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Abstract

Alzheimer’s Disease (AD) is a complex hetero-
geneous disease and is the leading cause of de-
mentia around the world. Treatment options re-
main limited and the underlying mechanisms are
not yet fully understood. To get more insight on
this celular level, single-cell gene expression data
can be used. It has proven to be effective with
machine learning for tasks like cell type classi-
fication. While prior studies have explored AD
classification using scRNA-seq, this has only been
a binary classification. Severity of AD is classi-
fied using multiple measures, ranging from cog-
nitive ability scores, to neuro pathological mea-
sures. This research explores the possibility of ex-
panding the binary prediction of AD by includ-
ing these measures for AD severity. In addition,
given that these measures are associated, we also
investigate if Multi Task Learning (MTL) mod-
els can improve the predictions by learning mul-
tiple AD related data points. If successful, this ap-
proach can give additional analysis into key tasks,
genes and/or cells (sub)types that drive the mod-
els, which would lead to more possibilities for
personalized treatment options, alongside more in-
sight into the development of AD in the brain.
We used a three-layer neural network architecture
alongside a translation from cellular level to indi-
vidual level to make individual-level predictions.
Results show that Cognitive Ability can be classi-
fied best, but overal performance is only slightly
above Naive Bayes. Furthermore, MTL does not
appear to have any measurable positive effect on
scores compared to single task models. A link to
the github repository is available at https://github.
com/WillemDieleman/ADseverityCSE3000.

1 Introduction
Alzheimer’s disease (AD) is a complex neurodegenerative
disease and is the leading cause of dementia [1]. No cure for
AD exists and the treatment options are very limited. While
the exact cause of AD is not fully understood, it is strongly
associated with an excess amount of amyloid plaques and tau
tangles in the brain, contribution the death of neurons [1]. The
reason behind this behind this buildup remains unclear [2],
though research suggests factors like genetics and lifestyle
contribute to the risk of developing AD [3].

Additional research is needed at the cellular level to fully
understand the underlying mechanisms behind AD and how
it develops throughout the brain [1]. One way of doing this
is by getting single-cell gene expression data (scRNA-seq)
from individuals with and without AD. Unlike bulk RNA-
seq, which averages gene expression for all cells of an indi-
vidual, scRNA-seq gives us that cellular level needed for AD
research, where patterns of affection between different cell
(sub)types can be identified. To achieve this, this data can be
used to train machine learning models to classify AD-related

characteristics. Similar research into cancer cells has shown
that this is possible. A research used scRNA-seq data to clas-
sify cancer cell types and achieved accuracies of up to 99%
. They found neural networks had the best performance for
binary and multi-class classification [4]. PanClassif, a simi-
lar research into cancer cell classification, found similar re-
sults, with k-Nearest Neighbors, Random Forest and Neural
Networks performing best at around 99% accuracy for both
binary and multi-class classification [5].

Cancers, however, are quite different compared to AD.
While cancers can also be heterogeneous, especially in later
stages, they often focus around tumor cell populations [6].
AD lacks these discrete populations, and there are no clear
’AD cells’ as opposed to tumor cells. AD affects multiple
regions and cell subtypes in the brain [1], with especially 2
subtypes of microglia cells being strongly associated with AD
[7]. To classify the severity of AD, multiple pathological or
clinical measures are used. The main three measures used in
this research are the Braak Stage, indicating the spread and
severity of tau tangles in the brain; the CERAD Score, indi-
cating the abundance of amyloid plaques; and the Cognitive
Ability of a donor. This additional complexity in severity re-
quires more robust models that are capable of highlighting the
difference in these measures.

Multi-Task Learning (MTL) is a machine learning ap-
proach in which a model learns to predict outputs at the same
time. MTL works best with tasks that use the same input
data and share commonalities [8]. In the context of AD,
this can prove to be useful, as the input data is the same,
namely the scRNA-seq data, and the tasks are all related to
AD. MTL uses this association across tasks to potentially im-
proving performance. A study using MTL and scRNA-seq
has shown that it can be used effectively. They used MTL
models to predict cell types along side learning different sub-
populations. This led to an increase in performance compared
to other state of the art models, while also reducing comput-
ing time [9]. Figure 1 provides a visual comparison between
MTL and conventional machine learning.

MTL has also been used in combination with AD classi-
fication, but these have mainly been focused on MRI-scan
input data, with a study from Zhang et al. achieving a 4% ac-
curacy improvement in classifying AD and healthy patients
[10]. While promising, these approaches do not include the
cellular mechanics that is needed for identifying the under-
lying mechanisms of AD and are limited to healthy vs AD
classification.

