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Abstract
ASML produces TwinScan NXT machines that are used for the production of microchips. The ma-
chines ensure that an accurate pattern of DUV-light passes a lens and that it is projected as accurate
as possible on the wafer. To ensure that the focal point of the converged DUV-light falls exactly onto
the wafer, the leveling functionality is of great importance. That is, placing the wafer in the correct
depth of focus by rotating the wafer and moving the wafer up or down during exposure.

In order to meet the imaging requirements, the performance is investigated by analyzing errors of
the machines at customers’ site, considering one-year data. The most important errors are A, B, C and
D. To reduce the total unscheduled down (USD) time of those errors, we should focus on reducing the
mean USD time for errors A and C; and focus on reducing the frequency for errors B andD where these
last two errors are likely to be solved together.

Different nominal customer-related variables are considered as possible causes of USD times such as
location, system type or type of sensors. After applying hierarchical clustering and multidimensional
scaling, the variable set is reduced. This set is used to model the USD time of one error: B. Significant
differences in USD times are found, showed by the robust and distribution free rank tests: Wilcoxon
and Kruskal-Wallis test.

To discover interesting patterns among variables, regression models are applied. The linear regres-
sion model and generalized linear model not seem to be the right model to the data. The zero adjusted
exponential model seems to be the correct model and show that AG type, location and FSM flex pack-
age are the most important explanatory variables. This directs to a potential root cause where ASML
is working further upon.
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1
Introduction to ASML

ASML is the world’s leading supplier and manufacturer of lithography using machines. The companies
headquarter is stationed in Veldhoven, the Netherlands. ASML was initially a spin-off from Philips, a
world known electronics company. The machines ASML produces are used for the production of micro
chips, or integrated circuits, for all kinds of electronic devices. The machine type that is evaluated in
this research is a frequently used machine by the customer such as Samsung or Intel. This machine is
called the TWINSCAN NXT. The TWINSCAN NXT ensures an accurate pattern that is projected on
the wafer, a rounded thin slice made of silicon.

Figure 1.1: Top view of a wafer

Out of the wafer, hundreds of dies (small squares) can be obtained. These dies become individual
integrated circuits. The pattern on the wafer determines eventually the capacity of the chips such as
the type of memory capability or type of processor. One of the challenges of ASML’s customers is to
increase the capacity of the dies but also to make the dies as small as possible. To accomplish this,
the pattern or so called image needs to be as small as possible and as accurate as possible on a scale
of nanometers. To ensure accuracy, leveling is important. To understand the function of leveling, the
technique of the TWINSCAN NXT machine needs to be explained. Thereafter the task of leveling is
discussed.

1.1. Task of leveling within the TWINSCAN NXT
The name TWINSCAN is derived from the fact that the machine uses a dual-stage design: measuring
one wafer on the measure side while imaging another on the expose side. On the measure side, all kind
of characteristics are measured, such as topography, the position and contamination of the wafer. This
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1.1. Task of leveling within the TWINSCAN NXT 2

information is used as input on the expose side, where the wafer is exposed to the laser, which uses
Deep Ultra Violet light (DUV light). On the expose side light shines through a mask, called reticle,
such that at some places the light is blocked and the rest of the light passes through. In this way a
pattern of light and shadow is obtained. This pattern goes through the lens and falls onto the wafer
such that the pattern is four times reduced in size. In figure 1.2a a TWINSCAN NXT is pictured. In
the red box the light goes from reticle through lens onto the wafer, which is more clear in figure 1.2b.
The blue box indicates the location of the measure side.

(a) Measure side (blue) and expose side (red) (b) Light passing reticle, trough lens onto wafer

Figure 1.2: A TWINSCAN NXT machine

When the DUV light passes through the lens, the light beams converge and cross each other in exactly
one point, called the focal point. After this point, the light beams diverge in the opposite direction.
See figure 1.3.

Figure 1.3: Converging of light after passing the lens

When projecting a pattern on the wafer, the wafer should be placed exactly in the focal point. In this
way the sharpest image on the wafer is obtained. If the image of the pattern is not sharp, the wafer is
useless. When looking at a wafer, it looks flat from a human eye but when zooming in on nanometer
scale, the wafer is not flat: it contains differences in heights in a range of a few 100 nanometers to mi-
crons. For every specific height, the wafer has to be moved up or down or rotated to minimize defocus.
Therefore leveling is needed to place the wafer in the correct height and rotation such that the wafer is
in the correct depth of focus during exposure.

To ensure the depth of focus, the leveling group has the core responsibility to create a wafer map.
This map shows the height at each x, y coordinate of the wafer. The height is measured by the level
sensor (LS). Obtaining the height measurements from the LS is not the responsibility of the leveling
department, but the department transforms the raw measurements into the wafer map.

The wafer map is segmented according to the fields defined on the wafer. Afterwards, the optimal
leveling trajectory, or exposure profile, is determined for each field by taking into account: continuous
best focus within the exposure slit during scanning of the field and wafer stage servo performance limits.
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That is, the wafer stage moves the wafer and has limits such as maximum acceleration.

Besides creating a wafer map and calculating the exposure profile the leveling functionality has other
functionalities:

• Immersion/improved vertical stage align (iVSA): providing the vertical position of the wafer stage
which is used for a correct alignment with respect to the reticle. This is done on the measure side.

• Extended vertical stage align (xVSA): controlling the drift and tilt between the LS and the
measurement of the position of the wafer stage (SPM).

• Process dependency control: correcting the measured height by the LS for errors which are caused
by the interaction between the level sensor beams and layers and patterns.

• Contamination detection: detecting contamination on the wafer and chuck, and potentially clean-
ing. The chuck is the part of the wafer stage where the wafer is located upon. This contamination
leads to overlay and focus errors.

• Measure sequence: determining the sequence of measurement actions on the wafer before exposure.
Then the exposure set points for minimizing defocus and other relevant parameters that influence the
height-measurements, such as limitations of the sensors or contamination particles, are sent to the
expose side. In this way the wafer is placed in the correct height and is handled correctly.

1.2. Research description
As discussed in the chapter above, it is important to image the pattern in the available depth of focus
during exposure to ensure the quality of the wafer. This is called imaging performance. Besides imaging
performance, the customer has also other interests which are the throughput, i.e. the number of wafers
processed per hour and the yield, i.e. the number of usable dies out of the wafer.
The leveling department would like to optimize these performances. One way to measure performance
is by analyzing and quantifying errors which occur at the customer. While a wafer is processed all kind
of measurements are logged. When a measurement value is below or above a specific threshold, an error
can occur. This error can have different consequences: some measurements have to be redone, a wafer
or a lot (i.e. set of wafers) can be rejected or the machine can go down (i.e. unscheduled down time
(USD time)). These four consequences result in delay and hence in a lower throughput and a loss in yield.

To minimize these errors, insight needs to be gained first in their appearance, such as frequency or
mean USD time. This also gives insight in which errors are the most important ones, which defines
question one: ‘Which errors have the greatest impact on the leveling-performance?’ Moreover, it could
be that errors occur not-frequently but when it occurs it causes a high USD time. Or it can be the other
way around: the errors occur frequently but only cause a small delay. In both situations throughput
can be optimised but each situation should be improved differently. These situations are handled by
question two. The next question which arises is, what causes those errors and how? Is it customer
dependent? Is it sensor dependent? For example, some customers may abandon the clean room proto-
col or may use extra sensors to improve the yield. Some customers may use extra sensors or packages.
This may ensure accuracy, but it takes more time during production than when using not those extra
sensors or packages are not used. However, this extra time may outweigh the number of lost wafers
when not using those extra sensors. Therefore, the third question focuses on finding out which of these
customer related variables could have an influence on the USD time.
With these variables it is investigated how they behave jointly and relate among each other. It could
be that a particular combination of variables leads to a strong decrease of USD time while separately
they do not. In the last sub question a possible causality is explained which resulted from the analysis.
Summarizing, the following research goal is investigated:
Predict and decrease the USD time of leveling-errors in TwinScan NXT machines in order to increase

the performance of leveling at customers’ site
To give an answer to this goal the following research question is investigated: ‘What are the predicted
USD times of leveling-errors on TwinScan NXT given some specific customer-related variables?’ This
question is divided by the following sub questions:
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1. Which errors have the greatest impact on the leveling-performance?

2. What is the behavior of those errors with respect to their frequency and USD time?

3. For which variables exist a significant difference in the USD time of one of the most important
errors?

4. Do there exist patterns or findings which indicate to a root cause?

5. What is the root cause and what can a customer do?

1.3. Outline
First data need to be collected. The data belonging to the errors are collected where some initial analysis
is done. Afterwards, the data belonging to the configurations, such as type of sensor or location, are
collected. Then each configuration is assessed on having a significant impact on the USD time or not.
The chapter thereafter handles sub question four where some patterns are tried to be discovered. In the
last question a concrete and physical example of causality is investigated where some hypotheses are
gathered and compiled. Finally, a conclusion is drawn. Herein, each question is answered and we show
an interesting pattern that is discovered which points towards a potential root cause of one specific
error.



2
The error logging data set

In this chapter the data corresponding to the errors are gathered and sorted. Then descriptive analysis
is done to their USD times and frequencies. Afterwards an exploratory analysis is performed where
their dependencies are investigated.

2.1. Data collection
Every time an error occurs on a machine, it is logged in the database called performance, monitoring
& analysis (PMA).

As we can recall, an error can cause zero USD time, USD time, wafer rejection or even lot abort.
With zero USD time we mean that an error occurred but the machine did not go down but still could
have caused delay if some measurements had to be redone. In order to answer the first sub question
‘Which errors have the greatest impact on the leveling-performance?’, the consequences of each error
need to be gathered. Two types of data are required: log data of the machines during production to
obtain the USD time and data which show wafer rejections and lot aborts. The data set consisting of
the wafer rejections and lot aborts appears not to be consistent and is therefore not considered. The
data set consisting of the USD data is obtained through OBI (Oracle Business Intelligence), which is
an interface of PMA. The link and path to get there can be found in appendix A.1.

In the first chapter, the chosen options in OBI are defined to collect the logged data. After collecting
these data, the leveling-errors, i.e. errors which belong to the leveling functionality, are extracted and
sorted in order to define the most important errors. In the third chapter, a short description is given
of those.

2.1.1. Options chosen in OBI
The following options are chosen in OBI:

Machine types NXT1960Bi, NXT1970Ci, NXT1980Ci
Time span 365 days with end week 201643, i.e. from 01-11-2015 to 30-10-2016
Customer sites only Yes
Error codes Errors which starts with specific letters that are confidential.
Accountability All, i.e. both ASML as non-ASML
Interrupt type All, i.e. availability, reliability, auto recovery and repetitive

Table 2.1: Options chosen to collect data from OBI, using PMA

These error codes are selected such that the data consist of at least the leveling-errors. In the later
stage these particular leveling-errors are subtracted.
The errors of type ‘auto recovery’ or ‘reliability’ will not cause USD time and the errors of type ‘avail-
ability’ or ‘reliability’ do. When an error did not cause USD time, the machine did not go down but

5



2.2. Descriptive analysis 6

still could have caused a delay in the process. The delay time is not known but is still interesting, since
decreasing delay will increase the throughput for a machine.

2.1.2. Most important errors
The data belonging to these leveling-errors are subtracted from the OBI-data set. Such that 36 leveling-
errors remain. These errors are listed with a short description in appendix A.3. In the following table
these errors are quantified and sorted by he total USD time of that error, that influences the availability
of a machine.

This table is confidential.

The following quantifications are shown: mean USD time (hrs), frequency, total USD time caused
(hrs), median USD time (hrs) and 3 times standard deviation of USD time. We use 3 times standard
deviation instead of standard deviation since this is an often used measure within ASML.

2.2. Descriptive analysis
To get insight in the structure of the data set and to provide some understanding, descriptive statistics
are applied. Firstly, the distribution of the four errors are considered for both the number of occurrences
per day and the USD time. Secondly, outliers will be addressed and handled.

2.2.1. Distribution of selected errors
Visualization of the distribution of the USD times and the frequency per day, shows the behavior of
each error and its differences in a quick way. However, data were only gathered when an error occurred.
No information is available when an error did not occur. To overcome this problem the data are trans-
formed to daily data, i.e. the total number of error occurrences per day per error is counted.

Distribution of the frequency per day

The following estimations of the probability density function are obtained:

Figure 2.1: Estimated probability density function of frequency per day of the four most important errors. From left
to right and top left to bottom right: A, B, D, C.
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The errors A and C both have a high number of days where no error occurs: a high peak at zero and
then a steep slope towards the right side. The histogram of B and D are more spread with the highest
peaks at two times a day and one time a day respectively.

Probability of at least one error occurs on a day on a machine

The frequency of an error occurrence per day is a discrete random variable. To calculate the prob-
ability of having x frequencies on a day, we could use the Poisson distribution, given a constant mean
λ. That is the mean number of occurrences on a day and is equal to the variance. However, applying
on the data, the mean and variance differ too much for each error, indicating that the mean λ may
not be constant and differ per day. Therefore, the Poisson distribution may not be the correct model.
Moreover, using the GoF test, it appears that the four errors are significantly not Poisson distributed.
Instead of determining the probability having x frequencies per day, we look at the probability of having
at least one frequency (x ≥ 1) per day and the probability of having zero frequencies (x = 0) per day.
For that we use the binomial distribution where we assume that the observations are independent. This
is a distribution of obtaining k successes out of a sequence of n independent yes/no experiments where
each experiment has a probability p of success. Applying on the data, the sequence n is the integer
number of observed days (365) where on each day at least one error can occur (x ≥ 1) or not occur
(x = 0). Then p is the probability that at least one error occurs on a day. In this case, success means
that an error occurs.

For each error an estimation of the parameter p is calculated by maximum likelihood estimation (MLE)
which is derived in appendix A.4.

p̂ = X

n
=
∑n
i=1 xi
n

Where Xi for i = 1, .., n is a 1 or 0 indicating that error occurred or not. For this parameter a 95%
confidence interval can be constructed, i.e. finding an L and U such that P (L < p̂ < U) = 0.95, using
the ‘Wilson method’ that is possible for large n (Dekking, Kraaikamp, Lopuhaä & Meester, 2005, ch.
24, pp. 361-362). This method makes use of the fact that for large n, as a consequence of the central
limit theorem, the distribution of X is approximately normal, and X−np√

np(1−p)
=

X
n −p√
p(1−p)
n

∼ N(0, 1). So

for large n:

P

−zα/2 <
X
n − p√
p(1−p)
n

< zα/2

 ≈ 1− α (2.1)

Using α = 0.05 results in zα/2 = 1.96. Subtstituting zα/2, X and n in equation 2.1 and solving for p
results in a lower and an upper bound for p. Agresti and Coull suggest a more convervative method,
especially for p nearby 0 or 1 (Dekking et.al. 2005, ch. 24, p. 364) . Hence, this could be suitable
because of the excess of zeros. Define

X̃ = X +
z2
α/2

2 , ñ = n+ z2
α/2, p̃ = X̃

ñ

with the confidence interval (CI):(
p̃− zα/2

√
p̃(1− p̃)

n
, p̃+ zα/2

√
p̃(1− p̃)

n

)

For each error both confidence intervals are determined and collected in table 2.2.

Discussion

The confidence intervals of the two methods do not differ a lot. From the table it follows that the
probability of occurring error B or D on a day on a machine is almost one. The probability A happens



2.2. Descriptive analysis 8

Error p̂ CI Wilson CI Agresti and Coull
A 0.3507 (0.3035, 0.4010) (0.3035, 0.4010)
B 0.9178 (0.8851, 0.9418) (0.8848, 0.9422)
D 0.9534 (0.9267, 0.9707) (0.9262, 0.9712)
C 0.1890 (0.1522, 0.2324) (0.1521, 0.2325)

Table 2.2: Estimation of the binomial parameter with a 95% confidence interval, calculated using Wilson and Agresti
and Coull method

is much lower, namely 0.3507. The probability that C happens on a day on a machine is even lower:
0.1890. These are low values but still appear to cause a high total USD time, which could indicate to
outliers of these two errors. In order to decrease the total USD time, these two errors should be handled
differently than the other two: for A and C the focus could lay on decreasing the USD time for some
specific occurrences while for D and B the focus could lay on decreasing the frequency.

Distribution of USD time

The USD distribution of each erroris right skewed. For example, for error D we get the density es-
timate shown in figure 2.2. The density estimates of the other errors can be found in appendix A.5 and

Figure 2.2: Estimated probability density function of the USD times of error D

also seem to be right-skewed distributed because of the inflated amount of zeros. As a consequence no
parametric distribution is a suited fit. Therefore, the data are split into USD = 0 and USD > 0.

Probability of USD = 0

For USD = 0 the point mass can be estimated by the number of days where USD = 0 divided
by the total number of 365 days. The estimates and their corresponding confidence intervals are ob-
served with the 95% confidence interval and shown in table 2.3.

Distribution of USD>0
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Error Prob. of USD = 0 CI using Agresti & Coull
A 0.7123 (0.6638,0.7564)
B 0.1343 (0.1029,0.1733)
D 0.6712 (0.6214,0.7175)
C 0.8904 (0.8540,0.9187)

Table 2.3: Estimation of the probability of USD = 0 on a day with a 95% confidence interval

Looking at the USD > 0 the density estimates are obtained, shown in figure 2.3.

Figure 2.3: Estimated probability density function of USD > 0 of the four most important errors. From left to right
and top left to bottom right: A, B, D, C.

