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Abstract
Interferer selection for binaural cue preservation in joint binaural linearly constrained minimum variance

beamforming

by

Costas A. Kokke
Master of Science in Electrical Engineering

Delft University of Technology, 2018
Dr.ir. Richard C. Hendriks, Supervisor

Spatial cues allow a listener to determine the direction sound is coming from. In addition, recognising spa-
tially separated sound sources facilitate the listener to focus on specific sound sources. Because of this,
preservation of spatial cues in multi-microphone hearing assistive devices is important to the listening expe-
rience and safety of the user. A number of linearly-constrained-minimum-variance-based methods exist for
this purpose. Most of these are limited in the number of interfering sources for which they can preserve the
spatial cues. In this thesis, a method of selecting the most important interfering point sources using convex
optimisation is proposed. The method is presented based on two different convex relaxations, which are
compared, using simulation experiments, to existing, exhaustive search and randomised methods in terms
of noise suppression and localisation errors. Both methods are shown to improve the performance of the
joint binaural linearly constrained minimum variance beamformer, an existing method for simultaneous noise
reduction and spatial cue preservation, by giving it more degrees of freedom for noise reduction and allowing
it to handle a larger number of (virtual) sources present in the scene.
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Preface
This thesis discusses twomethods that solve the problem: Which interfering point sources should be selected
for spatial cues preservation when using the joint binaural linearly constrained minimum variance (JBLCMV)
beamformer? The JBLCMV has a limit on the number of sources for which it can do spatial cue preservation.
Being able to select the optimal interfering sources for spatial cue preservation can greatly improve the
listening experience for hearing assistive device users, as it allows the user to hear important sounds from
their correct spatial origins. The proposed methods allow the JBLCMV to only constrain sources that are
important to constrain. If the amount of sources that are important would exhaust the degrees of freedom of
the filter, it allows the JBLCMV to constrain the sources that are most important, while still being able to do
noise reduction. This allows the JBLCMV to be used well with pre-determined acoustic transfer functions,
through the proposed framework. The performance of the proposed methods is evaluated by noise reducing
capabilities and localisation errors, through simulation experiments.
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1 Introduction
The use of hearing assistive devices (HADs) has significantly increased in our ageing society and the need
for them will continue to increase, partly due to increased recreational exposure to loud sound [1]. The
main goal of these devices is to compensate for the user’s hearing loss and to improve speech intelligibility.
Hearing loss compensation has some negative side effects though, as disturbing sounds that were inaudible
before, suddenly become audible to the user. People with hearing loss also report difficulty with spatial
source separation [2], the ability to separate their source of interest from environmental sounds and other
interferers. This is due to the decreased temporal and spatial resolution of their hearing, and the compressive
nature of the compensation done in existing HADs often amplifies this problem.

When a person suffers from hearing loss, it is not only the threshold of hearing that goes up, but the
threshold of feeling also goes down. This means that the range of sound intensities a HAD can work with
reduces as the hearing loss of the user progresses, causing the compression of sound, making it harder
for the user to distinguish sound by intensity. This is one important aspect in spatial source separation.
Therefore, modern HADs come with noise reduction algorithms, to reduce the loudness of environmental
sounds.

Modern HADs typically come in pairs, called bilateral or binaural HADs, each equipped with multiple
microphones. These microphones can be used to perform beamforming. Beamforming combines multiple
microphone recordings, after properly changing their magnitudes and phases, resulting in an estimate of the
target source. This is typically referred to as a binaural estimation of the target, meaning two signals are
generated. One for the left and one for the right ear.

An important aspect of binaural HADs is their ability to preserve the spatial cues of the sound field.
This helps make the output of the HADs appear more natural for the user. One reason to do this is the
importance for the HAD user to localise sound in day-to-day situations, for example in traffic. Another reason
is the ability of the human auditory system to distinguish spatially separated sources and to focus on sources
by their location, perceptually attenuating other sources. For example, having a conversation with someone
in front of you while being in a loud environment is possible because of that ability.

As mentioned before, beamforming is performed by changing the magnitudes and phases of the differ-
ent microphone recordings before combining them. However, distorting the original magnitude and phase
can potentially distort the spatial cues, as these are partly determined by the magnitude and phase relation-
ships of the signals presented to the two ears. Practically, this could for example mean that the HAD user
cannot localise traffic sounds and it may sound as if they heard a truck or car was coming towards them
from a different direction. Such spatial cue distortions may have considerable consequences and should be
prevented.

To this end, binaural beamformers are developed for simultaneous noise reduction and spatial cue preser-
vation. In this thesis, only distortionless binaural beamformers are considered. Distortionless methods are
those where the target is always undistorted. This is beneficial for the speech intelligibility. Most binaural
beamforming techniques are limited in the amount of spatial cues they can retain, as the degrees of free-
dom for noise reduction and spatial cue preservation are limited and depend on the number of microphones.
In general, noise reduction and spatial cue preservation come with a trade off of the available degrees of
freedom. Spending all degrees of freedom on interferer spatial cue preservation implies no controlled noise
reduction and vice versa. An important aspect of binaural noise reduction is therefore to be efficient in the
use of constraints in order to preserve spatial cues.

Existing binaural noise reduction methods spend these degrees of freedom in different manners. The
binaural minimum variance distortionless response (BMVDR) beamformer, for example, is a beamformer that
spends all degrees of freedom on noise reduction, and thus none on spatial cue preservation. This causes
all sound to appear to come from the direction of the target signal [3]. The BMVDR can be generalised to
the general binaural linearly constrained minimum variance (GBLCMV) beamformer, which can have at most
2M−1 constraints and do controlled noise reduction, whereM is the amount of microphones on both HADs.
Typically, two constraints are used to binaurally constrain the target source, leaving 2M −3 constraints to be
used for other purposes. The joint binaural linearly constrained minimum variance (JBLCMV) beamformer
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2 1. Introduction

is a distortionless binaural beamformer [3, 4] that fits in the GBLCMV framework. It uses one constraint to
binaurally constrain an interfering point source, meaning is can at most binaurally constrain 2M−3 interfering
point sources, while still being able to do noise suppression.

These methods use constraints for each interferer in all time-frequency tiles, even in the tiles where an
interferer might be inaudible, due to suppression by the beamformer, or due to masking by other sources.
Since the amount of microphones on current hardware is low, typically M = 4, degrees of freedom are
scarce. This not only means that degrees of freedom are quickly exhausted, but it also means that degrees
of freedom are spent on inperceptual, and thus unnecessary, spatial cue constraints in some time-frequency
tiles. To be able to take into account even more interfering sources, while still being able to do controlled
noise reduction, a more efficient way to constrain the spatial cues of interfering sources is required. This
thesis project aims to find such a method by automatic optimal interferer subset selection for JBLCMV, by
choosing the optimal subset of known interferers for spatial cue preservation. The goals will be detailed
fully in Section 1.3. Previous work on binaural beamforming that is relevant to this thesis will be discussed in
Section 1.2. In Chapter 2 the problemwill be formally introduced and the chapter will continue with methods of
solving it. The validity of the methods will be experimentally shown in Chapter 3 with the proposed methods
being compared to the methods introduced in Section 1.2. A discussion of the proposed methods and
suggested future work will be discussed in Chapter 4. However, first Section 1.1 will lay out the signal model
that will be used throughout this thesis.

1.1. Signal Model
Consider the binaural hearing aid setting, with two collaborating hearing aids that have a combined total
of M microphones installed. In this thesis, the signals are assumed to be processed on a frame-by-frame
basis in the frequency domain. Since processing takes place independently per frame, time-frame indices
are omitted for convenience.

Assuming an additive distortion model, a Fourier coefficient, yj [k], at the jth microphone is composed
as follows,

yj [k] = aj [k]s[k] +

r∑
i=1

bij [k]ui[k] + vj [k] , (1.1)

where aj [k] and bij [k] are the acoustic transfer functions (ATFs) of the desired source and ith interferer to
the jth microphone respectively, s[k] and ui[k] are the desired source and ith interferer respectively, r is the
number of interferers, and vj [k] is additive uncorrelated noise. In the remainder of this work, the frequency
variable k will be omitted for simplicity, since all processing will be done per frequency bin, assuming fre-
quency bins are mutually independent. All microphone signals can be combined using the following vector
notation:

y =
[
y1 y2 · · · yM

]T ∈ CM (1.2a)

= as+

r∑
i=1

biui + v (1.2b)

= x + Bu + v , (1.2c)

where x = as, B =
[
b1 b2 . . . br

]
∈ CM×r and u =

[
u1 u2 . . . ur

]T .
Assuming all interferers to be mutually uncorrelated, the cross power spectral density (CPSD) matrix P

of all disturbances is defined as

P =

r∑
i=1

Pni + Pv ∈ CM×M , (1.3)

where Pni
and Pv are the CPSD matrices of ni = biui and v respectively. Similarly, the noisy recording

CPSD matrix Py is composed as
Py = Px + P , (1.4)

where Px is the CPSD matrix of the target, x.
Additionally, on each hearing aid we define one reference microphone. These microphones are used as

a reference with respect to the preservation of the spatial cues of interfering point sources and the complete
preservation of the target signal on both the left and right HAD.
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1.2. Previous Work
Conventional (monaural) beamforming methods in hearing aids treat each ear separately, leading to the
potential loss of spatial cues [5]. Binaural beamformers are a class of beamformers that aim to (partially)
preserve the spatial cues of at least the target signal. Spatial cues are discussed in further detail in Sec-
tion 1.2.1. Two existing binaural beamforming methods will be discussed in Sections 1.2.2 and 1.2.4. The
general framework, the general binaural linearly constrained minimum variance (GBLCMV), in which they fit
is discussed in Section 1.2.3.

1.2.1. Spatial Cues
To retain spatial cues of point sources, the interaural level difference (ILD) and interaural time difference (ITD)
should be preserved. When working in the frequency domain, these correspond to the ILD and interaural
phase difference (IPD). These can be obtained by defining the input and output interaural transfer func-
tions (ITFs) as

ITFin
x =

aL
aR

, ITFout
x =

wH
L a

wH
R a

, (1.5)

respectively, where wL and wR contain the beamformer coefficients for the left and right ear respectively,
and aL and aR are the ATFs of the target source to the left and right reference microphone respectively. The
ILD and IPD are then simply the magnitude squared and phase of the ITF respectively:

ILDin
x =

∣∣∣ITFin
x

∣∣∣2 , ILDout
x =

∣∣ITFout
x

∣∣2 , (1.6)

IPDin
x = ∠ITFin

x , IPDout
x = ∠ITFout

x . (1.7)

Note that if
ITFin

x = ITFout
x , (1.8)

then
ILDin

x = ILDout
x ∧ IPDin

x = IPDout
x . (1.9)

These relations can be used to retain spatial cues for point source interferers. Since this project is constrained
to distortionless methods (the target may not be distorted), the transfer functions of the target should be
preserved fully, instead of just the ITFs.

To quantify spatial cue errors, the input and output ILD difference and the input and output IPD difference
can be used. These measures are defined as

E ILDi =
∣∣∣ILDout

i − ILDin
i

∣∣∣ , (1.10)

E IPDi =

∣∣∣IPDout
i − IPDin

i

∣∣∣
π

, (1.11)

where E ILDi and E IPDi are the ILD and IPD errors for the ith interferer, respectively. ILDin
i is the input ILD of

the ithe interferer. ILDout
i , IPDin

i and IPDout
i are similarly defined. These are always determined using the true

ATFs or true relative acoustic transfer functions (RTFs) of the interferer.

1.2.2. Minimum Variance Distortionless Response
A popular monaural beamformer is the minimum variance distortionless response (MVDR) beamformer,
which also has a binaural variant [3]. It can also be seen as a specific case of the LCMV and binaural LCMV
beamformers, as will be shown in Section 1.2.3. The monaural MVDR is determined by minimising the power
in all directions, while perfectly retaining the signal in the target direction. That is,

minimise wHPw

subject to wHa = aref ,
(1.12)

where aref is the ATF of the target source to the reference microphone, of which there is only one in a
monaural beamformer.
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This can be extended to a binaural beamformer by constructing two beamformers using the same micro-
phones,

minimise wH
L PwL + wH

RPwR

subject to wH
L a = aL

wH
R a = aR ,

(1.13)

where wL and wR are the beamformer for the left and right ear respectively, and aL and aR are the ATFs of
the desired source to the left and right reference microphone respectively. The binaural MVDR method only
retains the spatial cues of the target signal. As a result, all sound seems to come from the direction of the
target, distorting the ITFs of the interferers [3].

If the two beamformers of Equation (1.13) are combined into one concatenated vector, by letting wH =[
wH
L ,w

H
R

]
, the following equivalent expression is obtained:

minimise wHP̃w

subject to wHC =
[
aL aR

]
with P̃ =

[
P 0
0 P

]
C =

[
a 0
0 a

]
,

(1.14)

which is a general (B)LCMV expression, as will be discussed in Section 1.2.3.

