The transfer matrix can always be expressed as

H s
N s
d s

(8.5)

where N s is a polynomial matrix, and d s is a scalar polynomial in s equal to the least
common multiple of the denominators appearing inH s . It has tacitly been assumed here
that factors common to d s and all entries of N s have been cancelled.

Example 8.18 Consider the satellite example of Example 6.1. The transfer matrix can be
written as

H s
N s
d s

1
s2 1 s2

s2 2s
2s s2 3

Definition 8.19 A square polynomial matrix is called nonsingular if its determinant is
a polynomial that is not identically equal to zero. A square polynomial matrix is called
unimodular if its determinant is a nonzero constant.

By Cramer’s rule, for instance, it follows that the inverse of a unimodular polynomial
matrix is a polynomial matrix again. In general, the inverse of an invertible polynomial
matrix is a rational matrix.

Example 8.20 The polynomial matrix

P1 s
s 1 s 3

s2 3s 2 s2 5s 4

is nonsingular since detP1 s 2s 2. The polynomial matrix

P2 s
s 1 s 3

s2 3s 2 s2 5s 6

is singular since detP2 s 0. The polynomial matrix

P3 s
s 1 s 3

s2 3s 3 s2 5s 7

is unimodular since detP3 s 2.
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Definition 8.21 The rank of a polynomial matrix is the size of the largest square subma-
trix (of this polynomial matrix) that is invertible.

Definition 8.22 Suppose N s , with entries Ni j s , is a polynomial matrix of rank k. Then
N s is in the so-called Smith form if

Ni j s 0 for i j,

Nii s 0 for i k 1,

Nii s is monic and divides Ni 1 i 1 s for 1 i k .

Theorem 8.23 If N s is a polynomial matrix, there exist unimodular polynomial matri-
ces U s and V s such that N s U s s V s , where s has the Smith form it is
called the Smith form of N s .

Remark 8.24 When all polynomials in N s are constants, the theorem above is closely
related to the so-called singular value decomposition, well known in matrix algebra.

One can construct the Smith form of a polynomial matrix in a way that resembles the
conventional column and row operations, as shown in the following example.

Example 8.25 Suppose

N s
s a 1

0 s a

Permutation of the columns yields

N1 s
1 s a

s a 0

Then adding the first column multiplied by s a to the second column gives

N2 s
1 0

s a s a 2

Next one multiplies the second column by 1, and then adds the first row multiplied by
s a to the second row, so as to obtain the Smith form:

s
1 0
0 s a 2

It is not difficult to show that the matricesU s and V s are

U s
1 0

s a 1
V s

s a 1
1 0

The concepts of stability, controllability, observability, dynamic output feedback, poles,
zeros, etc., introduced in the previous chapters, all have their natural imbedding in the the-
ory of polynomial representations, see [Rosenbrock, 1970] or [Maciejowski, 1989].

The contents of this section remains by and large also valid in the discrete-time setting,
provided one makes the assumption that the differential operator s d

dt is replaced by, and

interpreted as, the delay operator defined by x k
def
x k 1 .



8. Extensions and Some Related Topics 171

8.3 Examples of other kinds of systems

These course notes have mainly dealt with linear differential (and difference) systems.
Fortunately many practical phenomena can be modelled (at least approximately) by such
linear systems. Many phenomena are, however, strictly speaking, nonlinear and it is not
always easy, or not even always desired, to come up with an approximate linearization.
For specific classes of nonlinear systems mathematical tools are available. For each of
these classes a huge literature exists and the interested reader should consult the library
for more information. In this section we will, very briefly, touch upon a few such classes.

8.3.1 Nonlinear systems

All systems that are not linear are by definition nonlinear. Mathematical system theory
has been well developed for linear systems, but also theory exists for nonlinear systems,
specifically with respect to certain classes of nonlinear systems. One such class of systems
is given by

ẋ f x g x u (8.6)

where the control u appears linearly. Further, x and u are finite dimensional vectors and f
and g are vector and matrix functions, respectively, of appropriate size. A typical example
is the (simplified) modelling of manoeuvring a car.

Example 8.26 Suppose we can directly control the speed (by means of u1) and the direc-
tion (by means of the steering wheel of which the position is given by u2) of a car, then
we obtain the nonlinear system

d
dt

x1
x2
x3

sinx3
cosx3

0
u1

0
0
1

u2

which is of the form (8.6). The variables x1 and x2 refer to the position and the angle x3
to the direction of the car. If one would linearize this system around any point in 3 , the
linearized system turns out to be non-controllable. However, driving a car is a controllable
process, at least to the experience of most of the people.

A theory exists which studies controllability directly in terms of the ‘vector fields’
f x and gi x i 1 m, with gi denoting the i-th column of the matrix g and m being
the number of (scalar) controls. Toward this end one must construct the so-called Lie
brackets of each combination of two such vector fields. Such a Lie bracket itself is also
a vector field, which is added as a new member to the original set of vector fields. This
augmented class of vector fields is again used to construct new Lie brackets, which are
added again to the set. In this way one continues until no new vector fields are found
anymore. If a rank condition on the ultimate set of vector fields obtained is fulfilled, then
one has controllability of the nonlinear system.

Also general methods to study specific aspects of nonlinear systems exist, such as the
concept of Lyapunov stability.
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8.3.2 Descriptor systems

When modelling, especially in network theory, one sometimes encounters equations of
the form

T ẋ t Mx t Np t Pu t (8.7)

0 Qx t Rp t Su t (8.8)

The corresponding system is referred to as a differential algebraic system. The vector
x t n contains those variables of which the time derivatives appear in the equations,
while the vector p t r contains the variables which only appear algebraically. The
function u t m is, as usual, the input. The matrices M, N, P, Q, R and S have ap-
propriate sizes such that the equations are well defined. If T and R happen to be square
nonsingular matrices, then the equations can be written in the form (by eliminating p)

ẋ Ax Bu

where now A T 1M T 1NR 1Q and B T 1P T 1NR 1S.
Equations of the form T ẋ Mx Pu are more general than equations of the form

ẋ Ax Bu. Systems characterized by the former type of equations are referred to as de-
scriptor systems. Descriptor systems allow us, for instance, to model x (or a component
of x) as a time derivative of the input u (provided of course that this derivative exists).
Consider

0 0
0 1

ẋ1
ẋ2

0 1
1 0

x1
x2

1
0

u

then x1 u̇. When considered of the form ẋ Ax Bu, the equation x1 u̇ has x1
as input and u as state. The notion of eigenvalue is taken over by ’s which satisfy
det T M 0.

8.3.3 Stochastic systems

The system which we have considered so far are all deterministic. Once the initial con-
dition and input function are known, the future behavior is uniquely determined. There
are many systems in practice in which the future is (partly) determined by processes of
a stochastic/probabilistic nature. The winner of the game of goose is not determined at
the outset of the game, because the evolution of the game depends on the outcomes of
the die, which usually are modelled in probabilistic way. In principle, it may be possible
to describe the throwing of a die in a deterministic way, but such a model would be ex-
tremely complicated and it is preferred to describe the outcome of a die probabilistically.
If random influences determine the future of a system, it is called a stochastic system.
A quantity x t , within a stochastic system, could be interpreted as the state at time t if,
given x t and u s , s t, all future quantities within the system are determined in a prob-
abilistic way. That is, for instance, the case when the probability distribution functions
are uniquely determined by x t and u s , s t. The future behavior is then characterized
by probabilistic laws, but the actual outcome of the system (who will win the game of
goose) is not known before the evolution has really taken place.
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Example 8.27 An industrial area can be in two situations: either the atmosphere is good
G or the atmosphere is bad B . In both situations two possible actions exist: start the

alarm phase u 1 or not u 0 . Depending on the atmospheric condition and the
action, the atmosphere of the next day will be good or bad according to the following
probabilistic rule.

condition tomorrow condition tomorrow
G B G B

condition G 0.8 0.2 condition G 0.9 0.1
today B 0.4 0.6 today B 0.6 0.4

u 0 u 1

The numbers in these tabular forms denote transition probabilities. If it is assumed that the
transition probabilities are independent (i.e., there is no correlation with respect to time),
then the state of this stochastic system is the atmospheric situation, with state ‘space’
X G B .

