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Abstract

The growing penetration of renewable energy sources (RES) in power networks introduces sig-
nificant challenges in load frequency control (LFC). Uncertainties in power generation make
load balancing difficult, leading to frequency fluctuations that can cause equipment damage
and blackouts. Additionally, the large-scale, spatially distributed nature of modern power
systems necessitates a multi-agent control approach. Traditional PID-based controllers are
ill-equipped to handle the uncertainties introduced by RES, while stochastic and robust model
predictive control (MPC) methods, though capable of addressing small uncertainties, are of-
ten overly conservative. Similarly, reinforcement learning (RL) offers adaptability but lacks
interpretability and explicit constraint handling. This thesis presents a distributed control
framework that integrates model predictive control and reinforcement learning to address
these challenges. Parametric uncertainties are incorporated into the system dynamics to
account for stochasticities introduced by RES. At the core of the approach is a parameter-
ized MPC scheme that approximates the RL value function, enabling the system to learn
to avoid constraint violations while optimizing performance by driving state deviations from
nominal operating conditions to zero. A distributed Q-learning scheme is used to learn the
parametrization, which reduces the need for extensive information sharing, enhancing cyber-
security, and enables learning even with imperfect initial knowledge of system dynamics. The
proposed framework is applied in simulations of a three-area power network to evaluate its
potential and is compared against stochastic MPC and a deep deterministic policy gradient
learning method. Results show that the proposed approach offers a balance between adapt-
ability, performance and interpretability, and successfully handles constraints. It outperforms
sample-based stochastic MPC in terms of cost, computation time and constraint handling,
and outperforms deep deterministic policy gradient RL in performance, constraint handling
and sample efficiency.
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Chapter 1

Introduction

The subject of this master thesis is on distributed load frequency control (LFC) in power
system networks. In order to understand the importance of LFC and the challenges therein,
a background on power system networks will be provided. The motivation of the research into
distributed control approaches in this context is driven by the aim to decrease data sharing
required for centralized control paradigms, and an an increase in penetration of renewable
energy sources (RES). These add uncertainties and stochasticities to the system, complicating
control application of centralized control paradigms.

1-1 Power system networks

Power system networks are large, interconnected systems designed to generate, transmit and
distribute electrical power efficiently and reliably. These networks consist of three main
components: generation, transmission and consumption. Electricity is typically generated
by thermal, hydro, and nuclear power plants, as well as renewable sources like wind and
solar. In the power network, the electrical power is supplied at a constant voltage with
an alternating current, which alternates at a frequency typically of 50 or 60 Hz, depending
on the region. The network can be decomposed into different smaller areas for generation
and consumption, for example into areas where multiple generators are lumped together and
represented by one equivalent generator, simplifying the network description. The spatially
distributed network often requires a decentralized control application, due to issues related
to large amounts of data sharing, the sheer size of the network, and due to the large number
of grid operators that may be active in the network. Furthermore, between these different
areas, power can flow over transmission lines, referred to as tie-line power flow. The power
network is a continuously evolving system, increasingly integrating renewable energy sources,
and smart grid technologies. This evolution adds to the complexity of the network, making it
larger, more dynamic, and more interconnected than ever before. These changes pose unique
operational and control challenges for maintaining stability and reliability [6].
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2 Introduction

1-1-1 Instability phenomena

Maintaining grid stability and reliability is thus the main challenge in control of power system
networks. Even though existing control approaches are able to maintain stability under nom-
inal operating conditions, power networks remain prone to instability phenomena, which can
compromise the reliable operation of the system. These instabilities arise due to factors like
increasing penetration of renewable energy sources, rapid load fluctuations, and unforeseen
disturbances. In the literature, three primary forms of instability have been identified: rotor
angle instability, voltage instability, and frequency instability [6].

• Rotor angle instability occurs when synchronous generators fail to return to nominal
operating conditions following a disturbance, leading to loss of synchronism. This issue
has been mitigated effectively by power system stabilizers (PSS’s) and other protection
mechanisms designed to maintain rotor stability [6].

• Voltage instability refers to the inability of the system to maintain acceptable voltage
levels at all buses after a disturbance, often arising from reactive power imbalances
or insufficient voltage support during heavily stressed operating conditions. Prolonged
voltage instability can lead to voltage collapse and widespread power outages [6].

• Frequency instability results from an inability to maintain system frequency within
specified limits, signaling a significant imbalance between power generation and load
demand. Frequency instability is particularly critical in modern grids with high renew-
able penetration, as the intermittent and uncertain nature of renewable energy sources
can significantly amplify power imbalances [36]. Load frequency control address these
issues [6].

Each of these instabilities pose risks such as power outages and damage to equipment. In
this thesis, it is assumed that the rotor angle instability is managed by existing controllers,
such as PSS’s. Voltage instability is primarily related to reactive power balance and voltage
control, and affects systems locally, rather than globally. It is managed relatively well by
existing voltage regulators. LFC, on the other hand, specifically targets active power balance
and frequency control, and affects the power network globally. As a result, the primary focus
is on LFC, with the aim to control frequency instabilities, restoring frequency deviations to
nominal values [6].

1-1-2 Control hierarchy

Traditionally, the frequency control of power networks is hierarchical in nature, with multiple
layers addressing different timescales and control objectives [6]. At the lowest level, primary
frequency control ensures that any frequency deviations are responded to immediately through
the governor action of generators. This layer operates on timescales of seconds or even
milliseconds, with local controllers at each generator working to follow a given set point.

Secondary frequency control, often referred to as load frequency control (LFC), is responsible
for generating these set points for each control area. LFC balances power supply and demand
within an area and manages scheduled power interchanges between neighboring control areas.

Nathan van der Strate Master of Science Thesis



1-2 Renewable energy sources 3

This layer operates on timescales of seconds to minutes and serves as a bridge between the
faster dynamics of primary control and the broader goals of tertiary control, which will be
introduced next.

At the highest level, tertiary control focuses on economic optimization. It matches gener-
ation contracts with demand contracts through economic dispatch, ensuring efficient use of
generation resources and allocating generation requests to different control areas. Finally,
the network includes emergency controllers that act as safety nets, addressing extreme dis-
turbances that exceed normal operating conditions.

1-1-3 Distributed control

The control of the frequency instabilities through LFC is dependent on the structure of the
network. As mentioned, because of the geographically dispersed nature of power system
networks, decomposing the network into smaller control areas is necessary. Each control area
is governed by a local controller, which may be integrated into a larger centralized control
structure, or integrated in distributed control approaches.

Central control requires a central governing body, which gathers information from all con-
trol areas into one location, selects the control actions, and then communicates these to the
different areas. This approach suffers from multiple limitations in its operation [6]. First of
all, vast amounts of data sharing is necessary, which may be restricted by communication
limitations or time-delays, as well as having cyber-security related issues. Furthermore, in
reality, different grid operators may be active in different parts of the network, complicating
communication or leading to conflicts with data sharing between operators. Lastly, if control
actions are selected using optimization-based control techniques, implementing central opti-
mization strategies such as optimal control is not tractable for large-scale problems, as the
problem dimension grows with the number of control areas.

Instead, decentralized and distributed control approaches make use of the distributed nature
of the power network to optimize control actions locally, either by neglecting any coupling
interactions between areas (decentralized) or by integrating direct neighbor’s information into
the optimization to control the network efficiently. Distributed control in particular focuses
on incorporating the coupling dynamics in their optimization pipeline, and communicates
their intentions to direct neighbors, enabling cooperation to achieve joint objectives.

In modern power networks, distributed control is crucial and allows for scalable control of the
network while minimizing data sharing.

1-2 Renewable energy sources

Renewable energy sources (RES) include hydro [1], geothermal [5], ocean [28], wind [32],
biomass [37], and solar power generation [41]. From these, wind power and solar power have
recently seen an significant increase in penetration of the electrical power network [4, 6].

The stochastic nature of some RES technologies such as wind turbines and solar panels leads
to uncertainties in their performance due to intermittent power generation that is difficult
to forecast. For example, solar panels will generate less electricity when clouds are blocking
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4 Introduction

sunlight, while wind turbine’s power generation varies with wind speeds, both of which are
difficult to forecast [4, 6].

Tie-line overloading is another issue that intermittent wind power in particular introduces,
as a sudden drop-off in power output from wind farms may cause different areas to overload
the tie-lines in attempts to compensate for the drop, especially when the drop-off is not fore-
casted. Additionally, power flow over geographically large distances brings slower response
times and more power loss with it [6].

All these challenges introduced by intermittent renewable energy sources justify the need
for more advanced control techniques. The current industry standard frequency controllers
are PI-based [6], and can be implemented in a non-centralized manner [3]. However, they
are ill-equipped to handle constraints and deal with significant uncertainties. Novel control
approaches should be of a non-centralized nature to cope with the distributed large-scale
power system network and additionally should be able to handle constraints, either implicitly
or explicitly, to deal with physical system limitations, and be able to deal with uncertain-
ties and unforeseen disturbances. Model-based approaches such as model predictive control
(MPC) and data-driven approaches such as reinforcement learning (RL) are promising control
techniques that are investigated in recent literature. These will be discussed in chapter 2.

1-3 Load frequency control

In summary, LFC thus aims to balance power supply and demand within control areas and ad-
ditionally handles tie-line power flow between control areas. It is a critical process dependent
on the structure of the network, with distributed approaches being favored over centralized
approaches.

LFC must address a range of challenges, including varying load demand, generation uncer-
tainties and disturbances, while being robust to the system’s inherent nonlinearity and time
delays. Finally, modern LFC design must adhere to physical system constraints and sys-
tem limitations, such as generation rate constraints and governor dead band, while operating
efficiently, reliably and safely under a variety of operating conditions.

1-4 Structure of the Thesis

The thesis is structured as follows:

In chapter 2, the dynamics of the power system network and linearized dynamics used in
load frequency control are given. Control approaches such as MPC, RL and combinations
of the two from the literature are discussed, alongside their limitations. This chapter will
culminate in the formulation of the research question, based on the integration of MPC
and RL. In chapter 3, the proposed approach is introduced, including the formulation of
a distributed learning-based MPC control scheme, with its design tailored to the specifics
of the power system network. Additionally, the design of the environment with its load-
profiles and stochasticities representing the uncertainties from RES is introduced, ranging
from small impacts to large impacts. In chapter 4, the simulation set-up with the specific
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1-4 Structure of the Thesis 5

details and numerical values for a three-area power network is introduced, on which the
proposed approach is validated in simulation. Furthermore, the hardware, software and tools
that are used to obtain numerical results are given. The obtained results are compared
to a stochastic MPC and DDPG-based deep-RL approach, and are compared on how well
they regulate the frequency deviations to zero while minimizing the amount of constraint
violations. Finally, in chapter 5, general points of discussion regarding the limitations of the
method, possible improvements to increase the validity of the results and future work are
discussed. A conclusion and answer on the research question is given, alongside a summary
of the contributions of the thesis.
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Chapter 2

Background and related literature

This chapter provides a background on relevant theory, as well as related works and concepts
that are used to effectively control power system networks. Firstly, an overview of the power
system is provided, including dynamics and high level system analysis. Then, a theoretical
background is provided on MPC and RL, both of which are methods that are commonly
used in LFC. A background on a novel approach integrating MPC and RL is introduced,
alongside mechanisms to allow for distributed learning. Finally, the literature on LFC is
discussed in terms of computational complexity and performance. The chapter concludes
with the formulation of the research question that will be answered in this thesis, which is the
culmination of the challenges identified in related works and which will be further expanded
on in chapter 3.

2-1 Load frequency control (LFC)

As discussed in chapter 1, load frequency control is tasked with balancing power supply and
load demand and additionally handles tie-line power flow between control areas in the power
system network. Distributed LFC approaches depend on the structure of the network, and
model-based approaches require a description of the system dynamics, which will be given in
this section, alongside a high-level system analysis on stability and safety.

2-1-1 Dynamics, linearization and discretization

In real-life applications, dynamics are almost always nonlinear in nature, and the dynamics
of the power system is no exception to this rule. However, the nonlinear dynamics can
be linearized around nominal operating points to result in linear, time-invariant dynamics.
Linear dynamics simplify control design, and allow for the application of control approaches
that benefit from this decrease in complexity, which will result in faster computation times
and make real-time control of the power network feasible. In this thesis, the modeling is
considered from the model-based optimal control perspective.
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8 Background and related literature

In the literature on LFC, a variety of models, including nonlinear [51], linear [22, 26, 45, 56]
and hybrid models [13, 30] are considered. The choice of which model to use for control
design is a trade-off: nonlinear models are the most accurate, minimizing the error between
the model and the real system. However, they introduce significant challenges: nonlinear
dynamics, when imposed as equality constraints, often lead to non-convex optimization prob-
lems, which have no guarantees to converge to the global optimum, restrict the amount of
applicable solvers and lead to longer computation times. In real-time LFC, where control
actions have to be selected within a small time window, computational efficiency is essential,
often rendering nonlinear models unusable [45].
Alternatively, hybrid models divide the state-space into regions, applying different affine mod-
els in each region based on predetermined conditions. While they capture both continuous
dynamics and discrete events such as switching between operating conditions, they require
tracking of the model that best approximates the system and introduce mixed-logical dynam-
ics that have both continuous states and integer-based auxiliary variables, which add to the
complexity [13].
While it provides a better representation of reality than using a singular linear model, the
main downside is the increased complexity of the model, which requires application of mixed-
integer solvers. As a result, linearized models are the most common choice in the literature on
LFC. Linearization techniques, such as Taylor series expansion, eliminate higher-order terms
and other nonlinearities by introducing an error term. Typically, linearization is performed
about a stable operating point and remains valid for deviations within a small region around
the nominal state trajectories.

The ‘true’ dynamics that are used for validation, which are implemented inside simulation, are
ideally of the nonlinear type, providing the most accurate representation of the real system.
As the environment only needs to apply a (possibly) nonlinear function at every time step,
using nonlinear dynamics for the simulated environment does not pose any computational
restrictions. However, using nonlinear models in control approaches does lead to more complex
optimization problems. Approaches that make use of a model of the dynamics therefore often
use the linearized dynamics. In this thesis, the same dynamics are used in the validation and
in the model-based prediction approaches.

Furthermore, to allow receding-horizon prediction methods such as MPC to be applied, the
dynamics need to be discretized, transforming the continuous linear time-invariant (LTI)
dynamics into a discrete-time LTI system, making them suitable for numerical evaluation
and implementation on digital computers [45]. For the discretization, a sampling time must
be chosen, which defines the intervals at which the system state is updated. The choice of
sampling time is critical: it must balance computational efficiency and the ability to accurately
capture the system’s dynamics. For LFC, where real-time response is essential, the sampling
time is often chosen based on the fastest time-scale of system dynamics, such as frequency
deviations. Multiple techniques exist to discretize a given system, including forward Euler
(FE) and zero-order hold (ZOH). Different approaches provide different characteristics. Zero-
order hold is often used due to its simplicity and ability to approximate piecewise constant
inputs in digital controllers. Forward Euler is another common method, valued for its ease
of implementation, although it is more sensitive to the sampling time and may lead to large
errors for larger sampling times.
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2-1 Load frequency control (LFC) 9

Power network dynamics

As discussed in chapter 1, the power system network is often decomposed into smaller control
areas with lumped generators. The network consists of M different areas, where areas are
indicated with i ∈M : i = 1, . . . , M . Each area i ∈M has a set of direct neighbors, denoted
Ni ⊂M. Direct neighbors of area i are the areas j ̸= i where j ∈ Ni. The sets are based on
the physical network layout, i.e neighbors are connected with tie-lines.

In the figure below, an example network is shown with M = 4. The dashed red contour
depicts the union of area 1 and all areas in direct contact with area 1, which leads to the set
of neighbors N1 = {2, 3}.

Figure 2-1: Example of a power network consisting of 4 control areas.

After linearization, the linear time-invariant dynamics for a control area i with non-reheated
thermal generator are given by [16, 19, 22, 23, 31, 35, 50, 51]:

∆ḟi = 1
2Hi

(∆Pm,i + ∆PRES,i −∆PL,i −∆Ptie,i)−
D

2Hi
∆fi

∆Ṗm,i = 1
Tt,i

∆Pv,i −
1

Tt,i
∆Pm,i

∆Ṗv,i = 1
Tg,i

∆Pc,i −
1

RiTg,i
∆fi −

1
Tg,i

∆Pv,i

∆Ṗtie,i = 2π
N∑

j=1,j ̸=i

Tij (∆fi −∆fj)

Tij = |ViVj |
Xij

cos
(
δ0

i − δ0
j

)
,

(2-1)

where ∆fi, ∆Ptie,i, ∆Pm,i, and ∆Pv,i are the frequency deviation, unscheduled tie-line power
flow, deviation from generator mechanical output and valve position for the i-th area, re-
spectively. Note that all the states are deviations from the nominal operating conditions and
denoted with ‘∆’, indicating they should ideally be steered to 0. The generation commands
∆Pc,i, considered to be the inputs to the system, are also a deviation from the optimal inputs
for the nominal trajectories. The load disturbance is denoted with ∆PL,i.
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10 Background and related literature

The dynamics include coupling between control areas, where the j ∈ Ni denotes direct neigh-
bors of control area i. This makes the dynamics suitable for distributed approaches that
include dynamic coupling.

Furthermore, the power angles
(
δ0

i − δ0
j

)
are the fixed operating points around which the

dynamics are linearized, and are thus considered constants. The definition of the constants
used in the dynamics are given in the table below, with i denoting the constant for the
respective i-th control area.

Table 2-1: Definition of the constants used in the linearized power network dynamics.

