
Visualization Methods for
Understanding Deep Neural
Networks

Laura Jacquemod

Te
ch
ni
sc
he

Un
iv
er
sit
eit

D
elf
t



VISUALIZATION METHODS FOR
UNDERSTANDING DEEP NEURAL

NETWORKS

by

Laura Jacquemod

in partial fulfillment of the requirements for the degree of

Master of Science
in Computer Science, Digital Media Technology track

at the Delft University of Technology,
to be defended publicly on Tuesday August 29, 2017 at 1:30 PM.

Student number: 4600231
Supervisor: Dr. A. Vilanova
Thesis committee: Prof. Dr. E. Eisemann, TU Delft

Prof. D. Tax, TU Delft
Dr. B. Gebre, Philips Research

This thesis contains confidential information and therefore cannot be made public on any site, nor can be distributed without
explicit permission from Philips.

The work in this thesis was carried out at Philips Research in Eindhoven, Netherlands.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/


Contents

1 Introduction 1

2 Background 2

2.1 Multi-Layer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Related Work 3

3.1 Local Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Inversion Visualization • Feature Visualization • Focus Visualization • Conclusion

3.2 Global Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Data 6

5 ConvViz 7

5.1 Requirement analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.2 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6 Local Visualization 8

6.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6.2 Feature visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6.3 DeconvNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Method • Visualization

7 Global Visualization 12

7.1 Histogram of Activations and Plot of Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7.2 Dimensionality Reduction on Filters’ Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7.3 Dimensionality reduction on images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

8 Link between Global and Local Visualizations 14

9 Results: Pre-processing 14

10 Results: Visualization 15

11 Generalization: Application to the IMAGENET data 18

12 Conclusion and Future Work 19

Acknowledgments 21

References 21

Appendices 22

A Related Work - Global Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

B Feature Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

C Computation of the effective filter size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



List of Figures

1 Example of a Neural Network with an input layer of 3 inputs, two hidden layers of 4 neurons each and an

output layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Typical architecture of a CNN, with two convolutional layers [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Examples of inversion visualization for the 96 first-layer filters on the IMAGENET classification task [2] . . . . . . 4

4 Illustration of deconvolution and unpooling operations [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5 Methodology for performing the backward-pass for different visualization approaches [4] . . . . . . . . . . . . . . 4

6 Examples of feature visualization on the 3r d layer of a Stacked-Denoising Auto-Encoder [5] . . . . . . . . . . . . . 5

7 Example of focus visualization, on the original image, for the top 25 filters of a network trained for anatomy

classification [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

8 Example of representation visualization with inter-layer evolution [7] . . . . . . . . . . . . . . . . . . . . . . . . . . 5

9 Example of a frame from a selected example video used throughout the report . . . . . . . . . . . . . . . . . . . . 6

10 Design of ConvViz for local visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

11 Design of the ConvViz for global visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

12 For a chosen filter: its weights, its convolution with the input image and the output of the layer after adding

the bias and passing through the ReLU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

13 Feature visualization of the top filter from the sixth layer with the object localization network . . . . . . . . . . . . 9

14 Feature visualization for 15 randomly selected filters, from the last convolutional layer for the image classifica-

tion task, starting from a random image. Black filters are filters that did not resolve the noisy inputs . . . . . . . . 9

15 Feature visualization for 15 randomly selected filters, from the last convolutional layer of the network trained

for image classification, starting from the mean of four randomly selected images . . . . . . . . . . . . . . . . . . 10

16 Description of the consecutive steps performed for focus visualization. Conv. stands for Convolutional, Pool.

for Maxpooling and FC for Fully Connected. (a) User selection of a specific layer with a specific input already

forward passed (b) For the selected layer, calculation of the top filter (c) Extraction of maximum values from

the activation map and setting the rest of the map to zero (d) Backward-pass of the selected maxima neurons

to the input space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

17 Backward pass (a) with square filling and zoom of one activation as well as (b) without square filling . . . . . . . 11

18 Backward-pass of multiple layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

19 Histogram of the maximum activation for each filter of the sixth layer, cumulated over 20 inputs . . . . . . . . . . 12

20 Scatterplot of the percentage of negative weights for each filter against its energy for the sixth layer . . . . . . . . 12

21 PCA on the weights of each filter of the sixth layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

22 Comparison of the closest image, in terms of Euclidean distance, with and without ordering of the activation maps13

23 Dimensionality reduction, using t-SNE, on the activation maps of the 6th layer for each input, in order to see

clustering in the inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

24 Local visualization of two filters chosen through global visualization . . . . . . . . . . . . . . . . . . . . . . . . . . 14

26 Histogram of activations of the third convolutional layer for the input of Fig. 9 . . . . . . . . . . . . . . . . . . . . . 16

25 Screenshot of all the local visualizations from ConvViz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

27 Dimensionality reduction on all filters from the eighth layer, with a cluster of filters circled . . . . . . . . . . . . . 17

28 Plot of the evolution of the training loss during training of the new shallower network . . . . . . . . . . . . . . . . 17



29 Plot of the evolution of training and validation accuracy measures during training of the new shallower network 17

30 Local visualization of a rabbit image from IMAGENET with a VGG16 network . . . . . . . . . . . . . . . . . . . . . 18

31 Dimensionality reduction on the 512 filters from the twelfth convolutional layer . . . . . . . . . . . . . . . . . . . 18

32 (a) Dimensionality reduction on the filters from the 2nd convolutional layer, with selected filters surrounded

by a red box. (b) Input optimization of the filters selected in (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

33 Histogram of activations for a very wide network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

34 Dimensionality reduction on the activation maps of all inputs for the 1st (a) and the 5th (c) convolutional

layers. Visualization of some inputs selected (circled by red boxes) (b) for the 1st layer and (d) for the 5th layer. . 19

35 Example of distribution of weights, visualized with TensorBoard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

36 Example of graph visualization with CNNVis [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

37 Feature visualization of 42 randomly selected filters from the second layer of the network trained with

IMAGENET, starting from random image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

38 Feature visualization of the 32 filters from the last layer of the network trained with object localization, starting

from random image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

39 Feature visualization of the 32 filters from the last layer of the network trained with object localization, starting

from an input of the validation set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

40 Feature visualization of 50 randomly selected filters from the last layer of the network trained with IMAGENET,

starting from dog image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

41 Feature visualization of the 32 filters from the last layer of the network trained with object localization, starting

from mean image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

42 Feature visualization of 50 randomly selected filters from the last layer of the network trained with IMAGENET,

starting from mean image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

43 Feature visualization of 50 randomly selected filters from the last layer of the network trained with IMAGENET,

starting from mean image, looping through initializations if necessary . . . . . . . . . . . . . . . . . . . . . . . . . 25

List of Tables
1 Network configuration: the convolutional layers’ parameters are denoted as ’conv<receptive filter size>-

<number of filters>’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Summary of Information Extracted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Time required for data extraction for the visualization, per network, using CPU . . . . . . . . . . . . . . . . . . . . 15

4 Number of filters used in the network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17



Visualization Methods for Understanding Deep Neural
Networks
Laura Jacquemod1
E-mail: ljacquemod@student.tudelft.nl

Abstract
Deep neural networks currently achieve state-of-the-art performance in the field of machine learning for tasks such as
image classification and regression. However, because they act as “black boxes”, they are hard to understand and
improve. In this thesis, we present ConvViz, our visualization toolbox, allowing one to better understand, diagnose and
refine convolutional neural networks. ConvViz is composed of state-of-the-art tools aiming at visualizing some parts of
the network but also of tools to envision the network as a whole. For example, the role of each filter can be better
understood thanks to a local visualization: input optimization using backpropagation in order to visualize the features
learned. The variety of tools but more importantly the possible interactions make the toolbox useful for understanding.
To evaluate this toolbox, the improvement for a specific use case was analyzed. The improvement is defined by both
the increase in the accuracy measure as well as the decrease in time complexity provided by a new network defined after
analyzing the visualizations of the initial network. Moreover, the generalizability of the toolbox has been examined.
The use case that has been predominantly studied in order to develop ConvViz is bounding box localization for objects
on cardiovascular images. In fact, cardiovascular diseases can cause severe events like heart attacks or strokes. To
avoid such events, an object can be placed in the arteries to open a blockage. Because an error could be lethal, very
precise localization of this object needs to be provided to the doctors. While Philips already has a well-performing
network, improvements are opportune and a need for understanding the decisions of the network is present. After
analyzing the visualizations provided by ConvViz, it has been possible to increase the accuracy measure of the previous
best-performing network by 5%. This increase in accuracy goes hand-in-hand with a decrease in the computational
complexity by 95%, allowed by the removal of over 60% of the convolutional filters.
Finally, the IMAGENET classification task was considered and seeing the analysis made from the different tools, it has
been concluded that ConvViz is well generalizable.

Keywords
Deep Learning — Neural Network — Visualization — Backpropagation — Dimensionality reduction — Medical imaging

1Computer Graphics & Visualization Department, Delft University of Technology, The Netherlands

1. Introduction
Deep Neural Networks (DNNs) have succeeded in provid-
ing breakthrough results in many pattern recognition tasks
like object detection as well as image classification. One
of their first ground-breaking results was achieved with Im-
ageNet [2], a deep Convolutional Neural Network (CNN),
which succeeded in reducing of over 10% the best published
error rate at the time. Neural networks have also been re-
cently used in order to show the preeminence of machine
learning in terms of intelligence compared to humans, with,
for example, the game of Go, usually described as the most
challenging classic game for artificial intelligence [9].

The issue with using such networks comes from the fact
that the improvement of DNNs is not straightforward. In
fact, neural networks are black boxes due to the fact that
the role of each component as well as the mechanism of
the whole network, with its enormous number of parame-
ters, are unclear. A common way of improving DNNs is by
iterating many trial-and-error experiments. Actually, scien-
tists make changes to their networks such as modifying the

number of layers, the number of filters per layer or the acti-
vation function in order to see the influence on the results
to reduce the error. As these decisions are made without
guidance or knowledge of the internal performance, this
method is extremely time-consuming. In fact, running a
whole network can take several days. To analyze the inter-
nal performance of the network and guide a new design, it
is, therefore, necessary to use visualization tools. In fact,
those tools can help refine well-performing networks, but
also diagnose why networks have failed to converge during
training as well as understand the decisions made by neural
networks.

Research in deep learning is currently focusing on this
area. Visualization methods can be separated into two clus-
ters. Firstly, visualizations of a particular part of the network,
such as a neuron or a filter’s weights, with tools such as
back-propagation or input optimization, defined hereafter
as local visualization, can, for instance, help understand the
role of each neuron. Secondly, visualizations of the whole
network can be gathered, defined as global visualization, in



Visualization Methods for Understanding Deep Neural Networks — 2

order to see correlations between filters or layers for exam-
ple. ConvViz, the toolbox developed during this thesis, is
bringing together state-of-the-art visualizations from both
types, with interactivity in order to understand networks
better and to have more certainty on the conclusions made.

In order to see how straightforward each visualization
is and how big the accuracy increase can be, a main case,
from Philips Research, based on cardiovascular diseases,
has been used. In fact, those diseases represent the leading
cause of death worldwide. Diseases such as heart valve prob-
lems, strokes or heart attacks are often related to atheroscle-
rosis, a condition that develops when a substance builds
up in the walls of the arteries. This condition needs to be
spotted as fast as possible and then be treated in order to
avoid a decrease in blood circulation. During any opera-
tion, as well as for inspections in order to see the evolution
of the blockage and reduce the revascularization rate, the
object injected needs to be localized on 2D X-ray images.
While the localization can be done after the X-ray scan for
inspection, it needs to be performed in real-time during
an operation, adding to the obvious constraint of precision.
While Philips had already developed a well-performing net-
work, an understanding of its decision was needed as well
as an improvement of accuracy.