While MTL is not widely used in combination with
scRNA-seq and AD, a related study, scAGG, whose premise
is very similar to our research, used the same scRNA-seq data
as our research to create a sample-level embedding to classify
AD. They achieved an accuracy of around 75% classifying
healthy and AD donors [11]. Our research aims to extend
this by not only looking at more donors, but also finding out
which clinical or pathological measure that quantifies AD can
be classified best with the addition of using MTL to look at
combinations of measures. This will be explored in 2 parts:
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Figure 1: Diagram of neural networks and multi task neural net-
works

1. Single-task - where we create and train a model for each
of the measures separately and evaluate which of these
measures can be predicted best.

2. Multi-task - where we apply MTL principles to enhance
these basic models to work with additional measures,
and finding out if certain (combinations of) tasks im-
prove the performance.

The ROSMAP dataset is used in this research. It contains
the scRNA-seq data for 465 individuals, includes the patho-
logical and clinical measures required for AD severity and
contains additional metadata of donors, like age and sex, that
have a connection to AD [12].

From this data, we propose the following hypothesis:

1. Since the input data contains gene expression data from
brain tissue, we hypothesize that measures linked to pro-
cesses inside the brain can be classified more accurately
than measures outside of the brain.

2. Additionally, given that the amyloid cascading typically
goes from plaques → tangles → cognitive decline [7],
we expect MTL to have a measurable improvement on
the Braak Stage and Cognitive Ability if trained in com-
bination with the CERAD Score or other measures. We
expect no measurable improvement in performance us-
ing MTL on the CERAD Score.

To test these hypotheses, we train these models using 5-
fold cross validation on multiple runs and use t-tests to test
for statistical significance.

2 Materials & Methodology
2.1 ROSMAP Dataset
The main dataset used in our research is the single-nucleus
gene expression data from the ROSMAP dataset. Data con-
taining 1.6 million cells from 465 donors is available [12].
Furthermore, for each donor additional metadata is available,
these include the 3 AD severity measures mentioned in the
introduction:
Braak Staging which indicated the abundance and spread of

the tau tangles throughout the brain. Tau tangles handle
the transfer of nutrients and more to the neurons and is a
factor inside the neurons [2]. Braak staging ranges from
0 to 6, where 0 is no tangles and 6 is tangles throughout
all parts of the brain [13] [14].

CERAD Score which indicates the abundance of the amy-
loid plaques in the brain. These plaques interfere in
neuron-to-neuron communication and is a factor outside
of the neurons. 4 scores exist: Definitive AD, Probable
AD, Possible AD and No AD [15] [16].

Cognitive Diagnosis (Cogdx) which indicates the ability a
patient is able to function based on cognitive tests along-
side diagnoses from neuropsychologists and clinicians.
Individuals are divided into 6 classes, which can be seen
in table 1 [15].

Value Coding
1 NCI: No cognitive impairment
2 MCI: Mild cognitive impairment, no other condition contributing to CI
3 MCI+: Mild cognitive impairment AND another condition contributing to CI
4 AD: Alzheimer’s dementia, no other condition contributing to CI
5 AD+: Alzheimer’s dementia AND other condition contributing to CI
6 Other dementia: Other primary cause of dementia

Table 1: Cognitive Diagnosis class division

Additional information linked to AD is also available in
the dataset. This data will be used as additional tasks for the
MTL part. The 4 characteristics we picked are:
Sex Females are more likely to develop AD [17].
Age AD is an age-related disease [18].
APOE Genotype A known genetic risk factor of AD [19]

Cell Subtype Certain subtypes are associated with the AD
measures [7].

To compare our models against existing binary AD classi-
fication, the definition of AD from Wang et al. (2021) [20] is
used. They filter out the most extreme AD and control cases
with the following definition:


Control if cogdx = 1, braaksc ≤ 3, ceradsc ≥ 3

AD if cogdx = 4, braaksc ≥ 4, ceradsc ≤ 2

OTHER else

2.2 Preprocessing
Following the AD guidelines of Wang et al. (2022) [21], dou-
blets and low-quality genes and cells were removed, along-
side selecting the 4000 most variable genes [7]. Addition-
ally, donors with a PMI of more than 12 hours are removed



[22]. Individuals with missing metadata are also removed.
Due to limited samples for Braak stages 0, 1, and 6, they
were merged into a ’Low stage’ (Braak stages 0, 1, 2) and a
’High stage’ (Braak stages 5, 6). The same applied for Cogdx,
with limited samples for values 3 and 5. They were merged
into a group for ’Mild Cognitive Impairment’ (values 2, 3)
and ’Alzheimer’s Disease’ (values 4, 5). Cogdx value 6 was
excluded. The age metadata contains ’90+’ values for any in-
dividual older than 90 years. These were replaced with the
value of 90, and then the ages were mean-normalized. Oligo-
dendroglia cells were excluded. This leaves us with 367 in-
dividuals totaling 994,827 cells. All Multi Task models are
trained are only trained on microglia cells, of which we have
72,779 cells. Single-Task models are trained on all celltypes;
They include microglia, astrocytes, inhibitory neurons, and
excitatory neurons (cux2+, cux2-).

