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Abstract

In the Groningen province, situated in the northern part of the Netherlands, a large natural gas field was
discovered in 1959 and in 1964 the gas extraction started. Due to the gas extraction in the Groningen area,
undesired induced earthquakes are generated. The strongest earthquake registered to date was in 2012, 3.6
of the Richter scale. Not being designed and constructed to sustain seismic loading, masonry buildings in the
area show higher vulnerability than other more recent structures. In 2013 extensive research on the seismic
risk has been initiated in order to assess structure and infrastructure vulnerability to seismic events. Smeared
plasticity shell element models have shown to achieve very accurate results in blind predictions of full-scale
laboratory tests. However, they are computationally very demanding and hence not suitable for parametric
studies and fragility curves development. Alternatively, a computationally efficient lumped plasticity model
is proposed, meant to be representative of the in-plane shear and rocking behaviour of URM wall piers. The
macro-element model is calibrated with quasi-static tests performed in laboratories at TU Delft and Eucen-
tre. In addition, smeared plasticity numerical simulations are used for the calibration of the energy-based
phenomenological parameter in the flag-shaped rule for rocking behaviour. A new hysteretic rule has been
developed for modelling the flange effect that characterises slender piers of the Groningen URM buildings.
It provides the abstraction for a one-dimensional rate-independent flag-shaped hysteresis with asymmetric
backbone. Non-linear time history analyses are performed to assess the response of wall components and
to validate the approach against the smeared-plasticity model. Comparable results are achieved in terms
of collapse-mechanism prediction, base shear forces, maximum drifts and energy dissipation. Finally, the
macro-element is assembled in an equivalent-frame model which represents a prototype house tested quasi-
statically at TU Delft. The blind prediction displacement-controlled test shows a 20% capacity overestimation
from the lumped plasticity model, proving the necessity of parametric studies for the capacity estimation
improvements. NLTH analyses lead to comparable results between the two approaches, in terms of fail-
ure mechanism prediction and hysteretic behaviour. The analyses performed with the proposed approach
turned out to be faster by two orders of magnitude compared to the shell element models.
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Nomenclature

Acronyms
Iy Arias intesity
Iy Housner spectral intesity

AN Accelerated-Newton of Krylov-Newton integration method
CaSi  Calcium Silicate material

DoF  degrees-of-freedom

EQ Earthquake record

GM Ground motion

M Caughey or Modal damping model

MDoF Multi-degree-of-freedom

MN  Modified-Newton integration method
MPP  Massively parallel processing

NLTH Non-linear time history

NR Newtow-Raphson integration method
PGA  Peak ground acceleration

PSV  Pseudo-velocity spectrum

RI Initial-stiffness Rayleigh damping model
RT Tangent-stiffness Rayleigh damping model
SA Spectral acceleration

SDoF  Single-degree-of-freedom

URM Unreinforced masonry

Greek Letters

a Stiffness proportional damping coefficient, boundary condition factor for wall pier in rocking and
toe-crushing modes

B Mass proportional damping coefficient, Ratio of Forward to Reverse Activation Moment for flag shape
model

At Critical time-step for explicit integration

e Coefficient of friction of masonry relative to the mortar joint
v Poisson’s ratio

o Volumetric mass density

o Vertical compression sress caused by gravity loads



X Nomenclature
4 Damping ratio

Ceqn  Equivalent hysteretic damping ratio

Ceq,v  Equivalent viscous damping ratio

Roman Letters

iig Earthquake acceleration

Ay Shear area

c Damping coefficient, speed of sound through the elastic medium
En Masonry elastic modulus

fe Masonry compressive strength

fs Resisting forces

It Tensile strenght of masonry

fvo Shear strengh of the masonry under zero compression stress

fv Shear strength of the masonry

Gm Masonry shear modulus

herr  Effective heigh of the wall pier

Ig Moment of inertia of the gross section representing un-cracked behaviour
I Critical length for beam and shell element

Pp Superimposed load at the top of the wall pier

Py Self weight of the wall pier

Vv Rocking pier capacity

Vpjs  Bed-joint sliding pier capacity

Vae Diagonal cracking pier capacity

Vie Toe-crushing pier capacity

Standard acceleration of free fall



Introduction

In the Groningen province, situated in the northern part of the Netherlands, a large natural gas field was
discovered in 1959 and in 1964 the gas extraction started. Due to the gas extraction in the Groningen area,
undesired induced earthquakes are generated. The strongest earthquake registered to date took place in
2012, with an estimated magnitude of 3.6 in the Richter scale.
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Figure 1: Groningen region location plan [1]

Most of the building stock (89 %) in the Groningen area (Figure 1) consists of unreinforced masonry (URM)
buildings [42]. Masonry has been used for centuries as construction material, and it has contributed to some
of the most iconic structures. With the exception of monumental buildings, which have sometimes been de-
signed on the basis of experiments and the simple theory of structures, masonry buildings have been built on
the basis of tradition and experience. In addition, not being designed to sustain seismic loading, the struc-
tural vulnerability of Dutch URM buildings is often relevant.