This report provides a description of the two types of
visualization methods developed, as well as their evaluation
according to use cases. The paper is organized as follows:
Section 2 provides a background on neural networks and
Section 3 describes the state-of-the-art in visualization of
networks. Then, the dataset and networks used for the tests
are presented in Section 4 as well as the requirements for vi-
sualization (Section 5). Sections 6 and 7 describe each type
of visualization and Section 8, the interactiond between
both. After analysis of the results from the cardiovascular
use case use case in Sections 9 and 10 and the determina-
tion of the generalizability of the toolbox by testing different
use cases and, therefore, networks (Section 11), we con-
clude that while local visualization is useful for improving
and understanding a network, it is necessary to also con-
sider global visualization for better understanding and big-
ger refinement of the network. Finally, section 12 discusses
the future possibilities and challenges.

2. Background
The most common problems that are to be solved by Neural
Networks are pattern recognition tasks such as image classi-
fication or regression. For these tasks, good feature extrac-
tors are usually implemented. Features are “good” if they are
discriminating special aspects while being invariant to other
irrelevant aspects of the image. While non-generic classi-
fiers fulfill this condition, they do not generalize well. One
solution is to design feature extractors by hand, a task that
is time-consuming, requiring a lot of domain expertise and
specific knowledge for each application. Another solution is

Figure 1. Example of a Neural Network with an input layer
of 3 inputs, two hidden layers of 4 neurons each and an

output layer

to provide a general-purpose procedure that learns features
from the data, such as convolutional neural networks. As
described by LeCun Y. et al. [10], neural networks are com-
posed of neurons, which are warping the input space to a
new output space in a non-linear way. By iterating through
several non-linear mappings, the network becomes sensi-
tive to good features and can warp the input space to an
output space where the classes or localizations are linearly
separable. In terms of architecture, DNNs can be modeled
as graphs of neurons. A neuron is a small unit that receives
several input signals, interacts multiplicatively with each of
them according to weights, and outputs the sum of all of
them after applying an activation function that is nonlinear.

While many kinds of neural networks exist, each with
their specificities, we will introduce Multi-Layer Perceptrons
as an example to describe neural networks and we will fo-
cus our analysis on Convolutional Neural Networks (CNNs),
which have been behind recent successes.

2.1 Multi-Layer Perceptron
Not only multi-layer perceptrons but also neural networks
in general are organized in layers: the input layer, one or
more hidden layers made up of neurons and the output layer
which provides the output of the network. The different
layers are interconnected so that the outputs of neurons
become the inputs of the neurons in the following layer.
This structure is depicted on Figure 1, where each circle
represents a neuron.

For Multi-layer Perceptron networks, each layer is fully-
connected to the previous one, as it can be seen on Figure 1.
More precisely, each neuron of a specific layer gets as input
the outputs of all the neurons of the previous layer.

Mathematically, each neuron can be written as in y =
f (

∑
i

wi xi +b) where xi are its inputs, wi the weigths, b the

bias, f the activation function and y its output. Activation
functions, such as the well-known sigmoid ( f (x) = 1

1+e−x )
or ReLU ( f (x) = max(0, x)), are specific for a layer, usually
even for the whole network, and allow the warping to be
non-linear.



Visualization Methods for Understanding Deep Neural Networks — 3

From this structure, the learning process consists of find-
ing the parameters, i.e., wi and b, for each filter, given a set
of training data representative of the problem. In fact, the
inputs at hand are divided into three groups:

• Training set: To optimize the network by learning pa-
rameters

• Validation set: To evaluate the network’s performance
• Test set: To get the accuracy in the ”real world”

Using the training set and its known labels, the minimum of
the error function in the weight space is looked for using the
method of gradient descent, starting from random weights
and no bias or, in the case of fine-tuning, previously found
values.

2.2 Convolutional Neural Networks
Convolutional Neural Networks, which consider that inputs
are images, are composed of three different types of layers:
convolutional, max-pooling and fully connected, the last
type being the one described previously in the case of Multi-
Layer Perceptrons. Figure 2 provides an example of a typical
architecture of a CNN and will be used as a reference to
describe the different layers.

Convolutional Layers are composed of learnable filters.
Each filter, extending through the depth of its input, is slid
across the input volume and a dot product is computed be-
tween the local region of the input and the filter’s learned
weights. A local input is represented by the red square with
perspective along the depth on layer Pool1 of Figure 2. This
operation is similar to performing a multichannel image
convolution with the learned filters, hence the name of the
layer. After applying an activation function, each filter pro-
duces a 2-D activation map, each represented by one large
square, as one can see in blue on layer Conv2 of Figure 2.
Finally, the activation maps are stacked to form the out-
put of the layer, being the input volume for the next layer.
On Figure 2, the first convolution takes as an input the cat
image and has four filters while Conv2 has six filters. This
mechanism can be also interpreted as the computation of
a layer of neurons: each entry of the output volume is the
output of a neuron that considers only a local region of the
input and one filter.

Max-pooling layers perform a sample-based discretiza-
tion process via down sampling. The dimensionality of the
input is reduced by applying a max filter to subregions of

this input. These layers are commonly used to reduce com-
putation and to control overfitting [11].

All types of neural networks share a common issue: they
work as black boxes because of the enormous number of
parameters involved in learning. Typically, a neural net-
work has tens of layers, each consisting of hundreds of neu-
rons, which are connected by millions of connections. The
problem of understanding neural networks comes from the
lack of information on each of these components as well as
from the massive number of components, making it hard
to perceive the overall structure and mechanism of neural
networks.

For more thorough description of neural networks, see
the extensive review by LeCun Y. et al. [10].

3. Related Work
As introduced previously, in order to better understand, di-
agnose and refine neural networks, visualization can be
used. The state-of the-art visualizations in deep learning
can be distinguished into two major types. Firstly, local vi-
sualization, or the visualization of a particular part of the
network, such as a neuron or a filter’s weights. This visual-
ization can help for diagnosis; for example, in order to spot
”dead” filters, never activating. Secondly, visualization of the
whole network, called hereafter global visualization, can be
used to see correlations between filters or layers for instance,
important for refinement of the network and understanding
of how the network works on a larger scale.

3.1 Local Visualization
As the issue faced by neural networks is both the under-
standing of each local element such as filters or neurons
and of the overall structure, one first idea is to visualize each
part separately.

3.1.1 Inversion Visualization
To understand a network, one can visualize the weights
of each filter [5]. Seeing that the first layer is a weighted
combination of the input space, the weights can be visu-
alized and interpreted directly, such as edge detectors, as
seen extensively on Figure 3. Furthermore, well-trained net-
works usually display smooth and unimodal filters. If on
the contrary the patterns are noisy, it is an indicator that the

Figure 2. Typical architecture of a CNN, with two convolutional layers [1]



Visualization Methods for Understanding Deep Neural Networks — 4

network might not have been trained enough, or that there
is overfitting [11]. For deeper layers, the visualization is not
straightforward to interpret because the filters are as deep
as the number of filters present in the previous layer. It is
still possible to have a similar visualization, by performing
a linear combination of the visualizations of the previous
layer’ filters to which it is most strongly connected to [12].
This method is simple but it does not take into considera-
tion the non-linearity of the activation function nor all the
filters from the previous layer, potentially removing relevant
information.

Figure 3. Examples of inversion visualization for the 96
first-layer filters on the IMAGENET classification task [2]

Hence, a deconvolution method was introduced by Zeiler
et al. [4] to visualize filters from deeper layers. A decon-
volution network, DeconvNet, inverts the data flow of the
network. Typically, a backward pass is done from the layer
of interest to the input space. Since the goal is to visual-
ize one particular filter, only its activation map is not set
to zero while the ones of all the other filters are. This layer
is the input to the deconvolution network and the output
is a probability map of the same size as the input image.
To perform the reverse actions of the CNN, DeconvNet is
composed of Deconvolutional, ReLU and Unpooling layers.
Unpooling is carried out thanks to switches saved from a
first forward pass, as shown on Figure 4 and Deconvolution
is associating each input activation to multiple outputs, out
of the different possibilities, as explained by Noh et al. [3].

Figure 4. Illustration of deconvolution and unpooling
operations [3]

Backpropagation, a gradient-based visualization, has

been introduced as a generalization of the DeconvNet, as it
can be applied to any layer, not just a convolutional one. The
difference comes from the backward pass through the ReLU
layers: while DeconvNet removes negative gradients, dis-
played as yellow locations in Figure 5, backpropagation sup-
presses neurons that had not fired during the forward pass,
depicted in pink on Figure 5. Finally, guided-backpropagation,
introduced by Springenberg et al. [13], is a combination
of both methods, backpropagating only positive gradients
through positive activations, working well without switches
and leading to reconstructions that are more accurate. De-
convNet performs better than other methods when there
are maxpooling layers, but it does not produce sharp visual-
izations for higher layers [4], on the contrary to backpropa-
gation and guided-backpropagation.

Figure 5. Methodology for performing the backward-pass
for different visualization approaches [4]

3.1.2 Feature Visualization
Each filter has a certain activation map for a specific input
image. The higher an activation, i.e., the value of a neuron,
the more the filter is reacting to the input image and, there-
fore, the more the image represents that filter. A first method
that was introduced by Erhan et al. [5] was to find the im-
ages in the dataset that would maximize a neuron related
to the filter of interest. They later introduced a generaliza-
tion [14] using the inversion method presented previously:
instead of looking at images from the input space, the input
image is optimized, starting from random noise. In that
case, not only one backward-pass is performed as in the
inversion visualization method but a succession of several
forward and backward passes in order to perform the op-
timization. An example is provided in Figure 6, with nine
random initializations per filter, on a network trained on
grey-valued handwritten digits. Even though this method
provides better results, as we can see clearly that some filters
look like pseudo-digits, both visualizations lead to the con-
clusion that each filter learns a specific feature of the image
and that the learned features have more complex structures



Visualization Methods for Understanding Deep Neural Networks — 5

for filters from deeper layers. These features are similar to
the ones manually implemented for feature-based methods
in pattern recognition.

Figure 6. Examples of feature visualization on the 3r d layer
of a Stacked-Denoising Auto-Encoder [5]

3.1.3 Focus Visualization
The deconvolution method allows one to grasp how filters
are responding to an input image, therefore, how networks
outputs are obtained. On the contrary, focus visualization
describes what information is used by the network accord-
ing to a specific input image [15]. Areas of the image that are
discriminative with respect to the output selected, either a
label or a filter, are highlighted, as it can be seen on Figure
7 with the top 25 filters of the last convolutional layer of a
network for anatomy classification. In fact, a pixel from the
input image is discriminative to a label or a filter if changing
it changes the result for the selected output highly. ”Dead”
filters can be found as the gradient will be null and no back-
propagation will be seen. As dead filters are a symptom of
high learning rates [11], it is possible to know how to refine
the network if they are encountered.

An improvement of this method is provided by Zintgraf
et al. [16]: instead of having a binary output as to whether
a pixel is discriminative for a selected output or not, it ex-
plains whether the feature is discriminative for a specific
output, against it or if it has no influence on the value of
that label or filter. Thanks to this signed feature’s relevance,
it is possible to get contextual information.

Figure 7. Example of focus visualization, on the original
image, for the top 25 filters of a network trained for

anatomy classification [6]

3.1.4 Conclusion
The methods presented can be considered as local because
they aim at understanding a specific part of the network
such as a filter or a neuron. Because the number of parts
making up a network is enormous, too many local visual-
izations should be analyzed, requiring global visualizations
for having an indication of the interactions between the
different parts, to understand and refine the network.