Note, the limits of x-axes of A and C are higher compared to B and D since they contain some high
USD times.

Discussion

Table 2.3 shows the highest probability for having USD=0 is for error C with 0.8904. This errors
also has the lowest probability to occur. Note, the data of USD = 0 are unconditioned on the fact if
the error happened or not. Hence, a low probability of occurrence may influence the high probability
of USD = 0, since when no error occurred, USD = 0. B has a low probability of USD = 0 with 0.1342
and has a high probability that the error occurs according to table 2.2. In addition, D and A are also
quite high in probability of having USD = 0, namely 0.6712 and 0.7123 respectively. However, it is
interesting that the probability of occurrence of D is a bit high (0.9534). Hence, when the error occurs
the probability of having USD = 0 is high.
Looking at USD>0, we see that all errors are still right-skewed distributed. This indicates that the
data consist of a high amount of USD times nearby 0.

Conclusion

Errors A and C have a similar behavior: the highest peak of frequency per day is at 0 and they
contain the highest probability of USD = 0 on a day, namely a probability of 0.71 and 0.89 respec-



2.2. Descriptive analysis 10

tively. Still they have a high total USD time, indicating that these two errors contain extremely high
USD times. These are investigated in the next section. D has a more spread frequency distribution and
a lower probability of USD = 0 with 0.6712. This indicates that the high total USD time is caused by
the high frequency. Just like D, error B also has a less skewed frequency distribution. The highest peak
is around two: mostly two errors occur on a day on a machine. Further, it has the lowest chance of
USD = 0 of 0.1343. This indicates that both frequency and USD times > 0 cause the high total USD
time.
Hence, when we would like to reduce the total USD time of each error, we should solve them differently.
For error A and C the frequency is not that high, but when the error occurs the USD time can be high.
Hence, for these errors we should reduce the mean time to repair.
The errors B and D have a high frequency but not that high USD time if the error occurs. Hence,
when reducing these two errors we should focus on preventing that the error occurs and so reduce the
frequency.

2.2.2. Outliers
As the density figures already suggest, the error logging data set consists of some extreme high values.
In figure 2.4 the USD times across the time are plotted.

Figure 2.4: USD times of leveling errors between 01-11-2015 and 30-10-2016

From the figure can be concluded that six out of 4548 USD time values are higher than 20 hours. These
six values correspond to the data shown in table 2.4.

Date Error code Root error ID Machine number USD time (hrs) Context
03-01-2016 C 123 M1 24.86 Generic root error
08-02-2016 A 123 M2 134.45 Technical error
13-02-2016 C 123 M3 34.45 Earthquake
01-09-2016 A 123 M4 62.42 Technical error
23-09-2016 A 123 M5 29.51 Technical error
15-10-2016 A 123 M6 21.25 Generic root error

Table 2.4: Data corresponding to the outliers

From the table, it follows that four out of six outliers are errors of the type A and the other two from
C. Looking at the context of those errors on that particular machine using the System Diagnostic Tool
(SDT) gives the information displayed in tables 2.5 and 2.6.
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The outliers do not appear during production time, but they occur while the machine was tested,

Outliers A
08-02-16 Not available from SDT.
01-09-16 Symptom. The error occurred from testing.
23-09-16 Symptom. The error occurred while testing.
15-10-16 The error occurred while testing. Whole day alarms appeared and machine was rebooted.

Table 2.5: Information on machine corresponding to outlier A

Outliers C
03-01-16 Not available from SDT.
13-02-16 Down due to earthquake

Table 2.6: Information on machine corresponding to outlier C

rebooted or something similar. These observations should not be included in the analysis since they
do not contain any useful information and possibly affect the results negatively. This information is
not eliminated since this will lead to a smaller data set. Therefore, these USD values are replaced by
the median of the corresponding error. Ideally, all observations should be removed when the machine
was tested, rebooted or any other form other than during production such that we would only use
observations during production time. However, this information is only available for half of the current
observations. Moreover, the information for every observation should be looked up manually which costs
a lot of time. Therefore, we do not investigate for each observation if it occurred during production
time or not, but assume that they all occurred during production time.

2.3. Initial data analysis
In this section an initial data analysis is done to the interplay between the four errors by investigating
their dependency. When a pair of errors is dependent, it is likely that these errors are triggered for the
same reason and hence we could solve them together. Both the chi-square test of independence and the
Fisher’s exact test are applied. Besides seeking for dependency between two errors, dependency between
more errors is interesting. A pair of errors can be independent or dependent but can be independent or
dependent given another error occurred. However, as we see in the upcoming section, we do not have
enough data to test for this.

2.3.1. Independence test
Chi square test of independence

The chi-square test is a hypothesis tests in the analysis of categorical data. Given two categorical
random variables X and Y , the following null and alternative hypothesis are tested:

H0 : f(x, y) = g(x)h(y) i.e. X and Y are independent
H1 : f(x, y) 6= g(x)h(y) i.e. X and Y are not indepedent

Where X takes values in set S with k elements and Y takes values in set T with m elements. The joint
probability density function of (X,Y ) is denoted as f(x, y) = P (X = x, Y = y) for x ∈ S and y ∈ T .
The marginal probability density functions are

g(x) =
∑
y∈T

f(x, y), x ∈ S

h(y) =
∑
x∈S

f(x, y), y ∈ T
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Now, the k and m elements represent both 2 with the sets S and T representing ‘Yes’ and ‘No’. Let
Oxy denote the number of days that the pair (x, y) occurs on the same day, on the same machine for
every (x, y) ∈ S X T . Where

Error Y occurred
Yes No Total

Error X occurred Yes O11 = 0 O12 = 2 Nyes = 2
No O21 = 5 O22 = 339 Nno = 344
Total Myes = 5 Mno = 341 n = 346

Table 2.7: Example of frequency table for pair of errors

Nx =
∑
y∈T

Ox,y i.e. the number of times that x occurs in sample X

My =
∑
x∈S

Ox,y i.e. the number of times that y occurs in sample Y

This can be done for every possible pair of the four errors, which gives in total
( 4!

(4−2)!2!
)

= 6 fre-
quency tables for each machine number. For the test statistic the estimated expected frequency is
needed under H0 for each cell. The best estimate for the density functions g(x) and h(y) is 1

nNx and
the same for for h(y) = 1

nMy. The expected frequency under H0 is then given by

Ex,y = n ∗ 1
n
Nx

1
n
My = 1

n
NxMy (2.2)

Using these expected frequencies, the test statistic is calculated by

V =
∑
x∈S

∑
y∈T

(Ox,y − Ex,y)2

Ex,y
(2.3)

The distribution of V converges to a chi-square distribution as n→∞ with (k − 1)(m− 1) degrees of
freedom. H0 is rejected if and only if V > χ2

(k−1)(m−1)(1− α).

Fisher’s exact test

For small n the chi-square distribution can not be assumed. Therefore we use also another technique:
Fisher’s exact test. This test uses the exact probability distribution of the observed frequencies where
the row and column sums are fixed. Then one cell frequency can be picked that also determines the
rest of the cell frequencies. The probability of obtaining a particular arrangement of cell frequencies
{O11, O12, O21, O22} is given by a hypergeometric distribution, conditioned on fixed row and column
totals and assuming the two variables are independent (Everitt, 1977, ch.2, p.15). That is,

P = (O11 +O12)!(O21 +O22)!(O11 +O21)!(O12 +O22)!
O11!O12!O21!O22!n!

Then the p-value is calculated by summing the probability of the obtained observed frequencies and the
probabilities of the frequencies which would represent more extreme discrepancies between the propor-
tions of error y occurred yes or no with respect to error x occurred yes or no. For example, for the top
left frequency table in table 2.8, the more extreme case would be for 4 < O11 ≤ 163. Then for each of
these extreme cases the probability of having this particular arrangement can be calculated. Whereas
the chi-square test is two-tailed, is the Fisher’s exact test one-tailed (Everitt, 1977, ch.2 p.17-18). That
is, the Fisher’s exact test decides whether the proportions O11

O21
and O12

O22
are equal or whether O11

O21
is

greater than O12
O22

.

Now we can determine the p-value for each frequency table. In the next section we apply both the
chi-square test of independence and Fisher’s exact test and compare the results.
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2.3.2. Application
Table 2.8 shows the frequency tables for each possible pair. Using these tables, we can apply both tests.

B
Yes No Total

A Yes 4 159 163
No 979 44608 45587
Total 983 44767 45750

D
Yes No Total

A Yes 2 161 163
No 1364 44223 45587
Total 1366 44384 45750

C
Yes No Total

A Yes 1 162 163
No 82 45505 45587
Total 83 45667 45750

D
Yes No Total

B Yes 49 934 983
No 1317 43450 44767
Total 1366 44384 45750

C
Yes No Total

B Yes 4 979 983
No 79 44688 44767
Total 83 45667 45750

C
Yes No Total

D Yes 0 1366 1366
No 83 44301 44384
Total 83 45667 45750

Table 2.8: Frequency table for each pair of errors

Application chi-square test of independence

The estimated frequency under the null hypothesis is calculated, using equation 2.2. Then we get
the p-values shown in table 2.9 The pairs A & C and B & D are significantly dependent. The rest are

Error X Error Y P-value
A B 1.00
A D 0.17
A C 0.00
B D 1.39 ·10−4

B C 0.15
D C 0.15

Table 2.9: P-values after applying the chi-square test for testing independence

likely to be independent. However, to recall, the expected cell frequencies should not be too small, since
then the p-values may not be reliable. Typically this is interpreted by an expected cell frequency of less
than five. But as Everitt (1992, p. 39) pointed out, no mathematical or empirical evidence is found for
this rule. While no clear rule is defined, for skewed data the chi-square distribution may not provide
an accurate estimate of the underlying sampling distribution and therefore the p-values should be used
by caution. To be more certain about the dependence, we calculate the exact probability distribution
by the Fisher’s exact test.

Application Fisher’s exact test

Applying this test, we get the p-value shown in table 2.10. From the table it follows that five out

Error X Error Y P-value
A B 0.47
A D 0.96
A C 0.26
B D 3.95 ·10−4

B C 0.10
D C 1.00

Table 2.10: P-values after applying the Fisher’s exact test for testing independence

of six pairs are likely to be independent. One pair is likely to be dependent. That is the pair B and D.
The strength of dependency can be measured by the odds ratio (OR).

OR =
O11
O21
O12
O22

= O11O22

O21O12
= 1.73
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This means, that the proportion of the occurrence of error B is 1.73 higher given error D occurs com-
pared that error D not occurs.

Conditional dependence or independence

Now we can assume dependence or independence between each specific pair. We would like to know
if each pair is conditional independence or conditional dependence. To test for this, we could make
the same frequency table as in table ?? only now we count the number of occurrences given that the
conditioned error also occurred. However, as we noted before the cell frequencies of O11 in table 2.8
are already small. When we would like to condition on the fact another error occurred, these cell
frequencies become even smaller. Namely, then O11 ≤ 4, since now three errors should have occurred
together instead of two. Moreover, O12 and O21 are small since for these two cell frequencies still two
errors should occur together (instead of one as in the non-conditional case). Therefore, we expect that
we do not have enough data to test for the conditional dependencies or conditional independencies and
that more data should be needed.

2.3.3. Conclusion
Comparing the results of the chi-square test and the Fisher’s exact test we see that in both cases the
pair B & D is likely to be dependent. The chi-square test also shows that the pair A & C is significantly
dependent whereas the Fisher’s exact test shows this is not significant. Since we assume that the
Fisher’s exact test is more reliable, we assume that the pair A & C is independent. Now, when solving
one of the two errors of the dependent pair it is likely that the other error also will be solved since it
is likely that those two errors are triggered by the same cause. As we also see in section 6, both errors
could occur because of the same reason.



3
The leveling configuration data set

In this chapter are data gathered consisting of the leveling configurations for each machine. Afterwards,
these number of leveling configurations is reduced by dimensionality reduction techniques.

3.1. Data collection
The data of leveling configurations are collected in order to investigate sub research question three
i.e. investigating how the leveling configurations influence the USD time of the most important errors.
Each leveling configuration provides options, for which a customer can choose from during wafer mea-
surements or wafer exposure. The most recent leveling configurations with their options are extracted
using the PMA Data Extractor. Each configuration is displayed per machine number. In the further
investigation the term leveling configurations is abbreviated to configurations. These configurations are
considered as the features or explanatory variables in the further analysis. The options a customer can
choose from within the feature are considered as the different levels of a feature.

Irrelevant features

The table in appendix B.1 shows a total of 23 features. Ideally, all of the 23 features should con-
tribute to provide information about the way the machine is used and what are the differences in usage
between all the machines. However, some features are missing and are therefore removed. Further,
some of the features contain the same options across all observations. These features will not provide
information in discriminating the usage of the machines. These irrelevant features are eliminated and
can be found in the table of appendix B.2.

Feature set 1

In total 12 features remain. This is named as feature set 1. In table 3.1 the configurations are listed
with their corresponding abbreviations.

Levels of each feature

Most features can take two levels, for example ‘Enabled’ or ‘Disabled’. However, the features system
type and location contain 57 and 19 levels respectively. As a consequence, we have not enough data
per level. Therefore we would like to merge certain levels, even though this leads to information loss. By
merging we have enough data per level so that we can apply tests on it. Based on domain knowledge,
levels within each of the two features are merged. Originally, location gives information about what
customer at what country or state at what factory. This information is merged such that only the
information of customer is present. For the customers C1,C2 and C3 no merging is done, since it is
expected that enough data are present per factory. Moreover, the customers C4 and C5 are merged,
and C7 with C8 as well. The feature system type contains information about product type (NXT), the

15
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Feature Abbreviation
System type MachType
Location Loc
Field width optimised leveling FieldW
Leveling Field Extensions Algorithm FieldE
Leveling Setpoint Smoothing Smooth
Leveling on single LS Spots Single
Leveling with LS Spot Weight Update Algorithm Spot
Air Gauge AG
Air Gauge Improved Leveling AGILE
Type of Air Gauge AGT
FSM Flexibility package FSMFlex
Improved FSM algorithm. Part of FIP-1 commercial package iFSM

Table 3.1: Leveling configurations types with their abbreviations which form feature set 1

different type of lenses (19xx), throughput-level (B,C,D) and having immersionhood or not (i). These
levels are merged into the product type (NXT) and the 19xx information. For the newer machines,
NXT1980, the throughput-level is kept since it is not sure if those can be considered as the same, based
on domain knowledge. After merging those levels, the feature consists of 48 levels for location and 7
levels for system type. The features leveling setpoint smoothing and type of air gauge contain
both a level with a small amount of data and are similarly named to another level that contain more
data. Therefore for these features these levels are merged as well. The tables in appendix B.3 show
a list of the merged levels and from what original levels they are derived. In the table of appendix
B.4 each feature with its corresponding levels is shown. Each of the features are considered as nominal
variables, i.e. no ordering between the levels is assumed.

3.2. Dimensionality reduction
Features become unnecessary if they contain highly similarly information. One way to identify highly
similar groups of features is by applying clustering. A cluster is a group of variables which are similar
to each other and dissimilar to other variables. Another way to look for dependency is by calculating
the linear correlation between each pair of variables. Also by correlation, groups of similar variables can
be discovered when all the variables within a group have a high correlation with each other and a low
correlation with the other variables. Besides clustering and calculating correlation, dependency can be
calculated by the test of independence using frequency tables like done in chapter 2.3.2. Moreover, with
multi-way tables also conditional dependence or conditional independence can be identified. Although,
this is interesting for identifying structures between variables it will not add information in identifying
similar groups and dissimilarity with other groups. It will only add information in identifying similar
variables or dissimilar variables given another variable. However, that the other variable is given can
not be guaranteed for every machine. Hence, this will not lead to dimensionality reduction. Moreover,
we do not have enough data to condition on an other variable.

Since clustering has the advantage of visualization, this method is used for finding similar groups. Then
to check, the correlation is calculated for every pair to see if the similar groups are also high correlated
with each other. A cluster represents a group of variables which share common information. Ideally,
some clusters are found and so the feature set can be reduced, that is called dimensionality reduction.
Summarizing the data in a smaller amount of variables gives a brief description of the patterns and
differences in the data.

Different methods exist to form clusters. In general, clustering methods can be split into two parts: hier-
archical clustering and partitioning clustering, from which K-means clustering is a well known method.
For categorical data, hierarchical clustering and K-means clustering are both applicable (Everitt, Lan-
dau, Leese & Stahl, 2011, ch. 9, p. 258). However, the result of K-means clustering is less stable since
it depends on the given input k (Singh, Malik & Sharma, 2011). Therefore, hierarchical clustering is
applied. As a comparison and because of the nice visualization aspect, multidimensional scaling (MDS)
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is studied as well.

3.2.1. Hierarchical clustering
Hierarchical clustering can be done agglomerative or divisive. In the agglomerative version each variable
is seen as a separate cluster. Then the two ‘closest’ (most similar) clusters are combined into a new
cluster. This repeats until one single cluster is formed. This method is also called a ‘bottom-up’
method. The divisive method works the other way around: all variables belong to one cluster and is
then partitioned into two clusters which are least similar. This repeats until there is one cluster for
each variable. In this report agglomerative clustering is done. The algorithm is as follows:

Algorithm 1 Agglomerative hierarchical clustering algorithm
Input: A set of variables {x1, ..., xJ}
Output: Dendrogram
1: Place each variable j into its own singleton cluster cj which results in C = {c1, ..., cJ}
2: for k = 1 : J − 1 do
3: for some dissimilarity measure d(ci, cj) do

Calculate the dissimilarity between each possible pair of clusters
Find the closest cluster pair cr and cs by d(cr, cs) = min{d(ci, cj)}i,j∈J,i 6=j

4: end for
5: Remove cr and cs from C
6: Add ck = {cr, cs} to C
7: end for

Once a variable belongs to a cluster, then that variable cannot be removed from that cluster anymore.
The result of hierarchical clustering is called a dendrogram. This is a hierarchical tree where each node
or leaf represents a variable and where the length of the stems represents the distance or dissimilarity
at which a variable or cluster is joined.

