
Automated timetable generation
for Egyptian schools
Bachelor’s Thesis

S.R.P. van Hal
K.N.M.M.H. Osman

De
lft

Un
ive

rs
ity

of
Te

ch
no

lo
gy

Automated timetable generation
for Egyptian schools

Bachelor’s Thesis

by

S.R.P. van Hal
K.N.M.M.H. Osman

in partial fulfillment of the requirements to obtain the degree of

Bachelor of Science
in Computer Science and Engineering

at the Delft University of Technology.

Project duration: April 29, 2018 – July 12, 2018
Supervisor: F.F.J. Hermans, TU Delft
Thesis committee: F.F.J. Hermans, TU Delft

O.W. Visser, TU Delft
M. ElHefnawy, Key2Soft

An electronic version of this thesis is available at https://repository.tudelft.nl/.

https://repository.tudelft.nl/

Preface

This report concludes our work for the Bachelor Project of the bachelor Computer Science and Engineering
at the Delft University of Technology. Over the course of two and a half month, we have created a system
that automatically generates a timetable from a given set of timetable resources. This was done in collab-
oration with Key2Soft, an IT company in Cairo, Egypt, where we have worked on premises to complete the
project.

Our time in Egypt has been challenging but at the same time educational and a very useful experience. We
would like to thank the Key2Soft team for their supervision and for giving us the opportunity to conduct this
project at their company. We would also like to extend our thanks especially to Mahmoud ElHefnawy, the CEO
of Key2Soft, Elsayed Hamed, the CTO of Key2Soft and Reda Osman, the Key2Soft project manager.

We would also like to thank Felienne Hermans from the Software Engineering Research group at the Delft
University of Technology for being our supervisor during this project, as well as her feedback, weekly meet-
ings and guidance.

S.R.P. van Hal

K.N.M.M.H. Osman

Delft, July 2018

iii

Summary

Cairo-based IT company Key2Soft is working on a comprehensive system to automate various systems in
Egyptian primary-, middle- and high schools. This software system, named Key2School, includes a timetabling
component, with which the company aims to relieve the workload of timetablers by providing them with
a system which automatically generates timetables for all teachers, students and subjects. In consultation
with the company, both functional requirements and timetable requirements have been composed for the
timetabling part.

A literature study has been conducted to find and compare existing timetabling algorithms and libraries in
order to select the best match for the company. All existing algorithms in literature were found to be too slow,
so a system has been designed around an open source timetabling program. This system contains a part
where the program is managed, a part which interfaces with the database of Key2Soft and a part where the
timetable resources are constructed in a compatible manner.

The system has been implemented according to and in consultation with programmers at Key2Soft and will
be integrated in Key2School in the future. The system is programmed mainly in C# and uses XML files to
configure the timetabling library. The system has been thoroughly tested with NUnit, a platform-specific
unit testing library, which enabled the developers to verify the code quality. The code has furthermore been
evaluated by the independent IT consultant SIG.

v

Contents

1 Introduction 1
2 Research 3

2.1 Introduction . 3
2.2 Problem definition and analysis. 3

2.2.1 Problem description . 3
2.2.2 Deliverables . 3
2.2.3 Stakeholder analysis . 3

2.3 Ethical implications . 4
2.4 Design Goals . 4

2.4.1 Compatibility . 5
2.4.2 Maintainability . 5
2.4.3 Performance . 6

2.5 Requirement Analysis . 6
2.5.1 Module requirements . 6
2.5.2 Timetable constraints . 7
2.5.3 Analysis . 8

2.6 Existing Algorithms . 9
2.6.1 Genetic Algorithm . 9
2.6.2 Firefly Algorithm . 9
2.6.3 Bee Colony Optimization Algorithm . 10
2.6.4 Hybrid Firefly / BCO . 10
2.6.5 Particle Swarm Optimization Algorithm . 10
2.6.6 Tabu Search Algorithm . 10
2.6.7 Simulated Annealing Algorithm . 11
2.6.8 Tiling Algorithm . 11

2.7 Existing timetabling software . 11
2.7.1 aSc Timetables (commercial) . 11
2.7.2 Timetabler (commercial). 11
2.7.3 FET (free open source) . 11
2.7.4 Unitime (free) . 12
2.7.5 Conclusion. 12

2.8 The FET Program . 12
2.8.1 Recursive Swapping Algorithm. 13
2.8.2 FET-CL . 13
2.8.3 FET file structure. 14

3 Design 15
3.1 Introduction . 15
3.2 Architecture. 15

3.2.1 Overview. 16
3.2.2 Data Model . 16
3.2.3 Resource objects . 17
3.2.4 XML creator . 17
3.2.5 FET-CL . 17
3.2.6 Timetable object . 17

4 Implementation 19
4.1 Introduction . 19
4.2 Project structure . 19

vii

viii Contents

4.3 Resource objects . 19
4.3.1 AbstractList . 20
4.3.2 ActivitiesList . 20
4.3.3 ActivityBuilder . 20
4.3.4 Constraints . 20

4.4 XML parser . 22
4.5 Data model . 22
4.6 Timetable generation . 23

4.6.1 Software design . 23
4.6.2 Program input . 23
4.6.3 Process creation and management. 24
4.6.4 Output processing . 25
4.6.5 Performance . 26

4.7 Configuration . 26

5 Testing 29
5.1 Introduction . 29
5.2 Testing methodology . 29

5.2.1 Guidelines . 29
5.2.2 Unit testing . 29
5.2.3 Integration testing . 30

5.3 Test results . 30
5.3.1 Unit tests. 30
5.3.2 Integration tests . 30

5.4 Challenges . 31

6 Evaluation 33
6.1 Introduction . 33
6.2 Requirements . 33
6.3 Timetable evaluation . 34
6.4 Requirements changes during the process . 34

6.4.1 Collections . 34
6.4.2 Stages . 35

6.5 Software Improvement Group . 35

7 Process and Recommendations 37
7.1 Introduction . 37
7.2 Development methodology . 37

7.2.1 SCRUM . 37
7.2.2 Reflection . 38

7.3 Development Resources . 38
7.3.1 Slack . 38
7.3.2 GitHub . 38
7.3.3 Waffle . 38

7.4 Recommendations . 38

8 Conclusion andDiscussion 39
A Initial problem definition by Key2Soft 43

A.1 Project: Automated system to generate optimal school time table 43

B FET-CL 45
B.1 Supported timetable constraints . 45

B.1.1 Time constraints . 45
B.1.2 Space constraints . 46

B.2 Command-line arguments . 46
B.3 FET XML structure . 48

B.3.1 Meta elements . 48
B.3.2 Grouping elements . 48

Contents ix

B.3.3 Resource elements . 49
B.3.4 Reoccurring elements . 49
B.3.5 Time constraint elements . 50
B.3.6 Space constraint elements . 56
B.3.7 Miscellaneous elements . 60

B.4 Basic FET XML file example . 60

C Software Improvement Group (SIG) feedback 63
C.1 First evaluation . 63
C.2 Second evaluation . 63

1
Introduction

Each year, schools and universities all over the world create timetables for their students and teachers. To
create a good timetable, a lot of factors play a role. Take for example the preferences of the teachers, the
availability of classrooms or preferred starting times for certain subjects. The problem of creating an optimal
timetable is well researched and known to be NP-Complete [1]. Currently, most schools create timetables by
hand, which is a time-consuming process.

We have conducted our Bachelor Project at Key2Soft, an information technologies company located in Cairo,
Egypt. Their focus lies on delivering value to clients by providing consultancy that solve their business prob-
lems along delivering innovative IT solution based on latest technologies that help them to achieve opera-
tional excellence1. Key2Soft is developing various software solutions for governmental and educational bod-
ies in Egypt and Saudi Arabia.

One of those solutions is called Key2School. Key2School aims to automate a large number of processes within
schools and Key2School therefore consists of a wide range of administration systems, financial systems, aca-
demic systems and two mobile apps. The academic systems, for example, connect teachers with students and
parents, provide continuous access to the student’s grades and supports direct messaging between teachers
and parents.

For this bachelor project, an automated timetable generation system has been created as part of the academic
systems of Key2School.

This report contains firstly, in chapter 2, the research behind this project. The analysis of the problem, trans-
lated into functional and timetable requirements, and a literature study has been conducted to find existing
solutions to solve the timetabling problem can be found here. This chapter also dives deeper into the chosen
existing timetabling solution.

Next, in chapter 3, the overarching software design is explained and the architectural choices are detailed.
This chapter also describes how the data stored in Key2Soft data sources is translated to a compatible data
format for the timetabling library.

In chapter 4, the actual implementation of the system components as described in chapter 3 is explained.
The project structure, the timetable resource input implementation as well as the timetabling library output
retrieval and storage are detailed.

Chapter 5 dives into the testing methodology which has been used to continuously verify the code quality.
Creating maintainable and testable code has been a strong point of focus for this project. The test results are
then interpreted and explained.

Chapter 6 contains an extensive evaluation of the requirements set forth in chapter 2 and the resulting timeta-
bles.

1see: https://www.key2soft.com

1

https://www.key2soft.com

2 1. Introduction

In chapter 7, the development process is explained and reflected upon as well as the interaction with the
stakeholders. Also, recommendations are made for further work on the project.

Chapter 8 concludes this project and contains the key points to remember of this report and our time at
Key2Soft in Cairo.

2
Research

2.1. Introduction

The first weeks of the project have been devoted to research. This chapter defines the (automated) timetable
creation problem and the software- and timetable-specific requirements (or: constraints). Also, a stakeholder
analysis has been conducted and their needs, who could influence the outcome of the project, are described.
Furthermore, existing timetabling solutions and algorithms that can solve the automated timetable problem
were researched to find a suitable solution for the problem. Finally, these solutions are evaluated and the
choices about which solution to continue with are explained.

2.2. Problem definition and analysis

In this section, the automated timetabling problem is defined and the analysis of the problem is described.
This includes concretizing deliverables, analyzing stakeholders involved in the project and determining the
ethical implications of the project.

2.2.1. Problem description

Key2Soft is developing a wide range of software solutions for Egyptian schools called Key2School. The system
is aimed primarily at primary, middle- and high schools. These schools make timetables for different people
that are dependent on each other and should keep in mind preferences of each individual or group. Creating
these timetables is currently done by hand, but this takes days or even weeks. Key2Soft aims to simplify this
process by developing a system that can generate timetables automatically and thus solving the timetabling
problem in a matter of seconds instead of days.

2.2.2. Deliverables

The main deliverable of this project is an automated timetable generation module, which can be integrated
in the larger Key2School software package. The generated timetable has to adhere to functional (software)
requirements (see section 2.5.1) and predefined constraints (see section 2.5.2) .

2.2.3. Stakeholder analysis

The stakeholder analysis in this section provides an overview of the stakeholders who are directly or indirectly
influenced by this project. The stakeholders are categorized into primary, secondary and tertiary stakehold-
ers. Primary stakeholders are the key players, who are directly influenced by this project and will actually use
the system. Secondary stakeholders are only indirectly influenced: the project will influence their current
situation, but they won’t use the system directly. The tertiary stakeholders are not influenced by this project,
but have a high interest in the success or failure of the project.

3

4 2. Research

Primary stakeholders:

Key2Soft developers. The Key2Soft developers will integrate the system into the Key2School system. For
this reason, the technical design and implementation has influence on how they can use our module. The
developers will also continue developing and fine tuning the program.

Timetable creators / school administrators. The schools will use the Key2School system with the timetable
generator integrated to generate timetables for the teachers and students, instead of doing this manually.
Their requirements needs to be satisfied concerning the system on a user point of view.

Secondary stakeholders:

Students. The timetable will be generated for students. They will not use the system, but use the final output
daily. Their preferences are important to be able to create a healthy educational environment. Their needs
could be different for each group, or be the same for all the students. These preferences creates constraints
for the creation of a timetable, as defined in section 2.5.2. The user (school administration) will specify the
importance of each preference to satisfy as many as possible of the group. The students are the main focus
for the user of the timetables.

Teachers. The generated timetable will also influence the teachers. The students are the first priority, but the
teachers preferences are also an important aspects. For example, a teacher could prefer not to give lessons on
a specific day. The module should take this into account. The user will also specify the importance of these
preferences.

Tertiary stakeholders:

Key2Soft manager. The Key2Soft project manager will not use the module directly, but is the one that com-
municates the preferences of the school. He will eventually have the final say if the module is usable for the
user or not. The manager has directly the most influence on the requirements of the module.

2.3. Ethical implications

Creating a timetable for different groups of people, such as teachers and students, does not create ethical
problems per se, but requires some (ethical) decisions to be made.

First, it is important to realize that conflicting preferences can occur. When creating a timetable with soft
constraints, violating some constraints is inevitable. The main ethical issue is whose preferences to satisfy
and whose preferences to ignore. In consultation with the Key2Soft project manager, the decision has been
made to center the system around students. This means that timetable constraints of the students have a
higher priority than that of the teachers. If a constraint conflict occurs between two student sets or between
two teachers, the system should randomly choose one.

Another ethical problem that can occur during the automated creation of timetables is the uneven division
of workload over equally qualified teachers. One teacher could get scheduled for ten lessons, while the other
would just get one. The timetable would satisfy all requirements, but would be unfair to the teachers. Fortu-
nately, this problem is solved before this timetable system is used. In the user interface component, which is
created by Key2Soft outside the scope of this project, the data is entered into the system in such a way that the
user of the system explicitly defines the student sets that a teacher teaches. At this point, the decision about
the teacher workload can be made beforehand to ensure a fair distribution of lessons.

2.4. Design Goals

In this section, the design goals which have been set for this project are described. A design goal is a guideline
which highlights an important field or direction to focus on during the design and development of a product.
During the definition of our design goals, we have attempted to find common ground between the consumer’s
and business needs and to find a compromise when the design vision clashes. Some goals are therefore only
or mostly applicable to one side of this equation, but some are of equal importance to both.

2.4. Design Goals 5

The overarching design philosophy is based on – in their respective order of importance – compatibility,
maintainability and performance. Each of these three categories is further elaborated on below.

2.4.1. Compatibility

The main deliverable of this project is a module which automatically generates a timetable based on a large
amount of predefined resources, such as teachers and students (see section 4.3). The final product will be in-
corporated in the larger Key2School project, so it is important from the business perspective that the module
is compatible with the existing code and coding practices currently in use.

Platform compatibility

Almost the entire code base of Key2Soft is written in C#. The main data storage behind the program is based
on Microsoft SQL Server.

Key2Soft database integration

Key2Soft uses a MS SQL database for the Key2School system. This project will need to use this database to
gain the needed information to generate a timetable.

Key2School compatibility

The output of the system will need to be used in the Key2School system. Therefore the system needs to
generate output that Key2School can implement.

2.4.2. Maintainability

The system will need the possibility to change specific parts, such as adding or removing constraints. This
should be easily be doable for the developers who will continue developing the system.

Code quality

The code needs to be clean and use the correct C# code style. Using continuous integration (AppVeyor) the
system will always check if the newest code commits are working and correct. Furthermore, the code coverage
will be checked by Coveralls to ensure each sub-part is tested. Also, Sonarqube is used to check the cleanness
of the code. This will remove redundant and clumsy code usage.

Design patterns

Each part of the system needs to use the appropriate design pattern. Using these patterns creates a clear and
understandable class model which makes it easier for the Key2School developers to reuse and change the
code.

Submodule independence

Each part of the module needs to be usable on its own. Creating such a system gives the flexibility to reuse
parts of the system.

Testability

The code needs to be structured in such a way to optimally support (unit) testing. Tests should furthermore
give a clear indication of the correctness of each part and fail in a clear manner which describes the problem
as well as possible for the programmer to resolve.

6 2. Research

Documentation

All the code needs to be well documented so that the developers of Key2Soft can reuse and change our code
without problems. The documentation needs to be grammatically correct, without any mistakes.

2.4.3. Performance

Fast timetable generation

The generation of the timetable should be done in a reasonable time, less than 30 minutes. The main user
will not use the system if it takes to long for each generation.

Prevent overhead

While keeping code maintainability. Will have to weigh the importance of both every time we make a deci-
sion.