See also Section 8.6 for other stochastic systems.

8.3.4 Automata

An automaton (plural: automata) is a special case of a discrete-time system in which the
input space U and output space Y are finite. The state space X can be either finite or
countably infinite. Because of the finite character of input and output spaces, they are
sometimes referred to as alphabets, because alphabets have a finite number of elements.

Example 8.28 We consider the following situation of an oversimplified and oldfashioned
marriage. The state space has three elements, namely

x1: husband is angry,

x2: husband is bored,

x3: husband is happy.

The input space also has three elements and consists of the behavior of the wife

u1: wife is quiet,

u2: wife shouts,

u3: wife cooks.

As a result of the current state and input the new state is given in the following table. The
top row gives the input, the left column indicates the current state and the matrix in the
‘south-east’ denotes the new states.
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u1 u2 u3
x1 x1 x1 x3
x2 x2 x1 x3
x3 x3 x2 x3

The output, consisting of two elements,

y1: husband shouts,

y2: husband is quiet,

is related to the current input and current state as indicated by the following table.

u1 u2 u3
x1 y2 y1 y2
x2 y2 y2 y2
x3 y2 y2 y2

8.3.5 Distributed parameter systems

In this section we will briefly talk about a class of systems which is (also) important from
a practical point of view, but which is not discussed in these notes (apart from some exam-
ples in Section 2.4 and in this section). In all examples so far the state space X was either
finite dimensional n or even finite. In the physical examples a finite dimensional state
space could be constructed because physical quantities as mass, velocity, electric charge,
temperature were thought to be concentrated in one point. For some problems such a
simplification may lead to inadmissible conclusions, and then electric charge, tempera-
ture, etc., not only have to be time dependent, but also location (spatial) dependent. These
quantities are then elements of a function space and the state space is infinite dimen-
sional. Such systems are called distributed systems (this in contrast to systems with finite
dimensional state spaces, which sometimes are called lumped systems).

Example 8.29 Consider the flexible beam of length one, depicted in Figure 8.2. The

wall

1

z

F

N

σ

1
2-

Figure 8.2 Flexible beam system.

displacement of the beam from the horizontal is denoted by z. Hence, z t denotes the
vertical displacement of the beam at place and at time t. The beam is fixed horizontally
into the wall (at 0). This means that z 0 t 0 and z 0 t 0 for all t. At the
right end of the beam (at 1) the motions of the beam are controlled by means of a
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force F t and a torque N t . Assume that the displacement in the middle of the beam (at
0 5) is measured, and that this measurement is denoted y t . If gravity is not taken

into account, and if the beam has uniform mass density and a uniform stiffness EI, then
the energy in the beam at time t equals

E t
1
2

1

0

z
t

2d
1
2
EI

1

0

2z
2

2d

The first term in this expression can be seen as the kinetic energy due to the motion of the
beam, and the second term as the potential energy due to the deflection of the beam from
the horizontal. If there is no loss of energy then E t is constant for all t. Using this, it
follows from dE

dt 0, with some nontrivial mathematics (not explained here), that

2z
t2

EI
4z

4 0

The boundary conditions for the beam at 0 are z 0 t 0 z 0 t 0 for all t, and

at 1 there should hold EI
2z

2 1 t N t , EI
3z

3 1 t F t for all t.
The above constitutes a model for the dynamical behavior of the flexible beam subject

to a force F t and a torque N t . For the complete description of the behavior it remains
to specify the initial conditions. These are the deflection and the velocity of beam at time
t 0, i.e., z 0 , z

t 0 for all , 0 1.
As already can be seen from these initial conditions, the beam cannot be described by a

finite number of time functions, but by an infinite number of time functions parametrized
by , 0 1. This means that the beam cannot be described by means of a finite
number of ordinary differential equations.

8.3.6 Discrete event systems

The starting point is the difference equation

x t 1 Ax t t 0 1 2 (8.9)

with x n . Written out in scalar equations it becomes

xi t 1
n

j 1
ai jx j t i 1 n t 0 1 (8.10)

The only operations used in (8.9) or (8.10) are multiplication (ai j x j t ) and addition (the
symbol). The theory of discrete event (dynamic) systems can be considered as a study

of formulas of the form (8.9) in which the operations are changed. Suppose that the two
operations in (8.10) are changed in the following way. Addition becomes maximization
and multiplication becomes addition. Then (8.10) becomes

xi k 1 max ai1 x1 k ai2 x2 k ain xn k

max
j 1 n

ai j x j k i 1 n k 0 1 2
(8.11)



176 Mathematical Systems Theory

If an initial condition is given for both (8.9) and (8.11), then the time evolutions of (8.9)
and (8.11) are completely determined. Of course the time evolutions of (8.10) and (8.11)
will be different in general. Equation (8.11), as it stands, is a nonlinear difference equa-
tion. As an example conider

A
3 7
2 4

(8.12)

and take as initial condition

x0
1
0

(8.13)

Then the time evolution of (8.11) becomes

x 0
1
0

x 1
7
4

x 2
11
9

x 3
16
13

(8.14)

We are used to thinking of the argument t in x t as a time instant, i.e., at time instant
t the state is x t . With respect to (8.11) we will introduce a different meaning for this
argument. In order to emphasize this different meaning, the argument t has already been
replaced by k. For a practical motivation we need to think of a network, which consists
of a number of nodes and some arcs connecting these nodes. The network corresponding
to (8.11) has n nodes; one node for each component xi. Entry ai j corresponds to the arc
from node j to node i (this is no typo!). In terms of graph theory such a network is called
a directed graph (‘directed’ because the individual arcs between the nodes are one-way
arrows). Therefore the arcs corresponding to ai j and a ji, if both exist, are considered to
be different.

The nodes in the network can perform certain activities; each node has its own kind
of activity. Such activities take a finite time, called holding time, to be performed. These
holding times may be different for different nodes. It is assumed that an activity at a
certain node can only start when all preceding (‘directly upstream’) nodes have finished
their activities and have sent the results of these activities along the arcs to the current
node. Thus the arc corresponding to ai j can be interpreted as an output channel for node
j and, simultaneously, as an input channel for node i. Suppose that this node i starts its
activity as soon as all preceding nodes have sent their results to node i (the rather neutral
word ‘results’ is used, it could equally have been messages, ingredients or products, . . . ),
then (8.11) describes when the activities take place. The interpretation of the quantities
used is:

xi k : is the earliest time instant at which node i becomes active for the k-th time;

ai j: is the sum of the holding time at node j (i.e., time duration of the activity) and
the travelling time from node j to node i (the rather neutral ‘travelling time’ is used
rather than for instance ‘transportation time’ or ‘communication time’).