2.3 Task representations
In our reseach, we used seven separate prediction tasks are
used in the MTL models. These are:

1. Braak Stage An ordinal classification task with 4
classes: Low stage, 3, 4, High stage.

2. CERAD score An ordinal classification task with 4
classes: Definitive AD, Probable AD, Possible AD, No
AD.

3. Cogdx An ordinal classification task with 3 classes: No
CI, Mild CI, AD.

4. Age A regression task with a continuous value.

5. Sex A binary classification task: Female (F) and Male
(M).

6. APOE genotype A classification task with 6 classes: 22,
23, 24, 33, 34, 44.

7. Cell subtype A classification task. For microglia,
cells consists of 18 sub types: Mic.1 - 16, Monocytes,
Macrophages.

2.4 Feature Selection
To reduce the dimensionality of the data further, an Analy-
sis of Variance (ANOVA) test was used for feature selection.
ANOVA is a statistical method that tries to identify features
that have a large variance across the target classes. This is
similar to what was used in PanClassif [5]. Using this method
and to avoid data leakage between the test and train sets, the
1000 best features of the training set were calculated, and then
the same features were selected for the train set.

For feature selection of the MTL part, a similar approach
to Kim et al. (2019) [4] was used. For each task, the ANOVA
test was used to determine the 1000 best features. These fea-
tures are compiled in a list. Once this has been calculated for
all tasks, the 1000 most picked features in the list are selected
for the final feature selection.

2.5 Experimental Setup
We use a three-layer neural network for both the single task
learning (STL) and the multi task learning (MTL) models.

Hidden layers Both the STL and MTL models consist of
three hidden layers with size {1024, 256, 64}. In the
MTL model, the first two layers (1024 and 256 nodes)
are shared across tasks, and the third layer (64 nodes)
is task specific. All hidden layers used ReLU activation
functions and batch normalization.

Loss functions For regression tasks we used Mean Squared
Error (MSE) loss. For classification tasks we used Cross
Entropy loss. For ordinal classification tasks, we used
Binary Cross Entropy With Logits loss.

Optimizer All models used the Adam optimizer with a
learning rate of 0.001 and a weight decay of 0.001.

Early stopping Each model was trained for up to 100
epochs, with early stopping using a patience of 3.

Train/test split We used 5-fold stratified cross validation. In
the case of MTL, composite labels were created by con-
catenating the classes per task into a single label used as
the stratify target.

Random seed All random seeds used were set to 42.

Cell versus Individual
For each donor, we have the measures and other metadata
as well as on average around 2500 cells available. The AD
severity measures we are trying to classify are on the indi-
vidual level, while the input data will be on the cellular level.
That means some translation needs to be made from the cellu-
lar level to the individual level. To achieve this, the train/test
split will be done on individual level; For the training set,
all the cells of the individuals are taken separately as an in-
put vector with the target being the selected measure of the
individual the cell belongs to. For testing, from each indi-
vidual in the test set all cells are taken and are separately put
through the model. The prediction for each cell is saved, af-
ter which a distribution is made per individuals for the counts
per predicted class. The class with the highest share of the
predictions will be selected as guess for the individual.

Evaluation
Models are evaluated based on the individual level. This
makes use of the translation explained in the previous para-
graph; For each individual in the test set a prediction is made,
which is compared against the true answer. We used the ac-
curacy metric to compare models.

2.6 Implementation details
Scanpy and Pandas was used to process the input files. Py-
torch and SKlearn was used to create, train and test the mod-
els. Matplotlib, Seaborn, Numpy and SHAP were used to
process, analyze and plot the data. All results that used mi-
croglia data was run locally on a system with 8 cores and 32
GB or RAM running Windows 11. Any data involving other
cell type data was run on the Delft AI Cluster (DAIC) [23].

3 Results
We used the single-nucleus RNA-seq dataset from ROSMAP
[12]. After preprocessing the data, we are left with 376
donors totaling to 994,827 cells. The 1000 best genes are se-
lected for the tasks (see Methodology). Models are trained on



Figure 2: Confusion matrices for Braak stage, CERAD score and Cogdx. Data is based on a single run using 5-fold cross validation using
microglia data.

cellular level, and then tested and compared using accuracy
on individual level (see Methodology). Single Task models
are evaluated on multiple cell types over a single 5-fold cross
validation run. Multi Task models are only evaluated on mi-
croglia cells over two 5-fold cross validation runs, after which
scores are averaged.