Constant Definition
δ0

i Power angle
Hi Synchronous machine inertia constant
Di Damping coefficient defined as percent change in load

change in frequency
Tt,i Turbine time constant
Tg,i Governor time constant
Ri Speed drop regulation term
Vi Terminal voltage
Tij Tie-line synchronous coefficient between area i and neighbor j
Xij Tie-line reactance between area i and neighbor j

State-space representation

The linearized dynamics can be more compactly written in state-space representation, which
will make analysis easier. The state-space, linear time-invariant dynamics are of the form

ẋi(t) = Aixi(t) + Biui(t) + Fi∆PL,i +
∑

j

Aijxj , (2-2)

where the states for a local area i are defined as xi(t) = [∆fi, ∆Pm,i, ∆Pv,i, ∆Ptie,i]⊤ ∈ Rnl ,
with nl = 4 the local state-dimension. Furthermore, ∆PL,i is the load disturbance and
ui(t) = ∆Pc,i is the generation command serving as the control input. The interconnection
of different areas is represented in the dynamics through the

∑
j Aijxj term.

The matrices are then given by:

Ai =


− D

2Hi

1
2Hi

0 − 1
2Hi

0 − 1
Tt,i

1
Tt,i

0
− 1

RiTg,i
0 − 1

Tg,i
0

2π
∑N

j=1,j ̸=i Tij 0 0 0

 , Bi =


0
0
1

Tg,i

0

 ,

Fi =


− 1

2Hi

0
0
0

 , Aij =


0 0 0 0
0 0 0 0
0 0 0 0

−2π · Tij 0 0 0

 .

(2-3)
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2-1 Load frequency control (LFC) 11

Discretized dynamics

The next step is to discretize the dynamics to allow prediction-based control approaches such
as the receding-horizon MPC to be applied properly. As mentioned before, multiple methods
exist to perform discretization. In this thesis, zero-order hold (ZOH) and forward Euler (FE)
are considered, due to their simplicity. Between ZOH and FE, the differences for a given
sampling time are small. After comparing the two in different settings, forward Euler is
chosen for simulation throughout the thesis, as it is the most straight-forward to implement.
This leads to the discretized dynamics of the form

xi[k + 1] = Ad,ixi[k] + Bd,iui[k] + Fd,i∆PL,i[k] +
∑

j

Ad,ijxj [k]

= (I + tsAi) xi[k] + tsBiui[k] + tsFi∆PL,i[k] +
∑

j

tsAijxj [k],
(2-4)

with ts the sampling time and I the identity-matrix. The time-domain is split up in into
constant length intervals denoted with time step k. The accuracy of the discretized dynamics
is dependent on the choice for sampling time ts. The smaller the sampling time, the better
the dynamics represent the original continuous-time dynamics, at the cost of having to run
more time steps for the same simulation length.

Phyiscal constraints

Furthermore, the physical system has constraints and limitations, which need to be included
in the dynamics. Generation rate constraints (GRC) or generation dead band (GDB) are
often considered in the literature on LFC. GRC constrains the rate of change in mechanical
power that the mechanical generators can realistically provide. It is implemented in the
discrete setting using ∣∣∣∣∆Pm,i(k + 1)− Pm,i(k)

ts

∣∣∣∣ ≤ µ, (2-5)

where µ is a constant that represents the physical system’s limit on the rate of change [57].

Aside from GRC and GDB, state and input constraints are considered in all related works.
They are of the form x ≤ x ≤ x, and similarly u ≤ u ≤ u, which aims to respect physical
system limitations. The constants x and x denote upper and lower bounds on the states,
and similarly u and u for the inputs. The constraints on the states represent state deviations
for which the physical system breaks down, or where the linearization of the dynamics is no
longer valid. The constraints on the inputs reflect the physical generation limitations.

2-1-2 System analysis, constraints and limitations

After constructing, linearizing and discretizing the dynamics, classical control theory stability
analysis can be applied to the system. By constructing the Kalman controllability matrix K
using K = [B, AB, . . . , An−1B] and calculating the rank, the controllability of the system can
be checked. For the given discretized dynamics and values for constants as provided in the case
study, see Table 4-1, the Kalman matrix is rank-deficient, meaning the system is in fact not
controllable. However, the states are defined as deviations from nominal operating conditions
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12 Background and related literature

with the goal to regulate the states to zero, which relaxes the system requirement for control
from controllability to stabilizability. Stabilizability requires that all uncontrollable modes are
stable, which can be checked through eigenvalue analysis. For the given system description,
the system is stabilizable, since the uncontrollable modes all have eigenvalues within the unit
circle. A more detailed analysis can be found in the appendix, see section A-1.

A similar argument can be made for observability and detectability of a system, which refers
to whether it is possible to reconstruct the states x(t) based on the inputs u(t) and measured
outputs y(t) of a system. This can be done by implementing an observer or (extended)
Kalman filter and is necessary when the states are not directly measurable or otherwise
known. However, in this thesis, it is assumed that all information on the states is known by
the controller, allowing direct comparison between control methods. This is possible since the
controllers are applied in simulation, where data on the states can be directly retrieved from
the environment or true dynamics. The control methods can easily be extended to include
observers or Kalman filters in future works, but is omitted in this thesis. Moreover, related
works also do not include state reconstruction, which makes comparing methods easier.

2-2 Relevant background theory

In this section, relevant theoretical background is provided about the control approaches MPC
and RL. In the literature, these have been applied to the LFC problem, and will be discussed
in terms of frequency regulation performance and constraint satisfaction. Lastly, theory on
MPC as function approximator in RL is provided, in both the centralized and distributed
setting, which forms the basis of the proposed approach.

2-2-1 Model predictive control (MPC)

Model predictive control (MPC) is a model-based control method that utilizes a model of
the system to make predictions about the future states. It optimizes the states and control
actions over a control horizon Nc ∈ N+ to minimize a specified cost function, while satisfying
constraints. The states are predicted over the prediction horizon Np ∈ N+, with Np ≥ Nc.
To predict future states it uses a discretized model with time steps k : k = 0, . . . , Np. After
optimizing the control inputs for a given initial state x(0), only the first set of inputs u(0)
is applied to the system, and the optimization is repeated with updated information at the
next time step, see also Figure 2-2. MPC as a control paradigm has received widespread
recognition in recent academic history, and has a large body of mature theory with respect
to stability analysis and formal guarantees [18].
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future

k

control horizon
prediction horizon

k +1 +k Nc +k Np

computed control inputs u

predicted outputs y

past
setpoint r

Figure 2-2: Visualization of MPC. Predicted outputs are computed over the prediction horizon,
while control inputs are optimized over the control horizon. Only the first entry of the optimized
control sequence is applied, after which the optimization is repeated.

The optimization problem solved by an MPC controller can be defined by:

J(x) = min
x,u

V0
(
x(0), u(0)

)
+

Np−1∑
k=1

l
(
x(k), u(k)

)
+ Vf

(
x(Np), u(Np)

)
, (2-6a)

s.t. for k = 0, . . . , Np − 1 :

x(k + 1) = f
(
x(k), u(k)

)
, x(k) ∈ X , u(k) ∈ U , (2-6b)

h(x, u) ≤ 0, (2-6c)
x(0) = x, (2-6d)

where x, u (boldface symbols) are the states and inputs gathered over the control horizon Np,
i.e. x =

[
x⊤(0), . . . , x⊤(Np)

]⊤
, with x(k) ∈ X ⊆ Rn in the admissible set of states with

dimension n. Similarly, u(k) ∈ U ⊆ Rm is in the set of admissible inputs with dimension m.
The cost function consists of the initial cost V0, terminal cost Vf and a stage cost, denoted with
l(·). Typically, in linear MPC, the dynamics f(·) are of the form x(k + 1) = Ax(k) + Bu(k),
and the choice for stage-cost is commonly chosen as the linear quadratic regulator cost l(k) =
x⊤(k)Qx(k)+u⊤(k)Ru(k), shown to effectively regulate the states to 0. Augmenting the states
using x̃ = x− r will lead to the states being steered to the setpoint r instead. Furthermore,
the constraints h(·) are often implemented through upper and lower bounds on the states and
inputs, i.e x ≤ x ≤ x.
Nominal MPC (without inclusion of uncertainties or modeling errors) is not able to deal
with uncertainties or nondeterministic dynamics. Robust [10] and stochastic MPC [38] are
designed to address uncertainties in the prediction model. Robust MPC optimizes the worst
case behavior under uncertainties, guaranteeing safe behavior while being overly conservative.
Stochastic MPC solves stochastic optimization problems by incorporating uncertainties in
the dynamics, leading to probabilistic safety guarantees instead. One example is scenario-
based MPC, where the uncertainty distribution is represented by a fixed number of scenarios,

Master of Science Thesis Nathan van der Strate



14 Background and related literature

where each scenario samples from the uncertainty distribution and is included as deterministic
constraint in the optimization problem [18].

2-2-2 Reinforcement learning (RL)

Reinforcement learning [42] (RL) is a machine learning control approach which has become
increasingly popular in recent years. RL is an unsupervised method that is able to learn a
control policy based on observations of state transitions, actions and costs, while not relying
on a model of the system dynamics. It learns from experience through exploration and aims
to minimize a numerical cost signal resulting from the state-action trajectories, see Figure 2-3.

Figure 2-3: Agent-environment interaction in reinforcement learning

In RL, the learner and decision-maker is called the agent, which interacts with the environ-
ment. The environment provides the costs lt ∈ R that the agent tries to minimize over time.
At each time step t, the agent receives from the environment the state st ∈ S ⊆ Rn, where S
is the set of possible states, and selects an action at ∈ A(st) ⊆ Rm out of the set of available
actions A(st) in that state [42].

RL solves problems where the environment’s system dynamics are defined as a Markov decision
process (MDP), where the transition from state st under action at to the next state st+1 is
given by a probability density function

P[st+1 | st, at] : Rn × Rm × Rn → [0, 1]. (2-7)

RL’s ability to solve problems with MDPs makes it a suitable choice for the LFC problem,
where uncertainties make the problem non-deterministic from the perspective of unmodeled
stochastic dynamics.

To select an action at, a deterministic policy πθ(st) : Rn → Rm parametrized by learnable
parameters θ ∈ Rl is used by the agent. The policy determines the agent’s behavior and dic-
tates which states of the MDP the agent encounters over time. The policy can be represented
by for example a (deep) neural network (DNN), polynomial function, or other mathematical
model. The weights in such a DNN are the learnable parameters θ, which are optimized
over multiple iterations of the agent interacting with the environment. The performance of a
policy πθ is given by the expected cumulative cost

L(πθ) = E
[

T∑
t=0

γtl(st, at)
]

: at = πθ(st), (2-8)
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2-2 Relevant background theory 15

where T is the number of steps considered in the task and γ is the discount factor, which
determines the relative importance of immediate rewards versus long-term rewards.

The RL task is to find the optimal parameters θ∗ which minimize the expected cumulative
cost:

θ∗ = arg min
θ

L(πθ), (2-9)

with the optimal corresponding policy given by π∗ = πθ∗ .

Almost all RL algorithms involve estimating how good it is to be in a given state, which is
defined in terms of the expected future costs and involves the approximation of the state-value
function, defined as the expected cumulative cost starting from state s0 under a given policy,
denoted

Vθ(s) = Eπθ

[
T∑

t=0
γtlt+1

∣∣∣∣ s0 = s

]
: at = πθ(st) ∀t = 0, . . . , T (2-10)

The action-value function is the expected return of future costs when starting from state s0
taking action a0 under a given policy, denoted

Qθ(s, a) = Eπθ

[
T∑

t=0
γtlt+1

∣∣∣∣ s0 = s, a0 = a

]
: at+1 = πθ(st+1) ∀t = 0, . . . , T − 1 (2-11)

Note that the cost is a function of the transition lt = lt(st, at, at+1), which is probabilistic.

These state-value and action-value functions must satisfy a fundamental property called the
Bellman equation, ensuring particular recursive relationships. In short, the following must
hold:

Vθ(s) =
∑

a

(
πθ(a|s)

∑
s+,l

P [s+, l|s, a]
(
l + γVθ(s+)

))
, (2-12)

where for ease of notation, st+1 is denoted as s+, and π(a|s) is the probability of taking action
a in state s under policy π. The state-value and action-value functions as defined above satisfy
this relationship [42].

Multiple methods of optimizing the learnable parameters θ exist, which can be classified
into value-based and policy-based approaches [42]. In policy-based methods, the policy πθ is
optimized directly, without using the state- or action-value functions, often through gradient-
based policy optimization. In these methods, actions are sampled directly from the policy
distribution. On the other hand, value-based methods make use of value functions to optimize
the policy indirectly. Concepts such as exploration and experience replay play a crucial part
in value-based methods, with the goal to minimize the loss between the approximated value
function and the actual cost from the environment. Actions are selected through the use of
value functions instead of being sampled directly from the policy. Examples of value-based
learning methods include temporal difference (TD) learning methods, such as Q-learning and
state-action-reward-state-action (SARSA). Furthermore, a distinction can be made between
on-policy and off-policy learning [42], where on-policy methods attempt to evaluate or improve
the same policy used to select the actions, while off-policy optimizes a different policy from
the one generating data from visiting different state-action combinations.
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16 Background and related literature

In this thesis, Q-learning, an off-policy TD learning algorithm [42], will be leveraged to update
the learnable parameters θ. In Q-learning, the temporal difference (TD) error δt is defined by

δt = lt + γVθ(st)−Qθ(st, at), (2-13)

which is then used to update the parameters θ using

θ ← θ + αδt∇θQθ(st, at), (2-14)

where α is the learning-rate, which is a tunable hyperparameter, and ∇θQθ(st, at) is the
gradient of the action-value function with respect to the learnable parameters.

While RL does not require a model and can learn stochastic policies, a disadvantage of RL is
that it is not able to explicitly enforce constraints, requiring additional control to compensate.
Additionally, no formal safety guarantees or convergence guarantees can be made for RL-
based methods. Training off-line requires large amounts of data, which can be expensive.
On-line training through interaction with the environment mitigates this issue but may lead
to unstable or dangerous behavior during training.

Finally, multi-agent reinforcement learning (MARL) is an extension of RL where multiple
agents learn in a shared environment [42]. Each agent has a local state si and a local policy
πi used to take local actions ai. MARL can achieve a common goal through cooperation us-
ing for example a centralized learning, decentralized execution-paradigm. In the centralized
learning-variant of MARL, each agent is assumed to have full knowledge of all other agents,
which can be enforced in simulation. In decentralized learning MARL, there is no central
authority coordinating the learning process and each agent has limited information about
other agents. The biggest obstacle in decentralized learning MARL is non-stationarity of the
control objective as the concurrent agents learning leads to a continuously changing environ-
ment. From the point of view of one agent, the other agents are part of the environment,
but as they are learning agents themselves, alter the environment and thus change what the
optimal policy would be for those agents.

2-2-3 MPC as function approximator in RL

Central to this thesis is the integration of MPC and RL. In [15], the use of an MPC scheme
as function approximator in RL was first proposed and justified. The value function Vθ(s) :
Rn → R is approximated by an MPC scheme that is parametrized by learnable parameters
θ ∈ Rl. A general form is given by:
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Vθ(s) = min
x,u,σ

Fθ(x, u, σ)

= min
x,u,σ

βθ

(
x(0)

)
+

Np−1∑
k=0

γk
(
lθ
(
x(k), u(k)

)
+ ω⊤σ(k)

)
+ γN

(
Vf,θ

(
x(Np)

)
+ ω⊤

f σ(Np)
)

(2-15a)

s.t. for k = 0, . . . , Np − 1 :
x(k + 1) = fθ

(
x(k), u(k)

)
, (2-15b)

hθ

(
x(k), u(k)

)
≤ σ(k), (2-15c)

σ(k) ≥ 0, (2-15d)
hf,θ

(
x(Np)

)
≤ σ(Np), (2-15e)

σ(Np) ≥ 0, (2-15f)
x(0) = s, (2-15g)

where the vectors x, u and σ are the collection of the states, inputs, and slack variables
over the time horizon Np ∈ N+, i.e. x =

[
x⊤(0), . . . , x⊤(Np)

]⊤
. The slack variable σ(k)

softens the inequality constraints for time step k. The objective consists of an initial cost
βθ, stage cost lθ and terminal cost Vf,θ, all parametrized by θ. Furthermore, fθ denotes the
model approximation, and hθ, hf,θ are inequality constraints, all parametrized by θ. The slack
variables are punished with weights w and wf . The discount factor γ ∈ [0, 1] is used to define
the relative importance of immediate versus long-term cost. It is noted that the structure of
the dynamics, cost and inequality constraints parametrized by θ is not learned but is rather
a design choice, on a case by case basis.
The action-value function Qθ and policy πθ follow from this scheme as follows:

Qθ(s, a) = min
x,u,σ

Fθ(x, u, σ)

s.t. (2− 15b)− (2− 15g),
u(0) = a,

(2-16)

πθ = arg min
a

Qθ(s, a). (2-17)

It is shown that the state-value function Vθ(s), state-action function Qθ(s, a), and policy
function πθ(s) satisfy the fundamental Bellman equations [15].

2-2-4 Distributed MPC as function approximator in RL

The distributed MPC as function approximator in RL was first proposed and justified in
[27], which is an extension to the distributed setting of the centralized MPC as function
approximator introduced in [15]. The power network consists of local agents i ∈ M, as
illustrated in Figure 2-1. The agents have MPC schemes that are parametrized by a set of
local learnable parameters θi, and the total set of learnable parameters θ is the collection
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of all θi: θ = (θ⊤
1 , . . . , θ⊤

M ). A generic distributed MPC function approximator for the value
function is given by:

Vθ(s) = min
(xi,ui,σi)i∈M

∑
i∈M

Fθi

= min
(xi,ui,σi)i∈M

∑
i∈M

(
βθi

(
xi(0)

)
+

Np−1∑
k=1

γk
(
lθi

(
xi(k), ui(k), {xj(k)}j∈Ni

)
+ ω⊤

i σi(k)
)

+ γNp

(
Vf,θi

(
xi(Np)

)
+ ω⊤

f,iσi(Np)
))

(2-18a)

s.t. for k = 0, . . . , Np − 1, ∀i ∈M :
xi(k + 1) = fθi

(
x(k), u(k), {xj(k)}j∈Ni

)
, (2-18b)

hθi

(
xi(k), ui(k)

)
≤ σi(k), (2-18c)

σi(k) ≥ 0, (2-18d)
∀i ∈M :

hf,θi

(
xi(Np), ui(Np)

)
≤ σi(Np), (2-18e)

σi(Np) ≥ 0, (2-18f)[
x⊤

1 (0), . . . , x⊤
M (0)

]⊤
= s, (2-18g)

where Fθi
denotes the local MPC scheme for an agent i, where there is coupling between it

and neighboring agents j ∈ Ni. The local learnable parameters θi are known only to that
agent.