As can be seen in the algorithm, a dissimilarity measure is required. This measure is calculated using
a similarity measure s(.) by

d(ci, cj) = 1− s(ci, cj)

In order to calculate the similarity between two clusters, two aspects need to be defined: the definition
of similarity between two variables and a definition of similarity between two clusters from which at
least one consists of more than one variable. This is called the inter-group measure.

First, defining the similarity measure between two variables is considered. Everitt et al. (2011, ch.
3, p. 47) propose different similarity measures for categorical data by transforming these into binary
data and using a frequency table:

Dummy variable i
1 0 Total

Dummy variable j 1 a b a+ b
0 c d c+ d
Total a+ c b+ d p = a+ b+ c+ d

Table 3.2: Example of frequency table

Each of the nominal variables with k levels are transformed into k dummy variables, which can take
value 1 or 0 describing the presence or absence of that attribute. Note, the data are not transformed
into (k − 1) dummies, since each level needs to be tested for dependency and since there is no refer-
ence dummy needed. For example, the variable AG type has three levels, so this variable is transformed
into 3 dummy variables: ‘Type 1 Initial AG (-25.5 mm)’, ‘Type2 Shifted AG’ and ‘No AG device present’.

When selecting a similarity measure it needs to be considered what will be defined as similar: are
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zero-zero matches (d in the frequency table) just as important as one-one matches (a)? In this study
one-one matches are considered to be more important than zero-zero matches. Since the interest in
finding when two variables are both present and not when they are both absent, the focus lies on one-one
matches. Moreover, some nominal variables consist of more than two levels, which can lead to a large
amount of ‘negative’ matches. Therefore, d is not considered and the following measures are left over
according to Gower & Legendre (1986) and Everitt et al. (2011, ch.3, p. 47):

Jaccard(i,j) a
a+b+c

Dice(i,j) 2a
2a+b+c

Sneath and Sokal(i,j) a
a+2(b+c)

Gower and Legendre(i,j) a
a+ 1

2 (b+c)

S5(i,j) 1
2

(
a
a+b + a

a+c

)
S6(i,j) a√

(a+b)(a+c)

Table 3.3: Different similarity measures for binary data where ‘negative’ matches are excluded

The differences in these similarities lie in weighing the single presences differently or by normalizing the
co-presences (a) by their own variable frequencies (S5 and S6). Since there is no interest for correcting
rare frequencies and because of the straightforward interpretation, the Jaccard similarity is chosen.

Secondly, the inter-group measure needs to be defined. This is a measure of the dissimilarity be-
tween two clusters from which at least one is not a singleton cluster. Everitt et al. (2011, ch. 3, p.
61) consider 3 types: single linkage, complete linkage or group average clustering. Single linkage takes
the dissimilarity between the two closest individuals, one from each cluster. Complete linkage is the
opposite: it takes the largest dissimilarity between any two individuals, one from each cluster. The last
method stays in between the two extremes of above: the average dissimilarity between the individuals
of both groups is taken. For this research single linkage method is used, since this shows the variables
which are nearest to each other and leads to a clearer interpretation.

3.2.2. Multidimensional scaling
Besides hierarchical clustering, multidimensional scaling (MDS) is a method to get insight in possible
dependencies. This technique gives sign of the presence of clusters that are useful for dimension reduc-
tion. MDS is considered in order to be more sure about the data structure and because of the attractive
visualization aspect. The technique represents variables as a spot in a lower-dimensional space where
the original distances between the variables are tried to be preserved. Thus, two variables which are
originally close to each other, should also be relatively close in the lower-dimensional space. The closer
the variables, the more similar they are.

Different variations of MDS techniques exist such as classical MDS, which assumes the dissimilarities to
be Euclidean distances (Borg, Groenen & Mair, 2013, ch. 8, p.83). Further metric and nonmetric MDS
exist. Nonmetric MDS is an ordinal method where the rank-order of the dissimilarities is considered. In
metric MDS the observed interval scaled dissimilarities are considered (Borg & Groenen, 1997, ch.9, p.
200-203). The classical MDS is not considered here since the data do not represent Euclidean distances.
Nonmetric MDS is less preferred compared to the metric variant since the interest lies in the actual
dissimilarities and not in the sorted ones. However, since it is not sure if the distances between the
binary variables are preserved by the metric MDS, also nonmetric MDS is considered. Applying both
will help in deciding which method is more convenient and if the possible gaining of fit in nonmetric
MDS can compensate for the lack of interpretation of the plot.

The algorithm of nonmetric MDS is as follows:
The stress function used is the Kruskal’s nonmetric stress criterion (Kruskal, 1964):

STRESSnonmetric =

√√√√∑J
i 6=j(d∗ij − f(δij))2∑J

i6=j d
∗2
ij
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Algorithm 2 Nonmetric multidimensional scaling algorithm
Input: J × n-dimensional matrix XJ representing J variables and n observations
Output: m−dimensional plot of the variables Xj such that the pairwise dissimilarity is presented as

best as possible with m < J

1: for the Jaccard similarity measure do
2: Calculate dissimilarities δij ∀ variables i, j ∈ J, i 6= j
3: end for
4: For some starting configuration find a mapping in the m−dimensional space of the points x1, ..., xJ
5: Calculate the pairwise distances ||xi − xj ||2 = d∗ij , i, j ∈ J
6: Calculate the stress function
7: while Stress function is larger than some criterion do
8: Find a new mapping configuration f of x1, ..xJ s.t. the order of δij is presevered, i.e.
9: whenever δij < δkl ⇔ f(δij) < (δkl)⇔ d̂ij ≤ d̂kl ∀i, j, k, l ∈ J
10: Recalculate the pairwise distances ||xi − xj ||2
11: Recalculate the stress function
12: end while

where d∗ij is Euclidean distance measure between the two variables xi and xj in the m−dimensional
space.

d∗ij =
(

m∑
a=1

(xia − xja)2

)1/2

And where d̂ij is called a disparity which is a transformed dissimilarity such that only the order is
preserved. A perfect MDS solution has a stress value of zero. If δij = δkl, called a tie, the primary
approach to ties is handled. That is, when δij = δkl it is not of importance which dij or dkl is larger,
nor if they are equal or not (Kruskal, 1964).

The algorithm for metric MDS is almost the same, only step eight and nine will be different: the
mapping function f can take other forms than monotonic (Borg & Groenen, 2005, ch.9, p.201-202).
This gives the algorithm stated in algorithm 3.

Algorithm 3 Metric multidimensional scaling algorithm
Input: J × n dimensional matrix XJ representing J variables and n observations
Output: m−dimensional plot of the variables Xj such that the pairwise dissimilarity is presented as

best as possible with m < J

1: for Jaccard similarity measure do
2: Calculate dissimilarities δij ∀i, j ∈ J, i 6= j
3: end for
4: For some starting configuration find a mapping in the m−dimensional space of the points x1, ..., xJ
5: Calculate the pairwise distances ||xi − xj ||2 = d∗ij , i, j ∈ J
6: Calculate the stress function
7: while Stress function is larger than some criterion do
8: Find a new configuration of x1, ..xJ
9: Recalculate the pairwise distances ||xi − xj ||2
10: Recalculate the stress function
11: end while
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The stress function is now defined as:

STRESSmetric =

√√√√∑J
i 6=j(d∗ij − f(δij))2∑J

i 6=j δ
2
ij

Both the MDS techniques need a starting configuration. Then the MDS distances are found by a
sequence of little replacements of the spots in the plot such that the stress value decreases. As a conse-
quence, the computing algorithms find local minimum solutions, meaning that any little replacements
of the spots lead to a higher stress value. Different starting configurations lead to different local minima
(assuming they exist). To be sure that MDS gives the smallest possible stress value, which is the global
minimum, the starting configuration is important. Borg, Groenen and Mair (2013, ch.7, p.62) recom-
mend to use the solution of the classical MDS as starting configuration if there is not a prior theory
about the locations of each spot, which is also called Torgerson solution.

Note, for both metric as nonmetric Jaccard is chosen as dissimilarity measure, for the reasons explained
in the hierarchical clustering chapter.

3.3. Application on the configuration data set
The hierarchical clustering method and multidimensional scaling method is applied on machine data.
In total we have 241 machines. Every machine number with their configurations is one observation. In
here the configurations are transformed to binary data as explained in chapter ‘Hierarchical clustering’.

3.3.1. Hierarchical clustering application
The configurations considered are feature set 1. System type and location are not included, since
these two variables contain a lot of levels (7 and 48 respectively), which results in a low similarity
measure for each level. As a consequence, the result is a chaining effect and an unclear tree structure,
since lots of leafs are added one by one at the end of the tree. Moreover, because of the low similarity
values no strong correlations are expected hence this does not add value for dimension reduction. One
could solve this by for example, using another similarity measure which is described in Everitt et al.
(2011, ch. 3, pp. 47-49). This measure can handle the high amount of negative matches. Merging the
levels even further can be another solution. Both solutions are considered as out of scope for this study.

Figure 3.1 shows the dendrogram.
On the x-axis, the leaf nodes are represented, which contain each level within a configuration. The
y-axis represents the distance or dissimilarity. The length of each link represents the dissimilarity with
the other cluster. From the dendrogram it follows that the following pairs of settings are highly similar:

Configurations Dissimilarity value
FieldE-Avg Single-NotUse 0.0071
FieldW-En iFSM-En 0.0085
AG-Present Agile-2 0.0079
FieldE-Local Single-Use 0.0099

Table 3.4: Pair of configurations which are highly similar

The first and the last pair can be extended to a broader cluster by adding the configurations spot and
Smooth. Another somewhat clear cluster is AG-absent with Agile-No. FieldW-Dis with iFSM-Dis can
also be defined as a cluster but already have some higher dissimilarity.

In order to verify the dendrogram, we check how well the height of the link represents the original
dissimilarity between each pair of clusters. For this the cophenet correlation can be used. This is a
measure of how well the dendrogram reflects the dissimilarities (Everitt et al., 2011, ch. 4, p. 91). The
closes the linear correlation is to one, the more accurately the tree reflects the original dissimilarities.
The corresponding cophenet value is 0.7826. To be certain about the clusters found and to visualize
clusters in an other way, multidimensional scaling is used.
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Figure 3.1: Dendrogram of feature set 1 except for System Type and Location using Jaccard similarity measure and
single linkage

3.3.2. Multidimensional scaling application
The same data set as for hierarchical clustering is used where each machine number with its configura-
tions is one observation. The configurations used are the same for hierarchical clustering, that is feature
set 1 except for system Type and location since they cause an unclear plot because of the inflation
of number of spots in the plot and because a lot of points are co-located such that the labels are not
readable. Solutions to overcome this problem are suggested in the previous chapter.

Before getting the m−dimensional plot using metric or nonmetric dimensional scaling, the value of
m needs to be determined for each methods. For every different m value, a different minimum stress
function is obtained. In the following figure both stress values are plotted against the number of di-
mensions for both metric as nonmetric MDS. For metric MDS 1500 iterations are enough such that the
stress value converges. For nonmetric MDS 1500 iterations are enough up to m = 5, after that 10000
iterations are used.

In the figure both stress values are plotted in the same graph. Since both values are calculated dif-
ferently, they cannot be compared directly. Nonmetric MDS stabilizes after six dimensions and metric
MDS stabilizes after eight dimensions. Kruskal (1964) states rough guidelines for the goodness-of-fit,
shown in table 3.5.

STRESSnonmetric Goodness of fit
0.20 Poor
0.10 Fair
0.05 Good
0.025 Excellent
0.00 ‘Perfect’

Table 3.5: Rough guidelines according to Kruskal for
nonmetric MDS

STRESSnonmetric m
0.1406 2
0.0870 3

Table 3.6: Stress values for the nonmetric MDS for an
m-dimensional plot

The stress value for nonmetric MDS is shown in the table above for m = 2 and m = 3. where a
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Figure 3.2: Plot of both stress values against the number of dimensions for nonmetric and metric MDS

stressnonmetric of 0.2 is rather ‘poor’ and of 0.1 is ‘fair’. So for m = 2 or m = 3 the nonmetric MDS does
not perform exceptionally well and hence will not compensate for the lack of interpretation. Ideally,
a two-dimensional plot would be best interpreted. However, because of the high decrease in value for
metric MDS, a value of m = 3 is chosen which corresponds with a stress value of 0.1400.
Figure 3.3 shows the 3−dimensional plot after applying metric MDS. The third dimension is presented

Figure 3.3: The 3-dimensional metric MDS plot using the Jaccard similarity measure applied on feature set 1 except
for system type and location

as a color indicating the height. The axes are the principal axes of the solution space. This dimension
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system can be arbitrarily rotated and reflected. Hence, the interpretation of the dimensions is not
possible. What one can interpret are the relative distances; which point is close to which others and
far from other points? Some sign of clustering can be seen from the plot where the same highly similar
pairs can be discovered as in the dendrogram.

3.4. Results
Both methods show strong sign of the presence of clusters: some variables are highly similar and dissim-
ilar from the rest. In table 3.7 the groups of similar variables are listed, revealed by the dendrogram and
the MDS-plot. Note, in order to apply hierarchical clustering and MDS, these categorical features had
to be changed to binary data as explained in the chapter ‘Hierarchical clustering’. In the table below,
the binary data are transformed back to the original variables. The remaining variables from the plot,

Clusters as found in dendrogram & MDS-plot Binary variables Original variables

Cluster 1

FieldE-Avg
Single-NotUse
Spot-NotUse FieldE
Smooth-NotUse Single

Cluster 2

FieldE-Local Spot
Single-Use Smooth
Spot-Use
Smooth-Use

Cluster 3 AG-Present
Agile-2 AG

Cluster 4 AG-Absent AGILE
Agile-No

Cluster 5 FieldW-En
iFSM-En FieldW

Cluster 6 FieldW-Dis iFSM
iFSM-Dis

Table 3.7: Clusters which are visual from the dendrogram and MDS plot

FSMFlex disabeld and enabled, AG type 1,2 and no, and AGILE 1 and S-AGILE are not highly
similar to the others and therefore stay separate. To check if the variables found in the clusters are
indeed dependent, the Pearson’s correlation is also calculated. We get the correlation matrix shown
in appendix B.5. From this matrix, it follows that the absolute value of the correlations for each pair
within cluster 1 and 2 are significant and higher than 0.89. Within cluster 3 and 4, the absolute value
of the correlation is significant and higher than 0.90, for cluster 5 and 6 we have an significant absolute
value of the correlation higher than 0.86. Hence within each cluster the pairs have a significant and
high correlation coefficient.
The correlation between the clusters can be calculated by looking at every possible pair where one
variable is from one cluster and the other variable from the other cluster. The variables considered are
the ones from the original variables in each cluster. The highest absolute value of correlation between
clusters 1&2 with respect to 3&4 is 0.09 and with respect to 5&6 is 0.17. The highest absolute value of
correlation between clusters 3&4 with respect to 5 & 6 is 0.15. Hence, the correlation between clusters
is low.
Now looking at the correlation between the singleton clusters and the other variables we see that the
highest absolute correlation value are all lower than 0.48. Hence, the correlation values between the
singleton clusters and the other variables are low.
Therefore, the correlation values confirm the founded clusters.

3.5. Conclusion
When variables are similar or dependent, there is no need to include them all since they will add no extra
information. For example, when a machine is in the presence of fieldE-local it is almost certain that
it also has single-use. Thus this variable will not add extra information in finding the discrepancies
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in usage of the machines. As a consequence, some variables can be removed from the data set and can
be represented by one of the variables from the cluster such that correlation is counteracted. Table 3.8
shows an overview of the clusters and the variable that represents the cluster.

Clusters Represented by
FieldE-Avg, Single-NotUse, Spot-NotUse, Smooth-NotUse FieldE-Avg

}
FieldEFieldE-Local, Single-Use, Spot-Use, Smooth-Use FieldE-Local

FieldW-En, iFSM-En iFSM-En
}
iFSMFieldW-Dis, iFSM-Dis iFSM-Dis

AG-Present, AGILE-2 AG-Present
}
AGAG-Absent, Agile-No AG-Absent

Table 3.8: Clusters and the corresponding variable which represents the cluster

Which variable to choose to represent the cluster can be done in different ways. One way would be
performing a principal component analysis (PCA) based on the variables in the clusters. However,
Mori, Kuroda and Makino (2016, ch.2, p.7) state that for categorical data non-linear PCA is required.
Another way is choosing the ‘central’ variable in the plot. Though there is no central variable in the
plot when two variables represent a cluster. Another approach would be choosing the best regressor.
The disadvantage of this method is that the selected variables depend on the response variable. Conse-
quently, these variables can be different for every other data set having different USD times. Moreover,
we select the variables which suits the model most and we may get a better model than we actually
have. Therefore, for a cluster consisting of two variables we pick one arbitrary. For the cluster consisting
of four, we pick the variable which is closest to one of the others. That is, we need to choose between
FieldE or Single. Picking one arbitrary leads to FieldE. A limitation of representing the cluster by one
of the variables is that we lose the information of the other variables. However, as the correlations
within each cluster are high, we expect not to loose too much information. Another limitation is that
we may choose the wrong representative variable. As a consequence, important information from one
variable is not captured by the representative variable. However, I expect that this will not be the
case because of the high correlations. In the chapter ‘Future Research’ we also see that choosing other
representatives are not expected to effect the predictive models too much.