1.2.3. General Binaural Linearly Constrained Minimum Variance Framework
The LCMV formulation generalises the MVDR beamformer. With MVDR beamforming, only the gain of the
target is constrained. The LCMV beamformer generalises this to any number of linear constraints, up to a
number determined by the number of receivers, resulting in the following expression [6],

minimise wHPw

subject to wHC = fH ,
(1.15)

where C is the constraint matrix and f is the response vector, which contains the desired responses for
the beamformer applied to each of the constraint vectors in C. This reduces to the MVDR if C = a and
fH = aref .

Depending on the number of constraints and the number of microphones available, a number of degrees
of freedom are available for noise reduction. If the number of constraints is too large, no solution is possible.
In general, givenM microphones and L ≤M constraints, there is an analytical solution solution andM −L
degrees of freedom are left for noise reduction. WhenM = L, there are no degrees of freedom left for noise
reduction, making the solution of the problem independent of the data. The LCMV solutions can be neatly
summarised by

w =


P−1C

(
CHP−1C

)−1
f , if L < M

C−Hf , if L = M

no solution , if L > M .

(1.16)

Similar to the binaural MVDR in Equation (1.13), concatenating the left and right beamformers as wH =[
wH
L ,w

H
R

]
, the binaural LCMV beamformer can be formulated as

minimise wHP̃w

subject to wHC = fH .
(1.17)

With the BMVDR C =

[
a 0
0 a

]
and fH =

[
aL aR

]
. A maximum of 2M − 1 constraints can be taken into

account if at least one degree of freedom for noise reduction is desired. The solution to the problem is still
given by Equation (1.16).
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1.2.4. The Joint BLCMV Beamformer
The binaural cues of a point source are given by its ILD and IPD, which are expressed by the ratio of mag-
nitudes and phase differences of the received signals in the Fourier domain respectively. As discussed in
Section 1.2.1, these can be preserved by preserving the ITFs. Preservation of both the ILD and IPD of r
interferers can be expressed as

wH
L bi

wH
Rbi

=
biL
biR

, for i = 1, . . . , r . (1.18)

Equation (1.18) must hold for all r interferers to retain the binaural cues. This equation can be equivalently
expressed in a linear form, which will be useful when setting up linear constraints. That is,

wH
L bibiR −wH

RbibiL = 0 , for i = 1, . . . , r . (1.19)

The joint BLCMV is a recently proposedmethod for binaural beamforming that aims to binaurally constrain
as many interfering point sources as possible, while retaining at least some noise reducing capabilities [4].
The problem formulation of the JBLCMV, using Equation (1.19), is then given by:

minimise wHP̃w

subject to wHC = fH

with C =

[
a 0 b1b1R · · · brbrR
0 a −b1b1L · · · −brbrL

]
fH =

[
aL aR 0 · · · 0

]
.

(1.20)

The first two columns of the constraint matrix C shown in Equation (1.20) ensure that the target is not
distorted. Each other column of C is used for binaural cue preservation of one interferer, as it satisfies
Equation (1.19), which is equivalent to preserving the ITFs.

For convenience, the constraint matrix C and constraint vector f can be separated into components
related to target and interferer preservation by letting

C =
[
Λa Λb

]
∈ C2M×(2+r) , (1.21)

Λa =

[
a 0
0 a

]
∈ C2M×2 , (1.22)

Λb =

[
b1b1R · · · brbrR
−b1b1L · · · −brbrL

]
∈ C2M×r , (1.23)

fH =
[
fHa fHb

]
∈ C2+r , (1.24)

fHa =
[
aL aR

]
∈ C2 , (1.25)

fb = 0r . (1.26)

The JBLCMV uses one constraint per interferer. The maximum number of interferers that can be taken
into account, while leaving at least one degree of freedom for noise reduction, is rmax = 2M − 3. The
minus three comes from the two constraints to preserve the target on the left and right ears and the one
degree of freedom that needs to be available at minimum. More details on the degrees of freedom is given
in Section 1.2.3.

Since only the ratio of the transfer functions is considered, it is beneficial to consider relative transfer
functions (RTFs). One reason it is beneficial is that the common delay (leading zeros that a set of impulse
responses share) is removed when taking the ratio of ATFs. As a result, only the relative delay is considered.
This means that the length of the DFT does not need to be as long as the entire impulse response to capture
the desired amount of the tail end of the impulse responses. However, in practice RTF or ATF estimation of
multiple interferers is rather challenging. Instead of estimating these transfer functions, one could develop
algorithms based on pre-determined transfer functions, overcoming the need to estimate RTFs. Both of these
subjects will be discussed in further detail in Section 1.2.5.
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1.2.5. Pre-Determined Relative Acoustic Transfer Functions
In Section 1.2.4 it was specified that Equation (1.18) should hold for binaural cues to be retained. Equa-
tion (1.18) can be reformulated as

wH
L biL = wH

RbiR , for i = 1, . . . , r , (1.27)

biL =
bi
biL

, (1.28)

where biL and biR are the left and right RTFs, respectively. Using RTFs instead of ATFs in JBLCMV beam-

forming turns Λb from Equation (1.23) into
[

b1L · · · brL
−b1R · · · −brR

]
. The expression for the ITF preservation

of the ithe interfering point source from Equation (1.8) becomes

wH
L biL

wRbiR
= 1 . (1.29)

Using RTFs, the spatial cue error measures given by Equations (1.10) and (1.11) requires a redefinition of
Equation (1.5) as

ITFin
i =

biL
biR

, ITFout
x =

wH
L biR

wH
RbiR

, (1.30)

where biL
biR

is simply the first element from biR. Since the delay from the source to the reference microphone
is no longer present when using RTFs, the impulse response becomes shorter. This is beneficial when using
the short-time Fourier transform, since windows are typically shorter than the ATFs.

In practice, these RTFs are unknown and have to be estimated. This is a challenging task, even under
stationary and time-invariant conditions, but in particular when in dynamic scenarios. Therefore, instead of
using the actual RTFs, pre-determined RTFs (PRTFs) could be used [7]. In [7] the effectiveness of PRTFs
has been investigated. This was done by modelling m virtual interferers equally spaced on a circle around
the hearing aid user with sufficient radius to ensure the far field assumption can be made. The PRTFs were
determined using a head-related impulse response database [8], which are independent of the room, but
dependent of a head on which the hearing aids would be mounted. If the far field assumption is made,
the PRTFs become approximately distance invariant. This means PRTFs only depend on the angle of the
sources with respect to the microphones, when the far field assumption can be made.

When an actual interferer is in the direction of a PRTF that is used, the binaural cues should be perfectly
preserved. When it is not in the direction of any of the PRTFs, an error is introduced. The error can be
quantified as described in Section 1.2.1, when the filters wL and wR are based on the use of PRTFs. It has
been shown in [7] that this error will grow, on average, when the number of PRTFs decreases. It was also
shown, as expected, that the SNR lowers significantly when applying more constraints to the LCMV. This
can be alleviated by using methods that allow for more interferers to be modelled [9].

1.3. Research Question
Binaural cue preservation for two collaborating hearing aids is challenging. Given the RTFs or PRTFs, binau-
ral LCMV beamformers seem to be promising to preserve the spatial cues of a limited number of interferers,
while preserving the target. The JBLCMV beamformer, in particular, can perform improved noise reduction
compared to other binaural LCMV methods and can preserve the binaural cues of 2M − 3 interferers. As a
function of the number of interferers for which the binaural cues are preserved, the noise reduction capability
goes down. Using the JBLCMV, an optimum in the trade-off between binaural cue preservation and noise
reduction needs to be found.

Since JBLCMV does not constrain the attenuation of interferers, an interferer might actually become
inaudible after beamforming. In this case, preserving its binaural cues might be useless and removing
the constraint associated with that interferer would allow for more noise reduction. Especially when using
PRTFs, a number of PRTFs might not even be associated with an interferer and as such should not be
constrained binaurally. When an interferer is deemed inaudible, removing its associated constraints from the
problem might improve the performance of the beamformer. It is however not guaranteed that the interferer
stays inaudible after the constraints have changed, because of the unpredictable behaviour of the LCMV
beampattern when constraints change. Here lies the challenge of choosing the best set of (P)RTFs to
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binaurally constrain, such that the maximum possible noise reduction and limited amount of possible audible
spatial cue distortions are simultaneously achieved.

The above issues can be condensed in the following research question: “When performing joint binau-
ral linearly constrained minimum variance beamforming, can performance in terms of noise reduction and
spatial cue preservation be improved by lifting constraints on interferers, if they are deemed inaudible after
processing?” This thesis will focus on methods to answer this question mainly through the application of
convex optimisation. It should be noted that the audibility of interferers will be approximated with simple
quantifiable measures that suffice for the proof-of-concept of the proposed methods.





2Methods
In this chapter, the research question from Section 1.3 is used to formulate a suitable optimisation problem.
This optimisation problem minimises the output noise power, based on the JBLCMV, with a subset of the
interferer constraints as the minimisation variable. The problem, including the additional audibility constraint,
will be formulated and discussed in Section 2.1.

Then, the problem will be approximated by two convex optimisation problems, since the problem for-
mulated in Section 2.1 is non-convex. In Section 2.2 the relaxations to obtain these convex problems will
be discussed. Since the problem introduced in Section 2.1 is also an integer program, a method to solve
them as a convex optimisation is given in Section 2.2.4 as well. The parameters used in these methods are
discussed in Sections 2.3.1 and 2.3.2 and the full proposed methods are summarised in Section 2.4.

2.1. Formulating the Optimisation Problem
Taking the JBLCMV as a basis, we can formulate an optimisation problem that finds the optimal set of in-
terferers to select, according to the research question in Section 1.3. As before, w =

[
wH
L wH

R

]H and

P̃ =

[
P 0
0 P

]
. In addition, a binary selection vector p is introduced that selects the set of interferers that

should be binaurally constrained. An interferer should be selected when it is considered audible after filtering.
As such, degrees of freedom are only used to preserve the spatial cues of audible sources.

In this thesis, audibility of interferers will be determined by setting a threshold on their summed power
after filtering. For example, this threshold can be a fixed number, a different number for different frequency
bins or a fraction of another power such as the target signal power. Section 2.3.1 will propose a choice for
the threshold. Eventually, the audibility could be based on models of perception that reflect the audibility
of the processed interferer within the total processed output. Until the proposed threshold is introduced in
Section 2.3.1, the threshold will be considered a fixed number, independent of any minimisation variables.

Consider that r interferers are present in the acoustic scene and that the selection vector p ∈ {0, 1}r is
used to select the optimal set of interferers that are to be binaurally constrained. This needs to be done such
that the output noise power is minimised and that, after processing, the summed power of the interferers that
were not selected by p is below the power threshold c. Let U = diag(u� |bL|) ∈ Rr×r be the diagonal
matrix with all individual interferer magnitudes, � denotes the Hadamard product (also called the entrywise
product), B̃ =

[
BH
L BH

L

]H ∈ C2M×r, with BL the matrix with the r left RTFs of the r interferers as its
columns, and wp ∈ C2M the JBLCMV solution for the interferer set given by p. The resulting interferer
selection for the JBLCMV optimisation problem is given by

minimise
p∈{0,1}r

wH
p P̃wp (2.1a)

subject to
∥∥∥(I− diag(p))UB̃Hwp

∥∥∥2
2
≤ c (2.1b)

‖p‖0 ≤ 2M − 3 . (2.1c)

B̃ can contain either the true ATFs, the left RTFs or the right RTFs. When RTFs are used, the diag-
onal elements ui in U are appropriately scaled by either |bL| =

[
|b1L| |b2L| . . . |brL|

]
or |bR| =[

|b1R| |b2R| . . . |brR|
]
. In this report, the left RTFs are used when considering B̃ and U. The cost

function, Equation (2.1a), is similar to the binaural LCMV methods discussed in Section 1.2, since minimis-
ing output noise power is still the objective. However, the filter now depends on the selection vector as will
be shown in more detail in Section 2.1.1.

As specified by the research question, the interferers that are not binaurally constrained should not be
audible. This is guaranteed by Equation (2.1b). The matrix I − diag(p) selects the interferers that are not
binaurally constrained. The filterwp is applied to these interferers and their power is summed. Their summed
power should be below the power threshold c.