In the formulation, xi ∈ Rnl denotes the local states, ui ∈ Rml the actions taken by the local
controller, and σi the slack variables, necessary to soften the inequality constraints hθi

and
hf,θi

to guarantee feasibility during learning. Here, nl ∈ N+ is the local state dimension and
ml ∈ N+ is the local input dimension. The bold-faced symbols xi, ui, σi and xj again indicate
the states, actions and slack variables gathered over the entire prediction horizon Np ∈ N+,
i.e the size for the local states of agent i gathered over the prediction horizon is given by
xi ∈ Rnl×Np .

Furthermore, the objective consists of the local initial cost βθi
, local terminal cost Vf,θi

and
local stage cost lθi

, which are parametrized by local parameters θi. The structure is not
learned, but is a design choice made on a case-by-case basis. The dynamics for the local
agents are denoted with fθi

, and are dependent on the interaction between the interconnected
agents through the term {xj}j∈Ni . The discount factor γ determines the relative importance
between immediate costs and long-term future costs. Constraints on the states and inputs are
included in hθi

, which are slackened with σi and penalized in the cost by wi and wf,i. Softening
the constraints in this way is necessary to allow for feasible solutions, whereas omitting them
may lead to the optimization being too constraining to solve.

The action-value function Qθ(s, a) and policy function πθ(s) are constructed from the state-
value function Vθ(s) in the same way as described in Equation 2-16 and Equation 2-17. To
allow distributed evaluation of the global Vθ(s), the alternating direction method of multipliers
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(ADMM) and the global average consensus (GAC) methods are used, which will be introduced
next.

2-2-5 Global average consensus (GAC)

The global average consensus (GAC) method allows a network of agents to iteratively reach
consensus on the average of a variable. In a network E where all agents are indirectly con-
nected, the GAC algorithm can be mathematically represented by

vτ+1 = Pvτ , (2-19)

where v is a vector consisting of a stacking of local variables that require consensus, and P is
a doubly stochastic matrix, meaning the columns and rows sum to 1, with entries respecting
the topology of the network, i.e P (i, j) = 0 if (i, j) /∈ E and i ̸= j. By iteratively updating and
sharing values of the vector with direct neighbors, global consensus can be reached without
the need of a central critic.

2-2-6 Alternating direction method of multipliers (ADMM)

The alternating direction method of multipliers (ADMM) is a convex optimization algorithm,
used to solve the augmented Lagrangian, and allows for distributed optimization and parallel
computation [8].

ADMM solves problems of the form

min
x,z
{fADMM(x) + gADMM(z) : Ax + Bz = c}, (2-20)

where the two functions in different variables x, z are subject to the equality constraints in
Ax + Bz = c.

ADMM solves this problem by introducing the augmented Lagrangian, which augments the
objective function with a weighted sum of the constraint functions, and is defined as

Lρ(x, z, y) = fADMM(x) + gADMM(z) + y⊤(Ax + Bz − c) + ρ

2
∥∥Ax + Bz − c

∥∥2
2, (2-21)

where y are the dual-variables for the equality constraints. It solves by alternating between
optimizing over x, z, and y in an iterative fashion:

xτ+1 = arg min
x∈X

Lρ(x, zτ , yτ ),

zτ+1 = arg min
z∈Z

Lρ(xτ+1, z, yτ ),

yτ+1 = yτ + ρ(Axτ+1 + Bzτ+1 − c),

(2-22)

where τ denotes an ADMM-iteration, ρ is a regularization penalty term, X is the set of
admissible states x, and similarly for z ∈ Z. The dual-variables y are sometimes called the
Langrange multipliers. During the optimization step of a variable, the other variables are
considered constants.
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2-2-7 Distributed evaluation of global value functions

In Equation 2-18, the generic distributed MPC as function approximator is introduced. In
order to evaluate the global value function distributively and update the learnable parameters
θi in a distributive fashion, ADMM and GAC are utilized.

The augmented Lagrangian is obtained by dualizing the objective in Equation 2-18a with
additional constraint x̃i − z̃i = 0 ∀i ∈M, and is given by

Lρ,θ =
∑
i∈M

(
Fθi

(xi, {x(i)
j }j∈Ni , ui, σi) +

Np∑
k=1

(
y⊤

i (x̃i − z̃i) + ρ

2 ||x̃i − z̃i||22
))

, (2-23)

where ρ is the regularization factor and yi the dual variables for agent i. Information of neigh-
boring agent’s states xj from the original problem is replaced with local copies of predicted
states over the prediction horizon x

(i)
j .

When solving this augmented Lagrangian using ADMM, the minimization carried out in the
first step of each iteration in Equation 2-22 is subject to the equality and inequality constraints
present in Equation 2-18c and Equation 2-18e.

In the augmented Lagrangian, the variable z acts as the global state to force the local agents’
opinion on the global state to reach consensus by satisfying the equality constraint x− z = 0.
Specifically, an augmented state x̃i = (x⊤

i , col⊤j∈Ni
(x(i)

j ))⊤ is introduced, where x
(i)
j is a local

copy kept by agent i on the state of a directly neighboring agent j ∈ Ni, which is stacked in a
column vector to gather all neighboring agents’ states. The variable z̃i = (z⊤

i , col⊤j∈Ni
(z(i)

j ))⊤

is a copy of the relevant states to agent i from the global state z = (z⊤
1 , . . . , z⊤

M )⊤. Imposing
the constraint x̃i − z̃i = 0 in the construction of the augmented Lagrangian ensures that
the agents reach consensus on the global state over multiple iterations. The bold symbols
xi, xj , ui and σi indicate the collection of variables over the horizon Np, which is also true for
the augmented states and augmented global states x̃i, z̃i.

An algorithm with steps on how ADMM and GAC are used to iteratively and distributively
evaluate the global value function Vθ(s) is given in [27]. One such iteration involves the
optimization of the local MPCs to calculate values of the local augmented states x̃τ+1

i , followed
by communication between neighboring agents on their respective opinions on each others
states. After a predefined amount of iterations is completed to optimize the local MPCs,
consensus is used to agree on the value of the global value function. For further details and
formal proofs of the theoretical framework, the reader is encouraged to read [27].

2-3 Existing approaches in LFC

In the literature on LFC, a variety of control approaches are applied. They can largely be
grouped into model-based predictive approaches and model-free machine learning approaches.
Other methods, such as robust control, H∞ control and sliding mode control have also been
applied to LFC in the past, but have seen less success in recent literature due to the increasing
amount of uncertainties or the lack of performance due to conservativeness of the controllers.
The most prevalent methods, model predictive control and reinforcement learning, will be
introduced in the context of LFC.
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2-3-1 Model predictive control in LFC

In the context of LFC, where the power network is decomposable into a network of intercon-
nected subsystems, a distinction can be made in MPC-based approaches between centralized,
decentralized and distributed MPC. In centralized MPC approaches, all the subsystem-states
are gathered in a centralized location where the control inputs are optimized in a global opti-
mization problem. A big advantage for this is that interactions are handled implicitly, leading
to the theoretical optimal solution. Disadvantages include the poor scaling with network size,
as the optimization over all decision variables leads to high dimensionality and long computa-
tion times, and the large amount of data sharing needed which brings with it cyber-security
related issues.
Decentralized approaches break the global optimization problem into smaller sub-problems,
which are optimized locally, making use of the distributive properties of the power system
network. This reduction of dimensionality leads to a significant speed up in computation-
time, which may be further improved by optimizing the sub-problems in parallel. However,
decentralized MPC ignores interactions between interconnected sub-systems, which simplifies
the problem but yields sub-optimal performance which may lead to unstable solutions or
non-convergence in case of strongly dynamically coupled systems.
Distributed MPC, on the other hand, is similar to decentralized MPC with the exception
that the coupling dynamics are captured in the optimization problem. It requires neighbor-
to-neighbor communication and iterative optimization when areas are dynamically coupled.
Although modeling the interactions leads to a more complex optimization problem, perfor-
mance rivals that of the optimal centralized solution while having vastly superior computation-
times and less data sharing requirements. In the context of LFC, distributed MPC has seen
the most success, and variations of distributed MPC are the most common in literature.

Some authors tried hybrid models [13] or similar discrete algebraic equation-based mod-
els [30] within their approach to represent the dynamics. However, they are not always
suitable for MPC due to the large scale of modern networks, or they lead to complex op-
timization with little performance improvements. Therefore, the model is often linearized
[13, 17, 22, 23, 24, 25, 26, 29, 45, 56, 59]. In [45], the decentralized and distributed ap-
proaches are first mentioned and compared, where the cooperation-based distributed MPC
leads to the Pareto optimal solution, outperforming the decentralized MPC. Other papers
that consider a distributed MPC approach are [24, 25, 26], which add increasingly more levels
of stochasticities or economic factors, while not considering cooperation. With regards to
RES, older approaches often do not consider the effects of stochasticities [45]. It was noted in
[29] that the inclusion is necessary, but the methods of implementation differ. Some papers
model wind farms explicitly as a local subsystem area [25, 56]. Others model the effects of
RES as a general disturbance-term in unforeseen load demand [22, 26]. In [22], a nominal
controller neglects the disturbances and an ancillary controller is used to limit the effect of
the lumped disturbance.

One of the strengths of MPC is that it is able handle constraints. Aside from state and
input constraints, some authors additionally include GRC and GDB [22, 29], while [57] only
considers GRC in addition to the state and input constraints. The largest amount of different
constraints considered is in [59], which additionally consider system fluctuation constraints,
terminal equality constraints and control movement constraints. Finally, some authors choose
to include economic load dispatch in their works, where the cost of production and economic
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demand is included in the cost function for MPC [13, 17, 23, 26]. A high-level overview of
the differences in approaches proposed by various authors is given in Table 2-2.

2-3-2 Reinforcement learning in LFC

Within the context of LFC, different RL-based approaches have been taken in the literature
to tackle the LFC problem. The main difference between the methods is how the agents
are trained, i.e. how learning takes place. Centralized learning involves a central critic
or authority which has full knowledge of all agents’ states and value functions, leading to
the development of a joint policy function. An advantage of centralized learning is that it
has better coordination among agents and avoids the problem of non-stationary. However,
implementing full knowledge can be enforced in simulation but difficult to realize in reality,
due to the extensive information sharing that is required. It also suffers from scalability
issues, computational complexity, reduced adaptability, and privacy concerns.
In decentralized learning, all agents learn independent policies with minimal information
about the states and actions of other agents. Training is based on local observations and
rewards, which decreases the amount of data sharing that is required. The main issue with
this method is that concurrent agents’ learning essentially changes the environment for other
agents, leading to nonstationarity, which slows down convergence and can ultimately lead to
less cooperation. It is however more scalable and robust to changing environments.

Another distinction can be made in the algorithm used for learning. Some implement value-
based learning methods, like Q-learning [11, 40, 48, 50, 51, 53], which focus on estimating
value functions that represent the expected cumulative future rewards for taking actions in
a given state. Policy-based learning methods, including methods that use gradient descent
such as actor-critic networks [49, 58], directly learn a policy that maps states to actions
without explicitly computing value functions. The latter is more effective in environments
with continuous action spaces, while value-based methods are often easier to implement and
more sample-efficient.

In existing works, most approaches are data-driven model-free RL methods, such as the
deep reinforcement learning with continuous action space approach that is proposed in [50],
which is further extended to the multi-agent setting in [51], where the centralized-learning
decentralized-implementation-paradigm is implemented. Appropriate initialization of the
deep neural network used for the deep reinforcement learning proves to be difficult, as learn-
ing converges very slowly, necessitating the use of a simpler PID-based controller to generate
data to train the model prior to the actual reinforcement learning step. Furthermore, learning
is governed by an actor-critic DDPG method, where the actor-critic approach is chosen to
combat high variance in the estimation of the gradients by the critic and allows a cooperative
optimization during training. Other works propose a data-enabled predictive control guided
multi-agent reinforcement learning approach, where offline centralized training is guided by
a deep predictive algorithm [57, 58]. In some works, Q-learning is leveraged to optimize the
policy [40, 53], while [11] uses genetic algorithm-based MARL with fixed participation factors
to optimize the global performance. These fixed participation factors determine the relative
amount of power that each area provides, restricting the optimization problem. There are
also existing works that do not primarily focus on the frequency regulation, but focus on
communication topology and the effect of time delays instead [40]. Finally, some methods
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do not take into consideration the previously discussed constraints [11, 40, 50], while others
include them implicitly [51] and some enforce them to be satisfied in simulation [53]. Again,
a high-level overview can be found in Table 2-2.

2-3-3 Combinations of MPC and RL in LFC

Many works note that MPC and RL approaches complement each other rather well. Whereas
MPC is able to handle constraints and provides stability guarantees, nominal MPC is not well-
equipped to deal with disturbances or stochasticities and relies on an accurate model. Robust
or stochastic MPC approaches can handle these stochasticities but require significant extra
complexity to deal with them, and have conservativeness issues leading to poor performance.
RL, on the other hand, is able to deal with disturbances and stochastic effects by providing a
flexible and adaptive machine learning approach, but can not deal with constraints, does not
provide any stability guarantees, and can have unsafe behavior during learning.

It is however not obvious how to integrate MPC and RL most effectively. In the literature,
various approaches exist. Some use learning to improve parameters of the model used in
an MPC formulation, while others use MPC to prime inputs for the neural networks or to
provide inputs that are guaranteed safe. By combining the two approaches, knowledge of the
dynamical system can be injected into the approach in the form of a model, constraints can
be handled by formulating an objective function with inequality constraints and the approach
can be made adaptive to uncertainties by incorporating learning.

In [57], a data-enabled predictive control method is proposed, that uses the predicted load
demand signal as the input signal to a predictive model. Through regularization and inclusion
of slack variables it is able to deal with uncertainties. The receding horizon framework
is similar to MPC, without the explicit model or dynamics, which is instead replaced by
classical system identification models, i.e using Hankel matrix and least squares formulations.
However, the model is reliant on accurate data and load demand prediction and has no formal
safety guarantees.

In [58], a similar approach is taken, where the multi-agent reinforcement learning is guided
by a data-enabled predictive controller. It employs offline centralized training. A model of
the system is not explicitly used, instead replacing it with input/output data. It suffers from
the same restrictions as [57].

Full integration of the two methods has not been applied to the power system network case yet.
This thesis aims to bridge that gap, fully integrating MPC and RL to exploit the advantages
of both methods, yielding an approach that can learn to adapt to changes in the environment,
while enforcing constraint handling capabilities and interpretability.

2-3-4 Summary and comparison

Existing works in the context of LFC can largely be grouped into model predictive (MPC)
based and reinforcement learning (RL) based. MPC-based approaches need a model to pre-
dict future states, and optimize control inputs in a receding-horizon fashion. These methods
provide stability and feasibility guarantees but are generally ill-equipped to deal with (large)
uncertainties. RL-based approaches leverage learning from interaction with the environment
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to provide more robust controllers, but lack interpretation, safety guarantees and constraint
handling. There exists multiple neural network designs, and multiple learning methods. Com-
bination of MPC and RL is proposed in existing works, but never are the methods fully in-
tegrated.

A high-level overview of the approaches that existing works have proposed to tackle the LFC
problem is given in Table 2-2, which provides comparison on some key aspects:
The first aspect is the model that is used, which for the model-based methods refers to the
model used in the controller, and for the model-free learning-based approaches refer to the
model used to simulate the environment. This model can be nonlinear, hybrid, or linear. The
nonlinear model provides the highest level of accuracy but suffers from poor scalability and
high complexity. Hybrid and linear models are commonly used in LFC, where linear models
provide the most computational efficiency.
Furthermore, a distinction can be made between centralized, decentralized, and distributed
implementations. As discussed, modern power system networks require at least a decentral-
ized approach to deal with the large-scale and geographically dispersed nature of the network,
and to ensure computational tractability. Distributed approaches are more accurate at the
cost of increased complexity, but are ultimately favored. Within learning, the distinction
refers to how learning is carried out.
The inclusion of RES is the main focus of the thesis, since the uncertainties they introduce
necessitate more advanced control techniques. Existing works that include them are thus
more relevant to compare the proposed approach to, or to look toward for inspiration in ways
of dealing with uncertainties. Finally, the amount of constraints that are considered impact
the fidelity of the model. Methods that implement GRC and GDB provide more realistic
expectations of performance. In the table, ‘multiple’ indicates inclusion of both GRC, GDB,
input and state constraints, and possibly additional constraints.

2-4 Summary

The load frequency control task deals with frequency deviations in power system networks,
which is increasingly more difficult through the effects of an increase in penetration of re-
newable energy sources. These green energy alternatives are inherently stochastic in nature,
which complicates implementation of classical control approaches. More robust, adaptive ap-
proaches must be considered to deal with the uncertainties they introduce. Furthermore, the
power network is a large-scale, geographically dispersed network of interconnected subsystems,
and is often implemented as a linearized model in control approaches, where the states denote
deviations from nominal operating conditions. Existing approaches include model predictive
control based and reinforcement learning based approaches, which both have advantages and
disadvantages. MPC provides stability and feasibility guarantees and constraint handling ca-
pabilities, but is ill-equipped to deal with uncertainties and struggles to adapt to a changing
environment. RL is able to deal with larger uncertainties and changing environments through
learning. It does not, however, provide any formal guarantees, can exhibit unstable or unsafe
behavior during learning, is difficult to interpret and is unable to handle constraints explicitly.
Combinations of MPC and RL provide opportunities, but fully integrated approaches have
not been applied in the LFC context.
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Table 2-2: High-level comparison between proposed approaches in LFC.