Now considering the clusters and dependencies we can summarize the features. Note, the separate
clusters AG type and FSMFlex remain in the model. Moreover, location and system type as well
since these are not tested for dependency. Feature set 1 can now be reduced from 12 to 7 nominal
variables, this data set will be called feature set 2 in the further analysis:

Feature Abbreviation
System type MachType
Location Loc
Leveling field extensions algorithm FieldE
FSM flexibility package FSMFlex
Improved FSM algorithm. Part of FIP-1 commercial package iFSM
Air Gauge AG
Type of air gauge AGT

Table 3.9: Feature set 2 after applying hierarchical clustering and MDS on feature set 1 (except for location and
system type) remains 7 out of 12 variables



4
Assessing features based on rank differences

Now the reduced feature set is determined, it is of interest how the configurations are related with the
errors, in particular with the USD time. To find differences between groups, the Wilcoxon rank sum
test and the Kruskal-Wallis test are used. Using these techniques, relevant features to the USD time
contribution can be discovered and can be distinguished from features which are less relevant on its
own. Both techniques are distribution-free and as a consequence, is suitable for the non-parametric USD
distribution as is discussed in chapter 2.2.1 (Hollander, Wolfe & Chicken, 2014, ch.4, p. 115 and ch. 6,
p. 204). Another reason for considering those two methods is the robustness. Both rely on ranking the
data. This results in an analysis and an outcome that is less sensitive for high USD times. The difference
between the two tests lies in the number of groups it can handle. The Wilcoxon rank sum test consid-
ers a variable of two levels. Whereas the Kruskal-Wallis test considers a variable of more than two levels.

In this analysis the focus lies on one error: B. The other errors are recommended for further anal-
ysis and fall out of the scope of this research. Ideally, differences are found between groups such that
for one group the USD times are significantly higher or lower than for the other group. This could lead
to an indication of improvement of usage for the machine and customer.

Just like in the previous chapter, machine data are considered, which are in total 241 machines. Each
observation corresponds to a machine number with its configurations, where the dependent variable is
the total USD time of the 1-year data. Recall, the configurations considered are the ones in feature set
2.

4.1. Wilcoxon rank sum test
4.1.1. Theory Wilcoxon rank sum test
This test considers data of two mutual independent samples X1, ...Xm and Y1, ..., Yn where n+m = N
and N is the total number of observations. Applied on this data we have, Xi = (USDi| var = level
1) for i = 1, ...,m and Yj = (USDj | var = level 2) for j = 1, ..., n. The method assumes that the two
samples are drawn from two continuous populations and that the two populations are equivalent under
the null hypothesis (Pratt & Gibbons, 1981, ch.4, p.249). The alternative hypothesis can be one or two
tailed. Since it is of interest to find out if a specific sample has a tendency to be smaller than the other
sample, a one tailed alternative hypothesis is considered. Let F be the distribution corresponding to
sample X, i.e. X ∼ F and G the distribution corresponding to sample Y, i.e. Y ∼ G. The following
hypotheses are tested by the wilcoxon rank sum test:

H0 : F (x) = G(x) ∀x
H1 : F (x) ≥ G(x) ∀x and strict inequality for at least one x

That is, the random variable X is stochastically smaller than the random variable Y. It can also be
written as P (X > Y ) ≤ P (X < Y ) (Gibbons & Chakraborti, 2003, ch.6, p. 234).
The procedure for retrieving the rank sum test statistic is described by algorithm 4.

25
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Algorithm 4 Wilcoxon - retrieving rank sum test statistic algorithm
Input: Two continuous sample sizes X = {X1, ..., Xm} and Y = {Y1, ..., Yn}.
Output: Test-statistic Rx or Ry
1: Combine X and Y in one group: {X1, ..., Xm, Y1, ..., Yn} with total size m+ n = N
2: Rank the combined observations by {R1, ..., RN} from smallest to largest
3: Sum the ranks of the observations of X resulting in Rx
4: Sum the ranks of the observations of Y resulting in Ry

Both Rx or Ry could be a test statistic, which is called the Wilcoxon rank sum statistic (Pratt &
Gibbons, 1981, ch.4, p.250). The well-known Mann-Whitney statistic U is equivalent to the rank sum
statistic. U can be interpreted as the number of (Xi, Yj) pairs such that X > Y , and reversing the test
statistic gives U ′ indicating the number of pairs (Xi, Yj) such that X < Y . The relationship between
the two statistics is as follows (Pratt & Gibbons, 1981, ch.4, p.251):

U = Rx −
m(m+ 1)

2 (4.1)

U ′ = Ry −
n(n+ 1)

2 (4.2)

Small values for Rx indicate a small total ranking of sample X, indicating also a low U value. Same
as for Ry; small values lead to small values for U ′. In the considered data set retrieving the rank sum
statistic is more straightforward than the Mann-Whitney U test statistic. Consequently, the Wilcoxon
rank sum statistics are considered for further analysis.

The null distribution of Rx needs to be determined. According to Gibbons & Chakraborti (2003,
p. 299) for m,n large and under the continuous assumption, Rx follows an approximately normal
distribution under H0 (called, large sample approximation) with mean and variance :

E[Rx] = m(N + 1)
2 (4.3)

V ar(Rx) =
(
m(N −m)
N − 1

)(
N2 − 1

12

)
= mn(N + 1)

12 (4.4)

Given the null distribution and the given rank sum statistic the p-value can be calculated. However,
the assumption of a normal null distribution is not guaranteed by the considered data set. In some
cases m,n is not necessarily large. Moreover, the data set suffers from ties, caused by the excessive
amount of zeros. As a solution, the null distribution is simulated which is explained in the next chapter.

4.1.2. Application of Wilcoxon rank sum test
For each configuration that consists of two levels, the rank sums are calculated according to algorithm
4. Where the USD times of one level correspond to sample X and the USD times of the other level
correspond to sample Y . The two samples X and Y are assumed to be mutually independent, that is
the observations between groups and within groups should be independent. This is assumed to be the
case, i.e. assuming that each machine number is unique and has its own properties. Table 4.1 shows
the obtained rank sums.

To decide whether the Rx is small enough, the null distribution needs to be determined. Accord-
ing to the theory, Rx follows a normal distribution since m and n are large with the expectation and
variance given in equations 4.3 and 4.4. However, this is under the continuous assumption. The data
considered are not continuous because of the presence of ties. These are caused by the high amount
of zeros. As a consequence, the null distribution of Rx is affected. Hollander, Wolfe and Chicken
(2014, ch.4, p.118) suggest a modified variance and modified test statistic to overcome the problem
of ties. Another direct method is suggested by simulating the exact distribution while using average
ranking (Pratt & Gibbons, 1981, p.259). This last method will be applied, since then the exact distri-
bution is simulated which is considered as more precisely. For the ace of simplicity only Rx is considered.
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Feature Levels Ranksums

FieldE FieldE-Avg Rx = 16189
FieldE-Local Ry = 12973

AG AG-present Rx = 12610
AG-absent Ry = 16551

FSMFlex FSMFlex-En Rx = 12173
FSMFlex-Disabled Ry = 16989

iFSM iFSM-En Rx = 28430
iFSM-Dis Ry = 731.5

Table 4.1: The rank sums of the USD times per group for each configuration

The ties are handled using the method of average ranking. This technique assigns the rank of each of the
tied values to their average ranking per tied subset. Now, under the null hypothesis, all arrangements of
the rankings of m X’s and n Y ’s are equally likely. This gives in total

(
N
m

)
possible arrangements each

with probability 1
(Nm) to occur. Then obtaining the null distribution is to list all possible arrangements

and calculate for each arrangement the rank sum Rx. The chance of that Rx is then given by

P (Rx = z) = v(z)(
N
m

) (4.5)

Where v(z) is the number of arrangements and where Rx = z. Since the number of all possible arrange-
ments is very large, permutation is used. Permutating 10000 · N times results in a null distribution
looking like the normal distribution. In case the test statistic Ry is preferred, the null distribution can
be obtained in the same way where m is replaced by n.

For each configuration the null distribution of Rx is simulated. In appendix C.1 the null distribu-
tion for each configuration is shown. This helps in deciding if Rx is significantly small enough (or high
enough) for α = 0.05. The following configurations show significant differences between levels:

Configuration Level with significantly lower total USD time P-value
FieldE Averaged 0.03
AG Present 0.00
FSM Flex Enabled 0.05
iFSM 0.08

Table 4.2: Two-level configurations and their p-value after applying the Wilcoxon rank sum test

The configuration with no significant difference between groups is iFSM. Although in table 4.1 the
ranksum of iFSM disabled is clearly much lower, there is no significance for α = 0.05. Even though the
p-value is quite low (0.08). This can be explained by the high differences between the two sample sizes.
Namely, m = 233 and n = 8. This is also the reason why there is no smooth null distribution, which is
already predicted by Pratt & Gibbons (1981, ch.4, p. 260).

So we can reject H0 for the significant configurations and we can conclude that the settings from table
4.2 are stochastically smaller than the opposite setting. For the feature iFSM no significant difference
is found.

4.2. Kruskal-Wallis test
4.2.1. Theory Kruskal-Wallis test
The Kruskal-Wallis test is an extension of the Wilcoxon rank sum test but compares k > 2 levels. It
assumes the samples to be mutually independent coming from continuous populations. The following
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hypothesis is tested (Gibbons & Chakraborti, 2003, ch.10, p.353):

H0 : F1(x) = F2(X) = ... = Fk(x) ∀x (4.6)
H1 : Fi(x) 6= Fj(x) for at least one i,j ∈ {1, ..., k} for some x (4.7)

That is, at least two populations differ. Just like the rank sum test, the test statistic is based on
the rank sum for each sample. The procedure for retrieving the test statistic is shown in algorithm 5
(Gibbons & Chakraborti, 2003, ch. 10, p.364-365, 368).

Algorithm 5 Kruskal-Wallis - test statistic algorithm
Input: K continuous sample sizes Xi = {X1, ..., Xni} for i ∈ {1, ...,K}
Output: Test-statistic H
1: Combine all Xi in one group getting total size n1 + n2 + ...+ nK = N
2: Rank the combined observations from smallest to largest resulting {R1, ..., RN}
3: Sum the ranks of the observations of each sample Xi resulting in Ri
4: Calculate test statistic H by

H = 12
N(N + 1)

k∑
i=1

R2
i

ni
− 3(N + 1) (4.8)

For all ni not very small, the test statistic H is approximately chi-square distributed with k−1 degrees
of freedom under H0. Then H0 is rejected for H ≥ χ2

α,k=1 (Gibbons & Chakraborti, 2003, ch. 10, p.
366).

When the null hypothesis is rejected, it is of interest what pairs of samples are different. Multiple
comparisons procedure can be used to compare any possible pair of groups i, j ∈ {1, ..., k}, i 6= j (Gib-
bons & Chakraborti, 2003, ch. 10, p. 367). Groups i and j are different when the difference in mean
rank is high enough. That is

|Ri −Rj | ≥ z∗
√
N(N + 1)

12

(
1
ni

+ 1
nj

)
(4.9)

Where z∗ = zα is the upper quantile of the standard normal distribution and Ri = 1
ni
Ri with Ri the

rank sum (Hochberg & Tamhane, 1987, ch. 9, p. 245). Usually, α is the probability of rejecting falsely
the null hypothesis for a test. However, performing multiple comparisons, namely

(
k
2
)
comparisons, the

type 1 error increases. Therefore the Dunn-Sidak correction is used. This uses a more strict α:

α∗ = 1
2

(
1− (1− α)

1

(k2)
)

(4.10)

This reduces the so called familywise error rate, which is the probability of making wrong inferences
that a multiple comparison makes (Hochberg & Tamhane, 1987, ch. 1, p. 7). This problem arises since(
k
2
)
comparisons are done. The more comparisons are done, the more likely it is that a group differs

from at least another group. For example, testing at a 5% significance level for one test, has a 5%
chance of incorrectly rejecting H0. Whereas performing 1000 tests, it is expected that 5% of 1000 will
incorrectly reject H0, i.e. rejecting falsely 50 tests. Therefore a more strict α level is needed which is
done by using equation 4.10.

The multiple comparison procedure can also be graphically displayed. This consists of displaying the
mean rank with the comparison interval for each sample which is based on the covariances between
samples. The exact calculation is done by Ri± z∗ ·Wi where Wi is calculated according to Hochberg &
Tamhane (1987, ch.3, p. 98). Then the two mean ranks are considered significantly different from each
other if and only if their comparison intervals are disjoint (Hochberg & Tamhane, 1987, ch.3, p. 96).
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4.2.2. Application of Kruskal-Wallis test
The Kruskal-Wallis test is applied on the features that have more than two levels from feature set
2. These are location, system type and type of air gauge. For each of these configurations the
null and alternative hypothesis are tested by calculating the test statistic. However, the assumption of
continuous populations is not met due to the presence of ties. As a consequence, the test statistic H
changes. Gibbons and Chakraborti (2003, ch. 10, p. 367) state that the correction for ties is done by
dividing H through a correction factor and by using the method of average ranking. The corrected test
statistic is now calculated by

Hc = H

1−
∑L

l=1
tl(t2l−1)

N(N2−1)

(4.11)

Where the sum is over the L sets over the t tied values in the population. The considered data have
one tied subset, namely the zeros, so L = 1 with t = 152.
Just like H, for all ni not small Hc follows a chi-square distribution with k − 1 degrees of freedom
(Lehmann, D’Abrera, 1975, ch.5, p.201). The following test statistics with corresponding p-values are
obtained:

Feature Hc D.f. P-value
System type 120.70 6 3.48 · 10−16

Location 84.92 47 2.10 · 10−8

Air gauge type 49.66 2 1.65 · 10−11

Table 4.3: Configurations tested on Kruskal-Wallis assuming the test statistic follows a chi-square distribution

From the table it follows that in all three features at least one pair of group is significantly different.
Now it is of interest what groups significantly differ in mean rank. Using equation 4.9 a significant
difference is found among the following groups:

System type

NXT1950 - NXT1965
NXT1950 - NXT1970
NXT1960 - NXT1965
NXT1960 - NXT1970
NXT1965 - NXT2
NXT1970 - NXT1980Di
NXT1970 - NXT2

Confidential table

AG type Type 1 - Type 2

Table 4.4: The pair of groups which are significantly different in ranked USD time
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Note, the null distribution of Hc assumes that the sample size ni is not small. However, this cannot
be guaranteed. A possible solution can be simulating the distribution, like this is done in the Wilcoxon
test. However, the method which displays the mean ranks graphically does not assume any distribution
and is therefore also considered as a solution. This is done in the upcoming text.

Now a graphical display is applied where the mean ranks with comparison intervals are shown. Figure

Figure 4.1: Graphically multiple comparison of system type displaying the mean rank and comparison interval for
each level

Figure 4.2: Graphically multiple comparison of AG type displaying the mean rank and comparison interval for each
level

4.1 and table 4.4 corresponding to system type show the same significantly different groups. The graph
shows that NXT1965 and NXT1970 have a higher mean ranking than the others. A long bar, which is
shown for NXT1980Ci, indicates that little data are available for this specific system type.
About AG type, the table and graph show the same significant groups: type 1 and type 2, from which
type 2 has a high mean rank.

4.3. Results
Combining the results of both the Wilcoxon rank sum test and Kruskal-Wallis test show the features
listed in table 4.5 where at least one pair of group has significant difference in USD time of error B.
The configuration iFSM does not appear in the table because of the lack of significance. Furthermore,
from these configurations it appears that fieldE-Avg, FSMFlex-Enabled and AG-Enabled show a lower
USD time compared to their counterparts. Moreover, AG type 1 seems to have a lower USD time than
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Significant feature
System type
Location
FieldE
AG
AG Type
FSMFlex

Table 4.5: Configurations where at least one pair of levels within that configuration differs from each other with
respect to the ranked USD time

type 2. By domain knowledge this could be hypothesized by the introduction of the new UV Level
Sensor (UVLS) which caused some difficulties in the beginning. Namely, type 1 is applied on the VISLS
while type 2 is used for UVLS. The higher mean rank of the NXT1970 with respect to the others could
be explained by the same hypothesis. The NXT1980 update had solved some issues already.

4.4. Conclusion
The features that are significant appear to be a relevant contributor on their own to the discrepancy in
USD time. The feature iFSM seems to be a less important contributor. Although, it is possible that
it will become an important contributor when combining it with other features. However, this is not
expected because of the small amount of discrepancy it can make: only nine out of 241 observations
contain the level ‘Disabled’. Therefore this feature is removed from the feature set. The following
features are left over and will be called feature set 3.