Motivation of the study

In 2013 extensive research on the seismic risk in the Groningen region has been initiated in order to assess
structure and infrastructure vulnerability to seismic events. Smeared plasticity shell element models (Figure
2) have shown to achieve very accurate results in blind predictions of full-scale laboratory tests [24].
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Figure 2: FEM representation of the URM building

However, they turn out to be computationally very demanding and hence not suitable for parametric
studies and large-scale risk calculations. The latter are usually carried out through the fragility curves devel-
opment. It is a statistical tool representing the probability of exceedance of a given structural performance as
a function of an engineering demand parameter representing the input seismic hazard (e.g. ground motion
due to seismic event). Given the intrinsic randomness and unpredictability of seismic events, the calculations
need to be performed using thousands of accelerograms, to cover the record-to-record variability.

To meet this objective, in seismic engineering, the actual multi-degree-of-freedom system (structure) is
usually represented by a dynamic single-degree-of-freedom (SDoF) system [36]. The standard conversion
approach is based on the modal analysis [19] and leads to the definition of an equivalent single-mass system
(Figure 3).

Figure 3: SDoF representation of the URM building

This has the advantage of acting as a reasonably simple and fast method. However, being based on linear
response of the structure, the procedure of system identification is not justified in the case of non-linear re-
sponse, which strongly characterize the dynamic behaviour of URM buildings.

Research objectives

To overcome the limitations described above, it is preferable to explicitly account for the non-linear behaviour
of URM structures, and hence, to develop a multi-degree-of-freedom (MDoF) model (e.g. Figure 4). The
model is calibrated to capture the in-plane dynamic behaviour of the pier components, core of the structural
system of URM buildings.
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Figure 4: MDoF representation of the URM building

Therefore, in a lumped plasticity fashion, the degrees-of-freedom (DoF) are related to the shear and rock-
ing failure modes of URM walls. In this framework, one is able to assess the global response of the building, in
terms of drift, base shear force and energy dissipation, when subjected to an earthquake excitation. This ap-
proach leads to a computationally efficient tool, suitable for the aforementioned large-scale risk calculations
of the Groningen building stock. Given its simplicity, this approach allows to account also for the variability
of the superstructure (and not only of the ground motion). Probabilistic calculations may be carried out in
order to evaluate the sensitivity of the dynamic system to varying masonry structural properties.

Strategy

The literature review acts as the starting point for the identification of the most suitable approach to achieve
the research objectives. Current knowledge in terms of theoretical and experimental work suggests that at the
ultimate limit state, the URM structure is broken down into pier and spandrels elements. Therefore, a macro-
element model for the in-plane behaviour of pier elements is formulated, based on analytical formulation, as
well as on laboratory tests results and smeared plasticity numerical simulations. Consequently, the approach
is validated performing sets of non-linear time history (NLTH) analyses on two wall component typologies,
namely slender and squat piers, varying frequency range, duration and intensity of the input. Finally, the
macro-element is assembled into an equivalent-frame model representing a prototype house tested quasi-
statically in the Macrolab of Delft University of Technology.

Dissertation outline

* The chapter Induced Seismicity and Dynamic Performance of URM Buildings outlines a general overview
of the Groningen seismicity and the behaviour of URM buildings under the seismic action.

* The chapter Seismic Resistance Assessment of URM Wall Piers deals with the analytical calculation
procedures to compute the in-plane capacity of structural walls, identifying the typical failure modes
that characterize them.

* The chapter Reduction of degrees-of-freedom describes the approach for the reduction of the degrees-
of-freedom, from the full building to the MDoF system. A lumped plasticity approach is presented
along with the hysteretic models, based on the behaviours identified in Chapter 2.

* The chapter Non-Linear Time History Analysis deals with the non-linear time history analysis proce-
dure, with particular focus on the damping model for seismic analysis and energy-based calculations.

* The chapter In-plane Dynamic Test on URM Wall Piers includes the point cloud NLTH analysis for the
in-plane behaviour of rocking and shear driven pier components.

* The chapter Benchmark Building describes the assembly of the macro-element in an equivalent frame
model representing a prototype house tested quasi-statically in the laboratory.
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* The chapter Conclusions and Recommendations includes a critical reflection on the proposed method-
ology and on the numerical simulation results. Further improvements of the model are outlined.