For the example given above, the network has two nodes and four arcs, as given in Fig-
ure 8.3. The interpretation of the number 3 in this figure is that if node 1 has started an
activity, the next activity cannot start within the next 3 time units. Similarly, the time be-
tween two subsequent activities of node 2 is at least 4 time units. Node 1 sends its results
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3

node  1
node 2

47

2

Figure 8.3 Discrete event system.

also to node 2 and once an activity starts in node 1, it takes 2 time units before the result
of this activity reaches node 2. Similarly, it takes 7 time units after the initiation of an
activity in node 2 for the result of that activity to reach node 1.

If we now look at the sequence (8.14) again, the interpretation of the vectors x k is
different from the initial one. The argument k is not a time instant anymore, but a counter
which states how many times the various nodes have been active. At time 14 node 1 has
been active twice (more precisely, node 1 has started two activities at times 7 and 11,
respectively). At the same time 14, node 2 has been active three times (it started activities
at times 4, 9 and 13). The counting of the activities is such that it coincides with the
argument of the x vector. The initial condition is henceforth considered to be the 0-th
activity.

8.4 Optimal control theory

In optimal control theory problems of the following kind are considered. A system is
described by an ordinary differential equation with an input u

ẋ f t x u x t0 x0 (8.15)

It is assumed that the conditions on f are such that a solution of this differential equation
exists on a given interval t0 t1 for any u U . The function u must be chosen such that a
given functional (called cost function)

t1

t0

g t x u dt q x t1 (8.16)

is minimized, subject to u U and (8.15). In this problem x and u are functions with
values in n and m , respectively, and f g and q are functions as follows

f : n m n

g : n m

q : n

We tacitly assume that a minimizing function u, indicated by u , will exist. Such existence
questions also belong to the theory of optimal control. There are many variations on the
problem stated above. Sometimes the function u must be chosen such that a given point
x f is reached at t1, i.e., x t1 x f . This is an additional requirement on u. In the latter case
the term q x t1 q x f is predetermined and is independent of the used control function
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u. Another variation is that the end time t1 is not fixed explicitly, but only implicitly by
means of, for instance,

t1 min t t x t

where is a given set in the n space. Then t1 is the first time that the area is
entered. Obviously, for different input functions one may have different final times. As a
specific example of problem (8.15) and (8.16) consider a linear differential equation

ẋ Ax Bu x t0 x0 (8.17)

and a quadratic cost function
t1

t0

x Qx u Ru dt x t1 Qf x t1 (8.18)

with t1 fixed. The constant matrices Q, Qf and R have sizes n n, n n and m m,
respectively. It is assumed that the matrices Q and Qf are positive semi-definite, and
the matrix R is positive definite. The matrices are weighting matrices, since from their
(semi)-positiveness it follows that

x Qx 0 u Ru 0 x t1 Qf x t1 0

for all values of x u and x t1 . Hence, the above terms penalize deviations of x, u, and
x t1 , respectively, from the zero vector. The interpretation is that system (8.17) must be
controlled such that the state stays near the origin (expressed by the term x t Qx t in
the cost function), but not at the expense of too much control effort (expressed by the term
u t Ru t ). The term x t1 Qf x t1 expresses the fact that we would like to have the fi-
nal point x t1 close to the origin as well. For this particular ‘linear quadratic’ problem the
solution can be obtained in a straightforward way by a ‘completing the square’ argument.

t1

t0

x Qx u Ru dt x t1 Qf x t1

t1

t0

x Qx u Ru
d
dt

x P t x dt x t0 P t0 x t0

with P t1 Qf . The n n matrix P t is not completely specified yet. The only require-
ment sofar is P t1 Qf and that it is continously differentiable. We also assume it to be

symmetric: P t P t . The cost function becomes
t1

t0
x Qx u Ru ẋPx x Ṗx x Pẋ dt x t0 P t0 x t0

t1

t0
x Qx u Ru Ax Bu Px x Ṗx x P Ax Bu dt

x t0 P t0 x t0

t1

t0
x Q Ṗ A P PA x u Ru u B Px x PBu dt

x t0 P t0 x t0
t1

t0
x Q Ṗ A P PA x u R 1B Px R u R 1B Px

x PBR 1B Px dt x t0 P t0 x t0
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t1

t0
x Q Ṗ A P PA PBR 1B P x

u R 1B Px R u R 1B Px dt x t0 P t0 x t0

If we now choose P t to satisfy the differential equation

Ṗ A P PA Q PBR 1B P P t1 Qf (8.19)

then the cost function becomes

t1

t0

u R 1B Px R u R 1B Px dt x0 P t0 x0 (8.20)

It can be shown (no proof here) that the solution to the matrix differential equation (8.19),
with the indicated final condition, will exist on the interval t0 t1 and is unique. Because
we assumed that R 0, it is clear from (8.20) that the minimizing control is

u t R 1B P t x t (8.21)

and that the value of the cost function will be

x0 P t0 x0

when the optimal control u t is applied. The matrix differential equation (8.19) plays
such a fundamental role that it is named after one of its first investigators, namely it is
called the Riccati differential equation. The requirement of P t being symmetric is
automatically fulfilled as is easily seen from studying (8.19). Indeed, if P t is a solution
of (8.19), then so is P t . As the solution (at least locally) exists and is unique, it follows
from the fact that Qf is symmetric that P t must be symmetric. One has also studied the
behavior of the solution when t1 . It turns out that, if the pair A B is controllable
and the pair D A observable, where D is defined through DD Q, the optimal control
becomes

u t R 1B Px t (8.22)

where now P is the smallest positive semi-definite solution of the algebraic Riccati equa-
tion

A P PA Q PBR 1B P 0

Note that in both (8.21) and (8.22) the optimal control is given in feedback form, i.e., the
current control depends on the current state. If (8.22) is substituted in (8.17), the result is

ẋ A BR 1B P x x t0 x0

and it can be proved, subject to the conditions mentioned, that this is an asymptotically
stable system. For a textbook on optimal control theory with many applications the reader
is referred to [Bryson and Ho, 1969].
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8.5 Parameter estimation

Sofar, we always assumed that the parameters in the models are known, i.e., we assumed
that the matrices A, B,C and D in

ẋ Ax Bu

y Cx Du

or

x k 1 Ax k Bu k

y k Cx k Du k

have known entries, or that the coefficients in the transfer function h s
q s
p s

are known.