3.1 Single Task Models
To compare the accuracy between different measures, the
Naive Bayes baseline is needed. For Braak Staging, the most
common stage, which is stage 4, contains 35.6% of the indi-
viduals. For CERAD score, the most common class is ‘Proba-
ble AD‘, with 34.8% of individuals and for Cognitive Ability
its ‘Alzheimer’s Disease‘ with 38.6%.

Microglia Astrocytes Cux2+ Cux2- Inhibitory
Braak Stage 0.3501 0.3813 0.3487 0.3123 0.3215
CERAD score 0.3513 0.3761 0.3327 0.3732 0.3925
Cognitive Ability 0.4822 0.4494 0.4693 0.5013 0.4033

Table 2: Accuracies for the AD severity measures based on the cell
type as input. Results are based on a single run using stratified 5-fold
cross validation.

From the results in table 2, Braak Stage classification
achieves an average accuracy of 34.3 ± 2.4% over all cell
types. This is within margin of error for the Naive Bayes
baseline. Looking at a confusion matrix for the Braak stage
in figure 2, it can be seen that it only focuses its guesses on
the 2 most common stages, stages 3 and 4. What can also
be observed is that the majority of the ’high stages’ are at
least classified at stage 4, but opposite is not true for the ’low
stages’.

For the CERAD score, the average accuracy in 2 is 36.5
± 2.1% over all cell types. This is also within the margin
of error of the Naive Bayes baseline. A similar story as the
Braak Stage can be seen in the confusion matrix in figure 2,
with predictions being classified around the 2 most common
classes. Noteworthy are the few No AD cases being correctly
classified, showing potential of this task.

For Cognitive Ability, the average accuracy in table 2 is
46.1 ± 3.3%. This is significantly higher than the Naive
Bayes baseline. Looking at the confusion matrix in figure 2
a clear distinction for AD predictions can be seen. The same

to a smaller extend applies to the No CI class, while for the
Mild CI class, it seems to guess randomly.

After normalizing the results with the Naive Bayes base-
lines, we ran a paired t-test for statistical significance.
CERAD and Braak show no statistical significance (P = 0.17)
difference in performance. The same applies to CERAD and
Cogdx (P = 0.09). Braak and Cogdx do show statistical sig-
nificance (P = 0.015). From this we can reject the first hy-
pothesis, as the measures linked to processes inside the brain
cannot be classified more accurately than those outside of the
brain.

We also compared our model with scAGG [11] to classify
the most extreme healthy and AD cases. Using this method
left us with 142 individuals (51 Control, 91 AD). Our results
are only based on microglia cells, while scAGG uses all cell
types, so the comparison is not perfect. ScAGG achieves a
peak accuracy of around 73 ± 7%. Our model achieves an
accuracy of 75.7 ± 2.2% over 20 runs using 5-fold cross val-
idation.

3.2 Multi Task Models
All MTL models are only trained and tested on the microglia
cell data. All combinations up to 2 additional measures are
tested. Models were trained for 2 runs using 5-fold cross val-
idations. Accuracies are averaged over the 2 runs.

From the data in figure 3, MTL does not appear to have
any effect on the accuracy of the Braak stage predictions. All
scores fall within the margin of error of the single task model
and the Naive Bayes baseline.

For CERAD score, an improvement of using MTL can
be noticed. Combinations like CERAD + Braak + Cogdx,
CERAD + Apoe and CERAD + Sex + APOE performed the
best with an accuracy around 39%, which around 4 points
higher than the Naive Bayes baseline, but looking at the high
variability of the single task model, this could be due to vari-
ance.

For Cogdx, MTL seems to reduce performance, as all com-
binations perform worse than the single task model, with the
worst combination of Cogdx + Sex + Cell subtype perform-
ing 7 points lower than the baseline. All combinations still
perform better than Naive Bayes.

Looking at the SHAP values of the tasks in figure 4, which
indicate if the presence of certain tasks (red is included, blue



Figure 3: Accuracies for Braak stage (Blue), CERAD score (Green) and Cogdx (Red) per MTL taskset. Data is based on the average of 2
runs using 5-fold cross validation using microglia data. Dotted lines indicate Naive Bayes baselines.

is not included) has an effect on prediction performance. For
Braak, all tasks seem to have a very small effect on the model,
with the only relevant result being that sex consistently re-
duces performance. For CERAD, it can be seen that both the
inclusion of APOE and sex tasks consistently improve perfor-
mance. For Cogdx, we see that the inclusion of any additional
tasks reduces performance, with sex reducing performance
the most.