Limitation of the research
The current work has been developed taking into account the following limitations and assumptions:

* Foundation flexibility and non-linear soil response are not considered in the analyses, as well as the
interaction between soil and structure. However, the ground motions used in the analyses take into
account the Groningen-specific site response .

* The presence of spandrels connecting the masonry piers and openings has not been investigated. Of-
ten, Dutch residential URM buildings are characterised by shallow spandrels, weak relatively to adja-
cent piers, hence are less likely to couple multiple piers and transmit overturning to adjacent piers,
increasing axial forces in end piers and potentially changing the sequence of actions.

« Effect of failure of connections between diaphragms and walls is it not explicitly modelled in the anal-
yses.

* The out-of-plane failure of walls it is not taken into account. The proposed approach is for the as-
sessment of the in-plane response of URM structures. The contribution of the walls orthogonal to the
in-plane direction however is taken into account as an increase of the in-plane strength (i.e. flange
effect).

* The effect of the vertical component of the ground motions is not taken into account in the analyses.
However, buildings are primarily designed to carry the vertical gravity loads. Hence, they are likely less
vulnerable in the vertical direction (additional information are included in Appendix C).

* The proposed approach is validated against LS-DYNA masonry material model, which has been devel-
oped on the basis of benchmark tests carried out to date [24]. Calibration of structural analysis models
against experimental behaviour has been limited by the extent to which experimental tests have his-
torically been run to full collapse of specimens and buildings.



Induced Seismicity and Dynamic
Performance of URM Buildings

In the present chapter, an overview of the induced seismicity of the Groningen region is provided, from the
causes of the events to the recent seismicity timeline. Furthermore, a brief description of the dynamic behaviour
of URM buildings is presented, highlighting the motivations for the adoption of a lumped plasticity approach.

1.1. Induced seismicity in the Groningen gas field

The Groningen gas field, in the North-East part of the Netherlands, is the largest gas field in western Europe,
with the presence of 3000 billion 73 of gas. The gas field was discovered in 1959 and the extraction started in
1963. Since 1991, seismicity in the Groningen region has been recorded above the gas fields and it is consid-
ered to be directly related to the gas extraction. The magnitude of these earthquakes ranged between 0.8 and
3.6 of the Richter scale, with the largest earthquake local magnitude of 3,6 registered on the 16" of August
2012 [25]. Even though the magnitude of the event was fairly limited when compared to other tectonic events,
an intensity equal to IV of the Mercalli scale was observed in the region; mostly related to the shallow depth
of the event and the soft soil in that area [53]. Thus, damages were caused to the houses in that area. This
has led to some studies in which the links between the geology of the field, the reservoir dynamics and the
geo-mechanics have been analysed [53], [54].

1.1.1. Causes of the earthquakes

The Groningen subsidence has both shallow and deep causes. Shallow subsidence is caused by compaction
of clay, oxidation of shallow peat, and artificially modified groundwater levels. Deep subsidence results from
reservoir compaction related to gas production (Figure 1.2). Due to gas depletion, the pressure reduction
causes compaction of the reservoir, thus stress variations generate seismicity. The compaction is visible at
the surface as subsidence. Close to existing faults, compaction induces shear stress on the fault because of
the initial inability of the faults to move. Depending on the sliding friction of the fault and magnitude of the
stress change, the faults can slip, thus cause a seismic event [54].



6 1. Induced Seismicity and Dynamic Performance of URM Buildings

600

580

570

235 240 245 250 255 260 265

0 0.17 0.35
Compaction, AV [m]

Figure 1.1: Earthquake epicenters for M = 1.5 in relation to the model of reservoir compaction from 1960 to 2012 [9]

The empirical relation proposed by [9] directly links the cumulative reservoir compaction to seismicity,
which is indeed highest in the centre of the gas field (Figure 1.1).

—
Gas Reduction of Reservoir Surface
production POre pressure compaction subsidence
e’
e
Changes in stress on S
Seismicity
faults
_

Figure 1.2: Scheme of the relation between gas production and seismicity [54]

1.1.2. Seismicity history

Before any gas extraction, the north of the Netherlands had no record of seismicity, thus the Groningen region
has been historically considered tectonically stable. The first induced seismic event had a magnitude M,
of 2.4 and was recorded at Middelstum in 1991. After that date, seismic events have increased over time
(Figure 1.3) both in frequency and intensity [10]. Most of the events before 2003 have been of small magnitude
(M <= 1.5). Thereafter an increase of the frequency of larger magnitude events has been observed:
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° 2003: first event of magnitude M larger than 3.0;
* 2006: an event of magnitude M| of 3.5 occurred;

° 2012: largest event recorded, with a magnitude M of 3.6, near the village of Huizinge (see Appendix C).