Also, it was tacitly assumed that the order n of the model was known. In some physical
models all these assumptions may be reasonable. In many other models, for instance
econometric models, (some of) the parameters must be estimated; they do not follow from
the modelling itself. In such cases it can happen that a dependence between two variables
is assumed (e.g. a linear dependence) and the coefficients specifying this dependence must
be estimated given measurements of the input and output values of the system. This will
be illustrated by means of the following dependence between input and output variables
(in discrete-time).

y k n pn 1y k n 1 p0y k

qn 1u k n 1 q0u k k 0 1 2

The parameters pi and qi i 0 1 n 1, are not known. What is known, however,
is the applied input sequence and the resulting output sequence. Suppose y 0 y r
and u 0 u r are known for some r 2n. (Note that n is assumed to be fixed here.)
Given these values we will try to estimate the parameters pi and qi i 0 1 n 1. The
observations satisfy

y k pn 1y k 1 p0y k n

qn 1u k 1 q0u k n k

k n n 1 r (8.23)

where the quantity k denotes a possible perturbation in the system due to measurement
errors in the y i ’s and u i ’s, for instance. The quantity k makes the relation between
y k and y i u i , for k n i k, again an exact equality. In general k will be small.
Introduce the following notation.

pn 1 pn 2 p0 qn 1 qn 2 q0

x k y k 1 y k n u k 1 u k n

then (8.23) can be written as

y k x k k k n n 1 r
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The estimate of , denoted by ˆ, is defined here as that value of which minimizes the
sum of the squares of the perturbations, i.e.,

ˆ argmin
r

k n

y k x k 2 (8.24)

The estimate ˆ thus defined is called the least squares estimate. The summation in (8.24)
can be written as

S
r

k n

y k x k 2 Y X Y X (8.25)

where

Y y n y n 1 y r

X x n x n 1 x r

Note that X is a matrix. Differentiation of (8.25) with respect to yields for the minimum

X X ˆ X Y

If X X is invertible then the least squares estimate can be written as

ˆ X X 1X Y

A general introduction to parameter estimation is given in [Sorenson, 1980].

8.6 Filter theory

For linear systems filtering theory can be considered as a stochastic extension of the (de-
terministic) theory of observers as treated in section 5.2. It is assumed that the model is
not exactly known, but that it has the form

ẋ Ax Bu Gw
y Cx v

(8.26)

The new terms, Gw in the system equation and v in the measurement equation, are meant
to make up for errors in the system model and for measurement errors, respectively. These
errors are not known a priori, but are assumed to have a certain stochastic behavior. The
matrix G is assumed to be known, whereas the processes w and v will in general vary with
time in an unpredictable way (quite often it is assumed that w and v are so-called white
noises). Given the measurements y s 0 s t, we want to construct an estimate x̂ t
of the current value of x t . Before we can continue, equations (8.26) must be studied in
more detail. If w is a stochastic process, drawn from a known sample space, the solution
x t of the stochastic differential equation, will also be a stochastic vector. This gives rise
to many mathematical subtleties. An easier way is to start with a discrete-time system as
given next.

x k 1 Ax k Bu k Gw k

y k Cx k v k (8.27)
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We now assume that w k and v k are independent random vectors, and also w k and
w l are independent for k l. Similarly, v k and v l are independent. Essentially, all
uncertainties which enter the system and measurement equation, are uncorrelated. We
also assume that w k k 0 and v k k 0 are zero mean, Gaussian processes with
known covariances of R and Q, respectively. The matrices R and Q are assumed to be
positive definite. The input u k to the system is assumed to be deterministic (we know
what we put into the system). It can be shown that the solution x k to the difference
equation (8.27) is also a Gaussian vector. We now define the estimate x̂ k 1 of x k 1 –
the latter vector is only known probabilistically – by minimizing the conditional minimum
variance, given the measurements up to time instant k, as follows.

x̂ k 1 argmin
x
E x k 1 x 2 y 0 y 1 y k

E denotes a conditional expectation. Other definitions of the estimate are possible,
but the above turns out to be an attractive one. It says that the squared distance between
the estimate and the actual value of the state must be as small as possible given all the
past measurements. It turns out that x̂ k 1 can be determined recursively by

x̂ k 1 Ax̂ k Bu k K k y k Cx̂ k (8.28)

The matrix K k can be expressed in the known matrices A, B, C, G, Q, and R (will not
be shown here). In the literature, Equation (8.28) is often referred to as the Kalman
filter. The reader should note the resemblance between the observer form in (5.6) and
(8.28)! Both equations have a correction term, in which Cx̂ is the predicted value of the
output and y is the actual measurement. If these two values differ, a correction appears in
(8.28) (and in (5.6)) for the update from x̂ k to x̂ k 1 (and something similarly holds
with respect to (5.6)). Formulas exist which give the accuracy of x̂ k 1 . The estimate
x̂ k 1 is also a stochastic vector. In fact, it is Gaussian and the accuracy of x̂ k 1
is expressed in terms of its mean and covariance. For an excellent introduction to this
subject see [Anderson and Moore, 1979].

8.7 Model reduction

In the theory of model reduction one replaces a model by a simpler one, which still catches
the essential behavior, in order to get a better insight and/or to get numerical (or analytical)
results faster, with less effort. In the state space description one could try to replace
ẋ Ax Bu y Cx by ˙̄x Āx̄ B̄u y C̄x̄, where the new state x̄ has fewer elements
than the original state x, and where the behavior of the ‘barred’ system resembles the
behavior of the original system in some way. One thus speaks of model reduction since
the dimension of the state space has been reduced. If the starting point would have been a
transfer function, one could try to replace this transfer function by another one of which
the degree of the numerator and of the denominator are smaller than of the original transfer
function. We will only devote a few words on model reduction in state space here.

As an example consider

ẋ
1 0

0 10
x

1
1

u y 1 1 x
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Intuitively one may approximate this system by the one dimensional system

ẋ1 x1 u y x1

one simply deletes the parts of the system related to the smaller eigenvalue 10 . How-
ever, whether it is wise to replace

ẋ
1 0

0 10
x

1
10

u y 1 12 x

by the same reduced system ẋ1 x1 u y x1 is not so clear anymore.
For a more fundamental approach to model reduction one starts with the so-called

controllability Gramian

P
0
eAtBB eA tdt (8.29)

and the observability Gramian

Q
0
eA tC CeAtdt (8.30)

These Graminans are only well defined for asymptotically stable systems.
The eigenvalues of P provide a measure for controllability and the eigenvalues of Q

provide a measure for observability. If some of these (nonnegative) eigenvalues are close
to zero, then the system is poorly controllable, respectively, observable. One can easily
show that these eigenvalues are not invariant with respect to coordinate transformations.
One speaks of a balanced realization of the system if the coordinates are chosen in such
a way that for the transformed system P and Q are equal, i.e., P Q, and diagonal. One
can also easily show that the eigenvalues of the product PQ are invariant under state space
transformations and hence they can be viewed as input/output invariants.

Below the following notation is used. Given a square matrix M with the eigenval-
ues in some order, write i M for the ith eigenvalue of M. Assume that Re i A 0,
for all i 1 2 n, then the Hankel singular values i of the system are defined as

i i PQ
1
2 , for i 1 2 n, where by convention one orders these values in such

a way that i i 1. If one wants to reduce the dimension of the system one could disre-
gard those ‘parts’ of the system which correspond to the smaller Hankel singular values.
It turns out that such reduced models still capture the controllability and observability
behavior of the original system (provided one keeps those ‘parts’ of the system which
correspond to the larger Hankel singular values).

8.8 Adaptive and robust control

The areas of adaptive control and of robust control both are full-grown scientific areas.
In adaptive control one considers systems characterized by some parameters. In case
of linear systems these parameters are, for instance, some elements of the A and/or B
matrix, which slowly change their values with respect to time (for instance, due to aging
or changes in the environmental conditions). For the analysis and design of the feedback
control one considers these parameters as constants. One, however, monitors the values
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of the parameters. If these values change markedly from their nominal values, one will
adjust the feedback control to these changed circumstances. One ‘resets’ the parameter
values and calculates the new control. One ‘adapts’ the design to the new parameter
values, hence the name adaptive control.

