
Economic
Greenhouse
Decision
Support
Embedding a Long Short-Term
Memory Network in a Constraint
Programming Decision Support
System

Dirk van Bokkem

Te
ch

ni
sc

he
Un

iv
er
si
te
it
De

lft

Economic
Greenhouse
Decision
Support

Embedding a Long Short-Term Memory
Network in a Constraint Programming

Decision Support System
by

Dirk van Bokkem
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Tuesday May 17, 2022 at 13:45.

Student number: 4454057
Project duration: September 1, 2021 – May 17, 2022
Thesis committee: Dr. N. Yorke-Smith, TU Delft, supervisor

Dr. S. Dumančić, TU Delft, daily supervisor
Dr. G. Iosifidis, TU Delft
M.D. van den Hemel, MSc. Delphy B.V.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

The increasing global food demand, accompanied by the decreasing number of expert growers, brings the
need for more sustainable and efficient solutions in horticulture. Consultancy company Delphy aims to face
this challenge by taking a more data-driven approach, by means of autonomous growing inside the green-
house. The controlled environment of greenhouses enable data collection and precise control. Delphy’s
current solutions focus on the needs of the crop, but a grower also needs to consider the economic aspect
of taking certain decisions on the greenhouse climate. A potential method for solving this complex problem
is Constraint Programming (CP). In this work, the applicability of CP for the greenhouse economic optimal
control problem will be studied. The contributions of this work are threefold; First, the greenhouse climate
is modelled with Long Short-Term Memory (LSTM) and Temporal Convolutional Network (TCN) machine
learning models. Secondly, an LSTM model is embedded into a CP model. Lastly, the profit of the grower is
optimised through this CP decision support system (DSS). The performed experiments show that both types
of time-based machine learning models can model greenhouse temperature and humidity deficit with rea-
sonable accuracy, while light and CO2 are harder to predict. The correctness of the LSTM-in-CP embedding
is validated. The implemented DSS is not yet practically applicable, as the search space is too large to come
to reasonable results for realistic instances. For small instances however, the DSS is able to improve the deci-
sions of the grower, demonstrating the potential of using CP for economic greenhouse decision making.

iii

Preface

The thesis that lies before you is the result of months of studying literature, learning about crops and green-
houses, unravelling complex models, and implementation efforts, and simultaneously forms the conclusion
of my time as a Computer Science student at TU Delft. This thesis would not have been possible without the
help of many people.

Firstly, I would like to thank my supervisor Dr. Neil Yorke-Smith for his overall guidance and helping me
set up a thesis project at Delphy, and my daily supervisor Dr. Sebastijan Dumančić, whose feedback and
directions helped me greatly and reassured me I was going the right way forward.

Furthermore, I want to thank everyone from team Delphy Digital for the discussions, introducing me
to the interesting world of horticulture, and making me feel welcome. A special thanks to my internship
supervisor Max van den Hemel, our weekly meetings were key to the successful completion of my thesis.

Lastly, I am very thankful to all my friends and family who have supported me throughout my studies.
Thank you Elisabeth Hengeveld, for helping me get through my stressful moments, I could not have finished
this thesis without you. Shanti Gajadin, thank you for always pushing me beyond my limits. Thanks to Naqib
Zarin for being my thesis sparring partner. And finally I am forever grateful to my parents, thank you for
supporting me in all my decisions.

Dirk van Bokkem
Delft, May 2022

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Delphy . 2
1.3 Problem statement . 2
1.4 Research questions . 3
1.5 Scope . 3
1.6 Contributions . 4
1.7 Outline . 4

2 Background & Related Work 5
2.1 Greenhouse climate. 5
2.2 Crop . 6
2.3 Mathematical models . 8
2.4 Machine learning models . 8

2.4.1 Neural Networks . 9
2.4.2 Long Short-Term Memory . 9
2.4.3 Temporal Convolutional Network . 11

2.5 Other approaches . 12
2.5.1 Genetic Algorithms . 13
2.5.2 Particle Swarm Optimisation and Model Predictive Control 13

2.6 Constraint Programming . 13
2.6.1 MiniZinc . 14
2.6.2 Empirical Model Learning . 14

3 Framework 17
3.1 Design choices . 17
3.2 Pipeline . 18
3.3 Data & Hardware . 19

4 Implementation 21
4.1 Time Series Neural Networks . 21

4.1.1 Time Series Data . 21
4.1.2 Multivariate multi-stage prediction . 22
4.1.3 LSTM and TCN. 22
4.1.4 Hyper-parameter tuning . 25
4.1.5 Concluding remarks . 25

4.2 Model Embedding in CP . 26
4.2.1 Functions & Predicates. 26
4.2.2 Greenhouse and Crop Model Embedding . 28
4.2.3 Key points LSTM-CP embedding. 30

4.3 Economic Greenhouse Decision Support . 32
4.3.1 MiniZinc model . 32
4.3.2 Economics . 35
4.3.3 Running the DSS . 38

5 Experiments 39
5.1 Time Series Neural Networks . 39

5.1.1 LSTM greenhouse climate predictions . 39
5.1.2 TCN greenhouse climate predictions . 40

vii

viii Contents

5.2 Model Embedding in CP . 42
5.2.1 LSTM-in-CP validation, 3 days . 42
5.2.2 LSTM-in-CP validation, 10 days . 42

5.3 Economic Greenhouse Decision Support . 44
5.3.1 Runtime . 44
5.3.2 Grower versus Decision Support System . 45
5.3.3 Economics . 47

6 Conclusion 49
6.1 Research Questions . 49
6.2 Limitations and Future Work . 50
6.3 Research Paper . 51

Bibliography 53

A Pipeline 57

B LSTM functions in MiniZinc 59

C LSTM and TCN predictions 61

D Research Paper 65

1
Introduction

With the rapidly increasing world population, effects of climate change, and decrease of expert grower knowl-
edge, sustainable solutions in agri- and horticulture are needed to continue meeting the global food demands
in the future. Data-driven greenhouses can play a big part in this solution, as the controlled environment al-
lows for higher productivity, prolonged cultivation periods, leading to better crop yields [1].

Consultancy company Delphy takes on this task by doing research in data-driven cultivation for food and
flowers. Delphy’s goal is to contribute in global health, food safety, sustainability, and the well-being of hu-
mans on earth, by providing knowledge and expertise to growers around the globe to optimise production1.
While human expert knowledge is still a big part of Delphy’s success, the decreasing number of experts and
growing food demand require an additional approach. Therefore Delphy is working on an autonomous cul-
tivation system.

Many user adjustable settings exist in modern day greenhouses, but there is little knowledge on the long-
term economic consequences of these short-term decisions [1]. Therefore the aim of this research is to un-
derstand what effect daily greenhouse actions have on the eventual yield and profit. The first step will be
creating a model that captures the greenhouse climate and crop growth, followed by the implementation of
a decision support system (DSS) that aids the grower in making economic decisions within the greenhouse.
The contributions of this study will thus be an economic decision making framework, modelling the green-
house and crop, and leveraging these models within the decision making process.

1.1. Motivation
Greenhouses are energy-intensive, but do provide a controlled environment for crops to grow closer to their
location of consumption [2]. Data-driven cultivation in greenhouses can help both in meeting the increasing
global food demands, as well as lowering the impact of said greenhouses on the climate.

While the potential benefits of data-driven cultivation seem obvious, this approach is not yet widely
adopted by growers, who rely largely on their own experience in the field. Many decisions made by the grower
are based on economic objectives, which is why an economic data-driven DSS could aid in the adoption of
such techniques. What is missing for growers, is an extension of their own experience; a tool that can help
them understand long-term economic effects of short-term decisions [3]. Especially in times of uncertainty
regarding energy and gas prices, growers are in need of economic decision support as experience alone might
not suffice in making the best decisions.

An underexposed but promising method in developing such systems in a horticultural setting is Con-
straint Programming (CP). Also, modelling the greenhouse and crop is predominantly done in mathematical
models, while the complexity of the greenhouse and crop provides a good playing field for machine learning
models, utilising sensor data. The interplay between such machine learning models and CP is interesting in
the complex greenhouse environment as well as outside the horticultural domain.

1https://delphy.nl/en/about-delphy/

1

2 1. Introduction

1.2. Delphy
This thesis was carried out through an internship at Delphy. Delphy is a consultancy company in the global
food and flower business, as is entailed in their slogan: "Worldwide Expertise in Food & Flowers". With a
total of over 250 employees, of which 180 in the Netherlands, Delphy works on knowledge development &
knowledge implementation globally.

Data-driven cultivation is more and more becoming a topic of interest for Delphy, as they see the number
of expert growers declining while the demand for food and flowers is increasing. Team Delphy Digital is
specifically working on this digitalisation. Step by step, Delphy Digital is working towards an autonomous
greenhouse system in which sensor data is used to aid in the decision making process. Their current system
can be divided into three parts:

1. Crop strategy
In the Quality Management System (QMS), the crop’s characteristics are modelled, and a cultivation
strategy is set up to reach a certain yield goal.

2. Cultivation profilers
The cultivation profilers will use the crop strategy and sensor data to create various daily targets in the
greenhouse, such as lighting, heating and CO2 in the Climate Profiler.

3. Operational controller
To reach the daily targets, the profiler outputs need to be converted to certain setpoints (e.g. opening
windows) in the climate computer. This is done by the Operational Controller.

Previous work on the autonomous cultivation system was done by another student, by adding the crop pro-
filer [4]. In this work, the aim was to reach an optimal climate by looking at the conversion of light to plant
growth. Currently, this model focuses on the needs of the plant. While this leads to good crop yields, the
ultimate goal for growers is not necessarily getting the largest possible yield, but making the most profit. As
mentioned in the recommendations of [4], what is missing is an economic model that incorporates costs and
benefits of greenhouse actions to get an optimal profit.

Part of the improvement of this work was done by another student [5], by improving the photosynthesis
model and incorporating the costs of greenhouse lighting into the model. There is still room for improvement,
as a more generic economic model including other climate variables could help in making a better economic
decision.

The objective for Delphy is thus to develop a generic, intelligent, and economic DSS, that supports grow-
ers in their daily decision making process. The costs and resources used in the greenhouse should be opti-
mally distributed to reach long-term cultivation targets, leading to a better profit.

1.3. Problem statement
Modern day greenhouses provide growers with an extensive but complicated set of tools to create a controlled
environment that is tailored to the crop’s needs. The developments in sensors and controls has improved
the efficiency in favor of the crop, resulting in better yield production. Although this improvement helps the
overall profitability of the grower, the focus is not on the economics but rather on the crop. While crop growth
seems an important goal for a grower, the real driving force to adopt certain strategies lies in the profitability.
Since each of the available controls that stimulates crop growth has a certain cost for its operation, an optimal
cultivation in the grower’s perspective would entail maximising the yield while minimising the costs.

The greenhouse environment is a complex, non-linear, multi-input-multi-output (MIMO) system. Mul-
tiple variables determine the inside climate, which in turn determines the state of the crop. The variables
that determine the inside climate can be roughly divided into three categories; the current state of the inside
climate, the outside climate, and the actions in the greenhouse such as opening the windows and injecting
CO2. An overview of the greenhouse and crop states, and their relations can be seen in Figure 1.1. The states
are not defined by these dynamic relations only, but also depend on some static properties of the greenhouse
and crop, such as the transmissivity of the greenhouse glass and the size of the greenhouse. However, the
necessity of these constant properties within a model or system depends on how the problem is modelled.

The main difficulty in modelling the greenhouse and crop and making decisions, lies in the varying time-
scales. Opening the windows can cause a shift in the inside temperature within the hour, while the full lifes-
pan of a tomato from flower to fruit ranges between one to two months [6]. To determine the best actions in
the greenhouse, one has to understand the impact of short-term decision on the long-term yield.

1.4. Research questions 3

Figure 1.1: Greenhouse and crop states, with their relations and economic effect.

Another challenge, is understanding the inter-dependencies between all these variables. Some decisions
affect multiple state variables. For example, opening the windows has an effect on the temperature, humidity,
and CO2. But there also exist cyclical dependencies. The inside climate changes the state of the crop, while
the crop in turn has an effect on the climate e.g. through transpiration [6].

The greenhouse and thus the decision making process are also influenced by the weather and its uncer-
tainty. In the near future, the weather can be forecasted with relative accuracy, but this becomes an issue
when trying to make predictions and decisions for the long-term.

As mentioned, CP is an interesting and useful method for solving such a complex problem, in which a
declarative model is created with imposed constraints on so-called decision variables, where state-of-the-
art solvers can find feasible solutions and additionally solve for optimality [7]. A sub-goal of this research is
studying the applicability of CP in an economic greenhouse DSS.

1.4. Research questions
Following the problem statement and the objective from Delphy, a research question can be formulated. Two
important aspects of this research question are the effect of short-term decisions on the long-term profit, and
studying the applicability of CP in economic greenhouse decision making. The main research question to be
answered in this research is:

How can short-term decisions on the climate in a greenhouse with certain costs be made such
that it leads to a better long-term profit, using Constraint Programming?

To be able to make decisions in the greenhouse, both short- and long-term effects of these decisions on the
greenhouse and crop need to be modelled. Understanding and modelling these effects will be the first stage
of this research. These models will be used in a CP approach, which entails the second stage of this research.
The following sub-questions help in guiding both stages and answering the main question:

1. How can short-term decisions and their long-term profit in a greenhouse be modelled?

2. How can this model be used in combination with Constraint Programming?

3. How does this Constraint Programming model aid growers in the economic decision making process?

1.5. Scope
In this project, the focus will be on tomato, mainly because this is one of the most studied crops and data
of tomato cultivations is available at Delphy. Still, the approach will be as general as possible to enable an
easy rollout to other crops in the future. While a crop’s health and production efficiency is reliant on multiple

4 1. Introduction

aspects such as irrigation, nutrients, use of pesticides, and labour like leaf pruning; only the climate will be
taken into account in this thesis, which consists of light, temperature, humidity, and CO2. The greenhouse
climate has a large impact on the crop and the energy needed to realise this climate is a major cost item [8].
An assumption on the magnitude of these costs of operating the greenhouse will be made, as well as tomato
prices that determine the revenue. Reasonable assumptions will be made, but the prediction of future energy
costs and tomato auction prices are out of the scope of this project. Lastly, the tomato yield is determined by
both the quality and quantity of the tomatoes. However, in this research only the quantity will be taken into
account.

1.6. Contributions
In this work, multiple components contributed to the realisation of the DSS. Firstly, I implemented two types
of time-based neural networks to predict the inside climate of the greenhouse; a Long-Short-Term Memory
(LSTM) and a Temporal Concolutional Network (TCN). Secondly, I embedded an LSTM in a CP model, by re-
ducing it to its mathematical form so that it can handle decision variables. Thirdly, I implemented a complete
CP model that incorporates a greenhouse and crop model and aims to maximise the grower’s profit. Finally,
as requested by Delphy, I built a framework including a clear separation of these three components to easily
alter and extend this DSS.

1.7. Outline
The structure of this thesis will be as follows. First, the greenhouse and crop, relevant models, and other
approaches will be explained in more detail in chapter 2, including related work. Next, an overview of the
developed framework of the DSS will be presented in chapter 3. Then the implementation details of the
framework will be laid out in chapter 4, starting with the implementation of the machine learning models
based on time series data, followed by the embedding of such a model into a CP model, and concluded by the
complete CP DSS. Experiments that demonstrate and validate the implemented models and DSS will be laid
out in chapter 5. In chapter 6, a conclusion with answers to the research questions will be given, along with
the limitations of this study with directions for future work.

2
Background & Related Work

Various approaches to the control of greenhouses for optimal crop growth have been applied, some of them
also focusing on the economic aspect. Many of these approaches rely on greenhouse and crop models. In
this section, a general background of greenhouses and plant physiology is given, including a review of rel-
evant literature related to both modelling the greenhouse and crop, as well as decision making support in
greenhouses.

2.1. Greenhouse climate
Greenhouses are closed systems that provide a way for growers to cultivate crops that would normally not
grow in a certain region or season [9]. The crops are protected from extreme weather conditions and their
production is optimised through various techniques, like artificial LED lighting and CO2 injection [10, 11].

Various types of greenhouses exist, but generally they consist of a sturdy framework covered with translu-
cent material, allowing light to pass through and heat to be retained inside. The Venlo-style greenhouse (see
Figure 2.1), the main type of greenhouse present in the Netherlands, has an aluminum or steel frame and
a glass cover, providing a high light transmission [9]. Windows regulate the ventilation inside and multiple
additional techniques provide these greenhouses with better control, such as heating pipes, artificial lighting,
and CO2 injection. Because the Venlo-style greenhouse is expensive, globally many growers use other types of
greenhouses, depending on the local environment. For example, both in China and Spain, plastic covers and
less sturdy frameworks suffice in environments without snowfall, reducing the costs of construction [9]. In
this research, the focus will be on the Venlo-style greenhouse, as the data available from Delphy is generated
in this type of greenhouse.

Looking more in-depth at the operation of greenhouses, we arrive at energy and mass balances [11]. These
balances model the current state of the greenhouse climate and are influenced by both outside weather and
actions inside the greenhouse. Generally, these balances consist of three elements; energy or mass coming
into, leaving, and generated inside the greenhouse [11]. Due to the complexity of greenhouses and the vast
amount of variables, often assumptions are made on the materials and volumes inside the greenhouse, such
as homogeneity of the cover material [11].

The environmental factors that influence these balances can be divided roughly into the following three
categories:

• Outside weather
Outside radiation, temperature, humidity, and CO2 levels can be utilised by the greenhouse, depending
on the need of the crop. Absolute humidity is considered here, as relative humidity becomes less useful
in the situation where you are dealing with both inside and outside humidity. Even at 100% relative hu-
midity outside, moisture inside the greenhouse can be reduced by ventilation because of temperature
differences [12]. Wind speed also plays an important role, as it influences the effectiveness of opening
the windows. Depending on the actions taken inside the greenhouse, the effects of the outside climate
can be either weakened or strengthened.

• Actions in the greenhouse
The most basic and cost-efficient actions in the greenhouse include ventilation through the opening

5

6 2. Background & Related Work

Figure 2.1: Venlo-style greenhouse at Delphy.

and closing of windows, and heat reduction through the use of a shading screen. More expensive ac-
tions that influence the inside climate are heating pipes and artificial lighting, providing respectively
more heat and radiation. Due to the positive effect of CO2 on crop production, in some greenhouses
CO2 can be injected. To regulate humidity, fogging systems can be installed.

• Inside climate
The inside climate relevant for crop production can be modelled by light, temperature, CO2, and hu-
midity. Wind speed within the greenhouse also influences this inside climate, but because of the closed
environment of the greenhouse, this effect will be neglected and homogeneity throughout the green-
house is assumed for each of these environmental factors. The inside climate can be seen as the current
state of the greenhouse. All four inside climate variables are explained below in more detail.

– Light is an important factor for crop growth, but crops do not use the full spectrum of radiation
wavelengths. The wavelength range that crops can use is called Photosynthetically Active Radia-
tion (PAR) and ranges from 400 to 700 nm. Since we are interested in the usable wavelengths, light
inside the greenhouse is often expressed as PAR-light in µmol/m2/s.

– Temperature is dependent on many greenhouse elements, such as sun radiation, artificial lighting,
the heating system, and ventilation. It is expressed in °C.

– Humidity is the amount of water vapour in the air and can be expressed in various ways. Firstly,
we have the absolute humidity (g/m3), which as the name implies is the absolute amount of water
vapour in the air. Air can only contain a certain amount of vapour, depending on the temperature.
The amount of water vapour in the air, compared to how much water vapour this air can contain
given the current temperature, is called relative humidity (%). Lastly, we have humidity deficit,
which perhaps is the most important in greenhouses because it indicates how much transpiration
can occur in the crop. Humidity deficit (g/m3) namely tells us how much water vapour the air can
still absorb.

– CO2 is a building block for crop production and thus is included in the inside climate variables as
well. It is measured in concentration within the air (ppm).

One additional environmental factor that is heavily interconnected with the greenhouse climate, is the crop
itself. Especially the amount of CO2 and air humidity in the greenhouse affect, but are also affected by the
crop [6]. Often the climate and crop model are separated, but in [6] it is argued that for an optimal control
of the greenhouse system these two should be combined. This indeed provides a more complete view on the
greenhouse system, but makes it even more complex. Therefore, automating the process of finding relations
between these subsystems is an interesting topic of study.

2.2. Crop
Although the focus is on the control of the greenhouse, the main topic of interest is the crop and its poten-
tial production. For the crop to function properly and deliver the fruits needed for a profitable greenhouse
system, it needs a favorable climate to stimulate crop growth and crop developement. Crop growth is the

2.2. Crop 7

Figure 2.2: Basic overview of important relations between the inside climate, actions in the greenhouse, and crop processes. Source:
[13], with the addition of the actuators "shading" and "artificial lighting".

overall increase in size of the crop and its biomass. Crop developement entails the formation and matura-
tion of plant organs, such as flowers and fruits. The most important processes studied in the literature that
together stimulate growth and development are photosynthesis and (evapo)transpiration (evaporation is the
general term for converting water to vapour including the water in the soil, transpiration is evaporation ex-
plicitly occurring from the plant’s leaves, evapotranspiration is the umbrella term for the two). In Figure 2.2,
an overview is given that relates these two short-term crop processes with the greenhouse actuators and cli-
mate factors, which eventually lead to a long-term crop response. From this figure we see the importance
of focusing on photosynthesis and evapotranspiration to get good crop production results in the long-term.
These two processes and a general understanding of the crop will be discussed in the following paragraphs.

On a high level, the crop tries to maintain three balances; energy, water, and assimilates (carbohydrates or
sugars used for growth and energy within the plant) [12]. The energy balance is influenced greatly by the sur-
rounding environment of the crop. For example through radiation or greenhouse temperature. Because the
crop tries to maintain the energy balance, it will release water to cool down if the greenhouse temperature is
higher than the crop temperature through transpiration [12]. At the same time, this affects the water balance,
which causes the crop roots to take up more water, also affecting the assimilates balance through uptake of
nutrients from the soil [12]. Lastly, the production and consumption of assimilates are contained within the
assimilates balance, which is an important aspect of crop development [12].

The main driver of crop development is the process of photosynthesis, in which the plant uses radiation
energy to develop dry matter in the form of plant organs. Many different photosynthesis models exist, each
excluding or including different variables. However, the overall narrative is the same; with energy obtained
through light interception, a chemical reaction occurs in the plant that converts water and carbon dioxide
(CO2) into assimilates and oxygen. The efficiency of the plant production is an interplay between photosyn-
thesis and transpiration.

Transpiration is the evaporation of water by a crop through its leaves, which affects the production of plant
organs [14]. Generally, the crop tries to balance the transpiration rate with the water uptake, to maintain the
water balance. This means that the transpiration rate will be restricted to match the available water [12].
To understand what happens in the crop, we need to zoom in on its leaves. Water enters the crop through
its roots and exits from the leaves through small openings called stomata [15]. These stomata regulate the
processes within the crop, by closing in stressful situations and opening when the conditions are right. Ef-
fectively, this regulates the activity of the plants. For example, when the humidity is low, these stomata will
close, so that water is contained within the crop. In doing so, the crop stops its own photosynthesis process,
because the nutrients intake stops and it cannot release oxygen [12]. A humidity too high is also not desired
as the amount of vapour that the air can absorb is smaller, thus lowering the transpiration rate.