Number of events M>=1.0 Number of events M>=1.2
60 55
& 52
50
50
™ e
“ 36 36
40
35 = B <]
30 ]
30 23 24
20 2
2 20 7| 18
n 12
10 10
3 3
L] L] L N B a2 T T — T
- n w ~ R R EEEEEEEEEE
- = = - S 9 e @ 9 Qo o S O M o o o o o
& & ] & RRERRRRKRRRKARRRKRKRRRKRRRKRRRESR
Number of events M>=1.5 Number of events M>=2.0
30 2 p=]

0
O o N Mg o B =D O © o N Mmoo g N L ® D
S 22 2 2 2 2 2 @ o S 22 2 2 2 2 2 @ 2
- - - - -] -
AR R AN RS AR AR AAARAAR

Figure 1.3: Number of earthquakes per year for 4 magnitude classes registered in the Groningen field from 2000 to 2017 [43]
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Induced seismicity in the Groningen field seems to be non-stationary and increasing with time [41] and
even thought not yet statistically significant, the observations suggest a close link among gas production,
compaction and seismicity.

1.2. Dynamic performance of URM buildings

Masonry has been used as a hand craft material of old. With the exception of monumental buildings, which
have sometimes been designed on the basis of experiments and the simple theory of structures, masonry
buildings have been built on the basis of tradition and experience. Masonry buildings, designed and con-
structed according to requirements of modern seismic codes, behave adequately. Cases of collapse are rare
and were limited to buildings where the requirements of codes (especially those related to the quality of con-
structions) were only partly met [55].
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Figure 1.4: SDoF representation of the URM building

During an earthquake event, the ground acceleration iig generates inertia forces, represented by the right-
hand-side of the equation of motion (Equation 1.1), in the building components.

Milpel + Clpe + ke = —miig (1.1

where ii,¢;, il and iiy.; are respectively acceleration, velocity and displacement of the SDoF (represen-
tation of the structural system) relative to the ground. The inertia forces —miigy must find a path to the ground
by transferral to other components via connections. The load path invariably determines the critical com-
ponents of a structure as insufficient strength in any component of a building results in an unsatisfactory
seismic response. For existing buildings, the load path is commonly dictated by the connections between
walls and diaphragms, as seen in historical URM buildings where the connection between the out-of-plane
loaded walls and the diaphragms are often inadequate such that the out-of-plane loaded wall is the critical
component [45].

The load path varies significantly when adequate wall to diaphragm connections are present. When sub-
jected to seismic ground motion, the foundation of a URM building transmits seismic energy to the stiffest
components of the URM building, being the in-plane loaded walls. In general, in-plane loaded walls in a
URM structure are considered as primary lateral-load resisting components (i.e. in-plane wall mostly con-
tributes to the stiffness k in Figure 1.1), while the main role of the out-of plane loaded walls is their vertical
load capacity, and in most cases, their additional lateral shear resistance is considered negligible.

Although the structural typology of masonry buildings varies in different regions, their damage resulting
from earthquakes can be classified in an uniform way. The following typical types of damage can be identified
by the analysis of the observed earthquake damage patter (Figure 1.5):

* Cracks between walls and floors;

* Cracks at the corners and at wall intersections;

* Qut-of-plane collapse of perimetral walls;

* Cracks in spandrel beams and/or perimetral walls;

* Diagonal cracks in structural walls;

e Partial disintegration or collapse of structural walls;

e Partial or complete collapse of the building.
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—
——
X“

T~ ———___ ¥

The equivalent frame approach [49] [33] referenced in Chapter 3, in fact, lies behind such a damage pat-
tern, which suggests that, at the ultimate limit state, the structural walls are broken down into pier elements
and spandrels between openings (Figure 1.6). In addition, the damage pattern indicates that the inelastic de-
formations are usually lumped at certain locations, while the rest of the structure remains undeformed. For
this reason, the concentrated plasticity approach has been chosen in the present work.
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Figure 1.6: Geometry definition for perforated walls [32]






Seismic Resistance Assessment of URM
Wall Piers

As introduced in the previous chapter, the main lateral resisting system of an URM building relies on the in-
plane capacity of the masonry walls; these determine the global dynamic structural behaviour during an earth-
quake event. In this chapter, an overview of the simplified models for this behaviours is presented, along with
the description of the analytical formulation for the mechanics of the failure modes of pier and spandrel ele-
ments. Therefore, the literature provides the basis for the calibration of the inelastic springs, basis of the lumped
plasticity MDoF approach. As an example, the dynamic representation of a structural wall subjected to lateral
loading is presented in the Figure 2.1. The elasto-plastic constitutive law is representative of the failure modes
of wall components.