The theory of robust control yields (usually simple) controllers which maintain the
‘stability robustness’ of the overall system and/or the ‘performance robustness’, in spite
of uncertain parameters. One assumes that upper bounds on these uncertainties are known
and given. There are basically two approaches for solving the robust control problem: the
frequency domain approach and the time domain approach. In many cases the most im-
portant stability robustness measure is the maximum bound of the tolerable perturbation
for maintaining stability. Consider the model ẋ Ax Bu for which a feedback law
u Fx has been designed such that the closed-loop system is asymptotically stable. One
will use the same feedback law for the system ẋ A A t x Bu, where the matrix
A t satisfies A t a. Will this perturbed system with the feedback law based on

the nominal model still be asymptotically stable? It is assumed here that the notation A
refers to the spectral norm of the matrix A, i.e., A 2

max AA and that a is a
positive constant. For an asymptotically stable A and a constant A, asymptotic stability
of ẋ A A x is assured if

A a sup
0

i I A
1

Hence, the system with feedback, ẋ A A BF x, is asymptotically stable if A
sup0 i I A BF 1. This uncertainty bound can be maximized by choosing

an appropriate stabilizing feedback matrix F .
Robust control is sometimes also approached from another side. The system is sup-

posed to be given by ẋ Ax Bu Gv, where the term Gv incorporates everything one
is uncertain about or which is unknown. This term consists of a known matrix G and an
unknown control v. This control v is supposed to be chosen by Nature which accidentally
might try to upset our own goal as much as possible. The question is whether we can still
control the system in an appropriate way in spite of the fact that another decision maker
interferes in an unpredictable manner. If so, one also speaks of robust control. If one
assumes that Nature tries to counteract our goals as much as possible, one speaks of a
worst case scenario for finding the control law for u. The corresponding theory belongs
to the field of differential games in which one deals with systems in which more decision
makers interact with opposite goals.

8.9 Exercises

Exercise 8.9.1 We are given a time-invariant, linear and causal system of which we know
that the following input u t yields the given output y t

u t
1 0 t 2
0 otherwise

y t
t 0 t 2
4 t 2 t 4
0 otherwise
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y

1 2 3 4

1

1 2 3 4 5

1

2
input outputu

time time

Figure 8.4 Input-output pair for a time-invariant, linear, causal system.

Determine the output function ỹ t which corresponds to the input ũ t , where

ũ t
1 0 t 1
0 otherwise

~

1 2 3

1

4

u

time

Figure 8.5 Which output corresponds to this input?

Exercise 8.9.2 Argue that a polynomial representation of ẋ Ax Bu y Cx equals
sI A Bu y C .

Exercise 8.9.3 Show that the Smith form of the matrix N s introduced in Example 8.18
equals

1 0
0 s2 1 s2

Exercise 8.9.4 Give a state space description of a discrete-time system with setsU Y
0 1 , such that the output y at time t equals 1 if the input until (and not including) t has
shown an even number of 1’s, and equals 0 otherwise.

Exercise 8.9.5 Assume that 1 and EI 1 in the model in Section 8.3.5, i.e.,

2z
t2

4z
4 0

To see that there exists an infinite number of solutions to this equation, check that for any
real and both e cos 2t and cos cos 2t are independent solutions. Here
initial and boundary conditions are not yet taken into account. Can you find additional
solutions?

Exercise 8.9.6 Show that the controllability Gramian P in (8.29) and the observability
Gramian Q in (8.30) satisfy the Lyapunov equations

AP PA BB

A Q QA C C

respectively, where it is recalled that A is asymptotically stable. Compare also with (4.3).



Chapter 9

MATLAB Exercises

This chapter contains a collection of problems and their solutions that can be used for this
course on system theory. The problems are solved using the software package MATLAB.
For most of them also the MATLAB Control Toolbox must be used.

The goal of these exercises is twofold: first of all they serve as an illustration of the
theory covered by this book, and secondly they show the usefulness of MATLAB for
solving larger control problems. Most of the problems in this book have moderate sizes,
but it will be clear that for larger systems it becomes hard, if not impossible, to do the
necessary calculations by hand.

In the first section the exercises are given. Two of them come from the previous
chapters. In the second section solutions using MATLAB are presented.

9.1 Problems

Exercise 9.1.1 (Moving average) Let u k k 0 1 , be a sequence of measurements.
In order to smoothen these measurements somewhat, a moving average (of three measure-
ments) is defined as

y k
1
3
u k u k 1 u k 2

Generate a random sequence of measurements using rand. Then compute the moving
average of this sequence. Plot the sequence and the moving average. What effect has
raising the number of samples to be averaged?

Exercise 9.1.2 (Thermal capacity of a wall) Consider a barrel in which a liquid is
heated. We are interested in the temperature evolution of the liquid as well as that of
the wall of the barrel. In Figure 9.1 part of the liquid and the wall has been represented
schematically.

For the liquid the following relation holds:

P Q1 C
d
dt

Here P is the power added by electrical heating, Q1 is the heat transfer to the wall, C is
the heat capacity of the liquid and is the temperature of the liquid. For the heat transfer
to the wall it holds that

Q1 1A w

where 1 is the heat transfer coefficient of the liquid to the wall, A is the total wall area
and w is the wall temperature. The thermal conductivity of the wall is supposed to be

186
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area A

0w

Q2

airwall

1 2

P Q

liquid

1

Figure 9.1 Liquid in a barrel.

infinitely large, hence the wall temperature can be regarded as homogeneous. For the wall
it holds that

Q1 Q2 Cw
d w

dt
where Q2 is the heat transfer to the air and Cw represents the heat capacity of the wall.
For the heat transfer to the air we have that

Q2 2A w 0

where 2 is the heat transfer coefficient of the wall to the air and 0 is the air temperature.

a. Determine a two dimensional state space representation, where

x w ; u P 0 ; y x

b. Suppose (in appropriate units) 1 0 1, 2 0 2, A 3,C 0 4 andCw 0 2.
Plot the temperature evolution of both the liquid and the wall, over a time span
of 15 time units, when the air temperature is constant and equal to 20, and x0

0 w 0 0 10 . A continuous heating of level 1 is being supplied to
the system. Choose an appropriate time step.

Note: lsim expects a matrix with a row vector for every time step.

c. Determine, analytically and from the plot, the finally reached equilibrium state xeq.

Exercise 9.1.3 (Four moving vehicles)

Consider four vehicles moving in a single lane as shown in Figure 9.2. Let yi vi mi and
ui be the position, velocity, mass of and the applied force to the i-th vehicle, respectively.
Let k be the viscous friction coefficient, the same for all four vehicles. Then we have, for
i 1 2 3 4 that

vi ẏi
ui kvi miv̇i
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u
m m

u

4 vv

y

y

4

3

34
4 3 m

u

v1

1

u
m

v2

2
12

3y
2y

1

Figure 9.2 Four moving vehicles.

The purpose of this problem is to maintain the distance between adjacent vehicles at a
predetermined value h0 and to maintain the velocity of each vehicle as close as possible
to a desired velocity v0. Define

yi i 1 t yi t yi 1 t h0 i 1 2 3
vi t vi t v0 i 1 2 3 4
ui t ui t kv0 i 1 2 3 4

The term kv0 is the force needed to overcome the friction for the vehicles to maintain their
velocity at v0. Now the problem reduces to finding ui t such that yi i 1 t and vi t are
as close as possible to zero for all t.

a. Derive the state-space description of the system with

x t v1 t y1 2 t v2 t y2 3 t v3 t y3 4 t v4 t

the input consisting of the ui t and as output the state of the system. What do you
notice about h0 and v0?

b. Choose m1 5 m2 4 m3 3 m4 2 and k 8. Plot yi i 1 (i 1 2 3) when the
applied forces are: u1 t 6 u2 t 12 u3 t 20 and u4 t 24 for all t 0.
Take x 0 0 1 0 1 0 1 0 and simulate over 3 time units. What happens?