2.5. Requirement Analysis
The requirements for this project have been analyzed in collaboration with the Key2School project team at
Key2Soft. The requirements have been divided into two categories: first, we will discuss the requirements of
the module to be developed. Secondly, schools have a lot of rules for timetables (or: constraints), ranging
from which teacher can teach which course, to specific room-course relations, class splitting and shared
courses. These timetable constraints are detailed in section 2.5.2.

2.5.1. Module requirements

The module requirements for the project are structured following the MoSCoW method [5]. This method
enables us to distinguish and prioritize the most important requirements. Each requirement is defined fol-
lowing the requirements of the stakeholders, and the design goals.

• The module must be able to produce a feasible timetable, given that the input data allows a feasible
timetable to be constructed. A feasible timetable means that a timetable is generated without any pre-
defined hard constraints violated.

• The generated timetable must adhere to predefined constraints as detailed in 2.5.2.

• A feasible timetable must be generated in less than 30 minutes.

• All classes and methods must be documented, explaining its use or input, behavior, and output.

• Users should be allowed to set the importance c.q. priority of each soft constraint by intervals of 10,
where 10 is an almost hard constraint (99%) and 0 is a not needed (or inactive) constraint.

• The module should be able to be integrated seamlessly in Key2School.

• The module should load all relevant information to generate a timetable from Key2Soft data sources.

• The module should be able to generate a timetable without user interaction or user intervention.

• A feasible timetable should be generated in less than 5 minutes.

• The module should have at least a 90% branch coverage by using unit tests.

• The module should be tested with real-world timetable cases.

• Violated soft constraints with a priority of more than 50% should be reported to the user.

• The module should retain all generated timetables.

• The module could inform the user that, when no feasible solution is found, which constraints 2.5.2 are
violated.

• The module won’t support manual modifications to a generated timetable at this time.

2.5. Requirement Analysis 7

2.5.2. Timetable constraints

During the first weeks of the project, the requirements with respect to the timetable have been changed multi-
ple times. The original problem definition (see A.1) contains only a few (trivial) constraints. At the start of the
project, numerous additional constraints were added. Then, after a Key2Soft meeting with an expert school
timetabler, additional constraints were added as well as the distinction between constraint types.

A constraint can be either hard or soft. A hard constraint means that this constraint cannot be violated,
otherwise the timetable is incorrect. An example of a hard constraint is a the weekend. During these days,
there can not be a lesson scheduled. A soft constraint is a constraint that can be violated if necessary, but
would be preferred not to. Soft constraints are usually based on teacher or student preference, while hard
constraints are usually based on student or teacher availability. For example, teachers would like to have
a evenly distributed schedule, without big empty gaps. But if the hard constraints makes it not possible to
always retain this constrain, the soft constrain will be violated. The number of violated soft constraints will
tell the quality of the timetable, less violated soft constraints is a better timetable.

Some of the constraints are final, which means that the constraint is always hard or soft. Other constraints
can be either one of them. This can be set in the settings of the user, before generating a timetable. Each
soft constraint will have a weight, ranging from 0% till 99%. The weight will represent the priority of each soft
constraint, regarding which one to break if a soft constraint needs to be violated.

Terminology

The terminology, categories and description of timetable constraints are paraphrased or taken directly from
the extensive survey of school timetabling research by Pillay [20].

• A class refers to a group of students that will be taught a particular subject, e.g. Mathematics.

• The term grade refers to the level of schooling, e.g. twelfth grade is the last year of secondary schooling.
Each grade contains one or more classes.

• A subject refers to the actual content being taught, e.g. English or Mathematics.

• A lesson refers to a particular subject being taught to a class by a teacher. A number of lessons are
taught for each subject.

• A period is a timetable slot which a lesson can be scheduled in.

• An idle or free period for a teacher is a period in which the teacher does not teach. Similarly, an idle or
free period for a class is a period in which the class is not taught a lesson. A timetable without free or
idle periods is described as compact.

• In some cases classes are split into subgroups and each subgroup is taught a different subject simulta-
neously in different venues. Similarly, it may be necessary to merge classes for lessons and teach these
in one large venue.

• A tuple is comprised of a class, teacher and a room which must be scheduled in a timetable period. In
some cases a tuple may consist of only a class and a teacher. In addition to this a class may be the result
of a split and/or merge. There may also be more than one teacher in a particular tuple.

• A resource refers to any entity involved in a lesson. The standard resources are a class, teacher and the
room in which the lesson is held.

• Type defines if the constrain is hard, soft, or could be either of them.

Problem requirement constraints

CODE REQUIREMENT TYPE

PR1 Classes must be scheduled for the required number of meetings for each subject. Hard
PR2 Teachers must be scheduled for the required number of meetings with each

class.
Hard

8 2. Research

No clashes constraints

CODE REQUIREMENT TYPE

NC1 A class must not be scheduled more than once during a time slot. Hard
NC2 A teacher must not be scheduled more than once during a time slot. Hard
NC3 A room must not be scheduled more than once during a time slot. Hard

Resource utilization constraints

CODE REQUIREMENT TYPE

RU1 Teachers must only be scheduled when available. Teachers may be unavailable
during certain periods due to administration tasks, teaching in another school,
allocated free periods or days off. Teachers must not be scheduled to teach dur-
ing these periods.

Hard/Soft

RU2 Classes must only be scheduled when available. Hard/Soft
RU3 Certain lessons require specialized rooms, e.g. science labs, computer lab, the

gymnasium. These requirements must be met.
Hard

Workload constraints

CODE REQUIREMENT TYPE

W1 Classes for a particular grade cannot have more than a predefined number of pe-
riods per day, e.g. the timetable for lower grades may be comprised of 9 periods
while that for higher grades may schedule 11 periods.

Hard

W2 A limit may be set on the maximum and minimum number of lessons of a sub-
ject a class may have per day, e.g. certain grades can not have more than three
Mathematics lectures in a day.

Hard/Soft

W3 Teacher workload is defined in terms of a minimum and maximum number of
teaching lessons or hours per week or per day.

Hard/Soft

Period distribution constraints

CODE REQUIREMENT TYPE

PD1 A limit may be set of the amount of consecutive lessons for a subject per day. Hard/Soft
PD2 The lessons taught by a teacher should be well-spaced throughout the week. Soft
PD3 Certain subjects may have to be taught every day. Hard/Soft

Lesson constraints

CODE REQUIREMENT TYPE

L1 Classes may be merged together for a lesson. In some cases classes may have to
split into subgroups with each subgroup being taught a different subject simul-
taneously. The split subgroups may also need to be merged differently from the
original configuration.

Hard

L2 Certain lessons must take place simultaneously. Hard

2.5.3. Analysis

The automated timetable generation problem is NP-hard. Therefore, no (polynomial) algorithm exists to
find the optimal solution. A wide range of heuristic algorithms to solve the problem have been presented
in literature, each with their own advantages and drawbacks. The most important algorithms are covered in
section 2.6. It is critical to select the right algorithm to meet the time limit of the timetable generation and to
be able to create a feasible solution at all. Also, not all algorithms are able to work with specific constraints on
resource availability.

2.6. Existing Algorithms 9

Furthermore, because this module is part of a larger system, we have to take the implementation in the final
product into account. We have to either adhere to the existing project structure, or create and independent
module with a compatible interface to the system.

2.6. Existing Algorithms

Extensive research has been performed in the field of automated timetable construction. The problem was
first formulated in 1965 [6] and was proven to be NP-complete in 1995 [1]. Multiple different approaches using
one or more heuristic algorithms have been proposed since, each with its own advantages and drawbacks.
A meta-heuristic algorithm is a algorithm that makes a couple of assumptions before searching for a near
optimal solution of a problem. In this section, we will present a wide range of existing algorithms to solve the
automated timetabling problem.

2.6.1. Genetic Algorithm

A genetic algorithm is a heuristic approach to find a (sub-)optimal solution for problems that are not solvable
using linear computation algorithms. The genetic algorithm is an evolutionary algorithm and is inspired by
Darwin’s human evolution theory. The algorithm encodes candidate solutions as chromosomes. Offspring
of two chromosomes combines characteristics of both and random mutations can happen within a chromo-
some.

The fitness value of a chromosome denotes how good or feasible that solution is. First, an initial, random
population of chromosomes is created, each with a different fitness. To allow the algorithm to converge to a
(sub-)optimal solution, selection is used to choose the chromosomes that have the best fitness which then
reproduce to form a new generation of chromosomes.

Generating new chromosomes is based on the biological principle of crossover. Crossover swaps parts of the
parents’ chromosomes to create new offspring. For each generation, a new selection is performed to choose
the best available chromosomes.

The algorithm terminates when a predefined fitness value is reached or after a maximum number of genera-
tions. To make sure that the algorithm does not get stuck in a local minimum, the algorithm uses mutation,
meaning that at a random point in a chromosome a random mutation (or: change) might occur.

Timilsina et al. [23] show that basic genetic algorithms cannot be applied to large instances of timetable
solving problems. Their final solution still violates hard constraints. Their conclusion is that improved genetic
operators are needed to achieve the desired result. However, Mahar et al. [15] demonstrated earlier that the
timetable problem can indeed be solved if custom genetic operators and a well thought-out chromosome
composition are used. They demonstrate a working approach using a genetic algorithm to generate a feasible
timetable for the College of Computing and Information Technology in Egypt.

Beligiannis et al. [3] used a genetic algorithm to construct timetables for different high schools in Greece.
They considered some constraints as hard, not to be broken constraints – e.g. as co-teachers and sub-classes
– and at the same time tried to optimize for soft constraints – such as the teachers’ course distribution over a
week. The running time of the algorithm was at least 30 minutes in approximately 100 test cases. The authors
note that there might be ways to improve the algorithm to run faster and more efficient.

2.6.2. Firefly Algorithm

The Firefly algorithm, as proposed by Yang [25] and applied to timetable optimization in [19], is also an evo-
lutionary algorithm. It is based on firefly mating patterns and is similar to genetic algorithms 2.6.1 in the
sense that an initial population of solutions is being evolved – with each generation producing more optimal
solutions – but differs in the way new solutions are created.

To generate new candidate solutions, the Firefly algorithm chooses for every firefly (candidate) in a genera-
tion a random other firefly. If the fitness of randomly selected candidate is better than the initial candidate,
the entire solution is replaced. If, however, the initial candidate has a higher fitness, two operations are per-
formed:

10 2. Research

1. Two randomly selected slots from the candidate are replaced with new random values.

2. One randomly selected slot from candidate is replaced with the value of the candidate with the higher
fitness value.

A similar fitness function as for the genetic algorithm is used to determine the fitness of the candidate solu-
tions and the algorithm terminates when a predefined fitness level is reached.

The firefly algorithm has only been tested on a non-representative test set as a proof of concept. In current
literature, no evidence is presented that the algorithm can function on a real-world dataset and converges
within a reasonable amount of time.

2.6.3. Bee Colony Optimization Algorithm

Bee Colony Optimization (BCO), as first presented by Karaboga [10] and applied to timetable optimization
in [18], is another approach to search the timetable problem space. BCO is also an evolutionary algorithm
and is based on the behavior when searching for food of honey bees. As with any evolutionary algorithm, the
algorithm starts off with an initial population of, in this case, artificial honey bees. The honey bees gather
around food sources (a subset of possible solutions) with some amount of nectar (fitness value). Three types
of bees are employed:

• Employed Bees – Worker bees which each take an available solution.

• Onlooker Bees – Helper bees which try to improve the available solutions by selecting the most promis-
ing solutions using Roulette Wheel (or: fitness proportionate) selection.

• Scout Bees – To prevent getting stuck in a local optimum, Scout Bees generate new food sources when
all solutions in the existing food sources have been evaluated.

The employed bees start at a random food source where their solutions are calculated. Onlooker bees then try
to improve their solutions using Roulette Wheel selection, where solutions with a higher fitness have a higher
probability of being selected. When a food source is exhausted, the scout bees direct all bees to another food
source. The algorithm terminates after a predefined number of food sources have been explored or when the
desired fitness value is obtained.

2.6.4. Hybrid Firefly / BCO

Building on their previous work in [19] and [10], Sahoo et al. have presented a hybrid approach using both
Bee Colony Optimization and the Firefly algorithm [21]. However, as in the first two papers, no simulation on
a representative dataset has been performed. The limited test runs function merely as a proof of concept and
it is not clear whether or not their solutions (Firefly, Bee Colony as well as the hybrid approach) are feasible
in practice.

2.6.5. Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) was developed by Kennedy and Eberhart in 1995 [4]. Each particle in the
PSO is a representation of a candidate solution. By using the personal and global best, the velocity of each
particle is tuned to find the optimal solution. The advantages of PSO are that PSO is easy to implement and
there are few parameters to adjust. The disadvantage is that the PSO only looks at the particle itself to find
the optimal. Using variations of the PSO give feasibele solutions for the timetable problem, but take time
[11].

2.6.6. Tabu Search Algorithm

The Tabu Search Algorithm is a local metaheuristic search algorithm that is guided to find a near optimal
solution [9]. The algorithm looks to neighbour solutions and remembers the best solution. The rest is added
to the Tabu list to remember that these moves are not permitted. This is done in the short time memory, to
keep the algorithm from being stuck in a local minimum. During the algorithm, each solution will be checked
to the criteria. If the solution satisfies, the solution will accepted. Otherwise there will be a small swap to find

2.7. Existing timetabling software 11

a better solution. The disadvantage of this algorithm is that the short time memory is usually not enough to
keep the algorithm form being stuck in a local minimum.

2.6.7. Simulated Annealing Algorithm

The Simulated Annealing algorithm is a Monte Carlo algorithm that uses the principles of atoms and tem-
perature [17]. When atoms are heated, they have the characteristic to move freely in space at random. When
cooled down, the atoms move less freely until the cooling temperature where they get frozen and do not
move. The Simulated Annealing algorithm uses this characteristics to randomly move elements, depending
on the simulated temperature. Cooling the elements quickly will lower the chance to find a low cost solution.
A solution is accepted if the system temperature (the timetable) is lower than the initial temperature.

2.6.8. Tiling Algorithm

Kingston [12] developed a tiling algorithm where tiles where created that contains a solution for a time slot.
When a tile is added in a specific place in a column, a test is run to check the compatibility of this tile. Using
the alternating path algorithm a effective resource allocating algorithm is developed.

2.7. Existing timetabling software

Various free and commercial applications exist which allow the user to generate timetable automatically or
semi-automatically (iteratively). Most applications feature some kind of graphical user interface to guide
the user in the timetable creation process by allowing users to easily define school resources and timetable
constraints. This section covers the most commonly used applications and their inner workings.

Some of the current possibilities are ASC Timetables [22] (licensed), Timetabler [14](licensed), FET [13](free
open source) and Unitime [24](free open source) . Key2Soft needs to use the solution in their own Key2School
system, so therefore only free open source solutions with a permissive license are usable.

2.7.1. aSc Timetables (commercial)

The aSc timetable software [22] is one of the most used commercial software solutions for the timetabling
problem. During the 20 years of development, aSc created a solutions which creates a timetable in matter of
seconds and dynamically usable in any school or system. The system gives the user the possibility to create
any constraint that is needed and changing the timetable manually. The algorithms used is confidential,
which makes this system unasable for this project.

2.7.2. Timetabler (commercial)

Timetabler [14] started as an free software solution. For 40 years, the timetabler team experimented to create
a fast and friendly usable software solution. As the system progressed, the system became commercial and is
now used in 80 countries. The algorithms of timetabler and the optimization they used are also propitiatory
information, which makes this system also not usable for this project.

2.7.3. FET (free open source)

FET is an open source free timetabling software in C++ that is developed by Liviu Lalescu and Volker Dirr [13].
The first release of the current algorithm was on November 5, 2009 and is still updated frequently. It started
in 2002 with a genetic algorithm, but this was computational slow. For this reason they created another
algorithm which they called Recursive Swapping (see section 2.8.1). FET supports many different languages,
such as Arabic, English and Greek. It also support many different constraints. The hardness of a constraint
can be set between 0% and 100%, where 100% means a hard constraint. Bauteu et Al. [2] did a case study
using FET and the results showed that the execution time is low (max 30 seconds in the demonstrated cases)
compared to other algorithms. The main factor on the execution time are the (combination of) constraints
used. Further research into the FET program can be found in section 2.8.