We can see that the importance of maintaining a desirable climate is evident, but it is not the only way to
steer crop growth and development. A very important steering option for the grower is the pruning of leaves
and flowers. The grower can decide on the amount of stems, or plant organs like leaves and flowers can be
removed. Ultimately, these decisions regulate the amount of fruits that will be produced and their growth
time spans. While these so-called labour actions have a substantial effect on crop production, they are not in

8 2. Background & Related Work

the scope of this study.
To stimulate crop growth, we thus focus on the photosynthesis and (evapo)transpiration processes. At the

same time, for the plant to be able to maintain its balances, all the conditions must be just right. We cannot
stimulate photosynthesis indefinitely when it can lead to the plant not maintaining its balances causing it
to die. Generally speaking, it can be seen that during the day it is beneficial for a crop to have high light
levels in combination with CO2, accompanied by "good" ranges of temperature and humidity such that the
crop keeps its processes going. Determining these "good" ranges is a complex problem, and exactly how
the crop is affected by the combination of all these environmental factors remains difficult to model. Trying
to understand the crop and greenhouse is done both through mathematical models and machine learning
models, which will be laid out in the following sections.

2.3. Mathematical models
The models on which DSSs rely are at least as important as the algorithms themselves. And to decide on
short-term actions in a greenhouse that lead to long-term benefits for the crop, both a greenhouse and crop
model are needed. While in recent years the field is growing with machine learning models, many mathe-
matical models already exist. The large field of mathematical greenhouse and crop modelling seems to be
dominated, but not limited to the following models:

Bram Vanthoor — In [16], B. Vanthoor presents a greenhouse climate model, created to aid in designing
greenhouses for diverse climates around the world. The states of the temperature, vapour pressure, and CO2

concentration in the greenhouse are described by differential equations. Four different greenhouse designs in
different climate regions were used to validate the model. While the model is able to simulate the greenhouse
indoor climate with an overall root mean squared error (RMSE) lower than 10%, many parameters need to
be set in order for the model to work. Next to a greenhouse model, B. Vanthoor also created a tomato crop
growth model. Similarly, this model is sufficiently accurate, but is complex and needs many parameters.

Cecilia Stanghellini — C. Stanghellini mainly focuses on the impact of the greenhouse climate on the
transpiration of the crop [14]. The relation between greenhouse climate, crop temperature, and transpira-
tion are described in an energy balance. Again, complicated differential equations and many parameters are
used. Some interesting findings are that the transpiration of a crop is mainly influenced by the radiation,
temperature and humidity in the greenhouse. Also, an interesting point is made to take a different approach
in managing the greenhouse climate, namely by defining a ’transpiration set-point’ instead of managing the
temperature and humidity directly. An important application that follows is reducing the high costs of hu-
midity management in greenhouses.

TOMGRO — In [17], J. W. Jones et al. present a greenhouse and crop model designed specifically for toma-
toes. Again through mathematical equations, the relations between various elements of both the greenhouse
and crop are modelled. In TOMGRO, the development of each of the plant’s organs are modelled by these
relations. Although extensive and well-performing, the impracticability is demonstrated partly by the many
parameters used in the model that are specific to a certain tomato variety. This means that these parameters
need to be derived for every variety in order to use the model.

2.4. Machine learning models
Mathematical models of the greenhouse and crop can be quite complex and often need many parameters to
work, making their implementation impractical and difficult [18]. Machine learning models can potentially
cover the complex dynamics of the greenhouse and crop without many parameter settings or calibrations. An
adverse consequence of using machine learning models is that they work as a black box and do not provide
useful knowledge on what happens in the greenhouse, which is especially troublesome in the case of extreme
situations that occur outside of the domain on which such models were trained [19]. Also, a greenhouse
always needs a training cultivation before the model can be used, or give up some of its accuracy by using
a model trained on a different greenhouse. Taking the trade-off between complexity and understandability
into account, machine learning models can still prove to be a suitable solution for greenhouse modelling, as
they are becoming increasingly effective at prediction in complex situations. Because we want to discover
hidden relations between environmental factors and the crop, neural networks (NN) are considered. Since
the greenhouse environment is time dependent, NNs that can handle sequential data are especially interest-
ing. Two of these have already been applied in the context of greenhouses and are laid out below, preceded
by the general concept of NNs.

2.4. Machine learning models 9

2.4.1. Neural Networks
Based on the neurons and connections in a brain, machine learning NNs learn patterns by strengthening or
weakening connections between neurons. In an iterative manner, the connections are updated based on an
error function. Over the years, many types of NNs have emerged that are applicable in different domains,
but the most straightforward implementation of an NN is the so-called ’multilayer perceptron’. A schematic
overview of such an NN can be seen in Figure 2.3, where each circle represents a neuron.

Figure 2.3: Schematic overview of a multilayer perceptron neural net-
work, where each circle represents a neuron.

On a high level, multilayer perceptrons are
structured by an input layer, one or more hid-
den layers, and an output layer. The input layer
takes a vector of input values, such as the tem-
perature outside, the temperature of the heat-
ing system, and the amount of ventilation in the
greenhouse. These input values are forward-
propagated through one or more hidden layers.
Lastly, in the output layer, these propagated val-
ues result in some pre-defined output, such as
the temperature inside the greenhouse. In a su-
pervised learning approach, the ground truth
output value or values following the forward-
propagation of input values are known. Com-
paring the predicted value with the ground
truth value results in an error; how far off the
prediction is. Through back-propagation, this
error is used to update the network to obtain a
better mapping of input to output values.

More specifically, each neuron is repre-
sented by a linear combination of variables in its previous input layer with adjustable coefficients known
as weights and biases [20]. For a layer of size M and input layer of size D , the so-called activation of each
neuron a j is functionally defined as follows:

a j =
D∑

i=1
w j i xi +w j 0, (2.1)

where i ∈ 1..D , j ∈ 1...M , and the weights and biases are represented wi j and w j 0 respectively [20]. In the
training process, these weights and biases are updated by a gradient proportional to the error of the predic-
tion.

NNs can be used for two types of machine learning methods: classification and regression. In classifi-
cation, the NN should connect the input to a certain label, i.e. classifying the input. Regression deals with
predicting continuous values, which is precisely what we are trying to do when predicting the inside climate
and crop growth. The loss function generally used in regression is the mean squared error (MSE), which gives
us the average squared difference between the predicted- and actual values. Squaring the values results in
outliers having a big influence on the error value, which has a positive effect on the accuracy of our model
during training. However, the root mean squared error (RMSE) is preferred when assessing the models’ accu-
racy. Because the RMSE is the square root of the MSE, it is in the same unit as our target value, giving a more
interpretable error value.

The multilayer perceptron is the NN in its most basic form, but many adaptations and extensions on this
technique exist. In the case of sequential or time-based data, often recurrent or convolutional NNs are used.
Two of these time-based NNs are laid out below.

2.4.2. Long Short-Term Memory
A Long Short-Term Memory (LSTM) network is a recurrent NN (RNN), that finds its use mostly in language
modelling, but is generally effective in domains with sequential data [21]. Its introduction was made in 1997,
and its main purpose was solving the vanishing or exploding gradient problem, which will be explained below
[22].

An RNN is an NN that takes into account the inputs of previous timesteps for the prediction of the current
timestep, by adding a loop in the network. At each timestep, the input is forward-propagated through the

10 2. Background & Related Work

network, with additionally keeping an internal hidden state that is used in the next timestep. The benefit
of such an RNN over a classic NN, is that these networks have a memory of past states and can utilise this
information. For example in language processing, such an RNN can be used to predict the next word in a
sentence, by being able to memorise the previous words in that sentence.

While RNNs have successfully been applied in various domains, they suffer from short-term memory.
In an RNN, each timestep can be seen as a separate layer. Because the weights and biases are updated in
the back-propagation process by a gradient that depends on the error of the prediction and the gradient in
the previous layer, the effect of back-propagation of the error through multiple of these layers can cause the
gradients to explode or vanish. This results in the network ’forgetting’ about timesteps far back in the past.
The LSTM network was specifically designed to mitigate this issue, mainly by "enforcing constant error flow
through internal states of special units" [22].

Figure 2.4: Schematic overview of an LSTM cell, showing the calculations
for one timestep. From “Wikimedia Commons,” by G. Chevalier, 2018
(https://commons.wikimedia.org/wiki/File:LSTM_Cell.svg) [23], with the addi-
tion of indications for the gates ft , it , c ′t , and ot . Licensed under CC BY SA 4.0

These ’special units’ are so-called LSTM cells. A schematic overview of such an LSTM cell can be seen in
Figure 2.4. The propagation of values in the LSTM network goes through several gates (input, output, cell,
and forget gate) and updates the internal states (cell and hidden state) of the LSTM cell. The gates control
the flow of information from the input to the output, and provide a way for the cell to "forget" irrelevant
information. Static weight matrices W and U for the input and hidden state respectively, along with bias
vectors b are used in each of these gates, whose values represent the trained model. These weights and biases
remain the same for each timestep. This results in the following calculations in an LSTM cell for one timestep
t ;

it =σr (Wi ·X t +Ui ·ht−1 +bi) (2.2)

ft =σr (W f ·X t +U f ·ht−1 +b f) (2.3)

c ′t =σa(Wc ·X t +Uc ·ht−1 +bc) (2.4)

ot =σr (Wo ·X t +Uo ·ht−1 +bo) (2.5)

ct = ft ⊙ ct−1 + it ⊙ c ′t (2.6)

ht = ot ⊙σa(ct), (2.7)

with input gate i , forget gate f , output gate o, cell state c (candidate cell state c ′), and hidden state h. In
equations 2.2, 2.3, 2.4, and 2.5, matrix multiplications are performed. In equations 2.6 and 2.7, element-wise
multiplications are performed, denoted with ⊙. In the equations, two types of activation functions are used;
activation σa for the cell and hidden states and recurrent activation σr for the gates. Generally, in an LSTM
network the sigmoid function is used for σa and the tanh function for σr .

Again, during training the weights and biases are updated until they reach a reasonable prediction power.
The general operation of these RNNs is thus quite similar to that of classic NNs, but they differ in being able
to hold memory in their cell and hidden states.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

2.4. Machine learning models 11

Related Work
In [24], an LSTM is used to predict multiple greenhouse climate variables, such as temperature and relative
humidity including their minimum and maximum values. Some experiments of finding the best parameters
are discussed and the final predictions look promising. However, the figures suggest that there is some copy-
ing behaviour occurring. This tends to happen when the model relies too much on its previous value of the
target variable, rather than also including other variables such as actions in the greenhouse.

Three time-serial deep NN models are compared in [25]. Out of an ANN, NARX model, and LSTM model,
LSTM performed the best, with a standard error of the prediction (SEP) of temperature and CO2 within 5%.
However, the humidity prediction did not perform very well. An important but expected result of this re-
search is that the accuracy of the time-based algorithm decreases as more time steps ahead are predicted.
Nevertheless, it is shown that deep learning models can perform well in predicting the greenhouse climate.

Next to predicting the greenhouse climate, LSTM is also used for crop growth prediction. In [26], the Leaf
Area Index (LAI) of bell peppers is predicted using LSTM. The LAI indicates the size of the leaf surface and
in turn can be used to predict crop growth, but this is not explained in this paper. The model is trained on
simulated data, but also validated with LAI data measured of a real crop, showing a high accuracy.

A more direct yield prediction approach is applied in [27]. Here LSTM is compared to a Support Vector
Regression (SVR) implementation and an implementation of a Random Forest (RF). In all implementations,
a one-step-ahead prediction was done. However, it is not clear if the full sequence shown is a multi-stage
prediction (using the prediction of the current timestep to predict the next timestep), or if all predictions are
simply based on the previous timestep. Of course, long-term yield predictions are more relevant. Since the
environmental data is on an hourly basis and the yield data is gathered weekly, there is a mismatch which is
dealt with by interpolation. While real hourly yield data is impractical to obtain, interpolating weekly data to
hourly samples may not give accurate results of the effect of environmental factors on yield. Still, the results
show the potential of yield prediction through an LSTM.

2.4.3. Temporal Convolutional Network
A more recently developed time series NN is the Temporal Convolutional Network (TCN), which in general
works well for sequential data. It was first introduced in [28], as a different application of the very similar
WaveNet model introduced in [29] which specifically was used on audio data.

Figure 2.5: Convolutional dependencies of output layer on input layer in a CNN (left) and causal convolu-
tional dependencies in a TCN (right).

A TCN is a special type of convolutional NN (CNN). In a CNN, from input to output in multiple layers,
convolutional calculations are done on so-called kernels of input data, which in essence are dot-products
that relate one output item to an expanding amount of input items from its previous layers using the corre-
sponding connection weights. To make this more clear, see the left image in Figure 2.5, where one output
item in the top layer depends on the previous layer with a kernel size of three. Each of these three items in
turn depends on three items in the input layer, thus making the output item dependent on the full input.

12 2. Background & Related Work

When considering time-based data however with consecutive values in both the input- and output layers,
this structure would result in an output item of a certain timestep being dependent on future values. Since
this contradicts the temporal construct in a time-based prediction, a causal convolution is enforced in a TCN,
i.e. items in the output layer are solely dependent on present and past values in the input layer [29]. Such
a causal convolution is illustrated in the right image of Figure 2.5. Zeroes are added to the left (past) of the
input items such that every output item has a full input range on which it depends.

What may stand out in the figure, is that many weights are needed for all the connections between each
consecutive layer and that depending on the amount of layers and kernel size, many connections may be
needed to cover the complete desired input size. Therefore in TCN, dilated convolutions are introduced that
more efficiently cover the complete input sequence [29]. This is illustrated in Figure 2.6. In each layer, a
different dilation factor is used, which determines how many items of the previous layer are used to compute
a value.

The resulting structure allows for a long input history with relatively few weights. The range of this long
input history that an output item depends on is called the receptive field, and when designing a TCN with an
input size of lag timesteps, the receptive field should be large enough to cover the lag. The size of the receptive
field R is calculated as follows: R = 1+·(k −1) ·∑

i
di , where k is the kernel size and di the dilation factor on

layer i . There exist more complex structures of these networks, such as multiple stacks of convolutional layers
on top of each other, again increasing the receptive field.

Figure 2.6: Dilated convolution in a TCN, with a kernel size of 2.

Related Work
Recently, TCNs have gained attention in potentially performing better than LSTMs in a wide range of sequen-
tial modelling tasks. Specifically in cases where you want to train on long histories of data, a TCN should be
preferred because of its longer memory, according to S. Bai et al. [30].

In [31], an LSTM and TCN are combined for crop yield prediction. Here, the environmental and yield
data of one week are used to predict the yield after this week. First, the LSTM is applied, followed by the
TCN. In their results, they compare their model to using only an LSTM or TCN, among others. For this yield
prediction, it seems that the LSTM-TCN combination works best, followed by the LSTM-only and then the
TCN-only. Also in this work it is not clear if a multi-stage prediction is done.

2.5. Other approaches
The complex nature of greenhouses lends itself well for automated optimisation techniques. Various ap-
proaches have been implemented, such as Genetic Algorithms and Model Predictive Control. The goal of

2.6. Constraint Programming 13

these algorithms, is to optimise the controls of the greenhouse for the objective of maximising either produc-
tion or profit. Some of these approaches and their relation to economic decision making are laid out below.

2.5.1. Genetic Algorithms
Due to the complexity of greenhouse systems, many recent works in this field approach the problem using ge-
netic algorithms (GA) [32–34], as the optimal decision variables are searched in a stochastic manner, making
them independent of special properties of the objective function [34].

[32] evolves control setpoints that outperform "the original setpoints in two objectives: maximizing the
economic value of the crop yield and minimizing the variables costs". The algorithm uses a simulation based
on the model of B. Vanthoor [16]. The problem is modelled as a multi-objective optimisation problem, pro-
viding useful insights on the trade-offs for growers. However, it can be debated that the resulting profit may
actually be of most interest for the grower.

In [33], a GA is implemented using engineering constraint rules, greatly improving its optimisation per-
formance and also its practicality. By including engineering constraints, such as interactions between ven-
tilation and CO2, the algorithm is more tailored to the specific greenhouse conditions. Also, in the paper
the effect of changing the amount of collocation points is investigated, essentially setting the size of time
intervals. It is concluded that it is a trade-off between real-time performance and correctly coping with the
time-delay change of the greenhouse controllers.

Lastly, [34] used and compared two evolutionary algorithms: MSCEA and ESEA. A simplified plant model
is used that calculates the yield and profit, which the algorithms use to optimise. While the usefulness of
evolutionary algorithms in economic greenhouse decision making is demonstrated well, the algorithms only
simulate and optimise for a time interval of 4 hours, so the eventual yield and profit for the long-term is not
taken into account.

2.5.2. Particle Swarm Optimisation and Model Predictive Control
Two other approaches for controlling the greenhouse are Particle Swarm Optimisation (PSO) and Model Pre-
dictive Control (MPC). Based on animal swarms and herds in nature, PSO algorithms combine "individual
and herd knowledge" to reach an optimal solution. MPC is a technique that is used to follow an objective
trajectory as good as possible, using a moving time window.

In [35], a PSO algorithm is applied for optimising controller outputs of an MPC, related to air temperature
inside the greenhouse. While energy consumption was taken into account in the optimisation objective, the
paper mainly focuses on set-point tracking, which is more about controlling the greenhouse, not so much
decision-making.

Other work also combined PSO with MPC [36]. Again, while the techniques are good in using future pre-
dictions to optimise the greenhouse controls according to a certain control trajectory, they do not necessarily
involve decision making to optimise crop production or profit.

2.6. Constraint Programming
A particularly useful method for solving complex real-world problems that was not found in the literature
regarding the greenhouse optimal control problem, is Constraint Programming (CP). As discussed in [7],
its most important features are declarative problem modelling, propagation of the effects of decisions, and
efficient search for feasible solutions. Many research is already done on understanding and modelling the
greenhouse and crop [2], mainly through complicated equations. CP could prove to be a useful approach
in greenhouse decision making, by providing a more natural way of modelling the problem making it more
understandable. The propagation of the effects of decisions in this approach can be insightful for the deci-
sion maker. Lastly, the modelled problem can be solved by the most efficient available solvers, resulting in a
practical application that is useful for greenhouse decision makers. A sub-goal of this research is to find out
if CP can be applied in this economic greenhouse DSS.

As the name implies, CP revolves around constraints, which are applied on so-called decision variables.
In CP, a declarative high-level model of the problem at hand is composed of some constants, constraints, and
these decision variables; variables whose values will be decided at runtime. Such a model is called a Con-
straint Satisfaction Problem (CSP) [37]. An important component of a CSP, is the set of values these variables
can take, which is called their domain [37]. Such a CSP can be solved for feasibility or additionally for opti-
mality. In an iterative manner, a solver updates these domains as values are propagated through the model.
With the constraints and domains, the solver can remove inconsistent solutions to effectively cut down the

14 2. Background & Related Work

search space [37]. How a CSP is solved, depends on the solver, but in general a search tree is created and the
search can backtrack through this tree when inconsistencies occur [37]. A formal definition of CP is given in
[37]:

Given a finite set of discrete variables X = {x1, x2, . . . , xn},1 ≤ i ≤ n, each with its value in a finite
domain, xi ∈ Di ⊂Z, and a finite set of constraints C = {c1,c2, . . . ,cm} each expressed on a subset of
the variables, c j (x j 1, x j 2, . . . , x j k) ⊂Zk , 1 ≤ j ≤ m, one must find a combination of values from the
domain of each variable that simultaneously satisfies every constraint.

2.6.1. MiniZinc
MiniZinc is a medium-level CP modelling language, designed to be both simple and expressive [38], and pro-
vides a way to declaratively model CP problems. The models created in MiniZinc are translated to models in
FlatZinc, "a lowel-level solver input language" [38], which provides an easy way for solvers to solve instances
of the model. The MiniZinc language is thus an interface for modellers, while for solvers this is FlatZinc. The
intention of this study is to model the economic greenhouse decision system in CP, so MiniZinc is used. The
JaCoP solver is responsible for handling the FlatZinc models that follow.

Models in MiniZinc consist of parameters, decision variables, and constraints on these variables.

• Parameters define the instance of the model and can be seen as constants [39]. Within the context of
CP, these can be seen as variables whose value is already decided. For example, the outside weather is
simply taken from a forecast and is constant in the eyes of the model. Parameters can be of type integer,
floating point number, Boolean, or string. It is also possible to create arrays or sets of these.

• Decision variables represent the set of decisions that can be taken and each have a set of possible values;
the domain [40]. These variables can be seen as mathematical or logical variables; variables that can
be assigned values that satisfy the constraints and fall within the given domain [39]. In the greenhouse
DSS, the actions are the decision variables, such as the heating tubes. The possible types for decision
variables are integers, floating point numbers, Booleans, or sets. Again, arrays or sets of decision vari-
ables can be created.

• Constraints are imposed on the decision variables, defining the set of feasible solutions. Essentially,
they are Boolean expressions that involve decision variables, parameters, or both [39].

Next to these three basic components of a model, MiniZinc also provides a way to annotate expressions
with annotations. This is useful for giving information to the solver, such as the structure of certain vari-
able arrays or the order of traversing the search tree, to help in finding solutions more efficiently. The most
basic search annotations include int_search and float_search, which take in an array of variables, an order
of traversing this array, a method of assigning values to these variables, and for float_search additionally a
precision float value that indicates when two float values are considered equal [39]. A more extensive search
annotation is seq_search, in which a list of search annotations can be given that will be executed sequen-
tially [39]. Some solvers also implement the priority_search annotation, which allows for even more complex
searches [41]. With this annotation, the modeller can use (nested) variable arrays to model variable and value
selection during search.

Lastly, in MiniZinc there is a possibility of creating functions and predicates to model more complex con-
straints. A function takes one or more inputs, does some operations on these inputs, and returns an output.
A predicate can be used to impose constraints on given inputs, meaning it simply is a function with a Boolean
output [39].

2.6.2. Empirical Model Learning
In the case of the greenhouse optimal control problem, a part of the CP model will hold the greenhouse and
crop model, either through mathematical equations or a machine learning model. However, the tools avail-
able to build machine learning models do not directly provide a way to utilise these models in a CP approach,
but the trained weights can be extracted and embedded into the CP model. In [42], the combination of learn-
ing relations between variables from data and embedding these relations into an optimisation model is called
Empirical Model Learning (EML).

In an earlier study, the same authors explore this approach by embedding a trained NN into a CP algo-
rithm, for a "temperature aware workload allocation problem", with promising results [43]. In their approach,

2.6. Constraint Programming 15

a Neuron Constraint is added for each node in the network. The NN in this work is relatively simple, but the
authors claim that the same techniques can be used for complex recurrent networks.

Another student has done an embedding of an NN in CP in his Master’s thesis [44]. Here, an NN was
trained on simulation data of an Enterprise Modelling optimisation problem. An important point in his work
is that by automatically converting the NN into something usable by the CP model, the understandability that
is the merit of the CP model can be maintained to some extent. The decision maker does not have to model
this incomprehensible NN manually, but can still use the predictive power in the otherwise descriptive model.