iy 1 ut),

>
—P'___

k,

Figure 2.1: Example of the system representation

2.1. In-plane mechanisms

Observations of seismic damage to perforated unreinforced masonry walls, as well as laboratory experimen-
tal tests, have shown that masonry piers subjected to in-plane loading fail in one of two responses (shear or
flexure), with which different failure modes and crack patterns are associated [32]. These mechanisms are
primarily dependent on the wall geometry, their boundary conditions, the magnitude of vertical load, and
finally on the characteristics of the brick, mortar and brick-mortar interface.

11
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Regarding the flexural response, one can identify both the rocking and toe-crushing failure modes, re-
spectively Figure 2.2 a and b. If the applied vertical load is low compared with the brick compressive strength,
tensile cracks develops at the pier corners along the bed-joints, and the element starts rotating around the
compressed toe. For the rocking, the ultimate failure consists in the complete overturning of the element,
while for the toe-crushing, a compression failure at the corner bricks occur.

The shear response can be related to the bed-joint sliding and the diagonal cracking, respectively pre-
sented in Figure 2.2 (c) and (d). A shear sliding mode occurs when sliding planes form due to the formation
of tensile horizontal cracks in the bed-joints, which eliminate any shear strength due to cohesion. Diagonal
cracking failure is characterised by diagonal cracks, which can either take a stair stepped route following the
path of bed- and head-joints, or can take a straight diagonal line through the brick units.

Figure 2.2: In-plane failure modes [47]

Rocking, bed-joint sliding and diagonal cracking with stair stepped path via bed- and head-joints are re-
garded as deformation-controlled or ductile mechanisms, while toe-crushing and diagonal cracking through
the bricks as force-controlled or brittle mechanisms. In general, it is recognised that rocking prevails in slen-
der piers, whereas bed-joint sliding tends to occur only in very squat piers [34]. Diagonal cracking governs
over rocking in moderately slender piers where the axial load level is high [56].

2.1.1. Static stiffness estimation

Before introducing the description of the analytical mechanics formulation of each failure mode, the elastic
stiffness estimation for URM walls is discussed. Laboratory tests of solid shear walls [3] have shown that the
behaviour at low force levels can be depicted using conventional principles of mechanics for homogeneous
materials. In such cases, the lateral in-plane stiffness of a solid cantilevered shear wall, k, can be calculated
using:

k=———"— 2.1
B - (2.1)
eff . esr

3Enly " AuGm

where h, ;= wall height (see Figure 2.3);
A, = shear area;
I, = moment of inertia of the gross section representing un-cracked behaviour;
E,; = masonry elastic modulus;

G, = masonry shear modulus.

Analogously, the lateral in-plane stiffness of a wall pier between openings with full restraint against rota-
tion at its top and bottom (i.e. fix-fix condition) can be calculated using:

1
k= — 2.2)
h h
eff eff
12EuIg " AyGp
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One should be aware that that a completely fixed condition is usually not present in actual buildings. This
aspect is further discuss in Section 2.4. It is import to notice, that the estimation of the correct initial stiffness
of the walls is very important for the Groningen earthquakes. The short duration of events is such that the
structure oscillates only few times inelastically in the strong motion part and does not have the cycle content
to develop the conspicuous stiffness degradation that characterises tectonic earthquakes.

Compression
Strut (Typical)

et

R

Figure 2.3: URM pier effective heights based on developing diagonal compression struts [39]

2.1.2. Rocking

As mentioned above, in the rocking failure mode, the element starts rotating around the compressed toe due
to the gap opening at the bed-joint. Therefore, the strength of such a mechanism is derived from rotational
equilibrium considerations (Figure 2.5). According to [4], the lateral strength V; of wall pier components
governed by rocking behaviour shall be calculated as follows:

V. =0.9(aPp +0.5Py)

(2.3)
eff

where h, rf= wall height;
L =length of wall pier;
Pp = superimposed dead load at the top of the wall pier under consideration;
Py, = self weight of the wall pier;
a = factor equal to 0.5 for fixed-free cantilever wall, or equal to 1.0 for fixed-fixed wall pier;

0.9 = factor to account for the reduced level arm due to deformability at corner location.
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Figure 2.4: Rocking pier variable definitions

During cyclic loading, in a displacement control test, the component starts deforming elastically. Once
the lateral actions overcome the vertical forces, the wall starts to tilt around its toes, leading to the so-called
gap opening. The gap opening at the wall base limits the seismic force demand by exhibiting a geometric
non-linearity similarly to the material non-linearity in conventional reinforced concrete shear walls due to
plastic hinge formation. During the unloading, the gap closes until the wall starts moving elastically again
in the other direction. Therefore, theoretically, the rocking behaviour can be modelled with the non-linear
elastic behaviour presented in the figure below.