Exercise 9.1.4 (Pole placement of four-vehicle system) Consider again Exercise 9.1.3.
Use place to determine the feedback matrix F that places the poles of the system with
feedback at 1 2 3 1 i 7 and 2 i 5. Simulate the system with zero external
input using this feedback matrix if x 0 2 1 3 1 4 1 5 .

Exercise 9.1.5 (Observer for four-vehicle system) Continuation of Exercise 9.1.3 and
Exercise 9.1.4.
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a. Is the system observable in the case where the velocities vi are considered to be the
outputs? Is it detectable?

b. And what if the relative positions yi i 1 are the outputs?

c. In the case of b, heuristically construct an observer such that x x̂ 0 05 within two
time units, if no input is applied. Take as initial condition x x̂ 0 2 1 3 1 4 1 5 .

Exercise 9.1.6 (From external description to state space description) Consider the
system (from Exercise 6.8.6) given by the external description

d3y
dt3

4
d2y
dt2

5
dy
dt

2y 2
d2u
dt2

6
du
dt

5u

a. Determine the transfer function.

b. Use residue to obtain the partial-fraction expansion of the transfer function.

c. Apply tf2ss to get a state-space realization.

d. Use ss2tf to check that the transfer function of the system

dx̄
dt

0 1 0
0 0 1
2 5 4

x̄
2
2
3

u y 1 0 0 x̄

is identical to the one found in a. Determine what quantities the state vector x̄ is
composed of.

Exercise 9.1.7 (Rocket) For the rocket in Figure 9.3 the simplified equation of motion is

I
d2

dt2
k

where I is the moment of inertia around the centre of gravity, is the course angle relative
to a fixed coordinate system, is the angle between the engine and the rocket axis, and k
is a constant depending on the thrust power of the engine.

With k I A it follows that
A
s2

In Figure 9.4 the block diagram of the rocket course control is depicted. Here the gain is
K and the transfer function of the controller is

G s 1
1
2s

2s 1
0 1s 1

a. Determine the transfer function H s of r to .
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Figure 9.3 Rocket with adjustable engine.

b. Determine the conditions under which the system is stable, using the Routh criterion.

c. The question for which values of K the system is stable (for fixed A) can also be
answered using the Root Locusmethod. This means that for 0 K the positions
of the poles of H s are plotted, such that the so-called root locus is obtained;
inspection gives the stabilizing values of K. Plot the poles of H s for 0 K 100,
where A 0 05. For which values of K is the system stable?

A
G(s)K

-

+r

rocketcontroller

s2

Figure 9.4 Rocket course controller.

9.2 Solutions

Exercise 9.2.1 (Moving average) The program below computes a vector u of measure-
ments. The moving average y is computed. Both are plotted in Figure 9.5.

N = 50;
u = 10 + rand(N,1); % random measurements
y=zeros(N,1);
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for k = 3:N,
y(k) = (u(k) + u(k-1) + u(k-2))/3;

end; % the moving average
plot(u,’--’);
axis([0 N 9 12]);
hold;
plot(y,’-’);
title(’Moving average’);
xlabel(’k’)
ylabel(’u(k) (- -) and y(k) (---)’)
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Moving average

Figure 9.5 Moving average.

Three effects of raising the number of samples to be averaged are:

- lowering the variance of y,
- raising the autocorrelation of y, and
- raising the time lag of y with respect to u.

Exercise 9.2.2 (Thermal capacity of a wall)

a.

ẋ
1A
C

1A
C

1A
Cw

1A
Cw

2A
Cw

x
1
C 0

0 2A
Cw

u

3
4

3
4

3
2

9
2

x
5
2 0
0 3

u
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y
1 0
0 1

x
0 0
0 0

u

b. a1=0.1; a2=0.2; area=3; Cl=0.4; Cw=0.2;
A=[-a1*area/Cl a1*area/Cl ;

a1*area/Cw -a1*area/Cw-a2*area/Cw];
B=[1/Cl 0 ; 0 a2*area/Cw];
C=eye(2); D=zeros(2,2);
x0=[0 10]; t=[0:0.1:15]’;
u=ones(size(t))*[1 20];
[y,x]=lsim(A,B,C,D,u,t,x0);
plot(t,y(:,1),’--’);
hold;
plot(t,y(:,2),’-’);
xlabel(’time’),
ylabel(’temperature of liquid (- -) and wall (---)’)
title(’Thermal capacity of a wall ’)
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Figure 9.6 Thermal capacity of a wall.

c. The equilibrium can be found by setting d
dt and d w

dt to zero, giving Q2 Q1 P 1
and xeq w with

w o P 2A
1 21 2

3

o P 1A
1 P 2A

1 25

which agrees with the values suggested by the plot in Figure 9.6.

Exercise 9.2.3 (Four moving vehicles)
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a. The resulting state-space model reads: ẋ Ax Bu y Cx Du with

A

k m1 0 0 0 0 0 0
1 0 1 0 0 0 0
0 0 k m2 0 0 0 0
0 0 1 0 1 0 0
0 0 0 0 k m3 0 0
0 0 0 0 1 0 1
0 0 0 0 0 0 k m4

(9.1)

B

1 m1 0 0 0
0 0 0 0
0 1 m2 0 0
0 0 0 0
0 0 1 m3 0
0 0 0 0
0 0 0 1 m4

C I7 D O74 (9.2)

Notice that h0 and v0 have disappeared from the equations.

b. k=8; m1=5; m2=4; m3=3; m4=2;

A=diag([-k/m1 0 -k/m2 0 -k/m3 0 -k/m4])+...
% tridiagonal matrix

diag([1 0 1 0 1 0],-1)+diag([0 -1 0 -1 0 -1],1);
B=[1/m1 0 0 0 ; 0 0 0 0 ; 0 1/m2 0 0 ; 0 0 0 0 ; ...

0 0 1/m3 0 ; 0 0 0 0 ; 0 0 0 1/m4];
C=eye(7);
D=zeros(7,4);
x0=[0 ; 1 ; 0 ; 1 ; 0 ; 1 ; 0];
t=[0:0.1:3]’;
u=ones(size(t))*[6 12 20 24];
[y,x]=lsim(A,B,C,D,u,t,x0);
plot(t,y(:,2:2:6)); % relative positions
title([’Relative positions for u1=6, ’...

’u2=12, u3=20, u4=24’]);
xlabel(’time’), ylabel(’relative positions’)

See plot in Figure 9.7: relative positions get negative: vehicle i 1 passes vehicle i.

Exercise 9.2.4 (Pole placement of four-vehicle system)

k=8; m1=5; m2=4; m3=3; m4=2;
A=diag([-k/m1 0 -k/m2 0 -k/m3 0 -k/m4])+...

% tridiagonal matrix
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Figure 9.7 Four moving vehicles.

diag([1 0 1 0 1 0],-1)+diag([0 -1 0 -1 0 -1],1);
B=[1/m1 0 0 0 ; 0 0 0 0 ; 0 1/m2 0 0 ; 0 0 0 0 ; ...