3
Framework

In this research, I developed a DSS that leverages machine learning models. This approach can be divided
into the stages of preparing data, training the models, embedding these models, and finally decision making.
One of the requirements from Delphy within this study is creating the framework for this decision making
system. The framework I developed is a pipeline connecting each of the stages (see Figure 3.1). Using this
method provides a clear overview of the process, as well as modularity for re-use of certain elements, and a
possibility for adding models that may be desired by Delphy. Throughout this pipeline, output files are stored
in a single experiment folder, along with relevant metadata. The individual stages can be run independently
when necessary output of previous stages is present. Each of these stages in this pipeline will be laid out in
this chapter on a high level, the implementation details will follow in the subsequent chapter.

Figure 3.1: A simplified overview of the system pipeline showing the process of all stages in the DSS, along with their outputs. Each of
these stages in the pipeline can be run independently, given the outputs of earlier stages. For a more in-depth overview see Appendix A.

3.1. Design choices
To build the framework, I used several third-party libraries, which will be laid out in this section. I wrote
the framework in Python 3.8 (python.org), mainly because of the available machine learning and plotting
libraries. In stage 1 of the pipeline, data is accessed through an API of Zensie. Zensie is a platform of 30Mhz
(30mhz.com), a company managing the data of Delphy. Data preparation in stage 2 is done through a set of
operations provided by the Pandas library [45]. The machine learning models in stage 3 I implemented with
Keras [46], and Keras-TCN [47] for TCN additionally. For CP modelling I used the MiniZinc language [38],
because of its expressiveness and simplicity, also enabling the creation of a solver-independent model. Still,
I used a single solver during implementation of the framework, which is the JaCoP solver [48]. JaCoP was
used because it supports real numbers and has implemented the exponential function, which is used in the
activation functions of the machine learning models. MiniZinc comes with a Python interface that eases the
use of MiniZinc code within a Python setting, which I used to run the CP model in stage 6. However, this

17

python.org
30mhz.com

18 3. Framework

interface is still being developed (see minizinc.org/doc-2.5.5/en/python.html). Therefore in stage 4
and 5 of the pipeline, MiniZinc files are created that can also be called directly from the MiniZinc IDE or the
command line interface. Lastly, I used Matplotlib [49] to generate figures in stage 7.

3.2. Pipeline
The pipeline I constructed consists of separating the different stages and their outputs in a numbered folder
structure. Each experiment using one or more of these stages stores all outputs in one folder, including a
metadata file. Here, all relevant information needed in successive stages is stored, such as chosen features or
time lag. These successive stages either retrieve the necessary information from this file, or the user fills these
in manually when running a stage separately from previous stages.

1. Data retrieval
The pipeline starts with the retrieval of data, as this is needed in training the models, as well as the
decision making process. In the data retrieval part of the pipeline, a connection is made with Zensie
to extract data from the available sensors. After choosing a timeframe, timestep frequency, and a set of
sensors, a raw data file is created. Five-minute data provides the most detailed information but due to
the complexity of the built system by amount of timesteps, features, and NN specific parameters; hourly
data was used throughout this study, as this reduces the complexity significantly but still produces
reasonable results. For now, the outside weather forecast is retrieved from historical Zensie data, but to
make future predictions, actual weather forecast data should be consulted.

2. Data preparation
In this raw data, missing values are guessed through a linear interpolation between preceding and suc-
ceeding known values. If the first or last values of a sensor are missing, the closest known value is used.
Domain knowledge, in both the mathematical and figurative sense, is utilised through a configuration
file in which the bounds for each feature are stored. Bounds are retrieved from the training data in the
case of missing feature configurations or if larger (more realistic) bounds are found in the data. The
bounds are used both in scaling the data for training the NNs and in the CP model. The scaling of the
data is also done in this data preparation stage.

3. Models
The greenhouse and crop models are created and trained in the third stage of the pipeline. Depend-
ing on the type of model, various hyper-parameters can be set such as time lag used in training the
time series NNs, or the used loss function. The LSTM and TCN models share some functionalities, like
preparing the data into a training and test set. The weights of the model are trained and stored to be
used later in the embedding into the CP model. The implementation details of these models are given
in section 4.1.

4. Greenhouse & Crop model embedding in CP
After the models are trained, they are embedded into a MiniZinc model in stage four. Step-by-step, a
MiniZinc file is written that represents the model. The weights and biases are loaded and written to a
data file. Each model that is created in this stage, is accessible in the complete model through a single
predicate. A simplification of this structure can be seen in Figure 3.2.

Figure 3.2: Simplification of connection between the complete MiniZinc model, and the
greenhouse and crop models.

minizinc.org/doc-2.5.5/en/python.html

3.3. Data & Hardware 19

This fourth stage is not limited to machine learning models. Because the crop is harder to model and
validate, a correctly functioning LSTM crop model was not realised in this study. Therefore the more
simplistic Lintul-3 model [50] was used, which also works through a single predicate, simultaneously
demonstrating the extendability for future model additions and improvements by Delphy. The model
embedding in CP is explained in more detail in section 4.2.

5. CP model
Next, the complete MiniZinc model is built, by defining the greenhouse and crop variables and con-
necting these to the greenhouse and crop models. In this stage, economic variables are defined and
connected to the greenhouse action and crop variables. A search strategy is set up and specific con-
straints on the variables are added, such as some time-wise consecutive greenhouse action values be-
ing similar. Lastly, the objective of the model is set up, generally maximising the profit. This complete
MiniZinc model that entails the DSS, is explained in more detail in section 4.3.

6. Decision support system
The complete MiniZinc model including greenhouse and crop models, is solved for optimality in the
sixth stage of the pipeline. A MiniZinc instance with the model and data files is created. A solver is
selected and will start to solve the CP problem. Given the vast amount of possible solutions to trace, a
timeout is given to arrive at an intermediate, sufficient solution. If the problem is satisfiable, the best
solution so far will be stored, which is the result of the DSS. This result includes the retrieved weather
predictions, decided actions in the greenhouse, and predicted inside climate.

7. Showing results
Finally, the last stage includes functions to show the results of the DSS in a meaningful way. Interesting
visualisations such as comparing decisions made by the decision support system with actual decisions
made in the greenhouse in a real-world cultivation period, are available through these functions.

3.3. Data & Hardware
Throughout the pipeline in training, prediction, and decision making; data of two greenhouse departments of
Delphy was used. The initial implementation was done based on data of department 3.5, but to include CO2

injection of which the sensor is not available in department 3.5, also data of department 6 was used. While
department 3.5 is missing a CO2 injection sensor, department 6 is less realistic because various experiments
in the field of energy usage are conducted here. The used sensors for outside weather were the same for both
datasets. Because Delphy does research in various crops, a department can not be tied to a single strategy
and crop. Therefore specific cultivation periods were taken into account in this study. The specifics of both
departments’ cultivation periods are laid out below.

Department 3.5 | From week 43 2020 to week 38 2021, a tomato variety Merlice cultivation was done
here, with the goal of experimenting with various sensors to know which ones are most related to crop
development. The sensors in department 3.5 that were used in this thesis include all those relevant for
the inside climate, and for the actions in the greenhouse we have LED and SON-T lighting, under- and
growtubes (heating), a shading screen, and lee- and windowside ventilation. The CO2 injection sensor
is missing here. Up to November 24th some data is missing, which is why only the period 25/11/2020 -
20/9/2021 of this cultivation was taken into account. Department 3.5 covers an area of 150m2.

Department 6 | From week 37 2021 to week 38 2022, there is a cultivation in department 6, again with
tomato variety Merlice. This cultivation is thus not finished but will be used in this study, because
the CO2 injection sensor is available here. Department 6 is about energy-saving and thus several ex-
periments concerning energy preservation are conducted here. Sensors for the same inside climate
variables as in department 3.5 are used in department 6. The possible actions in this department are
under- and growtubes (heating) also, as well as lee- and windowside ventilation. Only LED lighting is
used here in the form of two LED strands, in combination with two energy preserving screens. Again,
some data is missing so the data of the period 26/9/2021 - 14/3/2022 is used. Department 6 covers an
area of 1000m2.

The implementation of the greenhouse and crop models, their embedding in CP, and the CP model itself,
will be laid out in the following chapter, followed by the evaluation of these implemented components in the
experiments chapter. For these evaluations, a laptop with i7 64-bit CPU at 2.60 GHz, 16 GB RAM, and NVIDIA
GeForce RTX 2070 GPU was used.

4
Implementation

The pipeline framework was constructed mainly to facilitate three components that make up the DSS; the
time series NNs, their embedding in CP, and the complete CP model. The overall structure of these compo-
nents and the libraries used was explained in the previous chapter. The implementation details will be laid
out in this chapter.

4.1. Time Series Neural Networks
Both the greenhouse climate and crop growth can be modelled as a time series. The states of the greenhouse
and of the crop change over time, and we are interested in their future states. Multiple features in the cate-
gories of outside weather, actions in the greenhouse, inside climate, and crop growth are included in these
models, meaning we are dealing with a multivariate time series problem.

As seen in the literature, many complex processes occur in the crop that are difficult to model, while these
influence the environment substantially [6]. Therefore in this research, I utilised temporal NNs to cover the
complex relations between greenhouse and crop. The idea here is to not explicitly model the crop processes
like transpiration, but let the NN learn what happens in the greenhouse when certain actions are taken. The
goal is that these crop processes are automatically encompassed in this model.

In this section, the structure of these time series problems and their features, as well as the implemented
NNs will be laid out. The LSTM and TCN networks are discussed, including design decisions.

4.1.1. Time Series Data
Generally, the input to training an NN consists of multiple feature vectors, each accompanied by an output
vector. Each of these feature vectors serves as one data point. For time series, an extra dimension of time
is added, leading to one data point matching feature vectors of multiple timesteps to one output vector or
output vectors of multiple timesteps. Dealing with time series data comes with challenges and possibilities.
Deciding how many timesteps to use for training or prediction can be difficult, but historical data can provide
meaningful information. Furthermore, the data points of time itself can be useful, by extracting seasonality
features.

Seasonality
Seasonality in time series data can be important information to utilise in a model. Think of the daily cycle of
natural light. The time of day directly relates to the amount of sunlight that can be expected within the green-
house. Other than the day-night cycle, the yearly cycle of seasons can also be very informative, especially in
the cultivation of crops. These seasonalities are encompassed in the date and time data points, which are
represented by the time dimension of the dataset. However, by simply passing these linear datapoints to the
machine learning model, we lose the cyclical information these datapoints hold. We can decompose these
dates and times into their sine- and cosine components, enabling us to capture the cyclical relation.

To create the cyclical features for the day cycle, we want to express the time of the day. In this computation,
the amount of seconds in the day is used but any precision (miliseconds, hours) can be used depending on the
use case of the features. In our case, the smallest reasonable timesteps used will be minutes. For assurance,

21

22 4. Implementation

one extra precision step is taken into account, so the cyclical day features will be calculated using seconds. I
calculated the two cyclical time features as follows:

sin

(
2π

m

24×60×60

)
cos

(
2π

m

24×60×60

)
, (4.1)

where m is the time of day in minutes. Similarly, the yearly seasons can be modelled through a sine and
cosine component of the current day divided by the amount of days in a year.

I performed a small experiment to examine the usefulness of the cyclical features and see if these indeed
improve the performance of the model. With data of department 3.5 of the period 1/1/2021 - 20/9/2021, I
trained two LSTM models; one including and one excluding the cyclical features. All outside weather, inside
climate, and action features relevant in department 3.5 were included. I did a multi-stage prediction of three
days starting from 20/12/2020 for both scenarios, resulting in an averaged RMSE over 5 runs. With cyclical
features, the resulting average RMSE was 0.0351, without cyclical features this was 0.0321. What is clear, is
that the model does not gain useful information from the cyclical to significantly improve the prediction,
and instead performs slightly worse. Also, the cyclical features add some needless additional complexity.
Possibly these cyclical features would improve models that are not time-based, and could benefit from this
extra seasonality information. However since we see no improvement, from this point on the cyclical features
will not be included in any models.

4.1.2. Multivariate multi-stage prediction
There are multiple possibilities for prediction using time series data, depending on the exact structure of
the data and the problem at hand. A multi-step ahead prediction could be implemented when the goal is
to predict multiple timesteps in the future for one input-batch of data. Another approach more suitable to
the problem at hand is multi-stage prediction. This involves a step-by-step prediction where the prediction
of one input-batch serves as part of the input for the next batch. This is especially useful in the context of
CP, as the actions involved in the prediction need to be decided for each timestep, while the inside climate
prediction depends on its previous state (see Figure 4.1). Using a multi-step ahead prediction in this case,
would disable the possibility to decide the actions in these steps-ahead. To conclude, in this study I thus
implemented a multi-stage prediction.

Figure 4.1: Multi-stage prediction in the context of greenhouse decision making. The input of each timestep is the inside climate, fore-
casted outside weather, and the decided actions of the previous timestep(s). The output is the inside climate for the next timestep.

4.1.3. LSTM and TCN
The LSTM and TCN models I implemented follow a hierarchical class structure so that these models could
be used interchangeably in experiments, and for sharing functionality. Firstly, I implemented an overarching
class ML, that forms the basic structure of the implementing classes. It includes train, predict, and multi-
timestep predict functions that are expected to be overwritten in implementing classes. In addition, I imple-
mented a save and load function that makes it possible to save models for later use.

4.1. Time Series Neural Networks 23

Initially, I implemented a Deep Learning model to predict the inside climate of the next timestep with only
one timestep of input data. However, this resulted in a model that simply copied the value of the climate of
the previous timestep. This gave low error values for predictions where the input was known. However, when
doing a multi-stage prediction where values of the previous timestep are used as input for the next timestep,
the resulting prediction becomes infinitely high or low if values of the previous timestep are simply copied.
Still, this initial implementation of a non time-based model, incentivised the need for an additional subclass
ML_TimeSeries that separates time-based and non time-based models.

Both the LSTM and TCN models I implemented as subclasses of this ML_TimeSeries class. Both models
take as input the relevant parameters for training. For the LSTM this included epochs (amount of forward-
and backward propagation rounds), batch_size (amount of datapoints to use in each epoch), lag (amount of
previous timesteps to take as input), test_size (amount of datapoints to return as test set), validation_split
(amount of datapoints to use as validation set during training), loss function, optimizer function, patience
(amount of epochs to take into account for early stopping), and finally layers (list that represents the amount
of LSTM layers and their units). For the TCN model this also included epochs, batch_size, lag, test_size, valida-
tion_split, loss, optimizer, and patience. Additional parameters used in the TCN model are nb_filters (amount
of filters in the convolutional layers, similar to LSTM units), dilations (a list indicating the dilation step-size in
each layer), kernel_size, and dropout_rate (amount of datapoints to drop in each epoch to avoid overfitting).

The ML_TimeSeries class implements a create_x_y function that creates time-based datapoints usable in
the LSTM and TCN models, divided into a training and test set. Depending on the chosen input lag and
amount of timesteps to look ahead (in our multi-stage prediction case we always look one timestep ahead),
X- and y datapoints are created. If we have three features x, y , and z and our target feature is z, we have a lag
of two timesteps, and we look one timestep ahead, this results in datapoints of the following structure:

[
x1 y1 z1

x2 y2 z2

]
=> z3,

[
x2 y2 z2

x3 y3 z3

]
=> z4,

[
x3 y3 z3

...

]
=> ...,

where the amount of possible datapoints depends on the training dataset and the lag. If we have 10 timesteps
of data, a lag of two, and we look one ahead, there are only 10 - 2 = 8 possible datapoints.

Once the training and test set are created, the training of the model happens inside the LSTM and TCN
classes. With Keras, the layer architecture is generated and the training of the model is started. The trained
model is saved as an attribute of the class and can be stored for later use once the training is done.

The multi-stage prediction is implemented in the ML_TimeSeries class and works by starting off with an
initial prediction using the first lag timesteps. Next, the input time window is shifted by one timestep in the
future and the just-computed prediction is incorporated into this new datapoint before the next prediction is
made. In this iterative manner a multi-stage prediction is done for the full prediction period.

Features
The features I used in the greenhouse machine learning models can be divided into three categories. The
greenhouse features correspond to the available sensors at Delphy, in the categories outside weather, actions
in the greenhouse, and the inside climate. These features are denoted respectively with the prefixes out_,
act_, and in_. An overview of the features used can be seen in Table 4.1.

The out_ features together form the model’s knowledge of the outside weather, which is an important
influence on the inside climate. Perhaps one of the most important features is out_rad; the sun radiation,
which has an effect on both light and temperature within the greenhouse. Next, we have outside temperature
out_temp. Absolute humidity is contained in feature out_humid_abs. Wind in combination with the opening
of the windows has an effect on each of the inside climate variables, and is contained in the feature out_wind.
Lastly, no sensor for the outside CO2 concentration is available at Delphy, but this has no big influence on
the effectiveness of training the model. Gradually of course CO2 concentrations in the air are increasing, but
within the training period this concentration does not fluctuate much.

24 4. Implementation

Feature Unit Category Explanation
out_rad W/m2 outside weather Outside radiation
out_temp °C outside weather Outside temperature
out_humid_abs g/m3 outside weather Outside absolute humidity
out_wind m/s outside weather Outside wind speed
act_tube_under °C action in greenhouse Heating from undertube
act_tube_grow °C action in greenhouse Heating from growtube
act_window_lee % action in greenhouse Opening window leeside
act_window_wind % action in greenhouse Opening window windside
act_light_led 0/1 action in greenhouse (dep. 3.5) Light LED on/off
act_light_sont 0/1 action in greenhouse (dep. 3.5) Light SON-T on/off
act_light_led_1 0/1 action in greenhouse (dep. 6) Light LED 1 on/off
act_light_led_2 0/1 action in greenhouse (dep. 6) Light LED 2 on/off
act_screen_shading % action in greenhouse (dep. 3.5) Closing shading screen
act_screen_energy % action in greenhouse (dep. 6) Closing energy screen
act_screen_light % action in greenhouse (dep. 6) Closing light-emission screen
act_co2 kg/ha action in greenhouse (dep. 6) Injecting CO2

in_par µmol/m2/s inside climate Inside PAR light
in_temp °C inside climate Inside temperature
in_hd g/m3 inside climate Inside humidity deficit
in_co2 ppm inside climate Inside CO2

Table 4.1: Features used in the machine learning models, including their unit and category. Some of the actions are only available in
either department 3.5 or 6.

The decisions a grower can make within the greenhouse are encompassed in the act_ features. As there
are different available techniques per department, some of these features can only be used in department 3.5
and some only in department 6. Both departments have two heating tubes available; features act_tube_under
and act_tube_grow, respectively the under tube and the growing tube. The under tube is a heating tube placed
under the crop, while the growing tube is placed close to the crop. Quite standard in any Venlo-type green-
house are windows, both on the wind- and leeside. The feature act_window_wind and act_window_lee repre-
sent the percentage of opening of these windows. Artificial lighting in department 3.5 includes LED lighting
act_light_led and SON-T lighting act_light_sont. These are discrete features; the lights are either on or off. In
department 6 only LED lighting is used, contained in discrete features act_light_led_1 and act_light_led_2,
which represent two strands of LED lighting. The lighting in this department can be scaled down by turn-
ing off one of these strands. In department 3.5 one shading screen act_screen_shading is used, which by a
percentage indicates how far the screen is closed to block sunlight. Department 6 has two specialised energy-
saving screens installed; an energy screen act_screen_energy and a light emission screen act_screen_light. The
energy screen prevents energy in the form of heat leaving the greenhouse. The light emission screen tries to
keep as much light within the greenhouse as possible, both for minimising the light disturbance outside the
greenhouse and for energy saving. Lastly, department 6 has a CO2 injection feature act_co2. CO2 is injected
in short peaks.

The inside climate is encompassed in four in_ features. PAR-light is contained in feature in_par, and is
obtained by taking the mean value of multiple available PAR-light sensors in the greenhouse. This is done to
account for different light intensities throughout the greenhouse, and for moments that a part of the green-
house framework forms a shadow directly over one of the sensors. Features in_temp, in_hd, and in_co2 re-
spectively represent the temperature, humidity deficit, and CO2 concentration in the greenhouse.

Normalisation
In order for NNs to work properly, often the data is normalised. This is useful, as in many cases the different
features have varying ranges. For example in our case of the greenhouse system, outside light radiation (in
the Netherlands) ranges from approximately 0 to 1000 W /m2, while the wind speed (excluding heavy storms)
has a much smaller range: 0 to 30 m/s2. Larger numbers have a larger impact on the predictions in NNs,
resulting in the prediction being more dependent on light than wind speed, which may not necessarily be
true. Therefore I scaled all features between 0 and 1, so that each feature is equally important in the eyes of
the model.

4.1. Time Series Neural Networks 25

Regularisation
In NNs, often some form of regularisation is used to prevent overfitting such that the model still performs well
on unseen data. In the explicit form, this means adding an additional term to the loss function, to penalise
large weights. I tried this form of regularisation using L1 and L2 regularisation functions, but this did not
improve the performance of the models. I did use early stopping, which is an implicit type of regularisation.
With early stopping, the training is stopped when the loss on the validation set does not change anymore.
Lastly, including more training data could help prevent overfitting, but since there are such different cultiva-
tions in each of the greenhouse departments of Delphy, this was not feasible.

4.1.4. Hyper-parameter tuning
Choosing the right hyper-parameters can improve the model predictive power greatly, or reduce unnecessary
training time. However, there does not exist an exact rule for choosing and it is mostly a process of trial-and-
error. To find good hyper-parameters, I performed a grid search around values that were obtained by an
initial manual trial-and-error process. Because I used early stopping, the amount of epochs was not taken
into account in the grid search, but a maximum of 1500 epochs was used. I performed the grid search for the
LSTM model with the following set of hyper-parameters:

batch_size: 256, 512, 1024
lag: 1, 2, 3, 6, 12
units: 4, 8, 16, 32

For TCN, other hyper-parameters are relevant. Those used in the grid search are shown below:

batch_size: 256, 512, 1024
lag: 1, 2, 3, 6, 12
nb_filters: 32, 64, 128
dilations: [1, 2, 4], [1, 2, 4, 8], [1, 2, 4, 8, 16]
kernel_size: 2, 3, 4, 5

I trained both types of models with the adam optimizer and I used the MSE loss function. A validation_split
of 0.1 was used, 8% was used as test_set, and a patience of 20 was used for the early stopping mechanism. I
measured the performance of each model by the RMSE of the actual and predicted values. For each combi-
nation of hyper-parameters, I ran an experiment 5 times and averaged the result, to account for randomness.
For department 3.5, the training period was 1/12/2020 to 10/9/2021 and the prediction period was 15/9/2021
to 17/9/2021. For department 6, the training period was 25/9/2021 to 14/2/2022 and the prediction period
was 15/2/2022 to 17/2/2022.

LSTM, department 3.5 | In greenhouse department 3.5, the best performing LSTM model is trained with
a batch size of 512, a lag of 6 timesteps (6 hours), and 4 LSTM units, with a resulting average RMSE of
0.0366.

LSTM, department 6 | For department 6, the hyper-parameters resulting in the best performing LSTM
model were a batch size of 256, a lag of 6 timesteps (6 hours), and 4 LSTM units, with a resulting average
RMSE of 0.0279.

TCN, department 3.5 | The TCN model worked best in department 3.5 with a batch size of 256, lag of
6 timesteps (6 hours), [1, 2, 4, 8] as dilations, an nb_filter of 128, and a kernel size of 5, resulting in an
average RMSE of 0.0433.