3.2 Global Visualization
A first approach that has been used extensively to improve
neural networks is to plot the quantitative information such
as the error rate. This method has been used by Erhan et al.
[17] in order to see the influence of pre-training on the per-
formance of the network. This allows the user to compare
networks or visualize overfitting, for example. However, this
kind of visualization does not provide qualitative informa-
tion.

For that purpose, representation visualization can be
used. Dimensionality reduction, such as t-Distributed Stochas-
tic Neighbour Embedding (t-SNE) and MultiDimensionality
Scaling (MDS), maps high dimensional datasets into lower
dimensions to be able to visualize those datasets. It is a
crucial tool for CNNs since there are up to thousands of fea-
tures. Rauber et al. [7] visualizes the relationships between
learned representations of input images by applying t-SNE
on the activation map of a particular layer of the network.
Clusters and outliers provide information on the set of in-
puts. One can also visualize the evolution “inter-layer”, with
each point being an input image, as shown on Figure 8, to
know how many layers are sufficient.

Figure 8. Example of representation visualization with
inter-layer evolution [7]

Another dimensionality reduction-based visualization
of neural networks, as in ReVACNN [18], is the 2D embed-
ding view, for a specific layer, where many parameters can
be visualized: vectorized filter coefficients, filter gradients,
activation maps as well as activation gradient maps. By
performing clustering, redundant filters can be outlined.



Visualization Methods for Understanding Deep Neural Networks — 6

A more complete overview of the state-of-the-art global
visualizations can be found in Appendix A.

3.3 Conclusion
While local visualization provides insight into a particular
part of the network, it fails to provide information on the
network as a whole, with the interactions between those
parts. Global visualization succeeds in doing so, usually
via dimensionality reduction or graph representation. This
analysis has led to ConvViz, a toolbox putting together these
state-of-the-art techniques in order to have a better under-
standing of the network.

4. Data
There are two types of data that can be visualized: the in-
put images, already pre-processed, and the trained network.
The inputs can be visualized in order to see how they are
being processed by the network, which features are consid-
ered as of interest for the network and the output can be
visualized in order to analyze the performance of the net-
work. The network itself is also of interest, with its filters,
layers, links, etc.

Concerning the input images, even though the amount
of data needed to train a neural network is problem-dependent,
the data needs to span the problem input space. This seek
for data abundance complicates the visualization, since the
more data, the more clutter in the visualization. It is true
that not all available inputs need to be visualized, but only
the ones from the validation set seeing that the aim is to
know how to tune the network, the specific goal of the vali-
dation set. In this thesis, we focus on the object localization
task, for which only 20% of the set of inputs is kept for valida-
tion. However, the abundance of input images still remains
an issue for visualization and has to be considered when
designing visualization tools.

To describe more precisely the dataset considered for
the main use case of object localization on cardiovascular
images, the inputs are 2D grey-scaled images, which are
frames, extracted from videos. Those videos are gathered
by a Philips biplane X-ray system: Allura Xper, a system
that typically records fifteen frames per second, with the
possibility to get from 3.75 to 30 frames per second. This
system has two modes:

• Navigation mode: low dose of X-ray
• Acquisition mode: high dose of X-ray

While the input images are gathered from the acquisition
mode, the localization needs to be robust and provide good
results in the navigation mode as well since the doctor
would like to have a localization also when navigating.

All of the frames contain an object, such as sternal wires,
valves or stents. Only one object is usually present per frame
and the task of the use case, for which the network has
been trained on, is to localize this object. Figure 9 shows
the example of a frame coming from the video that will be

Figure 9. Example of a frame from a selected example
video used throughout the report

shown throughout the report. As in most of the cases, only
one object with two markers is present. Figure 9 depicts a
stent and one can see two markers with a wire that is used
by scientists for manual localization. It is of importance to
note the utility of markers and the wire in order to see if the
network is focusing on the same regions of the image as a
doctor would do.

Table 1. Network configuration: the convolutional layers’
parameters are denoted as ’conv<receptive filter

size>-<number of filters>’.
Network Configuration

input (512 × 512 greyscale image)
conv3-32
conv3-32
conv3-32
maxpool2
conv3-32
conv3-32
conv3-32
maxpool2
conv3-32
conv3-32
conv3-32
maxpool2
FC-32,768

FC-250
soft-max

Concerning the network, it needs to be already trained,
with its weights and bias accessible for each layer. Even if
it is demanding, the different tools introduced in this re-
port are only of interest for trained networks. The main



Visualization Methods for Understanding Deep Neural Networks — 7

network of interest used throughout this thesis is a VGG-
style network, a network architecture first introduced by
the Visual Geometry Group for the IMAGENET challenge
[19]. The whole architecture of the network is described in
detail in Table 1. It needs to be noted that there are nine
convolutional layers, an important information seeing that
only convolutional layers are being visualized in ConvViz.

Since the aim of this thesis is to develop a visualization
toolbox in order to understand better deep neural networks
and, therefore, be able to improve them, the data, both
the network and the input images, should not influence
the effectiveness of the visualization. Hence, in order to
evaluate the generalizability of the different tools provided
by ConvViz, different networks have been visualized for the
object localization task with the same training set but also
another use case was considered with different input images
as well as networks, as described hereunder.

The second use case is, instead of localizing objects on
cardiac images, classifying natural images into different sets.
More precisely, this use case comes from the well-known
Large Scale Visual Recognition Challenge (ILSVRC) and the
network visualized is the one that won the competition in
2014 in terms of localization and arrived second for classi-
fication: the VGG-16 network [19]. For generalization pur-
poses, as localization has been dealt with thanks to the pre-
vious use case, the classification part of the network was
examined. In that case, the inputs are 2D-coloured images.
Moreover, the issue of abundance of data is even more con-
crete since the dataset is made up of over 1.3 million images
and 1,000 predefined categories such as ”leopard, Panthera
pardus” or ”Eskimo dog, husky”.

It needs to be noted that all of the networks analyzed are
convolutional networks seeing that, as explained in Section
1, they have been behind the recent successes and, therefore,
the different tools from ConvViz are focused on visualizing
convolutional layers.

5. ConvViz
ConvViz was developed because of the need to understand
the inner mechanisms of neural networks. It is a combina-
tion of existing techniques and previously available infor-
mation, for better understanding of networks. In fact, using
several techniques allows extracting more information on
the network as well as double-checking to reduce possible
errors in making hypotheses concerning the decision mak-
ing of the network at hand. Moreover, visualizations can
help see if the important parts of an image according to the
network are identical to what experts consider as important.
If it is the case, it can help users build trust with their clients
since it is possible to describe the process of decision of the
network or, if, on the contrary, the image parts are differ-
ent, one can investigate and find new areas that could be
informative for decision-making.

5.1 Requirement analysis
Thanks to discussions with CNNs developers, the following
requirements have been identified.

1 - Exploring the learned features of filters. To begin an
analysis, one needs to examine the quality of learned fea-
tures layer by layer to understand what features a network is
looking at in order to make its decisions and where potential
problems might come from. However, because a deep CNN
can have up to hundreds of layers and thousands of neurons
in a layer, it is not possible to explore all of the filters. An
ordering of filters needs to be created to provide an overview
of the learned features of the important filters only.

2 - Revealing the most important filters and their top neu-
rons. As hinted previously, an ordering of filters needs to
be introduced and, for those important filters, with specific
inputs, the maximum neurons need to be visualized. The lo-
calization of the top neurons allows understanding of which
spatial locations of the input are most important for the
network, allowing understanding of the functioning.

3 - Providing an overview of dead filters with a cause of
death. It is a common problem for neural networks to
have dead filters. Seeing that they add computation while
not being useful for the final decision, it is important to spot
them in order to either remove them or train them again.
Moreover, understanding the reason to their death is useful,
e.g., if all of their weights are negative, for understanding
how they need to be re-trained.

4 - Analyzing the correlations between filters. Another is-
sue similar to the one of dead filters is redundant filters. It
is required to be able to see the correlations between filters
in order to spot redundant ones but also to check if all the
possible features are being looked into.

5 - Linking global aspects of the network with local ones.
Global aspects, such as correlations between filters, need to
be linked with local aspects, such as the pattern learned by
filters. This link is required to get an understanding of each
aspect of the network as well as their interactions.

6 - Exploring the set of inputs. In order to construct a well-
performing network, it is essential to understand the dataset
considered. It is needed to be able to browse through the
input space and to check how the network is understanding
this space layer by layer.

5.2 System overview
We have therefore developed ConvViz according to the pre-
vious list of requirements. From a trained convolutional
network and the corresponding validation dataset as the
inputs, visualizations are extracted and the toolbox is com-
posed of two major parts:



Visualization Methods for Understanding Deep Neural Networks — 8

Figure 10. Design of ConvViz for local visualization

• Local visualization, its panel is depicted in Figure 10,
with the following tools:

– Localization of maximum neurons for selected
filters, on a specific input, following the focus
visualization method [6], area A (Requirement
2) with possibility to browse through inputs and,
for videos, to browse through frames, area F (Re-
quirement 6)

– Features learned by each filter, area E (Require-
ment 1), implementing the inversion method
[14]

– Plot of the importance of each filter, according
to a measure introduced to order filters, area D
(Requirement 2)

– Interactivity to select the layers of interest, area B
and the filters ordered according to the measure
introduced, area C

• Global visualization, depicted in Figure 11, made up
of four plots:

– Cumulated histogram of activations for each fil-
ter, to detect dead filters (Requirement 3), area
A

– Plot to understand dead filters (Requirement 3),
area B

– Correlations between filters (Requirement 4),
area C, adaptation of ReVACNN [18]

– Correlations between inputs, seen by the net-
work, layer-by-layer (Requirement 6), area D,
adaptation of the method by Rauber et al. [7]

ConvViz also needs to have a link between global and
local visualizations. It needs to be possible to select filters
from the global visualization in order to see them more
specifically with the local visualizations in order to confirm
possible hypotheses made from the first observations. This
interactivity will, therefore, satisfy requirement 5. Finally,
in order to show the visualizations to customers in an easy
manner to build trust, it is required to be able to save the
visualizations, both for videos and images, as shown with
area G.

Figure 11. Design of the ConvViz for global visualizations

6. Local Visualization
6.1 Convolution
For the first convolutional layer, a simple way of understand-
ing what the filters are doing is to look at their weights and
the convolution on a selected input image since it shows
what is kept from the image and, therefore, the features
learned (Requirement 1). In fact, it is possible to see the
weights of the filter, in order to see what shape it detects -
typically corners for the filter in Figure 12 -, the result of the
convolution and the output of the layer, after adding the
bias and passing through the ReLU layer, with a ”coolwarm”
color map to see the result in an easier way. As explained in
Section 3.1.1, for deeper layers, the input image to the filter
has a depth equal to the number of filters from the previous
layer. For the use case considered, there are 32 filters for
all the layers in the network at hand, which would require
analyzing 32 convolved images for each of the filters.

Figure 12. For a chosen filter: its weights, its convolution
with the input image and the output of the layer after

adding the bias and passing through the ReLU

6.2 Feature visualization
An improvement of the convolution, because it extends to
all layers and it does not depend on the input image, is, as
described in Section 3.1.2, for a specific filter, to optimize the
input image to look at its learned feature. With the weights
of the trained network given as input fixed, the gradient is
computed with respect to the input pixels. Starting from
a specific image and the calculated gradients, backpropa-
gation of the gradients is, therefore, performed in order to
maximize the mean activation map of the given filter.



Visualization Methods for Understanding Deep Neural Networks — 9

To accomplish this optimization, the code developed
for Keras Visualization Toolkit [20] was taken as a reference,
with slight changes made to it. Typically, while constraint
functions can be used in order to have smoother results dur-
ing deconvolution, none of them was applied to our visual-
ization because they were adding circular shapes to simple
and rough shapes in the first layers, for the task studied.