12 2. Research

2.7.4. Unitime (free)

Unitime is a web-based automated timetabling application with a constraints solver written in Java [24]. It is
based on the iterative forward search algorithm. Unitime was developed by staff from several faculties from
North America and Europe. The development started in the year 2001. It uses a MySQL database to store
data and works as a server-client package. The constraints are based on penalties, where -4 means strongly
preferred and +4 is strongly discouraged. A penalty of ∞ represent a constraint that should always be true.
The run time of Unitime differs: simple timetables take around 10 seconds, where larger and more difficult
timetables take up to 15 minutes [16].

2.7.5. Conclusion

As can be seen by the wide variety of algorithms presented in this section, solving the timetable problem can
be done in many different ways. However, no definitive method which always produces a solution in any
given case exists (hence the NP-hardness), but there is also no method which produces a solution when it is
known that the constraints, in theory, can be satisfied within a given time frame. Meta-heuristic algorithms
cannot give any kind of guarantee regarding their output.

In literature, cutting-edge solutions to the timetable problem are usually only applied to a specific data set
which is very suitable for that specific algorithm. Most of the time, these data sets do not truly represent real-
world timetabling scenarios, which makes it hard to determine their real performance. This is another factor
which makes it hard to choose a suitable approach.

We suspect that hybrid solutions are used in practice to provide specific benefits in specific scenarios. Some
algorithms have disadvantages that can be overcome in a specific situation by combining it with another al-
gorithm. Our limited experience with the timetable problem makes it difficult to select the right combination
of algorithms beforehand.

For the final consideration, we have taken into account all the module requirements, the timetable con-
straints, the researched algorithms with their (dis)advantages, the amount of available literature and real-
world applications and examples. The most promising approach seems to be based on a genetic algorithm.
The decisive factor in this case was the paper of Beligiannis et al. [3] about timetabling in Greek high schools,
where a genetic algorithm was successfully applied in practice in a situation similar to ours.

However, in consultation with Key2Soft, the genetic algorithm was deemed too slow to use in practice. As
shown in [3], the lower bound on the run time was approximately 30 minutes. For this reason, we have
decided to use an existing open source software solution which has empirically proven to be fast in most real
world timetabling cases and integrate that into the system. Looking at the possibilities, two software solutions
are possible candidates: Unitime and FET. Overall, FET seems to be a better fit, because of the faster run time
and the provision of a standalone executable to simplify integration into a larger project. For this reason, we
continued researching the inner workings of FET more in-depth.

2.8. The FET Program

Upon recommendation of the Software Lead at Key2Soft, we have devoted extra effort to researching the
possibilities and inner workings of the FET timetabling program. FET was advertised to be very fast, which
was a strong point of focus for Key2Soft. Because the algorithms described earlier in section 2.6 are either
complex, slow or difficult to implement, being able to use an existing timetabling program would benefit the
project.

The inner workings of FET are poorly documented and the program has a cluttered and unclear code base,
consisting of source code files of up to 16.000 lines of code. However, a list of all supported constraints is
available on their website [13] and a high level description and explanation of the algorithm is provided with
the documentation of each release. The author is furthermore communicating extensively with the active
timetabling community at a forum on their website, where important practical information about the work-
ings of FET-CL can be found.

This section provides an overview of the algorithm in use and the possibility to use a headless version of FET
as a standalone program. More information about the constraints can be found in appendix B.

2.8. The FET Program 13

2.8.1. Recursive Swapping Algorithm

FET uses a semi-greedy algorithm based on the process of how a human timetabler would construct a timetable.
The algorithm is referred to as Recursive Swapping and provides in most cases a fast and efficient way to solve
the timetabling problem. The pseudo-code of the algorithm, which is derived from the code, is listed in algo-
rithm 1.

The algorithm starts by sorting the activities, placing the most difficult (or: most constrained) tasks first.
The algorithm’s speed greatly benefits from this approach, because less constrained activities are easier to
schedule with fewer available time slots.

The main approach of the algorithm is to randomly assign all activities to a time slot. If this is not possible for
some activity, e.g. there are no time slots available which satisfy the constrains on that activity, it will place
the activity in a valid time slot and re-adds the conflicting activities recursively.

Algorithm 1 Recursive swapping

Input: A list L of activities A1..An and the constraints
1: Sort activities . Most difficult first
2: for all Ai ∈ L do
3: bool ← AddActivityInTimeSlot(Ai) . Chooses a random available slot, else returns false
4: if !bool then . Recursive swapping
5: List x . Conflicting activities list for each timeslot
6: for all T j ∈ T i meSlot s do
7: x.addConflictingActivities(T j)
8: end for
9: Tl ← lowestConflictingActivities(x)

10: List A ← Tl .removeAll . List A contains all the activities in Tl and empties the timeslot
11: for all Ax ∈ A do
12: s ← addRecursively(Ax)
13: end for
14: if s then
15: Return true
16: else
17: Tl ← nextLowestConflictingActivities(x)
18: addRecursivelyInTimeSlot(Tl) . Use different timeslot and redo from line 10
19: end if
20: end if
21: end for
22: Return false

2.8.2. FET-CL

A command-line only version of FET (FET-CL) is included with every release of the program. This version of
FET functions roughly the same as the version with GUI, but has a couple of notable differences:

• The command line version does not halt on warning messages, but instead dismisses them and con-
tinues.

• The command line version does not write the amount of broken soft constraints to the console, but only
to a result file (as does the GUI version). The result file, however, is more detailed than the information
provided by the GUI.

• The command line version is unable to provide information about the activity that is currently being
scheduled.

FET-CL accepts as much as 40 command line arguments, most of which alter the way the output of the final
timetable is constructed. The most important arguments are described below. For a full overview, please refer
to to Appendix B.

14 2. Research

inputfile (required)
The XML input file, for instance "data.fet".

outputdir (optional)
default: current working path

The path to the results directory. In this directory, the timetables and log files are written. The timeta-
bles are available in multiple formats (including HTML and XML) and from multiple points of view
(such as teachers, student groups, subgroups and rooms).

timelimitseconds (optional)
default: 2000000000

The time limit on the timetable generation.

language (optional)
default: en_US

The language of the program, especially relevant for the status and error messages produced by the
program.

verbose (optional)
default: false

When true, makes the program output more status information and updates about the algorithm.

2.8.3. FET file structure

FET can load and store timetabling resources in an XML file, which has to use a .fet file extension. The in-
ternal timetabling resources are saved as individual XML elements. Each resource has its own child elements
and multiple resources of the same kind are wrapped by a grouping element. Since there was limited to no
documentation available about the XML structure, we have documented the .fet file by creating a list of all
available elements and their use. Please refer to section B.3 for the documentation.

3
Design

3.1. Introduction

This chapter is devoted to the overall system architecture and design choices, which have been thought out
before the actual implementation of the system commenced. Section 3.2 describes therefore the architecture
of all system components.

3.2. Architecture

In this section, the architecture of the system is described. In section 3.2.1, an overview of the system is
presented. Section 3.2.2 explains the data model, section 3.2.3 is devoted to the timetable resource objects,
section 3.2.4 is about the XML input file creator and section 3.2.5 describes the design of the timetabling
algorithm. Finally, in section 3.2.6, the design of the timetable result object is explained.

Key2Soft Database

Resource objects

FET
FET

Timetable object

FET Algorithm

Figure 3.1: System architecture overview

15

16 3. Design

3.2.1. Overview

The system for creating a timetable contains revolves mainly around the database, timetable resource objects,
FET-CL and an XML creator (see figure 3.1).

First of all, there is an existing database that Key2Soft uses for their systems. This database contains all
the Key2School data from a school. The data that is needed for creating a timetable is extracted from that
database and converted into resource objects, such as teachers, students and subjects. These objects need
to be converted to a specific file structure, a FET file. The FET file is inserted into the FET-CL system which
generates an XML output file. This file contains the scheduled activities and their respective time slots. The
XML file is read into a timetable object by the system and will finally be stored in the database as final out-
put.

Figure 3.2 shows an Entity-Relationship (ER) diagram of the overall system design. In the following sections,
each part will be defined and explained for a more in-depth view.

Figure 3.2: ER Diagram

3.2.2. Data Model

The data model is a representation of the Key2Soft Database that en-
ables the database to be used as an ORM. An ORM (Object-Relational
Mapper) maps a database to a model so that developers can use the
database as objects, removing the need for additional (custom) code
to access the database. It creates a simple and programmer-friendly
code environment. The database becomes a virtual object model
that can be used in an object-oriented system.

There are a couple of different ORMs available. The most well-known
and widely used ORM is the .NET Entity Framework [8]. Another
ORM that has been considered is the Dapper Framework [7], a newer
and faster ORM than the .NET Entity Framework. The downside of
Dapper is that it has less features and more code is needed to do the
same job as the .NET Entity Framework. It is also less stable than the
.NET Entity Framework.

Considering these differences, and taking into account that Key2Soft

3.2. Architecture 17

was already using this framework, the .NET Entity Framework was
chosen. The simplicity and stability of this framework are more important for this project. Dapper is faster,
but the speed-up is negligible relative to the total amount of run time of the final product (primarily caused
by the timetable generation component). Furthermore, the different features of the .NET Entity Framework
provide Key2Soft developers with more freedom when using the system in the future, as maintainability is
one of the main design goals.

3.2.3. Resource objects

The resource objects are different lists objects containing the needed data
from the DataModel to create a timetable. The different objects are:

• Activity: Consisting all the activities with a teacher, students set,
room and a subject.

• Room: All the different rooms and the type of the room

• Subject: A list of the names of the subjects

• Teacher: A list of the names of the teachers

• Time Constraint: Different time constraints objects

• Space Constraint: Different space constraints objects

• Day: The days of the week

• Hour: The number of hours in a week

3.2.4. XML creator

The resource objects need to be converted into a FET file. This is done by the
XML creator. It uses the objects to create a XML file with the needed structure to
be a FET file. Different XML parsers and creators exist, but because FET needs
a specific XML structure, the simple XML Creator is made. It uses the LINQ
XElements and XDocuments objects to create the file. The reason for using
LINQ is that it is simple and structured in such a way that it is easy readable
and fast.

3.2.5. FET-CL

The FET-CL program is used as a black box module. This means that the system
provides input to FET-CL and processes its output, without the possibility to
interact with the FET-CL program itself. The system can only control the input
file. The advantage of using such a black box module is that the developers do
not need to be concerned about the FET-CL itself: the algorithm is contained
in that program and does not need to be interfered with. The disadvantage of

this design is that developers cannot see what happens during the generation and have to rely on the output
of the FET-CL process.

3.2.6. Timetable object

The final part is returning the output into the database. The out-
put of the FET-CL is an XML file with activities in the following struc-
ture:

• ID: The ID of the corresponding activity

• Day: Which day the activity is placed

• Hour: Which hour the activity is placed

18 3. Design

• Room: In which room the activity is placed, if a predefined room
type was provided.

This output is converted into a timetable object that adds each activity in the database with the corresponding
attributes.

4
Implementation

4.1. Introduction

The implementation chapter describes how each part is implemented and used to create the timetable gen-
erator system. In section 4.2 the structure of the solution is explained. Section 4.3 give a detailed description
of each resource object that is created. The way FET is used is explained in section 4.6.

4.2. Project structure

This project is part of the larger Key2School software package, as described earlier. In this section, the project
structure and implementation details are discussed.

A C# software solution can contain multiple separate C# projects. These projects can have different build or
compile settings and will each compile to its own assembly. This project consists of three separate projects:
one for the core timetabling part, one for unit tests and one containing a sample implementation.

The core timetabling part – generating timetables from a given set of resources and constraints – can function
on its own. This part of the project has therefore been structured as a C# class library. This yields a .dll file
which can be referenced by the Key2School project and exposes only the necessary methods for timetable
generation.

The unit tests are included in a separate project, which is a best practice for C# projects according to Mi-
crosoft1. Because the tests reside in a different project, the test code is not shipped in production which
reduces the total size of the project and prevents accidental use of unit test methods by code that references
this assembly. A detailed explanation of the testing methods and challenges can be found in section 5.

Furthermore, a third project with an example implementation has been included in the solution. This project
demonstrates the usage of the timetabling library – explaining which methods to use and how to process the
resulting timetable – and serves as a practical addition to the documentation.

4.3. Resource objects

The resource objects are stored in different lists containing the data from the database. Each list inherits
the AbstractList class, which is a abstract class that defines the correct methods and attributes that are
needed.

Each object and list has a XElement representation (see 4.4). The XElement representation is a specific rep-
resentation for constructing a FET file.

1https://docs.microsoft.com/en-us/visualstudio/test/walkthrough-creating-and-running-unit-tests-for-managed-code

19

https://docs.microsoft.com/en-us/visualstudio/test/walkthrough-creating-and-running-unit-tests-for-managed-code

20 4. Implementation

Figure 4.1: UML overview - Lists

4.3.1. AbstractList

The abstract list defines the methods for the lists of the system. Each list needs to implement the AbstractList
class so that all the needed methods are implemented.

The constructor defines the data model that is needed to retrieve the data. The SetElement method makes
sure that the XElement has the correct name, which is specific to the needed FET name.

The abstract Create method makes sure that this method is implemented by any sub classes. Using the same
method ensures that the main program only needs to call one method for all the different classes, which
makes adding or removing list simple and maintainable. The Create method of each of the list retrieves the
specific data that is needed for that list and creates the needed objects. For example, the ActivitiesList
retrieves the data from different tables and constructs Activity objects.

4.3.2. ActivitiesList

ActivitiesList creates the Activity objects from the datamodel. Each activity consist of a group of stu-
dents, a list of teachers, the subject and the room. FET has some rules that needs to be followed for the
activities that are different for the requirements of the Egyptian schools:

1. There can only be one subject in the same activity.

2. Teachers can only teach one activity in a time slot.

3. Classes can only have one activity in a time slot.

Egyptian schools have collections, see constraint code L2 in table 2.5.1, which are subjects that need to be
scheduled in the same time slot, with different teachers and different classes. Students can choose which
course they would like to follow, which is after the generated timetable. But because of the rules of FET, it
is not possible to make all the activities and try to schedule them in the same time slot. For this reason,
each collection is its own ’subject’ in the back-end. Using this new subject, for example coll 1, all the stu-
dents and teachers that need to be in the same time slot are merged into one activity. This is done by the
CollectionMerge method in the ActivitiesList class.

4.3.3. ActivityBuilder

To create the Activity objects, the ActivitiesList creates a ActivityBuilder which construct the different activ-
ities from the inserted settings. The ActivityBuilder defines the number of activities that should be created,
the duration of each of these activities, and how to group the activities. This makes sure the activities that
should be together, for example the same subject for one class, have the same group ID. This is important for
the constraints to know for example which activities should not be on the same day. It is also important to
know the order of the activities, which is done by the NumberLessonOfWeek attribute in the activity.

4.3.4. Constraints

Constraints are grouped into two groups; time and space. Time constraints are constraints that have influ-
ence on time specific rules, for example the preferred time a teacher wants to teach. The space constraints

4.3. Resource objects 21

Figure 4.2: UML overview - ActivityBuilder

are more specific for resource utilization, such as preferred room. The constraints that are used are based on
the requirements and the data of Key2Soft.

SpaceConstraintsList and TimeConstraintsList each have a constraints list, which contains all the con-
straints objects.

Each constraint is a subclass of the AbstractConstraint class. As AbstractList, the AbstractConstraint
class makes sure that all the constraints have the same fundamental base to start with. It makes sure that
each constraint needs to have a XElement representation and that it creates the constraint object from the
data model.

Adding or removing constraints is a part that developers will need to us if things change. For this reason,
this is made simple. Implementing AbstractConstraint ensures all the needed methods are implemented.
Furthermore, by just adding or removing the constraint object in the specific list, the program will create
all the needed objects. Each constraint will only need to know where to retrieve the data from and how its
XElement representation looks like. The specific XElement representation for a specific constraint in FET can
be found at Appendix B.

Most constraints work as explained in Appendix B, but some needed to be different or used differently to be
able to work for the schools in Egypt.

ConstraintPeriodSection

This constraints does not exist in the FET system. The constraints creates a ConstraintStudentSetNotAvailableTimes
for the weekend of different students. Schools in Egypt contain sections, such as Britain or Arabic. This sec-
tions imply the type of schooling, and have different days as weekend. For example, the Britian section has
the Saturday’s and Sunday’s as weekend, while the Arabic section has Friday and Saturday as weekend.