TCN, department 6 | In department 6, the TCN model worked the best with the same hyper-parameters
as department 3.5. So a batch size of 256, lag of 6 timesteps (6 hours), [1, 2, 4, 8] as dilations, an nb_filter
of 128, and a kernel size of 5, which resulted in an average RMSE of 0.03.

4.1.5. Concluding remarks
Although both models gave promising results, only the LSTM was used in the CP embedding. There was no
decisive reason to choose one over the other, but the LSTM resulted in slightly better RMSE values in the grid
search and at a first glance the LSTM-embedding seemed more straightforward to implement than that of the
TCN model.

26 4. Implementation

4.2. Model Embedding in CP
Training an NN results in a set of weights and biases that can be used to imperatively make predictions, but
CP requires a declarative approach. In other words, NNs map specified inputs to outputs, while in CP we
do not know what is the input and what is the output. To leverage the trained NN in a CP model, it must be
reduced to a declarative mathematical form that can handle decision variables.

Learning relations from data and embedding these into an optimisation model, i.e. Empirical Model
Learning (EML), is already being applied with regular NNs with promising results [42–44]. However, it appears
that no embedding of LSTMs in CP has been done, while the successes of both LSTMs and CP could prove
to be a powerful combination. Still, the added complexity of LSTMs could make it hard to be useful in a CP
setting. An important aspect of this study is a proof-of-concept of such an LSTM-in-CP embedding. The
embedding will be laid out in this section.

4.2.1. Functions & Predicates
To make the LSTM calculations possible, I implemented various functions and predicates. At the core of
the LSTM cell, matrix operations are performed. And within multiple parts of the LSTM network, activation
functions are used. The implementation of this functionality, as well as the complete LSTM calculation, is
laid out in this subsection through MiniZinc functions and predicates.

For each step of the LSTM computation I built a separate function. At its core are the LSTM gate and state
functions. To reiterate, the gates and states are updated as follows:

it =σr (Wi ·X t +Ui ·ht−1 +bi) (4.2)

ft =σr (W f ·X t +U f ·ht−1 +b f) (4.3)

c ′t =σa(Wc ·X t +Uc ·ht−1 +bc) (4.4)

ot =σr (Wo ·X t +Uo ·ht−1 +bo) (4.5)

ct = ft ⊙ ct−1 + it ⊙ c ′t (4.6)

ht = ot ⊙σa(ct), (4.7)

with input gate i , forget gate f , output gate o, cell state c (candidate cell state c ′), hidden state h, activationσa

for the states and recurrent activation σr for the gates, where ⊙ represents an element-wise multiplication.
From these equations it is clear that the CP equivalent of the elementwise-multiplication (see Listing 4.1), dot-
product, and elementwise-addition of matrices is needed. I implemented these matrix operations through
MiniZinc functions and validated them with small matrix instances.

function array[int , int] of var float: matrix_multiplication(
array[int , int] of var float: A,
array[int , int] of var float: B

) =
assert(

% check matrix shapes of A and B
cols(A) == rows(B),

% if needed give error message
"Matrix shapes do not match: " ++
"(" ++ show(rows(A)) ++ "," ++ show(cols(A)) ++ ") * " ++
"(" ++ show(rows(B)) ++ "," ++ show(cols(B)) ++ "); " ++
show(cols(A)) ++ " != " ++ show(rows(B)),

% else do matrix multiplication
array2d(index_set_1of2(A), index_set_2of2(B),
[sum(k in index_set_2of2(A)) (A[i,k] * B[k,j])
| i in index_set_1of2(A), j in index_set_2of2(B)]
)

);

Listing 4.1: Example of matrix operation in MiniZinc. An assertion on the dimensions of the matrices is done before returning a 2D array
object that is the result of the elementwise-multiplication of matrix A and B.

Additionally, some utility functions were implemented to handle the scaling of features, as well as cap-
ping values between a minimum and maximum value. This capping of values is used in the linear activation
function to make sure that the resulting values do not exceed the domain. In a regular LSTM computation
an output value can exceed the normalised domain, but within CP this leads to the problem being unsatisfi-

4.2. Model Embedding in CP 27

able. The activation functions that were implemented are sigmoid, tanh, and linear. The implemented cap-
function was also used within the sigmoid and tanh functions, by capping the input values of these functions
to the ranges -10.0 to 10.0 and -5.0 to 5.0 respectively. Not capping these input values resulted in MiniZinc
crashing, without a clear explanation. Since we know the limits of both the sigmoid and tanh function, and
their corresponding domains, we can simplify these functions by first capping the input values. This indeed
eliminated the crashes. As an example, the implementation of the sigmoid function is given in Listing 4.2.

function var 0.0..1.0: sigmoid(
var float: x

) =
1 / (1 + exp(-cap(x, -10.0, 10.0)));

Listing 4.2: Example of activation function in MiniZinc. The input value x is capped between -10 and 10, before applying the sigmoid
function to prevent MiniZinc from crashing and because we know the limits of the sigmoid function.

Next, multiple functions were implemented that represent the LSTM cell, of which a simplified pseu-
docode overview can be seen in Algorithm 1. Please see Appendix B for the complete MiniZinc code of the
LSTM. I implemented a general gate calculation function that handles the matrix operations and activation
functions for the gates as seen in Equation 4.2, 4.3, 4.4, and 4.5. I also implemented MiniZinc functions for
the computation of the cell and hidden state. These two functions thus include multiple calls to the gate
function. Lastly we need to do these gate and state calculations for multiple timesteps. With a time lag l , we
need to update the cell and hidden state for each timestep t ∈ l . The cell and hidden state are vectors with
a size of the amount of chosen LSTM units. At t = 0, these vectors c0 and h0 are initialised with zeros. For
each t in l , vectors ct and ht are computed by using the vectors of the previous timestep ct−1 and hh−1 in
the before-mentioned LSTM functions. Important to note here is that in a CP approach, we cannot simply
create vectors c and h and update these. We need to create vectors for each timestep, such that the solver can
find each of the intermediate values. Just as in a regular LSTM, the hidden state vector of the last timestep
represents the output of the LSTM.

Algorithm 1 Pseudocode of the LSTM calculations in MiniZinc. The cell and hidden state are initialised to
zero and for each timestep in the range 1 to lag, the cell and hidden state are calculated in separate functions.
The gate calculation is generalised in a function as well.

1: function LSTM(X , W , U , b)
2: c0 = 0
3: h0 = 0
4: for t ∈ 1..l
5: ct = CELL(X t , ht−1, ct−1, W , U , b)
6: ht = HIDDEN(X t , ht−1, ct , W , U , b)

7: return hl

8:

9: function CELL(X t , ht−1, ct−1, W , U , b)
10: return
11: G AT E(X t ,ht−1,W f ,U f ,b f ,σr)⊙ (ct−1)+
12: G AT E(X t ,ht−1,Wi ,Ui ,bi ,σr)⊙G AT E(X t ,ht−1,Wc ,Uc ,bc ,σa)

13:

14: function HIDDEN(X t , ht−1, ct , W , U , b)
15: return G AT E(X t ,ht−1,Wo ,Uo ,bo ,σr)⊙σa(ct)

16:

17: function GATE(X t , ht−1, Wg , Ug , bg , σ)
18: return σ(Wg ·X t +Ug ·ht−1 +bg)

Since we want to be able to change the unit size and thus complexitiy in the LSTM, we need an additional
dense layer that maps the LSTM output to the desired dimensionality of our model output, in our specific
case the four inside climate targets. This dense layer was also implemented using MiniZinc functions. The
output of our LSTM layer is a vector hl of LSTM unit size u. The computation of the dense layer is then
σd (hl ·Wd +bd), where σd is the linear capped function, Wd are the weights of the dense layer and bd the
bias.

28 4. Implementation

4.2.2. Greenhouse and Crop Model Embedding
The implementation of the CP embedding is done through a model class hierarchy, visualised in Figure 4.2, to
improve the readability and modularity of the code. In this way, additional greenhouse and crop models can
be added more easily. At the top level, we have the abstract class Model, which provides shared functionalities
of the Greenhouse_Model and Crop_Model abstract classes. At the bottom layer we have the specific green-
house and crop model implementations. For example, the greenhouse climate prediction with the LSTM is
encompassed in the Greenhouse_Model_LSTM class, which provides the MiniZinc embedding of the model.

Figure 4.2: Class diagram of the abstract greenhouse and crop model classes. As visualised in the diagram, the DSS is extensible with
other greenhouse and crop models.

At the top level in the abstract class Model, the function create(filepath) performs the model embedding
and writes the output to the given filepath. As explained in chapter 3, the embedded model is written to a
separate MiniZinc file and is callable through a single predicate. This predicate is defined in both the Green-
house_Model and Crop_Model classes, as can be seen in Listing 4.3 and Listing 4.4 respectively. The predi-
cate definitions enforce the implementing models to use the given inputs. For example, an implementing
greenhouse model must use the 2D array greenhouse_vars to model the greenhouse climate. This array is the
combination of out_vars, act_vars, and in_vars. In Model, the MiniZinc model is generated by the build-up
of a string with the model content (helper functions and var definitions), and the predicate definition and
content.

predicate greenhouse_model(
array[int ,int] of var float: greenhouse_vars

) =

Listing 4.3: MiniZinc predicate definition of the greenhouse model.

predicate crop_model(
array[int] of var float: in_temp ,
array[int] of var float: in_par ,
array[int] of var float: in_hd ,
array[int] of var float: in_co2 ,
var float: crop_growth

) =

Listing 4.4: MiniZinc predicate definition of the crop model.

The function create_dzn_content() is used to create data content that will be appended to the MiniZinc
data file. While the intended usage of the MiniZinc data file is to separate the model and an instantiation of
this model with different parameters, the model and data generated in our framework are so intertwined and
already separated through the Python instance of the model, that the MiniZinc data file is only used to not
clutter the model with large chunks of data such as the weights and biases of the LSTM model.

4.2. Model Embedding in CP 29

Since the models make use of some of the earlier mentioned functions and predicates like matrix multi-
plications and LSTM calculations, a folder with these so-called helper mzn files is written to the given filepath
along with the generated models.

Greenhouse LSTM Model in CP
The specific greenhouse embedding that I implemented and used in the complete CP model, is the Green-
house_Model_LSTM. It takes as input an LSTM object that was generated in stage 3 of the pipeline and gen-
erates an LSTM embedding in MiniZinc. I created an extra LSTM_to_MiniZinc that provides a more general
LSTM embedding functionality. Here the kernel weights Wi , W f , Wc , Wo , recurrent kernel weights Ui , U f , Uc ,
Uo , and biases bi , b f , bc , bo of the LSTM are loaded, as well as the weights and biases of the accompanying
dense layer Wd and bd . The relevant helper mzn files are referenced and the arrays holding the weights and
biases are defined in an mzn string. The values of these weights and biases are appended to a dzn string. The
mzn and dzn strings are returned by this LSTM_to_MiniZinc object.

In the Greenhouse_Model_LSTM class, these mzn and dzn parts are supplemented with the predicate con-
tent that actually connects the predicate input to the LSTM output. The LSTM and dense functions are called
with the predicate input and above-mentioned weights and inputs. Since this is a multi-stage prediction,
within this predicate the output of the LSTM for each batch of inputs is connected to the input of the next
timestep. The resulting greenhouse_model predicate can be seen in Listing 4.5.

predicate greenhouse_model(
array[int ,int] of var float: greenhouse_vars

) =

% loop over all to-be -predicted timesteps
forall(batch in 1.. rows(greenhouse_vars) - l) (

let {
% perform LSTM and Dense layer calculations
array [1..1 , 1..m] of var 0.0..1.0: result =

dense_forward(transpose(
lstm_forward(

array2d (1..l, 1..n, [greenhouse_vars[t, feature]
| t in batch..batch + l - 1, feature in 1..n]

),
Wi , Ui , bi ,
Wf , Uf , bf ,
Wc , Uc , bc ,
Wo , Uo , bo ,
n, m, u, l)

),
Wd , bd , "linear_capped"
);

} in
% place outputs in input array
forall(target in 1.. m_1) (greenhouse_vars[batch + l, n - m+target] =

custom_round(result[1, target], 2)
:: defines_var(greenhouse_vars[batch + l, n - m + target]))

);

Listing 4.5: MiniZinc predicate of the greenhouse LSTM model.

During evaluation of the LSTM models, it became clear that the light prediction was not sufficient and
could be improved by a more straightforward calculation. I incorporated this calculation in a second green-
house model. Here the the other climate variables are computed the same as in Listing 4.5, but light is com-
puted by using the outside radiation, the shading screen including transparancy of the screen that is usually
0, and the artificial lighting with light intensities. This implementation is shown in Listing 4.6. Currently it
only works for departments with one screen, so it is not possible to use this functionality for department 6.

Crop Lintul-3 Model in CP
The crop model that I implemented is the Lintul-3 model [50]. This model is already used at Delphy and was
selected and implemented in [4]. It was later extended in [5] by specifically looking at the light element of the
calculations. After some final adjustments by some of the colleagues at Delphy of the parameters used in this
model, I implemented the Lintul-3 model embedding. It calculates the fresh-weight crop growth in grams by
combining a temperature, CO2, and light component. This model is quite basic and short-term based, but it
demonstrates the usage of a crop model and could be extended or replaced by Delphy in the future.

30 4. Implementation

function var float: par_calculation(
var float: out_radiation ,
array[int] of var float: lights ,
array[int] of float: lights_intensities ,
var float: screen ,
float: screen_transparancy
) =

% outside radiation to PAR
(1.0 - screen) * out_radiation * 2.0 * 0.6 +
% shaded part
screen * screen_transparancy * out_radiation * 2.0 * 0.6 +
% artificial lighting
sum(i in index_set(lights)) (lights[i] * lights_intensities[i]);

Listing 4.6: Simpler calculation for PAR-light inside the greenhouse, to replace the LSTM prediction. The outside radiation is converted
to PAR (*2), while accounting for glass transmissivity (*0.6), omitting the shaded part by the shading screen, and adding artificial lighting
PAR.

4.2.3. Key points LSTM-CP embedding
Rebuilding the LSTM within a CP setting has been the main challenge in this thesis, and various key points
in CP modelling contributed to its realisation. Especially the time-based structure of the LSTM required a
specific approach. These key points and general lessons learned are explained in this section.

Firstly, the general way of modelling decision variables and relations within CP, is by defining them and
comprise their dependence on other variables through constraints. Say we have variable a that is dependent
on variable b in the sense that b = 2 ·a. A general way of modelling this in MiniZinc would be the following:

var int: a;
var int: b;

constraint b = 2 * a;

Listing 4.7: General approach of modelling decision variables in MiniZinc.

From this model, we see that b is functionally dependent on a. While for small models, the MiniZinc
compiler is able to derive this functional dependence and annotate variable b accordingly, in larger models
this is not always the case. Therefore we can help the solver by explicitly stating this functional dependence
by directly instantiating variable b as two times a as follows:

var int: a;
var int: b = 2 * a;

Listing 4.8: Directly instantiating a decision variable in MiniZinc with a functional dependency.

This may seem trivial and unimportant, but in the case of a more complex model such as the LSTM,
this direct instantiation ensures that the solver simply calculates variable b, and does not see it as a deci-
sion variable to take into the search. In the background, the MiniZinc compiler adds the annotation pair
is_defined_var and defines_var(), which together indicate that a variable is functionally dependent on an-
other, and should not be decided. In our specific case, it means that we can specifically tell the solver to only
search on greenhouse action variables, all the other variables should simply be the result of the LSTM calcu-
lations. For the inside climate variables, the before-mentioned annotation pair was explicitly added, because
the variables are defined in our complete model and sequentially computed in our greenhouse LSTM model.
The defines_var() annotation of the inside climate variables can be seen in Listing 4.5. For small models, i.e.
having a small prediction time window or few LSTM units, MiniZinc was able to arrive at a solution without
using these direct instantiations. For larger models however, MiniZinc would crash as a result of the vast
amount of decision variables. Using direct instantiations mitigated these crashes.

This advantage of direct instantiations was passed on in the choice of functions over predicates. Where
predicates take in variables and constrain these, functions directly return a result. In the case of computing
the gate functions in the LSTM for example, a function is preferred as this entails a direct computation instead
of posing a constraint on a variable, where the solver would try to find values that satisfy the constraint. Also,
an additional variable would be needed for such a predicate, needlessly making the model more complex.
The same line of thought applies to not creating additional variables to hold the results of functions, but
rather chain these function calls as much as possible. Chaining the functions not only reduced the amount
of crashes as the problem size increased, it also improved the compiling and solving speeds greatly.

4.2. Model Embedding in CP 31

Most LSTM computations were done in compliance with this direct instantiation strategy, but for the
cell and hidden state this was not possible, as their structure is dependent on the chosen lag. As mentioned
earlier, the cell and hidden state vectors can not be updated directly, but are encompassed in separate vectors
for each timestep. To programmatically make this time-based computation work, both the cell and hidden
state vectors were defined in 2D arrays, with timesteps as rows, and the chosen LSTM unit size u as columns,
corresponding to vectors of length u for each timestep. In an iterative constraint, the values of the vectors are
decided by a calculation that includes values of the vectors of the previous timestep.

Because the solver needs to find values for these vectors, it helps to explicitly state bounds on these, as
tight as possible. This is also recommended in MiniZinc’s documentation [39]. We know that the hidden state
in an LSTM holds values between -1.0 and 1.0, because of the tanh activation function. The bounds of the cell
state are not that straightforward. In Equation 4.6, we see that ct depends on ft , ct−1, it , and c ′t . The bounds
for ft and it are (0, 1), as a result of the sigmoid function, similarly c ′t has bounds of (-1, 1) due to the tanh
function. Taking the cell state calculations in mind, the bounds for the cell state increase at each timestep.
The resulting bounds thus correspond to the lag l , so (−l , l). Deriving these bounds is more clearly visualised
in Table 4.2:

ft ⊙ ct−1 + it ⊙ c ′t = ct

t1 (0,1) (0,0) (0,1) (−1,1) (−1,1)
t2 (0,1) (−1,1) (0,1) (−1,1) (−2,2)
t3 (0,1) (−2,2) (0,1) (−1,1) (−3,3)
... (0,1) ... (0,1) (−1,1) ...
tl (0,1) (−(l −1), (l −1)) (0,1) (−1,1) (−l , l)

Table 4.2: Bounds calculation of the cell state, showing the dependence on the chosen lag. Initialised with
zeroes, the cell state bounds are propagated for each timestep up to lag timesteps.

32 4. Implementation

4.3. Economic Greenhouse Decision Support

Figure 4.3: Overview of the CP model and its rel-
evant parameters and decision variables. The
outside weather (O) is retrieved from a weather
forecast, the greenhouse actions (A) must be de-
cided, so that the inside climate (I) and crop pro-
duction (C) can be predicted through the em-
bedded models, finally leading to an economic
result (E) that is used for the optimisation pro-
cess.

The greenhouse and crop model, their embedding into CP, and the
CP model itself ultimately result in a complete economic green-
house DSS. This system models the complete greenhouse environ-
ment and optimises the decisions based on the economic aspect of
a tomato cultivation. How this complete system operates and how
the various components interact is visualised in Figure 4.3. The pa-
rameters and variables in the system are denoted by the letters O,
A, I, C, and E, respectively representing the outside weather, green-
house actions, inside climate, crop production, and economics. As
can be seen in the figure, some of these components are simply re-
trieved, others are predicted through the embedded models.

These parameters and decision variables each have a different
purpose within the CP model, and should thus be modelled differ-
ently. Also, the relations between the variables and their constraints
need to be modelled. In this section, the complete model imple-
mentation including the connection between the greenhouse and
crop model is laid out, as well as the assumptions made for the costs
accompanied with the greenhouse actions and the revenue follow-
ing the tomato yield.

4.3.1. MiniZinc model
I built the complete CP model in MiniZinc and connected it to the
greenhouse and crop model. In the previous section, we saw how
the greenhouse LSTM model and Lintul crop model were embed-
ded into a MiniZinc CP model through functions and predicates.
To use these models, we need to model their inputs. Before mod-
elling the variables, I initialised the amount of timesteps that follow
from the chosen prediction period, which can be seen in Listing 4.9.
One extra timestep is added, such that the decided actions of the
last timestep are reasonable for the timestep that falls just outside
of the chosen period. I modelled each of the three types of green-
house variables (out, act, and in) differently.

int: timesteps = 25;
set of int: TIMESTEPS = 1.. timesteps;

Listing 4.9: Initialisation of timesteps that follow from the chosen period.

First, I modelled the outside weather by arrays with a length of the amount of timesteps, with normalised
parameters (bounds of (0, 1)). They are parameters, because to the DSS they are known values. They are
retrieved from forecast data and will not be predicted or decided within the system. The values of the param-
eters are stored in the data file.

array[TIMESTEPS] of 0.0..1.0: out_rad_known;

Listing 4.10: Example of outside weather parameter array, in this example radiation.

Next, I modelled the actions in the greenhouse by a known and unknown part. The amount of known
timesteps Ta for the actions is given as input, and we split the variable arrays on this timestep. This Ta is at
least the chosen lag of the LSTM model, but can be larger. The LSTM model needs these first "lag" inputs to
start the multi-stage prediction process. The known part is a parameter array with normalised real numbers
that represent the first Ta actions that are already decided, the unknown part is a variable array with integers
that represent the decisions that the system will make. We discretise using integers, to reduce the amount
of possible values, improving the efficiency of the solver. There is a trade-off however, between efficiency
and precision of the result. The precision is an input in the model, indicating how many possible values a
greenhouse action decision variable can have. I use a base of 10 for the floating point operations to derive
the integer values which is especially useful for the inside climate variables, as will be discussed later in this

4.3. Economic Greenhouse Decision Support 33

section. The bounds for the unknown part of one action variable are then (0,10p), where p is the precision.
Throughout the rest of this thesis, a precision of 1 is used for the action variables, to limit the search space of
the DSS.

array [1..6] of 0.0..1.0: act_tube_under_known;
array [6.. timesteps] of var 0..10: act_tube_under_unknown_int;

Listing 4.11: Example of greenhouse action parameter and variable arrays, in this example the heating undertube. A precision of 1 is
used, leading to the bounds (0,101)

Finally, I modelled the inside climate similarly by a known and unknown part. The known part is already
normalised and is a parameter array with a length of the chosen lag of the LSTM model. The unkown part
consists of a variable array with normalised real values for the remaining timesteps, accompanied by an array
of the same length with integer values. The predicted values are rounded within the LSTM prediction pro-
cess, as can be seen in Listing 4.5. By rounding the inside climate values within the LSTM, the solver is able
to match the real numbers to their integer counterparts. To illustrate, consider the following example: Say
for t = 7, the LSTM outputs 0.312 for in_temp, which is a normalised value corresponding to 17.8°C using the
bounds (10, 35). If we use a precision of 2, this value will be rounded to 0.31. Since the integer counterpart
of the variable has the bounds (0,102), it will take on the value 31. So instead of the full range of possible real
numbers within (0, 1), the set of possible values now only consists of the integer values in (0, 100). Using inte-
ger values to match the predictions, improved the solving time substantially, because there are less possible
prediction outputs. Throughout the rest of this thesis, a precision of 2 is used for the inside climate variables,
to simplify the calculations but still give a reasonable result.

array [1..6] of 0.0..1.0: in_temp_known;
array [7.. timesteps] of var 0.0..1.0: in_temp_unknown :: is_defined_var;
array [7.. timesteps] of var 0..100: in_temp_unknown_int;
constraint forall(t in 7.. timesteps) (

in_temp_unknown[t] = scale(
in_temp_unknown_int[t],
0, 100,
0.0, 1.0

)
);

Listing 4.12: Example of inside climate parameter and variable arrays, in this example temperature. A precision of 2 is used, leading to
the bounds (0,102)

These outside, action, and inside arrays all come together in the greenhouse model input 2D array. Through
a direct instantiation of this 2D array, for each timestep either the known or unknown part of the arrays is
used. I normalise the unknown action variable arrays by scaling from (0,10p) to (0, 1). As we saw earlier, the
inside climate variables are already normalised.

array [1.. timesteps , 1..15] of var 0.0..1.0: X_greenhouse = array2d (1.. timesteps , 1..15 , [[

out_rad_known[t],
[...], % other out_vars

if t <= 6 then act_tube_under_known[t]
else scale(act_tube_under_unknown_int[t], 0, 10, 0.0, 1.0) endif ,
[...], % other act_vars

if t <= 6 then in_temp_known[t]
else in_temp_unknown[t] endif ,
[...], % other in_vars

][feature] | t in TIMESTEPS , feature in 1..15]);

Listing 4.13: 2D input array for the greenhouse LSTM prediction, including outside weather parameters, greenhouse action decision
variables, and inside climate variables. For readability, only one of each type of array (out, act, in) is shown.