Figure 13. Feature visualization of the top filter from the
sixth layer with the object localization network

It is common to have a random image of the same size
as the input size as the starting point of the optimization.
Seeing that the effective filter size is smaller than the size
of the input, choosing that size forces the optimization on
several pixels, adding redundancy and overlapping in the
optimized image. To remove that issue, we have chosen
to have the initial image of the size of the effective filter
size or of the size of a minimum threshold if the effective
filter size is smaller than this threshold. Its value was found,
empirically, of 35 pixels, because, according to tests, if the
size is under this threshold, the optimized image will be too
small and the shape learnt not easily recognizable. In case
the effective filter size is smaller than the threshold, in order
to have a clear view on its size, a red box shows that size, as
it can be seen on Figure 13. In that case, one can see that the
filter can recognize up blobs and it is possible to estimate the
size of the blobs recognized. Starting from a random image
succeeds well for first layers but the optimization often does
not update for deeper layers. In fact, the deeper inside the
network, the more specific the filter. Hence, it becomes
more likely that the shape of the filter will not be represented
in a random image and that the whole activation map will
be equal to zero, leading to a null gradient and not allowing
backpropagation to be performed.

Typically, when using the deep and wide VGG16 network
on the image classification task, for the last convolutional
layer, with 50 filters chosen randomly out of the 512 avail-
able filters, on average only 11 of them do not get stuck
directly after the first forward pass, with 15 of them shown
on Figure 14. Black patches represent input images that did
not optimize. A first greedy and slow method would be to
pass every possible patch from all the different images from
the validation set as the initial input of the optimization and
try to optimize it to finally extract the one with the lowest
loss value. While this method would end up with the best
possible visualization from the dataset, it also provides an
optimization that is dependent on the chosen input image.
In order to remove that dependency, the following approach

Figure 14. Feature visualization for 15 randomly selected
filters, from the last convolutional layer for the image

classification task, starting from a random image. Black
filters are filters that did not resolve the noisy inputs

has been taken:

1. Choose randomly 4 images from the validation set,
keep only the center parts of the size of the effective
filter size and compute their mean by adding them up

2. Perform input optimization on this mean image

3. If the optimization:

• Has no gradient: If it is less than the 100th at-
tempt, retry with 4 other images, otherwise stop
the optimization

• Has been performed: Subtract the input image
to the optimization and perform input optimiza-
tion on that new image

In this way, the optimization does not stay stuck due to an
absence of gradient and the dependency on the input image
is reduced both by blurring the input image by calculating
the mean over different images and by subtracting the input
image. These results are present in Figure 15, where the
selected filters are the same ones as in Figure 14: one can see
that all of the filters are being optimized and do not get stuck
without a gradient. Checking that the optimization is not
done over a hundred times is needed because optimization
might not be possible for some filters. For example, if the
weights of a filter after the first hidden layer are negative and
its bias is also negative, which is rare, the activation map
would be zero for all entries and no backpropagation would
be possible, whatever the input. No optimization would be
provided to the user, which is not a problem because it is a
rare case and it shows a dead filter, which is of importance
to the user. More information on this research, how the
approach described previously was designed as well as the
images of the feature visualized, using both use cases, can
be found in Appendix B.

From these visualizations, it is possible to see what the
learned features are per filter. It helps understanding what
features the network is considering in order to take its de-
cision but also to see if the shapes are smooth seeing that



Visualization Methods for Understanding Deep Neural Networks — 10

Figure 15. Feature visualization for 15 randomly selected
filters, from the last convolutional layer of the network

trained for image classification, starting from the mean of
four randomly selected images

noisy patterns are indicators of overfitting or, on the con-
trary, that the network was not trained enough, as explained
in Section 3.1.1. Finally, a hypothesis on dead filters can
also be done if no optimization is performed.

6.3 DeconvNet
6.3.1 Method
To understand how a network takes its decision, one can
also look at which parts of a specifically chosen input image
are considered as important, or influential for the decision,
for each layer of the network, as described in Section 3.1.3.
For a specific layer chosen by the user, as shown on Figure
16a, an ordering of its filters is created and the top ones
according to this measure are found, Figure 16b, then the
maxima of the layer’s activation map are kept and the rest
of the activation map of that layer, including the activations
from other filters, are put to zero, as depicted in Figure 16c.
From this updated activation map, a backward pass is per-
formed using the DeconvNet, as described by Springenberg
et al. [4], in order to get a focus visualization, i.e., a visu-
alization of which parts of the input image the network is
focusing on or considering as important. The different steps
of the backward pass through to the depth of the network,
using deconvolution and unpooling layers as explained in
Section 3.1.3, in order to get to the input layer, are shown on
Figure 16d.

This backward-pass method in order to get a focus visu-
alization has many parameters; their description as well as
the choices made for the development are described next.

• An ordering of filters is needed in order to define a ”top
filter”. We define top filters as the ones with their learned fea-
tures clearly present in the input. Mathematically, it means
that the maximum value of the activation map of this filter
is the highest compared to the ones of other filters. It is
also possible to consider the mean instead of the maximum
seeing that it would mean that on average the shape recog-
nized by that filter is highly represented. However, this is
not coherent with the previously made definition of a top
filter seeing that the aim is to have a clear shape and not

several look-alike shapes. Therefore, an ordering of filters is
made by considering the maximum of their activation map.

(a)

(b)

(c)

(d)
Figure 16. Description of the consecutive steps performed

for focus visualization. Conv. stands for Convolutional,
Pool. for Maxpooling and FC for Fully Connected. (a) User

selection of a specific layer with a specific input already
forward passed (b) For the selected layer, calculation of the

top filter (c) Extraction of maximum values from the
activation map and setting the rest of the map to zero (d)

Backward-pass of the selected maxima neurons to the
input space

• The number of top filters to visualize is another param-
eter. The number of filters of interest is difficult to predict:
it depends on the network as well as on the chosen input
image. Moreover, while most of the information comes from
the top filters, the difference between two slightly different
decisions in the final output might come from the informa-
tion of the ”last” filters, i.e., filters with the lowest maximum
activation on their activation map for that specific input
image; making it necessary to know also what those filters
are focusing on. Therefore, it is the up to the user to choose



Visualization Methods for Understanding Deep Neural Networks — 11

the amount of filters to visualize. An ordered histogram of
maximum activation for all the filters is displayed, depicting
the ordering of filters as described beforehand. According
to this histogram, the user can choose the minimum filter
and the maximum filter to visualize in order to envision all
of the filters between those bounds.
• Concerning the choice of the values of the activation
map to keep for the backward pass, one first option would
be to extract only the neurons reaching the maximum acti-
vation value for the chosen input and filter. Nevertheless,
some neurons might have an activation close to that max-
imum and be of interest. Empirically we decided to keep
the neurons with an activation value over 0.98∗max for the
backward pass, with max the maximum activation value
of the filter. This choice of threshold was motivated by the
fact that no additional neurons were found with a smaller
threshold and when taking only the neurons with values
equal to the maximum, fewer neurons were extracted.
• Finally, different methods for performing a backward
pass exist such as backpropagation, DeconvNet, guided
backpropagation, CAM (Class Activation Mapping) or grad-
CAM. Seeing that the toolbox needs to be generalizable,
it needs to work for different tasks. CAM approaches are
usually performed on the whole network and are class dis-
criminative. As the first case of interest is not classification
but regression, they are not the right methods for ConvViz.
Concerning the other methods, according to their descrip-
tion in Section 3.1.1 and the fact that maxpooling layers are
generally part of networks, the DeconvNet approach was
chosen.

6.3.2 Visualization
Since for each of the neurons kept on the activation map, the
backward pass results in an activation map inside a square
of the size of the effective filter size, it is of importance to
show that square filled. Not only does it make the localiza-
tion more visible, but it also allows identification of filters
thanks to colouring, as seen on Figure 17a with each filter
represented in one colour. In fact, it is important to know
that some filters are looking at the region of interest and oth-
ers at unimportant parts of the image, but it is even more
important to know their identity to improve the network.
It is also possible to remove square filling, to avoid clutter,
as depicted in Figure 17b. It was found that the effective
filter size found experimentally was the same as the one
calculated with formula 1 for convolutional layers. More ex-
planation on how those formulae were found can be found
in Appendix C.

si zenext =
si zepr ev + (F −1)∗Sp ,

if prev is a convolutional layer
si zepr ev + (F ∗S −1)∗Sp ,

if prev is a maxpooling layer

(1)

with p the number of maxpooling layers before the targeted
layer, F the spatial extent of convolutional layers and S the

stride of maxpooling layers.

(a) (b)
Figure 17. Backward pass (a) with square filling and zoom

of one activation as well as (b) without square filling

Only the backward passes for each filter are saved and
the squares are added according to the non-zero values from
the backward pass. Typically, for each filter, the square fill-
ing is added with the top left corner being the first non-zero
value from the matrix of the backward pass and a copy of
the backward pass is made with all the activations inside
that bounding box put to zero. Then the same procedure is
applied to find non-zero values on the copied and updated
matrix until that matrix is full of zeroes. In fact, different
squares might be present for one filter seeing that the neu-
rons with an activation over a specific threshold are kept
and not only one maximum. Lastly, the opacity of those
squares is set to 0.3 in order to be able to see them as well
as the background made up of the input image, as seen on
Figure 17a.

Figure 18. Backward-pass of multiple layers

For a video, while each frame is treated separately, it is
possible to see the evolution of selected filters across frames
and if the regions of interest change from frame to frame or
follow the same spot. This provides additional information
on the role a specific filter.

Finally, it is also possible, with ConvViz, to see multiple
layers backward-passed at the same time, as shown on Fig-
ure 18. This visualization is important in order to see the
evolution of the regions of interest across layers. The depth



Visualization Methods for Understanding Deep Neural Networks — 12

in the network is shown thanks to the size of the filter - the
deeper the layer, the larger the effective filter size - and the
differentiation between layers is made with a categorical
color palette.

7. Global Visualization
While local visualizations provide information on one as-
pect of the network such as a specific filter, it does not help
the user understand how the network works globally be-
cause of the abundance of filters and layers and the interac-
tions between the different parts. Therefore, global visual-
izations are required to get that aspect.

7.1 Histogram of Activations and Plot of Weights
The first plot that is available with ConvViz can be seen
as a generalization of the histogram available in the local
visualization. In fact, instead of visualizing the histogram
of the maximum activation for each filter for one specific
input, it is a cumulated histogram of those maxima over
several inputs, as on Figure 19. Hence, dead filters can be
spotted as well as the ordering of filters as defined in 6.3.1.

The local histogram is bias to the input: some filters
might not be activated for one specific input but still be
useful for other images. In order to avoid extracting the
maximum activation of each filter for all the inputs, an anal-
ysis of the dependency of the results regarding the number
of inputs taken into consideration was done. Hence, the
histograms were calculated over the following sets of data:

• All the available inputs (training, test and validation
sets) to have a global view of the filters

• All the inputs augmented in the same way as when the
network was trained (rotations and flips) to remove
bias as much as possible

• Validation set, made up of 463 images for the object
localization task

• 10, 20, 50 and 100 inputs selected randomly from the
validation set

It was found, for our object localization case, that when 10
inputs were selected, the histogram was slightly biased to
the selected inputs: some filters were not activated because
their learned features were not present in those inputs. How-
ever, as soon as there were at least 20 inputs, the cumulated
histogram had the same shape as when all the inputs were
used and augmented: same filters never activated, same
level of activation per filter. It has therefore been chosen, for
ConvViz, to select randomly 20 inputs from the validation
set and perform a cumulated histogram of the maximum
activation per filter, showing each input in a different colour.
In this way, this choice can be generalized to a new case if it
is possible to spot the uniformity across inputs: each filter
more or less equally activated for each input means that
there are enough inputs. Figure 19 shows the results for the
sixth layer of the network for the object localization task.