9
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2.1.1. Adapting the LCMV Solution
The filter wp is defined to be the JBLCMV beamformer for the interferer set given by p. The JBLCMV
solution, given in Equation (1.16), is adapted for the selection vector p. To do so, the constraint matrix
C and response vector f need to be redefined. We define a selection matrix Φ ∈ {0, 1}(r+2)×(‖p‖0+2)

that removes the columns and elements from the matrix Λ (which contains all interferer constraints) and f ,
respectively, that correspond to zero values in p. Therefore, the following definitions can be made,

Λ =
[
Λa Λb

]
∈ C2M×(r+2) , (2.2)

C = ΛΦ ∈ C2M×(‖p‖0+2) , (2.3)

f = ΦT
[
aL aR 0Tr

]H ∈ C‖p‖0+2 . (2.4)

The definition of Φ is detailed in Section 2.1.2. The expression for wp is obtained by combining the expres-
sions for C and f from Equations (2.3) and (2.4) respectively and the LCMV solution from Equation (1.16):

wp = P̃−1ΛΦ
(
ΦTΛHP̃−1ΛΦ

)−1
ΦT f . (2.5)

Equation (2.5) is then substituted into the optimisation problem in Equation (2.1) to obtain

minimise
p∈{0,1}r

fHΦ
(
ΦTΛHP̃−1ΛΦ

)−1
ΦT f (2.6a)

subject to
∥∥∥∥(I− diag(p))UB̃HP̃−1ΛΦ

(
ΦTΛHP̃−1ΛΦ

)−1
ΦT f

∥∥∥∥2
2

≤ c (2.6b)

‖p‖0 ≤ 2M − 3 (2.6c)[
I2 0
0 Φp

]
= Φ (2.6d)

ΦpΦT
p = diag(p) , ΦT

pΦp = I‖p‖0 . (2.6e)

2.1.2. Selection Matrix
The selection matrix removes the columns from Λ and elements from f , where the corresponding value in
p equals zero. More specifically, only columns and elements from Λb and fb are removed. Therefore, a
selection matrix Φp is defined that has the properties ΦpΦT

p = diag(p) and ΦT
pΦp = I|p|. The matrix Φp

is then equal to diag(p) with its zero-columns removed [10].
Note that the matrix Λ in Equation (2.2) contains both Λa and Λb. Since the two columns of Λa should

always remain, the selection matrix Φ is defined as Φ = diag(I2,Φp). As illustration, consider the following
example, where r = 3:

p =

1
0
1

 =⇒ ΛΦ =
[
Λa Λb

][I2 0
0 Φp

]
=
[
Λa ΛbΦp

]
=

Λa

[
b1b1R b2b2R b3b3R
−b1b1L −b2b2L −b3b3L

]1 0
0 0
0 1


=

[
Λa

b1b1R b3b3R
−b1b1L −b3b3L

]
,

(2.7)

and similarly for fH =
[
fHa fHb

]
.

2.2. Problem Relaxation
To solve Equation (2.6), a convex relaxation and subsequent convex solving method would be ideal, as
it would allow the global solution to the relaxed problem to be found efficiently. However, the problem in
Equation (2.6) is non-convex for a number of reasons.
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First, the cost function is problematic as it depends on Φ, which is defined with a non-linear operation
(removing zero-columns from diag(p)) and, as a function of p, its associated equality constraints in Equa-
tion (2.6e) are non-affine. Second, the power constraint, Equation (2.6b), is non-convex in the minimisation
variable p and also suffers from Φ, similar to in the cost function. The occurrence of Φ in this constraint is
very similar to how it appears in the cost function, meaning the issue can be resolved in the cost function
and power constraint simultaneously. Third, the vector variable p is binary, which makes the feasible region
disjoint and thus non-convex. Finally, the cardinality function is by definition non-convex.

The l1-norm has been shown to be a good convex substitute of the cardinality function, promoting sparse
solutions [11]. In the case of a binary selection vector, these two functions produce the same results. Since
the selection vector is also non-negative, the cardinality constraint

‖p‖0 ≤ 2M − 3 , (2.8)

can immediately be relaxed to
1Tp ≤ 2M − 3 . (2.9)

2.2.1. Cost Function Relaxation
In this section, the cost function in Equation (2.6a) is convexified. The cost function is currently non-convex
due to the occurrence of Φ, which is non-linearly dependent of the minimisation variable p. First, consider
the following decomposition of the data dependent constant1 matrix R:

R = ΛHP̃−1Λ

= λI + G ,
(2.10)

with λ > λmax(R) and λmax(R) the largest eigenvalue of R. Because R is positive definite due to self-
noise, λ is positive and G is negative definite. These properties are important later, in Equation (2.15).
Equation (2.10) is substituted into the cost function in Equation (2.6a) to obtain

f0(p) = fHΦ(ΦT

R︷ ︸︸ ︷
ΛHP̃−1Λ Φ)−1ΦT f

= fHΦ(ΦT (λIr+2 + G)Φ)−1ΦT f

= fH Φ(λI‖p‖0+2 + ΦTGΦ)−1ΦT︸ ︷︷ ︸
Q

f .

(2.11)

Then, the matrix Q in Equation (2.11) is rewritten using the matrix inversion lemma [12, p.18]:

Q = Φ(λI + ΦTGΦ)−1ΦT

= G−1 −G−1
(
G−1 + λ−1 diag

([
1T2 pT

]))−1
G−1 .

(2.12)

Semi-definite relaxation
The cost function in Equation (2.11) is convex in Q, so it can be written as

f0(Q) = fHQf , (2.13)

with Equation (2.12) as an additional constraint. Equation (2.12) is not affine in p, and is thus not a convex
constraint. To relax Equation (2.12), the equality is changed to an inequality. Since the matrix Q appears in
the cost function in Equation (2.13), which is minimised, the relaxation of Equation (2.12) should be choosen
such that the cost function containing Q bounds the original cost function in Equation (2.11) from above.
That is,

Q � G−1 −G−1
(
G−1 + λ−1 diag

([
1T2 pT

]))−1
G−1 , (2.14)

which is reformulated as a linear matrix inequality (LMI) using the Schur Complement [13, p.650]:[
−G−1 − λ−1 diag

([
1T2 pT

])
G−1

G−1 Q−G−1

]
� 0 . (2.15)

1R is constant in the sense that it does not depend on any minimisation variables. Of course, it does change over time and across
frequency bins.
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Since each matrix block on the main diagonal of a positive semi-definite matrix is positive semi-definite and[
−G−1 − λ−1 diag

([
1T2 pT

])]
needs to be invertable,

[
−G−1 − λ−1 diag

([
1T2 pT

])]
must be positive

definite. It can be proven that it is, given the choice of λ > λmax(R), as shown in the following section.
This results in the following optimisation problem:

minimise
p∈{0,1}r, Q∈Sr+2

++

fHQf (2.16a)

subject to
[
−G−1 − λ−1 diag

([
1T2 pT

])
G−1

G−1 Q−G−1

]
� 0 (2.16b)∥∥∥(I− diag(p))UB̃HP̃−1ΛQf

∥∥∥2
2
≤ c (2.16c)

1Tp ≤ 2M − 3 . (2.16d)

The cost function and its associated positive semi-definiteness constraint are convex and the matrix Φ has
been removed from the problem. The power constraint remains non-convex, as does the binary p parameter.

Proof of Definiteness for Schur Complement in Equation (2.15)
To be able to successfully transform the constraint in Equation (2.14) in the LMI in Equation (2.15), the matrix
block

[
−G−1 − λ−1 diag

([
1T2 pT

])]
must always be positive definite. To prove that it is, we show that the

smallest eigenvalue of
[
−G−1 − λ−1 diag

([
1T2 pT

])]
is always positive, when λ > λmax(R).

Matrix G is guaranteed to be negative definite when R is positive definite and λI is subtracted from R,
with λ > λmax(R). The negative definiteness is due to the following relationship:

R ∈ Hn ,
λR =

[
λ1, λ2, . . . , λn

]
,

λR−aI =
[
λ1 − a, λ2 − a, . . . , λn − a

]
,

(2.17)

where λR is the set eigenvalues of R in non-increasing order, meaning λmax(R) = λ1. The set of eigen-
values of G−1 is, in non-increasing order,

λG−1 =
[
(λn − λ)−1, (λn−1 − λ)−1, . . . , (λ1 − λ)−1

]
, (2.18)

with λi > 0 for i = 1, 2, . . . , n, because of the positive definiteness of R. This results in G−1 being
negative definite and −G−1 being positive definite, because multiplying any negative definite matrix with
any negative scalar produces a positive definite matrix.

Applying one of Weyl’s inequalities for matrix theory [14, p.157], a lower bound on the smallest eigen-
value of

[
−G−1 − λ−1 diag

([
1T2 pT

])]
can be obtained. When this lower bound is larger than zero,[

−G−1 − λ−1 diag
([

1T2 pT
])]

is always positive definite. The relevant inequality by Weyl is

given C = A + B ,

λmin(C) ≥ λmin(A) + λmin(B) ,
(2.19)

where matrices A and B are both self-adjoint. The eigenvalues of
[
−λ−1 diag

([
1T2 pT

])]
are either 0 or

−λ−1, because of the binary elements in p. This results in the following relations:

λmin
(
−λ−1 diag

([
1T2 pT

]))
= −λ−1 , (2.20)

λmin
(
−G−1

)
= (λ− λn)−1 , (2.21)

λmin
(
−G−1

)
+ λmin

(
−λ−1 diag

([
1T2 pT

]))
= (λ− λn)−1 − λ−1

> 0 , (2.22)
λmin

(
−G−1 − λ−1 diag

([
1T2 pT

]))
≥ λmin

(
−G−1

)
+ λmin

(
−λ−1 diag

([
1T2 pT

]))
> 0 , (2.23)

which proves that
[
−G−1 − λ−1 diag

([
1T2 pT

])]
is positive definite for any λ > λmax(R).
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(a) Top down view of the surface describing p1Q1. Yellow and blue
correspond to a high and low function value, respectively.
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(b) Cross section of the surface describing p1Q1, at the red line in
Figure 2.1a.

Figure 2.1: Visuals to illustrate that Equation (2.24), containing the multiplication of the minimisation variables p and Q, is non-convex.
In these figures p1 = p ∈ [0, 1]1 and Q1 = Q ∈ [0, 1]1.

2.2.2. Relaxing the Power Constraint
In this section, the inequality constraint in Equation (2.24) is convexified. The constraint is written out using
the results from Section 2.2.1 to obtain

f1(p,Q) =
∥∥∥(I− diag(p))UB̃HP̃−1ΛQf

∥∥∥2
2

= fHQΛHP̃−1B̃U (I− diag(p))(I− diag(p))︸ ︷︷ ︸
(I−diag(p))

UB̃HP̃−1ΛQf .
(2.24)

This is not a convex inequality constraint, due to the multiplication of the two different minimisation vari-
ables, p and Q. Consider the case where p ∈ [0, 1]1 and Q ∈ [0, 1]1. Now Figure 2.1 clearly shows that
Equation (2.24) is non-convex in this case, and thus definitely also for p ∈ [0, 1]r and Q ∈ Sr+2

++ .
Two different methods of relaxing this expression are presented in this section. The first is based on

the Schur Complement and setting up an LMI by first applying a regularisation to the selection matrix
(I− diag(p)), while the second is based on overestimating the total binaurally unconstrained output in-
terferer power.

Relaxation using selection matrix regularisation
Applying a relaxation specifically for the occurrence of p in the middle of Equation (2.24), such that the Schur
Complement can be used here as well, would open up the possibility for an LMI positive semi-definiteness
constraint using a linear matrix inequality:

fHQΛHP̃−1B̃UX−1UB̃HP̃−1ΛQf ≤ c
if and only if[

X UB̃HP̃−1ΛQf

fHQΛHP̃−1B̃U c

]
� 0

and
X � 0 ,

(2.25)

where X is an unknown positive definite matrix that should approximate and/or bound (I− diag(p)). The
matrix (I− diag(p)) is not invertable, and thus, also not positive definite, when p is anything but the zero
vector. This is why the matrix (I− diag(p)) cannot be used directly.

For the Schur complement to hold, the selection matrix in Equation (2.24) needs to be positive definite.
To achieve this, a small error can be introduced on the diagonal:

fHQΛHP̃−1B̃U(I− (1− ε) diag(p))UB̃HP̃−1ΛQf ≤ c , (2.26)
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with ε� 1. Then, the Schur Complement can be used, as in Equation (2.25), to obtain[
I + ( 1

ε − 1) diag(p) UB̃HP̃−1ΛQf

fHQΛHP̃−1B̃U c

]
� 0 , (2.27)

as a relaxation of the power constraint. This relaxation should not deteriorate the optimal point much when
ε is chosen sufficiently small, as binaurally constrained interferers would only be counted towards the power
constraint by a very small fraction.

The constraint in Equation (2.16c) of is now expressed as an LMI constraint. The optimisation problem
can now be expressed as

minimise
p∈{0,1}r , Q∈Sr+2

++

fHQf

subject to
[
−G−1 − λ−1 diag

([
1T2 pT

])
G−1

G−1 Q−G−1

]
� 0[

I +
(
1
ε − 1

)
diag(p) UB̃HP̃−1ΛQf

fHQΛHP̃−1B̃U c

]
� 0

1Tp ≤ 2M − 3 .

(2.28)

Relaxing by over-estimating the interferer power after filtering
As stated before, Equation (2.24) is not a convex constraint due to the multiplication of the minimisation vari-
ables, p and Q. Instead of using the Schur complement to set up an LMI as done above in Equations (2.26)
to (2.28), the constraint can also be relaxed such that the two variables are no longer multiplied with each
other, or, more specifically, by over-estimating Equation (2.24).