Elsewhere in the CP model, I scaled the greenhouse action and inside climate variables back to their
original bounds so that they could be used to derive the action costs and the crop production, as the prices
and the Lintul-3 crop model are not normalised.

Additional constraints
The power of CP lies in posing constraints on the variables that limit the search space. Since the focus of this
thesis was on building a framework, embedding an LSTM into CP, and studying the applicability of CP within

34 4. Implementation

a greenhouse DSS, not many additional constraints were added that could improve the search. Nevertheless
I implemented a constraint that constrains variables consecutive in time to be similar. This was done in con-
straint difference_leq, which takes two variables, a maximum difference, and makes sure these consecutive
variables have values within this range.

Another constraint that was desired by Delphy, is the dark period in which lights are turned off. For this,
I added a parameter that indicates how many timesteps after midnight timestep 1 is and, depending on the
chosen dark period, with this I was able to turn off the lights for timesteps that fall within this dark period.

More constraints could be added to limit the search space even further. For example, not turning on the
lights when the outside radiation is high enough. Or turning off the heating when the inside temperature
reaches a known maximum value. However, these constraints are very specific to the strategy of the grower
and precisely the DSS should aid in making these strategic decisions.

Search strategy
One of the key points in building the CP model, was the implementation of a search strategy. In a search strat-
egy, a CP modeller can indicate how the solver should perform the search for feasible and optimal solutions.
This involves both the order of deciding variables and what values these variables should be initialised with.

The order of searching is essential in solving a CP model that involves time-based decision variables,
as is the case with our multi-stage prediction with an LSTM. Since the inside climate of a certain timestep
depends on a multitude of variables from previous timesteps, it helps the solver to know which variables to
decide first, before moving on to the next. I implemented this order of searching using MiniZinc’s seq_search
annotation, in which I placed a list of int_search annotations, each including all greenhouse action variables
for one timestep (see Listing 4.14). The solver thus first searches values for the decision variables of the first
unknown timestep, before searching values for decision variables of the next timestep.

solve
:: seq_search ([

% search actions first timestep after "lag"
int_search ([

act_light_led_unknown_int [7],
act_light_sont_unknown_int [7],
act_tube_under_unknown_int [7],
act_tube_grow_unknown_int [7],
act_screen_shading_unknown_int [7],
act_window_lee_unknown_int [7],
act_window_wind_unknown_int [7],

], first_fail , indomain_random),

...,

% search actions of last timestep
int_search ([

act_light_led_unknown_int [100],
act_light_sont_unknown_int [100],
act_tube_under_unknown_int [100],
act_tube_grow_unknown_int [100],
act_screen_shading_unknown_int [100],
act_window_lee_unknown_int [100],
act_window_wind_unknown_int [100],

], first_fail , indomain_random),

])
:: restart_constant (5)

maximize econ_profit;

Listing 4.14: Sequential search strategy, in which all greenhouse action variables are searched sequentially, starting with one timestep
after "lag", ending with the last timestep. For each timestep, the search strategy includes an int_search annotation, but for readability
the intermediate annotations are omitted in this listing.

Next to sequential search, I also implemented priority search [41], which provides a shorter and more
clear search strategy. Essentially, this search annotation performs the same search as the shown sequential
search in Listing 4.14, but more compactly modelled. Not all solvers implement priority search, so both
implementations of sequential search and priority search are available in the DSS.

4.3. Economic Greenhouse Decision Support 35

solve
:: priority_search(

% for each timestep
[t | t in 7.. timesteps],
[

% decide actions
int_search ([

act_light_led_unknown_int[t],
act_light_sont_unknown_int[t],
act_tube_under_unknown_int[t],
act_tube_grow_unknown_int[t],
act_screen_shading_unknown_int[t],
act_window_lee_unknown_int[t],
act_window_wind_unknown_int[t],

], first_fail , indomain_random)

| t in 7.. timesteps],

% in ascending order
smallest

)
:: restart_constant (5)

maximize econ_profit;

Listing 4.15: Priority search strategy, that uses a variable selection array of t in (7, timesteps), i.e. the unknown timesteps, in ascending
order to traverse the list of greenhouse action integer search annotations.

What can be seen in both Listing 4.14 and Listing 4.15, is that a restart annotation was used. While travers-
ing the search tree, the solver can get stuck in a branch from which no better solutions can be found in reason-
able time. Therefore, a restart of the search may help in finding better solutions more quickly. One condition
to using a restart annotation, is that some form of randomisation must be used in the search, otherwise the
restarted search will be the same as the previous search [39]. This randomisation is encompassed in the con-
strain choice indomain_random that I placed in the int_search annotation. This constrain choice assigns the
variables a random value from their domain during the search. If a restart is initiated, the solver returns to
the top of the search tree, this time initialising the decision variables with other random values within their
domains. No elaborate experiments were done to choose the type of restart annotation, but the chosen an-
notation restart_constant(5) seemed to work well.

4.3.2. Economics
While the specifics of the economic side of the DSS are not the focus of this study, reasonable assumptions of
the costs and prices for operating the greenhouse need to be made. The costs are related to the actions taken
in the greenhouse, while the revenue is simply a connection of the predicted crop production with a tomato
price. The investment costs are not taken into account in this study.

In a real greenhouse cultivation, the tomato prices are not fixed and the gas and electricity prices can also
fluctuate. This has become especially clear during the time of writing this thesis, where gas and electricity
prices have risen enormously. However, for simplicity the costs and revenues associated with the variables in
the system are the same for every timestep. Still, reasonable assumptions are made.

Also, many growers have a combined heat and power (CHP) unit that is used to power various equipment
in the greenhouse, and to generate heat. It also serves as a CO2 supply, as that is a byproduct of the unit. Again
for simplicity, this will not be taken into account and it is assumed that each cost item is treated separately.

To make the economic aspect of the greenhouse DSS independent of the size of the greenhouse, each of
the costs and prices are normalised such that they relate to one m2 greenhouse area, e.g. kg/m2 CO2 injection
or kg/m2 fruit production. Also, we have to take into account the size of the timestep we use in the problem
instance. Generally, hourly data is used, but in the case of 5-minute data we have to multiply by 5/60 minutes.
Therefore, where applicable a factor of f /60 is added, where f is the timestep frequency in minutes. Below
the total costs for each action and revenue for crop production are displayed, where T is the total amount of
timesteps in the problem instance.

• Heating tubes
The energy needed to heat the greenhouse is not solely dependent on the temperature setting of the
heating tubes, but also depends on the diameter and thus water throughput of the tubes. Following an
example from [51], we assume a water debit of 54 m3/ha/h, which means 5.4 Liters of water need to be
heated per m2 greenhouse area every hour. We are interested in the amount of natural gas needed to

36 4. Implementation

heat this water. The power P needed for and cost C of operating one heating tube for one timestep are
then calculated as follows:

P = m · c ·∆Tmp · 1

3600
(4.8)

C = P · 3.6

rV
·p, (4.9)

where m is the mass of the medium in kg to be heated, c the specific heat capacity of this medium in
kJ/kg/K,∆Tmp the difference between the desired temperature and current temperature in K or °C, 3.6
MJ the energy of 1 kWh, rV the heating value of natural gas in MJ/m3, and p the price of one m3 natural
gas.

The tube system circulates the water that needs to be heated. When a certain temperature of the water
in the tube is realised, this water will go through the tubes in the greenhouse, cool off depending on
the air temperature, and finally return to the beginning point where it will be heated again. It is thus
important to know how much the water has cooled off so that we know how much heat needs to be
added to the water again. While this cooling down depends on a lot of factors such as the set-up of
tubes in the greenhouse, we will make an assumption. Since in [51] a difference of tube temperature
50°C and air temperature 20°C led to a decrease of 10°C, the factor we need is (50-20)/10 = 3. We thus
make the assumption that the water needs to be heated by the following amount:

∆Tmp = (Tmptube −Tmpai r) · 1

3
, (4.10)

where Tmptube is the temperature of the tube and Tmpai r is the greenhouse air temperature.

The specific heat capacity c of water is 4.18 kJ/kg/K, the heating value rV of natural gas is 35.17 MJ/m3.
Putting it all together, without the possibility of negative heating and again accounting for the timestep
frequency, the cost Ctube of operating a heating tube becomes:

Ctube =
∑
t∈T

mi n(0, act_tubet − i n_tempt) · f

60
·2.14 ·10−4 ·p, (4.11)

where act_tubet is the decision variable indicating the tube temperature and i n_temp indicates the
air temperature.

Gas prices in horticulture are made out of the commodity price and some extra service costs. As an
example we can look at the prices of 2019 in [52]. There we have a commodity price of €0.2/m3 and
additional costs like energy tax and handling fees that sum up to €0.0359/m3. For 2019 we can thus as-
sume a gas price of €0.24/m3. At the time of writing this thesis, gas prices have risen enormously due to
various developments in politics and economics, which becomes visible in the gas prices of households
which have risen from €0.65/m3 last year to about €2.66 per m3[53]. Of course, there is a difference be-
tween gas prices for households and greenhouse growers, but it shows the substantial increase. The
effects of these price changes on the decision making process will be evaluated in section 5.3. As an
example, with a price of €0.24/m3, a desired tube temperature of 60°C, and an inside temperature of
20°C, the cost for one tubing system would be €0.002/m2/h.

• Artificial Lighting
The cost of operating artificial lighting depends of course on the type of lighting. Each lighting installa-
tion has a certain light intensity, which can be translated to needed electricity, which can be linked to
electricity prices.

We have a light intensity I of the lighting system in µmol/m2/s and an efficiency η in mol/J. Converting
this to hourly values we need to multiply by 3600. Together with the knowledge that 1 MJ = 1/3.6 kWh
and thus 1 MJ = 1/3600 MWh, the factor cancels out. All four lighting variables are discrete, so this will
result in either the costs of turning on the lighting for one hour or no costs at all when the lighting is

4.3. Economic Greenhouse Decision Support 37

turned off. Again, the timestep frequency is taken into account. The resulting cost calculation for a
lighting installation Cl i g ht thus becomes:

Cl i g ht =
∑
t∈T

act_l i g ht · f

60
· I

η
·10−6 ·p, (4.12)

where act_l i g ht is the discrete variable of turning the lighting system on or off and p is the price in
€/MWh .

The LED and SON-T lighting in department 3.5 have light intensities of respectively 120 µmol/m2/s
and 80 µmol/m2/s. We assume an efficiency of 3.6 µmol/J for LED lighting and 1.85 µmol/J for SON-T
lighting. For one-hour data, the LED lighting thus uses 3.33 ·10−5 MWh/m2/h and the SON-T lighting
4.32 ·10−5 MWh/m2/h.

For department 6, both lighting systems have a light intensity of 140 µmol/m2/s. The first LED system
has an efficiency of 3.4µmol/J, the second LED system 2.7 µmol/J. The resulting needed electricity for
LED system 1 is 4.12 ·10−5 MWh/m2/h and for LED system 2 this is 5.19 ·10−5 MWh/m2/h.

The electricity prices for growers also exist of a commodity component and some extra costs like the
energy tax. From an example in the KWIN 2019 document, we get a commodity price of €48/MWh and
extra costs of €39.56/MWh resulting in a total of €87.56/MWh [52]. Fixed (monthly) costs are not taken
into account. Similar to the situation regarding gas prices, the price of electricity is also substantially
higher than normal. At the time of writing, the average commodity price (peak and off-peak hours)
of electricity is €271.11/MWh, while in January 2021 this was around €65/MWh [54]. Again, it would
be interesting for a decision maker to see the effect of such changes in pricing on their cultivation. As
an example, taking the price of 2019 of €87.56/MWh, this would result in €0.0029/m2/h for LED and
€0.0038/m2/h for SON-T in department 3.5.

• CO2 injection
The amount of CO2 injection in department 6 is measured in kilograms per hectare per hour. Since we
are calculating costs per m2, we have to divide the injection by 10.000.

In the case of using a CHP unit, the price of CO2 could be set to € 0, as the costs of producing the CO2

would be entailed in the costs of generating heat and power. However, for simplicity we assume that
the CO2 is bought at a certain market price. A price of € 0,08 per kilogram CO2 is assumed [52]. These
assumptions on CO2 injection thus lead to the following calculation of costs for CO2 Cco2:

Cco2 =
∑
t∈T

act_co2t · f

60
· 1

10000
·0.08. (4.13)

As an example, an injection of 50 kg/ha in one hour would thus result in a cost of €0.0004/m2.

• Windows & Screens
Opening and closing the windows and screens are not costly operations. Small motors regulate the the
opening and closing and do not require much energy. Therefore these costs are neglected, resulting in
a cost of € 0. From a decision making point of view, it would be interesting to see how much these "free"
actions can be utilised to regulate the climate without resorting to more expensive actions. The costs
for operating the windows and screens thus become respectively Cwi ndow and Cscr een :

Cwi ndow =
∑
t∈T

act_wi ndowt ·0 (4.14)

Cscr een =
∑
t∈T

act_scr eent ·0 (4.15)

38 4. Implementation

• Crop production
Continuing the example cultivation year of 2019, the prices for tomato in this year ranged from €0.30/kg
fresh-weight to €1.13/kg, the average season price was €0.78/kg [55]. Clearly including a time-varying
tomato price in the system would give more realistic results. Therefore the monthly prices are approx-
imated by taking the seasonal average price and doing something similar as with the cyclical features
in section 4.1. The price in both 2019 and 2020 is the highest in January and the lowest in June [55]. We
calculate the cosine of the month of the year, multiply this by the average difference between the sea-
sonal price and the extrema (min and max prices), and add this to the seasonal average tomato price.
So this results in p = ps +pd ∗cos(M/12∗2π), where p is the approximated tomato price, ps is the sea-
sonal price, pd is the average difference between ps and the extrema, and M is the month of the year
(counting from 1) of the prediction. Note that while the fluctuating behavior of tomato prices is thus
incorporated in the DSS, the resulting tomato price is still the same for each timestep. A result of this
approximation for both 2019 and 2020 can be seen in Figure 4.4.

Figure 4.4: Comparison of actual and approximated tomato prices in the Netherlands for 2019 and 2020. The
approximation is done with a cosine of the month number divided by the amount of months in a year.

The revenue RFW is then simply the total fresh-weight crop growth times this approximated price p:

RFW =
∑
t∈T

cr op_g r ow tht · (ps +pd · cos(M/12 ·2π)) (4.16)

4.3.3. Running the DSS
When the complete CP model has been set up, including all greenhouse and crop variables, their prediction
functions, additional constraints, and economic variables, the JaCoP solver can run the model. The objective
function that is to be maximised is the profit realised within the given period, which I modelled by computing
the revenue from crop growth, and from this revenue subtracting the costs that follow the greenhouse actions.
A MiniZinc instance is created, including the greenhouse, crop, and complete model and data file. With a
given timeout, the solver will search for solutions that satisfy all constraints, while maximising the profit.
When an optimal solution is found or there is a timeout, the best solution will be saved as a data file that
includes the outside weather, decided greenhouse actions, and predicted inside climate for the given period.
Solving statistics and the objective values are saved as well.

To speed up the search, a step-size for assessing objective function values relative to the amount of
timesteps was used. By using this step-size, the solver can skip intermediate solutions. A profit step-size
of 0.5 eurocents per hour was used.

5
Experiments

To demonstrate and validate the implementations described in the previous chapter, various experiments
were performed. For the LSTM and TCN greenhouse models, validation experiments were performed in both
department 3.5 and 6. For the LSTM embedding in CP, more validation experiments were performed that
demonstrate the correct implementation of the embedding. Lastly, some experiments were performed for
runtime analysis of the DSS and its decisions. In order, the experiments for the LSTM and TCN models, the
LSTM embedding in CP, and the CP DSS will be discussed in this chapter.

5.1. Time Series Neural Networks
To validate both the LSTM and TCN models, various experiments were performed to compare the predicted
climate with the actual climate in the greenhouse. The LSTM and TCN models were trained with the pa-
rameters obtained in the grid searches in section 4.1 and predictions were done in both departments in two
different season periods; summer and winter for department 3.5, autumn and spring for department 6. For
the complete set of experiments in both department 3.5 and 6, please refer to Appendix C.

There is no year-round cultivation and therefore no year-round data is available. Also, some of the sensors
in Zensie are removed in different cultivations. Lastly, because at Delphy each of the cultivations within one
department are very different and involve different crops, we are limited to sample both the training and
prediction data from the same cultivation. Normally, a grower would be able to use multiple cultivations as
training data, as likely very similar cultivations are done in one grower’s greenhouse. All of this results in only
specific periods being usable for training and prediction. The prediction periods for department 3.5 were
three days starting from 25/12/2020 for the winter experiment and three days starting from 5/8/2021 for the
summer experiment. The training period is just within this range from 28/12/2020 to 4/8/2021. The training
period for department 6 was 13/10/2021 to 9/4/2022. The autumn prediction period was three days starting
from 10/10/2021, for spring this was three days starting from 10/4/2022.

5.1.1. LSTM greenhouse climate predictions
Firstly, I validated the LSTM greenhouse model for multiple seasons and departments. Light, temperature,
humidity deficit, and CO2 are predicted in a multi-stage prediction and compared to the real inside climate
in the given period. Because no CO2 injection sensor is available in department 3.5, I also performed experi-
ments on department 6 to see the effect on CO2 prediction.

Set-up
For department 3.5 I trained an LSTM model on all relevant features of department 3.5 (see Table 4.1), with
a batch size of 512, a lag of 6 timesteps (6 hours), and 4 LSTM units. For the experiments of department 6 I
used a batch size of 256, a lag of 6 timesteps (6 hours), and 4 LSTM units. I performed three-day multi-stage
predictions of the inside climate using the prediction datasets of winter and summer in department 3.5 and
autumn and spring in department 6. Each experiment was run 5 times and the result was averaged.

39

40 5. Experiments

Results & Discussion

Figure 5.1: LSTM inside climate prediction 5/8/2021 00:00 - 7/8/2021 23:00, department 3.5,
resulting in an RMSE of 0.065.

Figure 5.2: LSTM inside climate prediction 10/10/2021 00:00 - 12/10/2021 23:00, department 6,
resulting in an RMSE of 0.0278.

Figure 5.1 shows the LSTM prediction in the summer in department 3.5. What we see is that the LSTM model
is able to predict the temperature and humidity deficit quite well in all five runs, but it has some trouble
with predicting the inside PAR light, which is probably caused by clouds or other shadows formed on the
PAR-sensors. Because we have data of outside radiation and artificial lighting, I will perform a simpler com-
putation instead which was explained in section 4.2. Lastly, CO2 is the hardest target feature for the model to
predict. Primarily, CO2 levels recorded by the sensor are more fluctuating than that of the other climate vari-
ables. Furthermore, how much CO2 is in the air also depends on crop processes, which is not a direct input
feature. Unfortunately, the additional knowledge of amount of CO2 injection did not help the CO2 prediction,
as we can see in Figure 5.2. The temperature and humidity predictions are still quite accurate.

5.1.2. TCN greenhouse climate predictions
Next, I performed validation experiments on the TCN greenhouse model. Again the model was validated on
both departments and in multiple seasons.

5.1. Time Series Neural Networks 41

Set-up
Similarly, the experiment of the TCN model included training a TCN model on all relevant features of depart-
ment 3.5, with a batch_size of 256, lag of 6 timesteps (6 hours), [1, 2, 4, 8] as dilations, an nb_filter of 128,
and a kernel size of 5. For department 6, the same hyper-parameters were used. Again the inside climate was
predicted and I ran each experiment 5 times and averaged the result.

Results & Discussion

Figure 5.3: TCN inside climate prediction 5/8/2021 00:00 - 7/8/2021 23:00, department 3.5,
resulting in an RMSE of 0.0598.

Figure 5.4: TCN inside climate prediction 10/10/2021 00:00 - 12/10/2021 23:00, department 6,
resulting in an RMSE of 0.0215.

In Figure 5.3, we can see slightly worse results for temperature and humidity, while the CO2 prediction was
better. The light prediction is not better and additionally gives more variance in the results. In the autumn
experiment in department 6 however (see Figure 5.4), the light prediction is better and temperature and hu-
midity predictions are similar to that of the LSTM. CO2 remains the hardest to predict. Overall, TCN achieves
similar RMSE values as the LSTM models.

42 5. Experiments

5.2. Model Embedding in CP
To make sure the LSTM embedding works properly, I performed validation experiments. The possible actions
in the greenhouse like the heating tubes and window openings are the decision variables in the CP model, but
for these experiments we fix these variables such that the actions are decided. In this way, the LSTM within
the CP model should behave similarly as a regular LSTM. To validate this, I set up the following experiments:

5.2.1. LSTM-in-CP validation, 3 days
The most straightforward experiment to perform is using the same set-up as one of the experiments in sec-
tion 5.1, to see if the results are similar. Therefore the first experiment is the three-day multi-stage prediction
of the inside climate of department 3.5 in summer.

Set-up
I trained an LSTM model on cultivation data from 28/12/2020 to 4/8/2021, with all outside weather fea-
tures, relevant action features for department 3.5, and inside features from Table 4.1. It was trained with a
batch_size of 512, lag of 6 timesteps (hours), adam optimizer, loss function MSE, and one LSTM layer with 4
units. After training, the LSTM was embedded into a CP model. The chosen prediction period was 5/8/2021
00:00 to 7/8/2021 23:00 (72 timesteps), with the values of all action variables decided. Some discrepancy in
the output is expected, as the action variables are discretised. The experiment was run 5 times and averaged.

Results & Discussion

Figure 5.5: Validation of the greenhouse LSTM model embedded in CP for a 3-day prediction
period on the inside climate. The first 6 timesteps (lag) of the inside climate are known, the

remaining timesteps are predicted in a multi-stage fashion within CP. The outside weather and
action variables of all timesteps are filled in.

In Figure 5.5 we see the LSTM prediction of each of the inside climate variables within CP for a prediction
period of 3 days, with an RMSE of 0.0665. The figure shows similar results as the "regular" LSTM predictions
in section 4.1 with a similar RMSE value as well, indicating that the embedding LSTM in CP is behaving as
expected.