This first plot, i.e., the cumulated histogram of activa-
tions, allows one to spot which filters are dead and should

Figure 19. Histogram of the maximum activation for each
filter of the sixth layer, cumulated over 20 inputs

be removed or re-initialized for training. However, one does
not understand what causes a filter to be dead. This ex-
planation is provided partially by the second plot provided
by ConvViz: the scatterplot of the percentage of negative
weights against the energy of the filter, as in Figure 20.

Figure 20. Scatterplot of the percentage of negative
weights for each filter against its energy for the sixth layer

If a point is at the top of the plot, it means that 100% of
its weights are negative and it can, therefore, be considered
as dead seeing that, at least for inner layers, the output of
the convolution will be negative, and removed by the ReLU
layer. To check this fact, it is necessary to check the value
of the bias for this filter, which is available when clicking
on the filter. Otherwise, if a point is too much on the left of
the plot, its energy is very low meaning that this filter will
not be very useful for the final decision. It can, therefore,
be considered as dead according to its position along the
x-axis. After concluding that a filter is dead, it is possible to
increase the bias, remove the filter or re-train it. Moreover,
every filter has a specific colour representing how activated
it is in a general manner: the more red a point representing
a filter is, the more activated it is and the more yellow it is,
the closer to dead it is. The colours are calculated according
to the previous cumulated histogram. This helps the user
relate this scatterplot to the previous histogram.

7.2 Dimensionality Reduction on Filters’ Weights
While the previous plots were allowing one to better un-
derstand how activated each filter is and why it might be
dead, this plot shows the correlations between filters within
a layer. Similarities between filters in a given layer are rep-
resented by similarities in their weights seeing that only



Visualization Methods for Understanding Deep Neural Networks — 13

convolutional layers are considered. Dimensionality reduc-
tion is performed, with each input being a vector with the
weights of each filter, in order to see which filters are similar
in an easier manner. Seeing that an unsupervised method
is required, PCA is chosen to perform the dimensionality re-
duction, with the Euclidean distance between those vectors
of weights. In the 2D space, each point is a filter that can be
identified thanks to its annotation but also its color, in the
same manner as in the previous scatterplot (Figure 20), to
show how activated it is. This helps finding similar filters
and seeing if some used filters are redundant. If redundant
filters are detected, the user will be able to remove them or
re-train them so that the network will look at other features
and perform better.

Figure 21. PCA on the weights of each filter of the sixth
layer

An example of such a dimensionality reduction is pro-
vided in Figure 21 with the sixth layer of the object local-
ization network. In this example, all the filters that can be
considered as dead are grouped together at the center of the
plot and, from the rest of the filters, no redundant filters can
be located from the visualization of this layer.

7.3 Dimensionality reduction on images
The last plot in the global visualization provides information
on the dataset at hand. It is of interest to see which type of
data is available and more importantly, how the network is
using this data. Some images might be similar according to
the first layers but the network will learn higher-level fea-
tures and see them as dissimilar in the following layers. The
activation maps of all the filters from a given layer are com-
pared to see similarities between images, as seen in Figure
23. It is of importance to reorder the activation maps by as-
cending order for each filter because otherwise similarities
would be due to location whereas it should be due to the
content of the input: similar patterns rather than identical
location should cluster together. This is represented in Fig-
ure 22: the first image, 22a, represents the input image for
which the closest neighbor needs to be found from the two
other inputs, 22b and 22c. If no ordering of the activation
maps is performed, seeing that the Euclidean distance is
calculated in order to carry out the dimensionality reduc-
tion, the closest image will be 22b; whereas if a user were

to group those images, it is more likely that it will cluster
together the two images with the stars. The ordering of each
activation map is, therefore, required. The input of the di-
mensionality reduction is made up of vectors, each being
specific for an input, made up of the concatenation of all
the ordered activation maps for each filter.

(a) Input image (b) Closest image to (a)
without ordering of

activation maps

(c) Closest image to (a)
with ordering of
activation maps

Figure 22. Comparison of the closest image, in terms of
Euclidean distance, with and without ordering of the

activation maps

For example, with the network considered, seeing that
there are 32 filters per layer and that the activation maps are
of size 512*512 before any maxpooling is done, i.e., for each
of the three first convolutional layers, each vector is of length
8,388,608. Therefore, the method used for dimensional-
ity reduction is the t-SNE. This choice was made because
it is a nonlinear dimensionality reduction technique well
suited for high-dimensional data which preserves clusters
and neighborhoods. Each point represents an input image
and it is possible to see some clusters such as the green clus-
ter on the left part of Figure 23. In fact, to discern patterns in
an easier way, a colorization of the t-SNE is performed. Each
color is selected according to the largest dimension of each
vector before dimensionality reduction. The motivation be-
hind this choice is the fact that high dimensional data is
sparse and, therefore, close points should have a similar
ordering of their dimensions. While the color itself is irrele-
vant, it allows one to see clusters more easily, adding infor-
mation on how inputs clustered in high dimensions. More-
over, it is possible to select a specific cluster manually, either
by selecting a specific color representing the inputs with the
same largest dimension or by creating a shape around a
desired cluster. In this way, by studying some images from
one cluster, a pattern should be found and it should, there-
fore, be possible to understand why some images cluster
together. By browsing through the dimensionality reduction
visualizations made for each convolutional layer, one can
see how the clusters evolve throughout the network and,
consequently, how the network is understanding the data
and which features it is considering as important.

An important parameter for the t-SNE is the perplexity.
It represents the balance between local and global aspects
of data and it can change dramatically the output. While the
perplexity should be chosen between 5 and 50, according to
t-SNE’s developers [21], important changes can still be seen
in that range. Actually, the right clustering is only visible
when the correct value of perplexity is chosen. To perform
this visualization in ConvViz, the value of 50 was chosen em-



Visualization Methods for Understanding Deep Neural Networks — 14

Figure 23. Dimensionality reduction, using t-SNE, on the
activation maps of the 6th layer for each input, in order to

see clustering in the inputs

pirically for the perplexity because too many outliers were
found for a higher value and one single cluster was always
present, not allowing any analysis, for a smaller value. How-
ever, the perplexity should depend on the layer considered
and on the network at hand seeing that the length of the
vectors can highly change from one network to another.

8. Link between Global and Local
Visualizations

A global view is necessary in order to understand what is go-
ing on with the network in a general way, independently of
the input, in between filters from the same layer as well as in
between layers. However, local visualization is also needed
to visualize the influence of filters on a specific input, for ex-
ample, or to understand better what a certain filter is doing.
The complementarity of both visualizations has led to the
possibility to select filters on global visualizations to have
a better understanding of those filters thanks to local visu-
alization. In each of the three global visualizations dealing
with filters, it is possible to select filters interactively and
then see only the selected filters on the local visualization.

The selection is done manually, through a rectangle, circle,
free shape or through cursor clicking so that it is possible
not only to compare the filters that are close by in those
plots but also ones that look different from each other.

ConvViz allows one to confirm relations between fil-
ters, redundancy as well as understand the different aspects
each filter is looking at or the reason why a filter is dead.
Typically, one example is shown in Figure 24 with the local
visualizations of two filters that looked close once PCA was
performed on their weights. It is possible to see that the
filters are very similar and could be qualified as redundant:
their feature visualization is similar as both seem to recog-
nize blobs, they focus on the same areas of the input image
and their maximum activations are close.

The overall visualization toolbox of ConvViz, made up
of local and global visualizations as well as interactivity to
go from one to the other, is developed with PyQT, using the
libraries of OpenCV for image visualization and Matplotlib
for all the different plots.

9. Results: Pre-processing
Ideally, ConvViz would be real-time, extracting all the in-
formation and displaying it directly. However, there is an
abundance of data to visualize and it is time-consuming
to extract all the required information. The workflow has,
therefore, been separated into two steps: first the extraction
of information and, then, the visualization itself.

The information saved during the first step is summa-
rized in Table 2.

The first row of Table 2 represents information on the
network itself, with the effective filter size calculated ac-
cording to the formulae from Appendix C. The information
from the second row is extracted after performing a forward
pass and the data from the third row comes from backward

Figure 24. Local visualization of two filters chosen through global visualization



Visualization Methods for Understanding Deep Neural Networks — 15

Table 2. Summary of Information Extracted
Effective filter size Weights and bias

Localization prediction Activation maps
Input optimization Backward pass

t-SNE on activation maps for each input

passes or from backpropagation to optimize the input. Both
of these pieces of information are extracted for all filters of
all convolutional layers. Moreover, the backward pass using
the DeconvNet is calculated for all inputs. As the user would
not analyze the local visualization for all of the inputs from
the validation set, it is of importance to first select inputs to
visualize. This selection can be done randomly, hoping that
the input space will be partially spanned by these inputs,
by manual selection in case the user knows the dataset at
hand well, or by looking at the dimensionality reduction of
the activation maps from the first layer for all the different
inputs, as in Section 7.3. By targeting the first layer, only
low-level features will be considered but the clustering will
be less dependent on the network. This will allow the user
to choose an input image per cluster in order to, afterwards,
analyze the local visualizations on all types of inputs. Finally,
the last line of Table 2 represents the positions and colors of
the points in the 2D space after dimensionality reduction to
see the clustering between inputs. All of these pieces of in-
formation are saved to save time but also to avoid the need
of using libraries related to Deep Learning such as Keras or
TensorFlow during visualization.

While the first type of data, i.e., the first row of Table 2, is
only extracted once, the prediction and activation maps are
needed for all the selected inputs. Seeing that the extraction
does not need to be done in real-time, this is not an issue
even though it adds up to a consequent amount of time.
For example, for the object localization task, the backward
passes, to get the areas that are mostly activating, can take
up to 10 hours for all the filters from all convolutional layers
for an entire video of, on average, 35 frames. This explains
the reason why it is significant to choose specific inputs
from the validation set in order to visualize them and not
perform the extraction on all the inputs from the validation
set. The dimensionality reduction to see clusters on the
inputs was performed on GPUs with the implementation of
the multicore t-SNE [22]. The calculation still takes up to
half an hour for the last convolutional layers because of the
concatenation of all the activation maps. The summary of
the time required for each data extraction and the number
of extractions is summarized in Table 3. As some operations,
such as feature visualization via input optimization, take
more or less time according to the layer considered, the
average time is provided. While the extraction of all pieces
of information takes a lot of time, one needs to keep in mind
that all of these pieces of information can be extracted in
parallel and that this is the first pre-processing step.

Table 3. Time required for data extraction for the
visualization, per network, using CPU

Data Time per
iteration

Number of Iterations (e.g.
for object localization)

Effective filter
size

10ms Once (1)

Weights and bias 12ms Once (1)
Localization pre-
diction

0.5s per
frame

Size validation set * Num-
ber of frames per input
(18,520)

Activation maps 0.3s per
frame

Size validation set * Num-
ber of frames per input
(18,520)

Input optimiza-
tion

1min per
filter

Number of filters (288)

Backward pass 15min
per
frame

Size validation set * Num-
ber of frames per input
(18,520)

t-SNE on inputs 25min Number of layers (9)

10. Results: Visualization
Once all of the data required is extracted, the second phase
of the workflow can start: the user can launch ConvViz. In
order to see the different visualizations, the user only needs
to choose the set of inputs desired (either a folder or a HDF5
file) and the network considered, by selecting the folder
where the pre-processing information was saved.