ConstraintActivitiesPreferredStartingTimes

Some subjects would prefer for example not to be scheduled in the morning. This needs to be handled. For
this reason, the ConstraintActivitiesPreferredStartingTimes is used to remove the time slots which are
not preferable. This is a kind of time off for the subjects, but in reverse. Instead of saying which time slots
should not be used for a subject, it states the time slots which should be used. A not available time constraint
for subjects is not possible in FET, so for that reason, this constraint is used.

22 4. Implementation

Figure 4.3: UML overview - Constraints

4.4. XML parser

Using FET requires a specific XML file to be used as input for the system. Therefore, each object needs to have
its specific XML object representation.

The XML file is constructed by using the LINQ XElements and XDocument objects. This is done because of
the simplicity of the objects and the use of LINQ in the datamodel search.

The XMLCreator class is the main class that creates a document. Each resource object has its own XElement
representation which is called by using the ToXElement()method. Each elements is added to the XDocument
of the XMLCreator.

FET has different XML representations for the same attribute. For example, a subject can be Subject or
Subject_Name. For that reason, each resource object needs to have its own specific representation.

An example of a XElement representation is shown in example listing 1. A more extensive example can be
found in Appendix B.4.

4.5. Data model

The database is modelled by using the .NET Entity Framework. The DataModel class creates the main con-
nection and builds the model from the database. This is done by extending the DbContext. Because of the

4.6. Timetable generation 23

1 <Activity>
2 <Id>3</Id>
3 <Activity_Group_Id>3</Activity_Group_Id>
4 <Duration>2</Duration>
5 <Total_Duration>6</Total_Duration>
6 <Students>Prim1A</Students>
7 <Teacher>Teacher A</Teacher>
8 <Subject>Subject A</Subject>
9 </Activity>

Listing 1: Activity FET XML representation example

.NET Entity Framework, no additional code is needed to make a connection but it suffices to define a con-
nection string in the configuration file connection.config (see listing 2). The connection string requires the
location of the database, the database (or: catalog) name and credentials and can optionally be configured
with for example connection and query timeouts.

1 connectionString = "data source=[HOSTNAME]; initial catalog=[CATALOG NAME];
2 persist security info=True; MultipleActiveResultSets=True; App=EntityFramework;
3 User ID=[USER_ID]; Password=[USER_PASSWORD];
4 Connect Timeout=1;ConnectRetryInterval=1; ConnectRetryCount=1" />

Listing 2: Connection string

4.6. Timetable generation
The actual timetable generation is handled by the free and open source FET program (see section 2.8). The
FET program does not feature an API nor can it be directly used from external code. Therefore, we have
decided to manually create a process and configure it with the necessary command-line arguments. When
FET completes, the output files are processed and stored in the database.

First, the methods used to create the FET input data are described in section 4.6.2. The FET process im-
plementation is described in section 4.6.3, the output timetable processing in section 4.6.4 and finally the
performance of the program in section 4.6.5.

4.6.1. Software design

Since the timetable generation library is mainly used by Key2Soft developers, creating intuitive and easy-
to-use methods has been a strong point of focus (per the design goals described in section 2.4). The main
class of the library, TimetableGenerator, has therefore only two important methods: RunAlgorithm and
StopAlgorithm. The timetable generation class only needs a TimetablingStrategy (or: algorithm) and a
compatible DataModel to run. The code needed to generate a timetable (in a blocking manner) is therefore
as concise as the snippet in listing 3.

All algorithm classes have to be derived from the abstract TimetablingStrategy class. This project only
includes one such implementation: the FetAlgorithm class. Key2Soft developers only need to create a dif-
ferent TimetablingStrategy and run the TimetableGenerator with this new class, might they need to use a
different algorithm in the future.

4.6.2. Program input

In the final Key2School product, end-users are able to input all necessary timetable resources to generate
a timetable (as described in section 4.3) via a graphical user interface. This interface has been developed by

24 4. Implementation

1 using (var model = new DataModel())
2 using (var generator = new TimetableGenerator())
3 {
4 var task = generator.RunAlgorithm(new FetAlgorithm(), model);
5 task.Wait();
6 var timetable = task.Result;
7 }

Listing 3: Example implementation of the timetabling library

Key2Soft alongside this timetabling project. The data is stored in the Key2Soft database, which is used directly
in this project.

The class responsible for generating the input file is called FetInputGenerator. This class creates a new
instance of each resource list as described in section 4.3 and builds the XML input file in the necessary or-
der. This file is then written to disk. The path to this input file is used later on in the process as input to
FET-CL.

4.6.3. Process creation and management

Since the FET program will run in an external process, measures have to be taken to handle unexpected
termination of the process due to e.g. user intervention or crashes. The timetable generation process has also
to support manual termination, in cases where for example the run time is too long. Our implementation is
designed to allow and handle these situations accordingly.

FET-CL can be configured by a large amount of command-line parameters, which are detailed in appendix B.2.
An invalid value for a parameter causes the program to fail, but not always in the same manner or with the
same error code. Instead of relying on FET to validate command-line parameters, this logic is moved to our
implementation.

The FetProcessBuilder class safely creates a FET-CL process by checking the various command-line argu-
ments before creating the process object. This class only requires the location to the FET-CL executable and
can additionally be configured by calling a number of configuration methods. Some command-line param-
eters need to have a certain value for the program to function correctly, so only the parameters which are
safe to be changed can be configured. After a FetProcessBuilder has been instantiated and configured, the
resulting Process object can be retrieved with the CreateProcess method.

The resulting object is an instance of the native C# Process class. This class is versatile and features a lot of
methods to interact with a process. This project, however, only requires the process to be started, stopped
and to process its output when the process ends. The FetProcessFacade class is created to only expose the
necessary methods. The facade class also provides otherwise complex process start- and stop functionality
by the means of StartProcess and StopProcess methods.

Processes in C# run asynchronously by default. This means that starting an external process does not block
the main thread, unless it is explicitly awaited. The Process class fires an OnExited event when the process
has finished, which can be used to process its results. To make it easier for the developers at Key2Soft to use
this project, the well-established Task-based Asynchronous Pattern (TAP)2 has been implemented to manage
the generation of a timetable. The TimetablingStrategy class forces all derived algorithms to implement
this pattern. In the case of the included FetAlgorithm class, the Task<Timetable> is created when the algo-
rithm is run. The task result is set when the process exits and the output has been processed.

The Task<Timetable> can succeed, fail or be canceled and can asynchronously be awaited by using one or
more ContinueWithmethod calls, as illustrated by the code in listing 4. The final Key2School implementation
can use these methods to further use or process the resulting timetable.

2https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap

https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap

4.6. Timetable generation 25

1 // task is of type Task<Timetable>.
2 task.ContinueWith(OnSuccess, TaskContinuationOptions.OnlyOnRanToCompletion);
3 task.ContinueWith(OnCanceled, TaskContinuationOptions.OnlyOnCanceled);
4 task.ContinueWith(OnError, TaskContinuationOptions.OnlyOnFaulted);

Listing 4: Awaiting the timetable task

4.6.4. Output processing

FET-CL stores the results of its work as multiple files in an output folder. The FetAlgorithm implementation
included with this project reads the relevant files in this output folder and ultimately constructs a Timetable
object. The files needed to construct this timetable are:

• [input name]-activities.xml (see listing 5)

• [input name]-soft_conflicts.txt (see listing 6)

1 <?xml version="1.0" encoding="UTF-8"?>
2 <Activities_Timetable>
3 <Activity>
4 <Id>120</Id>
5 <Day>Monday</Day>
6 <Hour>3</Hour>
7 <Room></Room>
8 </Activity>
9 </Activities_Timetable>

Listing 5: Example FET output – activities.xml

1 Soft conflicts of tt_resources_1529594849.fet
2 Generated with FET 5.36.0 on 6/21/18 5:27 PM
3

4 Number of broken soft constraints: 45
5 Total soft conflicts: 27
6

7 Soft conflicts list (in decreasing order):
8

9 Time constraint min days between activities broken: activity with id=122 (T:44, S:28, St:Prim1A) conflicts
with activity with id=117 (T:44, S:28, St:Prim1A), being 1 days too close, on days Sunday and Sunday,
conflicts factor increase=0.6.

,→
,→

10 Time constraint min days between activities broken: activity with id=60 (T:79, S:3, St:Prim2E) conflicts
with activity with id=58 (T:79, S:3, St:Prim2E), being 1 days too close, on days Wednesday and
Wednesday, conflicts factor increase=0.6.

,→
,→

11

12 End of file.

Listing 6: Example FET output – soft-conflicts.txt

First, the XML output file is processed using the built-in C# XML deserializer. This yields a Timetable object
with a list of TimetableActivity objects. The scheduled activities file contains activity reference IDs, so each
activity is then matched with the original list of input activities to gain access to the resources (teacher, sub-
ject, etc.) which are scheduled. Finally, the soft conflicts file with information about the violated constraints
is processed and added to the timetable as meta data.

This timetable object is the ultimate result of the Task<Timetable> as mentioned earlier and can directly be
used in the Key2School code. The company, however, has also requested the timetable to be saved to the
database. A dedicated DatabaseHelper class has been created to save a Timetable object to the database.

26 4. Implementation

This class can be used in the OnSuccesshandler of the timetabling task by the company. The DatabaseHelper
class operates on a provided DataModel and interacts with four different tables to store the timetable, its
activities, the teachers per activity and the classes (or: grades) per activity.

4.6.5. Performance

FET includes a number of example (anonymized) timetabling resource files, provided by users which have
used FET at their institutions. These examples are used to demonstrate the capabilities of FET and its large
variety of constraints. Some examples run in less than one second, others take as much as 30 minutes.

In order verify that our solution satisfies the run time requirement of at most 30 minutes (and preferably
less than 5 minutes, see section 2.5.1), Key2Soft has provided us with real-world timetabling data from an
Egyptian high school.

The total run time of FET on the provided data was one second. Taking into account the time needed to
retrieve the information from the database, generating the input file, processing the output and storing the
output again, the total run time of the program is less than 15 seconds. This greatly exceeds the initial expec-
tations of FET and validates the choice for this algorithm.

4.7. Configuration
C# applications are usually configured by an XML app.config configuration file. To configure timetabling-
specific settings, a dedicated section has been added to app.config named timetablingSettings.

1 <?xml version="1.0" encoding="utf-8"?>
2 <configuration>
3 <configSections>
4 (...)
5 <section name="timetablingSettings" type="System.Configuration.NameValueSectionHandler" />
6 </configSections>
7

8 (...)
9

10 <timetablingSettings>
11

12 <!-- Maximum duration of the timetable generation in seconds. Default: 0 (unlimited) -->
13 <add key="Timeout" value="0" />
14

15 <!-- Relative path to fet-cl executable. Default: "lib/fet/fet-cl" -->
16 <add key="FetExecutableLocation" value="lib/fet/fet-cl" />
17

18 <!-- Language of FET error message output. Must be of type FetLanguage. Default:
FetLanguage.US_English. -->,→

19 <add key="FetLanguage" value="FetLanguage.Dutch" />
20

21 <!-- Working directory of the program, where intermediary files are stored. Default:
"%TEMP%/timetabling" -->,→

22 <add key="FetWorkingDir" value="%TEMP%/timetabling" />
23

24 </timetablingSettings>
25 </configuration>

Because the FET program requires very specific input and misconfiguration can be very difficult to debug, a
dedicated class FetConfig to process and validate settings has been created. To enforce a valid language set-
ting, only allowing one of the 34 predefined languages, an auxilliary enum-like class FetLanguage is used.

The FetConfig class contains dedicated methods for each setting, which cast the setting string to the required
format and fall back to a default value when an error occurs. Additionally, the GetSetting method retrieves
the raw value of a setting.

The FetLanguage has been implemented using an enum-mimicking static class structure. This enables de-
velopers to use the static fields of the class as an instantiation of that class. The upside of this approach is

4.7. Configuration 27

<<singleton>>
FetConfig

+ GetSetting(key : string): string

+ GetTimeout(defaultValue : int = 0): int

+ GetFetExecutableLocation(defaultValue : string =
"lib/fet/fet-cl"): string

+ GetFetLanguage(defaultValue : FetLanguage = null):
FetLanguage

+ GetFetWorkingDir(defaultValue : string = null): string

FetLanguage

+ Arabic : FetLanguage = FetLanguage("ar")

+ Dutch : FetLanguage = FetLanguage("nl")

+ 32 more [LanguageName : FetLanguage] fields...

- _languageName : string

- FetLanguage(language : string)

Figure 4.4: FET configuration classes

that the developer can use this object throughout the program and does not have to have knowledge of the
language codes, but can instead use the human-readable language name.

1 public sealed class FetLanguage
2 {
3 public static readonly FetLanguage Arabic = new FetLanguage("ar");
4 public static readonly FetLanguage Dutch = new FetLanguage("nl");
5 (..)
6

7 private readonly string _languageName;
8 private FetLanguage(string languageName) => _languageName = languageName;
9

10 /// <inheritdoc />
11 public override string ToString() => _languageName;
12 }

Listing 7: FetLanguage class implementation

5
Testing

5.1. Introduction

This chapter describes the different testing methodologies that were used during the development of the
project. In section 5.2, the testing methodology is laid out, while section 5.3 details the test results.

5.2. Testing methodology

An important part of software development is verifying that the product works as intended. The product has
to satisfy the functional requirements, ships with as few bugs as possible and still be maintainable to allow
further modifications. By continuously testing various aspects of the product, code quality is ensured, bugs
are detected as early as possible, code maintainability is improved and debugging is made easier.

In this section, the testing guidelines are described (5.2.1) and the unit test methodology (5.2.2) as well as the
integration test methodology used (5.2.3) is explained.

5.2.1. Guidelines

In order to fully utilize the benefits of testing, the following guidelines have been followed throughout the
development process:

• Before accepting code in the master branch, all automated (unit) tests have to succeed.

• All code pushed to the master branch has to have a sufficient coverage, aiming for at least 90%.

5.2.2. Unit testing

Unit tests are designed to test the workings of a single method in a class. They verify that a method works
as intended and handles all edge cases appropriately. Unit tests can furthermore aid developers by alerting
them when causing unintended side effects due to code changes elsewhere.

A number of unit testing frameworks are available for C#, among which the most popular are MSTest, NUnit
an xUnit. MSTest is included with Visual Studio, NUnit is a mature testing framework inspired by its Java-
counterpart JUnit and xUnit is relatively new. Due to the similarity of NUnit to JUnit, with which the project
team already has experience, and the fact that NUnit is widely accepted as a robust and stable C# testing
framework by the programming community, this framework was chosen to write all unit tests in.

To separate the test logic from the main codebase, a separate test project named Timetabling.Tests has
been created in which all unit tests reside. This project follows the same directory and namespace struc-
ture as the main project and includes for (almost) all classes corresponding test classes. For example, class
Timetabling.Algorithms.FET.FetAlgorithm has a corresponding test class named Timetabling.Tests.

29

30 5. Testing

Algorithms.FET.FetAlgorithmTest in the Timetabling.Tests project. This project structure and naming
convention is chosen per Microsoft guidelines1.

5.2.3. Integration testing

Integration tests in general exist to verify that the various components of a product work together as intended.
For this project, most of the functionality was able to be verified with unit tests. The only integration test that
has been performed is an all-encompassing check that the product was able to generate a timetable from a
given set of timetable resources.

5.3. Test results

5.3.1. Unit tests

A total of 29 test classes comprising 124 unit tests have been executed. The results of these tests can be found
in table 5.1.

Namespace Uncovered Covered Line coverage
Timetabling 0 24 100%
Timetabling.Algorithms 37 369 90.0%
Timetabling.Helper 0 131 100%
Timetabling.Objects 5 650 99.2%

Overall 42 1174 96.4%

Table 5.1: Unit test results

The test coverage statistics have been generated by JetBrains dotCover2, which has been run on the test out-
put of the JetBrains ReSharper Test Runner3. The integration test (see section 5.3.2) is not included in this test
coverage as to not skew the results.