Paper Model Approach RES LFC Constraints
Chen et al. [9] Linear Decentralized ✗ ✓ None

Daneshfar et al. [11] Linear Centralized ✗ ✓ None
Diab et al. [12] Linear Centralized ✗ ✓ None

Ersdal et al. [13] Linear Centralized ✗ ✓ None
Hu et al. [16] Linear Distributed ✓ ✓ Multiple
Jia et al. [17] Linear Distributed ✗ ✓ None

Liao et al. [19] Linear Centralized ✗ ✓ None
Liu et al. [21] Linear Centralized ✗ ✓ None
Liu et al. [22] Linear Distributed ✓ ✓ GRC, GDB
Liu et al. [23] Linear Distributed ✓ ✓ None
Ma et al. [24] Linear Distributed ✗ ✓ Multiple
Ma et al. [25] Linear Distributed ✓ ✓ Multiple
Ma et al. [26] Linear Distributed ✗ ✓ Multiple

Mohamed et al. [29] Linear Decentralized ✗ ✓ GRC, GDB
Moradzadeh et al. [30] Hybrid Distributed ✗ ✗ None

Mu et al. [31] Linear Centralized ✓ ✓ None
Rerkpreedapong et al. [34] Linear Centralized ✗ ✓ None

Shangguan et al. [39] Linear Centralized ✓ ✓ None
Singh et al. [40] Linear Centralized ✗ ✓ None
Trip et al. [43] Nonlinear Distributed ✗ ✓ None

Vachirasricirikul et al. [44] Linear Centralized ✓ ✓ None
Venkat et al. [45] Linear Distributed ✗ ✓ None

Vrdoljak et al. [46] Nonlinear Centralized ✗ ✓ GRC, GDB
Xi et al. [48] Linear Decentralized ✓ ✓ GRC
Xie et al. [49] Linear Centralized ✗ ✗ None
Yan et al. [50] Linear Centralized ✓ ✓ None
Yan et al. [51] Nonlinear Decentralized ✓ ✓ GRC, GDB
Yang et al. [52] Hybrid Distributed ✗ ✗ None
Yu et al. [53] Linear Decentralized ✗ ✓ GRC

Zhang et al. [54] Nonlinear Centralized ✗ ✗ None
Zhang et al. [55] Hybrid Decentralized ✗ ✓ None
Zhang et al. [56] Linear Distributed ✓ ✓ Multiple
Zhao et al. [57] Linear Centralized ✓ ✓ GRC
Zhao et al. [58] Linear Centralized ✓ ✓ Multiple
Zheng et al. [59] Linear Distributed ✗ ✓ Multiple
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Chapter 3

Integrated MPC and RL paradigm for
LFC

As highlighted in chapter 2, an approach fully integrating MPC and RL has not been applied
in the LFC context. This thesis aims to bridge that gap.

A novel approach detailed in subsection 2-2-3 provides a framework for integrating MPC and
RL by constructing an MPC scheme that serves as value function approximator and policy
provider for an RL algorithm. This method is adapted to the distributed setting and detailed
in subsection 2-2-4, and forms the basis of the formulation of the proposed approach in this
thesis. To make use of the distributed framework, first the LFC task is framed as an episodic
RL task such that RL algorithms can be used to learn the control policy. Then, centralized
and distributed MPC schemes are designed, including the quadratic cost function to regulate
the state deviations to zero. The MPC schemes are parametrized with learnable parameters
to allow the controller to learn to avoid constraint violations and adapt to uncertainties. The
MPC schemes are the policy providers for the RL controllers, where the parametrization
is learned by the controllers. After training is completed, the controllers are compared in
chapter 4 to a model-free deep deterministic policy gradient (DDPG) learning algorithm and
a scenario-based stochastic MPC (Sc-MPC) approach.

3-1 Problem description

In this thesis, the LFC problem is framed as a regulation task with an unknown model. In
chapter 2, the dynamics are introduced, linearized around nominal operating conditions, and
discretized using forward Euler, leading to the state-space representation given in Equation 2-
4. The centralized state, used for the centralized paradigm, is simply obtained by stacking
the local states of the agents in the network i.e x = [x⊤

1 , x⊤
2 , . . . , x⊤

M ]⊤, with M the number
of agents in the network. For the distributed control approaches, the states and costs are
expected to be local and known only to the relative agents, as the local controllers operate
only on local information.
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However, the linearized model is only valid for small perturbations around the nominal operat-
ing point, making it crucial to regulate the state deviations xi = [∆fi, ∆Pm,i, ∆Pv,i, ∆Ptie,i]⊤
to 0. Larger deviations invalidate or limit the model fidelity, which can lead to large errors
and unstable control. The main focus is on regulating the first state, which is the frequency
deviation ∆fi, as large frequency deviations lead to damage to equipment and potential power
outages. Furthermore, the number of constraint violations should ideally be 0 for all possible
instantiations of the uncertainties, but generally should be as small as possible. The unknown
model captures the uncertainties introduced by RES. In reality, these uncertainties will gen-
erally lead to stochastic dynamics in the production of electricity. Having unknown dynamics
represents this, and allows for a proof of concept: if the proposed approach is able to learn
an effective control strategy in the presence of strong uncertainty, it will likely be able to
handle uncertainties in generation from RES. It is assumed in the thesis that information on
the states is readily available, without the need of observers or Kalman filters. This can be
enforced in simulation and allows direct comparison between methods.

In short: the goal is to learn a control strategy that regulates the states to 0 while adhering
to system constraints which represent physical limitations. The controller operates based on
an unknown model and tries to learn to mitigate the effect of the uncertainties. The goal is
described by the cost Jeval, which is used to evaluate the performance of all controllers.
The evaluation cost is given by

Jeval =
Tsim∑
t=0

(
x⊤

t Qxxt + u⊤
t Quut + w⊤ max

(
0, x− xt, xt − x

)
+ w⊤

GRC max
(

0,−∆Pm,t+1 −∆Pm,t

ts
− µ,

∆Pm,t+1 −∆Pm,t

ts
− µ

))
,

(3-1)

consisting of a quadratic term associated with regulating the states and a linear term asso-
ciated with state constraints over the simulation time t ∈ [0, Tsim]. In the formulation, x, x
are the upper- and lower bounds on the states. The penalty weights w ∈ Rn and wGRC ∈ RM

punish constraint violations, and the quadratic penalties are diagonal with Qx ∈ Rn×n and
Qu ∈ Rm×m. The generation rate constraint constant µ ∈ R is the bound for the GRC,
representing the physical limitation on the rate of change of the mechanical generators, as it
is limited by inertia. For the numerical values used in the case study, see Table 4-2.
To track the magnitude of the constraint violations separately, η is defined as the sum of the
(absolute) values of the constraint violations over the simulation time. It is given by

η =
Tsim∑
t=0

max(0, x− xt, xt − x). (3-2)

Note that an element of xt can at maximum only violate one of the two bounds at any given
time, and that the definition yields strictly non-negative values for η.

3-2 LFC as an episodic RL task

Load frequency control is classically a continuous-time process that spans large time-scales.
To facilitate the training of a controller with RL algorithms such as the proposed framework,

Nathan van der Strate Master of Science Thesis



3-2 LFC as an episodic RL task 29

the LFC task is formulated as an episodic reinforcement learning task.
The formulation as an episodic task allows the RL algorithms to learn a policy that gen-
eralizes over different realizations of uncertainties and operating conditions, and allows for
easy tracking of performance improvements over the time that it is learning. If enough in-
stantiations are considered, the controller will be robust to the pre-described distribution of
stochasticities which approximate the uncertainties introduced by RES. The episodes are all
of equal length T , with a discrete amount of time steps defined by the sampling time ts:
number of steps = T/ts. The initial conditions include nonzero initial state x0 (or s0 in the
framework of RL) which is reset at the end of every episode. The specific values for sampling
time, simulation time and initial states are given in chapter 4.

3-2-1 Cost design of environment

Reinforcement learning methods require the environment to return a cost, providing the
numeric signal that will drive the learning. The cost used for the LFC task punishes the
deviations in states and actions quadratically, and linearly punishes state-constraints and
GRC violations. The quadratic cost is commonly used in regulation tasks, which punishes
larger deviations more severely than smaller deviations. It is augmented with linear penalties
on state constraints to respect the physical limitations of the generators.
The non-negative cost L(st, at) ∈ R+ is given by

L(st, at) = s⊤
t Qsst + a⊤

t Qaat + w⊤ max(0, s− st, st − s)

+ w⊤
GRC max

(
0,−st+1 − st

ts
− µ,

st+1 − st

ts
− µ

)
,

(3-3)

where s, s are the upper- and lower bounds on the states, denoting for example the maximum
amount of power that the generator can provide, or the maximum deviation from the nominal
operating frequency that is deemed acceptable before the power network suffers damage or
power outages. The max operator and the arithmetic are applied element-wise, such that the
outcome of the max operator is a vector in Rn. The penalty weights are vectors w, wGRC ∈ Rn

and the quadratic penalties are diagonal with Qs ∈ Rn×n and Qa ∈ Rm×m. For the numerical
values used in the case study, see Table 4-2. The generation rate constraint constant µ is
the bound for the GRC, which is a scalar cast to a vector with shape µ ∈ Rn ≥ 0, see also
Equation 2-5. It is the physical limitation on the rate of change of the mechanical generators,
as it is limited by inertia. Subsequently, it limits the amount of high-frequency switching,
which may otherwise lead to an increase in wear and tear.

3-2-2 Dynamics of environment

Aside from providing the cost that is observed by the RL agent, the environment provides the
true state trajectories x+ (or s+) ∈ Rn based on the continuous actions u (or a) ∈ Rm that
the agents select. It uses the LTI system derived in chapter 2, and has the true knowledge of
the load disturbance ∆PL. The dynamics of the environment are thus given by

x+ = Adx + Bdu + Fd∆PL, (3-4)

where it is noted that for future work, the complete nonlinear system dynamics may be
considered to approximate the real-world network to a higher degree of accuracy.
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3-2-3 Interaction with agents

The environment employs centralized dynamics with states x ∈ Rn and inputs u ∈ Rm,
corresponding to the MDP as described in chapter 2, as it is the most straight-forward to
implement. As highlighted in section 3-1, the centralized state is the stacking of the local
states, i.e x = [x⊤

1 , x⊤
2 , . . . , x⊤

M ]⊤, while the distributed approaches are expected to be local
and known only to the relative agents.

Therefore, the centralized states and costs that the environment returns are decomposed into
M smaller local states and costs, from x ∈ Rn → xi ∈ Rnl and Lt ∈ Rm → Lt,i ∈ Rml such
that:

x =

 x1
...

xM

 , xi ∈ Rnl , n = M · nl,

Lt =

 Lt,1
...

Lt,M

 , Lt,i ∈ Rml , m = M ·ml.

(3-5)

Similarly, the M different control actions ui ∈ Rml selected by the agents are concatenated
to form the centralized input u ∈ Rm required for the environment:

u =

 u1
...

uM

 , ui ∈ Rml , m = M ·ml. (3-6)

Note that for the dynamics considered in the thesis, the local input dimension ml = 1, which
implies m = M .

3-3 MPC-RL for LFC

In [27], the use of an MPC scheme as function approximator in RL, first proposed in [15],
was extended to the multi-agent setting. The resulting distributed approach makes use of the
alternating direction method of multipliers (ADMM) to allow the distributed agents to locally
optimize and communicate with direct neighbors. By using ADMM in conjunction with GAC,
the value function approximation is evaluated distributively. Furthermore, the gradient of the
action-value function ∇θQθ(st, at), necessary for updating the learnable parameters, is shown
via sensitivity analysis to be separable, which allows the entire update of learnable parameters
to be carried out distributively. An overview of both methods is given in chapter 2.

Both the centralized MPC as function approximator as introduced in [15], as well as the
distributed extension as proposed in [27] are extended in this thesis to the LFC case. The
centralized implementation is included to compare performance to the distributed implemen-
tation, and provides an upper bound on performance of the distributed counterpart. The
distributed implementation is preferred to the centralized implementation to minimize data-
sharing, increasing cybersecurity and to accommodate for the distributed nature of the power
network.
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The generic approaches are adapted to the LFC task, with the design of a tailored MPC
scheme including paremetrization of the function approximator. The mathematical formula-
tion of the proposed approaches is introduced next, with the specific MPC schemes.

3-3-1 Centralized MPC-RL for LFC

Here we introduce a centralized control scheme for LFC, extending the MPC as function
approximator in RL as detailed in subsection 2-2-3. An overview of the proposed approach is
given in Figure 3-1. The environment provides the initial state x(0) and cost Lt, as function of
the selected action by the agent and the external load disturbance ∆PL. Based on the state,
the parametrized MPC scheme optimizes control actions over the control horizon and applies
the first control input u∗(0) in the optimized sequence to the environment. Additionally,
it provides the evaluation of the approximations of the state-value Vθ(s) and action-value
Qθ(s, a) functions, which are necessary for updating the learnable parameters θ using Q-
learning. The action-value function Qθ(s, a) is obtained by solving the related optimization
problem described in Equation 2-16. The update of learnable parameters in turn changes the
parametrized MPC scheme. The initial state x(0) is the current state, used as starting point
in the MPC optimization, and is updated at every time step t.

Figure 3-1: Centralized MPC-RL learning and control visualization.
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The generic formulation of an MPC as function approximator is given in Equation 2-15. For
the specific LFC case, consider the following parametrized scheme:

Vθ(st) = min
x,u,σ

Jθ(x0) = min
x,u,σ

(
V0,θ +

Np−1∑
k=0

γk
(

f⊤
θ

[
xk

uk

]
+ x⊤

k Qx,θ xk + u⊤
k Qu,θ uk + w⊤

θ

[
σk

σGRC,k

])

+ x⊤
Np

Qf,θ xNp
+ w⊤

f,θ

[
σNp

σGRC,Np

])
(3-7a)

s.t. for k = 0, . . . , Np − 1 :
xk+1 = Aθxk + Bθuk + FθP̂L,k + bθ, (3-7b)∣∣∣∣∆Pm,k+1 −∆Pm,k

ts

∣∣∣∣− µ ≤ σGRC,k, (3-7c)

σGRC,k ≥ 0, (3-7d)
for k = 0, . . . , Np :

x + ϕθ − σk ≤ xk ≤ x + ϕθ + σk, (3-7e)
σk ≥ 0, (3-7f)

x0 = st, (3-7g)

where the dynamics used in the centralized MPC scheme are given in Equation 3-7b, which are
implemented as equality constraints. The system matrices are all parametrized by learnable
parameters θ. The variable bθ is a learnable parameter that may be used to learn a constant
offset in the dynamics. A priori knowledge on system dynamics is injected through initial
guesses of the parametrized matrices Aθ, Bθ, and Fθ.

Furthermore, the parametric cost in Equation 3-7a is designed to mimic the RL stage cost
in Equation 3-3, and punishes the states xk ∈ Rn and inputs uk ∈ Rm quadratically, and
includes an affine term fθ in the stage cost to allow the controller to learn some constant
offset in state-action space. The slack variables σ and σGRC that are used to slacken the
inequality constraints in Equation 3-7c and Equation 3-7e are punished in the objective with
wθ and wf,θ to discourage constraint violations. The inequality constraint in Equation 3-7c
constraints the mechanical generator’s rate of change, where the mechanical output ∆Pm,k is
part of the state xk, and µ is a constant that represents this physical bound. The variables
x and x in Equation 3-7e are based on a priori knowledge of the physical system and denote
the lower and upper bounds on the states, which can artificially be moved by the controller
through learning ϕθ and ϕθ, to aid in avoiding violations.

The inputs are constrained by hard constraints and are enforced during optimization without
the use of slacks, by limiting the actions that the agents can choose to the admissible set
uk ∈ U ⊆ Rm. The optimization problem is for a large part parametrized with learnable
parameters θ. The total list of learnable parameters with their dimensions is given in Table 3-
1. The centralized MPC-RL scheme is designed to be similar to the environment, which means
the controller should be able to learn the dynamics rather well, while leaving enough room
for the controller to make improvements through the affine terms and variable penalties on
constraint violations.

Nathan van der Strate Master of Science Thesis



3-3 MPC-RL for LFC 33

Table 3-1: Learnable parameters for the centralized MPC scheme with their dimensions.

Learnable parameter Aθ, Qx,θ, Qf,θ Bθ, Fθ bθ, ϕθ, ϕθ V0,θ fθ Qu,θ wθ, wf,θ

Dimension Rn×n Rn×m Rn R Rn+m Rm×m Rn+M

Learning of MPC-RL

Learning of the MPC-RL controller is visualized in Figure 3-1. As shown, the parametrized
MPC scheme provides the optimized input action u∗(0) and the state-value Vθ(s) and action-
value Qθ(s, a) function approximations via the minimizer and the minimizations, respectively.
The action-value function Qθ(s, a) follows from the parametrized MPC scheme in a similar
way as detailed in the background, see Equation 2-16.

Our proposed method uses Q-learning (introduced in subsection 2-2-2) to update the learnable
parameters θ, by using the temporal difference error δt. The equations to update the learnable
parameters are given by

δt = L(st, at) + γVθ(st+1)−Qθ(st, at), (3-8)

θ ←− θ + αδt∇θQθ(st, at). (3-9)

The cost L(st, at) is the observed incurred cost from the environment, which is a function
of the true states of the environment and the control action applied, see Equation 3-3. The
learning-rate α is a tunable hyper-parameter, influencing the rate of convergence and stability
during learning, and γ is the previously discussed discount factor.

The gradient ∇θQθ(st, at) is used in the gradient-descent based optimization. It is shown
in [15] via sensitivity analysis, that the gradient is equal to the gradient of the Lagrangian
function associated with the optimization function, and is given by

∇θQθ(s, a) = ∇θLθ(s, y∗), (3-10)

where y∗ is the collection of optimal primal-dual variables, obtained from solving for Qθ.
The Lagrangian turns functions with (in)equality constraints into one continuous function,
weighted by the dual-variables.