Both types of visualizations described in Sections 6 and
7 are gathered to form ConvViz. Figure 25 provides a screen-
shot of the local visualizations possible with ConvViz, ac-
complishing what was desired from the design on Figure
10, matching the circled areas with the same letter. More
precisely, one single layer (B1) or multiple (B2) layers can be
selected and the square filling for the backward pass can be
performed, or not (G). As the identification of each filter is
important, it is possible to click on a filter from the feature
visualization in order to see what is its region of interest on
the input image. The other filters will not be shown and
only that filter will be backward passed to the input space.
One can, therefore, better understand what is going on with
a specific filter and which shape it has learnt.

According to this local visualization, for the specific in-
put video considered throughout this report, it is possible to
see that the top filters localize both of the markers early in
the network but that the whole object cannot be captured
by a single filter. Actually the two top filters are focusing on
at least one of the markers, for most of the frames already
in the fifth layer, as Figure 17a shows. The wire is also taken
into consideration by the top filters early in the network, as
in Figure 25A with the filters dispayed in blue and yellow.
This information is essential because it shows that the net-
work is considering the same regions of interest as scientists
do when they need to localize markers. This helps under-
stand why the network is that accurate. From the fifth to



Visualization Methods for Understanding Deep Neural Networks — 16

the last convolutional layer, the top filters backward-passed
are usually located at the regions of interest according to
doctors (markers and wire). Ending the network at the fifth
layer would not be sufficient because, for some inputs, the
top filters localize only one of the markers, but, from the
sixth layer, accurate localization is seen. This provides a first
hypothesis that the network could be shortened in order
to solve that task. This conclusion is reinforced by feature
visualization: the filters from the sixth layer onwards learn
features that look like blobs, as Figure 13 depicts. Seeing
that markers can be seen as blobs, it confirms the fact that
the filters are trying to detect markers and the network could
be reduced in terms of number of layers. Actually, accurate
localization is available from the sixth layer, making the fol-
lowing layers irrelevant. On the contrary, Figure 18 shows
that the whole object cannot be localized by a single filter.
The deeper inside the network, the larger the effective filter
size, and the filters from the last layer, displayed in green on
Figure 18, cannot capture the whole object. Another con-
tradictory hypothesis could be made: the number of layers
should be increased. This would allow the network to un-
derstand the structure of the object and not just separately
recognize each marker. The size of the object to localize
obviously depends from one input to another and since the
size of the network is not dependent on the input, the av-
erage size should be considered in order to see how many
layers should be added.

After first seeing the histogram of activations from local
visualization, as seen in Figure 26, it seems that, in the first
layers, either many filters are very specific and not being
activated for this input, or that they are not being used: they
can be considered as dead filters. The later possibility is
confirmed by the visualization of the cumulated histogram,

Figure 26. Histogram of activations of the third
convolutional layer for the input of Fig. 9

as seen in Figure 19: most of the filters can be considered
as ”dead” because their energy is really low, as it can be
concluded from Figure 20. ConvViz fulfills Requirement 3 in
this case, but it needs to be confirmed that low energy filters
are actually dead and not just contributing less compared to
the others. The summary of the number of used filters per
layer, according to the analysis of histograms, is provided
in Table 4. Therefore, it looks like there are on average over
60% of the filters that are not being used, whatever the input.
This leads to the conclusion that a network with less filters
could be designed, allowing faster computations since in
that configuration the number of computations performed
would be decreased by 95%, allowing this network to run in
real-time.

In order to make sure that those filters are not being
used and can be discarded, a new network was designed,
setting the weights of the unused filters to zero. Not only did
the accuracy measure not decrease after this removal, but it
actually increased. Even though the increase was very small
(only 0.02%), it still emphasizes the fact that most filters are
unused. A potential reason to this increase is that, for each

Figure 25. Screenshot of all the local visualizations from ConvViz



Visualization Methods for Understanding Deep Neural Networks — 17

convolutional layer, the convolution is performed such that
the output has the same size as the input. The necessary
padding before performing the convolution adds noise on
the borders and is the reason of this accuracy decrease when
dead filters are considered.

Figure 27. Dimensionality reduction on all filters from the
eighth layer, with a cluster of filters circled

By analyzing the dimensionality reduction on the fil-
ters’ weights, as depicted in Figure 21 for the sixth layer,
few useless filters, i.e., red ones, are redundant because no
clustering can be seen. However, there are some redun-
dant filters on the last layers, as the circled filters in Figure
27 shows. The hypothesis of redundancy from the dimen-
sionality reduction on filters’ weights can be confirmed by
analyzing specifically those filters. This has been done for
two filters from the seventh layer, as shown on Figure 24:
the hypothesis becomes stronger because the filters have
learnt the same shape and they focus on the same areas, for
a given input. Hence, ConvViz allows visualization of corre-
lations between filters (Requirement 4) and linking between
low-level features and high-level features (Requirement 5).

Table 4. Number of filters used in the network
Layer 1 2 3 4 5 6 7 8 9

Filters used 4 5 3 7 9 12 16 24 29
Percentage 13% 16% 9% 22% 28% 38% 50% 75% 91%

Finally, the exploration of the data (Requirement 6) is
also offered by the dimensionality reduction of activation
maps of all inputs for a given layer, as in Figure 23. These
plots are, however, difficult to analyze with this use case
because all the inputs look more or less similar. Hence, no
additional information is provided by the selection of some
points from the scatterplot.

Therefore, for the use case at hand, different hypotheses
have been gathered according to the visualizations:

• The number of convolutional layers should be in-
creased, such that one filter in the last convolutional
layer should be able to look at the whole object to
localize and not just at one of its markers.

• The number of convolutional layers should be de-
creased since accurate localization can already be
gathered from layer 6. This will enable deployment of
the network for real-time applications.

• The number of filters per layer should be decreased
for better accuracy and, again, for real-time applica-
tions.

Figure 28. Plot of the evolution of the training loss during
training of the new shallower network

Figure 29. Plot of the evolution of training and validation
accuracy measures during training of the new shallower

network

The last conclusion has been confirmed by training a
network that was satisfying this new constraint. In this way,
we initialized the weights of the kept filters to the weights
of the trained network studied for the visualization while
removing the undesired filters. The learning rate was set
to 10−4 and we used the RMSprop optimizer, which divides
the learning rate for a weight by a running average of the
magnitudes of recent gradients for that weight. The results
from that experiment are depicted in Figure 28 for the loss
and 29 for the accuracy measure. The decrease of the loss
value as well as the increase in the accuracy value during
training are common evolutions. However, seeing that we
were considering a network that already performed well (an
accuracy measure of 0.748), those changes were harder to
get. It can, nevertheless, be seen that the training loss is
decreasing compared to the one of the previous network,
even though it starts from a very low value of 15 (networks
initialized with random weights have initial loss values of
2,000 - 3,000) and the accuracy measure rises to 0.801 for
the validation set. This means that by following one of the



Visualization Methods for Understanding Deep Neural Networks — 18

conclusions made from the visualization, it is possible to
decrease the computational complexity by 95% while in-
creasing the accuracy by over 5%.

11. Generalization: Application to the
IMAGENET data

As the development of ConvViz has been done after studying
the network for the object localization task, its generalizabil-
ity to other networks and use cases needed to be studied.
For object visualization, the inputs were grey-valued videos,
the task was localization and the network considered was
not too deep. In order to analyze a different situation, the
well-known problem of IMAGENET Challenge was studied.
For a change, the task of classification was considered with
the VGG16 network [2] as it had achieved the best perfor-
mance at the time and has, since then, become a reference
for DNNs. Hence, the inputs (coloured images), the output
(a class), the task (classification) as well as the aim of the vi-
sualization (understand what the network is doing, instead
of refining it) were different from the previous study.

Figure 30. Local visualization of a rabbit image from
IMAGENET with a VGG16 network

Figure 30 represents the local visualization of the 7th

convolutional layer, i.e., the end of the third block from the
network, using a rabbit image as the input. Typically, thanks
to ConvViz, one can confirm previously made hypotheses
such as the fact that the filters from the first layer detect lines
and from the second layer distinguish colours in the case of
coloured images. When looking at Figure 32a, it looks like
most of the filters from layer 2 are identical. When selecting
them in order to have the local visualization of this cluster
of filters, the input optimization shows that they are actually
different since they focus on distinct colours, as seen in 32b
with six filters coming from that central cluster. It is possible
to analyze the rest of the filters from the dimensionality
reduction and learn that they target oblique lines, and that
the ones clustered together recognize the lines with the
same angles. Hence, redundancy can, also in this case, be
spotted to know how wide the network should be and which
filters to keep if one aims at performing fine-tuning.

Finally, it is also possible to make new hypotheses from
these visualizations: for instance, many filters seem redun-
dant in the first layers, as in Figure 32a, whereas it does not

Figure 31. Dimensionality reduction on the 512 filters from
the twelfth convolutional layer

seem to be the case for later ones which are more equally
spread out, Figure 31. This means that even though devel-
opers usually increase the number of filters per layer with
the depth of the network, it should be even more the case
than how the networks are currently designed.

Moreover, thanks to ConvViz, one can better understand
the dataset at hand and how the network is seeing it in or-
der to take its decisions, via the dimensionality reduction
performed on the activation maps of all the different images
from the validation set, as explained in Section 7.3. In the
case considered, we get data that is spread around for the
first layers, not depicting clear clusters, as it can be seen on
Figures 34a and 34c. This can be interpreted as the network
not having clustered the different images yet, and, therefore,
showing the importance of the following layers. However,
it could also come from the fact that the data is so high di-
mensional and sparse that no clusters can be seen. With
a willingness to study those visualizations and to under-
stand what the network is focusing on at those layers, we
selected points that seemed to represent clusters according
to their localization after dimensionality reduction as well
as according to their colour, i.e., according to their largest
dimension before applying the t-SNE. The selection is repre-
sented by a red rectangle on Figure 34. Figures 34b and 34d
show some inputs that are part of those clusters. In fact, for
each cluster, six inputs are selected randomly and displayed.
It is, therefore, possible to see that the first layer seems to be
looking at very simple features seeing that all the images, on
Figure 34b, have for dominant colors brown and white, with
a specific full-of-light-white representing snow on 2 out of
the 6 images. In the fifth layer, as seen on Figure 34d, the
inputs which are clustered together are more similar as they
represent one or two animals, most of them of dark coloured
with a plain background. This clustering does not suffice
in taking a decision as specific as IMAGENET needs to be,
seeing that the species of an animal needs to be output for
example, but some clustering is already visible at this point.



Visualization Methods for Understanding Deep Neural Networks — 19

(a)

(b)
Figure 32. (a) Dimensionality reduction on the filters from

the 2nd convolutional layer, with selected filters
surrounded by a red box. (b) Input optimization of the

filters selected in (a).

Even though most of the visualization tools in ConvViz
are well adapted to this use case, there is an issue with the
global visualizations when the network is too wide, typically
when there are over 200 filters per layer. This is shown in
Figure 33 with the histogram of activations for the fifth con-
volutional layer. In that case, there are 256 filters, making
the histogram illegible even though it is not even the widest
part of the network.

Figure 33. Histogram of activations for a very wide network

To conclude, ConvViz generalizes well to other networks
and use cases, being useful for understanding and refining
networks but still has some limits such as scalability.

(a)

(b)

(c)

(d)
Figure 34. Dimensionality reduction on the activation

maps of all inputs for the 1st (a) and the 5th (c)
convolutional layers. Visualization of some inputs selected
(circled by red boxes) (b) for the 1st layer and (d) for the 5th

layer.

12. Conclusion and Future Work
In this paper, we described ConvViz, a framework for vi-
sualizing convolutional neural networks in order to better
understand and refine them. In fact, in order to avoid iter-
ating the time-consuming trial-and-error method used to
improve a given network as well as lighten that black box
that is a deep convolutional neural network, visualization
can be used. We envisioned a framework, composed of two
steps: pre-processing and extraction of data, followed by
the visualization itself, composed of both global and local
state-of-the-art visualizations. We implemented those vi-
sualizations and analyzed the results on two different use
cases in order to evaluate the usefulness of this toolbox and
its generalizability.