5.2.2. LSTM-in-CP validation, 10 days
Since ultimately we want to use the DSS to make long-term decisions and predictions, I did another experi-
ment for a longer period. One could expect that any error in the calculation will be amplified with an increas-
ing amount of timesteps, so the following experiment is set up to test this behavior.

5.2. Model Embedding in CP 43

Set-up
The set-up for this second experiment is almost the same as that of the three-day prediction, except that the
prediction period is 5/8/2021 00:00 to 14/8/2021 23:00 (241 timesteps). The LSTM training and parameters
remained the same. Again the experiment was run 5 times and averaged.

Results & Discussion

Figure 5.6: Validation of the greenhouse LSTM model embedded in CP for a 10-day prediction
period on the inside climate. The first 6 timesteps (lag) of the inside climate are known, the
remaining timesteps are predicted in a multi-stage fashion. The outside weather and action

variables of all timesteps are filled in.

Figure 5.6 shows the embedded LSTM prediction for 10 days of the inside climate of department 3.5, with an
RMSE of 0.0657. The figures show that for a larger amount of timesteps, the LSTM in CP embedding is still
able to compute the right outputs. These experiments merely show the correctness of the LSTM embedding,
the accuracy of the model remains the same, as we can see from the poor predictive power for CO2.

44 5. Experiments

5.3. Economic Greenhouse Decision Support
Ultimately, the goal of the DSS is for the growers to be supported in their decisions. Therefore it is interesting
to see what decisions the system makes, how fast it comes to a solution, and how these decisions compare to
decisions made by the grower. In this section first some general experiments on runtime are done, followed
by the comparison between the system and a real grower for a specific cultivation period, and lastly the effect
of changing some of the prices on the decisions is studied for small problem instances.

5.3.1. Runtime
There are various input factors that may influence the runtime of the decision support system. The most
straightforward factor is the amount of timesteps that are taken into account in the decision making process,
but also the amount of features used for prediction in the LSTM and the units within this LSTM affect the
runtime. To understand exactly how these factors influence the runtime, I set up three experiments including
these factors to see how the input size affects the time of finding a solution.

Set-up
For each of the input factors, I trained a greenhouse LSTM model, embedded this model in MiniZinc, and with
the combination of the Lintul-3 crop model I set up the complete CP model. I then set the solver to find the
first solution that satisfies all constraints and measured the runtime. Important to note here is that solving for
optimality is thus not included in these experiments, these experiments merely show the runtime of finding
a solution and computing all LSTM and other propagations that follow. I ran the experiments 5 times and
averaged the result, each time with a newly trained LSTM to account for randomness in the training process.
The training of the LSTM was not included in the runtime however, as in a real setting the training of the
models would only happen once or occasionally. The total runtime thus includes the model embeddings, the
set-up of the complete CP model, and running the decision support system. The default values in all three
experiments for the amount of timesteps, features, and LSTM units were respectively 15, 15, and 4. In the
timesteps experiment, the amount of timesteps to compute were then increased linearly with from 7 to 15
with a step-size of 2. For the features experiments the amount and step-size was the same. Lastly, in the
LSTM units experiment, the units were increased from 2 to 10, with a step-size of 2.

Results & Discussion

Figure 5.7: Runtime experiments for increasing the amount of timesteps, features, and LSTM units. The experiments were run 5 times
and averaged. The blue line shows the average, the grey area are the bounds.

From Figure 5.7 we see that in all three experiments the runtime appears to grow linear with respect to the
size of the input. When running the DSS, likely the LSTM units and amount of features will not be altered too
much, as they follow from the preparatory hyper-parameter tuning and feature selection. The actual runtime
thus mainly depends on the chosen amount of timesteps, which results in a trade-off between long-term
prediction and runtime. Still, a linear growth in runtime is acceptable. As said, solving for optimality is not
included in these experiments, so we can not say that the runtime of finding a better solution than the grower
also grows linear with respect to the input size.

5.3. Economic Greenhouse Decision Support 45

5.3.2. Grower versus Decision Support System
To understand the improvements of the system over a growers decisions, I performed a comparison exper-
iment. In this experiment, I compare the decisions and economic outcomes of a grower and the DSS. Most
importantly, the profit should increase, but it is also interesting to see the resources used and the production
that was realised. After running some initial experiments with relatively short runtimes, it was clear that the
DSS did not give solutions that are an improvement of the grower’s decisions. Therefore in this experiment I
used a very long runtime of 11 hours. In practice, this runtime would be too long for a grower to be useful,
but I performed this experiment mainly for demonstration purposes of the capabilities of the DSS if it would
have enough time. Running the experiment multiple times and averaging the result was not possible in this
case, as the resulting intermediate solutions may have very different values for the decision variables because
of randomisation.

Set-up:
A CP model including an LSTM model for the greenhouse climate and the Lintul-3 model for crop produc-
tion was generated for department 3.5, using all the relevant features mentioned in Table 4.1, and the hyper-
parameters that were obtained in the grid search in section 4.1. The prediction period was one day in sum-
mer; 5/8/2021 00:00 to 5/8/2021 23:00. I chose such a small period so that the search space was not too large.
I set a timeout of 11 hours. First, the CP model was run with action variables filled in, which represent the
growers’ decisions. The predicted climate and the resulting economic values are computed. The climate that
followed the grower’s decisions is thus also a prediction, it is not the actual realised climate as the LSTM does
not have a 100% accuracy. Next, I ran the model with free action decision variables, so letting the DSS decide
the actions. Again, the inside climate and economic results are computed to be compared to the grower.

Results & Discussion
In Figure 5.8 we can see the outcome of running the DSS for a prediction period of one day in summer with
a timeout of 11 hours. What we can see is that the DSS decides to make more use of the shading screen and
lower both the undertube heating and leeside window ventilation, while still reaching a similar temperature.
Also, the lighting systems are used more, directly leading to more crop growth. The DSS thus sees the added
benefit of turning the lights on compared to their costs. In the resulting economic values, we can see that
indeed the system has higher costs, but we see a payback of this in the revenue. In this case, the DSS thus
has an increased profit with respect to the grower’s decisions. What we can conclude from this experiment,
is that given enough time or a small enough search space, the DSS is able to find better solutions. This shows
the potential of such a system. Still, the runtime is too long and the prediction period too short to be used in
practice, so improvements are needed.

46 5. Experiments

Figure 5.8: Results of running the DSS in department 3.5 in the period 5/8/2021 00:00 to 5/8/2021 23:00 (one day), with a timeout of
11 hours. The outside weather is retrieved, the greenhouse actions are decided by the DSS, and the inside climate is predicted. These
actions and the predicted climate are compared to the actions taken by the grower and the resulting climate. In the figure, the dark lines
represent the result of running the DSS, the brighter lines represent the grower’s decisions and resulting climate. Also, a comparison of
yield and economic outcomes is given.

5.3. Economic Greenhouse Decision Support 47

5.3.3. Economics
As mentioned before, currently gas and electricity prices are extremely high, which shows the importance of
an economic decision support system. Last year the commodity prices of electricity and gas were respectively
€65/MWh and €0.65/m3 [53, 54]. Using the additional fixed handling costs found in the KWIN 2019 document
of €39.56/MWh respectively €0.0359/m3, we see that the total price of electricity has become almost three
times higher and that of gas almost four times higher. Seeing the effect of such price changes would be
interesting to see for a grower, as the DSS should weigh in these costs and the expected profit that follows. In
the following experiments, I will examine the effect of a price change of electricity and natural gas.

Set-up
I set up three experiments for both scenarios. One with the price taken from the KWIN 2019 document as
explained in subsection 4.3.2, another experiment with a price three times lower, and lastly one with a price
three times higher. Experiments are run for department 3.5 in the period 15/4/2021 5:00 to 15/4/2021 13:00.
Such a short prediction period was chosen so that the DSS has enough time to come to a reasonable solution.
Each of the experiments was run 5 times and averaged, each with a timeout of 10 minutes. A lag of 6 was
used, which means that in each experiment the first 6 timesteps are already decided in advance. For clarity,
only the last four timesteps are shown, of which the last two timesteps are thus newly decided by the DSS.

Results & Discussion

Figure 5.9: DSS decisions when varying the electricity (left) and gas (right) prices between the original price, a price three times lower
than the original, and a price three times higher than the original.

In Figure 5.9 we see the actions taken by the DSS with varying electricity and gas prices. On the left we see
the effects of decreasing and increasing the electricity price. Although generally we see subtle differences in
the actions taken, in the case of lighting the effects of increasing the electricity price are evident. When the
electricity price is higher, the DSS prefers to turn off the lights. Especially the SON-T lighting that has a lower
efficiency is preferred to be turned off. From the resulting economic values in Figure 5.10, we see that with a
higher price, the DSS gives up some of its revenue and thus yield, to cut the increased costs somewhat. Also,
we see that with a lower price, the revenue may be lower to reach a similar profit as with the original price.

With the varying gas prices, we see very few differences in the actions in Figure 5.9 and similarly in eco-
nomic results in Figure 5.10. What is clear from the economic results, is that the gas price has a substantially
lower effect on the costs than the electricity price.

48 5. Experiments

Figure 5.10: Economic results when varying the electricity (left) and gas (right) prices between the original price, a price three times
lower than the original, and a price three times higher than the original.

6
Conclusion

In this thesis I studied the applicability of CP in greenhouse decision making, with the objective of maximising
economic profits for the grower, by leveraging time-based NNs and embedding these in CP. In this concluding
chapter I will first answer the research questions, followed by the limitations of my work with directions for
possible future work, and lastly an initial set-up for a publication.

6.1. Research Questions
To guide the research, I set up three sub-questions that together helped in answering the main research ques-
tion, all described in section 1.4. Each of the sub-questions will be discussed below, followed by an answer to
the main research question.

1. How can short-term decisions and their long-term profit in a greenhouse be modelled?

Many mathematical models exist that model the greenhouse and crop, some of which are discussed in
chapter 2. Through multiple equations, the physical relations between the greenhouse and crop are
modelled. However, these models are complex and need many parameters, making their implemen-
tation impractical. In this thesis, the greenhouse was therefore modelled by two types of time-based
NNs; Long Short-Term Memory and Temporal Convolutional Network, of which the implementations
were discussed in section 4.1 and their performances were shown in section 5.1. Unfortunately, a sim-
ilar approach for the crop model was not realised in this study, so the simpler and more short-term
based Lintul-3 model was used. In section 4.3 the DSS implementation was discussed, in which the
short-term decisions were represented by the possible greenhouse actions that influence the inside cli-
mate, modelled as decision variables per timestep in a CP model. The long-term profit was modelled
by the revenue obtained from the predicted yield in the Lintul-3 model that followed from the predicted
climate, minus the aggregation of costs per timestep of each action decision variable.

2. How can this model be used in combination with Constraint Programming?

The embeddings of the greenhouse and crop models, especially the LSTM-in-CP embedding, were dis-
cussed in section 4.2. An important aspect of this thesis was to implement a proof-of-concept of such
an embedding. This embedding was realised through multiple MiniZinc functions, of which key points
in its realisation were discussed. Firstly, by directly instantiating variables through their functional de-
pendence on other variables, we explicitly tell the solver not to perform a search on these variables. This
leads to the solver only performing a search on the input variables of the LSTM, not simultaneously on
the output variables. Also, functions were preferred over predicates, as no additional intermediate vari-
ables are needed that the solver tries to perform a search on. Furthermore, since the internal cell and
hidden state of the LSTM cell are dependent on the chosen time lag, predicates needed to be used in-
stead of functions. To help the solver solve these computations, explicit bounds as tight as possible
were used on these intermediate variables. Lastly, since the multi-stage prediction is a sequential pro-
cess, it was essential to inform the solver the order of solving, which was shown in section 4.3. In two

49

50 6. Conclusion

validation experiments in section 5.2, the correctness of the LSTM embedding was shown. The green-
house model was used in combination with CP by embedding an LSTM, the crop model was used by
embedding the Lintul-3 model as a single MiniZinc function.

3. How does this Constraint Programming model aid growers in the economic decision making pro-
cess?

The DSS was designed to optimise the grower’s profit through minimising the costs that follow the
actions taken in the greenhouse and maximising the revenue that follows from the predicted climate
and subsequently the crop yield, which was shown in section 4.3. Using this DSS can help growers make
better decisions in the future, as well as helping them understand what the DSS would do differently
in past cultivation periods. Unfortunately however, the DSS is not always performing better than the
grower in terms of resulting profit. This is due to the search space being too large for the solver to
find a better solution within reasonable time. With the current state of the system, the DSS will thus
not necessarily help growers make better decisions. For small problem instances however, we have
seen improvements of the made decisions resulting in more profit in section 5.3. Here we have also
seen that the DSS can help growers make well-informed decisions when gas or electricity prices rise,
by turning off the lights for example. The potential of the DSS has thus been shown on small instances,
but needs further improvement to more quickly find good solutions.

The main research question set out to answer in this research was formulated as follows:

How can short-term decisions on the climate in a greenhouse with certain costs be made such
that it leads to a better long-term profit, using Constraint Programming?

How Constraint Programming can be used to make better economic decisions in a tomato greenhouse was
studied in this thesis and it was realised through embedding an LSTM greenhouse model and a Lintul-3
crop model in MiniZinc, and minimising the costs of operating the greenhouse climate while maximising
the revenue following from the predicted crop growth. A sub-goal of this research was implementing a proof-
of-concept of an LSTM-in-CP embedding, which was realised through specifically instructing the CP solver
which variables should be taken into the search, and the order in which to perform this search. The applica-
bility of CP in an economic greenhouse DSS was shown for small instances, but has room for improvement
until it can be deployed properly in practice for larger instances.

6.2. Limitations and Future Work
While the applicability of CP in economic greenhouse decision making has been shown for small instances,
before it can be applied properly on real-world instances some of the limitations need to be addressed. First
of all, the implemented greenhouse LSTM model is not able to predict CO2 and light well. CO2 levels are
fluctuating relatively fast and not as smooth as temperature or humidity and they depend on crop processes,
making it harder to predict. The poor light prediction is likely the result of the PAR-sensors that are shadowed
by clouds or other shadow-forming objects in the greenhouse. Secondly, the crop model is very basic and is
does not include long-term relations. Lastly, the DSS itself is not yet usable in practice, mainly because the
large search space makes it hard for the DSS to find good solutions. Possible directions for future work are
laid out below:

Additional data

In this study, each time an NN model was trained it was trained on data of one cultivation which usually
spans a period that does not cover the whole year. This means that the models do not see the full variety
of weather data in a year during training. At Delphy, each greenhouse department involves different
crops in different cultivation periods, and sensors are sometimes removed or replaced. Future work
could include a more thorough data collection of multiple cultivations of the same crop variety, all in
one large dataset. Such a larger dataset could improve the accuracy of the trained models. Also, because
the crop substantially affects the environment, additional crop data such as the leaf area index (LAI) or
age of the plant could improve the accuracy, if this data is available.

Improving the greenhouse model

We have seen that the LSTM and TCN models did not perform well on light and CO2 prediction. Light
was therefore modelled through a calculation using the outside radiation, artificial lighting systems,

6.3. Research Paper 51

and the shading screen, giving more reliable results. Other screens, such as the energy saving screen
in department 6, could be added in a more general approach, so that any number of screens can be
applied in this calculation. Furthermore, the CO2 prediction should be improved, possibly by including
more features such as the LAI of the crop.

Improving the crop model

As mentioned, the simple Lintul-3 model was used to predict the crop yield. However, this model is
very basic and does not take into account the long-term effect of decisions, as it simply calculates the
effect of light, temperature, and CO2 for each timestep. Also, the humidity is thus neglected in the
current implementation. Initially, the intention was to implement a time-based NN for the prediction
of crop yield as well, similar to that of the greenhouse. Unfortunately this was not realised in this study,
but future work could include the implementation of such a model, which potentially can include the
long-term effects of greenhouse decisions. The groundwork for the implementation of such a time-
based NN crop model is laid out in this thesis, by the general implementation of LSTMs and TCNs.

Search strategy

The implemented DSS does not always give better results than a grower’s decisions, so it needs im-
provement. While various search strategies were tried, future work could include experimenting more
with the different combinations of search annotations and restart possibilities. Especially finding the
best combination of variable and value selection annotations could help in finding solutions more ef-
ficiently. Also, any additional constraints that can reduce the search space would be very beneficial, as
currently it is too large to find good solutions in reasonable time.

Warm start

Implementing a warm start, i.e. doing an initialisation with a known good solution, could improve the
DSS greatly. For example, this initialisation could be decisions a grower has made in similar weather
conditions. Firstly, since the grower almost always outperforms the DSS in large instances with short
timeouts, starting with decisions similar to the grower would provide a head start. Secondly, when the
DSS is provided with a solution that is already good, the bounds can be set tighter around this solution
resulting in a reduction of the search space.

Iterative refinement

With an iterative refinement method, the DSS first can be run with low precision both in terms of cli-
mate and crop predictions as well as timestep frequency, so that a rough estimate of a good solution
can be found. Then by using this found solution, the DSS can be run again with slightly higher preci-
sion but tighter bounds. By repeating this process, the system may converge to a good solution much
quicker.

Accurate and time-based costs and prices

Currently, the costs of operating the greenhouse actions are assumed by looking at historical values.
Similarly, the price of tomatoes is estimated by using a historical price, and additionaly it is increased
or decreased according to the month of the year. However, these economic values are computed in
advance and fixed for each timestep. A more realistic DSS would include arrays of costs and prices that
show their varying values for each timestep. Also, future work could include predicting these values
instead of making assumptions.

6.3. Research Paper
The potential of using CP in economic greenhouse decision making, as well as the novel embedding of an
LSTM in CP, gave me and my supervisors the incentive to try and publish the results of this thesis. We have
decided to apply for the Thirty-Fifth Annual Conference on Innovative Applications of Artificial Intelligence
(IAAI-23). Since the thesis involves the use of inter-disciplinary AI techniques, namely LSTMs and CP, we will
apply for track 4 of the conference; "Innovative Inter-disciplinary AI Integration". The submission date will
be in September 2022. Please see Appendix D for a draft of this research paper.

Bibliography

[1] G. van Straten and E.J. van Henten. Optimal greenhouse cultivation control: Survey and perspec-
tives. IFAC Proceedings Volumes, 43(26):18–33, 2010. ISSN 1474-6670. doi: https://doi.org/10.3182/
20101206-3-JP-3009.00004. 3rd IFAC Conference in Modelling and Control in Agriculture, Horticulture
and Post-Harvest Processing - Agricontrol.

[2] E. Iddio, L. Wang, Y. Thomas, G. McMorrow, and A. Denzer. Energy efficient operation and modeling for
greenhouses: A literature review. Renewable and Sustainable Energy Reviews, 117:109480, 2020. ISSN
1364-0321. doi: https://doi.org/10.1016/j.rser.2019.109480.

[3] G. van Straten, H. Challa, and F. Buwalda. Towards user accepted optimal control of greenhouse climate.
Computers and Electronics in Agriculture, 26(3):221–238, 2000. ISSN 0168-1699. doi: https://doi.org/
10.1016/S0168-1699(00)00077-6. URL https://www.sciencedirect.com/science/article/pii/
S0168169900000776.

[4] Z. Kang. Autonomous greenhouse model optimisation. Master’s thesis, Wageningen University, the
Netherlands, 2020.

[5] A. Giakoumatos. A decision support model for an optimal lighting strategy, 2021. As part of thesis Farm
Technology course at Wageningen University.

[6] R.F. Tap. Economic-based optimal control of greenhouse tomato crop production. PhD thesis, Wagenin-
gen University, 2000.

[7] M. Wallace. Practical applications of constraint programming. Constraints, 1(1-2):139–168, 1996. doi:
10.1007/BF00143881.

[8] E.J. Van Henten, J. Bontsema, and G. van Straten. Improving the efficiency of greenhouse climate control:
An optimal control approach. Netherlands Journal of Agricultural Science 45, p. 109-125, 45, 1997. doi:
10.18174/njas.v45i1.529.

[9] K. Nemali. History of controlled environment horticulture: Greenhouses. HortScience, 57(2):239 –
246, 2022. doi: 10.21273/HORTSCI16160-21. URL https://journals.ashs.org/hortsci/view/
journals/hortsci/57/2/article-p239.xml.

[10] R.C. Morrow. Led lighting in horticulture. HortScience, 43(7):1947–1950, 2008. doi: 10.21273/hortsci.43.
7.1947. URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-57049180834&doi=10.
21273%2fhortsci.43.7.1947&partnerID=40&md5=4a33d49693845008b5a43b6369206ce3.

[11] F. Rodriguez, M. Berenguel, J. Guzmán, and A. Arias. The Greenhouse Dynamical System, pages 9–97.
2015. ISBN 978-3-319-11133-9. doi: 10.1007/978-3-319-11134-6_2.

[12] P. van Weel, P. Geelen, and J. Voogt. PLANT EMPOWERMENT The Basic Principles. 2018. ISBN 978-90-
829035-0-8.

[13] H. Challa. Crop growth models for greenhouse climate control., pages 125–145. Simulation monographs.
Pudoc, 1990. ISBN 9789022010044.

[14] C. Stanghellini. Transpiration of greenhouse crops : an aid to climate management. 1987.

[15] M.B. Kirkham. Principles of Soil and Plant Water Relations. Academic Press, 2014.

[16] B.H.E. Vanthoor. A model-based greenhouse design method. PhD thesis, Wageningen University, 2011.

[17] J.W. Jones, E. Dayan, L.H. Allen, H. van Keulen, and H. Challa. A dynamic tomato growth and yield model
(tomgro). Transactions of the ASAE, 34(2):663–672, 1991. ISSN 0001-2351.

53

https://www.sciencedirect.com/science/article/pii/S0168169900000776
https://www.sciencedirect.com/science/article/pii/S0168169900000776
https://journals.ashs.org/hortsci/view/journals/hortsci/57/2/article-p239.xml
https://journals.ashs.org/hortsci/view/journals/hortsci/57/2/article-p239.xml
https://www.scopus.com/inward/record.uri?eid=2-s2.0-57049180834&doi=10.21273%2fhortsci.43.7.1947&partnerID=40&md5=4a33d49693845008b5a43b6369206ce3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-57049180834&doi=10.21273%2fhortsci.43.7.1947&partnerID=40&md5=4a33d49693845008b5a43b6369206ce3

54 Bibliography

[18] I. Lopez-Cruz, E. Fitz-Rodríguez, J. Torres-Monsivais, E. Trejo-Zúñiga, A. Ruiz Garcia, and A. Arias. Con-
trol Strategies of Greenhouse Climate for Vegetables Production, pages 401–421. 2013. ISBN 978-3-319-
03879-7. doi: 10.1007/978-3-319-03880-3_14.

[19] D. Katzin, E.J. van Henten, and S. van Mourik. Process-based greenhouse climate models: Geneal-
ogy, current status, and future directions. Agricultural Systems, 198:103388, 2022. ISSN 0308-521X.
doi: https://doi.org/10.1016/j.agsy.2022.103388. URL https://www.sciencedirect.com/science/
article/pii/S0308521X22000245.

[20] C.M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-
Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.

[21] A. Sherstinsky. Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm)
network. Physica D: Nonlinear Phenomena, 404:132306, 2020. ISSN 0167-2789. doi: https://doi.
org/10.1016/j.physd.2019.132306. URL https://www.sciencedirect.com/science/article/pii/
S0167278919305974.