The Lagrangian is given by

Lθ(s, y) = Jθ(x, u, σ) + λ⊤hθ(x, σ) + µ⊤gθ(x, u, σ) (3-11)

which includes the objective from Equation 3-7a, and where y = (x, u, σ, λ, µ) are the primal
and dual variables, gθ is the equality constraint which is obtained by rewriting Equation 3-7b
into the form xk+1 − [. . . ] = 0, and hθ is the inequality constraints similarly obtained by
rewriting Equation 3-7c and Equation 3-7e and summing them.

The gradient ∇θQθ is obtained by taking the derivative of this Lagrangian with respect to the
learnable parameters θ and evaluating it at the optimal primal and dual variables y∗ obtained
through optimization of the MPC scheme:

∇θQθ(s, a) = ∂Lθ(s, y∗)
∂θ

(3-12)
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3-3-2 Distributed MPC-RL for LFC

The centralized approach that was introduced in the previous section assumes that the control
actions of all agents in the entire network are optimized in a central location. It needs a
central governing authority to gather information from the different agents in the network,
and to communicate the optimized control actions to the different agents. However, the
main downside of using the centralized approach is that this requires a large amount of
data sharing, which, as detailed in chapter 1, may suffer from communication limitations
and cyber-security related issues. Therefore, a distributed paradigm is preferred, where the
different power generation areas in the power network are regarded as separate control agents
that can interact with one another, each having local controllers to select local actions.

In this section, we propose a distributed MPC-RL paradigm for LFC by extending the dis-
tributed MPC scheme as value function approximator in RL as detailed in subsection 2-2-4.
The distributed approach makes use of a similar value function approximator as the one in-
troduced in subsection 3-3-1, extending it to the multi-agent setting. An overview of the
proposed distributed paradigm is given in Figure 3-2, where the distributed controller is
depicted, which replaces the centralized one in Figure 3-1.

Figure 3-2: Distributed MPC-RL learning and control visualization, extending the centralized
MPC-RL scheme to updating parameters distributively by utilizing ADMM and GAC. Interaction
with the environment is not depicted here, but can be seen in Figure 3-1.
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In the proposed distributed paradigm, agents interact with the environment in a similar fash-
ion to the centralized paradigm, where an overview was given in Figure 3-1. The MPC-RL
controller in that figure is replaced in the distributed paradigm with multiple, smaller con-
trollers, which have local parametrized MPC schemes. The global problem, which is composed
of the smaller MPC schemes, is solved using ADMM and communication between direct neigh-
bors to iteratively optimize control inputs over the control horizon. After convergence, GAC
is used to reach consensus on the global state-value function Vθ(s) and global action-value
function Qθ(s, a). Both the ADMM and GAC methods require only communication between
direct neighbors, after which the global functions are known to the local agents. Then, the
local learnable parameters θi are updated using a Q-learning update strategy, similar to the
central paradigm. An overview of the mechanisms of ADMM and GAC is given in chapter 2.

The biggest challenge in the distributed paradigm is to guarantee a distributive update of
learnable parameters and distributive application of control. In [27], it is shown that it is
indeed possible to have a distributive update of learnable parameters, which will be explained
in detail below. First, consider the following parametrized scheme:

Vθ(st) = min
{(xi,ui,σi)}i∈M

Jθ(x0) = min
{(xi,ui,σi)}i∈M

∑
i∈M

(
Vi,0,θi

+
Np−1∑
k=0

γk
(

f⊤
i,θi

[
xi,k

ui,k

]

+ x⊤
i,k Qx,i,θi

xi,k + u⊤
i,k Qu,i,θi

ui,k + w⊤
i,θi

[
σi,k

σGRC,i,k

])

+ x⊤
i,Np

Qf,i,θi
xi,Np + w⊤

f,i,θi

[
σi,Np

σGRC,i,Np

])
, (3-13a)

s.t. for k = 0, . . . , Np − 1, ∀i ∈M :
xi,k+1 = Ai,θi

xi,k + Bi,θi
ui,k + Fi,θi

P̂L,i,k +
∑

j∈Ni

Aij,θi
xj,k + bi,θi

, (3-13b)

∣∣∣∣∆Pm,i,k+1 −∆Pm,i,k

ts

∣∣∣∣− µi ≤ σGRC,i,k, (3-13c)

σGRC,i,k ≥ 0, (3-13d)
for k = 0, . . . , Np, ∀i ∈M :

xi + ϕθi
− σi,k ≤ xi,k ≤ xi + ϕθi

+ σi,k, (3-13e)
σi,k ≥ 0, (3-13f)

x0 = st, (3-13g)

where the dynamics are implemented as equality constraints in Equation 3-13b, which includes
dynamic coupling between agents through the

∑
Aijxj terms. A priori knowledge on system

dynamics is injected through initial guesses of the parametrized matrices Ai,θi
, Bi,θi

, Fi,θi
and

Aij,θi
. All parameters with subscript θi are parametrized by the local learnable parameters

θi, known only to agent i.

Furthermore, similar to the centralized scheme, the parametric cost in Equation 3-13a pun-
ishes the local states xi ∈ Rnl and local inputs ui ∈ Rml quadratically. It includes an affine
term fi,θi

to allow the controllers to learn a constant offset in state-action space. The slack
variables σi and σGRC,i are used to slacken the inequality constraints in Equation 3-13c and
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Equation 3-13e, and are punished in the objective with wi and wf,i to discourage constraint
violations.

The generation rate constraint in Equation 3-13c constraints the mechanical generator’s rate
of change, where ∆Pm,i is part of the local state xi, and µi denotes the physical bound on
this rate of change. Similar to the centralized scheme, the variables xi and xi in Equation 3-
13e are based on a priori knowledge of the physical system and denote the lower and upper
bounds on the local states, which can artificially be moved by the local controllers through
learning offsets ϕθi

and ϕθi
, to aid in avoiding constraint violations.

In Equation 3-13, the global value function is approximated by a sum of smaller MPCs, which
are parametrized with local learnable parameters θi. All variables that have θi as subscript
are part of the set of local learnable variables. A list with parametrized variables and their
respective shapes is given in Table 3-2, where nl, ml ∈ N+ are local state and control input
dimensions.

Table 3-2: Local learnable parameters for the distributed MPC scheme with their dimensions.

Learnable
parameter

Ai,θi
, Aij,θi

,
Qx,i,θi

, Qf,i,θi

Bi,θi
, Fi,θi

bi,θi
, ϕi,θi

,
ϕi,θi

V0,i,θi
fi,θi

Qu,i,θi
wi,θi

,
wf,i,θi

Dimension Rnl×nl Rnl×ml Rnl R Rnl+ml Rml×ml Rnl+1

Similar to the centralized scheme, the distributed MPC-RL scheme is designed to be similar
to the environment, which means the controller should be able to learn the dynamics rather
well, while leaving enough room for the controllers to make improvements through the affine
terms and variable penalties on constraint violations.

Distributed learning update for distributed MPC-RL

Learning of the distributed MPC-RL controllers is visualized in Figure 3-2, extending the
method of the centralized controller in Figure 3-1. The parametrized, distributed MPC
scheme provides the control actions u∗

i (0) for the different controllers, as well as the global
state-value Vθ(s) and global action-value Qθ(s, a) function approximations. The action-value
function Qθ(s, a) and the policy πθ(s) are obtained from the parametrized, distributed scheme
in Equation 3-13 in the same way as detailed in Equation 2-16 and Equation 2-17.

In this thesis, Q-learning is leveraged to update the local learnable parameters. To allow for
a distributive update, distributive evaluation of Vθ and Qθ is needed, as well as a distributive
evaluation of the gradient ∇θQθ. The mechanism for distributive evaluation of the global
value functions is described in subsection 2-2-7.

In short, the global functions Vθ and Qθ are evaluated distributively as follows:
First, the value function approximator given in Equation 3-13 is dualized with the constraints
x̃i − z̃i = 0 ∀i ∈ M. Then, after constructing the augmented Lagrangian Lρ(x, z, y), it
is iteratively solved using ADMM. Each ADMM iteration consists of an update of states
x̃i, followed by communication with direct neighbors, an update of the variables z̃i, and
finally by updating the dual variables yi. For the update of x̃i, local optimizations are
carried out, where the augmented Lagrangian is minimized while subjected to the equality and
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inequality constraints in Equation 3-13. Finally, after a pre-determined amount of iterations
is concluded, GAC is used to agree on the value of the global value function approximators.

What remains to be shown is that the gradient can also be evaluated distributively. In [15],
it was shown that via sensitivity analysis, the gradient ∇θQθ is equal to the partial derivative
of the Lagrangian with respect to the learnable parameters, evaluated at the optimal primal
and dual variables:

∇θQθ(s, a) = ∂Lθ(s, a, p∗)
∂θ

. (3-14)

Furthermore, in [27], it is shown that the Lagrangian Lθ(s, a, p) is separable over the local
learnable parameters θi, local states si, local actions ai, and subsets of the primal and dual
variables pi:

Lθ(s, a, p) =
∑
i∈M
Lθi

(si, ai, pi), (3-15)

where
pi = (xi, ui, σi, {xj}j∈Ni , λ, µ). (3-16)

The Lagrangian Lθ(s, a, p) is obtained by dualizing the original problem with the (in)equality
constraints, and is given by

Lθ(s, a, p) =
∑
i∈M

Fθi
+ λ⊤hθi

(xi, σi) + µ⊤gθi
(xi, {xj}j∈Ni , σi, ui), (3-17)

where Fθi
are the local objectives in Equation 3-13a, and hθi

and gθi
are obtained by rewriting

the inequality and equality constraints in Equation 3-13b, Equation 3-13c and Equation 3-13e
into a form [ . . . ] = 0.

In [27], it is shown that the optimal primal and dual variables p∗, that solve the augmented
Lagrangian Lρ(x, z, y), also solve the original problem (i.e, before dualizing). Therefore, the
gradient, which is obtained by evaluating the Lagrangian L(s, a, p) for the optimal primal and
dual variables p∗, can be calculated after solving the distributed MPC scheme using ADMM.

The result is that the gradient∇θQθ(s, a) can be calculated with information obtained through
distributive evaluation of Qθ(s, a). As such, all the ingredients necessary for a distributive
update are now shown to be known to all the local agents while using only distributive
optimization and evaluation.

The equation for updating the local learnable parameters is given by

δt = Lt + γVθ(st+1)−Qθ(st, at), (3-18)

θi ←− θi + αδt
∂Lθi

(si,t, ai,t, p∗
i )

∂θi
, (3-19)

which is a distributive update as Vθ and Qθ are obtained through distributive optimization
and evaluation, and where the gradient is obtained using only local information as well. A
more detailed explanation of the distributed update is given in [27].
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3-3-3 Exploration and experience replay

Some additional mechanisms to aid the learning process of the proposed parametrized MPC
schemes include exploration and experience replay, which determine the behavior during
learning.

Exploration is a mechanism intended to explore the state-action space more effectively. As
the RL algorithm updates its learnable parameters, it changes them in the direction of the
gradient. This leads to a certain evolution of possible states that the controller visits during
learning. However, as the optimization problem may not be convex, it can get stuck in local
optima. Exploration adds perturbations to the actions or rewards of the controller, which can
help in moving out of local optima to potentially find different, better optima, or even the
global optimum. Even for convex optimization problems, numerical instabilities such as ill-
conditioned Hessians, poor scaling or floating-point errors, may lead to similar issues, where
exploration can provide better learning. In our approach, we employ ϵ-greedy exploration [6],
where the probability of exploring ϵ depends on the time that has passed during learning. At
the start of the learning task, the probability is high, while decreasing over time to eventually
reach 0. More specifically, we employ gradient-descent based exploration, which perturbs
the objective of the minimization problem in Equation 3-7a and Equation 3-13a with a term
λ⊤

ϵ u0:
Jθ(x0) = min

x,u,σ

(
Jθ(x0) + λ⊤

ϵ u0
)

, (3-20)

where u0 is the first entry of the optimized control input sequence u, and where λϵ ∈ Rn for
the centralized, and λϵ ∈ Rnl for the distributed approach. Furthermore, λϵ is sampled from
a uniform distribution : λϵ ∼ U [−ζ, ζ], defined by exploration strength ζ, which is a design
parameter. The probability of exploring is given by ϵ. This method has the advantage that
the exploration complies with the constraints by introducing it in the minimization problem,
rather than adding noise to the optimized input after optimization is completed.

Experience replay is a mechanism intended to stabilize the learning by calculating the gradient
using averages over multiple experiences stored in a buffer. These are sets of state, action,
cost, and next state {st, ut, lt, st+1} obtained through experience, i.e by interacting with the
(simulated) environment. The size of the buffer, the frequency of updates and the size of the
averaging window are all design parameters.

These mechanisms are design choices and have to be tuned on a case-by-case basis. Other
hyper-parameters that influence the learning behavior include the learning-rate α. In [6], a
wide variety of strategies is discussed on how to pick the value for the learning-rate. Generally
speaking, the learning-rate will decay over time, such that the learning converges after a while,
at which point the controller’s policy no longer changes and learning is halted.

3-4 Summary

In this section, the LFC control problem is framed as a regulation task with an unknown
model. The problem is formulated as an episodic reinforcement learning task, where the
environment uses a linear model with quadratic regulating cost and linear penalties on con-
straint violations. This cost penalizes state-deviations, which are defined as deviations from
nominal operating conditions, guiding the controller to regulate the states. The proposed
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methods for a centralized and distributed learning-based approach are given in detail, which
integrate MPC and RL by formulating the value function approximator as (distributed) MPC
schemes. The specific schemes are tailored to the LFC task, and include parametrizations
designed to facilitate learning a high performance controller. The update strategy of these
learnable parameters is explained for both the centralized and distributed MPC-RL methods,
where it is shown that for the distributed MPC-RL, the learnable parameters can be updated
distributively, minimizing the amount of data that needs to be shared.
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Chapter 4

Case study

The proposed methodology as outlined in chapter 3 is applied in simulation to a three-area
power network. This chapter starts by introducing the three-area power network simulation
set-up, alongside the scenarios that are used to represent the uncertainties from RES. Then,
the specific implementation of the proposed methodology are given, such as numerical values
for constants and learning hyper-parameters. The hardware, software and tools that are
used to simulate the three-area network are discussed, to allow the numerical results to
be reproduced. Two other methods, stochastic scenario-based MPC (Sc-MPC) and a deep
deterministic policy gradient (DDPG) RL method are introduced. Training of the controllers
of the proposed methods and the comparison methods are carried out, and representative
state trajectories during training are provided. Finally, the trained agents from the methods
are evaluated on the same set-up, resulting in the final comparison, where performance of the
approaches are compared with respect to cost and constraint violation magnitudes.

4-1 Simulation set-up

Here, we outline the simulated environment on which the different approaches are validated.
In the simulation, different levels or scenarios of stochasticities are employed to represent the
uncertainties introduced by RES. The proposed centralized paradigm as detailed in subsec-
tion 3-3-1 will be abbreviated with MPC-RL, and the distributed paradigm as detailed in
subsection 3-3-2 will be abbreviated with DMPC-RL. Furthermore, the hardware, software
and tools that are used to simulate the three-area network are discussed.

4-1-1 Three-area network

This case study employs a three-area network (M = 3), where all three generation areas are
connected with each other. The three different areas correspond to the three different agents
in the distributed approach.
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The dynamics of the environment are given in Equation 3-4, where the discretization is carried
out with a sampling time ts,env = 0.001 s, which is ten times smaller than the sampling time
ts = 0.01 s used for the dynamics that are known to the controllers. This choice is made
since smaller sampling times for controllers require significantly more computation time for a
fixed simulation time Tsim, while the use of identical sampling time for the environment lead
to poor performance, due to larger inaccuracies in the true dynamics.

The three different areas are represented by the same dynamics, which are thus less accurate
than the true environment due to discretization with different sampling times. Each area has
the same mathematical model, while having different values for the constants. The values are
taken from [51], and are given in Table 4-1. The definition of the constants can be found in
subsection 2-1-1.

Table 4-1: Table with values for constants in the three-area network, taken from [51].

Constant Hi Di Tt,i Tg,i Ri Tij

Area 1 0.0833 0.0015 0.40 0.10 0.33 T1,2 = 0.015, T1,3 = 0.020
Area 2 0.1000 0.0020 0.38 0.12 0.28 T2,1 = 0.015, T2,3 = 0.010
Area 2 0.0750 0.0010 0.35 0.08 0.40 T3,1 = 0.020, T3,2 = 0.010

The local state state and input dimensions are given by xi ∈ Rnl , and ui ∈ Rml , with nl = 4
and ml = 1. This leads to the centralized dimensions n = M · nl = 12 and m = M ·ml = 3.
The local load disturbance ∆PL,i ∈ Rml has the same dimensions as the control inputs.

In this thesis, the nominal load disturbances ∆P̂L,i are step functions with different magni-
tudes and delays for the different areas in the three-area network. Example step functions
are shown in Figure 4-1.

Figure 4-1: Nominal load disturbances ∆P̂L,i for the three areas.
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4-1-2 Values for initialization of variables

The values of the dynamical matrices A, B, and F used throughout this thesis are obtained
from Equation 2-4 with the values from Table 4-1. Other variables that are used throughout
the thesis include Qx, Qf , Qu, w, and wf . These are design choices, and the values for their
local counterparts are given in Table 4-2. The centralized Qx, Qf , and Qu are obtained by
block-diagonalizing the local matrices, and the centralized w and wf are obtained by vertically
stacking the local vectors. For the environment and Sc-MPC approach, these are fixed, while
for MPC-RL and DMPC-RL, these values are used to initialize the learnable parameters,
which are changed during training. In the environment, Qs is equal to Qx, and Qa is equal
to Qu.

Since the main objective is to minimize frequency deviations and avoid constraint violations
for the frequency deviations, the first state, corresponding to ∆f , is most heavily penalized
in Q and w. For the GRC constraint, only the second state ∆Pm,i is used to calculate the
mechanical generator’s rate of change, hence why wGRC has only one entry.