A

Figure 2.5: Rocking behaviour

2.1.3. Toe-Crushing

The toe-crushing response consists in a rotation around the compressed toe, which ends up with crushing of
the bricks at the corner, due to reaching of compression strength of the material. Analogously to the rocking
mode case, the lateral strength of a pier component governed by the toe-crushing failure mode can be cal-
culated from rotational equilibrium consideration (Figure 2.6 on the left). The masonry stress distribution in
the compression zone is non-linear and is obtained from its uniaxial stress—strain curve shown in Figure 3.7.
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Therefore, the actual stress block is replaced by an equivalent rectangular masonry stress block as shown in
Figure 2.6 on the right. The equivalent block has the same area and centroid as the actual stress distribution
under flexure. Based on these assumption, the toe-crushing capacity can be expressed as follows:

(o5
0.7/ '

Vie = 0.9(aPp +0.5Py)
hegy

where h.rr, L and a are the same as given for Equation 2.3;
o = axial compression stress caused by gravity loads;
fc = masonry compressive strength;
Pp = superimposed dead load at the top of he wall pier under consideration;
Py, = self weight of the wall pier;
0.7 = factor to account for the equivalent area of the stress block idealization (Figure 2.6 on the right).

-
-
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—e————»
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Figure 2.6: Toe-crushing mode variable definitions

Despite being considered separate failure modes, rocking and toe crushing are often intrinsically linked
such that they represent a single failure mode. In both cases, they initiate with the tensile cracks along the
bed-joints, while the ultimate failure is defined by overturning of the wall and simultaneous crushing of the
compressed toe of the wall, respectively.

2.1.4. Bed-Joint Sliding

Bed joint sliding, often referred to as sliding shear, occurs due to the formation of tensile cracks in the bed
joints which create potential sliding planes in the pier. In order to physically model the shear failure mecha-
nism, the friction theory is used for the shear strength of the masonry f, [55]:

fv=Jfvo+uco (2.5)
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where f,¢ = the shear strength under zero compression stress;
Uc = shear friction coefficient of masonry relative to the mortar joint;

o = the compression stress, perpendicular to shear.

The capacity for bed-joint sliding in masonry elements is a function of frictional resistance and bond. The
bond component is progressively degraded as cracking occurs until only the frictional components remain.
In addition, full-scale test results address the occurrence of flexural cracking at small pier displacements [40],
making the bond contribution vanish during the actual sliding. Hence, the contribution to be taken into
account for the strength calculation is given by the second part of Equation 2.5, and results in:

Vb]S :#CPD (2.6)

where Pp = superimposed laod at top of the wall or pier under consideration, and p. as definied after Equation 2.5.

During cyclic loading, when the specimen is subjected to a displacement control at its top, it moves later-
ally elastic up to the yielding point, when the masonry shear strength is reached. Hence, the sliding occurs,
and the constant frictional portion of the shear strength regulates the inelastic deformation, with a zero stiff-
ness branch.

A

i A
[t/

Figure 2.7: Bed-joint sliding behaviour

2.1.5. Diagonal Tension

The derivation of an analytical formulation for the diagonal cracking failure mode relies on the hypothesis
that the diagonal cracks are caused by principal tensile stresses due to the stress state under the combination
of horizontal and vertical loading [11]. Hence, the principal tensile stress at the point where the two diagonals
of the pier intersect, neglecting the horizontal normal stress, is given by:

2
on=1/ (1502 + (%) - g @27

By setting this expression equals to the tensile strength for the masonry f;, one is able to come up with
the diagonal cracking strength, given by:

Vi = 1f—tAn 1+ 2 2.8)
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It has been proven that the equation is valid from pier aspect ratio % larger that 1.5. Corrections to take
into account the actual geometry of the pier component has been later introduced [4]:

Var = fiBAn, [1+ % (2.9)
t

l l l
where = 0.67 for 7 <0.67,—— when 0.67 <= <=1.0, and 1.0 when

> 1.0.
ef f hegy hegy hef f

Differently from the bed-joint sliding, the through-bricks diagonal cracking entails intensive strength and
stiffness degradation when the specimen undergoes repeated loading. The diagonal tension via head- and
bed-joints shows instead an hysteretic behaviour similar to the bed-joint sliding [3].