[22] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9:1735–80, 1997. doi:
10.1162/neco.1997.9.8.1735.

[23] G. Chevalier. Schematic of the long-short term memory cell, a component of recurrent neural networks,
2018. URL https://commons.wikimedia.org/wiki/File:LSTM_Cell.svg. Accessed: 2022-03-01.

[24] A. Ali and H.S. Hassanein. Time-series prediction for sensing in smart greenhouses. In GLOBECOM 2020
- 2020 IEEE Global Communications Conference, pages 1–6, 2020. doi: 10.1109/GLOBECOM42002.2020.
9322549.

[25] D. Jung, H.S. Kim, C. Jhin, H. Kim, and S.H. Park. Time-serial analysis of deep neural network models
for prediction of climatic conditions inside a greenhouse. Computers and Electronics in Agriculture,
173:105402, 2020. ISSN 0168-1699. doi: https://doi.org/10.1016/j.compag.2020.105402. URL https:
//www.sciencedirect.com/science/article/pii/S0168169919317326.

[26] J.W. Lee, W. Kang, T. Moon, I. Hwang, D. Kim, and J.E. Son. Estimating the leaf area index of bell pep-
pers according to growth stage using ray-tracing simulation and a long short-term memory algorithm.
Horticulture, Environment, and Biotechnology, 61, 2020. doi: 10.1007/s13580-019-00214-9.

[27] B. Alhnaity, S. Pearson, G. Leontidis, and S. Kollias. Using deep learning to predict plant
growth and yield in greenhouse environments. Acta Horticulturae, 1296:425–431, 2020. doi:
10.17660/ActaHortic.2020.1296.55. URL https://www.scopus.com/inward/record.uri?eid=
2-s2.0-85097321834&doi=10.17660%2fActaHortic.2020.1296.55&partnerID=40&md5=
ca0ab156f262258783dcf72d3f0fabce.

[28] C. Lea, M.D. Flynn, R. Vidal, A. Reiter, and G.D. Hager. Temporal convolutional networks for action
segmentation and detection. CoRR, abs/1611.05267, 2016. URL http://arxiv.org/abs/1611.05267.

[29] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A.W. Senior,
and K. Kavukcuoglu. Wavenet: A generative model for raw audio. CoRR, abs/1609.03499, 2016. URL
http://arxiv.org/abs/1609.03499.

[30] S. Bai, J.Z. Kolter, and V. Koltun. An empirical evaluation of generic convolutional and recurrent networks
for sequence modeling. CoRR, abs/1803.01271, 2018. URL http://arxiv.org/abs/1803.01271.

[31] L. Gong, M. Yu, S. Jiang, V. Cutsuridis, and S. Pearson. Deep learning based prediction on greenhouse
crop yield combined tcn and rnn. Sensors, 21(13), 2021. ISSN 1424-8220. doi: 10.3390/s21134537. URL
https://www.mdpi.com/1424-8220/21/13/4537.

[32] J.R. Llera, E.S. Runkle, E.D. Goodman, and L. Xu. Improving greenhouse environmental control using
crop-model-driven multi-objective optimization. pages 292–293, 2018. doi: 10.1145/3205651.3205724.

[33] C. Jin, H. Mao, Y. Chen, Q. Shi, Q. Wang, G. Ma, and Y. Liu. Engineering-oriented dynamic optimal
control of a greenhouse environment using an improved genetic algorithm with engineering constraint
rules. Computers and Electronics in Agriculture, 177:105698, 2020. ISSN 0168-1699. doi: https://doi.org/
10.1016/j.compag.2020.105698.

https://www.sciencedirect.com/science/article/pii/S0308521X22000245
https://www.sciencedirect.com/science/article/pii/S0308521X22000245
https://www.sciencedirect.com/science/article/pii/S0167278919305974
https://www.sciencedirect.com/science/article/pii/S0167278919305974
https://commons.wikimedia.org/wiki/File:LSTM_Cell.svg
https://www.sciencedirect.com/science/article/pii/S0168169919317326
https://www.sciencedirect.com/science/article/pii/S0168169919317326
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097321834&doi=10.17660%2fActaHortic.2020.1296.55&partnerID=40&md5=ca0ab156f262258783dcf72d3f0fabce
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097321834&doi=10.17660%2fActaHortic.2020.1296.55&partnerID=40&md5=ca0ab156f262258783dcf72d3f0fabce
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097321834&doi=10.17660%2fActaHortic.2020.1296.55&partnerID=40&md5=ca0ab156f262258783dcf72d3f0fabce
http://arxiv.org/abs/1611.05267
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1803.01271
https://www.mdpi.com/1424-8220/21/13/4537

Bibliography 55

[34] H. Pohlheim and A. Heißner. Optimal control of greenhouse climate using a short time climate model
and evolutionary algorithms. 1997.

[35] J.P. Coelho, P.B. de Moura Oliveira, and J.B. Cunha. Greenhouse air temperature predictive control using
the particle swarm optimisation algorithm. Comput. Electron. Agric., 49(3):330–344, 2005. ISSN 0168-
1699. doi: 10.1016/j.compag.2005.08.003. URL https://doi.org/10.1016/j.compag.2005.08.003.

[36] L. Chen, S. Du, Y. He, M. Liang, and D. Xu. Robust model predictive control for greenhouse temperature
based on particle swarm optimization. Information Processing in Agriculture, 5(3):329–338, 2018. ISSN
2214-3173. doi: https://doi.org/10.1016/j.inpa.2018.04.003.

[37] G. Pesant. A constraint programming primer. EURO J. on Computational Optimization, 2(3):89–97, 2014.
doi: 10.1007/s13675-014-0026-3. URL https://doi.org/10.1007/s13675-014-0026-3.

[38] N. Nethercote, P. Stuckey, R. Becket, S. Brand, G. Duck, and G. Tack. Minizinc: Towards a standard cp
modelling language. pages 529–543, 2007. ISBN 978-3-540-74969-1. doi: 10.1007/978-3-540-74970-7_
38.

[39] The minizinc handbook. https://www.minizinc.org/doc-2.5.5/en/index.html. Accessed: 2022-
03-09.

[40] M. Wallace. Building Decision Support Systems – using MiniZinc. Springer, Cham, Switzerland,
2020. ISBN 978-3-030-41731-4. doi: 10.1007/978-3-030-41732-1. URL https://doi.org/10.1007/
978-3-030-41732-1.

[41] T. Feydy, A. Goldwaser, A. Schutt, P.J. Stuckey, and K.D. Young. Priority search with minizinc. The Six-
teenth International Workshop on Constraint Modelling and Reformulation at CP2017, 2017.

[42] M. Lombardi, M. Milano, and A. Bartolini. Empirical decision model learning. Artificial Intelli-
gence, 244:343–367, 2017. ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.2016.01.005. URL
https://www.sciencedirect.com/science/article/pii/S0004370216000126. Combining Con-
straint Solving with Mining and Learning.

[43] A. Bartolini, M. Lombardi, M. Milano, and L. Benini. Neuron constraints to model complex real-
world problems. volume 6876, pages 115–129, 2011. ISBN 978-3-642-23785-0. doi: 10.1007/
978-3-642-23786-7_11.

[44] S. Andringa. Applying constraint programming to enterprise modelling. Master’s thesis, TU Delft, the
Netherlands, 2021.

[45] The pandas development team. pandas-dev/pandas: Pandas, 2020. URL https://doi.org/10.5281/
zenodo.3509134.

[46] F. Chollet et al. Keras. https://keras.io, 2015.

[47] P. Remy. Temporal convolutional networks for keras. https://github.com/philipperemy/
keras-tcn, 2020.

[48] K. Kuchcinski and R. Szymanek. Jacop - java constraint programming solver. 2013. CP Solvers: Modeling,
Applications, Integration, and Standardization, co-located with the 19th International Conference on
Principles and Practice of Constraint Programming ; Conference date: 16-09-2013.

[49] J.D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):90–95,
2007. doi: 10.1109/MCSE.2007.55.

[50] B. Rijk. Integration of sensor data in crop models for precision agriculture. Master’s thesis, Wageningen
University, the Netherlands, 2013.

[51] H.F. de Zwart. Lage temperatuurverwarming in de glastuinbouw. Technical Report GTB-1219, Wagenin-
gen UR Glastuinbouw, Bleiswijk, The Netherlands, 2013.

[52] M.G.M. Raaphorst and J. Benninga. Kwantitatieve informatie voor de glastuinbouw 2019. 26, 2019.

https://doi.org/10.1016/j.compag.2005.08.003
https://doi.org/10.1007/s13675-014-0026-3
https://www.minizinc.org/doc-2.5.5/en/index.html
https://doi.org/10.1007/978-3-030-41732-1
https://doi.org/10.1007/978-3-030-41732-1
https://www.sciencedirect.com/science/article/pii/S0004370216000126
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://keras.io
https://github.com/philipperemy/keras-tcn
https://github.com/philipperemy/keras-tcn

56 Bibliography

[53] Wat doet de gasprijs in 2022? https://www.overstappen.nl/energie/gasprijzen/#:~:text=In%
20augustus%202021%20was%20de,2%2C10%20euro%20per%20m3. Accessed: 2022-03-16.

[54] Actuele beursprijzen. https://vanhelder.nl/zakelijke-energie/actuele-beursprijzen. Ac-
cessed: 2022-03-16.

[55] EU Fruit and Vegetables Market Observatory Tomato Subgroup. The tomato market in the eu: Vol.
2: Prices for fresh products. https://ec.europa.eu/info/food-farming-fisheries/farming/
facts-and-figures/markets/overviews/market-observatories/fruit-and-vegetables/
tomatoes-statistics_en, 2021. Accessed: 2022-03-16.

https://www.overstappen.nl/energie/gasprijzen/#:~:text=In%20augustus%202021%20was%20de,2%2C10%20euro%20per%20m3.
https://www.overstappen.nl/energie/gasprijzen/#:~:text=In%20augustus%202021%20was%20de,2%2C10%20euro%20per%20m3.
https://vanhelder.nl/zakelijke-energie/actuele-beursprijzen
https://ec.europa.eu/info/food-farming-fisheries/farming/facts-and-figures/markets/overviews/market-observatories/fruit-and-vegetables/tomatoes-statistics_en
https://ec.europa.eu/info/food-farming-fisheries/farming/facts-and-figures/markets/overviews/market-observatories/fruit-and-vegetables/tomatoes-statistics_en
https://ec.europa.eu/info/food-farming-fisheries/farming/facts-and-figures/markets/overviews/market-observatories/fruit-and-vegetables/tomatoes-statistics_en

A
P

ip
el

in
e

F
ig

u
re

A
.1

:T
ec

h
n

ic
al

ov
er

vi
ew

o
fp

ip
el

in
e

fr
o

m
se

n
so

r
d

at
a

re
tr

ie
va

lt
o

th
e

en
d

re
su

lt
o

ft
h

e
d

ec
is

io
n

su
p

p
o

rt
sy

st
em

.
*T

C
N

is
n

o
ti

n
co

rp
o

ra
te

d
in

th
e

M
in

iZ
in

c
em

b
ed

d
in

g.

57

B
LSTM functions in MiniZinc

include "activations.mzn";
include "linear_algebra.mzn";

% ---
% One forward LSTM calculation of one batch of features (timesteps x features).
% ---
function array[int ,int] of var float: lstm_forward(

array[int ,int] of var float: X_batch ,
[...] % array[int ,int] of float: Wg , Ug , bg for g in [i, f, c, o]
int: n,
int: m,
int: u,
int: l

) =
let {

array [1..l, 1..u] of var -int2float(l).. int2float(l): c;
array [1..l, 1..u] of var -1.0..1.0: h;

} in
let {

constraint forall (t in 1..l) (
let {

% cell state
array [1..u, 1..1] of var -int2float(l).. int2float(l): c_t =

lstm_forward_timestep_cell(
array2d (1..n, 1..1, [X_batch[t, i]
| i in 1..n]),
array2d (1..u, 1..1, [if t = 1 then 0.0 else h[t - 1, i] endif
| i in 1..u]),
array2d (1..u, 1..1, [if t = 1 then 0.0 else c[t - 1, i] endif
| i in 1..u]),
Wi, Ui , bi , Wf , Uf, bf, Wc, Uc, bc, Wo, Uo , bo , n, u, l

);
} in let {

% hidden state
array [1..u, 1..1] of var -1.0..1.0: h_t =

lstm_forward_timestep_hidden(
array2d (1..n, 1..1, [X_batch[t, i]
| i in 1..n]),
array2d (1..u, 1..1, [if t = 1 then 0.0 else h[t - 1, i] endif
| i in 1..u]),
array2d (1..u, 1..1, [c[t, i]
| i in 1..u]),
Wi, Ui , bi , Wf , Uf, bf, Wc, Uc, bc, Wo, Uo , bo , n, u, l

);
} in

% fill in cell and hidden state results of this timestep
forall(ii in 1..u, jj in 1..1) (

c[t, ii] = c_t[ii , jj] /\
h[t, ii] = h_t[ii , jj]

)
);

} in
array2d (1..u, 1..1, [h[l, i] | i in 1..u]);

59

60 B. LSTM functions in MiniZinc

% ---
% Cell state calculations for next timestep.
% ---
function array[int ,int] of var float: lstm_forward_timestep_cell(

array[int ,int] of var float: Xt ,
array[int ,int] of var float: h_prev ,
array[int ,int] of var float: c_prev ,
[...] % array[int ,int] of float: Wg , Ug , bg for g in [i, f, c, o]
int: n,
int: u,
int: l

) =
elementwise_addition(

elementwise_multiplication(
lstm_gate_calculation(Xt , h_prev , Wf, Uf, bf, "sigmoid", n, u),
c_prev

),
elementwise_multiplication(

lstm_gate_calculation(Xt , h_prev , Wi, Ui, bi, "sigmoid", n, u),
lstm_gate_calculation(Xt , h_prev , Wc, Uc, bc, "tanh", n, u)

)
);

% ---
% Hidden state calculations for next timestep.
% ---
function array[int ,int] of var float: lstm_forward_timestep_hidden(

array[int ,int] of var float: Xt ,
array[int ,int] of var float: h_prev ,
array[int ,int] of var float: c,
[...] % array[int ,int] of float: Wg , Ug , bg for g in [i, f, c, o]
int: n,
int: u,
int: l

) =
elementwise_multiplication(

lstm_gate_calculation(Xt , h_prev , Wo, Uo, bo, "sigmoid", n, u),
activation(c, "tanh")

);

% ---
% Single LSTM gate calculation (can be used for i, f, c’, and o gates).
% ---
function array[int ,int] of var float: lstm_gate_calculation(

array[int , int] of var float: Xt,
array[int , int] of var float: h_prev ,
array[int , int] of float: Wg,
array[int , int] of float: Ug,
array[int , int] of float: bg,
string: activation_name ,
int: n,
int: u

) =
activation(

elementwise_addition(
elementwise_addition(

matrix_multiplication(Wg , Xt),
matrix_multiplication(Ug , h_prev)

),
bg

),
activation_name

);

Listing B.1: LSTM functions in MiniZinc, for calculating the cell and hidden states and for each of the gates i, f, c’, and o. The weights and
biases in the function definitions are truncated here for readability.

C
LSTM and TCN predictions

Figure C.1: LSTM inside climate prediction 5/8/2021 00:00 - 7/8/2021 23:00, department
3.5, resulting in an RMSE of 0.065.

Figure C.2: LSTM inside climate prediction 25/12/2020 00:00 - 27/12/2020 23:00,
department 3.5, resulting in an RMSE of 0.0314.

61

62 C. LSTM and TCN predictions

Figure C.3: LSTM inside climate prediction 10/10/2021 00:00 - 12/10/2021 23:00,
department 6, resulting in an RMSE of 0.0278.

Figure C.4: LSTM inside climate prediction 10/4/2022 00:00 - 12/4/2022 23:00,
department 6, resulting in an RMSE of 0.0524.

Figure C.5: TCN inside climate prediction 5/8/2021 00:00 - 7/8/2021 23:00, department
3.5, resulting in an RMSE of 0.0598.

63

Figure C.6: TCN inside climate prediction 25/12/2020 00:00 - 27/12/2020 23:00,
department 3.5, resulting in an RMSE of 0.0254.

Figure C.7: TCN inside climate prediction 10/10/2021 00:00 - 12/10/2021 23:00,
department 6, resulting in an RMSE of 0.0215.

Figure C.8: TCN inside climate prediction 10/4/2022 00:00 - 12/4/2022 23:00,
department 6, resulting in an RMSE of 0.0364.

D
Research Paper

65

Embedding a Long Short-Term Memory Network in a Constraint Programming
Framework for Tomato Greenhouse Optimization

Dirk van Bokkem,1 Neil Yorke-Smith, 1Sebastijan Dumančić 1Max van den Hemel 2

1 Algorithmics group, Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, The
Netherlands

2 Delphy Digital, Delphy BV, The Netherlands
d.vanbokkem@student.tudelft.nl, n.yorke-smith@tudelft.nl, s.dumancic@tudelft.nl, m.vandenhemel@delphy.nl

Abstract

The increasing global food demand, accompanied by the de-
creasing number of expert growers, brings the need for more
sustainable and efficient solutions in horticulture. The con-
trolled environment of greenhouses enable data collection
and precise control. For optimally controlling the greenhouse
climate, a grower not only looks at crop production, but rather
aims at maximizing the profit. In this work, Constraint Pro-
gramming (CP) is applied on the greenhouse economic opti-
mal control problem, by leveraging a Long Short-Term Mem-
ory (LSTM) greenhouse climate model through a CP embed-
ding. The contributions of this work are threefold; First, the
greenhouse climate is modeled with an LSTM model. Sec-
ondly, this LSTM is embedded into a CP model. Lastly, the
profit of the grower is optimized through this CP decision al-
gorithm.

Introduction
With the rapidly increasing world population, effects of cli-
mate change, and decrease of expert grower knowledge, sus-
tainable solutions in agri- and horticulture are needed to con-
tinue meeting the global food demands in the future. Data-
driven greenhouses can play a big part in this solution, as
the controlled environment allows for higher productivity,
prolonged cultivation periods, leading to better crop yields
(van Straten and van Henten 2010). Greenhouses are energy-
intensive, but do provide a controlled environment for crops
to grow closer to their location of consumption (Iddio et al.
2020). Data-driven cultivation in greenhouses can help both
in meeting the increasing global food demands, as well as
lowering the impact of said greenhouses on the climate.

Many user adjustable settings exist in modern day green-
houses, but there is little knowledge on the long-term eco-
nomic consequences of these short-term decisions (van
Straten and van Henten 2010). What could aid the grower
in their decision making process, is a system that under-
stands the effect daily greenhouse actions have on the even-
tual yield and profit. In this work, we present a decision
support system (DSS) that leverages greenhouse climate and
crop models.

While the potential benefits of data-driven cultivation
seem obvious, this approach is not yet widely adopted by

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

growers, who rely largely on their own experience in the
field. Many decisions made by the grower are based on eco-
nomic objectives, which is why an economic data-driven de-
cision support system could aid in the adoption of such tech-
niques. What is missing for growers, is an extension of their
own experience; a tool that can help them understand long-
term economic effects of short-term decisions (van Straten,
Challa, and Buwalda 2000). Especially in times of uncer-
tainty regarding energy and gas prices, growers are in need
of economic decision support as experience alone might not
suffice in making the best decisions.

An underexposed but promising method in developing
such systems in a horticultural setting is Constraint Pro-
gramming (CP). Also, modelling the greenhouse and crop
is predominantly done with mathematical models, while the
complexity of the greenhouse and crop provides a good
playing field for machine learning models that can utilize
sensor data. The interplay between such machine learning
models and CP, is interesting in the complex greenhouse en-
vironment, as well as outside the horticultural domain.

In this work, a Long Short-Term Memory network
(LSTM) is applied to the prediction of the greenhouse cli-
mate. The main contribution in this work is the embedding
of such an LSTM in CP, such that the LSTM can be utilized
in a CP DSS.

Background & Related Work
It is not the first time LSTMs are used in the context of
greenhouse predictions. In this section, related work re-
garding greenhouse climate prediction using LSTMs is dis-
cussed, as well as other approaches for decision making.

A Long Short-Term Memory (LSTM) network is a recur-
rent NN (RNN), that finds its use mostly in language mod-
elling, but is generally effective in domains with sequen-
tial data (Sherstinsky 2020). Its introduction was made in
1997, and its main purpose was solving the vanishing or ex-
ploding gradient problem, mainly by ”enforcing constant er-
ror flow through internal states of special units” (Hochreiter
and Schmidhuber 1997). These ’special units’ are so-called
LSTM cells. The propagation of values in the LSTM net-
work goes through several gates (input, output, and forget
gate) and updates the internal states (cell and hidden state)
of the LSTM cell. The gates control the flow of information
from the input to the output, and provide a way for the cell

to ”forget” irrelevant information. Static weight matrices W
and U for the input and hidden state respectively, along with
bias vectors b are used in each of these gates, whose val-
ues represent the trained model. These weights and biases
remain the same for each timestep. This results in the fol-
lowing calculations in an LSTM cell for one timestep t;

it = σr(Wi ·Xt + Ui · ht−1 + bi)

ft = σr(Wf ·Xt + Uf · ht−1 + bf)

c′t = σa(Wc ·Xt + Uc · ht−1 + bc)

ot = σr(Wo ·Xt + Uo · ht−1 + bo)

ct = ft ⊙ ct−1 + it ⊙ ct
ht = ot ⊙ σa(ct),

with input gate i, forget gate f , output gate o, cell state c,
hidden state h, activation σa for the states and recurrent acti-
vation σr for the gates, where ⊙ represents an element-wise
multiplication.

In (Ali and Hassanein 2020), an LSTM is used to predict
multiple greenhouse climate variables, such as temperature
and relative humidity including their minimum and maxi-
mum values. Some experiments of finding the best parame-
ters are discussed and the final predictions look promising.
However, the figures suggest that there is some copying be-
haviour occurring. This tends to happen when the model re-
lies too much on its previous value of the target variable,
rather than also including other variables such as actions in
the greenhouse.

Three time-serial deep neural network models are com-
pared in (Jung et al. 2020). Out of an ANN, NARX model,
and LSTM model, LSTM performed the best, with a stan-
dard error of the prediction (SEP) of temperature and CO2
within 5%. However, the humidity prediction did not per-
form very well. An important but expected result of this re-
search is that the accuracy of the time-based algorithm de-
creases as more time steps ahead are predicted. Neverthe-
less, it is shown that deep learning models can perform well
in predicting the greenhouse climate.

Next to predicting the greenhouse climate, LSTM is also
used for crop growth prediction. In (Lee et al. 2020), the
Leaf Area Index (LAI) of bell peppers is predicted using
LSTM. The LAI indicates the size of the leaf surface and
in turn can be used to predict crop growth, but this is not
explained in this paper. The model is trained on simulated
data, but also validated with LAI data measured of a real
crop, showing a high accuracy.

A more direct yield prediction approach is applied in (Al-
hnaity et al. 2020). Here LSTM is compared to a Support
Vector Regression (SVR) implementation and an implemen-
tation of a Random Forest (RF). In all implementations, a
one-step-ahead prediction was done. However, it is not clear
if the full sequence shown is a multi-stage prediction (us-
ing the prediction of the current timestep to predict the next
timestep), or if all predictions are simply based on the pre-
vious timestep. Of course, long-term yield predictions are
more relevant. Since the environmental data is on an hourly
basis and the yield data is gathered weekly, there is a mis-
match which is dealt with by interpolation. While real hourly
yield data is impractical to obtain, interpolating weekly data

to hourly samples may not give accurate results of the effect
of environmental factors on yield. Still, the results show the
potential of yield prediction through an LSTM.