Running the best combination for the CERAD score,
CERAD + Sex + APOE 4 additional times, and comparing
it to 4 additional runs of the single task model shows no sta-
tistical significance (P = 0.64) on a two-sided t-test confirm-
ing that these results need to be run multiple times to better
compare performance.

The additional tasks included in the MTL model also had
their performance measured. Sex had an average accuracy
of 99%, APOE genotype had an average accuracy of 57.4%
which is very close to the Naive Bayes baseline for APOE
genotype of 57.5%. Cell subtype had an average accuracy of
82%. Age had an MSE loss on average of around 1.2, with an
age std being 4.5, meaning it on average was 6-7 years away
from the true answer, but this is likely biased since 42.5% of
individuals had their age listed as ’90+’ and were mapped to
90.

Looking at the correlation matrix in figure 5, the 3 AD
severity measures are strongly correlated, and age and APOE
being slightly less connected to the measures, while sex is
the least correlated. MTL typically works well on tasks that

Figure 4: SHAP values calculated for all additional tasks for each
of the AD severity measures. Red means included in the task list,
while blue means not included. Data is based on 2 runs using 5-fold
cross validation on microglia data.



share commonalities [8], while it has also shown to have an
improvement in performance on unrelated tasks if they are
trained in the same input data [24]. In theory this should mean
that MTL would help in predictions of the measures, but we
found that this improvement cannot be statistically confirmed
based on the limited runs we have done. We believe this has
to deal with the low performance of the model in general. Due
to the limited runs, we cannot conclusively reject the second
hypothesis, but these results suggest it its current model ar-
chitecture, MTL does not improve predictions.

Figure 5: Correlation matrix for all tasks except cell subtype based
on the preprocessing outlined in the methodology. Data is based on
367 individuals.

Figure 6: Losses for Cogdx task per epoch. The MTL model is one
with tasks [Cogdx, CERAD]. Second image is when Data is based
on the first fold using microglia data.

Looking into why these models performed at a very low
level, we plotted the train and test loss of Cogdx for both a
Single Task model, as well as a Multi Task model in com-
bination with Cogdx and CERAD. This data can be seen in
figure 6. This shows clear signs of overfitting. What does
appear is the difference in loss between STL and MTL. The
MTL test loss is lower than that of STL, but looking back in
the results in figure 3, this does not translate into an improve-
ment in performance. Even limiting training to 50 batches of
64 cells per training step did not seem to help, as can be seen
in figure 7.

Figure 7: Training and test loss per epoch for Cogdx STL model
with a limit of 50 batches per training step. Data is based on the first
fold using microglia data.

3.3 Cell types
Additional analysis can be made using the microglia subtype
of all the cells. Microglia data consists of 16 subtypes, along-
side monocytes and macrophages [7]. A Multi Task model
consisting of the tasks [Braak stage, CERAD score, Cogdx,
Cell subtype] was trained, and at the end of every fold all in-
dividuals in the test set that were classified correctly had their
cell subtypes was saved. Additionally all cells in the train set
were individually checked if they classified the correct score.
The data for this can be found in table 3. The data from all 5
folds is combined.

According to a study from Green et al. (2024) [7], mi-
croglia subtypes Mic.12 and Mic.13 have strong associations
with all 3 measures, with Mic.12 having a strong associa-
tion with age, while Mic.13 had an association with amyloid
plaques and tau tangles, and though association cognitive de-
cline. From our results, that association can be slightly no-
ticed, with both of the subtypes doing above average on the
cellular level for all the measures. The individual level for
Braak appears to be a bit low, but that can be explained by
the low performance of the model. From our data it can also
be noticed that Mic.11 has some unusual behavior, being the
best sub type for CERAD score and the worst for both Braak
and Cogdx. Mic.11 is associated with stress responses, and
only has a small connection to plaques and tangles [7]. A sin-
gle donor contains almost half (228) of all the Mic.11 cells,
meaning this result is likely an outlier. The same applies to
Mic.15, which deals with inflammatory reactions and is as-
sociated with Cognitive Ability [7], which would explain the
high performance in the Cogdx part, but for this subtype, al-
most half (454) of the cells also come from a single donor.