Consider the scenario where r ≤ 2M − 3, and thus, where the JBLCMV can constrain all RTFs. Then,
it is known that in this scenario, the total interferer power when binaurally constraining all interferers is equal
or higher than the total interferer power when constraining a subset of the interferers binaurally:∥∥∥UB̃HP̃−1ΛQf

∥∥∥2
2
≤
∥∥∥UB̃HwJB

∥∥∥2
2
, (2.29)

with wJB being the JBLCMV filter that preserves the spatial cues of all r interferers. By doing so, it uses
degrees of freedom for spatial cue preservation instead of for noise reduction. As a result, the output of
the filter will have more noise than a filter that spatially constrains less interferers. This is expressed by
Equation (2.29). Based on Equation (2.29), it can be argued that∥∥∥(I− diag(p))UB̃HP̃−1ΛQf

∥∥∥2
2
/
∥∥∥(I− diag(p))UB̃HwJB

∥∥∥2
2
. (2.30)

So then Equation (2.24) can be relaxed to∥∥∥(I− diag(p))UB̃HP̃−1ΛQf
∥∥∥2
2
/
∥∥∥(I− diag(p))UB̃HwJB

∥∥∥2
2
≤ c , (2.31)

which makes it a convex approximation of an over-estimator of
∥∥∥(I− diag(p))UB̃HP̃−1ΛQf

∥∥∥2
2
. Notice that

due to the relaxation, it is not an exact over-estimator anymore, since Equation (2.29) only holds for the
complete set of interferers. On a subset only Equation (2.30) holds. The constraint in Equation (2.16c) is
now expressed as the norm of an affine expression, which is convex. The optimisation problem can now be
expressed as

minimise
p∈{0,1}r , Q∈Sr+2

++

fHQf

subject to
[
−G−1 − λ−1 diag

([
1T2 pT

])
G−1

G−1 Q−G−1

]
� 0∥∥∥(I− diag(p))UB̃HwJB

∥∥∥2
2
≤ c

1Tp ≤ 2M − 3 .

(2.32)
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Since the relaxation variable Q is no longer needed in the relaxation of the power constraint in Equa-
tion (2.32), the cost function can be relaxed more efficiently, by taking the epigraph of the original cost
function. Combining Equations (2.11) and (2.12), the cost function can be written as

f0(p) = fHG−1f − fHG−1
(
G−1 + λ−1 diag

([
1T2 pT

]))−1
G−1f . (2.33)

The constant first term can be neglected, since it can only change the value of the function in the optimal
point, not the argument of the optimal point, and the value of the function is not of interest here. This leads
to the following epigraph expression and LMI:

fHG−1
(
−G−1 − λ−1 diag

([
1T2 pT

]))−1
G−1f ≤ t0 , (2.34)[

−G−1 − λ−1 diag
([

1T2 pT
])

G−1f
fHG−1 t0

]
� 0 . (2.35)

This relaxation has the advantage of a lower dimensional relaxation variable and LMI. The optimisation
problem can now be more efficiently expressed as

minimise
p̂∈[0,1]r , t0

t0

subject to
[
−G−1 − λ−1 diag

([
1T2 pT

])
G−1f

fHG−1 t0

]
� 0∥∥∥(I− diag(p))UB̃HwJB

∥∥∥2
2
≤ c

1Tp ≤ 2M − 3 .

(2.36)

Both the relaxation of Equations (2.28) and (2.36) will be compared in Chapter 3. Both suffer from an
imperfect relaxation, namely the relaxation parameter ε in Equation (2.28) and the inexact over-estimator in
Equation (2.36). The first relaxation can handle a large amount of (P)RTFs, unlike the second relaxation,
since it depends on the JBLCMV beamformer, which is constrained to 2M − 3 (P)RTFs. To be able to
compare them anyway, when using the second relaxation, the JBLCMV beamformer is used with the 2M−3
strongest (P)RTFs, meaning the (P)RTFs with the highest associated value ui or ûi. This choice is further
discussed in Section 3.1.

2.2.3. Power Threshold Relaxation for r > 2M − 3
This relaxation is not done to convexify an expression, but to prevent infeasibility of the optimisation problem.
When the number of interferers is larger than the number of interferers that a JBLCMV beamformer can
constrain (2M − 3), there is no longer a guarantee that the power constraint, Equation (2.1b), repeated
below, can be met. ∥∥∥(I− diag(p))UB̃Hwp

∥∥∥2
2
≤ c .

When the number of interferers is less than or equal to 2M −3, Equation (2.1b) can always be met, because
when p equals the all ones vector, the norm equals zero. The cardinality of p is constrained by Equa-
tion (2.1c), however. This means that when the number of interferers exceeds 2M − 3, the norm in Equa-
tion (2.1b) cannot be made zero anymore. Furthermore, the minimal value of the norm in Equation (2.1b)
might be above the set threshold. If this is the case, the problem is infeasible.

Because an infeasible problem is of no use in determining the beamformer coefficients, the threshold
should be relaxed when the number of known interferers (or pre-determined relative acoustic transfer func-
tion, as discussed in Section 2.3.2) might exceed 2M − 3. This can be done by introducing a penalty to
the cost function when the threshold is exceeded. The original, unrelaxed, optimisation problem from Equa-
tion (2.1) is used to demonstrate the threshold relaxation. That is,

minimise
p∈{0,1}r , t1

wH
p P̃wp + αmax (0, t1 − c)2 (2.37a)

subject to
∥∥∥(I− diag(p))UB̃Hwp

∥∥∥2
2
≤ t1 (2.37b)

‖p‖0 ≤ 2M − 3 , (2.37c)
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where t1 ∈ R1 is the new relaxation variable.
When t1 is lower than c, the penalty term is zero and as such, the cost function is unchanged. When it

is larger than the set threshold, the penalty equals the squared error multiplied by the weight parameter α.
The parameter α should likely be chosen such that the set threshold is not exceeded, unless necessary.

The penalty expression that is added to the cost function is convex, as is the appearance of the new vari-
able t1 in all proposed relaxations. As such, it can be added to any of the proposedmethods when necessary.
The optimal t1 should also be provided to the random rounding algorithm, Algorithm 1, since the randomised
rounding algorithm will try to find a feasible solution according to the constraint given. As discussed before,
a feasible solution might not exist when r > 2M − 3. The relaxed threshold t1 in Equation (2.37) is a new
value for the power threshold, such that a feasible solution can exist, and so the randomised rounding algo-
rithm should check feasibility according to this updated threshold, instead of the original one given by c in
Equation (2.37).

2.2.4. Binary Parameter
The variablep contains binary elements. However, a binary variable leads to a non-convex problem, because
the feasible region is disjoint. The parameter p can be relaxed in a number of ways. One method of solving
would be an exhaustive or greedy search, which is feasible for a small number of interferers. Of course,
convex relaxations are not necessary when applying search methods. One exhaustive search method is
described in Section 3.2.1, to be used when evaluating simulation results in Chapter 3. Another method is
based on solving the optimisation problems using continuous values for p, i.e. p̂ ∈ [0, 1]r. Then, specific
rounding methods can be used to find binary solution vectors.

Continuous selector
Making p continuous instead of binary introduces a problem in the power constraint as the power is then
scaled by the value that is assigned to the respective p̂i, leading to a fraction of an interferer’s power to be
summed in the total in Equation (2.16c). This causes low values of p̂ to become prevalent as optimal solu-
tions. Continuous values of p̂ do not have the same significant effect on the cost function, since the variable
is applied to both the constraint matrix and response vector in the original LCMV problem. Furthermore, when
selector values are continuous, the Schur Compliment on the relaxed power constraint from Equation (2.27)
technically does not hold, since[

I + ( 1
ε − 1) diag(p̂)

]−1 6= I− (1− ε) diag(p̂) , (2.38)

and the properties that were used to eliminate Φ also only held for binary p. Previous work suggests that a
randomised rounding method can find solutions regardless of these issues [10, 15, 16].

A randomised rounding algorithm generates a random uniformly distributed vector with values between
zero and one. It will compare this random vector to the continuous solution vector p̂?. For elements where
p̂?i is larger then the corresponding random value, p?i will be rounded to one. Otherwise, it is rounded to
zero. The obtained rounded solution vector p? is then checked for feasibility using Equation (2.6b). If it is
infeasible, the rounding step is repeated. Otherwise, the solution is accepted as the optimal solution. The
randomised rounding algorithm is given in Algorithm 1. It is called for each frequency bin separately. Instead
of checking feasibility per random rounding realisation and accepting the first feasible set, a number Lrr
random realisations can be determined and the best one in terms of cost can be picked from the feasible
realisations. The difference between both methods is further discussed in Section 3.4.4.

2.3. Practical Considerations
The proposed methods in Equations (2.28) and (2.36) require interferer RTFs, interferer powers and a bin-
aurally unconstrained interferer output power setting to function. First, a power threshold setting will be
discussed, based on a simple audibility measure. Then, the problem of the unknown interferer RTFs and
powers will be solved using PRTFs in Section 2.3.2.

2.3.1. Defining a Power Threshold
The two proposed methods from Equations (2.28) and (2.36) contain a parameter c to constrain the total
binaurally unconstrained interferer power after filtering (see Equations (2.28) and (2.36)). The threshold c
will be set such that it describes a minimal SNR for the binaurally unconstrained sources. This specific SNR
measure is determined by taking the ratio of the target signal power and the summed power of the binaurally
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Algorithm 1 Randomised Rounding

1: function randomRounding(p̂?, kr, c, B̃,U, P̃−1,C, f )
2: constraint← inf
3: i← 0
4: while constraint > c ∧ i ≤ kr do . Stop when constraint is met or after k iterations
5: if i = kr then . Maximum number of iterations
6: p? ← 1 . Round up to guarantee feasibility
7: else
8: i← i+ 1
9: for all pj do

10: p?j ← 1 with probability p̂?j (0 otherwise) . Random rounding
11: end for
12: Φp ← diag(p?)with its zero columns removed.

13: Φ←
[
I2 0
0 Φp

]
14: wp ← P̃−1CΦ

(
ΦTCHP̃−1CΦ

)−1
ΦT f . Actual filter

15: constraint←
∥∥∥(I− diag(p?))UB̃Hwp

∥∥∥2
2

. Binaurally unconstrained interferer power sum
16: end if
17: end while
18: return p?

19: end function

unconstrained interfering sources after filtering. The total power of all unconstrained interferers is given by
Equation (2.1b), repeated below. ∥∥∥(I− diag(p))UB̃Hwp

∥∥∥2
2
≤ c .

The minimal SNR is then described by

Ps∥∥∥(I− diag(p))UB̃Hwp

∥∥∥2
2

≥ β , (2.39)

where β is the desired minimal SNR and Ps is the target signal power. This expression can be re-written to
resemble the power constraint expressions as they have been presented before, similar to Equation (2.1b):∥∥∥(I− diag(p))UB̃Hwp

∥∥∥2
2
≤ β−1Ps , (2.40)

and as such, the threshold parameter can be set as

c = β−1Ps . (2.41)

Target Power Estimation
Equation (2.41) depends on the target signal power, which needs to be estimated. This can be done through
power subtraction. First, the total output power, consisting of the target, interferers and additive noise can
be determined by

Py = wHP̃yw . (2.42)

Second, since the total CPSD matrix is assumed to be given by Equation (1.4), the total output noise power
is subtracted to obtain an estimate of the target signal power:

Ps = wHP̃yw −wHP̃w . (2.43)

The choice of the filter w is preferably such that it does not depend on the minimisation variables and it
should be distortionless. For that reason, the BMVDR is chosen, which will be called wBM from here on.
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In frequency bins where there is no or hardly any target signal present, the threshold in Equation (2.41)
will be a very low value. This will cause the power threshold Equation (2.40) to not allow (hardly) any un-
constrained interferer power to be present at the output in that frequency bin. However, if the interferers are
heavily suppressed in those frequency bins as well, some interferers might be inaudible, regardless of low
SNR, simply by how low their absolute power is. To take this into account, a simple heuristic is used. A mini-
mal value is assigned to β−1Ps. In this report, −50 dB is used as a minimum value for β−1Ps, approximately
corresponding to the level difference between an ordinary conversation and barely audible sounds. Since ef-
fects like interband masking (masking that occurs across critical bands) and non-simultaneous masking are
otherwise not taken into consideration, setting a minimal threshold value as proposed allows exceptionally
quiet interferers, that are highly likely masked, to be binaurally unconstrained.

2.3.2. Pre-determined Relative Acoustic Transfer Functions
The algorithms derived before all depend on the noise CPSD matrix, the interferer powers and their ATFs or
RTFs. In practice, these are unknown. The estimation of these parameters in dynamic scenarios is highly
challenging [7].

Pre-determined relative acoustic transfer functions (PRTFs), as proposed in [7], are used to eliminate the
need for estimation of the ATFs of the sources. The PRTFs are chosen to be equally spaced on a circle in the
horizontal plane around the microphones. This means that no direction is considered to be more important
and no elevation is considered. If some directions are deemed more important than others, the PRTFs can
be more dense in that area, making the mismatches that occur when a source is not exactly in the direction
of a PRTF smaller.

In this section, the changes to the algorithms that are needed to use PRTFs instead of ATFs will be
presented. A database of head related impulse responses [8] is used to obtain the required PRTFs. Taking
qi to be the ith PRTF, the PRTFs can be obtained by

qiL =
qi
qiL

,

qiR =
qi
qiR

,
(2.44)

where qiL and qiR are the pre-determined ATFs at the left and right reference microphone respectively. Using
these PRTFs, new constraint matrices can be set-up:

Λq =

[
q1L q2L · · · qmL
−q1R −q2R · · · −qmR

]
, (2.45)

C =
[
Λa Λq

]
, (2.46)

where m is the total number of PRTFs. The target constraints are still using the true ATFs, such that all
methods are distortion-less. This means BMVDR remains unchanged (as it uses zero PRTFs) and JBLCMV
can use the constraint matrix from Equation (2.46) with m ≤ 2M − 3. The proposed methods can use the
constraint matrix from Equation (2.46) with any number of PRTFs, since the maximum allowed number of
binaurally constrained sources is already constrained by the optimisation problems.