Table 4-2: Initialization of local variables for the model-based approaches and environment.

Variable Initialized values

Local Qx ∈ R4×4 diagonal([100, 1, 10, 20])
Local Qf ∈ R4×4 diagonal([100, 1, 10, 20])

Local Qu ∈ R 0.5
Local w ∈ R5 : [w⊤

states, wGRC]⊤ [1000, 10, 10, 10, 10]⊤

Local wf ∈ R5 : [w⊤
states, wGRC]⊤ [1000, 10, 10, 10, 10]⊤

4-1-3 Scenarios

Different scenarios are defined, which add increasingly higher levels of uncertainties to the
problem, reflecting the uncertainties introduced by RES.

In scenario 0, no noise or other forms of uncertainties are considered. This will give a base-
line for performance comparisons between the proposed methods, DDPG-based deep-RL and
scenario-based stochastic MPC.

In scenario 1, noise is added to the load disturbance. The true value of the load disturbance
∆PL is used to simulate the environment. However, starting from scenario 1, the true value
is not known to the agent(s). Instead, a nominal load ∆P̂L is assumed to be known, such that
the true load is the nominal load plus additive noise, i.e

∆PL = ∆P̂L + e(t). (4-1)

The nominal load disturbance ∆P̂L is constant between episodes, while the additive noise e(t)
changes every episode, being sampled from a uniform distribution e(t) ∼ U(−0.05, 0.05). It
is stressed that the controllers in scenario 1 have the correct knowledge of system matrices,
i.e without any added uncertainty.
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In scenario 2, the controllers have inaccurate model information. While the environment
operates on the ‘true’ dynamics, the control approaches have imperfect model knowledge,
by adding process noise to the dynamical matrices A, B, and F , i.e Ã = A + ∆A, with
∆A ∼ N (0, 0.01). For the proposed methods MPC-RL and DMPC-RL, this is done by
applying noise to these matrices prior to injecting them into the parametrized MPC scheme.

Noises are sampled either from a uniform distribution U(a, b) or normal distribution N (µ, σ2).
The uniform distribution has constant probability density function between (a, b), while the
normal distribution is denoted with the mean µ and variance σ2. An overview of the scenarios
is given in Table 4-3.

Table 4-3: Scenarios of increasing levels of stochasticities in the environment.

Scenario Load profile ∆PL Load noise e(t) Process noise ∆A, ∆B, ∆F

0 Step function No noise No noise
1 Step function e(t) ∼ U(−0.05, 0.05) No noise
2 Step function e(t) ∼ U(−0.05, 0.05) ∆A ∼ N (0, 0.1), ∆{B, F} ∼ N (0, 0.01)

4-1-4 Hardware, software and tools

For the simulations, Python version 3.11 is used. All optimization problems, with the excep-
tion of DDPG, are solved using the CasADi framework [2] and the qpOASES solver [14]. The
DDPG is solved using a stable baselines implementation [33].

The simulations are run on two devices: the training is carried out on a Linux machine using
four AMD EPYC 7252 cores, 1.38GHz clock speed, and 251GB of RAM. Evaluations are
carried out on a Windows system using 11th gen Intel i7 processor with 4 cores, running at
2.80GHz clock speed, and 8GB of RAM.

Python source code and simulation results can be found at github.com/NathanvanderStrate/lfc-
dmpcrl
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4-2 Training of proposed approach

In this section, the training of the proposed approaches, MPC-RL and DMPC-RL, is detailed.
The parametrization of learnable parameters is detailed, including the initialization of values
prior to being injected into the controllers and subjected to learning. Then, the hyper-
parameters that influence learning behavior and convergence are discussed for the different
scenarios, followed by a section detailing trajectories of costs, temporal difference errors and
constraint violations during training. The section ends with the evolution of a selection of
learnable parameters during training for scenarios 1 and 2, and a representation of state- and
input trajectories during learning for scenario 2. In the following, the optimization problems
are solved using the qpOASES solver [14].

4-2-1 Parametrization

An overview of the learnable parameters and their shapes for the proposed MPC-RL approach
are given in Table 3-1. In the dynamics, the Aθ ∈ R12×12 matrix is fully parametrized, i.e. all
144 entries are learnable. This choice is made since there is (strong) dynamic coupling between
all agents. For Bθ, Fθ ∈ R12×3, only the entries that are nonzero in the dynamics are learnable,
i.e. the (4x1)-diagonal blocks. The affine term bθ ∈ R12, as well as the variables V0,θ ∈ R12

and fθ ∈ R15 are fully parametrized. The quadratic penalty terms Qx,θ, Qf,θ ∈ R12×12 in the
objective have block-diagonal parametrized entries of size (4x4). Similarly, Qu,θ ∈ R3×3 is
diagonal. The upper- and lower bounds ϕθ, ϕθ ∈ R12 and penalty weights wθ, wf,θ ∈ R15 are
fully parametrized.
For the distributed MPC-RL approach, the M = 3 local MPCs are parametrized with local
learnable parameters, which are given in Table 3-2. The parametrization follows the same
design as the centralized parametrization. In the dynamics, Ai,θi

, Aij,θi
∈ R4×4 are again

fully parametrized. Furthermore, Bi,θi
, Fi,θi

∈ R4, and bi,θi
∈ R4 are fully parametrized. The

quadratic penalty terms Qx,i,θi
, Qf,i,θi

∈ R4×4 are also fully parametrized, and the same is
true for ϕi,θi

, ϕi,θi
∈ R4, Qu,i,θi

, V0,i,θi
∈ R, and wi,θi

, wf,i,θi
∈ R5.

4-2-2 Initialization

In scenario 1, the learnable parameters A, B, F, w, wf , Qx, Qf and Qu are initialized with values
that are identical to the values of the environment, see Table 4-2. The parameters V0, ϕ, ϕ, b,
and f are initialized at 0.
In scenario 2, the dynamics are perturbed with ∆A, ∆B, and ∆F , in accordance with Table 4-
3. The resulting matrices equal the nominal values plus a noise sampled from the given
distribution, i.e Ainit = Aenv + ∆A.

4-2-3 Hyper-parameters

For all three scenarios in both MPC-RL and DMPC-RL, the control horizon is fixed at
Np = 10. The hyper-parameters that are used for the training include the learning-rate
α, exploration probability ϵ, exploration strength, update frequency, experience replay, and
number of episodes. They differ between the scenario-approach combinations.
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• The learning-rate α is implemented as exponentially decaying: α = α0 · βl
t, with a

starting rate α0 and a factor βl ∈ (0, 1] by which the learning-rate is decayed after each
time step t. A factor βl = 1 means no decay.

• The ϵ-greedy exploration also follows an exponentially decaying trajectory, where the
probability of exploring ϵ = ϵ0 ·βe

t is decaying from initial value ϵ0 with factor βl ∈ (0, 1).
• Exploration strength ζ is implemented as ζ = ζ0 ·(umax−umin), such that the exploration

strength is a factor ζ0 ∈ (0, 1) of the bounds on the inputs.
• The update strategy includes an update frequency, which determines after how many

steps updates are carried out (using experience replay), and a value to allow to skip a
fixed number of updates before learning starts.

• Experience replay has a buffer-length, sample size and a value to force a fixed number
of most recent samples to be included.

• For the distributed implementation, the amount of ADMM iterations and GAC itera-
tions are also design parameters.

• The number of episodes determines how long the training lasts. Generally speaking, a
higher number of episodes leads to better performance, as the approach is given more
time to learn. Once learning has converged, or when the learning-rate has sufficiently
decayed, is when the learning should ideally terminate.

A more detailed explanation of exploration and experience replay is given in subsection 3-3-3.
For the training of the final results, the hyper-parameters are given in Table 4-4. The amount
of ADMM iterations and consensus iterations are constant for all DMPC-RL results at 50
and 100, respectively.

For some training setups, learning rate was not decayed (i.e a factor of 1.0). This can still
lead to convergence if the TD error approaches 0, see Equation 3-8. Hyper-parameters for
scenario 0 are given in Table A-1.

Table 4-4: Hyper-parameters for training of the proposed approach.

Scenario 1 Scenario 2
MPC-RL DMPC-RL MPC-RL DMPC-RL

Number of episodes 20 20 50 250
Update strategy:
(frequency, skip-first)

(10, 100) (10, 100) (10, 100) (10, 100)

Learning-rate α:
(α0, βl)

(10−10, 1.0) (10−10, 1.0) (10−12, 1.0) (10−12, 0.99995)

Exploration probabil-
ity ϵ: (ϵ0, βe)

(0.5, 0.99) (0.5, 0.99) (0.9, 0.999) (0.9, 0.9998)

Exploration strength
ζ: factor ζ0

0.5 0.3 0.7 0.7

Experience replay:
(buffer-size, sample-
size, include-latest)

(100, 20, 10) (100, 20, 5) (1000, 20, 10) (1000, 500, 100)
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4-2-4 Cost, temporal difference and constraint violations

In the figures below, the total cost per episode Jeval, total temporal difference error δt per
episode, and the magnitude of the constraint violations per episode η are plotted for scenarios
0, 1, and 2. Their definitions are given in Equation 3-1, Equation 3-8, and Equation 3-2,
respectively.
Observe how the the total cost and temporal difference error are closely related, and how
they are also closely related to the magnitude of constraint violations. For scenario 0, the
controllers already have perfect knowledge of the dynamics and load predictions, yet they still
learned policies to lower costs and to reduce the constraints violations to 0, see Figure 4-2.
This is remarkable, and unexpected. Further discussion on this phenomenon is provided in
the evaluation of scenario 0 in section 4-4.

(a) MPC-RL (b) DMPC-RL

Figure 4-2: Cost, temporal difference error, and constraint violation magnitude per episode for
scenario 0.

For scenario 1, the MPC-RL and DMPC-RL have very similar behavior during learning, with
their cost trending downwards, see Figure 4-3. This is expected, since their hyper-parameters
as given in Table 4-4 are very similar for both approaches for scenario 1. Furthermore, the
dual-variables used in the distributed approach converge for this scenario, leading to the
distributed and centralized approaches being very similar.
Scenario 2 shows the most difference in behavior between MPC-RL and DMPC-RL. In Fig-
ure 4-4a, the MPC-RL cost trajectories trend up at first, but then abruptly improve to a
stable, low value. This behavior is uncharacteristic for the learning-based approach and is
likely a ‘fluke’ – a coincidental combination of hyper-parameters and rng seeding of uncer-
tainties leading to an update of learnable parameters that yields a high-performance, stable
policy. Training using sets of hyper-parameter that were similar, or using the identical set
with a different rng-seeding, did not manage to converge to the same level of performance.
The behavior for the DMPC-RL as shown in Figure 4-4b shows very different behavior com-
pared to the MPC-RL trajectories. Although there is an overall downwards trend for the
first 90 episodes of training, the improvement does not follow that of MPC-RL, and after the
initial 90 episodes, learning diverged (not shown here). The episodes after the initial 90 are
not shown, since the model parameters at the end of the 90 episodes are used to obtain the
evaluation data for section 4-4.
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(a) MPC-RL (b) DMPC-RL

Figure 4-3: Cost, temporal difference error, and constraint violation magnitude per episode for
scenario 1.

The reason for the different behaviors between MPC-RL and DMPC-RL is due to the fact that
the hyper-parameters as given in Table 4-4 are very different to the centralized counterpart for
scenario 2. The same set of hyper-parameters used for MPC-RL, when applied to the DMPC-
RL training, caused trajectories to diverge for DMPC-RL, possibly due to slight differences
in numerical values. These differences lead to the upward trend in trajectories continuing
indefinitely. Another reason might be that the difference in initialization of the matrices
between the approaches lead to different training behavior. In general, as scenario 2 introduces
more uncertainties, the problems are harder to solve. Learning is very sensitive to changes in
hyper-parameters and seeding of uncertainties, explaining the increase in difficulty in finding
the ‘correct’ hyper-parameters and getting stable training trajectories.

(a) MPC-RL (b) DMPC-RL

Figure 4-4: Cost, temporal difference error, and constraint violation magnitude per episode for
scenario 2.
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4-2-5 Evolution of learnable parameters

In the figures below, the evolution of a selection of learnable parameters is given. Only the four
parameters that see the most change, with respect to their starting-value, are given. There
is, therefore, a different set of parameters in each figure. The learnable parameters are shown
for the training of MPC-RL and DMPC-RL on scenario 1 in Figure 4-5, and for scenario 2 in
Figure 4-6. Evolution of the parameters for scenario 0 can be found in section A-2.

Observe how some learnable parameters seem to converge, while others have not yet con-
verged, indicating learning may be extended further. Learning in these cases was not ex-
tended due to lack of improvements in the cost, TD error, and constraint violations detailed
in subsection 4-2-4. For the centralized MPC-RL in Figure 4-6a, learning abruptly converges.
A possible explanation for this phenomenon and the sometimes erratic learning behavior for
DMPC-RL for scenario 2 is given in subsection 4-2-4, discussing the behavior in cost trajec-
tories for MPC-RL and DMPC-RL for scenario 2.

(a) MPC-RL for scenario 1 (b) DMPC-RL for scenario 1

Figure 4-5: Evolution of learnable parameters during training for scenario 1. The element
indicates the (row, column) position inside the learnable parameter.

(a) MPC-RL for scenario 2 (b) DMPC-RL for scenario 2

Figure 4-6: Evolution of learnable parameters during training for scenario 2. The element
indicates the (row, column) position inside the learnable parameter.
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4-2-6 State-input trajectories

In the figures below, the evolution of the state and input trajectories are shown over the
learning process for scenario 2, representing the controller’s changing behavior over time.
As scenario 2 poses the biggest challenge, the trajectories are indicative of how well the
controller is able to learn and adapt. The trajectories are shown for agent 1 only, to represent
the behavior of the controller. Behavior of the other two agents are similar. Plots of the
trajectories during learning for scenario 0 can be found in section A-2, and for scenario 1 in
section A-3.

In Figure 4-7, learning of the centralized and distributed implementations of the proposed
approach are depicted. The shaded area, denoted with ‘envelope’ in the legend, represents the
trajectories over all the training episodes, which is bounded by the maximum and minimum
values of these trajectories. In the first episode, no learning has taken place, as specified in
the update-strategy hyper-parameter. Note how this first episode shows unstable behavior
with states oscillating and diverging. The last episode of the training for MPC-RL shows
improved behavior, where the controller has learned to avoid violating the constraints. The
DMPC-RL controller has visibly worse behavior than the MPC-RL controller toward the end
of learning, but does manage to improve a lot compared to the first episode. A discussion on
these differences is given in subsection 4-2-4.

(a) MPC-RL (b) DMPC-RL

Figure 4-7: Trajectories of the states and inputs for agent 1 during training of MPC-RL and
DMPC-RL approaches on scenario 2. The envelope denotes the collection of all states visited
during learning, with bounds given by the minimum and maximum of the values over all episodes
during learning.
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4-3 Comparison methods

The proposed methods, centralized MPC-RL and distributed MPC-RL, are trained on the
three-area network described in section 4-1. For comparison, two other control methods are
applied to the same setup. These two methods are stochastic, scenario-based MPC (Sc-MPC)
and a deep deterministic policy gradient (DDPG) method. Sc-MPC does not involve learning
or training, and is an extension of nominal MPC to be able to handle uncertainties. DDPG is
a RL method that employs an actor-critic structure, based on deep neural networks (DNNs).

4-3-1 Scenario-based MPC (Sc-MPC)

One implementation of stochastic MPC is the scenario-based MPC [38], in which samples are
taken from the distribution describing the uncertainties. These sampled instantiations of the
uncertainties, each associated with a state-trajectory, are included in the MPC optimization
problem, sharing one set of common inputs that the MPC optimizes, while requiring all state-
trajectories to satisfy the constraints. In this thesis, only the centralized implementation of
Sc-MPC is considered. The distributed implementation would be possible as the problem is
convex, satisfying the assumptions necessary to use ADMM to solve the distributed optimiza-
tion problem related to distributed Sc-MPC. However, the centralized implementation will
provide the upper limit on performance of Sc-MPC. To avoid confusion, for the scenario-based
MPC, the term ‘sample’ is used instead of ‘scenario’, as the scenario denotes the uncertainty-
levels as described in section 4-1. For scenario 0, perfect knowledge is assumed, which makes
the Sc-MPC implementation identical to a nominal MPC or the centralized MPC-RL prior
to learning.

In scenario 1, uncertainties are introduced in the environment by applying noise e(t) to the
load disturbance, where e(t) is known only to the environment. In the Sc-MPC approach, this
non-deterministic behavior is captured by sampling the noise d(t) for Ns different samples
over the horizon Np, from the same distribution that e(t) is sampled from, see Table 4-3.
Note that instantiations do not (necessarily) have the same values as the true realization of
e(t).