Visualization Methods for Understanding Deep Neural Networks — 20

Thanks to ConvViz, one can make hypotheses concern-
ing the number of layers a network should have. This can be
concluded according to the objects the top filters are focus-
ing on, by seeing when the results are already good enough.
Moreover, the ability to see redundant and dead filters, or on
the contrary, the differences between filters, makes it possi-
ble to understand their role and if their number is correct,
should be increased or decreased. Therefore, in order to get
a well-performing and robust network, it could be possible
to train a very deep network and then prune it thanks to the
visualizations. It is also possible to better understand the
network itself by visualizing selected filters and their regions
of interest. One can also compare two different networks
using ConvViz, looking at their regions of interest and com-
paring their outputs. Moreover, thanks to ConvViz, one can
better understand the validation set at hand and how the
network is seeing the images for all convolutional layers.

The case studies have given promising results, with, for
example, the possibility to decrease the computational com-
plexity by 95% while increasing the accuracy by 5% for the
object localization task with the network at hand. Those im-
provements are all the more important that one of the main
issues faced by neural networks is their time complexity
and, therefore, difficulty to deploy for real-time problems.
Moreover, the generalization of ConvViz has been tested
and accepted by visualizing a differently designed network,
with a distinct task and inputs. However, the evaluation of
the visualizations’ effectiveness needs to be extended. Fi-
nally, future work and research still needs to be done for
ConvViz, as it could be improved as follows:

Maximum filter and neurons As explained in Section 6.3,
the top filters for each layer are chosen according to their ac-
tivation map: for each input, the top filters are the ones with
the highest maxima on their activation map. This method
could be refined: one could consider a filter to be a top
one if it is of importance for the final decision. This latest
approach has been followed by R. Selvaraju et al. for Class
Activation Mapping, leading to grad-CAM [23]. This method
provides the heat map of how important each part of the
input is for the network’s decision, using gradient-weighted
activation maps. It would be of interest to study this ap-
proach for ConvViz in order to see if the top filters would
change as those new ones would be more coherent with the
definition of top filters provided in 6.3. Moreover, an im-
provement would be to let the user choose the threshold of
the activation value for the selection of neurons to visualize.
At the moment, the code used to perform the backward-
pass is time-consuming, so it needs to be made faster in
order to be able to have different values of threshold.

Attention maps Even if the backward pass of the maxima
with DeconvNet does tell the user where the filters are fo-
cusing, it does not give an overall view on the input pixels’
importance as attention maps do [16]. In this way, it would
be interesting to visualize the attention map of each filter

selected by the user.

Variation of perplexity The quality of dimensionality re-
duction on high-dimensional datasets is hard to assess as
information is lost; typically t-SNE preserves clusters and
neighborhoods but does not preserve distances. Moreover,
the perplexity influences highly the results, as explained in
Section 7.3. For this reason, an improvement of this tool-
box would be to allow the user to change the value of the
perplexity and to see the alterations on the 2D visualization
dynamically.

Time complexity During the first step of the framework,
important information for the visualizations is extracted.
A lot of work still needs to be put in this step seeing how
time-consuming it is, as it is summarized in Table 3.

Visualization while training One of the aims of ConvViz
is to avoid iterating trial-and-error in order to save time.
Time saving should be even more at the heart of ConvViz by
allowing visualization during training, as TensorBoard does
[24]. Therefore, it would be possible to make changes to the
network architecture even before the training has finished.

More generalization Finally, these visualizations are only
available for convolutional layers and are intra-layer. Even
though the extension to fully-connected layers is straightfor-
ward for several tools, networks that are not convolutional
cannot be visualized with ConvViz. This is not a core con-
cern, as most of the networks used nowadays are convo-
lutional. Moreover, only networks considering images or
videos as inputs can be visualized, which is not a restriction
to Philips since the tasks at hand are dealing with medical
imaging. However, one important constraint is the scalabil-
ity of this toolbox. While it performs well for normal to deep
networks, it is not the case for very deep or wide networks,
especially concerning the global visualizations. A solution
would be to perform clustering on the layers for deep net-
works (over 20 layers) or on the filters for wide ones (over
200 filters per layer) and then select one per cluster, as done
by CNNVis [8]. Finally, the fact that all the visualizations
are intra-layer is a restriction to the possibility to have a
global view on the network. Therefore, visualizations across
layers should be added, such as comparing the filters from
different layers.

In conclusion, the present master thesis allows better
understanding and refining of deep convolutional neural
networks by putting together state-of-the-art visualization
methods and allow interactions between them. The tool-
box ConvViz has given encouraging results on the case of
object localization and has generalized well to another use
case and other networks. Philips Healthcare is interested
in extending the research in this direction for different use
cases.



Visualization Methods for Understanding Deep Neural Networks — 21

Acknowledgments
I would first like to deeply thank Binyam who was always
open for questions whenever I ran into a trouble and who
gave me valuable comments. I know Marta will grow up
with great advice. I also would like to express my gratitude
to my supervisor Anna as well as Mark and Javier for the
time they dedicated to me. Finally, I would like to thank my
loved ones who remotely supported me.

References
[1] Aravindh Mahendran and Andrea Vedaldi. Understand-

ing deep image representations by inverting them. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5188–5196, 2015.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[3] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han.
Learning deconvolution network for semantic segmen-
tation. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 1520–1528, 2015.

[4] Matthew D Zeiler and Rob Fergus. Visualizing and un-
derstanding convolutional networks. In European Con-
ference on Computer Vision, pages 818–833. Springer,
2014.

[5] Dumitru Erhan, Aaron Courville, and Yoshua Bengio.
Understanding representations learned in deep archi-
tectures. University of Montreal / DIRO, Technical Re-
port 1355, 2010.

[6] Devinder Kumar and Vlado Menkovski. Understand-
ing anatomy classification through visualization. arXiv
preprint arXiv:1611.06284, 2016.

[7] Paulo E Rauber, Samuel G Fadel, Alexandre X Falcao,
and Alexandru C Telea. Visualizing the hidden activ-
ity of artificial neural networks. IEEE Transactions on
Visualization and Computer Graphics, 23(1):101–110,
2017.

[8] Mengchen Liu, Jiaxin Shi, Zhen Li, Chongxuan Li, Jun
Zhu, and Shixia Liu. Towards better analysis of deep
convolutional neural networks. IEEE Transactions on
Visualization and Computer Graphics, 23(1):91–100,
2017.

[9] David Silver, Aja Huang, Chris J Maddison, Arthur Guez,
Laurent Sifre, George Van Den Driessche, Julian Schrit-
twieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, et al. Mastering the game of go with deep
neural networks and tree search. Nature, 529(7587):484–
489, 2016.

[10] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
Deep learning. Nature, 521(7553):436–444, 2015.

[11] Andrej Karpathy. Lecture notes in cs231n convolutional
neural networks for visual recognition. Stanford Uni-
versity / Computer Science. http://cs231n.github.
io/understanding-cnn/, 2017.

[12] Honglak Lee, Chaitanya Ekanadham, and Andrew Y
Ng. Sparse deep belief net model for visual area v2.
In Advances in neural information processing systems,
pages 873–880, 2008.

[13] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas
Brox, and Martin Riedmiller. Striving for simplicity: The
all convolutional net. arXiv preprint arXiv:1412.6806,
2014.

[14] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and
Pascal Vincent. Visualizing higher-layer features of a
deep network. University of Montreal, Technical Report
1341:3, 2009.

[15] Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. Deep inside convolutional networks: Visualising
image classification models and saliency maps. Proc.
International Conference on Learning Representations
Workshop, arXiv preprint arXiv:1603.02518, 2013.

[16] Luisa M Zintgraf, Taco S Cohen, and Max Welling. A
new method to visualize deep neural networks. arXiv
preprint arXiv:1603.02518, 2016.

[17] Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua Ben-
gio, Samy Bengio, and Pascal Vincent. The difficulty of
training deep architectures and the effect of unsuper-
vised pre-training. In AISTATS, volume 5, pages 153–160,
2009.

[18] Sunghyo Chung, Cheonbok Park, Sangho Suh, Kyeong-
pil Kang, Jaegul Choo, and Bum Chul Kwon. Revacnn:
Steering convolutional neural network via real-time vi-
sual analytics. Workshop Conference on Neural Infor-
mation Processing Systems, pages 30–36, 2016.

[19] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-
tion. CoRR, arXiv preprint arXiv:1409.1556, 2014.

[20] Raghavendra Kotikalapudi and contributors. keras-vis.
https://github.com/raghakot/keras-vis, 2017.

[21] Laurens van der Maaten and Geoffrey Hinton. Visu-
alizing data using t-sne. Journal of Machine Learning
Research, 9:2579–2605, 2008.

[22] Dmitry Ulyanov. Muticore-tsne. https://github.
com/DmitryUlyanov/Muticore-TSNE, 2016.

[23] Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna
Vedantam, Michael Cogswell, Devi Parikh, and Dhruv
Batra. Grad-cam: Why did you say that? visual explana-
tions from deep networks via gradient-based localiza-
tion. CoRR, arXiv preprint arXiv:1412.6806, 2016.

[24] Joseph J. Allaire, Dirk Eddelbuettel, Nick Golding, and
Yuan Tang. Tensorflow: R Interface to TensorFlow, 2016.
Software available from tensorflow.org.

http://cs231n.github.io/understanding-cnn/
http://cs231n.github.io/understanding-cnn/
https://github.com/raghakot/keras-vis
https://github.com/DmitryUlyanov/Muticore-TSNE
https://github.com/DmitryUlyanov/Muticore-TSNE


Visualization Methods for Understanding Deep Neural Networks — 22

[25] Daniel Bruckner. Ml-o-scope: a diagnostic visualiza-
tion system for deep machine learning pipelines. DTIC
Document, Technical report, 2014.

Appendices
A Related Work - Global Visualization
As introduced in Section 3 with a quick overview of methods
for visualization, research in Deep Learning is focusing on
the visualization of neural networks. A more complete re-
view of the state-of-the-art methods for global visualization
is provided in this section.

Because the number of parts making up a network is
enormous, too many local visualizations should be ana-
lyzed, requiring global visualizations for having an indi-
cation of the interactions between the different parts, to
understand and refine the network. A first approach that
has been used extensively to improve neural networks is to
plot the quantitative information such as the error rate, the
loss or the evaluation of the accuracy during training. This
has been used by Erhan et al. [17] in order to see the influ-
ence of pre-training on the performance of the network, by
ML-o-scope [25] with an improved confusion matrix or by
TensorBoard [24]. In fact, the latest allows the visualization
of the distribution of activations or of weights coming off a
particular layer, as shown on Figure 35. From these visual-
izations, it is possible to visualize redundancy in the layers.
For example, if the activation function is the ReLU and al-
most all the weights of a layer are positive, as in layer 4 of
Figure 35, redundancy can be spotted. In fact, the output of
the convolution will be positive and the layer will be linear
seeing that the activation function will not change the out-
put of the convolution. Hence, this provides information on
how to modify the network: with the previous example, the
redundant layer can be removed. These methods, consid-
ering quantitative information, allow the user to compare
networks or visualize overfitting for example. However, they
do not provide qualitative information.

Representation Visualization
Dimensionality reduction, such as t-Distributed Stochastic
Neighbour Embedding (t-SNE) and MultiDimensionality
Scaling (MDS), maps high dimensional datasets into lower
dimensions (usually two or three) to be able to visualize
those datasets. It is crucial for CNNs to perform dimension-
ality reduction since there are up to thousands of features
in each network.