If the far-field assumption can be made, PRTFs on a single circle suffice, as they become approximately
distant invariant. Equation (2.47) gives the Fraunhofer distance, whereD is the maximum distance between
microphones and λmin is the smallest wavelength, given by Equation (2.48).

df =
2D2

λmin
, (2.47)

λmin =
2c

Fs
, (2.48)

where Fs is the sampling frequency. The Fraunhofer distance is related to the far field assumption as fol-
lows [17]: The far field assumption holds when

d� df ≈ 2.16m , (2.49)
d� D ≈ 215mm , (2.50)

where d is the distance of the source to the receivers. The approximation of df was determined with c =
343m s−1 and Fs = 16.0 kHz, which is typical in hearing aids. Since the database that is used to obtain the
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PRTFs offers impulse responses for distances of 0.80m and 3.00m, all PRTFs are determined using the head
related impulse responses at distance 3.00m. Only considering the horizontal plane that the microphones
are in is a choice for simplicity. In reality, PRTFs for different elevations would improve performance in terms
of localisation errors.

The different powers in the directions of the PRTFs, used in the diagonal matrix U in Equations (2.28)
and (2.36), need to be known as well. To estimate these powers, MVDR beamscanning is used [18]. The
beamscanner is described by

ûi =

√
1

qHiLP−1qiL
, for i = 1, 2, . . . ,m . (2.51)

The interferer power matrix for use in the proposed optimisation problems, Equations (2.28) and (2.36), is
then set-up as

Û =


û1

û2
. . .

ûm

 , (2.52)

and the PRTF matrix for the power constraint as

B̂ =

[
q1L q2L . . . qmL
q1L q2L . . . qmL

]
. (2.53)

Note that Û and B̂ are both determined using the left PRTFs. They can be determined using the right PRTFs,
which will yield equivalent results.

2.4. Proposed Methods
The proposed methods and associated algorithms to solve them are briefly summarised here. Both can
be implemented with estimated ATFs, RTFs or PRTFs by choosing the appropriate constraint matrices as
discussed in Sections 1.2.5 and 2.3.2. This thesis only considers the RTFs and PRTFs. The proposed
methods below are written as though the true RTFs are used, but can be changed to use PRTFs by changing
all occurences of B̃ and U to B̂ and Û from Equations (2.52) and (2.53), respectively.

2.4.1. First Proposed Method
This proposed method is based on the relaxations that resulted in Equation (2.28) and completing it using
the methods discussed in Sections 2.2.4 and 2.3.1. This method is based on introducing an error to the
matrix

[
I− diag(p̂)

]
, such that is becomes positive definite. The complete convex optimisation problem is

given by

minimise
p̂∈[0,1]r , Q∈Sr+2

++ , t1

fHQf + αmax (0, t1 − c) (2.54a)

subject to
[
−G−1 − λ−1 diag

([
1T2 p̂T

])
G−1

G−1 Q−G−1

]
� 0 (2.54b)[

I +
(
ε−1 − 1

)
diag(p̂) UB̃HP̃−1ΛQf

fHQΛHP̃−1B̃U t1

]
� 0 (2.54c)

1T p̂ ≤ 2M − 3 (2.54d)
with β−1wH

BM (Py −P)wBM = c , (2.54e)

where wBM is the BMVDR beamformer. The parameter ε is chosen to be 0.01. The weight α can be set
very high if the threshold relaxation should not be used, or it can be be left out completely. Section 3.1 will
detail when this is the case.

Algorithm 2 describes the method that is used to obtain the binary solution vector p? from the continuous
p̂? obtained from Equation (2.54). When L = 1 it is identical to Algorithm 1. The parameter L will be
discussed further in Section 3.4.4. Furthermore, the input argument c of Algorithm 2 should be max (t?1, c)
from Equation (2.54).
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Algorithm 2 Randomised Rounding for Lrr realisations

1: function randomRounding(p̂?, kr, Lrr, c, B̃,U, P̃−1,C, f )
2: constraint← inf
3: i← 0
4: while i ≤ kr do . Stop after k iterations
5: if i = kr then . Do a safe guess after maximum number of iterations
6: return p? ← ones for the 2M − 3 strongest sources after BMVDR filtering
7: else
8: i← i+ 1
9: for all pjl do

10: p?jl ← 1 with probability p̂?j (0 otherwise) . Random rounding for l = 1, . . . , Lrr
11: end for
12: Ω , {l | f1(pl) ≤ c, ‖pl‖1 ≤ 2M − 3, l = 1, . . . , L} . Set of feasible realisations [16]
13: if Ω is not empty then
14: return p? ← arg min f0(pl) . Return the best feasible realisation
15: end if
16: end if
17: end while
18: end function

2.4.2. Second Proposed Method
The second proposed method is obtained from Equation (2.36) and adding the discussed methods from
Sections 2.2.4 and 2.3.1. This method used a relaxation of the power constraint Equation (2.24) that over-
estimated the summed binaurally unconstrained interferer power after filtering by applying the JBLCMV on
the unconstrained interferers, instead of wp. This yields

minimise
p̂∈[0,1]r , t0 , t1

t0 + αmax (0, t1 − c) (2.55a)

subject to
[
−G−1 − λ−1 diag

([
1T2 p̂T

])
G−1f

fHG−1 t0

]
� 0 (2.55b)∥∥∥(I− diag(p̂))UB̃HwJB

∥∥∥2
2
≤ t1 (2.55c)

1T p̂ ≤ 2M − 3 (2.55d)
with β−1wH

BM (Py −P)wBM = c , (2.55e)

where wBM is the BMVDR beamformer. To obtain the binary solution vector, Algorithm 2 is used exactly as
discussed in Section 2.4.1. Again, the weight α can be set very high if the power threshold relaxation should
only be used if no other feasible solution exists. This is likely the desired behaviour, though it can be tuned
if desired by the user.



3Results
A number of experiments have been done to verify the proposed methods. These experiments have been
run for the comparison methods as well, namely BMVDR, JBLCMV, Exhaustive Search (ES), Random Con-
strained Interferer Selection (R1), and Random Interferer Set Permutation (R2). ES, R1 and R2 are detailed
in Section 3.2. The proposed methods are named as follows:

Proposed 1 Proposed relaxation using selection matrix regularisation, as in Section 2.4.1.

Proposed 2 Proposed relaxation using over-estimation of output interferer power, as in Section 2.4.2.

The experiments test two different scenarios. Using PRTFs or true RTFs.

3.1. Experiments
To verify the proposed methods a number of experiments were set up. The simulation experiments are built
to illustrate the behaviour of the proposed methods compared to existing methods and comparison methods
when certain variables change. Performance measures are the SNR gains and weighted ILD and IPD errors.
How these are measured is detailed in Sections 3.3.1 and 3.3.2.

The experiments are run using four microphones, two on each ear. This means the JBLCMV constraint
bound is 2M − 3 = 5 (P)RTFs. The experiments that have been done can be categorised as:

1. Using true RTFs, to test the theoretical validity of the proposed methods.

2. Using PRTFs, to evaluate the practical application of the method.

The experiments are otherwise kept similar, to be able to make a fair comparison of true RTF versus PRTF
performance. Details on the specific environment that was simulated are given in Section 3.1.2. The number
of interferers will be varied between 1 and 9. In the experiment where PRTFs are used, 8, 12 and 24 PRTFs
are tested.

The choice of the threshold c in Equations (2.54) and (2.55) contains an SNR parameter β. As this pa-
rameter increases, SNR gains are expected to drop and spatial error should drop as well, with both eventually
equalling JBLCMV performance. Whether it influences the optimality gap between the proposed methods
and the exhaustive search will be tested as well.

In the experiments where the bound 5 is crossed, different values of the penalty weight α in Equa-
tions (2.54) and (2.55) are tested. A low value of α means the originally set power threshold c is allowed to
be crossed more than when α is high. This might allow for higher SNR gains, but poorer ILD and IPD errors.

Additionally, the differences in performance due to the value of Lrr in randomised rounding is evaluated,
by doing the first experiment for six different values of Lrr. The values tested are 1, 10, 20, 30, 40 and 50.
These results are discussed separately in Section 3.4.4.

3.1.1. Analysis and Synthesis
To simulate recordings in the acoustic scene, four microphones from [8] are used. The front and back
microphones on each ear to be specific. The corresponding impulse responses that are used for the desired
sources, described in Section 3.1.2, are resampled to 16 kHz, which is a typical sampling frequency in HADs.
The front microphones are labelled as the reference microphones.

Figure 3.1 shows how and when the signals are obtained and processed. The target signal is a speech
recording from the TIMIT database [19], a database of various speakers and English text. The interferers are
either WGN or speech-shaped Gaussian noise. These sources are convolved with their respective impulse
responses. All obtained signals corresponding to one microphone are added together and AWGN is added
as microphone self noise. This is described equivalently in the discrete time domain by

yj [n] = s[n] ? hsj [n] +

r∑
i=1

ui[n] ? hij [n] + vj [n] , for j = 1, . . . , 4 , (3.1)

21
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Y[n] Square Root 
Hann Window DFT JBLCMV Inverse DFT Square Root 

Hann Window 

xL̂[n]

C
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P, B, U Source Estimation
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Figure 3.1: The beamformer, interferer selection and source estimation process, including the Analysis and Synthesis process. The
matrix Y[n] contains the 4 microphone recording segments. Each is 16ms long and is updated every 8ms, for 50% overlap. Source
estimation is done using either the true RTFs and powers estimated using Welch’s method, or using PRTFs and beamscanning. The
vectors x̂L[n] and x̂R[n] are combined with those of the previous time segment, using 50% overlap-and-add.

Source Distance [cm] Angle [°] Type

x 80 95 Speech

n1 300 15 SSGN
n2 300 45 WGN
n3 300 75 WGN
n4 300 105 SSGN
n5 300 165 WGN

n6 300 225 SSGN
n7 300 240 WGN
n8 300 270 SSGN
n9 300 300 SSGN

Table 3.1: All possible sources in the acoustic scene. Each interfering source is either white Gaussian noise (WGN) or speech-shaped
Gaussian noise (SSGN). All sources have equal power.

where yj [n] is the jth microphone received signal, s[n] is the target signal, hsj [n] is the impulse response
from the target to the jth microphone, ui[n] is the ith interferer and vj [n] is the AWGN on the jth microphone.

An STFT is performed on each of the received signals, using 16ms frame length, a square-root Hann
window and 50% overlap. This is where the beamformer processing is performed, per frequency bin, per
time frame. After processing, the inverse Fourier transform is performed on the results. Then, another
square-root Hann window is applied to each time frame. After addition of the appropriate time frames, with
50% overlap, the left and right recovered signals are obtained.

The CPSD matrices are estimated across the entire recording. In applications, the noise CPSD matrix
could for example be estimated during noise-only windows (using voice activity detection, for example). The
interferer noise CPSD Pn is determined by

Pn = BLU2BH
L , (3.2)

where U is appropriately scaled to the left RTFs. The diagonal power matrix U is determined using Welch’s
method, when true RTFs are used. When PRTFs are used, beamscanning is used to determine the powers,
as described in Section 2.3.2, and no scaling is required.

3.1.2. Acoustic Scene
The experiments are done using a number of different acoustic scenes. The difference between the acoustic
scenes is how many interfering point sources are present. The sources that can be present in the scene are
shown in Table 3.1 and Figure 3.2a. The target signal x is present in all experiments. Interferers are present
or not, based on the experiment. If an experiment states that 3 interferers are present, sources n1 through
n3 are present, for example. The number of interferers present is varied accordingly in all experiments, as
described in Section 3.1.

For experiments using PRTFs, the same sources are used as described in Table 3.1 and Figure 3.2a. The
PRTFs are placed uniformly on a circle around the microphones, using the head related impulse responses
at 300 cm distance, as described in Section 2.3.2 and illustrated in Figure 3.2b. Three sets of PRTFs are
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are given by Equations (3.3) to (3.5), respectively.

Figure 3.2: Top-down view of the acoustic scene. Microphones are indicated by ◦ and are centered around the origin.

used in the experiments. Let

P8 , {(qL(γ),qR(γ)) | γ = 45°k , k = 0, 1, . . . , 7} , (3.3)
P12 , {(qL(γ),qR(γ)) | γ = 30°k , k = 0, 1, . . . , 11} , (3.4)
P24 , {(qL(γ),qR(γ)) | γ = 15°k , k = 0, 1, . . . , 23} , (3.5)

be the PRTF sets for 8, 12 and 24 PRTFs respectively, where (qL(γ),qR(γ)) is the PRTF couple corre-
sponding to an azimuth angle of γ.