In the following, symbols with subscript (n, k), as in the state xn,k, denote that the variable
is specific to the n-th sample, for time step k. The bold symbols x and σ are defined as the
collection of states and slack variables over the horizon Np and over all samples Ns.
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The optimization problem for the Sc-MPC for scenario 1 is given by

J(x) = min
x,u,σ

FSc-MPC(x, u, σ) = min
x,u,σ

Np∑
k=1

u⊤
k Quuk + 1

Ns

Ns∑
n=1

(Np−1∑
k=1

(
x⊤

n,k Qx xn,k

+ w⊤
[

σn,k

σGRC,n,k

])
+ w⊤

f

[
σn,Np

σGRC,n,Np

]
x⊤

n,Np
Qf xn,Np

)
(4-2a)

s.t. for n = 1, . . . , Ns, k = 0, . . . , Np − 1 :
xn,k+1 = Axn,k + Buk + F∆P̂L,k + Fdn,k (4-2b)∣∣∣∣∆Pm,n,k+1 −∆Pm,n,k

ts

∣∣∣∣− µ ≤ σGRC,n,k, (4-2c)

σGRC,n,k ≥ 0, (4-2d)
s.t. for n = 1, . . . , Ns, k = 0, . . . , Np :

x− σn,k ≤ xn,k ≤ x + σn,k, (4-2e)
σn,k ≥ 0, (4-2f)

x1,0 = · · · = xNs,0 = x, (4-2g)

where the Sc-MPC scheme has similar structure to the proposed MPC-RL, with the exception
that this problem includes the states xn,k and slacks σn,k dependent on the sample n ∈
{1, . . . , Ns}. The explanation of the symbols can thus be found under Equation 3-7.
Note how the dynamics for the different samples in Equation 4-2b share the common inputs uk.
The Sc-MPC controller tries to optimize one set of inputs such that for all Ns instantiations
of the non-deterministic dynamics, the cost and constraint violations are minimized. In
Equation 4-2, the matrices A, B, and F are not subject to any perturbations or uncertainties.
For scenario 2, where the model-based approaches have inexact model knowledge, the Sc-
MPC scheme is slightly altered to reflect this increase in uncertainty. The matrices A, B, and
F are now augmented using noise sampled from the same distribution as ∆A, ∆B, and ∆F
for the (D)MPC-RL approaches, in accordance with Table 4-3. Therefore, the optimization
problem for scenario 2 is given by

J(x) = min
x,u,σ

FSc-MPC(x, u, σ) (4-3a)

s.t. for n = 1, . . . , Ns, k = 0, . . . , Np − 1 :
xn,k+1 = Anxn,k + Bnuk + Fn∆P̂L,k + Fndn,k (4-3b)

(4− 2c)− (4− 2g), (4-3c)

where the objective is the same as in Equation 4-2, and the optimization is subjected to
the same constraints with the exception of the dynamics of Equation 4-2b. Furthermore, the
matrices are sampled instantiations of the distribution as given in Table 4-3, i.e An = A+∆An,
where ∆An is the disturbance matrix sampled from the distribution. Once again, the inputs
uk are shared across all samples, leading to a large optimization problem where the controller
has to satisfy state constraints for all Ns instantiations of the dynamics using a single set of
inputs u. Finally, values for penalty-weights Qx, Qf , Qu and w, wf are identical to the ones
used for the initialization of our proposed approaches, see Table 4-2.
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Computational issues

The Sc-MPC approach does not require training and is better at handling non-deterministic
dynamics than nominal MPC. However, Sc-MPC does not provide guarantees that the con-
straints will be satisfied for all instantiations of the noise in the distribution. Instead, Sc-MPC
provides probabilistic guarantees, where a higher number of samples Ns provides a higher
probability of the controller’s ability to avoid constraint violations [38]. The downside is that
the higher the number of samples, the higher the dimensionality of the optimization problem.
Therefore, there is a trade-off between performance and computational tractability, where Ns

is limited by computational resources.

During testing, we had to switch from qpOASES to the IPOPT solver [47] due to numerical
issues resulting from the increase in dimensionality for larger Ns. This is due to the fact that
the dimensionality of the optimization problem scales with the amount of samples Ns, as each
sample introduces unique state trajectories that add to the number of free variables in the
optimization problem. Even for small numbers of Ns = 5 or Ns = 10, did the increase in
dimensionality cause memory allocation issues when using the qpOASES solver. The change
in solver does not alter performance for the convex Sc-MPC optimization problems.

Cost and constraint violations

To compare the impact of the number of samples Ns on performance, the costs, constraint
violation magnitudes and state- and input trajectories are plotted for Ns = 5 and Ns = 10.
The definition of the evaluation cost Jeval is given in Equation 3-1, and the definition of
the constraint violation magnitude η is given in Equation 3-2. In Figure 4-8, the costs and
constraint violation magnitudes are given for scenario 2. Observe from the values on the
vertical axis how the magnitude of constraint violations is significantly lower for Ns = 10,
while the cost per episode is higher. This is expected, as the controller has more samples and
thus a larger probability to adhere to constraints, while being more conservative.

(a) Ns = 5 (b) Ns = 10

Figure 4-8: Costs and constraint violation magnitudes for scenario 2 using Sc-MPC with variable
number of samples Ns.
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State-input trajectories

In Figure 4-9, state- and input trajectories are compared between Ns = 5 and Ns = 10, for
scenario 2. The trajectories are shown for agent 3, which are representative of the behavior of
the controllers. The other agents show similar behavior. Observe how there is a big difference
in the fourth state ∆Ptie, where with Ns = 5, the state violates the bound for a large amount
of time steps, while with Ns = 10, this is no longer an issue.

(a) Ns = 5 (b) Ns = 10

Figure 4-9: State- and input trajectories for agent 3 using Sc-MPC with variable number of
samples Ns.

4-3-2 Deep deterministic policy gradient (DDPG)

The second comparison method is deep deterministic policy gradient (DDPG), which is a
deep Q-learning method based on an actor-critic structure. DDPG is a model-free algorithm
that can learn in a continuous action-domain [20]. This method has also been applied to the
LFC problem in [51]. It is implemented using the stable-baselines library available for Python
[33].
DDPG consists of two networks, an actor π(s|θ) and critic Q(s, a|ϕ), which fulfill different
tasks. The actor provides the continuous action based on a given state, while the critic approx-
imates the Q-values and is trained using off-policy data and Bellman’s recursive relationship,
see Equation 2-12.
The critic network is updated by minimizing the mean squared Bellman error:

min
ϕ

L(ϕ) = min
ϕ

E
[(

Q(st, at | ϕ)− yt
)2]

, (4-4)

where L(ϕ) is the loss function for the critic, parametrized by the critic’s weights ϕ. Further-
more, Q(st, at | ϕ) is the current Q-value estimate given state st and action at, and yt is the
target value, computed using the Bellman equation:

yt = lt + γQ
(
st+1, π(st+1) | ϕ

)
, (4-5)

where γ is the discount factor, lt is the cost, and Q
(
st+1, π(st+1|θ) | ϕ

)
is the critic network’s

Q value estimate for the next state using the actor network’s policy π(st+1|θ), parametrized
by weights θ.
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The weights of the critic are updated using gradient descent:

ϕ← ϕ− αc∇ϕL(ϕ), (4-6)

where ∇ϕL(ϕ) is the gradient of the cost with respect to the weights ϕ, and αc is the learning-
rate for the critic.

The actor network is updated using the critic’s Q-values, by employing a gradient descent to
update the policy’s weights to minimize the expected costs given by

J(θ) = E
[
Q
(
st, π(st|θ)

)]
, (4-7)

where π(st|θ) is the policy, parametrized by the actor’s weights θ. The gradient of the cost is
calculated by

∇θJ = E
[
∇atQ(st, at | ϕ)|at=π(st) · ∇θ π(st|θ)

]
, (4-8)

where ∇atQ(st, at | ϕ)|at=π(st) is the gradient of the Q-function from the critic with respect to
the action, evaluated at the current action chosen by the actor, and ∇θ π(st|θ) is the gradient
of the actor with respect to the weights θ.

The weights of the actor are updated using gradient descent:

θ ← θ − αA∇θJ, (4-9)

where αA is the learning-rate for the actor.

Implementation

To apply the DDPG approach for our case-study, information that is available to our proposed
approaches needs to be made available to the DDPG controller at every time step. Therefore,
the observations (states st) are augmented with observations from the last time step st−1,
as well as the loads ∆P̂L over the horizon Np. The inclusion of the observation of the
previous time step allows the DDPG controller to learn to infer information regarding the
GRC constraint. The loads over the horizon are included since the MPC-based approaches
have the same knowledge, necessary for the optimization over the control horizon.

The DDPG approach also interacts with the episodic environment, such that loads, initial
states and noises are reset at the end of every episode. Furthermore, the inputs and states
are normalized using a running normalization, to smooth and stabilize training. Performance
is periodically evaluated by applying the trained model on a different environment, to track
performance. During evaluation, there is no exploration, allowing the network’s optimal
control actions to be used to gauge performance of the controller during training. For the
DDPG approach, being model-free, there is no distinction between scenarios 1 and 2, which
is why only one model is trained for the two scenarios. For scenario 0, the same set of hyper-
parameters is used to train a different model, where no uncertainties on the load predictions
are present.

In reality, the update equations given in the previous section are not implemented directly.
Instead, to smooth learning, an experience replay buffer is utilized, similar to training of the
proposed approach. The replay buffer is used to store past experiences in the form of sets of
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states, actions, costs and next states {st, at, lt, st+1}. When an update of the weights ϕ and θ
is to be carried out, a small batch is randomly sampled from the buffer. For each sample in
the batch, Equation 4-5 is used to calculate Nbatch different target values yt, which are used
to compute Nbatch different loss functions Li(ϕ) using Equation 4-4. Then, the gradient is
obtained by averaging over the smaller gradients:

∇ϕL(ϕ) = 1
Nbatch

Nbatch∑
i=1
∇ϕLi(ϕ), (4-10)

which is then used to update the weights ϕ in Equation 4-6.

Hyper-parameters

The hyper-parameters that can be tuned are action noise, training frequency, learning rates
for the actor and critic, weight decay, network architecture, buffer size, batch size, discount
factor and the number of training episodes.

• The action noise is used to explore the continuous action space. In DDPG, it is imple-
mented by adding noise to the action selected by the actor-policy: at = π(st|θ) + ϵOU .
The additive noise ϵOU is implemented using Ornstein-Uhlenbeck noise [7], which is a
low-pass filtered white noise commonly used in DDPG-methods. It is implemented with
mean µ = 0 and standard deviation σ = umax.

• The weights of the networks are updated at a frequency fn, such that they are updated
every fn time steps. In this thesis, fn = 5.

• Learning rates αc and αA define the step size of the updates of weights ϕ and θ in
Equation 4-6 and Equation 4-9, which in this thesis are equal to αc = αA = 10−6.

• Network architecture defines the size of the hidden layers. The input- and output layers
are defined by the shapes of the augmented observation and action-space. In this thesis,
the network architecture of both actor and critic is set to (256, 256).

• The buffer size defines the size of the replay buffer that is used to store sets of states,
actions, costs and next states {st, at, lt, st+1}. In this thesis, it is set to 106.

• The batch size Nbatch defines how many sets are sampled from the buffer to update the
weights. In this thesis, Nbatch = 256.

• The discount factor γ = 0.999 determines the relative importance of expected immediate
versus long-term cost.

• The number of training episodes has a big impact on performance. Generally speaking,
DDPG can perform a roll-out of a training episode very fast, but needs a large number
of episodes. In this thesis, the number of episodes for training is set to 4 000.

Costs and constraint violations

Training of the DDPG approach may be volatile. To track performance during training, the
controller is periodically evaluated using the current trained model weights. Evaluation is
carried out for a total of 10 episodes each time the evaluation is executed, with periodic eval-
uations happening every 100 training episodes, leading to a total of 400 evaluation episodes.
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The cost and constraint violation magnitudes during training of the DDPG controller, as well
as for the evaluation are plotted in Figure 4-10. This is data on the model trained for scenario
1 and 2. The trajectories during training of DDPG for scenario 0 are given in Figure A-4. The
training in Figure 4-10a shows an overall downward trend in cost across the 4000 training
episodes. The periodic evaluations in Figure 4-10b have similar behavior, with peaks and
troughs roughly lining up with the ones in the training trajectories.

(a) DDPG training (b) DDPG periodic evaluations

Figure 4-10: Costs and constraint violation magnitudes during training of the DDPG approach.

State-input trajectories

In Figure 4-11, state- and input trajectories are shown for the training and evaluation of the
DDPG approach. Only the trajectories of agent 3 are shown, representing behavior of all
agents. Observe that the trajectories of the last episodes (in red) show that during training,
the controller is unable to avoid constraint violations, while during periodic evaluations, it is
able to avoid them. This is due to the exploration that is present during training and absent
in the evaluations.

(a) DDPG training (b) DDPG periodic evaluations

Figure 4-11: State- and input trajectories for agent 3, during training of the DDPG approach.

Even though learning converges as shown in Figure 4-10, the trajectories for both the training
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and evaluation exhibit oscillatory behavior, indicating performance is likely sub-par to that
of the proposed centralized MPC-RL approach as shown in Figure 4-7a.

4-4 Evaluation of methods

In the previous sections, we have trained the MPC-RL and DMPC-RL controllers, as well
as introduced the comparison methods Sc-MPC and DDPG. After training the proposed
approaches MPC-RL and DMPC-RL, and training the DDPG controller, the four different
approaches are evaluated on the same setup with the same set of realizations of the uncer-
tainties to ensure a fair comparison. The evaluation is carried out using the same three-area
network set-up as used for the training. The only difference between the training and eval-
uation set-up is in the realizations of the uncertainties, which are sampled using a different
rng-seeding, i.e. different instantiations from the same distribution describing the uncertaity.
For Sc-MPC, the amount of samples is set to Ns = 10. The approaches are evaluated for 20
episodes, to minimize the effect of randomness on the performance.

The approaches are compared with respect to solver times and performance, which includes
cost Jeval and constraint violation magnitude η per episode as given in Equation 3-1 and
Equation 3-2. Furthermore, state- and input trajectories are given for the approaches, to
compare behavior on a more detailed level.

4-4-1 Solver times

During evaluation, the times spent by the solver is tracked. In reality, only a limited amount
of time is available to compute a control input, based on the sampling time of the system.
Therefore, the solver times need to be sufficiently small. The solver times per step are given
in the Table 4-5, which are the mean value over all steps in the 20 episodes. As the DMPC-RL
approach can be implemented in parallel, the maximum of the solver-times for all agents is
taken at each step, before averaging over all steps.

The DDPG approach has the lowest solver times during evaluation, as it only needs to perform
a forward pass through the deep neural network. The solver times of the DMPC-RL approach
are the highest, as it needs to optimize over a control horizon Np for all ADMM iterations.
The Sc-MPC solver-time depends on the amount of samples Ns. Even for a (relatively small)
number of samples Ns = 10, the solver-times for Sc-MPC are already larger than for the
proposed MPC-RL.

Table 4-5: Mean solver times per time step.

Scenario MPC-RL DMPC-RL Sc-MPC DDPG
0 0.0173 s 0.1575 s 0.0900 s 0.0007 s
1 0.0221 s 1.1102 s 0.7177 s 0.0008 s
2 0.0296 s 1.1040 s 0.4678 s 0.0008 s
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4-4-2 Performance

The performance of the approaches is given by the cost Jeval and constraint violation magni-
tude η, given in Equation 3-1 and Equation 3-2. The approaches are compared for the three
different scenarios as described in Table 4-3.

Scenario 0

In scenario 0, no uncertainties are present, to provide a baseline for comparison. Thus, the
values of the cost and the magnitude of constraint violations is consistent for any amount of
episodes. Multiple episodes were used for the evaluation to rule out any numerical differences.
Additional figures on the evolution of learnable parameters, and state- and input trajectories
during training of the proposed approach for scenario 0 can be found in section A-2. Details
on the training for the DDPG controller can be found in section A-4.

Since the performance metrics are identical for all evaluation episodes, they are presented in a
table. For this scenario, the MPC-RL, DMPC-RL and DDPG are trained on the environment
without any uncertainties present, and their resulting evaluation performance is given in
Table 4-6. The evaluation cost Jeval and constraint magnitude violations η are given per
episode.

Table 4-6: Performance metrics per episode for scenario 0.

Approach Jeval η

MPC-RL 1 561 0.0
DMPC-RL 1 464 0.0

Sc-MPC 1 717 0.2
DDPG 47 578 26.2

The trained proposed approaches managed to satisfy the constraints. The DDPG method is by
far the worst, which could be explained by the sensitivity of the method to hyper-parameters
and the lack of inherent exploration present in absence of uncertainties. However, with better
tuning of hyper-parameters, a better final model could be obtained, as showcased in the final
trajectories for scenario 1, see Figure 4-11. Furthermore, the DMPC-RL outperformed the
MPC-RL in this particular instance, which means there was still some improvement to gain
in training MPC-RL.

Another interesting point is that the Sc-MPC controller does not manage to avoid all con-
straint violations, having a value of η = 0.2 per episode, whereas the MPC-RL and DMPC-RL
controllers did manage to avoid constraint violations. The Sc-MPC for scenario 0 is identical
to a nominal MPC or the MPC-RL approach prior to learning. Both MPC-RL and Sc-MPC
have perfect knowledge of the system dynamics and load profiles. However, as seen in the
evolution of the cost trajectory in Figure 4-2, the proposed approaches learned and adapted
the dynamics from the perfect knowledge they already had. A possible explanation is that
the dynamics in the MPC-RL and Sc-MPC approaches are in fact slightly inaccurate due
to a different choice of sampling time ts ̸= ts,env, rendering them unable to avoid constraint
violations with these slightly inaccurate dynamics. Further discussions on implication and
options to explore this further are given in section 5-1.
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Scenario 1

For scenario 1, uncertainties are introduced by adding noise e(t) to the nominal load distur-
bance ∆P̂L, which is known only to the environment, see subsection 4-1-3. The evaluation
is carried out for a total of 20 episodes. The resulting performance metrics, cost per episode
Jeval and constraint violation magnitude per episode η are given in Table 4-7, and visualized
in Figure 4-12. The table has the mean values obtained by averaging over the 20 episodes,
resulting in

J̄eval = 1
20

20∑
i=0

Jeval,i, (4-11a)

η̄ = 1
20

20∑
i=0

ηi. (4-11b)

The model-free DDPG approach is identical for scenario 1 and 2, but differs from scenario 0
and is thus trained on a different environment, leading to differences in the cost and constraint
violation magnitudes between scenario 0 and scenario 1/2.

Table 4-7: Performance metrics per episode for scenario 1.

Approach J̄eval η̄

MPC-RL 1 612 0.003
DMPC-RL 1 597 0.001

Sc-MPC 1 967 0.323
DDPG 5 369 1.734

(a) Cost per episode Jeval (b) Magnitude of constraint violations
per episode η

Figure 4-12: Box-whisker plots of the performance metrics cost per episode and constraint
violation magnitude per episode, for scenario 1.