Using the data from Green et al. [7], we can make a selec-
tion of subtypes that are associated with the 3 main measures.
For the Braak stage this selection would consist of the follow-
ing subtypes: [Mic.3, Mic.4, Mic.5, Mic.11, Mic.12, Mic.13,
Mic.15]. For the CERAD score this selection consists of
[Mic.2, Mic.12, Mic.13, Mic.14, Mic.15] and for Cogdx the
selection is [Mic.11, Mic.12, Mic.13, Mic.15]. The exact pre-
processing and model architecture as outlined in the method-
ology section are used, with the only addition being that in-
dividuals with less than 20 cells have been removed. Doing
this leaves us with around 26k cells for 328 individuals for
Braak, 18k cells and 262 individuals for CERAD, and 5.3k
cells for 117 individuals for Cogdx. From this data, the Naive
Bayes Baseline slightly changes. For the Braak stage this now



BRAAK Total Correct individual Correct Cellular CERAD Total Correct individual Correct Cellular Cogdx Total Correct individual Correct Cellular
Mic.1 936 309 0,330128 276 0,294872 Mic.1 936 402 0,429487 286 0,305556 Mic.1 936 463 0,494658 374 0,399573
Mic.2 13269 4592 0,34607 4422 0,333258 Mic.2 13269 5538 0,417364 4377 0,329867 Mic.2 13269 5616 0,423242 5004 0,37712
Mic.3 7864 2888 0,367243 2654 0,337487 Mic.3 7864 3728 0,474059 2821 0,358723 Mic.3 7864 3497 0,444685 2987 0,379832
Mic.4 4149 1499 0,361292 1353 0,326103 Mic.4 4149 1617 0,389732 1361 0,328031 Mic.4 4149 2114 0,50952 1677 0,404194
Mic.5 7923 2655 0,3351 2643 0,333586 Mic.5 7923 3299 0,416383 2649 0,334343 Mic.5 7923 3403 0,429509 3020 0,381169
Mic.6 6626 1908 0,287957 2095 0,316179 Mic.6 6626 2356 0,355569 1981 0,298974 Mic.6 6626 2807 0,423634 2552 0,385149
Mic.7 11280 2892 0,256383 2982 0,264362 Mic.7 11280 4004 0,354965 3457 0,306472 Mic.7 11280 4422 0,392021 4241 0,375975
Mic.8 4424 1451 0,327984 1308 0,29566 Mic.8 4424 1621 0,36641 1429 0,323011 Mic.8 4424 2083 0,470841 1818 0,41094
Mic.9 3321 1089 0,327913 1132 0,340861 Mic.9 3321 1223 0,368263 987 0,2972 Mic.9 3321 1394 0,419753 1173 0,353207
Mic.10 2669 638 0,239041 750 0,281004 Mic.10 2669 920 0,344698 862 0,322967 Mic.10 2669 1082 0,405395 1000 0,374672
Mic.11 564 33 0,058511 47 0,083333 Mic.11 564 394 0,698582 366 0,648936 Mic.11 564 30 0,053191 68 0,120567
Mic.12 3352 1062 0,316826 1054 0,314439 Mic.12 3352 1599 0,477029 1325 0,395286 Mic.12 3352 1504 0,448687 1290 0,384845
Mic.13 1966 500 0,254323 646 0,328586 Mic.13 1966 1008 0,512716 866 0,440488 Mic.13 1966 880 0,447609 840 0,427263
Mic.14 442 204 0,461538 151 0,341629 Mic.14 442 216 0,488688 122 0,276018 Mic.14 442 100 0,226244 94 0,21267
Mic.15 932 237 0,254292 225 0,241416 Mic.15 932 537 0,57618 424 0,454936 Mic.15 932 518 0,555794 400 0,429185
Mic.16 729 219 0,300412 233 0,319616 Mic.16 729 350 0,48011 283 0,388203 Mic.16 729 400 0,548697 359 0,492455
Macrophages 1655 504 0,304532 489 0,295468 Macrophages 1655 691 0,417523 580 0,350453 Macrophages 1655 724 0,437462 623 0,376435
Monocytes 678 203 0,29941 245 0,361357 Monocytes 678 278 0,410029 232 0,342183 Monocytes 678 295 0,435103 272 0,40118

Table 3: Accuracies split up per microglia subtype for each of the AD severity measures. Columns outline the total amount of cells per
subtype, amount of cells per subtype from all individuals in the test set who are classified correctly, alongside the amount of cells per subtype
from all cells in the test set that classified the correct score. Data is based on a Multi Task Model with Braak stage, CERAD score, Cogdx
and cell subtype as tasks. Data is from the combination of 5-fold cross validation results.

is 34.5%, CERAD score it is 36.6% and Cogdx its 53.0%.
Training these models again for 2 runs gives us the results as
outlined in table 4.

All subtypes Selected subtypes
Braak Stage 0.3501 +/- 0.0123 0.3561 +/- 0.0076
CERAD Score 0.3515 +/- 0.0191 0.3664 +/- 0.0116
Cognitive Ability 0.4822 +/- 0.0028 0.5214 +/- 0.0083

Table 4: Accuracies for the main measures for all microglia cells
compared to a selection. Data is based on a selection of microglia
subtypes and data is averaged over 2 runs using 5-fold cross valida-
tion.