3.2. Comparison Methods
Since the proposed methods include randomness, due to the randomised rounding algorithm, two additional
random selection methods are given here, which will be used to compare the results to. By comparing the
proposed methods to these random methods, their validity can be shown more evidently. An exhaustive
search is also described.

These methods are intentionally kept very simple, as they are not proposed methods, they are only intro-
duced to show an optimal case and two different random selection methods, to check whether the proposed
methods approach optimal and outperform simple random selection methods.

3.2.1. Exhaustive Search
The exhaustive search determines feasibility in Equation (2.6) for every possible realisation of p. Of all
feasible solution vectors, the solution vector that gives the lowest value of Equation (2.6a) is selected as the
optimal solution. The implementation is shown in Algorithm 3.

3.2.2. Random Constrained Interferer Selection
Instead of being based on convex relaxations or using a cost function, this method randomly selects interfer-
ers or PRTFs to binaurally constrain. For each interferer or PRATF, there is a 50% chance that it is selected
or not. As such, the number of interferers or PRATFs selected is also random. The obtained set is checked
for feasibility though, to ensure a fair comparison to the proposed methods, since non-feasible p vectors are
likely to produce better SNR gains. Algorithm 4 shows the implementation of the method.

3.2.3. Random Interferer Set Permutation
The third comparison method is based on a random permutation of a solution set from one of the proposed
methods. This method is used to check whether the right interferers were selected to binaurally constrain,
and not just the right number.
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Algorithm 3 Exhaustive Search

1: function exhaustiveSearch(c, B̃,U, P̃−1,C, f )
2: best← inf
3: for i← 0, 2r − 1 do . All possible combinations
4: p← i(107→2) . p becomes the binary representation of i
5: Φp ← diag(p)with its zero columns removed.

6: Φ←
[
I2 0
0 Φp

]
7: wp ← P̃−1CΦ

(
ΦTCHP̃−1CΦ

)−1
ΦT f . Actual filter

8: constraint←
∥∥∥(I− diag(p))UB̃Hwp

∥∥∥2
2

. Binaurally unconstrained interferer power sum

9: power ← wH
p P̃wp . Determine output noise power

10: if power < best ∧ constraint < c then . Check if feasible and better
11: best← power . Save new best
12: p? ← p
13: end if
14: end for
15: return p?

16: end function

Algorithm 4 Random Constrained Interferer Selection

1: function randomSelection(kr, c, B̃,U, P̃−1,C, f )
2: constraint← inf
3: i← 0
4: while constraint > c ∧ i ≤ kr do . Stop when constraint is met or after k iterations
5: if i = kr then . Maximum number of iterations
6: p← 1 . Guaranteed feasibility
7: else
8: i← i+ 1
9: for all pi do

10: pi ← 1 with probability 0.5 (0 otherwise)
11: end for
12: Φp ← diag(p)with its zero columns removed.

13: Φ←
[
I2 0
0 Φp

]
14: wp ← P̃−1CΦ

(
ΦTCHP̃−1CΦ

)−1
ΦT f . Actual filter

15: constraint←
∥∥∥(I− diag(p))UB̃Hwp

∥∥∥2
2

. Binaurally unconstrained interferer power sum
16: end if
17: end while
18: return p
19: end function
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Algorithm 5 Random Interferer Set Permutation

1: function randomPermutation(p?, kr, c, B̃,U, P̃−1,C, f )
2: constraint← inf
3: i← 0
4: while constraint > c ∧ i ≤ kr do . Stop when constraint is met or after k iterations
5: if i = kr then . Maximum number of iterations
6: p← 1 . Guaranteed feasibility
7: else
8: i← i+ 1
9: p← Random permutation of p?

10: Φp ← diag(p)with its zero columns removed.

11: Φ←
[
I2 0
0 Φp

]
12: wp ← P̃−1CΦ

(
ΦTCHP̃−1CΦ

)−1
ΦT f . Actual filter

13: constraint←
∥∥∥(I− diag(p))UB̃Hwp

∥∥∥2
2

. Binaurally unconstrained interferer power sum
14: end if
15: end while
16: return p
17: end function

This method receives a solution vector p? from one of the proposed methods, performs a random per-
mutation on the elements of that vector and checks the new vector for feasibility. The procedure is repeated
until a feasible vector is found (this may be the original vector). The method is detailed fully by Algorithm 5.

3.3. Performance Measures
The SNR gain and spatial cue errors are the primary performance measures. In Section 3.4.4 the number of
iterations of randomised rounding is evaluated as well, which requires no further introduction. The method
of determining SNR gain is defined in Section 3.3.1. The spatial cue errors are weighted ILD and IPD errors.
The weights are based on perception models and are detailed in Section 3.3.2.

3.3.1. SNR gain comparisons
The SNR gain describes the improvement of SNR of the target compared to all noise at the input and output
of the beamformer [4]. Input and output SNR are given by

SNRin[k] =
eHP̃x[k]e

eHP̃[k]e
, (3.6)

SNRout[k] =
wH [k]P̃x[k]w[k]

wH [k]P̃[k]w[k]
, (3.7)

respectively, where P̃x is the true target CPSD matrix and e =
[
1 0T2M−2 1

]T is a selection vector to
select the left and right reference microphones, which are indexed as 1 and M respectively. Let the SNR
gain in the kth frequency bin be

GSNR[k] =
SNRout[k]

SNRin[k]
. (3.8)

This gain is averaged over all frequency bins to obtain the average SNR gain, resulting in

ḠSNR =
1

1
2K + 1

1
2K+1∑
k=1

wH [k]P̃x[k]w[k]

wH [k]P̃[k]w[k]

(
eHP̃x[k]e

eHP̃[k]e

)−1
, (3.9)

where K is the total number of frequency bins.
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Band No. Bandwidth [Hz] Band No. Bandwidth [Hz] Band No. Bandwidth [Hz]

1 0− 100 9 920− 1080 16 2700− 3150
2 100− 200 10 1080− 1270 17 3150− 3700
3 200− 300 11 1270− 1480 18 3700− 4400
4 300− 400 12 1480− 1720 19 4400− 5300
5 400− 510 13 1720− 2000 20 5300− 6400
6 510− 630 14 2000− 2320 21 6400− 7700
7 630− 770 15 2320− 2700 22 7700− 9500
8 770− 920

Table 3.2: Idealised Critical Band Filter Bank [21], for a system using Fs ≤ 19 kHz.

3.3.2. Spatial Cue Errors
The spatial cue errors are weighted according to their respective critical band SNRs (CBSNRs) compared
to the target [20]. The CBSNR can be used as a measure to determine how audible noise is in the presence
of the target, and vice-versa. When the SNR in a critical band is better than 24 dB, the noise is considered
inaudible, and when it is poorer than −4 dB, the target is considered masked [21].

The CBSNR is determined by

CBSNRi,j =

∑
k∈CBi

wH [k]P̃x[k]w[k]∑
k∈CBi

wH [k]P̃nj
[k]w[k]

, (3.10)

where CBi is the set of frequency bins corresponding to the ith critical band, given by Table 3.2, and CBSNRi
is the CBSNR in the ith critical band. The target is binaurally constrained in all methods, so only spatial cue
errors on the interferers need to be considered. When the target is masking the noise, it does not matter
whether the spatial cues of the interferer are preserved. To reflect this, the spatial cue errors are weighted
by how audible the interferer is estimated to be. Let

φi,j =


1 , if CBSNRi,j ≤ λ
1− CBSNRi,j−λ

ρ−λ , if λ < CBSNRi,j < ρ

0 , if CBSNRi,j ≥ ρ ,
(3.11)

where λ = −4 dB is the noise-masks-tone threshold, ρ = 24 dB is the tone-masks-noise threshold and φi,j
is the error weight for the ith critical band and jth interferer. The weight is a linear expression between λ and
ρ dependent on the CBSNR, with zero and one as minimum and maximum weight respectively.

Using the error weight φi,j the weighted average ILD and IPD error are defined. Let

Ē ILD =
1

r

r∑
j=1

∑22
i=1 φi,j

∑
k∈CBi

E ILDj [k]∑22
i=1

∑
k∈CBi

φi,j
, (3.12)

Ē IPD =
1

r

r∑
j=1

∑22
i=1 φi,j

∑
k∈CBi

E IPDj [k]∑22
i=1

∑
k∈CBi

φi,j
, (3.13)

where Ē ILD and Ē IPD are the weighted average ILD and IPD respectively. These are the two spatial cue error
measures that will be used to evaluate the methods.

3.4. Simulation Results
Simulation results are categorised by what type of transfer functions were used, true or pre-determined.
In the figures, the solid curves correspond to the proposed methods, the dashed curves are comparison
method results and dotted lines represent the existing methods. Unless stated otherwise, Lrr = 10 was
used in randomised rounding Algorithm 2, kr = 1000 was used in Algorithms 2, 4 and 5, ε = 100−1 is used
in Equation (2.54) and λ = 1.001 · λmax(ΛHP̃−1Λ) is used in Equations (2.54) and (2.55).



3.4. Simulation Results 27

1 2 3 4 5

#interferers

5

10

15

20

25

30

35
a
v
. 
S

N
R

 g
a
in

 [
d
B

]

Proposed 1

Proposed 2

ES

BMVDR

JBLCMV

(a) Average SNRgains (Equation (3.9)) compared to existingmeth-
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(b) Average SNR gains (Equation (3.9)) compared to random
methods.

Figure 3.3: The proposed methods compared to the existing and random methods in terms of average SNR gains for β = 10 dB and
varying number of interfering point sources present in the acoustic scene.

3.4.1. Using True Transfer Functions
In the first experiment, true transfer functions are used in the constraint matrix Λb. Using the results from
experiment 1, the SNR gain and spatial cues errors will be compared between the different methods. Addi-
tionally, the optimality gap is examined, which is the difference in SNR gain between the proposed methods
and the exhaustive search.

With up to five interferers present in the acoustic scene
Figure 3.3 shows the average SNR gains of the different methods. When few interfering sources are present,
the input SNR is relatively high. As such, all methods are close to each other, and approach the BMVDR
performance. As the amount of sources, and thus noise power, in the scene increases, the average SNR gain
of the methods drifts apart, with the proposed methods in between BMVDR and JBLCMV performance, as
shown in Figure 3.3a. This is to be expected, since the proposedmethods chose to spend degrees of freedom
on noise reduction or spatial cue preservation, per frequency bin, per interfering source. Additionally, the
proposed methods outperform the random methods here, in Figure 3.3b, and come very close to the optimal
solution provided by the exhaustive search. The fact that the random interferer set permutation method is
so close in performance to the proposed methods implies that it does not matter much which interfering
sources are selected for spatial cues preservation, with regards to average SNR gain. Since all sources in
the acoustic scene are equal in power, this is partially expected, though in frequency bins where speech is
dominant, it should matter more which interferer is selected. It is likely that in those frequency bins, many
interferer set permutations are infeasible. This would cause the random interferer set permutation method
to select the same set as the proposed methods with relatively high likelihood.

Looking at the spatial cue errors in Figure 3.4, using the same setup, we notice that the ILD errors
of the proposed methods and the exhaustive search can be greater than those of the BMVDR. The ILD
errors can be very unpredictable, since anything can happen to the magnitude of an unconstrained source
after beamforming. Additionally, the noise reducing ability of the proposed methods is lower or equal to the
BMVDR, which can cause unconstrained sources to be more audible with the proposed method than with
BMVDR.

This behaviour is not an issue however, as it simply indicates that the parameter β, which is the SNR
threshold in the proposed methods, is not strict enough. In Figure 3.5 the results are shown when β = 24 dB.
The spatial cues error are now all well below the BVMDR and much closer to JBLCMV. It should be noted
though, that the spatial cues are not directly constrained in the proposed methods, which might cause some
potentially unexpected behaviour when analysing the spatial cues errors. Of course, setting the value of β
to a higher, stricter, value has a negative effect as well, since it is essentially a trade-off parameter between
noise reduction and spatial cue preservation. Figure 3.6 shows the SNR gain performance of the proposed
methods and, comparing it to Figure 3.3, lower SNR gains of the proposed methods are immediately notice-
able.
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(a) Average weighted ILD errors (Equation (3.12)).
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(b) Average weighted IPD errors (Equation (3.13)).

Figure 3.4: The proposed methods compared to the existing methods in terms of average weighted ILD and IPD errors for β = 10 dB
and varying number of interfering point sources present in the acoustic scene.
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(a) Average weighted ILD errors (Equation (3.12)).
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(b) Average weighted IPD errors (Equation (3.13)).

Figure 3.5: The proposed methods compared to the existing methods in terms of average weighted ILD and IPD errors for β = 24 dB
and varying number of interfering point sources present in the acoustic scene.
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(a) Average SNRgains (Equation (3.9)) compared to existingmeth-
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Figure 3.6: The proposed methods compared to the existing and random methods in terms of average SNR gains for β = 24 dB and
varying number of interfering point sources present in the acoustic scene.
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(a) ILD error with 5 interferers present, with varying β.
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through 5), with varying β.

Figure 3.7: The average ILD error of the proposed methods for Lrr = 50 and varying β.
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Figure 3.8: The optimality gap of the proposed methods for Lrr = 50.
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(a) Average SNR gains (Equation (3.9)) for β = 10 dB.
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(b) Average SNR gains (Equation (3.9)) for β = 24 dB.