As can be seen in table 5.1, almost every line of code is covered. Classes in the Timetabling.DB names-
pace have not been tested and are not included with the test results, because these classes are an auto-
matically generated, Entity Framework-compatible representation of the Key2Soft database. These classes
are heavily dependent on the Key2Soft database structure and a working database connection, so auto-
matically testing them would be difficult and meaningless. The usage of these classes, however, is well
tested by the use of a mock data model in tests of other parts of the system and by using the Entity Frame-
work Efforthttps://github.com/zzzprojects/EntityFramework-Effort testing library to imitate a work-
ing database connection.

The lower than expected coverage in the Timetabling.Algorithms namespace is due to the use of anony-
mous functions to handle the timetable generation output task (see section 4.6.3). Because the status of C#
Task-objects cannot be manually set in tests and the real-world conditions in which these code would be exe-
cuted are hard to simulate, we have decided not to test this part of the system. If this part would malfunction,
it would also be immediately clear to the user because the program would stop functioning altogether. This
mitigates the drawbacks of this decision.

5.3.2. Integration tests

The entire functionality of the system can be summarized as generating a timetable from a given set of
timetable resources. To test this functionality, just one integration test has been created: testing if a set of
timetable resources can be transformed into an acual timetable. Therefore, just one integration test has been
created in the FetAlgorithmTest class, where a mock data model by verifying that the output of the program
is indeed a timetable when the FetAlgorithm is run on a mock data model.

1https://docs.microsoft.com/en-us/visualstudio/test/walkthrough-creating-and-running-unit-tests-for-managed-code
2https://www.jetbrains.com/dotcover/
3https://www.jetbrains.com/resharper/

https://docs.microsoft.com/en-us/visualstudio/test/walkthrough-creating-and-running-unit-tests-for-managed-code
https://www.jetbrains.com/dotcover/
https://www.jetbrains.com/resharper/

5.4. Challenges 31

5.4. Challenges
A number of challenges arised while creating unit tests for the system.

First, a number of common C# language patterns have been incorporated, which are difficult or meaningless
to test. One of these patterns is the Dispose Pattern4. This pattern is designed to dispose of class resources
on class destruction. Any unit tests designed to test this functionality would in fact test C# language features
and the workings of its garbage collector, which usually invokes the dispose methods.

Second, the Task Based Asynchronous Pattern has been implemented to encapsulate and manage the timetable
generation task. A common approach to handle task completion is to attach an anonymous, inline function
to the task. It has been very difficult to test individual branches within that anonymous function, because the
task completion status cannot be set by the programmer.

Third, existing (free) mocking frameworks in C# are unable to test non-virtual methods. By marking a method
as virtual, you declare that that method can optionally be overridden in a derived class. Since most of the code
of the system was not designed to be overridden, unnecessarily marking methods as virtual was undesirable.
Therefore, a number of methods were tested indirectly or using workarounds.

Fourth, since the tests reside in a different project and therefore in a different assembly, protected functions
are not visible in the test code. To be able to test these functions, internal exposer classes have been created.
These classes are only visible to and usable in the test project, but inherit the original class and redefine
protected methods as public. The exposer class of FetProcessBuilder in included as listing 8.

1 internal class FetProcessBuilderExposer : FetProcessBuilder
2 {
3 public FetProcessBuilderExposer(string executableLocation = null, IFileSystem fileSystem = null) :

base(executableLocation, fileSystem) { },→
4 public new string GetArgument(string name) => base.GetArgument(name);
5 public new void SetArgument(string name, string value) => base.SetArgument(name, value);
6 public new ProcessStartInfo CreateStartInfo() => base.CreateStartInfo();
7 }

Listing 8: FetProcessBuilder exposer class in test project

Fifth, the interaction with the FET-CL process has been difficult to test. To stop the process gracefully, a
platform specific signal has to be sent to the process. Because this signal has to be sent from the process
where the FET-CL process originated from, most C# test runners were unable to execute this test due to their
incompatible internal mechanics. We have solved this by altering the tests to make them as compatible as
possible and selecting a compatible test runner.

4https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/dispose-pattern

6
Evaluation

6.1. Introduction

This chapter describes the evaluation of the project and requirements. In section 6.2, a table is shown with
an evaluation of each requirement. Changes to the predefined requirements during the development are
explained in section 6.4. Finally, the feedback that was given from the Software Improvement Group is added
in section 6.5.

6.2. Requirements

The following tables represents the initial requirements we did manage to deliver and if not, with an explana-
tion why.

REQUIREMENT DELIVERED

The module must be able to produce a feasible timetable, given that the input data allows
a feasible timetable to be constructed.
The generated timetable must adhere to predefined constraints as detailed in 2.5.2. see next ta-

ble
A feasible timetable must be generated in less than 30 minutes.
All classes and methods must be documented, explaining its use or input, behavior, and
output.
Users should be allowed to set the importance c.q. priority of each soft constraint by inter-
vals of 10, where 10 is an almost hard constraint (99%) and 0 is a not needed (or inactive)
constraint.
The module should be able to be integrated seamlessly in Key2School.
The module should load all relevant information to generate a timetable from Key2Soft
data sources.
The module should be able to generate a timetable without user interaction or user inter-
vention.
A feasible timetable should be generated in less than 5 minutes.
The module should have at least a 90% branch coverage by using unit tests.
The module should be tested with real-world timetable cases.
Violated soft constraints with a priority of more than 50% should be reported to the user.
The module should retain all generated timetables.

33

34 6. Evaluation

CODE CONSTRAINT DELIVERED

PR1 Classes must be scheduled for the required number of meetings for each subject.
PR2 Teachers must be scheduled for the required number of meetings with each

class.
NC1 A class must not be scheduled more than once during a time slot.
NC2 A teacher must not be scheduled more than once during a time slot.
NC3 A room must not be scheduled more than once during a time slot.
RU1 Teachers must only be scheduled when available.
RU2 Classes must only be scheduled when available.
RU3 Certain lessons require specialized rooms, e.g. science labs, computer lab, the

gymnasium. These requirements must be met.
W1 Classes for a particular grade cannot have more than a predefined number of

periods per day.
W2 A limit may be set on the maximum and minimum number of lessons of a sub-

ject a class may have per day, e.g. certain grades can not have more than three
Mathematics lectures in a day.

X

W3 Teacher workload is defined in terms of a minimum and maximum number of
teaching lessons or hours per week or per day.

PD1 A limit may be set of the amount of consecutive lessons for a subject per day.
PD2 The lessons taught by a teacher should be well-spaced throughout the week.
PD3 Certain subjects may have to be taught every day.
L1 Classes may be merged together for a lesson.
L2 Certain lessons must take place simultaneously.

One constraints was not implemented, constraint W2. The FET program does not allow to set a maximum on
the number of hours of a specific subject on a day. We have requested this constraint from FET, and this is
discussed with the developers and managers of Key2Soft.

Nonetheless, all other constraints and requirements are met.

6.3. Timetable evaluation

To be sure that the timetable generated a plausible real world solution, a generated timetable was manually
evaluated by the Key2Soft manager against the timetable that school was currently using. The generated
timetable was almost the same as the manually created one, which verified the requirements of the timetable
generator.

6.4. Requirements changes during the process

During the development of the system, the following requirements where changed or added by the Key2Soft
manager. This was primarily done due to meetings with timetable creators of schools. All of these changes
are implemented and met as they are explained below.

6.4.1. Collections

One of the changes was collections. At the beginning, the schools needed shared classes, which where groups
of the classes that have the same lesson from the same teacher during the same time slot. So for example,
part of class 1A and part of 1B had French, while the others had German, all in the same time slot. This
was changed to collections, meaning that both groups have the same collection subject, for example ’Second
Language’, in the same time slot with two teachers, but not specifying which course. This removed all the
groups from classes. The implementation of this can be found in section 4.3.2.

6.5. Software Improvement Group 35

6.4.2. Stages

The timetable generator generated the timetables for the entire school. During the last days of the project,
the Key2Soft managers preferred that the generation was done for each specific stage, or a list of stages. A
stage is for example the primary stage, which consisted of the first three grades.

6.5. Software Improvement Group
During the development, the Software Improvement Group evaluated the maintainability of the project. This
has been done in two phases: one evaluation moment at around 75% project completion and one for the final
product.

The maintainability score of the first evaluation was 4.7 out of 5 stars. The highest score was not attained
because of lower scores for Unit Size and Module Coupling. Because of this high score, the evaluation team
did not have any concrete feedback for improvement of the project, but rather encouraged us to maintain the
high score until the end of the project.

The (translated) SIG feedback can be found below, the original (Dutch) feedback can be found in appendix C.1.

Feedback: "The code of the system scores 4.7 out of 5 stars in our maintainability model, which
means that the maintainability of the code is above average. The highest score has not been at-
tained due to lower scores for Unit Size and Model Coupling.

At this moment, the score is so high that we have no concrete recommendations for future improve-
ments, congratulations! However, it is important to maintain this level throughout the project,
especially when the deadline gets closer."

The project scored 4.5 out of 5 stars during the evaluation of the final product. The slight decrease was to be
expected due to the increase in size of the codebase. Also, the test code increased, which was received well by
SIG. In summary, SIG has concluded that their recommendations after the first evaluations were successfully
taken into account during the development of the final product.

The (translated) SIG feedback can be found below, the original (Dutch) feedback can be found in appendix C.2.

Feedback: "In the second upload, we have seen that the project has grown quite a lot. The score
for maintainability is compared to the first upload slightly lower. The first score was very high, so a
decrease could be expected. However, you still score around 4.5 stars, so there is no reason to worry.

Besides the increase in production code, it is good to see that you have also added new test code.
The amount of tests still looks well.

From these observations, we can conclude that the recommendations from the feedback on the first
upload have been incorporated during the development process."

7
Process and Recommendations

7.1. Introduction

The chapter reflects on the development methodology that was used in section, SCRUM, in section 7.2.2.
Furthermore, the development resources used during this project are explained in section 7.3. Finally, some
recommendations are made for developers using the system in section 7.4.

7.2. Development methodology

The key components of the development methodology used over the course of this project relied on well-
established principles in software engineering. An efficient and transparent development methodology en-
ables a team to manage expectations and progress, streamline collaboration and ensure the quality of the
work delivered. The size of a project team is an important factor in determining the right methodology. Large
teams might require more effort to keep everyone up to date, while small teams might know what team mem-
bers are working on at all times.

From our previous experience with software projects, an agile methodology – being able to adapt quickly to
changing requirements – is often the key to success. Changing requirements should be viewed as a neces-
sity rather than a problem. Iteratively working on a product and continuously incorporating feedback from
the client enables a team to fulfil new wishes and requirements with as little technical debt as possible as
customer understanding evolves.

At the start of the project, the overarching goal of the project was apparent: to be able to generate a timetable
from a given set of resources. This goal, however, relies on many underlying requirements, e.g. constraints on
time and resource availability, execution time, etc. This exact problem definition was unclear at the beginning
of the project.

Because of the small size of our team and the unknowns in terms of specific requirements, we have chosen to
use an adapted version of the SCRUM methodology.

7.2.1. SCRUM

The SCRUM model is based on a series of development sprints where small, encapsulated parts of a program
are developed. In full-fledged development teams, a SCRUM team usually consists of four to eight members
with three roles: Scrum Master, Product Owner and Developer. Because the limited size of our team – just
two – and the fact that we have worked next to each other during the entire project, we have not explicitly
assigned the SCRUM roles, but instead worked collaboratively to maintain a sensible product backlog and
determine the deliverables of a sprint.

Due to the limited duration of the project, keeping in mind the time needed to perform research and write
a detailed report, we have set the sprint duration to one week and carried out eight sprints in total. Each

37

38 7. Process and Recommendations

sprint started with an evaluation of the previous sprint and by determining a sprint goal and backlog. A
weekly meeting with our project supervisor at Key2Soft was scheduled to discuss the progress and next steps.
Furthermore, every day the team would have a short meeting to discuss that day’s planning.

7.2.2. Reflection

We had a weekly sprint meeting at the beginning of the week discussing the goals and any complex choices we
needed to make. This worked, as we each knew what to focus on and what to expect to be finished for the next
week. This also created a clear planning that we each needed to fulfill to finish the project on time.

Furthermore, before we started, we did arrange with one of the Key2Soft managers to weekly evaluate the
status of the project, Unfortunately, this was not done due to his busy schedule. This would however have
been useful, especially with the changes in the requirements that were made at the end of the project.

7.3. Development Resources

7.3.1. Slack

Slack was our main communication source with Key2Soft. Any file that was shared or communication with
developers that where not in the office that day was done on Slack. This made it easy to contact people, but
was not as fast as we hoped for.

7.3.2. GitHub

We used GitHub as source control environment for the project. An issue was made for anything that was
needed to be implemented or created. The master branch always has a working solution. Each feature or
change that was made needed to be on its own branch. Only when all the testing guidelines where met (see
section 5.2.1), a pull request could be merged by the other person. This made sure that each one reviewed the
others code.

7.3.3. Waffle

Waffle is a project management tool that uses boards to keep track of issues. This is linked to the issues in
GitHub, so that labels changed automatically. This created a better overview. Combining this with the SCRUM
method created a simple tool to keep track of each issue.

7.4. Recommendations
As discussed with Key2Soft, the system currently creates a basic timetable. This means that the basic con-
straints are met, but it is not the ideal solution. To find a more fitting solution for any specific school, manual
fine-tuning is a key element. Therefore, a simple manual editor will benefit the user, especially if the editor
could show if a constraint is broken during the editing of a timetable.

Furthermore, implementing more constraints will also generate a more ideal solution. But, there is a trade-
off, which is speed. Implementing more constraints will create a slower generation. For now, the generation
of a timetable takes less than 1 sec in the test data, so some delay is not a problem.

Another recommendation when using this system is to try to check the input data before generating a timetable.
For example, if a teacher has only 4 free time slots due to his time off settings, but needs to give 5 lessons, the
system will not find a solution. This can easily be caught while the user adds the data into the system.

8
Conclusion and Discussion

The automated generation of timetables is a well known and extensive researched problem. Finding a near-
optimal solution is possible in several ways. The best fitting solution depends on the functional system re-
quirements and the required timetable constraints. The main problem of this project was creating a system
that generates a near optimum timetable for schools in Egypt. Considering the different constraints and
requirements Key2Soft had in mind, such as collections of activities, the free and open source timetabling
program "FET" has been selected as the best solution to fulfil the requirements.

One of the main concerns of Key2Soft was the time the system would need to generate a timetable. This
project demonstrated that, with real-world sample data, the system could generate a timetable in less than
one second.

All the must have and should have requirements that where determined before starting the project were met,
as can be seen in chapter 6.

As discussed with Key2Soft, this project generates only an initial version of the final timetable. End-users of
the system will need to fine-tune timetables to create a better solution. Our recommendation is to create a
user-friendly and intelligent interface that will support end-users to edit timetables by hand by automatically
providing insights into broken constraints when moving an activity.

This bachelor project has been conducted on the premises of Key2Soft in Cairo, Egypt, which presented a
lot of different challenges to the team. This meant that not only the project itself needed research, but also
everything around that. Egypt has, for example, different living conditions and a totally different culture as
opposed to the Netherlands, which impacted our everyday life. This showed us the differences that exist in
the world and broadened our knowledge about the Arabic culture. One of the challenges was, for example,
that most employees of Key2Soft were not fluent in English. This made communication more difficult than
we anticipated. Fortunately, one of the team members was able to speak Arabic, but this was still something
we had to adjust to. Another culturally different moment was the Ramadan, which is a month where the
entire Egyptian system changes. Work hours change – less and more flexible hours – and people are living
more during the evening and night instead of the morning.

It has been a special and very educational experience during which we have learned a lot we will take with us
during the remainder of our time at the Delft University of Technology, our career and our lives.

39

Bibliography

[1] Tim B. Cooper and Jeffrey H. Kingston. “The Complexity of Timetable Construction Problems”. In: 1153
(Mar. 1995).

[2] Andrei Bautu and Elena Bautu. “PRACTICAL ASPECTS ON AUTOMATIC GENERATION OF UNIVER-
SITY TIMETABLES–A CASE STUDY”. In: (2015).

[3] Grigorios N Beligiannis, C Moschopoulos, and Spiridon D Likothanassis. “A genetic algorithm approach
to school timetabling”. In: Journal of the Operational Research Society 60.1 (2009), pp. 23–42.