Observe from Figure 4-12 how the proposed approaches have the lowest cost per episode and
additionally manage to avoid violating any constraint. The Sc-MPC is a bit more conservative,
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leading to larger costs per episode, and is not capable of avoiding constraint violations for the
number of samples Ns = 10. Furthermore, between MPC-RL and DMPC-RL, the difference
in cost is very small, with the average value of J̄eval of the distributed approach actually
being lower. They are so similar since the hyper-parameters used to train both MPC-RL and
DMPC-RL are identical, see Table 4-4.

Scenario 2

In scenario 2, aside from uncertainties on the load disturbance, uncertainties in the initializa-
tion of the dynamical matrices used for the controllers are introduced, see Table 4-3. Once
more, the evaluation is carried out for a total of 20 episodes. The resulting performance met-
rics, cost per episode and constraint violation magnitude per episode are given in Table 4-8,
and visualized in Figure 4-13. The mean values for Jeval and η are once again obtained by
averaging over the 20 episodes, see Equation 4-11.

Table 4-8: Performance metrics per episode for scenario 2.

Approach J̄eval η̄

MPC-RL 2 176 0.624
DMPC-RL 49 057 60.340

Sc-MPC 3 604 0.629
DDPG 5 369 1.734

(a) Cost per episode Jeval (b) Magnitude of constraint violations
per episode η

Figure 4-13: Box-whisker plots of the performance metrics cost per episode and constraint
violation magnitude per episode, for scenario 2.

Observe how the DMPC-RL approach performs the worst out of the four approaches. The
MPC-RL performs the best in terms of cost, and is as good or better than Sc-MPC in
avoiding constraint violations. In Figure 4-13b, the MPC-RL whisker extends downwards
indefinitely on the logarithmic scaling, as it has no constraint violations for some episodes in
the evaluation.
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The DMPC-RL approach managed to perform well for scenarios 0 and 1 as shown in Table 4-
6 and Table 4-7. The training of the DMPC-RL controller for scenario 2 was shown in
Figure 4-4 to be worse to that of the MPC-RL controller. As highlighted in subsection 4-2-4,
this could be explained by the significant sensitivity of the learning to the initialization of
parameters and the selection of hyper-parameters. Furthermore, errors that are introduced
in the distributed framework lead to training behavior being different from the MPC-RL
controller. As highlighted in section 3-3-2, the distributed approach is very sensitive to the
amount of ADMM iterations, which are used to optimize the primal- and dual-variables and
to reach consensus on global quantities such as the action-value function Q(st, at). Clearly,
bad performance during training of the DMPC-RL controller leads to bad performance during
evaluation, explaining why the DMPC-RL controller has the worst performance in Figure 4-
13. The results for scenario 0 and 1 show that the DMPC-RL controller is able to reach
comparable performance to the MPC-RL controller, indicating that for future work, a high
resolution sweep of hyper-parameter sets could yield a DMPC-RL controller that performs to
the expected level of performance of the MPC-RL controller.

4-4-3 State- and input trajectories

In Figure 4-14 the state- and input trajectories are depicted for the four approaches. The re-
sults are shown for scenario 2, specifically for agent 1 – representing the behavior of all agents.
Shown are the envelopes and best trajectories for each approach. The envelope encompasses
all trajectories for the 20 evaluation episodes. Observe from Figure 4-14a and Figure 4-14c
how the trajectories for the MPC-RL and Sc-MPC controllers show stable behavior with few
oscillations, which leads to a lower evaluation cost Jeval, in agreement with Table 4-8. The
MPC-RL controller is the only controller able to avoid all constraint violations for its best
episode. Figure 4-14b shows the trajectory for the DMPC-RL controller, which clearly vio-
lates constraints for multiple time steps, and exhibits oscillatory behavior, which visualizes
the worst performance highlighted in Table 4-8.

4-4-4 Conclusion

The proposed MPC-RL and DMPC-RL approaches are compared to the DDPG and Sc-
MPC approaches in terms of cost Jeval, constraint violation magnitudes η, and state- and
input trajectories x, u. The results show that for scenarios 0 and 1, the proposed approaches
outperform the two comparison methods. Furthermore, for scenario 2, MPC-RL performs the
best out of the approaches, while the DMPC-RL approach performs the worst.

Based on these results alone, the MPC-RL approach seems to be the best. However, for the
first two scenarios, the DMPC-RL approach is as good, or even better than the MPC-RL
approach. Additionally, it is likely that with a more thorough sweep of the hyper-parameters,
the DMPC-RL controller could perform to the same level as the MPC-RL controller for
scenario 2. The distributed MPC-RL approach has as additional benefit that it can be
implemented distributively, minimizing the amount of data sharing required.

Furthermore, while the Sc-MPC approach requires no training, performance depends on the
amount of samples Ns, with larger numbers leading to larger optimization problem dimen-
sions, which quickly becomes intractable. Results show that the Sc-MPC controller is not
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(a) MPC-RL (b) DMPC-RL

(c) Sc-MPC (d) DDPG

Figure 4-14: Agent 1’s state- and input trajectories of evaluation of scenario 2. The gray envelope
encompasses all evaluation episodes, and the red trajectory is the episode with the lowest cost
Jeval.

able to fully avoid violating constraints, while requiring more solver time than the MPC-RL
approach.

The DDPG controller, while being the quickest during evaluation, suffers from a low sample-
efficiency. While the proposed approaches require a maximum of around 100-200 episodes
to complete training, the DDPG approach requires several thousand episodes to get some
improvement in behavior, while still lacking in performance than the other methods.

4-5 Summary

In this section, we have simulated the proposed approaches on a three-area network, and
compared performance to an Sc-MPC and DDPG approach. The environment, dynamics
and initialization of the different approaches are introduced, with the definition of three
distinct levels of uncertainties, ranging from no impact to a big impact on performance.
The training of the MPC-RL, DMPC-RL and DDPG is detailed, including plots of costs
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and constraint satisfaction during training. After completion of the training, the trained
methods are evaluated. From this evaluation, the MPC-RL shows the best performance in
minimizing cost while avoiding constraint violations. The distributed MPC-RL shows a lack
in performance for the most difficult scenario with the highest amount of uncertainties, which
may be due to inadequate hyper-parameters resulting from a lack of tuning time.
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Discussion and conclusion

This thesis details the application of a centralized MPC-RL and distributed MPC-RL paradigm
to the LFC problem. The MPC-RL and DMPC-RL paradigms employ a (distributed) MPC
scheme to approximate the state-value Vθ(st) and action-value Qθ(st, at) functions. These
are parametrized with learnable parameters θ and used to update the learnable parameters
using a temporal-difference error Q-learning method. The DMPC-RL paradigm updates the
learnable parameters in a distributed manner, by optimizing the MPC schemes locally, and
communicating only with direct neighbors. It makes use of ADMM and GAC for the dis-
tributed update. Furthermore, exploration and experience replay are used to smooth the
learning of the proposed approaches. The proposed MPC-RL and DMPC-RL approaches are
evaluated in simulation on a three-area network, where the performance is compared against
DDPG and Sc-MPC controllers. Three scenarios are defined, which add increasing levels of
uncertainties that complicate control of the power network. Results show that the MPC-RL
controller performs the best overall. The DMPC-RL controller has performance that rivals
that of the MPC-RL controller, with the exception of performance on scenario 2. It is likely
that the DMPC-RL controller would be able to perform to the same level of performance
when a more thorough sweep of hyper-parameters is conducted.

The proposed MPC-RL and DMPC-RL approaches have advantages and disadvantages. One
advantage is that the approaches are relatively sample-efficient, requiring a low amount of
episodes to train a controller, compared to the low sample efficiency of DDPG. Another
advantage is that they allow explicit constraint handling, while not being overly conservative.
This is especially visible when compared with the comparison approaches DDPG and Sc-
MPC. DDPG lacks explicit constraint handling, while Sc-MPC is overly conservative, leading
to worse performance. Furthermore, the distributed implementation requires significantly less
data sharing, further improving cybersecurity and other communication-related issues.

The complexity of the centralized and distributed MPC-RL and sensitivity to hyper-parameters
are the main drawbacks of the method. The proposed paradigms employ a (distributed) MPC
scheme as function approximator for RL, which are more complex than DDPG and Sc-MPC
implementations. Especially for the DMPC-RL approach, the distributed learning update
is complex and has a high number of learnable parameters and tunable hyper-parameters.
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Manual tuning of the hyper-parameters is challenging due to the sensitivity of the controllers
to them. For applications with more complex dynamics or larger networks, tuning could prove
to be even more difficult. The distributed MPC-RL approach also suffers from high solver
times, resulting from the large amount of optimization problems that needs to be solved for
every time step. For every time step, local agents have to solve an MPC scheme over a control
horizon Np, for a total amount of times defined by the ADMM iterations hyper-parameter.
The issue of large solver times could be alleviated by reducing the amount of ADMM itera-
tions, which is shown in Figure A-5 to be possible, since the 50 iterations used throughout
the thesis are more than sufficient to guarantee convergence.

5-1 Implications and limitations

Results could be made stronger by considering a few points, which are either limitations of
the approach, or limitations of the implementation of the case study:

• The environment is simulated using a LTI model with dynamics that are similar to
the dynamics used in the model-based approaches. For a more realistic simulation, the
complete nonlinear model could be used. It would cause no significant extra computa-
tional overhead as the simulation only has to perform one evaluation per time step, as
opposed to an optimization.

• The initial conditions x0 are kept constant throughout the training and evaluation of
the approaches. Using multiple different conditions, for example by sampling from a
distribution, could lead to more robust controllers that are less likely to overfit to a
specific initial condition.

• A similar argument could be made with regard to the load disturbance profiles, which
are implemented in this thesis as step-functions. Using different step-functions for
every episode, by for example varying times and magnitudes, could lead to more robust
controllers.

• Different parametrizations of the MPC schemes, and alternative learning algorithms,
such as policy gradient approaches, could be explored to learn the parametrization.

• Larger networks could be considered, where the number of areas is four or more, to
represent the real power network more accurately.

• The inclusion of parametric uncertainties to represent stochasticities introduced by RES
in this thesis was done with the aim to make a proof of concept for LFC under uncertain-
ties. Actual modeling and simulation of RES would provide a more accurate description
of the system, leading to a more accurate evaluation of methods.

• Specifically, one or multiple areas in the network could be represented by wind farms,
with dynamics that differ from the one implemented in this thesis. These wind farm
dynamics could include variable wind speed, where forecasting the wind speed may be
uncertain, see [22].

• Since the MPC-RL and DMPC-RL controllers learned an offset in dynamics in scenario
0, where perfect knowledge is assumed, it would be interesting to explore what happens
when the linearized dynamics in the environment and model-based approaches use the
same sampling time, i.e ts = ts,env.
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• The sensitivity to hyper-parameters potentially makes the application of the proposed
approaches to other systems difficult, which is amplified further for large inaccuracies
in the dynamics used by the controllers.

• The solver-times, in particular for the distributed implementation, can be a limitation
to apply the proposed approaches in practice. When they exceed the sampling time of
the system, real-time control will not be possible.

5-2 Contributions and future work

This thesis is the first to apply the integrated MPC-RL framework to the LFC problem, while
providing a comparison to two other benchmark approaches. The stochasticities that RES
introduce are approximated in this thesis using parametric uncertainty in load disturbance
and system dynamics. This provided a proof of concept, but lacks definitive proof that the
proposed approaches are capable of dealing with uncertainties from RES.

For future work, a more extensive study involving nonlinear dynamics or more accurate
modeling of RES, using for example areas with wind farm dynamics, may be undertaken.
Additionally, the proposed approaches could be compared to more state of the art approaches,
presented in works from other authors in recent literature. In general, future work may include
the implementation of the points listed above to strengthen the results. Other directions for
future work could be the experimentation and validation in real-world tests on real power
networks.
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Appendices

A-1 In-depth stability anaylisis

As mentioned in chapter 2, classical control theory stability analysis can be applied to the
system. The Kalman controllability matrix K = [B, AB, . . . , An−1B] is rank-deficient for the
values given in Table 4-1, meaning the system is not controllable.

Checking stabilizability can be done by either checking the uncontrollable modes to see if they
correspond to stable modes of the system, or alternatively by checking all the unstable modes
of the system to see whether they are within the controllable subspace. For a discrete-time
model, unstable modes correspond to eigenvalues λ of the system which lie outside the unit
circle. Equivalently, the magnitude of an eigenvalue |λ| can be checked. For stable modes
|λ| < 1, for unstable modes |λ| > 1 and when |λ| ≃ 1, they are marginally stable, which
may result in oscillations or divergence depending on the multiplicity and the corresponding
eigenvectors.

For our dynamics, only one uncontrollable mode is identified (i.e rank(K) = n − 1). By
checking the eigenvalues, it turns out that the amount of unstable eigenvalues corresponds to
the amount of areas considered, i.e M unstable eigenvalues. Augmenting the controllability
matrix K with eigenvectors vu corresponding to unstable modes, we get the augmented matrix
K̂ = [K vu]. We observe whether there is a change in rank for these augmented matrices
to find the uncontrollable states. If the rank of the augmented controllability matrix does
not change, the unstable mode is linearly dependent on the controllable subspace and thus
controllable. By repeating this process for all the unstable modes, the discretized LTI system
turns out to be stabilizable. Furthermore, using this method with unit vectors instead of
eigenvectors, the uncontrollable modes are observed to correspond to the states corresponding
to tie-line power flow of the different areas ∆Ptie,i.
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A-2 Training of proposed approach on scenario 0

The training of the proposed approaches on scenario 0 was expected to not be very interesting,
as there are no uncertainties in the environment nor in the initialization of matrices in the
dynamics. However, the cost in Figure 4-2 shows that the proposed approaches learned to
avoid constraint violations. Thus, some more information is presented here.

The values used to train the MPC-RL and DMPC-RL for scenario 0 are given in Table A-1.
The values are identical to the hyper-parameters used for scenario 1. The evolution of the
four most changing learnable parameters is given in Figure A-1. Just outside the top four
(not plotted) is the parameter ϕ1, which is the parameter that the controller can learn to
artificially move the lower bound on the state for agent 1. The value changed with 3.33 ·10−4,
compared to the plotted A1 which changed with 6.14 · 10−4. This change in combination
with the change in learnable parameters for the dynamics lead to the controller successfully
avoiding constraint violations. The evolution of state- and input trajectories during training
is given in Figure A-2, where it can be observed that the MPC-RL and DMPC-RL controllers
learn to avoid the constraint violations during training.

Table A-1: Hyper-parameters for training of the proposed approach.

Scenario 0
MPC-RL DMPC-RL

Number of episodes 20 20
Update strategy:
(frequency, skip-first)

(10, 100) (10, 100)

Learning-rate α:
(α0, βl)

(10−10, 1.0) (10−10, 1.0)

Exploration probabil-
ity ϵ: (ϵ0, βe)

(0.5, 0.99) (0.5, 0.99)

Exploration strength
ζ: factor ζ0

0.5 0.3

Experience replay:
(buffer-size, sample-
size, include-latest)

(100, 20, 10) (100, 20, 5)
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(a) MPC-RL for scenario 0 (b) DMPC-RL for scenario 0

Figure A-1: Evolution of learnable parameters during training for scenario 0. The element
indicates the (row, column) position inside the learnable parameter.

(a) MPC-RL (b) DMPC-RL

Figure A-2: Trajectories of the states and inputs for agent 1 during training of MPC-RL and
DMPC-RL approaches on scenario 0. The envelope denotes the collection of all states visited
during learning, with bounds given by the minimum and maximum of the values over all episodes
during learning.

A-3 State and input trajectories during training for scenario 1

This section of the Appendix shows the trajectories of states x and inputs u of during training
on scenario 1, for both MPC-RL (Figure A-3a) and DMPC-RL (Figure A-3b). Behavior is
very similar as for scenario 1, the distributed solution converges quickly and to values very
close to the centralized implementation given the same learning hyper-parameters.
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(a) MPC-RL (b) DMPC-RL

Figure A-3: Trajectories of the states and inputs for agent 1 during training of MPC-RL and
DMPC-RL approaches on scenario 1. The envelope denotes the collection of all states visited
during learning, with bounds given by the minimum and maximum of the values over all episodes
during learning.

A-4 Training of DDPG on scenario 0

To the DDPG controller, there is no distinction between scenario 1 and 2, as it is model-
free. However, scenario 0 has, unlike scenario’s 1 and 2, no noise on the load predictions.
Therefore, we opted to train a separate DDPG controller on this scenario. The evolution of
the cost and violation trajectories during training and for the periodical evaluations are given
in Figure A-4. Observe how the periodic evaluation trajectories are grouped into horizontal
lines consisting of 10 episodes each. This is due to the lack of uniqueness between evaluation
episodes: there is no noise on the load predictions, and no exploration during evaluation,
leading to 10 identical episodes per periodic evaluation. During training, the exploration and
continuous learning leads to different values for each episode. Both show a downwards trend
in cost and constraint violations, where the learning is terminated after 5000 episodes since
no improvements were made after this point.

(a) DDPG training (b) DDPG periodic evaluations

Figure A-4: Costs and constraint violation magnitudes during training of the DDPG approach
for scenario 0.

Nathan van der Strate Master of Science Thesis



A-5 Convergence of ADMM 73

A-5 Convergence of ADMM

The convergence of the distributed implementation of the MPC-RL scheme is related to the
convergence of the primal-dual-variables of the Lagrangian. During training or evaluation
of the DMPC-RL approach, the dual-variables can be compared to their centralized coun-
terparts. The result is shown in Figure A-5. In the figure, the local values of the states x̃
converges to the global copies z̃ if x̃− z̃ → 0. Furthermore, observe that the dual variables y of
the three different agents converge, as they quickly settle to their final value. The optimized
inputs and function values are also shown to converge to the centralized counterparts. The
total error in dual variables for the dynamics is only 9.2 · 10−6.

Figure A-5: Convergence of ADMM’s primal-dual variables
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