Figure 3.9: The proposed methods compared to the existing methods in terms of average SNR gains for varying number of interfering
point sources present in the acoustic scene and α = 106.
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(a) Average weighted ILD errors (Equation (3.12)).
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(b) Average weighted IPD errors (Equation (3.13)).

Figure 3.10: The proposed methods compared to the existing methods in terms of average weighted spatial cue errors for varying
number of interfering point sources present in the acoustic scene, β = 10 dB and α = 106.

To further investigate the influence of the parameter β, Figure 3.7 shows how the average ILD error
changes for different values of β. The figures clearly show that for reliable spatial cue preservation, the
threshold β should be strict enough, or the proposed method will trade-off too much spatial cue preserva-
tion for better noise reduction. With only few sources binaurally constrained, the potential spatial cue errors
grow, because of effects described in [7]. In summary, the binaurally unconstrained sources get projected
to a linear combination of binaurally constrained RTFs. The closer a binaurally constrained source is to a
binaurally constrained RTF, the lower the expected error will be. Hence a low amount of binaurally con-
strained RTFs can increase the expected spatial cue errors. Additionally, Figure 3.8a shows the optimality
gap increases for increasing β as well, though it stays comparatively small. This can be attributed to the
fact that, for a strict value of β, larger continuous values of p̂ become more prevalent to satisfy the power
constraint in Equations (2.54c) and (2.55c). Due to this, feasible rounding results may contain more 1s than
necessary. Figure 3.8 also shows that with increasing total noise present or increasing dimension of p, and
increasing values of β, the optimality gap of proposed method 1, using matrix regularisation, grows faster
than that of proposed method 2, using output interferer power over-estimation. This is theorised to be due to
the relaxation parameter ε in Equation (2.54b), which is further discussed in Section 4.1.1.

With up to nine interferers present in the acoustic scene
To further show the theoretical validity of the proposed methods, the number of interfering point sources in
the acoustic scene is increased to a maximum of 9, before evaluating the performance for PRTFs. These
experiments can show if the proposed methods still work when the JBLCMV is no longer able to binaurally
constrain all interferers present in the acoustic scene. The maximum number of interferers that the JBLCMV
can constrain is 5 when 4 microphones are used. Even though the JBLCMV cannot constrain all the sources
present in the scene, it is included in the experiments to compare the proposed methods to. The JBLCMV
here simply constrains the 5 strongest, in terms of power, interfering point sources in each frequency bin.
This is a simplified choice to find the most important interferers to binaurally constrain and we will see that
the proposed methods outperform this simplified choice.

Figure 3.9 shows how the SNR gain performance of the proposed methods is better than JBLCMV still,
where JBLCMV uses simplified interferer selection as described above. Even when the value of β is stricter,
this is still the case. The optimality gap jumps up going from 5 to 6 interferers present, but does not appear to
increase further as the amount of interferers present continues to increase. When β = 24 dB in Figure 3.9b,
the SNR gain of the first proposed method, using matrix regularisation, even closes almost completely.

Interestingly, when observing the spatial cue errors in Figure 3.10, the JBLCMV with the simplified in-
terferer selection performs very poorly, while the proposed methods do not increase much as the amount
of interferers present increases. This further shows that the power constraint in Equation (2.24), through
indirectly constraining spatial cue errors, improves spatial cue performance compared to just selecting the 5
strongest interferers. This results in the proposed methods improving both the SNR gain performance and
spatial cue error performance.
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(a) Using P8 and β = 10 dB.
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(b) Using P8 and β = 18 dB.
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(c) Using P12 and β = 10 dB.
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(d) Using P12 and β = 18 dB.
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(e) Using P24 and β = 10 dB.
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(f) Using P24 and β = 18 dB.

Figure 3.11: The SNR gain of the proposed methods for α = 106, using PRTFs and a varying number of interfering point sources
present in the acoustic scene.
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(a) Weighted ILD errors.
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(b) Weighted IPD errors.

Figure 3.12: The proposed methods compared to the existing methods in terms of weighted ILD and IPD errors for P8, β = 10 dB and
varying number of interfering point sources present in the acoustic scene.

3.4.2. Using Pre-determined Relative Acoustic Transfer Functions
Next, PRTFs are used in the constraint matrix Λb. As an additional variable, the effect of the number of
PRTFs that are set up is also examined. The random selection methods are no longer considered here.
They are very inefficient in their discussed implementation to handle cases where m > 2M − 3. Also,
their behaviour, and how they are outperformed by the proposed methods has already been evaluated in
Section 3.4.1 and Figures 3.3b and 3.6b. The exhaustive search is only used for P8, where the number of
options to consider is still comparatively low.

Figure 3.11 gives the SNR gain results for all three PRTFs sets that were considered. In Figures 3.11a
and 3.11b it is clear that the proposed methods are still close to the optimal solution, though the optimality
gap has slightly increased compared to the true RTF case, in Figure 3.8. Increasing the number of used
PRTFs to 12 still yields expected results, with slightly lower, but very similar, SNR gains as with P8. When
24 PRTFs are used however, it is clear that proposed method 2 no longer functions properly. This is espe-
cially clear when comparing Figures 3.11b and 3.11f, where proposed method 2 achieves higher SNR gains
than the exhaustive search in Figure 3.11b. This means the power threshold relaxation from Section 2.2.3
was likely used heavily. This is due to the approximate over-estimation of the output interferer power, in
Equation (2.55c), being a poor over-estimation when m� 2M − 3.

Proposed method 1 however has very consistent SNR gains for the different PRTF sets. Only when the
amount of interfering point sources present in the scene is low, the performance goes down for the larger
PRTF sets. This is due to the power constraint relaxation in Equation (2.54c), which will add the relaxation
parameter ε to the power sum more often when the total amount of virtual interferers present is higher. When
there are few actual interferers present, this causes more PRTFs to be selected for spatial cue preservation
than might be necessary for the unrelaxed power constraint, Equation (2.16c). There is a discussion on the
relaxation parameter ε specifically in Section 4.1.1.

The spatial cues error when using PRTFs is expected to be higher, as an interfering point source will only
be preserved spatially if its azimuth angle corresponds with the azimuth angle of a binaurally constrained
PRTF. The locations of interfering point sources is chosen such that some correspond to PRTF azimuth
angles, and some do not. Regardless of that, which PRTFs are binaurally constrained is variable, so spatial
cues errors are expected. Figure 3.12 confirms these expectations. Since the maximum allowed number of
binaurally constrained sources is 2M − 3, increasing the number of PRTFs does not improve the spatial cue
errors as much as in [7], though they do improve slightly. It should be noted that proposed method one also
performs better here, following the trend of the exhaustive search, while staying below it, as expected and
desired.

3.4.3. True RTFs compared to PRTFs
Figure 3.13 provides a comparison of two experiments, one using true RTFs and the other using PRTFs,
that are otherwise equivalent. When using PRTFs, the optimal SNR gain drops, as do those of the proposed
methods. The optimality gap also increases, though in general the trend of the exhaustive search is followed.
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(a) Using true RTFs. Figure 3.3a repeated.
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(b) Using 8 PRTFs. Figure 3.11a repeated.

Figure 3.13: The proposed methods compared to the existing methods in terms of average SNR gains for β = 10 dB and varying
number of interfering point sources present in the acoustic scene.
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Figure 3.14: The behaviour of the proposed methods for different values of Lrr .

It does confirm the suspicion that the optimality gap increases with the length of p. Both proposed relaxations
suffer from this, though, as discussed in Section 3.4.2, proposed method 2 starts to show very poor perfor-
mance once the number of PRTFs increases more. The relaxation of proposed method 1 could be improved
to lessen the increasing optimality gap by tuning the parameter ε, which is discussed in Section 4.1.1.

3.4.4. Randomised Rounding
To evaluate the proposed methods further and to be able to comment on the performance of randomised
rounding in this application, the number of randomised rounding iterations needed to come to a feasible
solution were evaluated for the two proposed methods, for different parameter settings.

Figure 3.14a shows how the optimality gap changes when different values of Lrr are used in Algorithm 2.
The expectation was that the optimality gap would shrink as Lrr got larger. What is observed is however
that there is only negligible gains when Lrr increases and purely due to the randomness, the optimality gap
might even grow slightly for larger Lrr.

Looking at the number of random rounding iterations to come to a feasible solution, seen in Figure 3.14b,
it is immediately obvious that the first proposed method performs worse in terms of distribution of the values
of p̂?. It should also be noted that the amount of iterations needed to come to a feasible solution, as Lrr
increases, barely decreases. It should be noted that attempts that did not result in a feasible solution after
krr iterations have not been counted in this average. This is something that happened rarely, but because
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of the large value of krr influenced the average significantly. Considering that each iteration of rounding is
computationally more complex when Lrr is larger, it may be beneficial to keep Lrr small. For this reason,
most results presented in the chapter are generated using Lrr = 10.

More sophisticated random rounding methods may improve the performance in terms of number of iter-
ations needed, as discussed in Section 4.3.1.



4Discussion
This thesis set out to find a method to answer, and solve, the question: “When performing joint binaural lin-
early constrained minimum variance beamforming, can performance in terms of noise reduction and spatial
cue preservation be improved by lifting constraints on interferers, if they are deemed inaudible after process-
ing?”

A method of interferer selection for preservation of spatial cues, based on a simple audibility measure
has been proposed, with two convex optimisation problem statements to find the approximately optimal
constraint subset efficiently. Additionally, these methods allow an interferer subset to be found that can be
constrained by the JBLCMV, even when the full set of interferer transfer functions is larger than the JBLCMV
can normally constrain. This allows the JBLCMV to be used with PRTFs, of which there should be a relatively
larger amount for good results, more than can typically be handled by the JBLCMV.

Finding the best interferer subset for the JBLCMV to constrain when the full set of interferers has less
than or equal to 2M − 3 transfer functions is feasible with search methods, since the amount of options to
consider is limited. When using PRTFs however, this is no longer feasible. For example, when considering
only the horizontal plane, with uniformly spaced PRTFs 15° apart and 4 microphones, the number of options
to consider is already 55455. Considering elevation and/or more tightly packed PRTFs will quickly make this
infeasible, if it was not already. The amount of options that exists is given by

N =
m!

(2M − 3)!(m− 2M + 3)!
+

m!

(2M − 4)!(m− 2M + 4)!
+ · · ·+ m!

m!
. (4.1)

In contrast, the proposedmethods use semi-definite programmingmethods to be solved, which can be solved
in polynomial time [22].

4.1. First Proposed Method
The first proposed relaxation of the initial optimisation problem in Equation (2.1) uses two semi-definite
relaxations and a matrix regularisation to make the problem convex. It adds an error on the diagonal of the
selection matrix (I− diag(p)) to allow the Schur complement to exist, such that the semi-definite relaxation
can be made, as described by Equations (2.26) and (2.27).

The method has been shown to approximate the optimal solution, given by the exhaustive search method,
well when using both true and pre-determined RTFs. While the optimality gap was on average slightly higher
for this method than for the second proposed method when r ≤ 2M − 3, the method showed consistent
performance when a larger number of PRTFs was introduced. It is expected that the performance of this
method can be further increased by tuning the relaxation parameter ε, as discussed in Section 4.1.1.

4.1.1. The Relaxation Parameter, ε
The relaxation parameter adds a small error to the power constraint in Equation (2.16c). Through small-scale
experiments, it has been observed that the chosen value of ε can have a significant effect on the solution
vector found. Choosing it too small causes all selector values to be extremely similar in value, while choosing
it too close to 1 causes the error to be added to the power constraint to be too large. For the purpose of the
simulation experiments in Chapter 3, a value for ε which performed nicely has been found empirically. What
the optimal value of ε would be however, is still unknown.

When the threshold of the power constraint is strict and/or the total amount of noise is large, values that
are found for the selection vector p̂ are again very close together. In those specific cases, adjusting the value
of ε can again allow values for p̂ that are more similar to the solutions provided by the exhaustive search.
This implies that the value of ε is somehow related to the total amount of noise and the threshold itself, or
perhaps to the condition number of the matrix in Equation (2.54c). Researching this relation would likely
make this proposed relaxation more reliable.
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4.1.2. Using Pre-determined Relative Acoustic Transfer Functions
When this proposed method is implemented using PRTFs, the performance changes little, besides the nor-
mal performance differences that are expected when going from true RTFs to PRTFs, in particular due to
steering vector mismatches. The most notable performance difference comes from the power threshold re-
laxation from Section 2.2.3. The beamscanning method that is used will assign a power to each PRTF that
is set up, even if it is not associated with or near a true interfering point source. When there are 24 PRTFs
and each of them has some power, the amount of binaurally unconstrained interferer power can seemingly
be very large. Another method of directional power estimation might provide more accurate power for each
of the PRTFs, such that the PRTFs that are further removed from true interferers get an even lower power
estimation assigned to them. Otherwise, a high penalty weight α will at least ensure the threshold is crossed
as little as possible.