[4] Ruey-Maw Chen and Hsiao-Fang Shih. “Solving university course timetabling problems using constric-
tion particle swarm optimization with local search”. In: Algorithms 6.2 (2013), pp. 227–244.

[5] Dai Clegg and Richard Barker. Case Method Fast-Track: A Rad Approach (Computer Aided System En-
gineering). Addison-Wesley, 1994. ISBN: 020162432X. URL: https://www.amazon.com/Case-Method-
Fast-Track-Approach-Engineering/dp/020162432X.

[6] J. Csima. Investigations on a Time-table Problem. Thesis–University of Toronto, 1965. URL: https://
books.google.com.eg/books?id=1-rDtwAACAAJ.

[7] Dapper. Dapper. Retrieved on May 30, 2018. URL: https://github.com/StackExchange/Dapper.

[8] Entity Framework. .Net Entity Framework. Retrieved on May 30, 2018. URL: https://docs.microsoft.
com/en-us/ef/.

[9] Fred Glover and Eric Taillard. “A user’s guide to tabu search”. In: Annals of operations research 41.1
(1993), pp. 1–28.

[10] Dervis Karaboga. “An idea based on honey bee swarm for numerical optimization”. In: (Oct. 2005).

[11] I. V. Katsaragakis, I. X. Tassopoulos, and G. N. Beligiannis. “A comparative study of modern heuristics
on the school timetabling problem”. English. In: Algorithms 8.3 (2015), pp. 723–742.

[12] J. H. Kingston. A tiling algorithm for high school timetabling. English. Vol. 3616 LNCS. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). 2005, pp. 208–225.

[13] L. Lalescu. FET - Free Timetabling Software. Retrieved on May 9, 2018. URL: https://lalescu.ro/
liviu/fet.

[14] October Resolutions Ltd. Timetabling Software For Schools | TimeTabler. Retrieved on May 9, 2018. URL:
https://www.timetabler.com/.

[15] Khaled Mahar. “Automatic generation of University timetables: an evolutionary approach”. In: IADIS
International Conference Applied Computing. 2006, pp. 570–574.

[16] Tomáš Müller. “Real-life examination timetabling”. In: Journal of Scheduling 19.3 (June 2016), pp. 257–
270. ISSN: 1099-1425. DOI: 10.1007/s10951-014-0391-z. URL: https://doi.org/10.1007/s10951-
014-0391-z.

[17] K. Nguyen et al. “Simulated Annealing-based algorithm for a real-world high school timetabling prob-
lem”. English. In: Proceedings - 2nd International Conference on Knowledge and Systems Engineering,
KSE 2010. 2010, pp. 125–130.

[18] Deeptimanta Ojha, Rajesh Sahoo, and Satyabrata Das. “Automated Timetable Generation using Bee
Colony Optimization”. In: International Journal of Applied Information Systems 10 (May 2016), pp. 38–
43.

[19] Deeptimanta Ojha, Rajesh Sahoo, and Satyabrata Das. “Automatic Generation of Timetable Using Fire-
fly Algorithm”. In: 6 (Apr. 2016), pp. 589–593.

[20] Nelishia Pillay. “A survey of school timetabling research”. In: Annals of Operations Research 218.1 (2014),
pp. 261–293.

41

https://www.amazon.com/Case-Method-Fast-Track-Approach-Engineering/dp/020162432X
https://www.amazon.com/Case-Method-Fast-Track-Approach-Engineering/dp/020162432X
https://books.google.com.eg/books?id=1-rDtwAACAAJ
https://books.google.com.eg/books?id=1-rDtwAACAAJ
https://github.com/StackExchange/Dapper
https://docs.microsoft.com/en-us/ef/
https://docs.microsoft.com/en-us/ef/
https://lalescu.ro/liviu/fet
https://lalescu.ro/liviu/fet
https://www.timetabler.com/
https://doi.org/10.1007/s10951-014-0391-z
https://doi.org/10.1007/s10951-014-0391-z
https://doi.org/10.1007/s10951-014-0391-z

42 Bibliography

[21] Rajesh Sahoo et al. “Automatic generation and optimization of course timetable using a hybrid ap-
praoch”. In: Journal of Theoretical and Applied Information Technology 95 (Jan. 2017), pp. 68–77.

[22] aSc Timetables. aSc TimeTables - School Scheduling. Best timetable software to create school timetable.
Retrieved on May 9, 2018. URL: https://www.asctimetables.com/.

[23] Sandesh Timilsina et al. “Genetically Evolved Solution to Timetable Scheduling Problem”. In: Interna-
tional Journal of Computer Applications 114.18 (2015).

[24] UniTime. UniTime | University Timetabling. Retrieved on May 9, 2018. URL: http://www.unitime.
org/.

[25] Xin-She Yang. “Firefly algorithm, stochastic test functions and design optimisation”. In: International
Journal of Bio-Inspired Computation 2.2 (2010), pp. 78–84.

https://www.asctimetables.com/
http://www.unitime.org/
http://www.unitime.org/

A
Initial problem definition by Key2Soft

A.1. Project: Automated system to generate optimal school time table

The school timetabling problem is a typical scheduling problem that appears to be a stressful job in every
school. Usually, timetable scheduling has done manually with a single person or group of individuals in-
volved in the task of scheduling it manually. Planning of timetable is one of the most complex and depend on
individual experience.

There are many factors involved to generate timetable (e.g. teacher availability, school grade, courses and
their workload and classes).

Based on related researches, it is possible to claim that in the most of the institutions, the solution is done
by manual work, which requires more time and effort. Although the search for the best solution is infeasible,
it is possible to find near optimal solutions using heuristics. Most current solutions provide answers opti-
mizing administrative factors, i.e. considering mainly the factors related to the disciplines, classrooms and
professors, not considering students needs, e.g. reducing time gaps between non-consecutive classes. In this
work, we focus on the timetable improvement for the students and assess our results using real data from a
Brazilian university.

These constraints are of two types Hard and Soft constraints. Hard constraints include those constraints
that cannot be violated while a timetable is being computed. For example, for a teacher to be scheduled
for a timeslot, the teacher must be available for that time slot. A solution is acceptable only when no hard
constraint is violated. On the other hand soft constraints are those that are desired to be addressed in the
solution as much as possible. For example, though importance is given to a teacher’s scheduling, focus is
on setting a valid timetable and this can lead to a teacher going free for a time slot. Thus, while addressing
the timetabling problem, hard constraints have to be adhered, at the same time effort is made to satisfy as
many soft constraints as possible. Due to complexity of the problem, most of the work done concentrates on
heuristic algorithms which try to find good approximate solutions

This algorithm is designed to solve and generate school time tables. The following is a list of assumptions
made while developing this algorithm:

• The algorithm produces optimum outputs in a five-day week.

• The number of subjects (s1, s2, ..., sn) need to be finalized before the algorithm begins execution.

• Number of teachers (t1, t2, ..., tn) entered before execution of the algorithm are assumed to be constant
and cannot be changed during or after the algorithm has been executed.

• Any change in the above two assumptions will require a new generation of Timetable for the changed
data.

• In each time table, all time-slot is filled with, a unique combination of subjects without any repetition
of subjects.

43

44 A. Initial problem definition by Key2Soft

• Any teacher is allowed at most k number of lectures in a week. The value of k is accepted before execu-
tion of the algorithm.

• It is assumed that a teacher cannot take more than one lecture for the same class in a day.

• Timeslots t s1, t s2, ..., t sn once entered at the beginning cannot be changed throughout the execution.

• Every day in the week is assumed to have equal number of time slots.

• Classrooms for any batch id fixed throughout the day.

B
FET-CL

FET-CL is a command-line version of the FET program, without the Graphical User Interface.

B.1. Supported timetable constraints

The following constraints on time and resource allocation are available in FET as of version 5.35.6, provided
by the FET online documentation.

B.1.1. Time constraints

The following time-related timetable constraints can be put on the various timetable resources.

• Break periods

• For a single or every teacher:

– Not available periods
– Max/min days per week
– Max gaps per day/week
– Max hours daily/continuously
– Max span per day
– Min hours daily
– Max hours daily/continuously with an activity tag
– Respect working in an hourly interval a max number of days per week
– Min resting hours

• For a single or every student set:

– Not available periods
– Max days per week
– Begins early (specify max allowed beginnings at second hour)
– Max gaps per day/week
– Max hours daily/continuously
– Max span per day
– Min hours daily
– Max hours daily/continuously with an activity tag
– Respect working in an hourly interval a max number of days per week
– Min resting hours

• For a single activity or a set of activities:

– A single preferred starting time
– A set of preferred starting times

45

46 B. FET-CL

– A set of preferred time slots
– Min/max days between them
– End(s) students day
– Same starting time/day/hour
– Occupy max time slots from selection (a complex and flexible constraint, useful in many situa-

tions)
– Consecutive, ordered, grouped (for 2 or 3 (sub)activities)
– Not overlapping
– Max simultaneous in selected time slots
– Min gaps between a set of (sub)activities

B.1.2. Space constraints

The following space-related timetable constraints can be put on the various timetable resources.

• Room not available periods

• For teacher(s):

– Home room(s)
– Max building changes per day/week
– Min gaps between building changes

• For students (sets):

– Home room(s)
– Max building changes per day/week
– Min gaps between building changes

• Preferred room(s):

– For a subject
– For an activity tag
– For a subject and an activity tag
– Individually for a (sub)activity

• For a set of activities:

– Have the same room if they are consecutive
– Occupy a maximum number of different rooms

B.2. Command-line arguments

FET-CL accepts the following command-line arguments.

version Prints the current FET version.

inputfile The FET input file.

outputdir The path to results directory.

timelimitseconds Maximum duration of the program.

htmllevel Represents the detail level for the generated HTML timetables.

language The output language of the program.

writetimetable[...] Whether or not the corresponding timetables are written to the disk.

printactivitytags Whether or not the activity tags are to be present in the final HTML timetables.

printnotavailable In which style to print the unavailable slots in the generated timetables.

printbreak In which style to print the break slots in the generated timetables.

B.2. Command-line arguments 47

1 fet-cl --inputfile=x
2 [--outputdir=d]
3 [--timelimitseconds=y]
4 [--htmllevel=z]
5 [--language=t]
6 [--writetimetableconflicts=wt1]
7 [--writetimetablesstatistics=wt2]
8 [--writetimetablesxml=wt3]
9 [--writetimetablesdayshorizontal=wt4]

10 [--writetimetablesdaysvertical=wt5]
11 [--writetimetablestimehorizontal=wt6]
12 [--writetimetablestimevertical=wt7]
13 [--writetimetablessubgroups=wt8]
14 [--writetimetablesgroups=wt9]
15 [--writetimetablesyears=wt10]
16 [--writetimetablesteachers=wt11]
17 [--writetimetablesteachersfreeperiods=wt12]
18 [--writetimetablesrooms=wt13]
19 [--writetimetablessubjects=wt14]
20 [--writetimetablesactivities=wt15]
21 [--printactivitytags=a]
22 [--printnotavailable=u]
23 [--printbreak=b]
24 [--dividetimeaxisbydays=v]
25 [--duplicateverticalheaders=e]
26 [--printsimultaneousactivities=w]
27 [--randomseedx=rx --randomseedy=ry]
28 [--warnifusingnotperfectconstraints=s]
29 [--warnifusingstudentsminhoursdailywithallowemptydays=p]
30 [--warnifusinggroupactivitiesininitialorder=g]
31 [--warnsubgroupswiththesameactivities=ssa]
32 [--printdetailedtimetables=pdt]
33 [--printdetailedteachersfreeperiodstimetables=pdtfp]
34 [--exportcsv=ecsv]
35 [--overwritecsv=ocsv]
36 [--firstlineisheadingcsv=flhcsv]
37 [--quotescsv=qcsv]
38 [--fieldseparatorcsv=fscsv]
39 [--verbose=r]
40

41 fet-cl --version

Listing 9: Command-line usage of FET-CL

dividetimeaxisbydays Whether or not the HTML timetables with time-axis are divided by days.

duplicateverticalheaders Whether or not the HTML timetables have duplicate vertical headers to the right
of the tables, for easier reading.

printsimultaneousactivities Whether or not the HTML timetables are to show related activities which have
constraints with same starting time.

randomseedx, randomseedy The random seed X and Y component. The same timetable is generated if the
same seeds and FET-version are used with the same input file.

warnifusingnotperfectconstraints Whether or not a message box with a warning to be is shown if the input
file contains imperfectly implemented constraints.

warnifusingstudentsminhoursdailywithallowemptydays Whether or not a message box with a warning is
to be shown if the input file contains nonstandard constraints "students min hours daily" with "allow
empty days".

warnifusinggroupactivitiesininitialorder Whether or not a message box with a warning is to be shown if the
input file contains nonstandard timetable generation options to group activities in the initial order.

48 B. FET-CL

warnsubgroupswiththesameactivities Whether or not a message box with a warning is to be shown if the
input contains subgroups which have the same activities.

printdetailedtimetables Whether or not to output extra details for the years and groups timetables.

printdetailedteachersfreeperiodstimetables Whether or not to output extra details for teachers free periods
timetables.

exportcsv Whether or not to export the CSV file and timetables.

overwritecsv Whether or not to overwrite any existing old CSV files.

firstlineisheadingcsv Whether or not to output headings as first line of the CSV files.

quotescsv The quotation style used for CSV exports.

fieldseparatorcsv The field separator used for CSV exports.

verbose Whether or not to output additional (generation) messages.

B.3. FET XML structure
FET-CL accepts an .fet file, which contains an XML file structure. This file contains all the necessary informa-
tion to construct a timetable. The structure of the file is as follows.

B.3.1. Meta elements

fet Root element.
Attribute: version – version used to generate the FET file.

Institution_Name
Name of the institution for which the timetable is generated. Appears in the HTML output.

Comments
When used as a direct child of fet: comments to be added to the timetable. Appears in the HTML
output. When used in other places: contextual comments regarding its parent element.

B.3.2. Grouping elements

Days_List
Group for elements regarding the structure of a week. Contains an arbitrary number of Day elements
and one Number_of_Days element.

Hours_List
Group for elements regarding the structure of a day. Children can be: Number_of_Hours, Hour.

Subjects_List
Group for elements regarding the subjects taught. Children can be: Subject.

Activity_Tags_List
Group for elements regarding grouped activities. Children can be: Activity_Tag.

Teachers_List
Group for elements regarding teachers. Children can be: Teacher.

Students_List
Group for elements regarding students and student groups. Children can be: Year.

Activities_List
Group for elements regarding activities (a teacher, student group and class combination). Can be
empty. Children can be: Activity.

Buildings_List
Group for elements regarding the available building. Can be empty. Children can be: Building.

B.3. FET XML structure 49

Rooms_List
Group for elements regarding available classrooms. Children can be: Room.

Time_Constraints_List
Group for time constraints. Please refer to section B.3.5 for the available child elements.

Space_Constraints_List
Group for space constraints. Please refer to section B.3.6 for the available child elements.

B.3.3. Resource elements

Day Describes a day. Contains one element Name, whose value is the name of the week.

Hour
Describes a day. Contains one element Name, whose value is the name or number of the hour.

Subject
Describes a subject. Contains one element Name, whose value is the name of the subject, and one
element Comments, with optional comments about the subject.

Activity_Tag
Describes an activity tag. Contains one element Name, whose value is the name of the tag, one element
Printable, with a value of true if the tag included in the output, and one element Comments, with
optional comments about the subject.

Teacher
Describes a teacher. Contains one element Name, whose value is the name of the teacher, one element
Target_Number_of_Hours, which contains the preferred number of assigned hours per week, one ele-
ment of Qualified_Subjects, which can contain zero or more Qualified_Subject elements, and one
element Comments, with optional comments about the subject.

Year Describes a group of students, also referred to as grade. Contains a Name, Number_of_Students and a
Comments element, and an arbitrary number of Group elements.

Group
Describes a student set. Contains a Name, Number_of_Students and a Comments element, and an arbi-
trary number of Subgroup elements.

Subgroup
Describes a student subgroup. Contains a Name, Number_of_Students and a Comments element.