Feature Abbreviation
System type MachType
Location Loc
Leveling Field Extensions Algorithm FieldE
Air Gauge AG
Type of Air Gauge AG Type
FSM Flexibility package FSMFlex

Table 4.6: Feature set 3



5
Feature selection using predictive models

In the previous chapter each leveling configuration is tested separately on coming from the same USD
population or not based on rankings. This indicates that it matters what level a machine has. However,
no statements were made about the strength of how much it would matter.
In order to understand in what way and to what extend a specific level relate to the USD time, re-
gression analysis is used, where the USD time is the dependent variable and the configurations are the
independent variables. Besides discovering the strength, regression analysis gives insight in how the
options relate to each other and how they act combined. This helps understanding the relationship
between the features and the USD time of error B. In this way the most influencing configurations can
be discovered. Besides the advantage of joint modeling, regression analysis can be used for prediction.
Using prediction and joint modeling, a crucial combination of configurations is attempted to be found.

In the next chapter, data consisting of 241 data points, are pre-processed such that the models can
be applied. Then the often used linear regression model with least squares is discussed. As an improve-
ment of the linear regression model, a generalized linear model is considered in the chapter thereafter.
Finally, a zero adjusted model is applied to overcome the problem of the inflation of zeros. For each of
the three models a model selection is done and a best combination of features is chosen and evaluated.
In the last chapter all three models are compared.

5.1. Pre-processing data
Before applying regression models, the independent categorical variables need to be transformed into
dummy variables, i.e. Xj = I(G = j). Each feature of feature set 3 with k levels is transformed into
(k − 1) dummies where the last level is the reference variable. In total p dummy variables are left.

Since by domain knowledge it is expected that both system type and location could be relevant, these
should also be taken into the model. However, the multiple levels they contain cause that we only
have a few data points per level. Therefore the levels are merged even further. Although this merging
leads to a loss of information, we would like to have enough data per level to apply tests on and to
draw conclusion. They are merged as follows: NXT1950, NXT1960, NXT1965, NXT2 are merged into
machtype-Old and NXT1980Ci and NXT1980Di into machtype-New; NXT1970 stays the same.
For location the following levels are merged: all factories belonging to C1 are merged to the level loc-C1,
the same applies for C2 and C3. All the other locations belong to the variable loc-Rest.

In table 5.1 a list is shown of the used dummy variables and the corresponding reference variable.

32
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Dummy variable Reference variable
FieldE-Average FieldE-Local
AG-Absent AG-Present
AG type-1 AG type-NoAG type-2
FSMFlex-Disabled FSMFlex-Enabled
Machine type-Old Machine type-NewMachine type-1970
Loc-C1

Loc-RestLoc-C2
Loc-C3

Table 5.1: Transformed dummy variables and reference variable for each feature from feature set 3 that is used for the
regression models

5.2. Linear model and least squares
Usually, a lot of people apply the linear regression model. This model assumes that each observation
{yi, xi}ni=1 can be modeled by a linear function of predictors XT = (X1, X2, ..., Xp) as follows:

yi = β0 +
p∑
j=1

Xijβj + εi (5.1)

Where β0 the intercept, βj the estimated coefficient for parameter j and εi the unobserved term for
observation i. In the current data we do not expect that the variables are linearly related to the
dependent variable. However, we are going to run it anyway as a comparison for the other models in
the further sections and to see the limitations of the model. Equation 5.1 can also be written in matrix
form by:

Y = Xβ + ε (5.2)

Where Y is an n-vector of outputs, X a n× (p+ 1) matrix where the 241 rows are the observations and
each column a parameter p. A column of 1 is added, representing the intercept.

The covariates X1, .., Xp are the leveling configurations which are dummy coded. The desired re-
sponse variable Y represents the USD time. The linear model assumes that the response variable is
normally distributed. However, the USD times are highly skewed distributed and the GoF test shows
that the USD times are not likely to be normally distributed with a p−value of 3.50 · 10−12. Therefore
a log-transformation is done in order to spread out the low values more and the high values less.

5.2.1. Data transformation
A constant c is added to the USD time to ensure a positive input for the log function:

Y = ln(c+ USD︸ ︷︷ ︸
Z

) (5.3)

Now a c should be chosen. For 0 < Z ≤ 1 the ln function has a higher slope than for Z > 1. So for a
small increase of Z where Z ∈ (0, 1] leads to a higher increase in Y. Since it is desired to spread out the
distribution most; are the values of c ≤ 1 considered. The histograms are shown in figure 5.1.
The figures show that the peak of zeros and right-skewness is still present for every c. Moreover, the
GoF-test shows that none of the log-transformation is likely to be normal. However, since we would
like to perform the linear regression model we need to choose a transformation. Hence, quantifications
such as QQ-plots, kurtosis and skewness are compared for every c value in order to choose a value c
which comes closest to normality. The kurtosis is a measure of ‘peakness’ and skewness is a measure
for asymmetry. They have the values shown table 5.2.
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Figure 5.1: Histograms belonging to the log transformed USD times for each constant c
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c Kurtosis Skewness
0.1 2.41 0.98
0.2 2.78 1.10
0.3 3.07 1.19
0.4 3.33 1.26
0.5 3.56 1.32
0.6 3.77 1.38
0.7 3.97 1.43
0.8 4.16 1.47
0.9 4.34 1.51
1 4.51 1.55

Table 5.2: For each c-value the kurtosis and skewness is
calculated

The kurtosis increases as c increases. A normal distribution has a kurtosis of 3, where c = 0.3 is
the closest to that. Considering the skewness, a value of 0 is desirable, indicating no asymmetry. The
lower c, the lower the skewness. In figure 5.2 the QQ-plots are shown. In the QQ-plots are the Y values
standardized to mean 0 and variance of 1. Then the quantiles of these values are compared with the
standard normal quantiles. The red line corresponds to the positions of the data if they followed a
standard normal distribution. Now quantifying the QQ-plot by looking at the sum of squared residuals
(SSR):

∑n
i (Ystandardized(xi)− Yredline(xi))2 it follows that c = 0.1 has the lowest SSR.

Looking at the QQ-plot and the skewness, c = 0.1 comes closer to normality than the other c-values.
However, using the GoF-test, this transformation is not normal. Now choosing c = 0.1, the Y is
calculated by equation 5.3 and is applied in the regression model for estimating the coefficients.
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Figure 5.2: QQ-plots of the standard normal distribution and the distribution of the log transformed data for each
constant c

5.2.2. Estimation
The coefficients βj for j = 0, ..., p are estimated by the least squares method, i.e. the residual sum of
squares (RSS) is minimized. The residual sum of squares (RSS) is defined by

RSS(β) =
N∑
i=1

ε2i (5.4)

= εT ε (5.5)
= (Y −Xβ)T (Y −Xβ) (5.6)
= Y TY − 2βTXTY + βTXTXβ (5.7)

(5.8)

Differentiating with respect to β gives:

δRSS

δβ
= −2XT y + 2XTXβ

δ2RSS

δβδβT
= 2XTX

The second order derivative should be positive as a condition for a minimum, this is the case if X has
full column rank and hence XTX is positive definite (Hastie, Tibshirani & Friedman, 2008, ch. 3, p.
45). The β’s can be found by differentating and by setting it equal to 0:

δRSS

δβ
= −2XT y + 2XTXβ = 0

⇔ XTXβ = XTY

⇔ β =
(

XTX
)−1

XTY

Its minimum always exists and is unique in case the matrix has full rank, meaning that the columns
of X are linearly independent (Hastie, Tibshirani & Friedman, 2008, ch. 3, p. 46). In the used data,
the design matrix X has no column dependencies and has full column rank, so a unique minimum is
found. Now the set of observations (x1, y1), ..., (xn, yn) are used to estimate the parameters β̂, where
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each xi = (xi1, xi2, ..., xip)T is a vector of measurements for the p parameters for i ∈ {1, .., n}.
According to Hastie et. al (2008, ch.3, p.44) RSS is a plausible criterion if the data (xi, yi) are indepen-
dent random draws or if the yi’s given the xi’s are, even though the xi’s are not independent. Assuming
the observations are independent, the coefficients can be estimated from the input variables using RSS.
Then the following model is estimated:

Ŷi = β0 +
n∑
j=1

Xijβj (5.9)

Besides the single variables, also interaction terms can be included. However, as discussed in later stage,
this leads to an high amount of insignificant p-values or p-values which were not found since that inter-
action did not exist in the data. Now assuming, the Y follows normality and has a linear relationship
described in equation 5.1, we get the following coefficient estimates where all dummy variables are used
as input.

Term Coefficient Std. Error P-value
Intercept -3.34 0.62 1.97 ·10−7

FieldE-Average 0.09 0.19 0.96
AG-Absent 0.14 0.25 0.58
AG type-1 0.27 0.46 0.56
AG type-2 1.85 0.47 1.22 ·10−4

FSMFlex-Disabled 0.82 0.26 1.77 ·10−3

Machine type - Old 1.01 0.38 0.01
Machine type - 1970 1.58 0.33 3.56 ·10−6

Loc - C1 -2.78 0.35 7.78 ·10−14

Loc - C2 -1.00 0.24 3.16 ·10−5

Loc - C3 -0.47 0.30 0.12

Table 5.3: Full linear regression model using least squares method

The intercept is the value where the fitted linear line crosses the y-axis. Intercept, AG type-2,
FSMFlex-Disabled, machine type - Old, machine type - 1970, location C1 and location C2 are
significant variables. From those variables, having AG type-2, FSMFlex-Disabled, machine type -
Old, machine type - 1970, leads each to an increase to the fitted values Ŷ and ˆUSD, since

Ŷi = ln( ˆUSDi + 0.1)⇔ ˆUSDi = eŶi − 0.1 (5.10)
The intercept has a negative estimate. The same counts for C1 and C2. FieldE-Average, AG-Absent,
AG type 1, and loc-C3 have insignificant coefficients. This can be the case since the variable will not
add significantly much information and that one of the variables is correlated with one of the signifi-
cant variables, and consequently do not add significantly information comparing to the other correlated
variable. FieldE-Avg has no Pearson correlation higher than 0.50 with the other variables. AG-Abs has
two correlations of 0.50 with loc-C2 and −0.50 with loc-C3. Hence both variables are not strongly
correlated with the significant ones. AG type 1 however has a strong correlation of −0.92 with AG-type
2. This explains why AG-type 1 is insignificant. Moreover, loc-C3 has a significant correlation of −0.59
with FSMFlex-Dis which can explain the slight insignificance of C3 of 0.12.

The proportion of variance that is explained by the model is R2 = 0.524. This means that 52.4%
of the variance of the USD times can be explained by the data. Hence, the data has not enough pre-
diction capability.
In the above model (the full model) all variables are used. However, because of the well-known bias-
variance trade off, a subset of variable may be more convenient.

5.2.3. Model selection
The expected squared prediction error of the model is decomposed by bias and a variance.

E

[(
y − f̂(x)

)2
]

= Bias
[
f̂(x)

]2
+ Var

[
f̂(x)

]
+ σ2



5.2. Linear model and least squares 37

In minimizing both, a trade off is made. As model complexity grows, and more and more parameters
are added to the model, bias is reduced and the variance is increased. In the full model, all param-
eters are used such that the bias is minimized. However, it is also desired to minimize the variance.
Therefore a subset of variables is preferred to improve prediction accuracy. Moreover, it will improve
the interpretation of the model. Namely with a smaller amount of covariates the strongest effects are
modeled at the cost of smaller details (Hastie, Tibshirani & Friedman, 2008, ch. 3, p. 57).

To find the best subset, the best-subset selection approach is used. This method fits a linear regression
model for every possible subset of variables (Hastie, Tibshirani & Friedman, 2008, ch. 3, p. 57). For
every model both the complexity and the bias are assessed using Akaike Information criterion (AIC).
This criterion considers the likelihood and gives a penalty of two on the number of estimated parameters:

AIC = 2a− 2ln(l̂) (5.11)

Where l̂ is the maximized likelihood, a = p + 2, i.e. the number of estimated parameters which is the
number of covariates plus the intercept and the variance of the error term.

The AIC has a penalty of two, however this penalty could also be chosen differently. Setting a heavier
penalty, could result in a selected model with less parameters, and hence in a simpler model. Setting
a less heavier penalty, could result in a selected model with more parameters. Note, the well-known
Bayesian information criterion (BIC) has a penalty of log(n). This is a heavier penalty than two for
n = 241. Hastie et. al. (2008, ch. 7, p. 235) state that BIC often chooses too simple models when
having finite samples. Therefore, we choose the classical AIC with a penalty of two.

As can be seen in appendix D, the AIC can be defined as:

AIC = 2a+ n ln RSS
n

(5.12)

So the RSS should be as low as possible with a penalty on the number of parameters.

Assuming we met the normality and linearity assumption of the model, a best subset p is found where
AIC is minimized. All possible subsets are fitted, where only all (k−1) dummies per categorical variable
are included or all (k − 1) dummies are excluded. For each model the AIC is calculated and a line is
drawn through the lowest AIC for each subset p. We get the values shown in figure 5.3.

Also for the models including interactions a best subset selection is done. However, the lowest AIC
value is 1319 with R2 = 0.42. Moreover, in this model are 17 out of 25 coefficients insignificant or NaN.
A possible reason would be the small amount of data: not every possible combination exist in the data
or a combination occurs not-frequently. Hence when mostly Xi · Xj = Xi for i, j ∈ 1, .., p, i 6= j, we
get dependencies between the interaction variables and the singular variables. Besides the increasing
number of coefficients of insignificance, the overview will get worse. Still an amount of 25 coefficients are
present which gives not a straightforward and quickly overview. For those two reasons, the interactions
are not considered.

The model with p = 8 has the lowest AIC value of 788.14. After p = 8 the AIC value is slowly
increasing again. A horizontal line can be seen between p = 3 and p = 4. In this last model the
variable FSMFlex-Disabled is added to AG-Absent and system type. Apparently, adding this single
variable does not contribute to a much lower RSS that it outweighs the penalty of the extra parameter.
In p = 5 a high decrease can be derived from the figure. In here FSMFlex-Disabled and AG-Absent
are replaced by location, where machine type is still present. It appears that location is a more
important complement to system type in reducing RSS than AG and FSMFlex are. Looking at all
models, it seems that location, system type and AG type are the most important contributors in
predicting USD time. FieldE mostly occurs in the models with the highest AIC, and consequently has
less predictive capability. AG and FSMFlex seem to be in the middle.

The coefficient estimates for model with p = 8 are shown in table 5.4. Note, recall that the linear-
ity assumption is not met and hence the slopes and intercepts may not be reliable. However, for
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Figure 5.3: AIC against the number of variables p

Term Coefficient Std. error P-value
Intercept -3.23 0.58 8.52 ·10−8

AG type-1 0.22 0.45 0.63
AG type-2 1.81 0.46 1.28 · 10−4

FSMFlex-Disabled 0.87 0.24 3.49 · 10−4

Machine type-Old 1.00 0.37 7.87 · 10−3

Machine type-1970 1.58 0.33 2.98 · 10−6

Loc-C1 -2.88 0.29 2.24 · 10−19

Loc-C2 -0.99 0.23 3.02 · 10−5

Loc-C3 -0.52 0.28 0.06

Table 5.4: Selected model with p = 8 using AIC

comparison reasons we run the model.

The variables AG type, FSMFlex, machine type and location are the variables with the strongest
effects, since they appear in the model with lowest AIC. FieldE and AG will add not that more extra
information. AG type 1 is insignificant, which could be explained by the correlation between type 1
and type 2 as shown in table E.1 in appendix E. Location-C3 is close to significance at the 5% level.
From the significant terms, AG type-2, FSMFlex-Disabled, machine type-Old and 1970 will let the
response variable Ŷ increase.

5.2.4. Model assessment
Now a model is selected. We expect that the relationship of the variables is not linearly related to the
dependent variable. Moreover, the dependent variable is not likely to be normal. Let us look how these
two violations of the assumptions is reflected in the residuals.

Using the GoF-test, the distribution of the residuals is significantly not normally distributed with a
p-value of 1.01 · 10−21. This effects the calculation of the p-value and standard error of the estimates
(Hastie et al., 2008, ch. 3, p. 47-48) and may be incorrect.
Further, the residual values should be randomly distributed around zero and should not contain any
predictive information. Figure 5.5a shows how the residuals would look like if Y∼ N(XTβ, σ̂). In that
figure the residuals are randomly distributed and some vertical lines can be seen. However, looking
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Figure 5.4: Distribution of the residuals

(a) Residuals against Ŷ if Y ∼ N(XTβ, σ̂2) (b) Residuals against Ŷ

Figure 5.5: Residual plots

at figure 5.5b, a systematic pattern can be derived from the plot; the residual value increases as the
fitted value increases. This could indicate heteroscedasticity, meaning that the variance differs across
the observations and that it is not constant, as the linear model assumes. This can be explained when a
specific combination of dummy variables has some high USD times but also a lot of zeros. Then for that
specific combination a too high value is estimated (for negative residuals) or a too low value is estimated
(for positive residuals). A reason for this pattern can be a missing variable which captures this pattern.
Another reason is that a linear relationship is not the correct link between the response and predic-
tors, which was already expected in this data. As a consequence, just like in the non-normality case,
the underlying hypothesis tests cannot be relied on and standard errors and p-values may not be correct.

Although we see that this linear model is not a correct model for the log transformed data and the
estimates and p-values are likely not to be reliable, we would like to check the predictive properties of
the model in order to compare this with the models in the upcoming sections. The model has a value
of R2 = 0.523. The R2 value shows that only about the half of the total variation of Y is explained
by the above variables, assuming the model would be correct. This indicates that these variables alone
may not be suited for prediction.