Another consideration might be to implement a linear penalty term instead of a quadratic one as proposed
in Section 2.2.3. Linear penalty terms are typically implemented when a constraint may not be violated at
all, while a quadratic penalty will typically allow small violations. In this context the quadratic term was
chosen specifically because violating the threshold is expected to be inevitable, yet large violations should
be prevented in the interest of spatial cues preservation.

Furthermore, the aforementioned steering vector mismatches do cause a new issue that is particular to
both proposed methods. Since the power is only estimated in the directions of the PRTFs, feasibility is only
checked with those powers and directions. The actual amount of binaurally unconstrained interferer power
might be larger. The true feasibility cannot be checked however and as such this is a necessary concession
that needs to be made when using PRTFs.

4.2. Second Proposed Method
This proposed method simplifies the optimisation problem in Equation (2.6) by using a fixed filter expression
to determine interferer power at the output of the beamformer. This leads to a smaller LMI in the final optimi-
sation problem, Equation (2.55), and better distributions of the values in p̂?. The use of a fixed filter has been
experimentally shown to be a good over-estimator when r orm is small. When the number of (P)RTFs in Λb

grows however, the estimation becomes worse, to the point where the performance is unreliable, as shown
by Figure 3.11e for example. This means that this method is less suited to be used with PRTFs, of which you
typically want a large number. Because of the approximate over-estimation of the binaurally unconstrained
interferer power, the spatial cues error, in particular the ILD error, that can occur is less well behaved as well.

In conclusion, this method works very well, better than the first proposed method, when the amount of
(P)RTFs in Λb is less than 2M − 3. When this bound is crossed, performance eventually drops and the
relaxation is not accurate anymore. If there is another way to estimate the worst case filter, instead of the
JBLCMV for the 2M − 3 strongest sources, this method might perform better.

4.3. Recommendations
As stated in Section 4.1.1, an expression for ε or reformulation of the LMI in Equation (2.54c) should be
found that performs better than a fixed value that was found heuristically. Also, it was mentioned that a better
method of beamscanning, or other type of directional power estimation, will be beneficial when using a large
amount of PRTFs. Following are two other subjects that could warrant further research.

4.3.1. Randomised Rounding
The randomised rounding algorithm, in Algorithm 2, that was used does not guarantee that the optimal
solution is covered by the probabilities given in p̂?. Methods exist that ensure that the optimal solution is
a possible outcome of the randomised rounding procedure. Such methods include multiplying the solution
vector by a small constant larger than 1 after a failed iteration, or adding a small constant to the solution
vector after each iteration [23]. Since, particularly with the proposed methods, when the optimal solution is
not covered, it is typically due to values of p̂? that are too small or even zero, these method might prove very
beneficial.

Consider an extremely simplified example: two interfering point sources that, after processing, each
have a power of 1. Suppose the binaurally unconstrained power threshold is 0.5, then a theoretical solution
could be p̂? =

[
0 0.5

]T . However, when performing the randomised rounding, there exists no rounded
solution that is feasible, since p? =

[
0 1

]T and p? =
[
0 0

]T lead to a binaurally unconstrained power
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of 1 and 2 respectively. These scenarios occur rarely, but they do occur and a more sophisticated method
of randomised rounding would ensure that also in these cases a feasible, or even optimal, solution can be
found.

4.3.2. Audibility Measures
Currently, audibility of sources in the proposed methods was estimated by the SNR on a per frequency bin
basis. Literature suggests that audibility can be more accurately estimated using masking principles [21].
Simultaneous masking using idealised critical bands was used to estimate the audibility of sources when
determining ILD and IPD weights. Using this principle in the optimisation problem as well might improve
spatial cues error performance of the proposed methods. This would require redefining the optimisation
problem for critical bands instead of per frequency bin, though this should be a trivial step.

In Section 2.3.1, a minimum threshold value was proposed to compensate for not taking these additional
masking effects into account. Setting up better constraints for these masking effect using psycho-acoustic
theories would likely result in more accurate binaurally unconstrained noise thresholds.

More importantly, the simultaneous masking principle that was used to evaluate the methods only con-
siders tone versus noise. In the problem discussed in this thesis, there are multiple sources: the target,
interferers and noise. Additionally, there is non-simultaneous masking, which is to say, masking of tones
in the current time frame by tones or noise in previous time frames, and interband masking, masking that
happens across different critical bands.

It is also difficult to relate the objective measure that is the weighted average ILD and IPD from Sec-
tion 3.3.2 to perception. Intuitively, the BMVDR should be expected to have the worst spatial performance,
since it collapses all sources to the target ATFs. It is however commonly observed that the weighted average
ILD for the proposed methods is higher than that of the BMVDR. What exactly the means for the perception
of the acoustic scene is unclear without extensive listening tests and more realistic simulations. It should
be noted though, that the observed weighted average IPD error of the proposed methods were below those
of the BMVDR, as expected. Additionally, literature suggests that the interaural time differences are more
important to localising sound overall, but especially in lower frequencies [24, 25]. Using this information in ob-
jective measures for sound localisation could help show the objective performance of binaural beamformers
more clearly, which in turn can help in developing better beamformer methods.





Glossary
The next lists describe several symbols and abbreviations that are used within the body of the document.
Typically, boldface uppercase symbols indicate matrices, boldface lowercase symbols indicate vectors and
other symbols are scalars. The values and equations associated with symbols in this list are those that are
used for the majority of this work.

Abbreviations
ATF Acoustic Transfer Function.

AWGN Additive White Gaussian Noise.

BMVDR Binaural Minimum Variance Distortionless Response [3]

CPSD Cross Power Spectral Density.

DFT Discrete Fourier Transform.

GBLCMV General Binaural Linearly Constrained Minimum Variance.

HAD Hearing Assistive Device.

ILD Interaural Level Difference.

IPD Interaural Phase Difference.

ITD Interaural Time Difference.

ITF Interaural Transfer Function.

JBLCMV Joint Binaural Linearly Constrained Minimum Variance [4].

LCMV Linearly Constrained Minimum Variance.

PRTF Pre-determined Relative acoustic Transfer Function.

RTF Relative acoustic Transfer Function.

SNR Signal to Noise Ratio.

SSGN Speech-Shaped Gaussian Noise.

WGN White Gaussian Noise.

Constants and Parameters
α Power threshold penalty weight.

β Minimal desired binaurally unconstrained SNR. The SNR of the target point source over the binaurally
unconstrained interfering point sources.

ε Power constraint relaxation parameter for proposed method 1.

c Generic power threshold parameter.

kr Maximum number of rounding iterations. 1000 iterations

L Number of LCMV constraints.
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Lrr Amount of random rounding realisations to try each iteration of Algorithm 2

M Number of microphones on the left and right HAD combined. 4 microphones

m Number of PRTFs used.

r Total number of interfering point sources.

Indices
i Interfering point source index.

j Microphone index.

k Frequency bin index.

Number Sets
C Set of all complex numbers.

H Hermitian matrices.

R Real numbers.

S+ Positive semi-definite matrices.

S++ Positive definite matrices.

Operators
(·)H Conjugate transpose.

diag(·) Provides a diagonal matrix with the elements of (·) on the main diagonal.

λmax(·) The largest eigenvalue of (·)

λmin(·) The smallest eigenvalue of (·)

‖·‖0 l0-“norm”, more accurately called the cardinality. The number of non-zero elements.

‖·‖1 l1-norm.

‖·‖2 l2-norm, also called the Euclidean norm.

� The Hadamard product, also known as the entrywise product.

(·)? Optimal value.

? Convolution.

E[·] Expected value.

Other Symbols
p̂ The continuous selection vector. A relaxation of p. p̂ ∈ [0, 1]r

E ILDi ILD error of the ith interferer. E ILDi =
∣∣∣ILDout

i − ILDin
i

∣∣∣
E IPDi IPD error of the ith interferer. E IPDi =

|IPDout
i −IPDin

i |
π

ILDin
i Input ILD of the ith interferer. ILDin

i =
∣∣∣ITFin

i

∣∣∣2
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ILDout
i Output ILD of the ith interferer. ILDout

i =
∣∣ITFout

i

∣∣2
IPDin

i Input IPD of the ith interferer. IPDin
i = ∠ITFin

i

IPDout
i Output IPD of the ith interferer. IPDout

i = ∠ITFout
i

ITFin
i Input ITF of the ith interferer. ITFin

i = biL
biR

ITFout
i Output ILD of the ith interferer. ITFout

x =
wH

L biR

wH
RbiR

ITFin
x Input ITF of the target point source. ITFin

x = aL
aR

ITFout
x Output ITF of the target point source. ITFout

x =
wH

L a

wH
R a

B̃ Stacked interfering point source ATFs/RTFs matrix. B̃ =
[
BH
L BH

L

]H ∈ C2M×r

P̃ Binaural diagonal block CPSD matrix for all disturbances. P̃ =

[
P 0
0 P

]
∈ C2M×2M

P̃y Binaural diagonal block CPSD matrix for the recorded signals. P̃y =

[
Py 0
0 Py

]
∈ C2M×2M

Λ Constraint matrix containing the constraint to preserve the target point source and all potential con-
straints to preserve the spatial cues of the (virtual) interfering point sources.

Λ =
[
Λa Λb

]
∈ C2M×(r+2)

(
∨ C2M×(m+2)

)
Λa JBLCMV constraint matrix for preservation of the target point source. Λa =

[
a 0
0 a

]
∈ C2M×2

Λb JBLCMV constraint matrix for preservation of the spatial cues of the (virtual) interfering point sources.
Λb ∈ C2M×r(∨ C2M×m)

Φ Selection matrix that selects columns and elements from Λ and f , respectively, depending on p.

Φ =

[
I2 0
0 Φp

]
Φp Selection matrix that selects columns and elements from Λb and fb, respectively, depending on p.

ΦpΦT
p = diag(p) , ΦT

pΦp = I‖p‖0

0x All zeros vector of length x.

1x All ones vector of length x.

a Stacked ATF vector of the target point source. a =
[
a1 a2 · · · aM

]T ∈ CM

B Matrix containing all interfering point source ATFs. B =
[
b1 b2 . . . br

]
∈ CM×r

bi Stacked ATF vector of the ith interfering point source. bi =
[
bi1 bi2 · · · biM

]T ∈ CM

bL Vector containing the transfer functions of all interfering point sources to the left reference micro-
phone. bL =

[
b1L b2L . . . brL

]
∈ Cr

biL Left relative acoustic transfer functions of the ith interferer. biL = bi

biL
∈ CM

biR Left relative acoustic transfer functions of the ith interferer. biR = bi

biR
∈ CM

C GBLCMV constraint matrix. C ∈ C2M×L

f GBLCMV response vector. f ∈ CL

fa JBLCMV response vector for the preservation of the target. fHa =
[
aL aR

]
∈ C2
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fb JBLCMV response vector for the preservation of the spatial cues of the (virtual) interfering point
sources. fb = 0r ∈ Cr(∨ fb = 0m ∈ Cm)

Ix Identity matrix of size x× x.

ni The ith interfering point source at the microphone array. ni = biui ∈ CM

Pv CPSD matrix of the additive uncorrelated noise. Pv = E
[
vvH

]
∈ CM×M

P CPSD matrix of all disturbances. P =
∑r
i=1 Pni

+ Pv ∈ CM×M

p The binary selection vector that selects (virtual) interfering point sources to keep and remove in the
JBLCMV solution. A 1 keeps the source and a 0 removes it. p ∈ {0, 1}r(∨ {0, 1}m)

Pni
CPSD matrix of the ith interfering point source. Pni

= pui
bib

H
i ∈ CM×M

Px CPSD matrix of the target point source. Px = psaaH ∈ CM×M

Py Received signal CPSD matrix. Py = Px + P ∈ CM×M

U Diagonal matrix containing the interfering point source magnitudes on the main diagonal, scaled
appropriately to the RTFs used. U = diag(u) diag(|bL|) ∈ Rr×r

u Stacked interfering point source vector. u =
[
u1 u2 · · · ur

]T ∈ Cr

v Stacked additive uncorrelated noise vector. v =
[
v1 v2 · · · vM

]T ∈ CM

wL Beamformer coefficients for the left ear. wL ∈ CM

wR Beamformer coefficients for the right ear. wR ∈ CM

wp The JBLCMV solution for the interfering point source set given by p.

wp = P̃−1ΛΦ
(
ΦTΛHP̃−1ΛΦ

)−1
ΦT f ∈ C2M

wBM The BMVDR filter.

wJB The JBLCMV filter that preserves the spatial cues of all r (virtual) interferers, or the 2M−3 strongest
(virtual) interferers, if there are more than 2M − 3.

x Target signal at the microphone array. x = as ∈ CM

y Stacked received signal vector in one frequency bin. y =
[
y1 y2 · · · yM

]T ∈ CM

aj The ATF of the target point source to the jth microphone.

aL ATF of the target source to the left reference microphone.

aR ATF of the target source to the right reference microphone.

bij The ATF of the ith interfering point source to the jth microphone.

ps Power spectral density of the target point source.

pui Power spectral density of the i interfering point source.

s The target point source.

ui The ith interfering point source.

vj Additive uncorrelated noise on the jth microphone.

yj [k] The Fourier coefficient in the kth frequency bin of the received signal at the jth microphone.
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