Activity
Describes an activity. Contains a Teacher, Subject, Students, Duration, Total_Duration, Id, Activity_Group_Id,
Active and a Comments element.

Building
Describes a building. Contains a Name and a Comments element.

Room
Describes a room. Contains a Name, Building, Capacity and a Comments element.

B.3.4. Reoccurring elements

Each constraint always contains these elements:

ELEMENT VALUE TYPE DESCRIPTION

Weight_Percentage integer Constraint weight. Ranges between 0 and 100.
Active boolean Whether or not the constraint is active.
Comments string Optional comments.

50 B. FET-CL

B.3.5. Time constraint elements

ConstraintBasicCompulsoryTime
The basic compulsory time constraints, referring to time allocation for any timetable. The basic time
constraints try to avoid to assign teachers to more than one activity simultaneously and to assign stu-
dents to more than one activity simultaneously.

ConstraintBreakTimes
The break times constraint. Allows an arbitrary number of periods to be designated as breaks.

ELEMENT VALUE TYPE DESCRIPTION

Teacher string Name of the teacher to which this constraint applies.
Number_of_Break_
Times

integer Amount of Break_Time sibling elements.

Break_Time – Period designated as break. Element contains one Day and
one Hour child element.

Single teacher constraints

ConstraintTeacherNotAvailableTimes
The teacher not available constraint. Allows an arbitrary number of periods to be designated for a
teacher to be unavailable.

ELEMENT VALUE TYPE DESCRIPTION

Teacher string Name of the teacher to which this constraint applies.
Number_of_Not_
Available_Times

integer Amount of Not_Available_Time sibling elements.

Not_Available_Time integer Period in which the teacher is not available. Element con-
tains one Day and one Hour child element.

ConstraintTeacherMaxDaysPerWeek
The maximum working days for a teacher constraint.

ELEMENT VALUE TYPE DESCRIPTION

Teacher_Name string Name of the teacher to which this constraint applies.
Max_Days_Per_Week integer Maximum working days per week for a teacher.

ConstraintTeacherMinDaysPerWeek
The minimum working days for a teacher constraint.

ELEMENT VALUE TYPE DESCRIPTION

Teacher_Name string Name of the teacher to which this constraint applies.
Minimum_Days_Per_
Week

integer Minimum working days per week for a teacher.

ConstraintTeacherMaxGapsPerDay
The teacher max gaps per day constraint. A teacher must respect the maximum number of gaps per
day (breaks and teacher not available not counted).

ELEMENT VALUE TYPE DESCRIPTION

Teacher_Name string Name of the teacher to which this constraint applies.
Max_Gaps integer Maximum number of gaps per day for a teacher.

ConstraintTeacherMaxGapsPerWeek
The teacher max gaps per week constraint. A teacher must respect the maximum number of gaps per
week (breaks and teacher not available not counted).

ELEMENT VALUE TYPE DESCRIPTION

Teacher_Name string Name of the teacher to which this constraint applies.
Max_Gaps integer Maximum number of gaps per week for a teacher.

ConstraintTeacherMaxHoursDaily
The teacher max hours per day constraint. A teacher must respect the maximum span in hours per day.

B.3. FET XML structure 51

ELEMENT VALUE TYPE DESCRIPTION

Teacher_Name string Name of the teacher to which this constraint applies.
Maximum_Hours_
Daily

integer Maximum hours per day for a teacher.

ConstraintTeacherMaxSpanPerDay
The teacher max span per week constraint. A teacher must respect the maximum number of gaps per
week (breaks and teacher not available not counted).

ELEMENT VALUE TYPE DESCRIPTION

Teacher_Name string Name of the teacher to which this constraint applies.
Max_Span integer Maximum span per week.

ConstraintTeacherActivityTagMaxHoursDaily
The teacher max hours per activity tag per day constraint.

ELEMENT VALUE TYPE DESCRIPTION

Teacher_Name string Name of the teacher to which this constraint applies.
Activity_Tag_Name integer Activity tag.
Maximum_Hours_
Daily

integer Maximum hours per day.

ConstraintTeacherMinHoursDaily
The teacher min hours per day constraint.

ELEMENT VALUE TYPE DESCRIPTION

Teacher_Name string Name of the teacher to which this constraint applies.
Minimum_Hours_
Daily

integer Minimum hours per day.

Allow_Empty_Days boolean Whether or not to allow teachers to have empty days.

ConstraintTeacherMaxHoursContinuously
The teacher max hours continuously constraint.

ELEMENT VALUE TYPE DESCRIPTION

Teacher_Name string Name of the teacher to which this constraint applies.
Maximum_Hours_
Continuously

integer Maximum consecutive hours.

ConstraintTeacherActivityTagMaxHoursContinuously
The teacher max hours continuously constraint. N.B. implementation not perfect according to author.

ELEMENT VALUE TYPE DESCRIPTION

Teacher_Name string Name of the teacher to which this constraint applies.
Maximum_Hours_
Continuously

integer Maximum consecutive hours.

ConstraintTeacherIntervalMaxDaysPerWeek
The teacher max hours continuously constraint.

ELEMENT VALUE TYPE DESCRIPTION

Teacher_Name string Name of the teacher to which this constraint applies.
Interval_Start_
Hour

string Name of the start period.

Interval_End_Hour string|void Name of the end period. Void (empty) means end of the day.
Max_Days_Per_Week integer Maximum days per week.

ConstraintTeacherMinRestingHours
The teacher max hours continuously constraint.

52 B. FET-CL

ELEMENT VALUE TYPE DESCRIPTION

Teacher_Name string Name of the teacher to which this constraint applies.
Minimum_Resting_
Hours

integer Minimum number of resting hours.

Circular boolean ???

Constraints for all teachers

ConstraintTeachersNotAvailableTimes
The teacher not available constraint. Allows an arbitrary number of periods to be designated for a
teacher to be unavailable.

ELEMENT VALUE TYPE DESCRIPTION

Number_of_Not_
Available_Times

integer Amount of Not_Available_Time sibling elements.

Not_Available_Time integer Period in which the teachers are not available. Element con-
tains one Day and one Hour child element.

ConstraintTeachersMaxDaysPerWeek
The maximum working days for all teachers constraint.

ELEMENT VALUE TYPE DESCRIPTION

Max_Days_Per_Week integer Maximum working days per week for each teacher.

ConstraintTeachersMinDaysPerWeek
The minimum working days for all teachers constraint.

ELEMENT VALUE TYPE DESCRIPTION

Minimum_Days_Per_
Week

integer Minimum working days per week for each teacher.

ConstraintTeachersMaxGapsPerDay
The all teachers max gaps per day constraint.

ELEMENT VALUE TYPE DESCRIPTION

Max_Gaps integer Maximum number of gaps per day for each teacher.

ConstraintTeachersMaxGapsPerWeek
The all teachers max gaps per week constraint.

ELEMENT VALUE TYPE DESCRIPTION

Max_Gaps integer Maximum number of gaps per week for each teacher.

ConstraintTeachersMaxHoursDaily
The all teachers max hours per day constraint.

ELEMENT VALUE TYPE DESCRIPTION

Maximum_Hours_
Daily

integer Maximum hours per day for each teacher.

ConstraintTeachersMaxSpanPerDay
The all teachers max span per week constraint.

ELEMENT VALUE TYPE DESCRIPTION

Max_Span integer Maximum span per week.

ConstraintTeachersActivityTagMaxHoursDaily
The all teachers max hours per activity tag per day constraint.

ELEMENT VALUE TYPE DESCRIPTION

Activity_Tag_Name integer Activity tag.
Maximum_Hours_
Daily

integer Maximum hours per day.

B.3. FET XML structure 53

ConstraintTeachersMinHoursDaily
The all teachers min hours per day constraint.

ELEMENT VALUE TYPE DESCRIPTION

Minimum_Hours_
Daily

integer Minimum hours per day for each teacher.

Allow_Empty_Days boolean Whether or not to allow teachers to have empty days.

ConstraintTeachersMaxHoursContinuously
The all teachers max hours continuously constraint.

ELEMENT VALUE TYPE DESCRIPTION

Maximum_Hours_
Continuously

integer Maximum consecutive hours.

ConstraintTeachersActivityTagMaxHoursContinuously
The all teachers max hours continuously constraint.

ELEMENT VALUE TYPE DESCRIPTION

Maximum_Hours_
Continuously

integer Maximum consecutive hours.

ConstraintTeachersIntervalMaxDaysPerWeek
The all teachers max hours continuously constraint.

ELEMENT VALUE TYPE DESCRIPTION

Interval_Start_
Hour

string Name of the start period.

Interval_End_Hour string|void Name of the end period. Void (empty) means end of the day.
Max_Days_Per_Week integer Maximum days per week.

ConstraintsTeachersMinRestingHours
The all teachers max hours continuously constraint.

ELEMENT VALUE TYPE DESCRIPTION

Minimum_Resting_
Hours

integer Minimum number of resting hours.

Circular boolean ???

Single student constraints

ConstraintStudentNotAvailableTimes The student not available constraint. Allows an arbitrary number of
periods to be designated for a student to be unavailable.

ELEMENT VALUE TYPE DESCRIPTION

Student string Name of the student to which this constraint applies.
Number_of_Not_
Available_Times

integer Amount of Not_Available_Time sibling elements.

Not_Available_Time integer Period in which the student is not available. Element con-
tains one Day and one Hour child element.

ConstraintStudentMaxDaysPerWeek The maximum working days for a student constraint.

ELEMENT VALUE TYPE DESCRIPTION

Student_Name string Name of the student to which this constraint applies.
Max_Days_Per_Week integer Maximum working days per week for a student.

ConstraintStudentMinDaysPerWeek The minimum working days for a student constraint.

ELEMENT VALUE TYPE DESCRIPTION

Student_Name string Name of the student to which this constraint applies.
Minimum_Days_Per_
Week

integer Minimum working days per week for a student.

54 B. FET-CL

ConstraintStudentMaxGapsPerDay The student max gaps per day constraint. A student must respect the
maximum number of gaps per day (breaks and student not available not counted).

ELEMENT VALUE TYPE DESCRIPTION

Student_Name string Name of the student to which this constraint applies.
Max_Gaps integer Maximum number of gaps per day for a student.

ConstraintStudentMaxGapsPerWeek The student max gaps per week constraint. A student must respect
the maximum number of gaps per week (breaks and student not available not counted).

ELEMENT VALUE TYPE DESCRIPTION

Student_Name string Name of the student to which this constraint applies.
Max_Gaps integer Maximum number of gaps per week for a student.

ConstraintStudentMaxHoursDaily The student max hours per day constraint. A student must respect the
maximum span in hours per day.

ELEMENT VALUE TYPE DESCRIPTION

Student_Name string Name of the student to which this constraint applies.
Maximum_Hours_
Daily

integer Maximum hours per day for a student.

ConstraintStudentMaxSpanPerDay The student max span per week constraint. A student must respect the
maximum number of gaps per week (breaks and student not available not counted).

ELEMENT VALUE TYPE DESCRIPTION

Student_Name string Name of the student to which this constraint applies.
Max_Span integer Maximum span per week.

ConstraintStudentActivityTagMaxHoursDaily The student max hours per activity tag per day constraint.

ELEMENT VALUE TYPE DESCRIPTION

Student_Name string Name of the student to which this constraint applies.
Activity_Tag_Name integer Activity tag.
Maximum_Hours_
Daily

integer Maximum hours per day.

ConstraintStudentMinHoursDaily The student min hours per day constraint.

ELEMENT VALUE TYPE DESCRIPTION

Student_Name string Name of the student to which this constraint applies.
Minimum_Hours_
Daily

integer Minimum hours per day.

Allow_Empty_Days boolean Whether or not to allow students to have empty days.

ConstraintStudentMaxHoursContinuously The student max hours continuously constraint.

ELEMENT VALUE TYPE DESCRIPTION

Student_Name string Name of the student to which this constraint applies.
Maximum_Hours_
Continuously

integer Maximum consecutive hours.

ConstraintStudentActivityTagMaxHoursContinuously The student max hours continuously constraint. N.B.
implementation not perfect according to author.

ELEMENT VALUE TYPE DESCRIPTION

Student_Name string Name of the student to which this constraint applies.
Maximum_Hours_
Continuously

integer Maximum consecutive hours.

ConstraintStudentIntervalMaxDaysPerWeek The student max hours continuously constraint.

B.3. FET XML structure 55

ELEMENT VALUE TYPE DESCRIPTION

Student_Name string Name of the student to which this constraint applies.
Interval_Start_
Hour

string Name of the start period.

Interval_End_Hour string|void Name of the end period. Void (empty) means end of the day.
Max_Days_Per_Week integer Maximum days per week.

ConstraintStudentMinRestingHours The student max hours continuously constraint.

ELEMENT VALUE TYPE DESCRIPTION

Student_Name string Name of the student to which this constraint applies.
Minimum_Resting_
Hours

integer Minimum number of resting hours.

Circular boolean ???

Constraints for all students

ConstraintStudentsNotAvailableTimes The student not available constraint. Allows an arbitrary number of
periods to be designated for a student to be unavailable.

ELEMENT VALUE TYPE DESCRIPTION

Number_of_Not_
Available_Times

integer Amount of Not_Available_Time sibling elements.

Not_Available_Time integer Period in which the students are not available. Element
contains one Day and one Hour child element.

ConstraintStudentsMaxDaysPerWeek The maximum working days for all students constraint.

ELEMENT VALUE TYPE DESCRIPTION

Max_Days_Per_Week integer Maximum working days per week for each student.

ConstraintStudentsMinDaysPerWeek The minimum working days for all students constraint.

ELEMENT VALUE TYPE DESCRIPTION

Minimum_Days_Per_
Week

integer Minimum working days per week for each student.

ConstraintStudentsMaxGapsPerDay The all students max gaps per day constraint.

ELEMENT VALUE TYPE DESCRIPTION

Max_Gaps integer Maximum number of gaps per day for each student.

ConstraintStudentsMaxGapsPerWeek The all students max gaps per week constraint.

ELEMENT VALUE TYPE DESCRIPTION

Max_Gaps integer Maximum number of gaps per week for each student.

ConstraintStudentsMaxHoursDaily The all students max hours per day constraint.

ELEMENT VALUE TYPE DESCRIPTION

Maximum_Hours_
Daily

integer Maximum hours per day for each student.

ConstraintStudentsMaxSpanPerDay The all students max span per week constraint.

ELEMENT VALUE TYPE DESCRIPTION

Max_Span integer Maximum span per week.

ConstraintStudentsActivityTagMaxHoursDaily The all students max hours per activity tag per day con-
straint.

ELEMENT VALUE TYPE DESCRIPTION

Activity_Tag_Name integer Activity tag.
Maximum_Hours_
Daily

integer Maximum hours per day.

56 B. FET-CL

ConstraintStudentsMinHoursDaily The all students min hours per day constraint.

ELEMENT VALUE TYPE DESCRIPTION

Minimum_Hours_
Daily

integer Minimum hours per day for each student.

Allow_Empty_Days boolean Whether or not to allow students to have empty days.

ConstraintStudentsMaxHoursContinuously The all students max hours continuously constraint.

ELEMENT VALUE TYPE DESCRIPTION

Maximum_Hours_
Continuously

integer Maximum consecutive hours.

ConstraintStudentsActivityTagMaxHoursContinuously The all students max hours continuously constraint.

ELEMENT VALUE TYPE DESCRIPTION

Maximum_Hours_
Continuously

integer Maximum consecutive hours.

ConstraintStudentsIntervalMaxDaysPerWeek The all students max hours continuously constraint.

ELEMENT VALUE TYPE DESCRIPTION

Interval_Start_
Hour

string Name of the start period.

Interval_End_Hour string|void Name of the end period. Void (empty) means end of the day.
Max_Days_Per_Week integer Maximum days per week.

ConstraintsStudentsMinRestingHours The all students max hours continuously constraint.

ELEMENT VALUE TYPE DESCRIPTION

Minimum_Resting_
Hours

integer Minimum number of resting hours.

Circular boolean ???

Student set constraints

ConstraintStudentsSetNotAvailableTimes The teacher not available constraint. Allows an arbitrary number
of periods to be designated for a teacher to be unavailable.

ELEMENT VALUE TYPE DESCRIPTION

Students string Name of the student set to which this constraint applies.
Number_of_Not_
Available_Times

integer Amount of Not_Available_Time sibling elements.