In (Lombardi, Milano, and Bartolini 2017) the concept
of combining learned relations between variables from data
and embedding these relations into an optimization model
is coined Empirical Model Learning (EML). In an earlier
study, the same authors explore this approach by embed-
ding a trained Neural Network (NN) into a CP algorithm, for
a ”temperature aware workload allocation problem”, with
promising results (Bartolini et al. 2011). In their approach,
a Neuron Constraint is added for each node in the network.
The NN in this work is relatively simple, but the authors
claim that the same techniques can be used for complex re-
current networks.

Economic Greenhouse Climate Control
The greenhouse environment is a complex, non-linear,
multi-input-multi-output (MIMO) system. Multiple vari-
ables determine the inside climate, which in turn determines
the state of the crop. The variables that determine the inside
climate can be roughly divided into three categories; the cur-
rent state of the inside climate, the outside climate, and the
actions in the greenhouse such as opening the windows and
injecting CO2. The states are not defined by these dynamic
relations only, but also depend on some static properties of
the greenhouse and crop, such as the transmissivity of the
greenhouse glass and the size of the greenhouse.

The main difficulty in modelling the greenhouse and crop
and making decisions, lies in the varying time-scales. Open-
ing the windows can cause a shift in the inside temperature
within the hour, while the full lifespan of a tomato from
flower to fruit ranges between one to two months (Tap 2000).
To determine the best actions in the greenhouse, one has to
understand the impact of short-term decision on the long-
term yield.

Another challenge, is understanding the inter-
dependencies between all these variables. Some decisions
affect multiple state variables. For example, opening the
windows has an effect on the temperature, humidity, and
CO2. But there also exist cyclical dependencies. The inside
climate changes the state of the crop, while the crop in turn
has an effect on the climate e.g. through transpiration (Tap
2000).

The greenhouse and thus the decision making process are
also influenced by the weather and its uncertainty. In the near
future, the weather can be forecasted with relative accuracy,
but this becomes an issue when trying to make predictions
and decisions for the long-term.

LSTM climate prediction
For the greenhouse climate a multi-stage prediction is done
using an LSTM. This involves a step-by-step prediction
where the prediction of one input-batch serves as part of the
input for the next batch. This is especially useful in the con-
text of CP, as the actions involved in the prediction need to
be decided for each timestep, while the inside climate pre-
diction depends on its previous state (see figure 1).

Figure 1: Multi-stage prediction in the context of greenhouse
decision making. The input of each timestep is the inside
climate, forecasted outside weather, and the decided actions
of the previous timestep(s). The output is the inside climate
for the next timestep.

The LSTM was trained using the following features:

Outside weather — radiation, temperature, absolute hu-
midity, and wind speed.
Greenhouse actions — heating undertube, heating grow-
tube, leeside ventilation, windside ventilation, LED light-
ing, SON-T lighting, and shading screen.
Inside climate — PAR-light, temperature, humidity
deficit, and CO2.

Combining LSTM with CP
We embedded the LSTM in CP through MiniZinc functions.
These functions encompass the gate (input, output, forget)
and state (cell, hidden) calculations. Pseudocode of the func-
tions in MiniZinc is shown in Algorithm 1.

Various key points in CP modelling in MiniZinc con-
tributed to the realisation of the LSTM-in-CP model. Firstly,
the general way of modelling decision variables and rela-
tions within CP, is by defining them and comprise their de-
pendence on other variables through constraints. While for
small models, the MiniZinc compiler is able to derive this
functional dependence and annotate variables accordingly,
in larger models this is not always the case. Therefore we
can help the solver by explicitly stating this functional de-
pendence through a direct instantiation.

This may seem trivial and unimportant, but in the case of
a more complex model such as the LSTM, this direct instan-
tiation ensures that the solver simply calculates certain vari-
ables, and does not see them as decision variables to take
into the search. In the background, the MiniZinc compiler
adds the annotation pair is defined var and defines var(),
which together indicate that a variable is functionally depen-
dent on another, and should not be decided. In our specific
case, it means that we can specifically tell the solver to only
search on greenhouse action variables, all the other variables
should simply be the result of the LSTM calculations.

This advantage of direct instantiations was passed on in
the choice of functions over predicates. Where predicates

take in variables and constrain these, functions directly re-
turn a result. In the case of computing the gate functions in
the LSTM for example, a function is preferred as this en-
tails a direct computation instead of posing a constraint on
a variable, where the solver would try to find values that
satisfy the constraint. Also, an additional variable would be
needed for such a predicate, needlessly making the model
more complex. The same line of thought applies to not cre-
ating additional variables to hold the results of functions, but
rather chain these function calls as much as possible. Chain-
ing the functions not only reduced the amount of crashes as
the problem size increased, it also improved the compiling
and solving speeds greatly.

Algorithm 1: Pseudocode of the LSTM calculations in
MiniZinc. The cell and hidden state are initialised to zero
and for each timestep in the range 1 to lag, the cell and hid-
den state are calculated in separate functions. The gate cal-
culation is generalised in a function as well.
function LSTM(X , W , U , b)
c0 = 0
h0 = 0
for t ∈ 1..l do
ct = CELL(Xt, ht−1, ct−1, W , U , b)
ht = HIDDEN(Xt, ht−1, ct, W , U , b)

end for

return hl

function CELL(Xt, ht−1, ct−1,W,U, b)
return
GATE(Xt, ht−1,Wf , Uf , bf , σr)⊙ (ct−1)+
GATE(Xt, ht−1,Wi, Ui, bi, σr)⊙
GATE(Xt, ht−1,Wc, Uc, bc, σa)

function HIDDEN(Xt, ht−1, ct,W,U, b)
return GATE(Xt, ht−1,Wo, Uo, bo, σr)⊙ σa(ct)

function GATE(Xt, ht−1,Wg, Ug, bg, σ)
return σ(Wg ·Xt + Ug · ht−1 + bg)

Most LSTM computations were done in compliance with
this direct instantiation strategy, but for the cell and hidden
state this was not possible, as their structure is dependent
on the chosen lag. As mentioned earlier, the cell and hid-
den state vectors can not be updated directly, but are encom-
passed in separate vectors for each timestep. To program-
matically make this time-based computation work, both the
cell and hidden state vectors were defined in 2D arrays,
with timesteps as rows, and the chosen LSTM unit size u
as columns, corresponding to vectors of length u for each
timestep. In an iterative constraint, the values of the vectors
are decided by a calculation that includes values of the vec-
tors of the previous timestep.

Because the solver needs to find values for these vectors,
it helps to explicitly state bounds on these, as tight as pos-

sible. This is also recommended in MiniZinc’s documenta-
tion (mzn 2016-2020). We know that the hidden state in an
LSTM holds values between -1.0 and 1.0, because of the
tanh activation function. The bounds of the cell state are not
that straightforward. From the LSTM state calculations, we
know that ct depends on ft, ct−1, it, and c′t. The bounds
for ft and it are (0, 1), as a result of the sigmoid function,
similarly c′t has bounds of (-1, 1) due to the tanh function.
Taking the cell state calculations in mind, the bounds for
the cell state increase at each timestep. The resulting bounds
thus correspond to the lag l, so (−l, l).

One of the key points in building the CP model, was the
implementation of a search strategy. In a search strategy, a
CP modeller can indicate how the solver should perform the
search for feasible and optimal solutions. This involves both
the order of deciding variables and what values these vari-
ables should be initialised with. The order of searching is
essential in solving a CP model that involves time-based de-
cision variables, as is the case with our multi-stage predic-
tion with an LSTM. Since the inside climate of a certain
timestep depends on a multitude of variables from previous
timesteps, it helps the solver to know which variables to de-
cide first, before moving on to the next. We implemented
this order of searching using MiniZinc’s priority search an-
notation (Feydy et al. 2017), in which we placed a list of
int search annotations, each including all greenhouse action
variables for one timestep. The solver thus first searches val-
ues for the decision variables of the first unknown timestep,
before searching values for decision variables of the next
timestep.

CP Decision Algorithm
The greenhouse and crop model, their embedding into CP,
and the CP model itself ultimately result in a complete eco-
nomic greenhouse DSS. This system models the complete
greenhouse environment and optimises the decisions based
on the economic aspect of a tomato cultivation. How this
complete system operates and how the various components
interact is visualised in Figure 2. The parameters and vari-
ables in the system are denoted by the letters O, A, I, C, and
E, respectively representing the outside weather, greenhouse
actions, inside climate, crop production, and economics. As
can be seen in the figure, some of these components are
simply retrieved, others are predicted through the embedded
models.

First, we modelled the outside weather by arrays with a
length of the amount of timesteps, with normalised parame-
ters (bounds of (0, 1)). They are parameters, because to the
DSS they are known values. They are retrieved from forecast
data and will not be predicted or decided within the system.
Next, we modelled the actions in the greenhouse by a known
and unknown part. The amount of known timesteps are the
chosen lag of the LSTM model. The LSTM model needs
these first ”lag” inputs to start the multi-stage prediction pro-
cess. The known part is a parameter array with normalised
floating point numbers that represent the first actions that
are already decided, the unknown part is a decision variable
array with integers that represent the decisions that the sys-
tem will make. We discretise using integers, to reduce the

Figure 2: Overview of the CP model and its relevant param-
eters and decision variables. The outside weather (O) is re-
trieved from a weather forecast, the greenhouse actions (A)
must be decided, so that the inside climate (I) and crop pro-
duction (C) can be predicted through the embedded models,
finally leading to an economic result (E) that is used for the
optimisation process.

amount of possible values, improving the efficiency of the
solver. We discretise based on the amount of values a deci-
sion variable may have, using a base of 10. The bounds for
the unknown part of one action variable are (0, 10p), where p
is the precision. The inside climate was also modelled as an
unknown and known part, but both are floating point num-
bers. An additional integer array was added and connected
to the floating point array through constraints. The predicted
inside climate values are rounded within the LSTM predic-
tion process. By rounding the inside climate values within
the LSTM, the solver is able to match the floating point
numbers to their integer counterparts. The outside weather,
greenhouse actions, and inside climate variables all come to-
gether in the greenhouse model input 2D array, which is fed
as input to the LSTM model.

When the complete CP model has been set up, includ-
ing all greenhouse and crop variables, their prediction func-
tions, additional constraints, and economic variables, the Ja-

CoP solver can run the model. The objective function that
is to be maximised is the profit realised within the given pe-
riod, which we modelled by computing the revenue from
crop growth, and from this revenue subtracting the costs that
follow the greenhouse actions. A MiniZinc instance is cre-
ated, including the greenhouse, crop, and complete model
and data file. With a given timeout, the solver will search
for solutions that satisfy all constraints, while maximising
the profit. When an optimal solution is found or there is a
timeout, the best solution will be saved as a data file that in-
cludes the outside weather, decided greenhouse actions, and
predicted inside climate for the given period. Solving statis-
tics and the objective values are saved as well. To speed up
the search, a step-size for assessing objective function val-
ues relative to the amount of timesteps was used. By using
this step-size, the solver can skip intermediate solutions. A
profit step-size of 0.5 eurocents per hour was used.

Results & Discussion

LSTM greenhouse climate prediction

To validate both the LSTM, various experiments were per-
formed to compare the predicted climate with the actual cli-
mate in the greenhouse. The LSTM was trained with the pa-
rameters obtained in a grid search and predictions were done
in both departments in two different season periods; summer
for department 3.5, autumn for department 6.

For department 3.5 we trained an LSTM model on all rel-
evant features of department 3.5, with a batch size of 512, a
lag of 6 timesteps (6 hours), and 4 LSTM units. For the ex-
periments of department 6 we used a batch size of 256, a lag
of 6 timesteps (6 hours), and 4 LSTM units. We performed
three-day multi-stage predictions of the inside climate using
the prediction dataset of summer in department 3.5 and au-
tumn in department 6. Each experiment was run 5 times and
the result was averaged.

Figure 3: LSTM inside climate prediction 5/8/2021 00:00
- 7/8/2021 23:00, department 3.5, resulting in an RMSE of
0.065.

Figure 4: LSTM inside climate prediction 10/10/2021 00:00
- 12/10/2021 23:00, department 6, resulting in an RMSE of
0.0278.

Figure 3 shows the LSTM prediction in the summer in de-
partment 3.5. What we see is that the LSTM model is able
to predict the temperature and humidity deficit quite well in
all five runs, but it has some trouble with predicting the in-
side PAR light, which is probably caused by clouds or other
shadows formed on the PAR-sensors. Because we have data
of outside radiation and artificial lighting, we will perform a
simpler computation instead. Lastly, CO2 is the hardest tar-
get feature for the model to predict. Primarily, CO2 levels
recorded by the sensor are more fluctuating than that of the
other climate variables. Furthermore, how much CO2 is in
the air also depends on crop processes, which is not a di-
rect input feature. Unfortunately, the additional knowledge
of amount of CO2 injection did not help the CO2 prediction,
as we can see in Figure 4. The temperature and humidity
predictions are still quite accurate.

LSTM-in-CP Validation

To make sure the LSTM embedding works properly, we per-
formed validation experiments. The possible actions in the
greenhouse like the heating tubes and window openings are
the decision variables in the CP model, but for these exper-
iments we fix these variables such that the actions are de-
cided. In this way, the LSTM within the CP model should
behave similarly as a regular LSTM.

We trained an LSTM model on cultivation data from
28/12/2020 to 4/8/2021, with all outside weather features,
relevant action features for department 3.5, and inside fea-
tures. It was trained with a batch size of 512, lag of 6
timesteps (hours), adam optimizer, loss function MSE, and
one LSTM layer with 4 units. After training, the LSTM was
embedded into a CP model. The chosen prediction period
was 5/8/2021 00:00 to 7/8/2021 23:00 (72 timesteps), with
the values of all action variables decided. Some discrepancy
in the output is expected, as the action variables are discre-
tised. The experiment was run 5 times and averaged.

Figure 5: Validation of the greenhouse LSTM model embed-
ded in CP for a 3-day prediction period on the inside climate.
The first 6 timesteps (lag) of the inside climate are known,
the remaining timesteps are predicted in a multi-stage fash-
ion within CP. The outside weather and action variables of
all timesteps are filled in.

In Figure 5 we see the LSTM prediction of each of the
inside climate variables within CP for a prediction period of
3 days, with an RMSE of 0.0665. The figure shows simi-
lar results as the ”regular” LSTM predictions with a similar
RMSE value as well, indicating that the embedding LSTM
in CP is behaving as expected. These experiments merely
show the correctness of the LSTM embedding, the accuracy
of the model remains the same, as we can see from the poor
predictive power for CO2.

Conclusion
Many mathematical models exist that model the greenhouse
and crop. Through multiple equations, the physical rela-
tions between the greenhouse and crop are modelled. How-
ever, these models are complex and need many parame-
ters, making their implementation impractical. Therefore we
modelled the greenhouse with a Long Short-Term Memory
(LSTM). We embedded this LSTM in CP in this study and
used this to model a CP decision support system. The short-
term decisions in this DSS were represented by the possible
greenhouse actions that influence the inside climate, mod-
elled as decision variables per timestep in a CP model. The
long-term profit was modelled by the revenue obtained from
the predicted yield in the Lintul-3 model that followed from
the predicted climate, minus the aggregation of costs per
timestep of each action decision variable.

The embedding of an LSTM in CP was realised through
multiple MiniZinc functions, of which key points in its re-
alisation were discussed. Firstly, by directly instantiating
variables through their functional dependence on other vari-
ables, we explicitly tell the solver not to perform a search
on these variables. This leads to the solver only performing
a search on the input variables of the LSTM, not simultane-
ously on the output variables. Also, functions were preferred
over predicates, as no additional intermediate variables are
needed that the solver tries to perform a search on. Further-
more, since the internal cell and hidden state of the LSTM
cell are dependent on the chosen time lag, predicates needed

to be used instead of functions. To help the solver solve these
computations, explicit bounds as tight as possible were used
on these intermediate variables. Lastly, since the multi-stage
prediction is a sequential process, it was essential to inform
the solver the order of solving.

The DSS was designed to optimise the grower’s profit
through minimising the costs that follow the actions taken
in the greenhouse and maximising the revenue that follows
from the predicted climate and subsequently the crop yield.
Using this DSS can help growers make better decisions in
the future, as well as helping them understand what the DSS
would do differently in past cultivation periods. Unfortu-
nately however, the DSS is not always performing better
than the grower in terms of resulting profit. This is due to
the search space being too large for the solver to find a bet-
ter solution within reasonable time. With the current state of
the system, the DSS will thus not necessarily help growers
make better decisions. For small problem instances however,
we have seen improvements of the made decisions resulting
in more profit. Here we have also seen that the DSS can help
growers make well-informed decisions when gas or electric-
ity prices rise, by turning off the lights for example. The po-
tential of the DSS has thus been shown on small instances,
but needs further improvement to more quickly find good
solutions.

While the applicability of CP in economic greenhouse de-
cision making has been shown for small instances, before
it can be applied properly on real-world instances some of
the limitations need to be addressed. First of all, the imple-
mented greenhouse LSTM model is not able to predict CO2
and light well. CO2 levels are fluctuating relatively fast and
not as smooth as temperature or humidity and they depend
on crop processes, making it harder to predict. The poor light
prediction is likely the result of the PAR-sensors that are
shadowed by clouds or other shadow-forming objects in the
greenhouse. Secondly, the crop model is very basic and is
does not include long-term relations. Lastly, the DSS itself
is not yet usable in practice, mainly because the large search
space makes it hard for the DSS to find good solutions. Pos-
sible directions for future work include improving the crop
model by implementing an LSTM.

Implementing a warm start, i.e. doing an initialisation
with a known good solution, could improve the DSS greatly.
For example, this initialisation could be decisions a grower
has made in similar weather conditions. Firstly, since the
grower almost always outperforms the DSS in large in-
stances with short timeouts, starting with decisions similar
to the grower would provide a head start. Secondly, when
the DSS is provided with a solution that is already good, the
bounds can be set tighter around this solution resulting in a
reduction of the search space.

With an iterative refinement method, the DSS first can be
run with low precision both in terms of climate and crop
predictions as well as timestep frequency, so that a rough
estimate of a good solution can be found. Then by using this
found solution, the DSS can be run again with slightly higher
precision but tighter bounds. By repeating this process, the
system may converge to a good solution much quicker.

Currently, the costs of operating the greenhouse actions

are assumed by looking at historical values. Similarly, the
price of tomatoes is estimated by using a historical price,
and additionaly it is increased or decreased according to the
month of the year. However, these economic values are com-
puted in advance and fixed for each timestep. A more realis-
tic DSS would include arrays of costs and prices that show
their varying values for each timestep. Also, future work
could include predicting these values instead of making as-
sumptions.

References
2016-2020. The MiniZinc Handbook. https://www.
minizinc.org/doc-2.5.5/en/index.html. Accessed: 2022-03-
09.
Alhnaity, B.; Pearson, S.; Leontidis, G.; and Kollias, S.
2020. Using deep learning to predict plant growth and yield
in greenhouse environments. Acta Horticulturae, 1296:
425–431.
Ali, A.; and Hassanein, H. 2020. Time-Series Prediction
for Sensing in Smart Greenhouses. In GLOBECOM 2020 -
2020 IEEE Global Communications Conference, 1–6.
Bartolini, A.; Lombardi, M.; Milano, M.; and Benini, L.
2011. Neuron Constraints to Model Complex Real-World
Problems. volume 6876, 115–129. ISBN 978-3-642-23785-
0.
Feydy, T.; Goldwaser, A.; Schutt, A.; Stuckey, P.; and
Young, K. 2017. Priority Search with MiniZinc. The Six-
teenth International Workshop on Constraint Modelling and
Reformulation at CP2017.
Hochreiter, S.; and Schmidhuber, J. 1997. Long Short-term
Memory. Neural computation, 9: 1735–80.
Iddio, E.; Wang, L.; Thomas, Y.; McMorrow, G.; and Den-
zer, A. 2020. Energy efficient operation and modeling for
greenhouses: A literature review. Renewable and Sustain-
able Energy Reviews, 117: 109480.
Jung, D.; Kim, H.; Jhin, C.; Kim, H.; and Park, S. 2020.
Time-serial analysis of deep neural network models for pre-
diction of climatic conditions inside a greenhouse. Comput-
ers and Electronics in Agriculture, 173: 105402.
Lee, J.; Kang, W.; Moon, T.; Hwang, I.; Kim, D.; and Son, J.
2020. Estimating the leaf area index of bell peppers accord-
ing to growth stage using ray-tracing simulation and a long
short-term memory algorithm. Horticulture, Environment,
and Biotechnology, 61.
Lombardi, M.; Milano, M.; and Bartolini, A. 2017. Em-
pirical decision model learning. Artificial Intelligence, 244:
343–367. Combining Constraint Solving with Mining and
Learning.
Sherstinsky, A. 2020. Fundamentals of Recurrent Neural
Network (RNN) and Long Short-Term Memory (LSTM)
network. Physica D: Nonlinear Phenomena, 404: 132306.
Tap, R. 2000. Economic-based optimal control of green-
house tomato crop production. Ph.D. thesis, Wageningen
University.
van Straten, G.; Challa, H.; and Buwalda, F. 2000. Towards
user accepted optimal control of greenhouse climate. Com-
puters and Electronics in Agriculture, 26(3): 221–238.

van Straten, G.; and van Henten, E. 2010. Optimal Green-
house Cultivation Control: Survey and Perspectives. IFAC
Proceedings Volumes, 43(26): 18–33. 3rd IFAC Conference
in Modelling and Control in Agriculture, Horticulture and
Post-Harvest Processing - Agricontrol.

Acknowledgments

	Introduction
	Motivation
	Delphy
	Problem statement
	Research questions
	Scope
	Contributions
	Outline

	Background & Related Work
	Greenhouse climate
	Crop
	Mathematical models
	Machine learning models
	Neural Networks
	Long Short-Term Memory
	Temporal Convolutional Network

	Other approaches
	Genetic Algorithms
	Particle Swarm Optimisation and Model Predictive Control

	Constraint Programming
	MiniZinc
	Empirical Model Learning

	Framework
	Design choices
	Pipeline
	Data & Hardware

	Implementation
	Time Series Neural Networks
	Time Series Data
	Multivariate multi-stage prediction
	LSTM and TCN
	Hyper-parameter tuning
	Concluding remarks

	Model Embedding in CP
	Functions & Predicates
	Greenhouse and Crop Model Embedding
	Key points LSTM-CP embedding

	Economic Greenhouse Decision Support
	MiniZinc model
	Economics
	Running the DSS

	Experiments
	Time Series Neural Networks
	LSTM greenhouse climate predictions
	TCN greenhouse climate predictions

	Model Embedding in CP
	LSTM-in-CP validation, 3 days
	LSTM-in-CP validation, 10 days

	Economic Greenhouse Decision Support
	Runtime
	Grower versus Decision Support System
	Economics

	Conclusion
	Research Questions
	Limitations and Future Work
	Research Paper

	Bibliography
	Pipeline
	LSTM functions in MiniZinc
	LSTM and TCN predictions
	Research Paper