A

Figure 2.8: Through-brick diagonal tension cracking behaviour

2.2, Displacement capacity

In this section, the displacement capacity for URM walls is discussed. Test results indicate that for URM walls
governed by an initial rocking response, drifts of at least 1.5% are sustainable, provided that toe crushing does
not control the response at low drifts [35], [40] [3]. Indeed, theoretically being a rigid body motion, the ulti-
mate displacement for such a mechanism is the one corresponding to actual geometrical instability (i.e. the
wall is moving with a displacement equal to its length). However, before this, crushing of the masonry at the
corner level is likely to occur. Hence, as suggested in [15], the capacity of URM structural wall governed by
flexure can be expressed in terms of drift and taken equal to 4/3-0.008 - Hy/D, where D is the in-plane hori-
zontal dimension of the wall (depth), and Hj is the distance between the section where the flexural capacity
is attained and the contra-flexure point.

Regarding URM walls governed by shear, one needs to distinguish the behaviour between diagonal crack-
ing with stair stepped cracks along head-bed-joints, and through-brick diagonal cracking. An ultimate drift
equal to 0.53% was found to be extraordinarily uniform for through brick diagonal shear cracking response
of URM walls tested in Pavia and Ispra, with a coefficient of variation of 10% on 10 samples with different
slenderness ratio and overburden loads [35]. Regarding the cracking via head- and bed- joints, drifts up to
0.75% has been observed in test results. This is because, such a mechanism is regarded as a second form
of bed-joint sliding cracking. Regarding pure bed-joint sliding instead, several tests are available out of 1%
drift. However, it is preferable to conservatively set the upper-bound to the through brick diagonal tension re-
sponse limit, since it has been found the diagonal-tension failure mode the most frequent in tests performed
on shear dominated walls at EUCentre and TU Delft [3], and it is not straightforward to predict if the inelastic
deformation propagates on the mortar only, rather than the bricks. The drift limits adopted for the analyses
are summarised in Table 2.1.
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Table 2.1: Drift limits for the in-plane actions of URM walls

Drift limit
Element governed by flexure | 4/3-0.008- Hy/D
Element governed by shear 0.53%

2.3. Flanged sections

Very often the walls of composite sections in plan, such as "L", "T" and "+" shape sections, can be found in
the plan of the building under consideration. Only a limited amount of instructions regarding the modelling
of seismic behaviour of flanged section walls can be found in the codes.

Effective flange length According to [13], a limited portion of an intersecting wall can act as a flange
to a shear wall, increasing its stiffness and strength. The length of any intersecting wall I¢, which may be
considered to act as a flange, is given by the minimum of the following values below (see Figure 2.9):

° 2hso:/10, where hyy; is the overall height of the shear wall;
 Half of the distance between shear walls /;, when connected by the intersecting walls;
* 61, where ¢ is the thickness of the web;

* Half of the storey height h.

Iy
% s,
Intersecting wall
4 (flange)
l
Shear wall M 5 >
(web)

Figure 2.9: Flange widths that can be assumed for shear walls [13]

2.3.1. Stiffness estimation

Regarding the stiffness of flanged walls, the elastic stiffness of the shear walls, including any flanges should be
used for the distribution of horizontal forces. As has been found by shaking table tests of URM building pro-
totypes with a predominant shear behaviour, it can be assumed that at ultimate state the wall of composite
flanged sections will separate along their vertical joints. This is due to the very different displacement capac-
ity of the out-of-plane components, regards as ductile, and the brittle shear wall. The separated parts of the
composite section will resist the seismic loads as individual walls with a simple rectangular cross-section. In
the case of slender URM flanged-shaped walls with predominant flexural behaviour, the experiments show
that when the flange is in tension, the flexural strength and stiffness are greater that when the flange is in
compression [55].

The lateral in-plane stiffness of a wall pier with flanged section between openings with full restraint
against rotation at its top and bottom can be calculated using:

1
k= ——— (2.10)
Pepr , hers
+
3Emlg * AyGm
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where h,rr = wall height;
A, = shear area as defined in Figure 2.10;
I = moment of inertia of the T-shaped gross section (Figure 2.10);
E,;, = masonry elastic modulus;

Gy, = masonry shear modulus.