Not_Available_Time integer Period in which the teacher is not available. Element con-
tains one Day and one Hour child element.

All students constraints

B.3.6. Space constraint elements

ConstraintBasicCompulsorySpace
The basic compulsory space constraints, referring to space allocation for any timetable. The basic space
constraints try to avoid rooms assigned to more than one activity simultaneously and activities with
more students than the capacity of the room.

ELEMENT VALUE TYPE DESCRIPTION

Weight_Percentage integer Constraint weight. Ranges between 0 and 100.
Active boolean Whether or not the constraint is active.
Comments string Optional comments.

ConstraintSubjectPreferredRoom
The preferred room for a specific subject.

B.3. FET XML structure 57

ELEMENT VALUE TYPE DESCRIPTION

Subject string Subject name.
Room string Room name.

ConstraintSubjectPreferredRooms
A list of preferred rooms for a specific subject.

ELEMENT VALUE TYPE DESCRIPTION

Subject string Subject name.
Number_of_
Preferred_Rooms

integer Number of preferred rooms

Room string A room element for each room name.

ConstraintActivityPreferredRoom
The preferred room for a specific activity.

ELEMENT VALUE TYPE DESCRIPTION

Activity_Id integer Activity id.
Room string Room name.

ConstraintActivityPreferredRooms
A list of preferred rooms for a specific activity.

ELEMENT VALUE TYPE DESCRIPTION

Activity_Id integer Activity id .
Number_of_
Preferred_Rooms

integer Number of preferred rooms

Room string A Room element for each room name.

ConstraintActivitiesSameRoomIfConsecutive
A list of activities which can be in the same room if they are consecutive.

ELEMENT VALUE TYPE DESCRIPTION

Number_of_
Activities

integer Number of activities

Activity_Id integer A Activity_Id element for each activity.

ConstraintActivityTagPreferredRoom
The preferred room for a specific activity tag.

ELEMENT VALUE TYPE DESCRIPTION

Activity_Tag string Activity tag name.
Room string A room element for each room name.

ConstraintActivityTagPreferredRooms
A list of preferred rooms for a specific activity tag.

ELEMENT VALUE TYPE DESCRIPTION

Activity_Tag string Activity tag name.
Number_of_
Preferred_Rooms

integer Number of preferred rooms

Room string A room element for each room name.

ConstraintTeacherHomeRoom
The preferred home room for a specific teacher.

ELEMENT VALUE TYPE DESCRIPTION

Teacher string Teacher name.
Room string Room name.

ConstraintTeacherHomeRooms
A list of preferred home rooms for a specific teacher.

58 B. FET-CL

ELEMENT VALUE TYPE DESCRIPTION

Teacher string Teacher name.
Number_of_
Preferred_Rooms

integer Number of preferred rooms

Room string A room element for each room name.

ConstraintTeacherMaxBuildingChangesPerDay
The maximum number of building changes a day a specific teacher can have.

ELEMENT VALUE TYPE DESCRIPTION

Teacher string Teacher name.
Max_Building_
Changes_Per_Days

integer Number of max building changes

ConstraintTeacherMaxBuildingChangesPerWeek
The maximum number of building changes per week a specific teacher can have.

ELEMENT VALUE TYPE DESCRIPTION

Teacher string Teacher name.
Max_Building_
Changes_Per_Week

integer Number of max building changes

ConstraintTeacherMinGapsBetweenBuildingChanges
The minimum number of free time between building changes.

ELEMENT VALUE TYPE DESCRIPTION

Teacher string Teacher name.
Min_Gaps_Between_
Building_Changes

integer Number of min time slots

ConstraintTeachersMaxBuildingChangesPerDay
The maximum number of building changes a day all teachers can have.

ELEMENT VALUE TYPE DESCRIPTION

Max_Building_
Changes_Per_Days

integer Number of max building changes

ConstraintTeachersMaxBuildingChangesPerWeek
The maximum number of building changes a week all teachers can have.

ELEMENT VALUE TYPE DESCRIPTION

Max_Building_
Changes_Per_Week

integer Number of max building changes

ConstraintStudentsMaxBuildingChangesPerDay
The maximum number of building changes a day all students can have.

ELEMENT VALUE TYPE DESCRIPTION

Max_Building_
Changes_Per_Day

integer Number of max building changes

ConstraintStudentsMaxBuildingChangesPerWeek
The maximum number of building changes a week all students can have.

ELEMENT VALUE TYPE DESCRIPTION

Max_Building_
Changes_Per_Week

integer Number of max building changes

ConstraintStudentsSetHomeRoom
The specific home room of a specific student group or class.

ELEMENT VALUE TYPE DESCRIPTION

Students string Students group or class name.
Room string Room name.

B.3. FET XML structure 59

ConstraintStudentsSetHomeRooms
The list of home rooms of a specific student group or class.

ELEMENT VALUE TYPE DESCRIPTION

Students string Students group or class name.
Number_of_
Preferred_Rooms

integer Number of preferred rooms

Room string A Room element for each room name.

ConstraintStudentsSetMaxBuildingChangesPerDay
The maximum number of building changes a day specific students groups/classes/years can have.

ELEMENT VALUE TYPE DESCRIPTION

Students string A Students element with the group name for each group.
Max_Building_
Changes_Per_Day

integer Number of max building changes

ConstraintStudentsSetMaxBuildingChangesPerWeek
The maximum number of building changes a week specific students groups/classes/years can have.

ELEMENT VALUE TYPE DESCRIPTION

Students string A Students element with the group name for each group.
Max_Building_
Changes_Per_Week

integer Number of max building changes

ConstraintStudentsSetMinGapsBetweenBuildingChanges
The minimum number of free time for specific students groups/classes/years between building changes.

ELEMENT VALUE TYPE DESCRIPTION

Students string A Students element with the as group name.
Min_Gaps_Between_
Building_Changes

integer Number of min time slots

ConstraintStudentsMinGapsBetweenBuildingChanges
The minimum number of free time for all students between building changes.

ELEMENT VALUE TYPE DESCRIPTION

Min_Gaps_Between_
Building_Changes

integer Number of min time slots

ConstraintRoomNotAvailableTimes
The time slots a room is not available.

ELEMENT VALUE TYPE DESCRIPTION

Room string Room name
Number_of_Not_
Available_Times

integer Number of not available time slots

Not_Available_Time Element contains one Day and one Hour child element.

ConstraintSubjectActivityTagPreferredRoom
The preferred room for a specific activity tag

ELEMENT VALUE TYPE DESCRIPTION

Subject string Subject name
Activity_tag string Activity tag name
Room string Room name

ConstraintSubjectActivityTagPreferredRooms
A list of preferred rooms for a specific activity tag

60 B. FET-CL

ELEMENT VALUE TYPE DESCRIPTION

Subject string Subject name
Activity_tag string Activity tag name
Number_of_
Preferred_Rooms

integer The number of preferred rooms.

Preferred_Room string A Preferred_Room element for each room.

B.3.7. Miscellaneous elements

Number_of_Days
Describes the number of Day siblings of this element.

Number_of_Hours
Describes the number of Hour siblings of this element.

Name
Contains the name associated with its parent element.

B.4. Basic FET XML file example

Please find an example FET file with one teacher, one subject, one activity, one room and a week of five days
with five periods in listing 10.

<?xml version="1.0" encoding="UTF-8"?>
<fet version="5.36.0">

<Institution_Name>Institution Name</Institution_Name>
<Comments>Example FET file.</Comments>
<Days_List>

<Number_of_Days>5</Number_of_Days>
<Day><Name>Monday</Name></Day>
<Day><Name>Tuesday</Name></Day>
<Day><Name>Wednesday</Name></Day>
<Day><Name>Thursday</Name></Day>
<Day><Name>Friday</Name></Day>

</Days_List>
<Hours_List>

<Number_of_Hours>8</Number_of_Hours>
<Hour><Name>09:00</Name></Hour>
<Hour><Name>10:00</Name></Hour>
<Hour><Name>11:00</Name></Hour>
<Hour><Name>12:00</Name></Hour>
<Hour><Name>13:00</Name></Hour>

</Hours_List>
<Subjects_List>

<Subject>
<Name>Bachelor End Project</Name>
<Comments></Comments>

</Subject>
</Subjects_List>
<Activity_Tags_List>
</Activity_Tags_List>
<Teachers_List>

<Teacher>
<Name>T.E.A. Cher</Name>
<Target_Number_of_Hours>0</Target_Number_of_Hours>
<Qualified_Subjects></Qualified_Subjects>
<Comments></Comments>

</Teacher>
</Teachers_List>
<Students_List>

<Year>
<Name>2018</Name>
<Number_of_Students>0</Number_of_Students>
<Comments></Comments>
<Group>

B.4. Basic FET XML file example 61

<Name>Bachelor Year 3</Name>
<Number_of_Students>2</Number_of_Students>
<Comments></Comments>

</Group>
</Year>

</Students_List>
<Activities_List>

<Activity>
<Teacher>T.E.A. Cher</Teacher>
<Subject>Bachelor End Project</Subject>
<Students>Bachelor Year 3</Students>
<Duration>3</Duration>
<Total_Duration>3</Total_Duration>
<Id>1</Id>
<Activity_Group_Id>0</Activity_Group_Id>
<Number_Of_Students>2</Number_Of_Students>
<Active>true</Active>
<Comments></Comments>

</Activity>
</Activities_List>
<Buildings_List>

<Building>
<Name>Key2Soft Office</Name>
<Comments></Comments>

</Building>
</Buildings_List>
<Rooms_List>
</Rooms_List>
<Time_Constraints_List>

<ConstraintBasicCompulsoryTime>
<Weight_Percentage>100</Weight_Percentage>
<Active>true</Active>
<Comments></Comments>

</ConstraintBasicCompulsoryTime>
</Time_Constraints_List>
<Space_Constraints_List>

<ConstraintBasicCompulsorySpace>
<Weight_Percentage>100</Weight_Percentage>
<Active>true</Active>
<Comments></Comments>

</ConstraintBasicCompulsorySpace>
</Space_Constraints_List>

</fet>

Listing 10: Example FET file

C
Software Improvement Group (SIG)

feedback

C.1. First evaluation
Reviewer: Dennis Bijlsma (d.bijlsma@sig.eu)
Date: June 11, 2018
Language: Dutch

"De code van het systeem scoort 4.7 sterren op ons onderhoudbaarheidsmodel, wat betekent dat de code
bovengemiddeld onderhoudbaar is. De hoogste score is niet behaald door lagere scores voor Unit Size en
Module Coupling.

Op dit moment is de score dusdanig hoog dat we geen concrete aanbevelingen voor verdere verbetering
hebben, hulde! Wel is het zaak om ervoor te zorgen dat jullie dit niveau tijdens het vervolg van het project
vast weten te houden, en al helemaal op het moment dat de deadline in zicht komt.

Als laatste nog de opmerking dat er geen (unit)test-code is gevonden in de code-upload. Het is sterk aan te
raden om in ieder geval voor de belangrijkste delen van de functionaliteit automatische tests gedefinieerd te
hebben om ervoor te zorgen dat eventuele aanpassingen niet voor ongewenst gedrag zorgen.

Over het algemeen scoort de code dus bovengemiddeld, hopelijk lukt het om dit niveau te behouden tijdens
de rest van de ontwikkelfase."

C.2. Second evaluation
Reviewer: Dennis Bijlsma (d.bijlsma@sig.eu)
Date: July 2, 2018
Language: Dutch

"In de tweede upload zien we dat het project een stuk groter is geworden. De score voor onderhoudbaarheid
is in vergelijking met de eerste upload iets gedaald. Jullie zaten qua score erg hoog, dus die daling was in
dat opzicht te verwachten. Jullie zitten echter nog steeds rond de 4,5 ster, dus geen reden om je zorgen te
maken.

Zoals jullie per email hebben aangegeven hadden jullie in de eerste upload wel degelijk testcode, dus die
opmerking uit de feedback op de eerste upload komt te vervallen. Naast de toename in de hoeveelheid pro-
ductiecode is het goed om te zien dat jullie ook nieuwe testcode hebben toegevoegd. De hoeveelheid tests
ziet er dan ook nog steeds goed uit.

Uit deze observaties kunnen we concluderen dat de aanbevelingen uit de feedback op de eerste upload zijn
meegenomen tijdens het ontwikkeltraject."

63

mailto:d.bijlsma@sig.eu
mailto:d.bijlsma@sig.eu

Information sheet

• Project Title: Automated timetable generation for Egyptian schools
• Client Organization: Key2Soft
• Final Presentation: July 12, 2018 at 11:00 AM

Description
Creating a timetable for primary-, middle- and high school is a time-consuming process which is currently
usually be done by hand. During the course of this project, an automated system to generate timetables for
schools in Egypt has been implemented, taking into account the various requirements and timetable con-
straints of these schools. During the research phase, existing solutions that would fulfill the requirements of
Key2Soft have been analyzed. The biggest challenge was finding a solution that finds a near optimal solu-
tion and is still fast enough for the client. From the analysis of the research phase, the free and open source
timetable generator FET has been selected to generate timetables in this project, mainly due to its speed. A
SCRUM variant was used to efficiently work together as a project team on this project.

The final product creates an initial timetable which satisfies all the requirements that were defined. To
create a better or optimal timetable, the timetable generated by the system will need to be manually fine-
tuned.

Members of the project team
• Name: Sven van Hal
• Interests: Software Engineering, customer interaction, system integration.
• Contribution: Timetabling component integration, timetable output processing, quality assurance,

testing and refactoring, open-source.

• Name: Karim Osman
• Interests: Software Engineering
• Contribution: Connection with database, DataModel and Resource objects creator

Client
• Name: Mahmoud ElHefnawy
• Affiliation: CEO, Key2Soft

Coach
• Name: Felienne Hermans
• Affiliation: Software Engineering Department, Delft University of Technology

Contact information
Team members:

• Sven van Hal (sven@svenvanhal.nl)
• Karim Osman (karimosman1@hotmail.com)

The final report for this project can be found at: https://repository.tudelft.nl

65

	Introduction
	Research
	Introduction
	Problem definition and analysis
	Problem description
	Deliverables
	Stakeholder analysis

	Ethical implications
	Design Goals
	Compatibility
	Maintainability
	Performance

	Requirement Analysis
	Module requirements
	Timetable constraints
	Analysis

	Existing Algorithms
	Genetic Algorithm
	Firefly Algorithm
	Bee Colony Optimization Algorithm
	Hybrid Firefly / BCO
	Particle Swarm Optimization Algorithm
	Tabu Search Algorithm
	Simulated Annealing Algorithm
	Tiling Algorithm

	Existing timetabling software
	aSc Timetables (commercial)
	Timetabler (commercial)
	FET (free open source)
	Unitime (free)
	Conclusion

	The FET Program
	Recursive Swapping Algorithm
	FET-CL
	FET file structure

	Design
	Introduction
	Architecture
	Overview
	Data Model
	Resource objects
	XML creator
	FET-CL
	Timetable object

	Implementation
	Introduction
	Project structure
	Resource objects
	AbstractList
	ActivitiesList
	ActivityBuilder
	Constraints

	XML parser
	Data model
	Timetable generation
	Software design
	Program input
	Process creation and management
	Output processing
	Performance

	Configuration

	Testing
	Introduction
	Testing methodology
	Guidelines
	Unit testing
	Integration testing

	Test results
	Unit tests
	Integration tests

	Challenges

	Evaluation
	Introduction
	Requirements
	Timetable evaluation
	Requirements changes during the process
	Collections
	Stages

	Software Improvement Group

	Process and Recommendations
	Introduction
	Development methodology
	SCRUM
	Reflection

	Development Resources
	Slack
	GitHub
	Waffle

	Recommendations

	Conclusion and Discussion
	Initial problem definition by Key2Soft
	Project: Automated system to generate optimal school time table

	FET-CL
	Supported timetable constraints
	Time constraints
	Space constraints

	Command-line arguments
	FET XML structure
	Meta elements
	Grouping elements
	Resource elements
	Reoccurring elements
	Time constraint elements
	Space constraint elements
	Miscellaneous elements

	Basic FET XML file example

	Software Improvement Group (SIG) feedback
	First evaluation
	Second evaluation