0 0 1/m3 0 ; 0 0 0 0 ; 0 0 0 1/m4];
C=eye(7);
D=zeros(7,4);
x0=[2 ; 1 ; 3 ; 1 ; 4 ; 1 ; 5];

i=sqrt(-1); % in case i has been used elsewhere
p=[-1 -2 -3 -1+i*sqrt(7) -1-i*sqrt(7)

-2+i*sqrt(5) -2-i*sqrt(5)];
F=place(A,B,p); % poles to be placed

t=0:0.05:6;
u=zeros(length(t),4);
[y,x]=lsim((A-B*F),B,C,D,u,t,x0);

plot(t,y(:,2:2:6)); % relative positions
title(’relative positions of vehicles’);
xlabel(’time’), ylabel(’relative positions’)

pause % Press a key to see speeds

plot(t,y(:,1:2:7)); % relative speeds
title(’relative speeds of vehicles’);
xlabel(’time’), ylabel(’relative speeds’)
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See Figures 9.8 and 9.9 for plots of relative positions and speeds, respectively.
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Figure 9.8 Positions in system with feedback, poles at desired locations.
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Figure 9.9 Speeds in system with feedback, poles at desired locations.
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Exercise 9.2.5 (Observer for four-vehicle system)

a. The system is not observable:

k=8; m1=5; m2=4; m3=3; m4=2;
A=diag([-k/m1 0 -k/m2 0 -k/m3 0 -k/m4])+...

% tridiagonal matrix
diag([1 0 1 0 1 0],-1)+diag([0 -1 0 -1 0 -1],1);

C=eye(7);
Cv=C(1:2:7,:); % speed measurements
rank(obsv(A,Cv))
ans =

4

The system is also not detectable: for every K the matrix A KC has three poles
equal to zero (hence not in the open left half-plane, as required). This can be seen
by computing with MATLAB the decomposition as in (4.17) and (4.18):

[Abar,Bbar,Cbar,T,S]=obsvf(A,zeros(7,1),Cv);
% the B-matrix is irrelevant

Abar,Cbar
Abar =
0 0 0 0 1.0000 -1.0000 0
0 0 0 -1.0000 1.0000 0 0
0 0 0 0 0 -1.0000 1.0000
0 0 0 -4.0000 0 0 0
0 0 0 0 -2.6667 0 0
0 0 0 0 0 -2.0000 0
0 0 0 0 0 0 -1.6000

Cbar =
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0

b. The system is observable:

Cy=C(2:2:6,:); % position measurements
rank(obsv(A,Cy))
ans =

7

c. i=sqrt(-1);
p=[-3 -10+sqrt(7)*i -10-sqrt(7)*i -4 -20+sqrt(5)*i ...

-20-sqrt(5)*i -3];
K=place(A’,Cy’,p)’; % duality
place: ndigits= 17

B=[1/m1 0 0 0 ; 0 0 0 0 ; 0 1/m2 0 0 ; 0 0 0 0 ; ...
0 0 1/m3 0 ; 0 0 0 0 ; 0 0 0 1/m4];
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D=zeros(7,4);
Dy=D(2:2:6,:); % position measurements
e0=[2 ; 1 ; 3 ; 1 ; 4 ; 1 ; 5]; % observation errors
t=0:0.05:2;
u=zeros(length(t),4);
[z,e]=lsim((A-K*Cy),B,Cy,Dy,u,t,e0);% z is not needed

plot(t,e); % observation errors
title([’errors in observed positions and speeds ’...

’of vehicles’]);
xlabel(’time’), ylabel(’observation errors’)

n=zeros(length(t),1);
for k=1:length(t) % for every time step

n(k)=norm(e(k,:)); % calculate 2-norm
end
t(max(find(n>=0.05))) % last time that norm
ans = % of observation error

1.7500 % vector is too large

See Figure 9.10 for the response of the system.
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Figure 9.10 Response of four-vehicle system: relative positions observed.

Exercise 9.2.6 (From external description to state space description)

a. The system is equivalent to s3 4s2 5s 2 Y s 2s2 6s 5 U s , so

num=[0 2 6 5];



198 Mathematical Systems Theory

den=[1 4 5 2];
printsys(num,den);
num/den =

2 sˆ2 + 6 s + 5
---------------------
sˆ3 + 4 sˆ2 + 5 s + 2

b. [R,P,K]=residue(num,den)
R =

1.0000
1.0000
1.0000

P =
-2.0000
-1.0000

-1.0000
K =

[]

Notice that the pole at -1 has multiplicity 2. So the factorization is such that

H s
1

s 2
1

s 1
1

s 1 2 (9.3)

c. Make a state space realization:

[A,B,C,D]=tf2ss(num,den);
printsys(A,B,C,D);
a =

x1 x2 x3
x1 -4.00000 -5.00000 -2.00000
x2 1.00000 0 0
x3 0 1.00000 0

b =
u1

x1 1.00000
x2 0
x3 0

c =
x1 x2 x3

y1 2.00000 6.00000 5.00000
d =

u1
y1 0
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d. Transfer function of the second system:

A2=[0 1 0 ; 0 0 1 ; -2 -5 -4];
B2=[2 ; -2 ; 3];
C2=[1 0 0];
D2=0;
[num2,den2]=ss2tf(A2,B2,C2,D2);
printsys(num2,den2);
num/den =

2 sˆ2 + 6 s + 5
---------------------
sˆ3 + 4 sˆ2 + 5 s + 2

This is the same as before. So it is another state space realization of the original
system.

From the output equation it follows that x̄1 y. The first two state equations show
that x̄2

˙̄x1 2u ẏ 2u and x̄3
˙̄x2 2u ÿ 2u̇ 2u respectively. To show

that the third state equation is correct we differentiate the last relation and use the
differential equation:

˙̄x3
d3y
dt3

2ü 2u̇ (9.4)

2ü 6u̇ 5u 4ÿ 5ẏ 2y 2ü 2u̇ (9.5)

2y 5 ẏ 2u 4 ÿ 2u̇ 2u 3u (9.6)

2x̄1 5x̄2 4x̄3 3u (9.7)

which accounts for the third state equation.

Exercise 9.2.7 (Rocket)

a. Denote the Laplace transforms of and r with s and R s respectively. The block
diagram (replacing all time signals by their Laplace transforms) leads to the follow-
ing relation between s and R s :

s KG s
A
s2 R s s so (9.8)

s
KAG s s2

1 KAG s s2R s (9.9)

The transfer function of the controlled system, H s s
R s (denoting KA by ) can

be written as

H s
20 s 1

2
2

s4 10s3 20 s2 20 s 5
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b. Routh’s criterion applies to the denominator a4s
4 a3s

3 a2s
2 a1s a0 of H s ,

with a4 1, a3 10, a2 20 , a1 20 and a0 5 . Referring to the notation of
Section 4.1.2 (p. 52) the remaining non-zero coefficients are: b1 18 , b2 5 ,
c1 20 25

9 and d1 b2. To ensure asymptotic stability of the controlled system
the values of a4, a3, b1, c1 and d1 must have the same (positive) sign. This results
in two conditions on : 18 0 and 20 25

9 0, which amounts to 5
36 or

K 5
36A .

c. See Figure 9.11 for the plot, resulting from the following commands:

% reference values and some further illustrative values
K=[0,2.7,10,20,28.2,31.4,40,60,100,...