No real improvement can be seen for Braak and CERAD
with the models still performing similarly to the Naive Bayes
baseline. For Cogdx, which used to perform significantly bet-
ter than the baseline, now performs at the Naive Bayes base-
line, meaning it actually lost performance.

4 Discussion
We looked into the possibility of classifying the severity of
AD by trying to classify the Braak Stage, CERAD score and
Cogntive ability using single-cell gene expression data. We
combined this with Multi Task Learning principles to look
for improvements in performance. We found that these tasks
are very difficult for the model architecture we created, with
Braak and CERAD performing close to Naive Bayes level,
while Cogntive ability performed slightly above it. MTL ap-
peared to have very limited effects on Braak and CERAD,
while reducing performance for Cogntive ability. MTL does
seem to help against overfitting, but this has to be explored
further to conclusively confirm this.

We believe the bad performance could be due to our trans-
lation from cellular to individual level. In our architecture,
we hope that the enough cells are affected by the pathology
that we can classify the individual correctly, but this is often
not the situation. Take for example the Braak Stage; One im-
portant factor for determining which stage an individual has,
is the spread of tau tangles throughout various parts of the
brain. With low stages, they are just the brain stem, while in

the highest stage, they are spread around the entire brain [13].
The cells used in this research come from the dorsolateral pre-
frontal cortex [7], which is only a single region of the brain
and only gets the spread of the tangles around Braak stage 5
[13]. This means that for previous stages, the region where
we get our data from is not affected by the tau tangles yet,
which could explain why the model does not perform better
than Naive Bayes. This can be improved by having data from
multiple parts of the brain. Furthermore, the Braak stage in-
dicates processes inside the neuron [2]. Using microglia data
would naturally have more difficulty with this, as it is not a
neuron.

This could also explain why classifying the CERAD score
appears to perform ever so slightly better, as it denotes the
amyloid plaques, which is a factor outside of the neurons,
which the microglia interact with more. Cells closer to the
amyloid plaques are affected more [25]. Thus, to improve the
CERAD classification, spatial data about the location of each
cell and distance to pathology can be used to only select the
cells that are close enough to be affected and using those to
train the model. Using a model like SpaGE [26], or using the
a spatial dataset could enhance predictions, but has not been
done in this research.

Finally, the bad translation could explain the issues with
overfitting issues we ran into. It labels all the unaffected cells
to a certain score in the training, while in the testing, very
similar unaffected cells are linked to a different score and thus
classified incorrectly. This explains the rise in loss on the test
set immediately from the first epoch onward. To try and cir-
cumvent this, you can again try the spatial data, or extending
the cellular level analysis by finding patterns in cells which
show cells are not affected.

Improvement of the model architecture will be critical for
improvement in performance. Having some form of filter for
unaffected cells will be crucial to filter out noise from the
dataset. Additionally, a better translation needs to be made.
Usage of sample level embeddings can be used, but you might
lose the single-cell level data. The MTL shows potential, but
it needs a decent model to improve, which is what is mainly
missing in this research.

This research shows some potential in the classification of



AD severity measures using scRNA-seq data. If these mod-
els are improved, we can find patterns in certain genes that are
responsible for the development of AD throughout the brain.
This could help in understanding the cellular based mecha-
nisms responsible for the development of AD, which could
lead to finding a potential cure.
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6 Responsible Research
6.1 Usage of data
This research used the data of 450 individuals from the
ROSMAP dataset. Given that all of the AD severity mea-
sures, as well as the single-cell gene expression data are only
available post mortem, all of these individuals have passed
away and donated their brains to science. This means data
like this is very sensitive, and due to that fact, we needed to
request access to the dataset with a detailed description of the
purpose. Additionally, we had to accept terms that this data
can only be used for the research purpose and that we are not
allowed to share it. Finally, all data must be destroyed af-
ter the project is finished. We have kept to these terms. The
data has only been on our personal machines, or on the Delft
AI cluster. All copies on our personal machine have been
deleted.

Furthermore, the dataset also contained additional meta-
data about the donors. 3 of these we used in our research,
those being the age, sex and APOE genotype. The dataset
also contained other information like race and years of ed-
ucation. An argument can be made since these are all con-
nected to AD, instead of using them as prediction targets, you
can use them as additional input. Very early iterations of the
models did use this, but when analyzing these models, we
found that the model almost exclusively used this metadata to
classify AD, while almost not using the gene expression data.
This can obviously lead to biasses where the model would

for example really factor in the years of education without
any additional context leading to very biased models. Addi-
tionally, since a big part of this research is about using the
gene expression data, the choice was made to not include any
metadata as additional input. As for the selection of the ad-
ditional task, APOE genotype and age are clear, as they have
obvious connection to AD. As for the argument for the us-
age of sex, there is very strong evidence that women are more
likely to develop AD [17], additionally, the gene expression
difference between male and female is quite different due to
their difference in X and Y chromosome and different hor-
monal influences. This means it could be an interesting target
for gene expression data to predict while also being connected
to AD.