Further, ˆUSD is not higher than 2.7. The possible combinations of variables are limited hence, the
possible predicted values of ˆUSD are also limited. Moreover, some ˆUSD values are negative, this hap-
pens 62 times out of 241. Lastly, the residual sum of squares of the USD and estimated USD is RSS
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= 4122.88.

5.2.5. Conclusion
In conclusion, the data do not meet the assumptions of linearity, normality and constant variance. These
effect the performance. The intercept and coefficient estimates with the corresponding p-values may be
incorrect and hence the prediction is not right. Assuming we would meet these assumptions, then AG
type, FSM Flex, machine type and location would be the variables with the strongest effects. How-
ever, we would still not have sufficient predictive power; negative values are predicted and only half of
the total variation is explained by the model by 52.3%. In the next chapter the generalized linear model
is considered, which is an extension of the linear model and that can account for heteroskedasticity.
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5.3. Generalized Linear Model
The advantage of the generalized linear model (GLM) with respect to the linear model (LM) is that
it allows the error distribution to be different than normal. The distribution can be any type of the
exponential family:

f(y; θ, φ) = exp

{
yθ − b(θ)

a(φ) + c(y, φ)

}
For some specific functions a(.), b(.) and c(.), dependent on which specific exponential family distri-
bution, φ the dispersion parameter and θ the important parameter, which is also called the canonical
parameter (McCullagh & Nelder, 1989, ch.2, p. 28). The regression model takes the form (McCullagh
& Nelder, 1989, ch.2, p.27):

g(E(Yi)) = ηi = β0 +
p∑
j=1

βjxji ⇔ E(Yi) = g−1

β0 +
p∑
j=1

βjxji


Where g is called the link function.
First, the distribution of the response variable Y needs to be specified (De Jong & Heller, 2008, ch.5,
p.65). Looking at the USD time distribution, where a small constant is added to ensure strictly posi-
tivity, the Gamma or inverse Gaussian would be possible. Nevertheless, they both suffer from a lack of
fit caused by the excessive amount of zeros which can be seen in figure F.1, appendix F. Therefore the
USD times are log-transformed again, where a small constant is added to the USD time. Possible fitted
distributions are Gamma or inverse Gaussian. Now a value of c = 0.1 is not possible since Y should be
greater than 0. Therefore c = 1.1:

Y = log(USD + 1.1)

Testing all three distributions on the data using the GoF-test, none of the distributions fits the data
significantly well. However, since applying the GLM is a well-known solution for non-normality and
heteroskedasticy and since we would like to compare this model with the LM and upcoming model, we
are going to apply it anyway. Therefore, we need to choose one distribution. Looking at figure 5.6,
it looks like the inverse Gaussian distribution comes closest to the distribution of Y . While fitting all
three distributions, it also appears that the inverse Gaussian has the highest log-likelihood compared
to the others. Therefore, we choose the inverse Gaussian, even though it is not significantly a good fit
to the data.

Secondly, a link function g(.) needs to be defined. The link function describes the relationship between
the linear combination of the covariates and the mean. For this the inverse square is used, which is the
canonical link of the inverse Gaussian (De Jong & Heller, 2008, ch.5, p. 67).

g(E(Y )) = g(µ) = 1
µ2

A link is canonical if the function expresses θ in µ, i.e. g(µ) = θ = XTβ.
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Figure 5.6: The distribution of Y is fitted for Gamma, inverse Gaussian and exponential distribution

5.3.1. Estimation
The parameters βj are solved by maximum likelihood estimation (McCullagh & Nelder, 1989, ch.2,
p.23-24). The likelihood and log-likelihood are defined by

l(θ, φ; y1, y2, ..., yn) =
n∏
i=1

f(yi; θ, φ) assuming independence (5.13)

=
n∏
i=1

ezi where zi = yiθi − b(θi)
a(φi)

+ c(yi, φi) (5.14)

= e
∑

zi (5.15)

ll(θ, φ; yi) =
n∑
i=1

zi (5.16)

=
n∑
i=1

yiθi − b(θi)
a(φi)

+ c(yi, φi) (5.17)

Where we assume that the second derivative < 0. Now this is differentiated to βj and is set equal to
zero which then is solved by iterative weighted least squares method (Dobson & Barnett, 2008, ch. 4,
p. 66). In appendix F.2 the derivative is obtained.

5.3.2. Model selection
Considering both bias and variance when selecting a model, the same principle applies as to the LM
where AIC is defined in the same way as in equation 5.11 (De Jong & Heller, 2008, ch.5, p.80).
In order to calculate AIC, the log-likelihood needs to be determined first.
Equation 5.17 is used where a(.), b(.), θ are filled in according to the inverse Gaussian distribution. In
appendix F.3 these functions and parameters are obtained. The following log-likelihood is obtained.

ll(µ, φ; y) =
n∑
i=1

yi
( 1

2µ
2
i

)
− 1

µi

−φ

Where yi are the observed response variable, µi are the fitted values and φ is the dispersion parameter.
Note, the c(y, φi) value is not considered here. Now the AIC can be calculated for each possible subset
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of variables, where for each categorical variable all (k− 1) dummies are included or all excluded, like is
done in the LS method. Further, a = 2 + p where p is the number of covariates and 2 for the intercept
and the error term. Assuming that Y would follow an inverse Gaussian distribution, we obtain the
following AIC values:

Figure 5.7: AIC against the number of variables p applying GLM

The line of AIC looks non-smooth. A similar horizontal line can be seen between p = 3 and p = 4 like
in the LM, but now this line is extended to p = 2. Further, a high decrease can be seen between p = 4
and p = 5 just like in the LM.
What also strikes are the 2 gaps: one appears after p ≥ 2 and the other appears for p ≥ 5. It looks
like 3 ‘rows’ are present in the figure. In the first gap after p ≥ 2, AG type can be added as well as
system type. This was not possible for p = 1 since those consist of two levels and only all the levels
are included or none of them. It appears that, AG type contributes to an increase of the log-likelihood,
compared to fieldE, AG, FSMFlex or system type alone. For p = 3 location alone is used and ap-
pears to have an increase to the log-likelihood compared to fieldE, AG, FSMFlex or system type. All
in all, the second ‘row’ is caused by the variables location or AG type which are added to fieldE, AG,
FSMFlex or system type. The third ‘row’, for p ≥ 5, is caused since now location can be combined
with AG type. In the subsequent subsets p FSMFlex, fieldE, AG and/or system type are added to the
combination of AG type and location.
Summarizing, if Y would follow an inverse Gaussian distribution, fieldE, AG, FSMFlex and system
type seem to be less important contributors for reducing the likelihood. In contrast, AG type and
location are the most important contributors. Especially, when using them in combination.

The model with the lowest AIC has the coefficient estimates shown in table 5.5. Note, since Y is
not significantly inverse Gaussian distributed, the intercept and coefficient estimates may not be reli-
able. But since we would like to compare all the models, we still apply it.
As in the LM, AG type and location exist in the selected model and thereby representing the strongest
effects. AG type-1, Loc-C1 and Loc-C3 have significant coefficient estimates. From these variables, all
let the response variable Ŷ decrease. Note, the coefficients do not have a direct result on the estimated
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Term Coefficient Std. Error P-value
Intercept 13.43 9.63 0.16
AG type-1 47.18 15.16 2.1 ·10−3

AG type-2 -12.83 9.63 0.18
Loc-C1 109.49 23.57 5.64 ·10−6

Loc-C2 1.03 0.99 0.30
Loc-C3 15.01 7.45 0.05

Table 5.5: Selected GLM with p = 5 using AIC

USD time. Since, Ŷ and ˆUSD are calculated by:

Ŷi = 1√
β0 +

∑p
j=1 βjxij

(5.18)

Ŷi = ln( ˆUSDi + 1.1)⇔ ˆUSDi = eŶi − 1.1 (5.19)

Where it is used that the inverse of 1
µ2 is equal to 1√

µ . So one unit of change in the explanatory variable
leads to an increase by the coefficient of ln(1.1 + USD) as can be seen in equation 5.19.

5.3.3. Model assessment
Assessing the GLM is a bit different than for the LM. It does not assume linearity, normality or a
constant variance. It assumes the chosen response distribution, i.e. inverse Gaussian, and linearity
between the independent variables and the transformed dependent variable. However as we have seen
in chapter 5.3., we do not fulfill the assumption of the inverse Gaussian distribution. As a consequence
the standard errors and corresponding p-values of the coefficients may be incorrect. Let us look how
this is reflected in the residuals. McCullagh and Nelder (1989, ch.2, p.37) stated that an extended
definition of residuals is needed. One type is the deviance residual δi.

δi = sign(Y − Ŷ )

√
Yi − Ŷi
Ŷ 2
i Y

This assesses how much each residual contributes to the deviance of the model. The deviance is a mea-
sure of discrepancy: it shows how well the estimated Ŷ fits the observed Y (McNullagh & Nelder, 1989,
ch.2, p.39). A high value of deviance residual means that the corresponding fitted Ŷi value does not fit
the model well. De Jong & Heller (2008, ch.5, p.78) state that the model has a lack of fit for |δi| > 1
and for n large. The value is based on the assumption that for n large, the deviance follows a chi-square
distribution with n− p d.f. and with expected value (n− p). Each case is then expected to contribute
(n−p)/n ≈ 1 to the deviance. In figure ?? the absolute residuals and the deviance residuals are plotted.

From the deviance residual plot it follows that some fitted values suffer from a lack of fit: 64 out
of 241 deviance residual values have an absolute value greater than one. This indicates that for those
data points the inverse Gaussian GLM may not be the correct model. If Y ∼ IG(µx, λ) with λ = 1

φ ,
then we would get the residual plots shown in figure 5.9.

This plot shows already a less spread of residuals of the lower predicted values, although the model
would still not be correct, since 40 deviance residuals are greater or lower than 1 or −1, respectively.
This indicates that we also violate another assumption; that there is no linearity between the indepen-
dent variables and the transformed dependent variable. As a consequence, the intercept and coefficient
estimates may be incorrect. Although we see that this GLM is not a correct model for the dependent
variable Y and as a consequence, the estimates and corresponding p-values are not reliable, we would
like to check the predictive properties for comparison with the LM and the upcoming model. The GLM
model has a value of R2 = 0.407. So less than the half of the total variation is explained by the model.
This is 0.116 lower than for the LM. However, an improvement with respect to the LM are the number
of negative predicted values: none are negative with respect to 62 in the LM. The residual sum of
squares of USD and the estimated USD is RSS = 4011.24, which is an improvement of 111.64 with
respect to the LM.
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(a) Residuals against Ŷ for the GLM (b) Deviance residuals against Ŷ for the GLM

Figure 5.8: Residual plots for GLM

(a) Residuals against Ŷ if Y ∼ IG(µx, λ) (b) Deviance residuals against Ŷ if Y ∼ IG(µx, λ)

Figure 5.9: Residual plots if Y ∼ IG(µx, λ)

5.3.4. Conclusion
In conclusion, just like the LM the GLM model may not be the correct model for prediction. The data
do not follow the inverse Gaussian distribution and there is no linearity between the independent vari-
ables and the transformed dependent variable. However, in this model we have no negative estimated
USD times, which seems to be an improvement with respect to the LM. Another improvement is that
this model accounts for heteroskedasticity.

Assuming we would have meet these assumptions, AG type and location seem to model the strongest
effects. FieldE, AG, FSMFlex and system type represent the smaller effects. Especially, AG type to-
gether with location appear to be the most important contributor for modeling the USD time.

The excessive amount of zeros was modeled by the inverse Gaussian distribution, but appear not
be correct. This indicates that the model can be improved. Therefore, a mixed distribution model is
considered which is discussed in the next chapter.
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5.4. Zero adjusted exponential model
The skewed distribution and inflation of zeros distort fitting a parametric distribution even after log
transformation. Both the normality and inverse Gaussian distribution are not significantly a good fit
to the data. Another way of dealing with this excessive amount is by applying a mixed distribution
model.

We assume that the USD times can be divided into two groups: the first group has zero USD time and
the second group has non-zero USD time which follow a continuous distribution. For i = 1, .., n and
response variable yi = USDi has the mixed distribution model the following form:

f(y) =
{
p0, if y = 0
(1− p0)g(y), if y > 0

(5.20)

Where p0 is the probability of zero USD time and g(y) the continuous density function for y > 0.
Where g(y) is chosen which fits the data best. In the following figure different possibilities of a suitable
right-skewed density functions are displayed:

Figure 5.10: Fitting density functions through the non-zero USD times

Four right-skewed distributions are tested: Gamma, inverse Gaussian, log normal and exponential.
Applying the GoF-test to all distributions, it appears that only the inverse Gaussian is significant
on not coming from that distribution. The log normal, gamma and exponential distribution have p-
values of 0.533, 0.1431 and 0.217, respectively. Therefore, the exponential density function is chosen to
model g(y), since it has the highest p-value. For modeling the point mass distribution p0, the binomial
distribution is used. The zero adjusted exponential model (ZAExp) takes now the following form:

f(y;λ, p0) =
{
p0, if y = 0
(1− p0)λe−λy, if y > 0

For y ∈ [0,∞), p0 ∈ (0, 1) and λ > 0
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With

Ef [Y ] = (1− p0)Eg[Y ] = (1− p0) 1
λ

, for y > 0

V arf (Y ) = (1− p0) 1
λ2 , for y > 0

The model is implemented using the Generalized Additive Models for Location, Scale and Shape
(GAMLSS) structure which is introduced by Stasinopoulos and Rigby (Stasinopoulus & Riby, 2007).
The advantage of GAMLSS with respect to GAM or GLM is that they do not assume to be from
the exponential distribution family. GAMLSS is extended to have a general distribution, including
skewed distributions by allowing to model also other parameters than the mean (Stasinopoulus & Riby,
2007). Hence, in this case the mean and the p0 can be modeled differently. Their relationship with the
predictors are the following:

log(µ) = η1 = XT
1 β1

logit(p0) = η2 = XT
2 β2

Where Xt and βt for t = 1, 2 are the design matrices and corresponding coefficients respectively. These
can be different for each parameter t.

5.4.1. Estimation
Both parameters are estimated through maximum likelihood estimation. The probability function of
f(y) can be given by f(y;λ, p0) = f(p0)f(y|(1− p0)) Then the log-likelihood of f(y) is the sum of the
log of probability having zero USD time and log of the probability of USD time given that USD > 0
(Tong, Mues & Thomas, 2013).

log f(y) = log f(p0) + log f(y|(1− p0))

The log-likelihood is then maximized separately into two components. Firstly, each response variable
is transformed into Yi = I(Yi = 0); the binomial model is fitted; and p0 is found by MLE, as done
in appendix A.4. In this way the probability of having Yi = 0 can be determined. Secondly, for the
values Yi > 0 the λ can be estimated by MLE using the exponential distribution (Stasinopoulus, Enea
& Rigby, 2017), as done in appendix G.1.

5.4.2. Model Selection
Like in the LM and in the GLM, the bias-variance trade off is assessed using best-subset selection com-
paring each AIC value. In AIC the log-likelihood is used with a penalty on the numbers of estimated
parameters p. Since for each parameter estimation a different subset of covariates can be used, the
number of estimated coefficient estimates p is much higher than in the LM or GLM case.

For estimating the parameter µ = 1
λ all possible subsets of dummy variables are fitted such that

for each categorical variable all (k− 1) dummies are included or all are excluded, like is done in the LM
or GLM. For estimating the parameter p0 all dummy variables are used for estimation. Note, for this
parameter all possible subsets can be tested as well. However, this is left for further studies. The AIC
values for each possible subset is shown in the following figure:



5.4. Zero adjusted exponential model 48

Figure 5.11: AIC against number of variables p using GAMLSS

The model with p = 6 has the lowest AIC value of 602.28 and contains the following coefficients:

Coefficient Std. Error P-value
logit(p0)
Intercept 5.82 1.63 4.33 ·10−4

FieldE-Avg -0.12 0.50 0.81
AG-Absent -0.21 0.56 0.71
AG type-1 -0.21 1.24 0.87
AG type-2 -3.78 1.26 2.88·10−3

FSMFlex-Disabled -2.04 0.70 4.18 ·10−3

Machine type-Old -2.02 1.02 0.05
Machine type-1970 -2.74 0.89 2.33 ·10−3

Loc-C1 15.87 88.07 0.86
Loc-C2 1.38 0.61 0.03
Loc-C3 1.06 0.76 0.16

Table 5.6: Coefficients for estimating logit(p0) of the selected GAMLSS model

Term Std. Error P-value
log(µ)
Intercept 2.24 1.04 0.03
AG type-1 -3.14 1.15 6.72 ·10−3

AG type-2 -6.76 ·10−1 1.02 0.51
FSMFlex-Disabled 6.23 ·10−1 2.71 ·10−1 0.02
Loc-C1 -1.58 3.13 ·105 1.00
Loc-C2 -1.43 2.68 ·10−1 2.16 ·10−7

Loc-C3 -9.85 ·10−1 5.35 ·10−1 0.07

Table 5.7: Coefficients for estimating log(µ) of the selected GAMLSS model

Note, logit(p0) = log
(

p0
1−p0

)
= XTβ ⇔ p0 = eX

T β

1+eXT β
for XTβ ∈ R. For estimating p0, the intercept,
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AG type-2, FSMFlex-Disabled, machine type-Old, machine type-1970 and loc-C2 are significant.
AG type-2, FSMFlex-Disabled and the two machine types lead to a lower probability of having 0
USD time. Location-C2 leads to a increase in probability of having 0 USD time.