0.4,1,1.8, 4:2:26, 29,30,30.6,31.1,...
31.3,31.5,31.8,32.5,35,45,50, 70:10:90]’;

N=size(K,1);
A=0.05;
den=[ones(N,1)*[1,10],A*K*[20,20,5]];

% denomin. polynomials

R=zeros(size(den,2)-1,N);
for k=1:N

R(:,k)=roots(den(k,:)); % poles
end % k %

plot(R(:,1: 9),’y+’), hold % reference values of K
plot(R(:,10:N),’w.’) % all other values of K
plot([-max(imag(R))*i,max(imag(R))*i],’r-’)

% imag. axis
title(’root locus for rocket’)
xlabel(’real part’), ylabel(’imag part’)

In the plot the imaginary axis is crossed for K somewhat greater than 2.7, in agree-
ment with the value from b, 5

36A
25
9 , that must be surpassed for stability.
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Figure 9.11 Location of closed-loop poles for varying gain K.
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autopilot, 2

backward delay operator, 151
balanced realization, 183
bandwidth, 136
bang-bang control, 2
basis transformation, 41
behavior, 167
behavioral modelling, 167
BIBO stability, 56
bioreactor, 19
Bode diagram, 135

capacitor, 10
Cauchy’s theorem, 138
causality, 41, 163
Cayley-Hamilton, 58
characteristic polynomial, 33, 146
closed-loop control, 84
coil, 10
communication time, 176
commuting matrices, 46
compensator, 85, 98
computer science, 2

conservation, 8
continuous-time system, 163
control, 2, 25
control law, 85
controllability, 57, 154
controllability form, 61
controllability Gramian, 183
controllability matrix, 58
controllable subspace, 58
controller, 98, 136
controller form, 62, 87, 121
convolution, 110
convolution theorem, 110
cost function, 177
covariance, 182
cybernetics, 2

damper, 16
decibel, 135
decoupling, 123, 126
degree, 118
delay operator, 151, 170
delta function, 39
descriptor system, 172
detectability, 94
detectable, 157
determinant, 33
diagonal realization, 123
diagonalizability, 32
difference system, 144
differential algebraic system, 172
differential equation, 13
differential game, 184
differentiator, 122
diffusion, 21
direct sum, 33
discrete event system, 175
discrete-time system, 144, 163
distributed parameter system, 174
disturbance rejection, 102
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dyad, 37
dynamic compensator, 97

eigenvalue, 32
eigenvector, 35
electromagnetism, 10
energy function, 54
equilibrium pair, 26
equilibrium point, 49
equivalence of systems, 42, 168
error equation, 94
Euler-Lagrange, 13
external description, 39, 163

feedback, 3, 84
feedback connection, 112
feedback control, 7, 84
filter, 135
filter theory, 2, 4, 181
flexible beam, 174
forward delay operator, 151
Fourier transform, 134
free response, 37
frequency domain, 109
frequency method, 133
frequency response, 133

gain, 134
game of goose, 164
gaussian process, 182
generalized eigenvector, 35
geometric multiplicity, 33
Gramian, 183

Hankel matrix, 76
Hankel singular value, 183
harmonic oscillation, 133
Hautus test, 68, 74
heated bar, 15
Heaviside function, 39

image (notation: im), 33
imaginary part (notation: Im), 37
impulse response, 38, 148
input, 1, 25
input space, 163
input-output representation, 109
input-output stability, 56
input-state-output description, 25
input/output function, 163

internal description, 165
interval polynomial, 55
interval stability, 55
inverted pendulum, 12
isomorphic systems, 42

Jordan form, 33
Jury table, 146
Jury’s criterion, 146

Kalman decomposition, 81
Kalman filter, 182
kernel (notation: ker), 33
Kharitonov polynomial, 55
Kirchhoff’s laws, 11

Lagrangian, 13
Laplace domain, 109
Laplace transform, 109
lateral velocity, 106
least squares estimate, 181
Lie bracket, 171
linear system, 163, 165
linear-quadratic control problem, 178
linearization, 26
logarithmic diagram, 135
logistic equation, 17
Lorentz equation, 10
low frequency filter, 136
lumped system, 174
Lyapunov equation, 55
Lyapunov stability, 54

management science, 2
Markov parameter, 76
mathematical systems theory, 2
matrix exponential, 32
Maxwell equation, 10
McMillan degree, 132
measurement, 25
measurement function, 165
mechanics, 9
memoryless system, 164
minimal realization, 42, 129
mode, 37
model reduction, 182
moment of inertia, 9
monic polynomial, 116
moving average, 41, 115
multiple-input multiple-output, 127
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multiplicity of eigenvalue, 33

national economy, 21
NAVSAT, 4
network, 176
Newton’s law, 9
non-causal, 41
non-causal system, 137
non-minimum phase, 117
non-observable subspace, 74
nonlinear system, 171
nonsingular polynomial matrix, 169
null-controllability, 58, 154
Nyquist criterion, 138
Nyquist diagram, 135

observability, 69, 154
observability Gramian, 183
observability matrix, 70
observer, 93, 181
open-loop control, 84
optimal control, 2, 3
optimal control theory, 177
ordinary differential equation, 13
output, 1, 25
output feedback, 85
output function, 165
output space, 163

parallel connection, 112
parameter estimation, 180
partial differential equation, 15
partial fraction decomposition, 116
partial state, 168
phase, 134
phase-shift, 134
phenomenology, 8
PID controller, 3
plant, 136
polar plot, 135
pole, 111, 114, 116
pole-assignment theorem, 86
pollution, 20
polynomial matrix, 167
polynomial representation, 167
population dynamics, 17
positive-definite matrix, 54
predator-prey, 18
proper rational function, 114

rank condition, 60, 71
rational function, 113
reachability, 58, 154
reachable subspace, 63
real part (notation: Re), 37
realization, 42
realization theory, 76
resistor, 10
resolvente, 111
Riccati differential equation, 179
robust control, 184
roll angle, 106
Routh table, 53
Routh’s criterion, 52

sampling, 158
sampling interval, 158
sampling period, 144
satellite model, 13
semi-group property, 165
sensitivity, 137
separation principle, 97, 99
series connection, 112
Shannon’s sampling theorem, 158
shift operator, 164
single-input single-output, 127
singular value decomposition, 170
Smith form, 170
spectral norm, 184
spring, 16
stability, 49, 114, 145
stabilizability, 84, 86
stabilizable, 157
stable, 49
stable subspace, 51
standard controllable realization, 121
standard observable realization, 123
state, 3, 25
state evolution, 165
state feedback, 85
state space, 165
static system, 164
stationary response, 133, 151
stationary system, 164
step response, 38
stochastic process, 181
stochastic system, 172
strictly proper rational function, 113
system, 1
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system function, 163

thermodynamics, 9
time axis, 163
time constant, 117
time domain, 109
time-invariant, 25
time-invariant system, 164, 165
time-variant, 25
tracking, 137
transfer function, 116
transfer matrix, 110, 116, 150, 169
transient behavior, 133, 151
transition matrix, 145
transportation time, 176
transpose, 3

uncertain polynomial, 55
uniform BIBO stability, 56
unimodular polynomial matrix, 169
unstable equilibrium, 49
unstable subspace, 51

Van der Monde, 128
Volterra-Lotka, 18

white noises, 181
worst case scenario, 184

z-transform, 148
zero, 116