6.2 Machine learning in healthcare
The main usage of this model was to find out if machine learn-
ing can find some pattern in gene expression to quantify AD
severity measures. If these patterns can be found, we can get
more insight into the cellular level processes that cause AD
and for example find genes that increase or decrease the risk
of AD. From this, we can find out if certain individuals are
more or less likely to develop AD. A potential issue with this
is that healthcare insurers can also find out about this, and
if they base their costs on patient data, they can use this in-
formation to charge certain people way more as they have a
higher risk of developing AD, meaning they will require more
care. The purpose of this research is not that. This data should
only be used to help develop accessible treatment options.

Furthermore, if these models can perform at a high enough
level, they can replace the tasks of diagnosis currently in the
hands of neuropathologist and neuropsychologist that cur-
rently determine these AD severity measures. Models like
this are perfect for finding patterns in huge dataset at speeds
far exceeding human skills. Models like this however, are not
humans, meaning they cannot be held responsible for mis-
takes they made. This is why ML should only be used as a
tool for doctors to feed in a lot of data, and let the models
pick out certain data that the doctor needs to investigate more
closely. Models like this should never be the sole diagnosis
giver and additional confirmation is always needed. Even a
model with 99% accuracy, still makes mistakes, and its the
job of the doctor to find and fix these mistakes.
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[25] Tra-My Vu, Vincent Hervé, Anosha Kiran Ulfat, Daniel
Lamontagne-Kam, and Jonathan Brouillette. Impact of
non-neuronal cells in Alzheimer’s disease from a single-
nucleus profiling perspective. Frontiers in Cellular Neu-
roscience, 17:1208122, 2023. eCollection 2023. Review
Article.

[26] Tamim Abdelaal, Soufiane Mourragui, Ahmed Mah-
fouz, and Marcel J T Reinders. Spage: Spatial gene
enhancement using scrna-seq. Nucleic Acids Research,
48(18):e107–e107, 09 2020.



A Usage of LLM’s
LLM’s were mainly used in the coding and data analysis pro-
cess to translate our idea’s to python code. Some examples of
prompts used:

Ordinal classification ”For a model in python I am us-
ing ordinal classification, but I believe my lossfunction is not
working correctly, what loss function should I be using and
what is the python equivilent?”

”I am not fully sure if my ordinal classification pytorch
model is correct. Could you write me write me a model that
has 50 input features, 2 hidden layers and 4 output features?”

”My model is definitely overfitting:
this is the data at the first epoch: Epoch 1/15 Avg TRAIN-

ING loss for task 0: 0.496269
Avg TRAINING accuracy for task 0: 38.7Task 0 [coral]:

Loss=0.5806, Acc=29.2Avg loss: 0.580583
And this at the final (15th) epoch: Epoch 15/15 Avg

TRAINING loss for task 0: 0.081608
Avg TRAINING accuracy for task 0: 92.3Task 0 [coral]:

Loss=1.0197, Acc=30.9Avg loss: 1.019730
What could be the causes of this? I have some idea’s of my

own, but would like to hear your opinion”
Translation part ”in python, I have a list of a bunch of

items, and I want to transform it into a dict with all the items
and their count of occurances, can you make that for me?”
”and how can I get the item with the highest count of of a
dict?”

Data processing ”I want to make an UpSet plot out of this
data. Can you convert this to a csv with the green cells being
true and white being false, and with the acc and std being
split?”

”Can you also write a python code section that plots the
braak acc with the standard deviation for the categories?”

”I ran multiple Multi Task Learning models and then com-
pared accuracies on the models with various tasks, now I want
to make a plot out of this, what would be a good way of show-
casing this data?”

”Okay the accuracy is just on 1 ’main’ task, with the other
tasks being there to potentially help the other one. Ive seen
something like an UpSet plot, but that seems a lot more
catered to showing true counts, and not really accuracies,
what would be something similar to that, esspecially for the
x-axis”

”I have the following file with the following dataformat:
idsBraak: ’R5693901’: 2: 200, 1: 170, 0: 67, 3: 5, [MORE

DATA HERE]
how can I read this data and get out all the dicts?”
”Can you write a function that parses that data from a file/”
”I have 5 of these dicts with slightly different values and I

want to merge them into one where all the values are added.
Can you write some pythong code that does this?

[RAW DATA]”
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