Looking at the mean in case the USD time > 0: AG type, FSMFlex and location model the strongest
effects compared to the variables which are not in the model. Compared to the GLM, FSMFlex is added
to the model. Compared to the LM, system type is excluded. The variable that contributes in an
increase in USD time is FSMFlex-Disabled. All the others lead to a decrease in mean USD time. Note,
the coefficient estimates do not directly add to the expected USD time but by:

log(µ) = XTβ ⇔ µ = eXT β

5.4.3. Model assessment
Firstly, the adequacy of the model needs to be checked. Just like in the LM and GLM we look at the
residuals. Rigby & Stasinopoulos (2005) suggest an extended form of the residuals, in particular the
normalized randomized quantile residuals:

ri = Φ−1(ui)
Where ui = F (yi|p̂0, µ̂) for yi continuous,
and a random variable ui ∈ [F (yi − 1|p̂0, µ̂), F (yi|p̂0, µ̂)] for yi discrete response

If the residuals ri have a standard normal distribution, the model is correct (Rigby & Stasinopoulos,
2005). In figure 5.12 the absolute and normalized randomized quantile residuals are plotted.

(a) Residuals against Ŷ for the ZAExp (b) Normalized randomized quantile residuals against
Ŷ for the ZAExp

Figure 5.12: Residual plots of the ZAExp

Looking at figure 5.12, the normalized randomized quantile residuals look randomly and normally dis-
tributed. The vertical lines are still visible but are inevitable because of the discrete predictors. Testing
for normality using the KS test also shows that these residuals are likely to be normally distributed
with a p-value of 0.44.

Summarizing, the model assumes that for USD> 0 it follows an exponential distribution, which is
supported by the GoF-test. For these USD times a linear relationship is assumed between the exponent
of the independent variables and the dependent variable and could be the right model to this data.
This is also supported by the residuals since no specific structures can be seen from the normalized
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randomized quantile plot. This model seems to be the right model to this data and hence the coefficient
estimates and p-values can be interpreted.

Looking at the predictive properties, we have a value of R2 = 0.647. This is an increase of 0.124
with respect to the LM. Moreover, no negative USD times are predicted. Calculating the RSS on the
USD and estimated USD times, gives RSS = 3124.24. This is another improvement with respect to LM
of 998.64 and GLM with 887.00.

5.4.4. Conclusion
The mixed distribution model seems to be a suitable model for the distribution of the USD time. The
model has a R2 = 0.647, hence the prediction capability may not be high enough and can be increased,
but then other and/or more independent variables are needed.

Considering the interpretation, the model gives insight in three ways: the influence of the variables on
the probability of having 0 USD time; what leveling options model the strongest effect given USD> 0
and how they influence the USD time given USD > 0.

For predicting the probability of having USD = 0 are AG type-2, FSMFlex-Disabled, both system
types and location-C2 significant. Interesting is that they all decrease the probability of having zero
USD time, except for location-C2.

AG type, FSMFlex and location appear to model the strongest effects in predicting USD time given
that USD> 0, whereas fieldE, AG and system type are left out. They all decrease the predicted USD
time, except for FSMFlex-Disabled.
When we calculate the residual sum of squares of USD and ˆUSD we get RSS= 3124.24. This is an
improvement of 998.64 compared to the LM and 887 to the GLM model.

5.5. Comparison & Conclusion
Regression can both be useful for prediction and interpretation, i.e. how the leveling options relate
among each other and which variables model the strongest effect. Three types of regression models are
applied in this chapter: the linear regression model, the generalized linear model and finally a mixed
distribution model.

The often used linear regression model is not the correct model for this data. We do not meet the
assumptions and as a consequence, the coefficients and p-values are not reliable. As an improvement,
the generalized linear model is applied where we assume that the USD times come from an exponential
family. However, this model does not meet the assumptions either and hence we can not interpret the
model. Finally, the mixed distribution model is applied. The data do meet the assumptions and no
undesired structures can be revealed from the residual plots. Therefore, this model is considered to be
the right model for the data. Hence, from this model the coefficients and p-values can be interpreted.
It follows that AG type, FSMFlex and location are the variables with the strongest effects on the
USD time given USD> 0. C2 and AG type-1 both leads to a decrease of USD time of 1.43 and 3.14,
respectively. FSMFlex-disabled increases the USD time of 0.623. The chance of having zero USD
time is decreased by AG type-2, FSMFlex-disabled, machine type-old, machine type-1970 where
AG type-2 has the highest effect of −3.78 and machine type-old the lowest effect of −2.02. The
location C2 increases the chance of having 0 USD time with an effect of 1.38.

However, the predictive capability of this model is not high enough. We see that 64.7% of the to-
tal variance is explained by the model. Moreover, we try to predict a continuous response with discrete
predictors which results only in a limited number of predicted values. These vertical lines can be seen
in the residuals plot of the mixed model.

In conclusion, now the right model is found, we need to improve the predictive power. From this
model we can see which variables are the most important ones and how they relate among each other.
However, to do predictions we need more and/or other variables where also continuous variables can be
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considered. In this way we expect that the predictive power can be increased.



6
Root cause analysis

The variables location and AG type appear to be relevant parameters for predicting USD time of
error B. However, a more surprisingly variable which appears in the zero adjusted model, is FSM Flex
package. This relationship was less expected and is therefore interesting for further research.

The linear models show dependency but do not imply causality. To investigate if there is a causa-
tion and what this causation looks like, more expertise should be known in the engineering point of
view of NXT machines. In the upcoming chapter a broad description is given about error B and FSM
flexibility package. Afterwards a hypothesis is formed about the physical relationship between the two.
Another hypothesis is added which is formed by expert knowledge. In the chapter thereafter insight
is given in the usage of FSM thresholds using data of available machine diagnostics logging (MDLs).
Finally, recommendations are done for further research.

6.1. Description error B
Error B is triggered when there are not enough valid points (250) for a global wafer wedge calculation
Global wafer wedge (GWW) is needed for coarse wafer alignment (COWA) and fine wafer alignment
(FIWA). These are needed to align the wafer and determine the horizontal position on the expose side.
GWW can be calculated using the center spot data from global level contour (GLC) or by a sub selection
of the wafer z-map (WZM) data, depending on the type of calculation of WZM. All the investigated
machines have the scan in scan out (SOSI) based WZMs. Meaning that the GWW is calculated by
the WZM data. However, when SOSI fails a fallback is done to GLC. As a consequence, the GWW is
calculated by GLC data.

The investigation to error B shows that often SOSI fails before B occurs. Consequently, a fallback
to GLC is done and GWW is calculated using GLC data by a plane fit (without AGILE correction)

Hence, GWW fails because GLC fails and as a consequence GLC has too less valid points. In the
next chapter the functionality of GLC is explained and reasons why GLC could fail.

6.1.1. Functionality of GLC
GLC is the method of measuring the height Z and rotation Ry across the contour of the wafer using
the level sensor (LS). This is done to determine the scan-in set points for the wafer map strokes mea-
surements.

Before the GLC starts, the level sensor needs to know in which height it should start measuring.
This done by using a capture. The capture determines the Z set point for GLC and set Ry to 0 by
using the capture spot of the level sensor. Then the GLC starts and goes counter clockwise. Not the
outermost contour is measured, but the focus edge clearance (FEC). This is the contour of the wafer
slightly inwards. The measurement is done by the level sensor which consists of 35 rectangles, where the
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Figure 6.1: GLC data (blue) to calculate the plane fit (red)

central location of each rectangle is called level sensor spot (LS spots). The center of the level sensor
spots follows the FEC. The data of the LS spots which fall within the FEC are collected.

Figure 6.2: GLC measurement

Figure 6.3: The WZM strokes



6.1. Description error B 54

The main purpose of these Z and Ry values around the FEC is to determine the scan in set points for
the WZM strokes. Side purposes are global wafer wedge (GWW) consisting of coarse wafer alignment
(COWA) focus set points, fine wafer alignment (FIWA) focus set points and exposure fallbacks. An-
other side functionality is estimating the wafer height extremes.
In this chapter the focus is on the functionality of GWW calculation.

6.1.2. When GLC is triggered
GLC can be triggered by the PDxC sequence which is a sequence when PDGC or PDOC (AG) are
executed in order to calibrate the LS on specific wafers. GLC can also be triggered by SOSI fallbacks.
Moreover, GLC is performed during the approval sequence. As a previous investigation shows, error B
mostly occurs after a SOSI-failing and occassionaly on the subsequent approval sequence. Therefore,
the focus is on these last two instances.

• By a SOSI (systematic or event driven) fallback. That is, first SOSI is tried but when this fails
GLC need to be done. This happens when there are large set point errors caused by unflat or
contaminated wafers. This fallback leads to to a so called robust sequence or robust fallback
sequence. The triggering of GLC using SOSI can be done by two ways:

1. Systematic fallback to GLC: when the GLC output can not be derived from the WZM or
when there is a high chance that skipping GLC not works.

2. Event driven fallback to GLC: WZM without GLC is not measured correctly because of a
technical error.

• During the approval sequence in which the wafers are approved for immersion and exposures.
Only Chuck Temperature Conditioning (CTC) wafers and rejected wafers undergo this sequence.
The minimum and maximum height at the wafer edge is calculated to determine if there is a risk
for mechanical contact with immersion hood. These heights are determined by GLC.

6.1.3. Failing of GLC
GWW fails when no GLC data are available, so when the x, y, z coordinates are not available. Typically
this is caused by contamination. High spots will let GLC fail (> 2µm). An example is shown in figure
6.4. GLC starts at the capture and goes counter clockwise. Contamination was present at x ≈ 25 and
y ≈ −140 .After this contamination GLC loses track (dark blue) causing the absence of data.

Figure 6.4: Example of performing GLC on wafer with contamination
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6.2. Description FSM flexibility package
FSM flexibility package belongs to the sub function of contamination and control.
Contamination on a wafer results in focus and overlay errors. Therefore, contamination is undesired.

Figure 6.5: Contamination causes focus and overlay errors

To detect contamination, focus spot monitoring (FSM) is done. FSM is done on the measure side, using
the WZM data. From these data high spots can be detected if present. These high spots indicate to
contamination. When the detected height of the contamination spot, z ≥ threshold t, the contamination

Figure 6.6: Example of a FSM residual map with a contamination spot

is detected. This is called a focus spot. The spot detection threshold is advised to be 40 nm. Thresholds
can also be set up based on the standard deviation of the topography, this is called a relative threshold.
When this detected focus spot is present on a consecutive series of wafers on the same chuck, it will be
called chuck contamination or chuck spot.

When a chuck spot or focus spot is detected, exception handling is performed. That is, the wafer
is rejected or accepted depending on the thresholds of the customers. When a number of focus spots
detected > threshold, the wafer is labeled as rejected. When a number of chuck spots detected >
threshold, the chuck is going to be cleaned and the lot is stopped or continued. FSM is improved by
the commercial option FSM flexibility package. The main functionalities are:

• Allowing different detection thresholds for different radial zones (RTZ): four different thresholds
are allowed for five different zones. For each radius a specific threshold is defined. For example,
the following wafer has 3 radial zones:

· Ignore the outer 5 mm
· Less tight FSM spot detection threshold, e.g. 135-145 mm

Using this, the false alerts can be ignored: detecting contamination while there is not. These
radial zones are driven by edge roll off which causes false alerts on the edge.
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Figure 6.7: FSM residual map with (false) spots on the edge and a wafer with radial zones

• Set wafer map exclusion areas (REA): exclude specific areas for contamination detection. For
example, exclude the area that contains laser marks.

Figure 6.8: FSM residual map with a (false) spot and wafer with an excluded rectangular area

Both functionalities support flexibility in minimizing false alerts.

6.3. Possible relationships
The cause of error B and FSM flexibility package (flex pack) have a subject in common: contamina-
tion. Error B arises due to contamination on the edge. FSM and flex pack have the ability detecting
contamination and minimizing false alerts. Therefore, a causality relationship is conceivable. Both a
direct causality and a latent causality theory is formed. Both theories are stated in the next sections
for which assumptions are made. A suggestion is done in how these assumptions could be investigated.

These sections are left out for confidential reasons.



7
Summary and conclusions

Investigation is done to the leveling-performance by analyzing errors. Errors can cause delay or un-
scheduled down time (USD time) which result in throughput loss. Therefore errors are not desired.
Based on the total USD time in the considered time frame, we can answer sub question one: the most
relevant leveling-errors are A, B, C and D. To answer sub question two: A and C show similar behavior
and B and D as well. The first pair of errors does not occur very often compared to the other two (403
times and 109 times, respectively); however when they occur, the USD times can be high (mean is 1.08
h and 1.95 h, respectively). The second pair shows the opposite behavior: the mean USD time is lower
(0.31 h and 0.06 h) but their frequency is higher (1354 and 1991 times). As a consequence, both types
of errors should be handled differently in order to reduce the total USD time. The total USD time of
errors A and C can be reduced by improving the mean time to repair. For B and D it can be reduced
by decreasing the frequency.

Customer related variables are considered as possible causes of USD times. For example, location,
system type and options customers can choose from can be of influence. These variables are clustered
such that variables are removed that do not add extra information in the discrepancy of the usage.
The remaining variables are used to model the USD time, where the study focuses on error B. To
answer sub question three, we found significant differences in USD times between pairs of options of
some variables. Leveling field extensions algorithm using the field averaged values, hav-
ing air gauge present and having FSMFlex enabled have a lower USD time than their opposite level.
Moreover, NXT1970 compared to NXT1950, NXT1960 and NXT1980Di and air guage type 2 compared
to air gauge type 1 have a higher USD time. These last two significant differences can be explained
by the introduction of the new level sensor using UV-light. Also within location significant differences
are found. After testing the variables separately, it is of interest how they behave jointly. This is done
by using the zero adjusted exponential model that is considered as the correct model to this data. To
answer sub question four, location and air gauge type combined are the most important contribu-
tors in predicting USD times. A relevant supplement to these two is the FSMFlex package. Assuming
USD time > 0, air gauge type 1 leads to an increase of 0.04 USD time; FSMFlex disabled leads to
an increase of 1.06 USD time; and a specific location leads to an increase of 0.24 USD time. System
type is a less important contributor. Moreover, leveling field extensions algorithm and having
air gauge, model the even smaller details and may be the least important supplement to location
and air gauge type to predict USD time.

An interesting result came out of the regression analysis. Theories are formed and recommendations
are done to investigate these theories on which ASML is working further on such that question five is
answered.
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8
Discussion

The main research question for this study is how to predict and decrease the USD times for the NXT
machines such that the leveling-performance is increased at the customer. First suggestions are done
in order to improve the study where different facets of the drawn conclusions are discussed. Afterwards
different topics for future research are suggested.

8.1. Model improvements
Most important errors

All the logged USD times of the errors are considered, however a distinguishing can be made be-
tween the USD times which occurred during production and USD times which occurred not during
production, e.g. during testing, rebooting, installing etc. This will lead to a more direct measure for
performance.
Further, research can be done to the joint model of the USD times of the other errors; A, D and C and
eventually all errors combined. The most important variables for each error can be compared together
with their estimated coefficients. In this way it is discovered if some specific variables may be more
important for one error compared to the other error. This comparison is also important for determining
the total effect of one variable. For example, FSM flex disabled may increase the predicted USD time
for error B, but may decrease the USD time of an other error.

Predictive model

One variable of each cluster is now used as input variable for testing on the USD time. However,
the formed clusters and corresponding representatives can also be chosen differently. For example, by
defining more clusters or by representing the cluster by another variable. However, the most important
variables which model the USD time are variables which are not clustered. Therefore, it is expected
that changing those clusters will not have a relevant impact on the prediction of USD time.
What may lead to an improvement for prediction is incorporating other variables then the ones con-
sidered now, in particular adding interval scaled variables, not necessarily customer-related. The zero
adjusted model seems to be promising as a correct fit to the data and is an initial step in the direc-
tion of determining the crucial combination of variables, however the prediction capability is not high
enough yet. For example, the ‘age’ of the latest upgrade to a new system type can be incorporated into
the model. The advantage of continuous data is that it can take multiple forms compared to dummy
variables.
The zero adjusted model has so far been applied on one data set. Variables can be found which have a
decrease in USD time. To be more certain about the conclusion of the joint model, the mixed model
should be applied on a new data set. Where possibly another continuous distribution function is chosen.
Applying a mixed model on other data sets gives a more robust conclusion about which variables may
be the most important ones in decreasing the USD time.
Further, another model could be thought of to try to predict the USD time, such as classification meth-
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ods on the machines. That is, try to identify different styles of usage of machines. Investigate how
the USD times look like for each style and what the differences are between the styles and USD times.
A new observation could be classified to one of the styles such that the USD time can be predicted.
However, more machines are needed to apply this model.

8.2. Future research
Besides the suggestions for improving the current model, recommendations related to the leveling de-
partment are done for a follow-up research.

• Investigate the root cause analysis of FSM flexibility package more into detail by answering the
open questions in section 6.5.

• A more general proposal would be improving the storage of configurations, i.e. CM-options.