Rauber et al. [7] visualizes the relationships between
learned representations of input images by applying t-SNE
on the last hidden layer of the network. From this visual-
ization, it is possible to get qualitative feedback on clusters.
The aspect of clusters provides hints concerning which steps
should be taken in order to improve the network. Moreover,
outliers can be spotted from this visualization, allowing the
user to remove them from the dataset or to pre-process
them.

Figure 35. Example of distribution of weights, visualized
with TensorBoard

It is also possible to have a dynamic visualization [7]: for
a specific layer and inputs, the evolution “inter-epoch” with
t-SNE and 2D trail bundling can be visualized, represent-
ing the state of the layer after each epoch, i.e., after each
forward and backward pass for all training inputs, during
training. This shows the evolution during training and when
convergence has been reached. One can also visualize the
evolution “inter-layer”, with each point being an input im-
age, as shown on Figure 8. One can provide a hypothesis
as to how many layers are sufficient and when there is over-
training caused by a network that is too deep: when clusters
start to get well-separated on the different captions of Figure
8. However, subjectivity comes into play: one can see the
gathering of all points from one class to the same area, as
seen with class 2 (the green one) on Figure 8, as overtraining
or, on the contrary, as a good classification and generaliza-
tion. Interpretation is a crucial problem when visualization
is concerned.

Another dimensionality reduction-based visualization
of neural networks has been recently used with ReVACNN,
Real-time Visual Analytic system for CNNs [18]. It offers a
2D embedding view, for a specific layer, where many pa-
rameters can be visualized: vectorized filter coefficients,
filter gradients, activation maps as well as activation gradi-
ent maps. By analyzing clustering, redundant filters can be
outlined and, therefore, low accuracy.

A.2.2 Network as a Graph
CNNs have often been pictured as directed acyclic graphs,
because of their structure with consecutive layers made up
of filters. This relation between CNNs and graphs has been
analyzed by Chung et al. [18] and has led to a network view
in the ReVACNN toolbox. With each node representing the
activation map of one filter and each edge a connection
between filters of consecutive layers, the whole network
can be visualized. To avoid visual clutter, only some links



Visualization Methods for Understanding Deep Neural Networks — 23

Figure 36. Example of graph visualization with CNNVis [8]

between layers are shown. The tool is interactive, allowing
the user to add or remove filters of hidden layers during
training and see the direct effect on the network. In the
same way, it is possible to freeze some nodes and layers
when convergence seems to be reached in order to reduce
the training time.

Liu et al. [8] also studied this relationship and came
up with CNNVis which offers a visualization of the over-
all training process through a graph, as seen on Figure 36.
While it requires the network to be trained, it is more scal-
able than the previous tool as only some layers and neurons
are showed. For layers, clustering, using k-means, is first
performed and then only one layer per cluster is kept. In
the same way, clusters of filters are found and, for each of
them, Inversion Visualization, as in 36A, described in Sec-
tion 3.1.1 and Feature Visualization, as in 36C, described
in Section 3.1.2, are depicted. A biclustering-based edge
bundling is performed, i.e., simultaneous clustering of rows
and columns of edges, displaying the proportion of negative
and positive edges, showed in 36D. Finally, interaction is
possible by modifying filters clustering, as in 36B. Hence,
CNNVis allows one to come up with the conclusions found
using local visualizations as well as new conclusions. For
example, as the distribution of weights is shown through
biclustering of edge bundling, many positive edges will rep-
resent redundancy, following the same way of thinking as
with TensorBoard previously. Also, if redundant filters are
visualized, one will understand that there must have been
overfitting.

B Feature Visualization
As explained in Section 6.2, feature visualization is one of the
visualizations that help the user understand which shape a

filter is being discriminative to. As explained in that section,
the size of the input to optimize is the effective filter size
in case it is bigger than a fixed threshold; otherwise it is a
square of the size of that threshold. For ConvViz, a threshold
of 35 has been used. What is commonly being done is to
start from a random image and then optimize it. While
this method works well for first layers, as it can be seen on
Figure 37, it does not work for deeper layers since the filters
are becoming more specific and it is unlikely to find their
learned shapes in random images. Hence, the values of the
activations are either zeroes or close to zero, as it can be seen
on Figure 14 or on Figure 38 for the use case of the object
localization. Therefore, no optimization can be performed
and the input image is not modified.

Figure 37. Feature visualization of 42 randomly selected
filters from the second layer of the network trained with

IMAGENET, starting from random image



Visualization Methods for Understanding Deep Neural Networks — 24

Figure 38. Feature visualization of the 32 filters from the
last layer of the network trained with object localization,

starting from random image

A first hypothesis was the fact that the input image needs
to be of the same type as the other available images. Typi-
cally, the same type of histogram or value of entropy should
be chosen for the input image. In order to verify that hypoth-
esis, the filters were optimized but starting from one image
of the validation set. The results can be found in Figure 39
for the object localization use case and in Figure 40 for the
IMAGENET use case. For both figures, the input has not
been subtracted to the optimized image but a dark square
is visible if no optimization was achieved. We can see the
dependency on the input image on Figure 39 because of the
same luminosity overall the image for each optimization.
In the second use case, it is obvious that the initial input is
an image of a dog. The recognition of a specific object is
not as straightforward on the first use case, even on the last
convolutional layer, because features are only looking at a
small part of the image (46*46 pixels) whereas in the second
use case, the last convolutional layer looks at parts of the
image of size 196*196 pixels, which is nearly all the image
seeing that the input shape is of 224*224 pixels.

It is anyway obvious that starting from one of the inputs
is better than starting from a random image seeing that we
are able to find solutions in more images but this visualiza-
tion is highly dependent on the input being optimized. The
second approach was, therefore, to take several images, take
their mean and then perform the optimization. While the
result would still be dependent on the input, it would not
be as obvious and another step was taken: first remove the
mean input image to that optimization, in order to gather
only the changes that had taken place and then perform
the optimization to that new image. In this way, the depen-
dency on the input image would be reduced as much as
possible. For the object localization use case, Figure 41, as
well as the IMAGENET use case, Figure 42, more filters are
visualized but there are still many filters that are not. In
order to deal with that issue, another approach was taken,

Figure 39. Feature visualization of the 32 filters from the
last layer of the network trained with object localization,

starting from an input of the validation set

Figure 40. Feature visualization of 50 randomly selected
filters from the last layer of the network trained with

IMAGENET, starting from dog image

focusing on finding the right inputs for a specific filter: for
each filter, the optimization was tried in the same way as
previously. If the backpropagation would not result in a
decreasing loss, meaning that the learned feature is not part
of the input image, the input needs to be changed and new
images are selected at random. This leads in the possibility
of visualizing more input optimizations. The results for the
IMAGENET use case are presented in Figure 43: all the fil-
ters are being optimized and, by looking separately at each
filter, a clear feature can be detected. While this method
is very efficient for this use case, seeing that the inputs are
being optimized for nearly all the filters, it is not the case for
the object localization use case where only half of the filters
from the last convolutional layer are being optimized. The
results are better than the previous methods but one needs
to keep in mind that, an input image that has not been opti-
mized with respect to a filter, does not mean that the filter
is necessary dead. In fact, it could be that its feature learned
is complex and not present in most of the images.

C Computation of the effective filter size
Assumptions For this section, it will be considered that the
spatial extent of all the filters are identical, of F (usually 3)



Visualization Methods for Understanding Deep Neural Networks — 25

Figure 41. Feature visualization of the 32 filters from the
last layer of the network trained with object localization,

starting from mean image

Figure 42. Feature visualization of 50 randomly selected
filters from the last layer of the network trained with

IMAGENET, starting from mean image

and that the stride used for convolutional layers are of 1 and
of S (usually 2) for maxpooling layers. The generalization
can be done following the same way of reasoning but this
hypothesis is made for simplicity in order to have one single
effective filter size per layer and simpler functions but also
because it is usually the case in the networks’ architectures.

Definition The most common way of calculating the effec-
tive filter size of a filter from a specific layer is by going down
in the previous layers. Typically, the effective filter size can
be initialized to 1 just after the targeted layer and then up-
date this value according to the layers you are going through
until the input layer. When going back through a convolu-
tional layer, the effective filter size (eSize) can be updated to
eSi ze = (eSi ze −1)∗ s +F with s the stride, assumed to be
equal to 1. When going back through a maxpooling layer, it
should be updated to eSi ze = eSi ze ∗S.

By calling un the value of the sequence for the nth layer,
we have the following recurring sequence:

un = 1
un−1 = un +F −1, for a convolutional layer
un−1 = S ∗un , for a maxpooling layer

with u0 being the value of the effective filter size.

Figure 43. Feature visualization of 50 randomly selected
filters from the last layer of the network trained with

IMAGENET, starting from mean image, looping through
initializations if necessary

The issue with such a computation comes from the fact
that one needs to go back through all of the previous layers,
not enabling the possibility to calculate the effective filter
size of one layer, knowing the one of the previous layer. This
section therefore explains how to ”invert” this sequence and
calculate the effective filter size according to the one of the
previous layer.

Proof Let f (x) be the function to find, to calculate the
effective size, x being the initial effective filter size. This
function is a composition of two functions: g (x), represent-
ing a convolutional layer, therefore, g (x) = x+F−1 and h(x),
representing a maxpooling function, with h(x) = S ∗x. It is
obvious that

g (x +a) = g (x)+a (2)

and

h(x +a) = h(x)+h(a) (3)

By recurrence, since f is a composition of these functions,
we get that

f (x +a) = f (x)+hn(a) (4)

with n the number of max pooling layers before the targeted
layer.

Considering that the targeted layer is a convolutional
layer and the previous layer also, if the effective filter size
of the previous layer is si zen−1 = f (1), seeing that the ef-
fective filter size of the input can be size as of 1, then we
get si zen = f (F ) = f (1)+hn(F −1) = si zen−1 + (F −1)∗Sp

with p the number of maxpooling layers. If, on the contrary,
the previous layer is a maxpooling layer, then we have the
following formulae: si zen−1 = f (1) and si zen = f (F ∗S) =
f (1)+hn(F ∗S −1) = si zen−1 + (F ∗S −1)∗Sp seeing that
the initial value of a convolutional layer going through a
pooling layer is of F * S.

Conclusion Since we can get the same reasoning if the tar-
geted layer is a convolutional layer, we get the following
formulae:



Visualization Methods for Understanding Deep Neural Networks — 26

If convolutional layer:

{
si zenext = si zepr ev + (F −1)∗Sp , if prev is a convolutional layer

si zepr ev + (F ∗S −1)∗Sp , if prev is a maxpooling layer

(5)

If maxpooling layer:

{
si zenext = si zepr ev , if prev is a convolutional layer

si zepr ev +Sp , if prev is a maxpooling layer

(6)

with p the number of maxpooling layers before the targeted
layer.


	Introduction
	Background
	Multi-Layer Perceptron
	Convolutional Neural Networks

	Related Work
	Local Visualization
	Inversion Visualization
	Feature Visualization
	Focus Visualization
	Conclusion

	Global Visualization
	Conclusion

	Data
	ConvViz
	Requirement analysis
	System overview

	Local Visualization
	Convolution
	Feature visualization
	DeconvNet
	Method
	Visualization


	Global Visualization
	Histogram of Activations and Plot of Weights
	Dimensionality Reduction on Filters' Weights
	Dimensionality reduction on images

	Link between Global and Local Visualizations
	Results: Pre-processing
	Results: Visualization
	Generalization: Application to the IMAGENET data
	Conclusion and Future Work
	Acknowledgments
	References
	Appendices
	Related Work - Global Visualization
	A.2.2 Network as a Graph

	Feature Visualization
	Computation of the effective filter size
	Assumptions
	Definition
	Proof
	Conclusion