• A software related follow-up project would be making an automated tool where the input are
data of (an) error(s) and explanatory variables. The output shows the ordering and behavior
of those errors, such as frequency, mean, most frequent location etc. This can be expanded by
fitting a zero adjusted model (possibly gamma, exponential or inverse Gaussian, dependent on
the distribution of the USD time of the input error). Such an automated tool can also be useful
for other departments within ASML.
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A
Data set of leveling-errors

A.1. Confidential
This appendix is confidential

A.2. Confidential
This appendix is confidential

A.3. Confidential
This appendix is confidential

A.4. Maximum likelihood estimation of binomial distribution

ll(p;n, xi, ..., xn) = log
(

n∏
i=1

f(xi; p)
)

assuming independence

=
n∑
i=1

log
((

n

xi

)
pxi(1− p)n−xi

)

=
n∑
i=1

log
((

n

xi

))
+ xi log(p) + (n− xi) log((1− p))

δll

δp
=

n∑
i=1

xi
p

+ n− xi
1− p = 0

⇔ p =
n∑
i=1

xi
n

Assuming that the second derivative < 0.
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A.5. Probability density estimates of USD times on daily data

Figure A.1: Estimated probability density function of the USD times of the four most important errors. From left to
right and top left to bottom right: A, B, D, C.

Note, the limits of the x-axes between the four errors differ.



B
Data set of leveling-configurations

B.1. Confidential
This appendix is confidential

B.2. Confidential
This appendix is confidential

B.3. Merged levels

System type

NXT2:1950BI NXT1950NXT2:1950i
AT:NXT1960Bi

NXT1960

NXT2:1960BI
NXT2:1960Bi
NXT2:1960i
NXT:1960BI
NXT:1960Bi
NXT3:1965CI

NXT1965NXT3:1965Ci
NXT:1965CI
NXT:1965Ci
NXT3:1970CI

NXT1970NXT3:1970Ci
NXT3:1970i
NXT:1970Ci
NXT3:1980CI NXT1980Ci
NXT3:1980DI NXT1980Di
NXT2 NXT2

Table B.1: The original levels and merged levels for the feature system type

Note, a confidential table is left out.
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Leveling Setpoint Smoothing

Use LS spot fading on edge dies Use LS spot fading on
edge dies

Do not use LS spot fading on edge dies Do not use LS spot fading on
Do not use LS spot fading on dies(Overrules edge dies
use LS spot fading on edge dies)

Table B.2: The originally and merged levels for feature Leveling Setpoint Smoothing

Type of Air Gauge

TYPE_1: Initial version TYPE_1: Initial air gauge (-25.5mm)TYPE_1: Initial air gauge (-25.5mm)
TYPE_2: Shifted air gauge (-45.5mm) TYPE_2: Shifted air gauge (-45.5mm)
No Air Gauge device present No Air Gauge device present

Table B.3: The originally and merged levels for feature type of Air Gauge

B.4. Features with their corresponding levels
Feature Levels Abbreviation

System type NXT1950, NXT1960, NXT1965, NXT1970, NXT1980Ci, Does not applyNXT1980Di, NXT2
Location See table ?? Does not apply

Field with optimised leveling Disabled FieldW-Dis
Enabled FieldW-En

Leveling field extensions algorithm Confidential FieldE-Local
Confidential FieldE-Avg

Leveling setpoint smoothing Confidential Smooth-NotUse
Confidential Smooth-Use

Leveling on single LS spots Do not use single spot leveling Single-NotUse
Use single spot leveling Single-Use

Leveling with LS spot weight update algorithm Selection of LS Spot Weight Update algorithm is allowed Spot-Use
Selection of LS Spot Weight Update algorithm is not allowed Spot-NotUse

Air Gauge Absent AG-Absent
Present AG-Present

Air Gauge improved leveling
Agile1 Agile-1
Agile2 Agile-2
S-Agile S-Agile
Absent Agile-No

Type of Air Gauge
Type_1: Initial air gauge (-25.5mm) AGT-1
Type_2: Shifted air gauge (-45.5mm) AGT-2
No air gauge device present AGT-No

FSM Flexibility package Disabled FSMFlex-Dis
Enabled FSMFlex-En

Improved FSM algorithm Disabled iFSM-Dis
Part of FIP-1 commercial package Enabled iFSM-En

Table B.4: Features with the corresponding levels and their abbreviations
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B.5. Correlation matrix of the features
FieldE-Avg Smooth-NotUse Single-NotUse Spot-NotUse FieldE-Local Smooth-Use Single-Use Spot-Use

FieldE-Avg 1.00 0.90 0.99 0.91 -1.00 -0.90 -0.99 -0.91
Smooth-NotUse 1.00 0.91 0.89 -0.90 -1.00 -0.91 -0.89
Single-NotUse 1.00 0.92 -0.99 -0.91 -1.00 -0.92
Spot-NotUse 1.00 -0.91 -0.89 -0.92 -1.00

FieldE-Local 1.00 0.90 0.99 0.91
Smooth-Use 1.00 0.91 0.89
Single-Use 1.00 0.92
Spot-Use 1.00

Table B.5: Correlations between first two clusters

AGPresent AGILE2 AGAbsent AGILE-No

AGPresent 1.00 0.99 -1.00 -0.90
AGILE2 1.00 -0.99 -0.90

AGAbsent 1.00 0.90
AGILE-No 1.00

Table B.6: Correlations between third and fourth cluster

FieldW-En iFSM-En FieldW-Dis iFSM-Dis

FieldW-En 1.00 0.86 -1.00 -0.86
iFSM-En 1.00 -0.86 -1.00

FieldW-Dis 1.00 0.86
iFSM-Dis 1.00

Table B.7: Correlations between fifth and sixth cluster

AGPresent AGILE2 AGAbsent AGILE-No FieldW-En iFSM-En FieldW-Dis iFSM-Dis
FieldE-Avg -0.08 -0.09 0.08 0.00 -0.13 -0.16 0.13 0.16
Smooth-NotUse -0.01 0.00 0.01 0.03 -0.10 -0.13 0.10 0.13
Single-NotUse -0.09 -0.09 0.09 0.00 -0.14 -0.16 0.14 0.16
Spot-NotUse -0.02 -0.01 0.02 0.04 -0.15 -0.17 0.15 0.17
FieldE-Local 0.08 0.09 -0.08 0.00 0.13 0.16 -0.13 -0.16
Smooth-Use 0.01 0.00 -0.01 -0.03 0.10 0.13 -0.10 -0.13
Single-Use 0.09 0.09 -0.09 0.00 0.14 0.16 -0.14 -0.16
Spot-Use 0.02 0.01 -0.02 -0.04 0.15 0.17 -0.15 -0.17

Table B.8: Correlation matrix of first two clusters with variables outside these clusters

FSMFlex-Dis FSMFlex-En AGT1 AGT2 AGTNo AGILE1 S-AGILE
FieldE-Avg 0.32 -0.32 0.03 -0.10 0.17 0.05 0.19
Smooth-NotUse 0.24 -0.24 -0.10 0.02 0.18 -0.07 -0.05
Single-NotUse 0.32 -0.32 0.04 -0.11 0.17 0.05 0.19
Spot-NotUse 0.26 -0.26 -0.05 -0.02 0.18 -0.07 -0.06
FieldE-Local -0.32 0.32 -0.03 0.10 -0.17 -0.05 -0.19
Smooth-Use -0.24 0.24 0.10 -0.02 -0.18 0.07 0.05
Single-Use -0.32 0.32 -0.04 0.11 -0.17 -0.05 -0.19
Spot-Use -0.26 0.26 0.05 0.02 -0.18 0.07 0.06

Table B.9: Continue of correlation matrix of first two clusters with variables outside these clusters

FieldW-En iFSM-En FieldW-Dis iFSM-Dis Flex-Dis Flex-En AGT1 AGT2 AGTNo AGILE1 S-AGILE
AGPresent -0.05 0.01 0.05 -0.01 -0.47 0.47 0.17 -0.08 -0.21 0.06 -0.24
AGILE2 -0.05 0.01 0.05 -0.01 -0.48 0.48 0.16 -0.07 -0.20 -0.07 -0.24
AGAbsent 0.05 -0.01 -0.05 0.01 0.47 -0.47 -0.17 0.08 0.21 -0.06 0.24
AGILE-No 0.03 -0.03 -0.03 0.03 0.38 -0.38 -0.33 0.22 0.23 -0.06 -0.20
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Table B.10: Correlations of third and fourth cluster with variables outside these clusters

FSMFlex-Dis FSMFlex-En AGT1 AGT2 AGTNo AGILE1 S-AGILE
FieldW-En 0.07 -0.07 -0.19 0.22 -0.11 0.01 0.04
iFSM-En 0.11 -0.11 -0.13 0.16 -0.09 0.01 0.04
FieldW-Dis -0.07 0.07 0.19 -0.22 0.11 -0.01 -0.04
iFSM-Dis -0.11 0.11 0.13 -0.16 0.09 -0.01 -0.04

Table B.11: Correlations of fifth and sixth clusters with variables outside these clusters



C
Rank based tests

C.1. Simulated null-distributions of the USD times for Wilcoxon
rank sum test

Figure C.1: The null distribution of Rx of each of the features: from top left to bottom right: fieldE, AG, FSMFlex,
iFSM

Note, the observed Rx for AG is so small it is not even present in the null distribution. A possible
explanation is that for simulating the null distribution not all possible combinations are simulated but
only a limited amount of permutations. Further, the null distribution of iFSM is lumpy. This can be
explained by the highly unequal sample sizes: m consists of 233 observations and n of 8 observations.
So when applying permutation, not much different combinations are possible anymore.
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D
AIC value of least squares method

In the linear regression model the dependent variable y is assumed to be normal with mean xiβ and
variance σ2. We get the following likelihood and loglikelihood, assuming the yi’s are independent:

l(β, σ2, y,X) =
n∏
i=1

f(yi;β, σ)

=
n∏
i=1

(
2πσ2)−1/2 exp

(
−1

2
(yi − xiβ)2

σ2

)

=
(
2πσ2)−n/2 exp

(
− 1

2σ2

n∑
i=1

(yi − xiβ)2

)

ll(β, σ2; y) = −n2 ln(2π)− n

2 ln(σ2)− 1
2σ2

n∑
i=1

(yi − xiβ)2

Then maximizing the likelihood for σ2, we get

σ2 = 1
n

n∑
i=1

(yi − xiβ)2

Then the maximized likelihood is given by

l̂l(β, σ2; y) = −n2 ln
(
RSS

n

)
− 1

2RSSn
RSS

= −n2 ln
(
RSS

n

)
+ C
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E
Correlation matrix of the dummy variables

FieldE-Avg AG-Abs AGT-1 AGT-2 Flex-Dis MType-Old MType-1970 Loc-C1 Loc-C2 Loc-C3
FieldE-Avg 1.000 0.080 0.035 -0.100 0.315 0.321 -0.206 0.269 0.182 -0.325
AG-Abs 1.000 -0.170 0.082 0.469 -0.161 0.199 -0.339 0.498 -0.507
AGT-1 1.000 -0.917 -0.147 0.639 -0.554 -0.265 0.059 0.463
AGT-2 1.000 0.107 -0.697 0.604 0.288 -0.069 -0.407
Flex-Dis 1.000 -0.023 0.082 0.314 0.481 -0.594
MType-Old 1.000 -0.867 0.015 0.025 0.199
MType-1970 1.000 -0.006 0.003 -0.289
Loc-C1 1.000 -0.244 -0.215
Loc-C2 1.000 -0.319
Loc-C3 1.000

Table E.1: Correlation matrix of the dummy variables

FieldE-Avg AG-Abs AGT-1 AGT-2 Flex-Dis Mtype-Old Mtype-1970 Loc-C1 Loc-C2 Loc-C3
FieldE-Avg 1.000 0.219 0.594 0.122 0.000 0.000 0.001 0.000 0.005 0.000
AG-Abs 1.000 0.008 0.206 0.000 0.012 0.002 0.000 0.000 0.000
AGT-1 1.000 0.000 0.023 0.000 0.000 0.000 0.361 0.000
AGT-2 1.000 0.098 0.000 0.000 0.000 0.283 0.000
Flex-Dis 1.000 0.720 0.205 0.000 0.000 0.000
Mtype-Old 1.000 0.000 0.812 0.698 0.002
Mtype-1970 1.000 0.926 0.958 0.000
Loc-C1 1.000 0.000 0.001
Loc-C2 1.000 0.000
Loc-C3 1.000

Table E.2: P-values corresponding to the correlation matrix
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F
Generalized Linear Model

F.1. Gamma and Inverse Gaussian distribution fit through USD
with a small constant

Figure F.1: A fitted Gamma and Inverse Gaussian are plotted through the distribution of USD+ε with ε small

A small constant to USD is added to ensure values > 0. Further, the binwidth of the histogram are
chosen by the Freedman-Diaconis decision rule.
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F.2. Obtaining maximum likelihood estimates for GLM

δll

δβj
=

n∑
i=1

δll

δθi

δθi
δβj

= 0

=
n∑
i=1

(yi − b′(θi)) a(φi)− (yiθi − b(θi)) · 0
a(φi)2

δθi
δβj

= 0

=
n∑
i=1

yi − b′(θi)
a(φi)

δθi
δβj

= 0

=
n∑
i=1

yi − b′(θi)
a(φi)

δθi
δηi

δηi
δβj

= 0

=
n∑
i=1

yi − b′(θi)
a(φi)

δθi
δηi

xij = 0

=
n∑
i=1

yi − µi
a(φi)

δθi
δηi

xij = 0

=
n∑
i=1

yi − µi
a(φi)

(
δηi
δθi

)−1
xij = 0

=
n∑
i=1

yi − µi
a(φi)

(
δηi
δµi

δµi
δθi

)−1
xij = 0

=
n∑
i=1

yi − µi
a(φi)

(g′(µi)b′′(θi))−1
xij = 0

=
n∑
i=1

(yi − µi) (g′(µi)Var(µi))−1
xij = 0

Where it is used that b′(θi) = µi = E(Yi) and b′′(θi) = V ar(µi) (McNullagh & Nelder, 1989).
The last equation can be written in matrix form by (De Jong & Heller, 2008, ch.5, p.68 ), :

XTD(y − µ) = 0

Where D is a diagonal matrix with the entries (g′(µi)Var(µi))−1. Now splitting the matrix D into two
matrices W,G where W has entries

(
g′(µi)2Var(µi)

)−1 and G has entries g′(µi) then D = WG and
hence XTWG(y− µ) = 0. Linking this equation to a Taylor approximation and using Xβ = µ leads to
the equation

β̂ =
(

XTWX
)−1

XTWy

where the diagonal entries of W are 1/Var(µi) and β̂ is the weighted least squares estimator (De Jong
& Heller, 2008, ch.5, p.68). The result is difficult to solve directly. Therefore the iterative weighted least
squares method is used (Dobson & Barnett, 2008, ch. 4, p. 66). This can be written as:

β̂(m+1) =
(

XTW (m)X
)−1

XTW (m)y

In here µ replaced by µ(m) which is estimated by g(µ(m)) = Xβ(m) where an initial approximation of
β(0) is needed. Then the variance can be calculated where g(θi) is needed in order to define b′′(θi)) so
that β(m+1) can be determined.
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F.3. Parameters of IG for the exponential family density func-
tion

Exponential family is given by:

f(y; θ, φ) = exp

{
yθ − b(θ)
a(φ) + c(y, φ)

}
Now the Inverse Gaussian can be transformed to the exponential family density function by:

f(y;µ, λ) =
√

λ

2πλ3 exp
(
−λ(y − µ)2

2µ2y

)
for µ, λ > 0 and 0 < y <∞

= exp
(
−λ(y − µ)2

2µ2y
+ ln

(
λ

2πy3

)1/2
)

= exp
(
−λ(y − µ)2

2µ2y
+ 1

2 ln
(

λ

2πy3

))

= exp

−λ(y − µ)2

2µ2y
+ 1

2
[
ln(λ)− ln(2πy3)

]
︸ ︷︷ ︸

S


= exp

(
−λ(y2 − 2µy + µ2)

2µ2y
+ S

)
= exp

(
−λy2 + 2µyλ− λµ2

2µ2y
+ S

)
= exp

(
−λy2

2µ2y
+ 2µyλ

2µ2y
− λµ2

2µ2y
+ S

)
= exp

(
λ

[(
y
−1
2µ2

)
+ 1
µ

]
− λ

2y + S

)
= exp

(
y −1

2µ2 + 1
µ

1/λ − λ

2y + S

)
, where the square brackes are multiplied by 1/λ

1/λ

Then

θ = −1
2µ2 , b(θ) = −1

µ
= −
√
−2θ, φ = 1

λ

and

c(y, φ) = −λ2y + S

= −λ2y + 1
2 ln(λ)− 1

2 log(2π)− 3
2 ln(y)

= −1
2yφ −

1
2 ln(2π/φ)− 3

2 ln(y)



G
Zero adjusted exponential model

G.1. Maximum likelihood estimation of f(y|(1− p0))
Let yi > 0 for i = 1, ..., n and yi ∼ Exp(λ). Then the likelihood and log-likelihood are given by:

l(λ; y1, ..., yn, p0) =
n∏
i=1

f(yi;λ, p0) , assuming yi are independent

=
n∏
i=1

(1− p0)λe−λyi

= (1− p0)nλne−λ
∑

yi

ll(λ; y1, ..., yn, p0) = n log(1− p0) + n log(λ)− λ
∑

yi

Differentiating to λ and set equal to zero gives:

δll

δλ
= n

λ
−
∑

yi = 0

⇔ λ̂ = n∑
yi

To ensure it is the maximum the second derivative should be < 0.

δll2

δ2λ
= −nλ−2

which is < 0 since n, λ > 0.
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