In this framework, the moment of inertia is calculated for the composite section. The shear area is instead
calculated by applying the shear coefficient to the rectangular cross section given by area of the web and the
flange area where the two walls intersects (see Figure 2.10). This assumption lies behind the fact that the area
resisting the shear horizontal seismic force is mostly related to the web, while the contribution of the flange
can be neglected.

by
G,
Intersecting wall
! (flange)
Shear wall ls
(web)

Figure 2.10: Shear area (pink) assumed for the calculation of the in-plane stiffness of flanged sections

Flange participation One is able to estimate the increase of strength given by the flange. In the present
framework, a flange is defined as the portion of the out-of-plane wall that participates with the in-plane wall
to resist lateral loads. The flanges are classified into three categories:

* Compression flange: the portion of the out-of-lane wall that resists compressive stresses generated by
rocking of the adjacent pier;

* Global tension flange: the portion of the out-of-plane wall that is lifted up by global rocking;

* Component tension flange: the portion of the out-of-plane that is lifted up by the local pier rocking,
which can occur at both the tension and the compression sides od a building structure.

The tension flanges represent a flange type that is unique to URM structures, and is defined as the por-
tions of out-of-plane walls that are lifted up by the deformation of the in-plane walls, and thus contribute
additional weight to the in-plane piers. Hence, component tension flanges are assumed to act primarily as
a source of additional weight. They are considered to increase the vertical force in the adjacent pier and not
to affect the way overturning or global rocking is resisted. When the in-plane piers are subjected to lateral
loads, the tilting of the piers uplift the transverse wall. This increases the bending moment capacity of the
active piers by activating the weight of the transverse wall and its axial load. The portion which is assumed to
contribute is displayed in Figure 2.11.
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Figure 2.11: Component tension flange [14]

2.3.2. Rocking Strength

It can be seen that in the case of verification for shear, the web (i.e. the part of the wall parallel to seismic
action) represents the resisting part of the wall. The contribution of the flange (i.e. the part of the wall or-
thogonal to seismic motion) can be neglected. However, in case of bending, the contribution of the flange
should be taken into account.

The lateral strength of wall pier components (web) an intersecting orthogonal wall (flange) governed by
the rocking behaviour, as mentioned above, shall be distinguished in case the component is acting as an ac-
tive (tension flange) or a passive pier (compression flange). Analogously to the case of rectangular section,
the strength can be estimated from rotational equilibrium consideration.

In case of active pier component:

l
V,=(Np+ Np+Wg)—+ Wp

@2.11)
hegy 2hefy

In case of passive pier component:

l l
V.=Np——+Wp

(2.12)
hegy 2hesy

where h, ff= web height;
L =length of web;
Np = superimposed dead load at the top of the web under consideration;
Nr = superimposed dead load at the top of the flange under consideration;
Wp = self weight of the web;
Wr = self weight of the flange.
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Figure 2.12: Forces acting in a flanged wall

Itis important to notice that the formulation proposed here is valid as long as the interlocking between the
two orthogonal walls is regarded as strong enough to withstand the load-flow during the earthquake event.
Experiments and numerical simulations performed by [50] shows that three possible mechanism can occur
(Figure 2.13). Only for case (a), in which the construction tilts, the pier can benefits from the additional weight
of the flange.
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Figure 2.13: Diagram of possible failure mechanisms and accompanying relationship between the horizontal load and horizontal
displacement on the top of the main wall:(a) Construction tilts, (b) In-plane pier fails, (c) Interlocking fails. [50]

2.4. Masonry spandrels

Numerical analyses have shown that spandrel beams have a significant influence on the seismic behaviour of
URM structures since they influence strongly the stiffness and strength of the structure. However, until today,
spandrel elements are often not considered when modelling URM structures because only very limited infor-
mation on their force-deformation characteristics is available [23]. However, estimates of spandrel strengths,
though not confirmed by component tests, can be used to determine if spandrels are likely to be weaker of

stronger compared to piers [28].

-

3 [ |
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Strong pier / Weak pier / Weakly coupled
weak spandrel strong spandrel perforated wall

Figure 2.14: Pier/Spandrel Mechanisms

Spandrels that are stronger than piers can couple multiple piers and transmit overturning to adjacent
piers, increasing axial forces in end piers and potentially changing the sequence of actions.
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Conversely, wall spandrels that are weak relative to adjacent piers may not provide fixity at the tops and
bottoms of piers and may result in piers acting as cantilevers. In the following sections indeed, the dynamics
behaviour of the pier components is assessed with both cantilever and fix-ended boundary conditions. In
such a way, one is able to cover the range of possible configuration of the URM building stock.

2.4.1. Spandrel failure modes
The failure modes of the spandrel can be described by three distinct modes 2.15.

B - — _':_-i.':if{_

-

Mode A : Flexural eracking Mode B: Diagonal eracking Mode C: Bending - bed joint
sliding

Figure 2.15: Spandrel deforamtion modes [32]

* Mode A is representative of a flexural response where the spandrel panel acts as a rigid block effectively
rocking between the two rigid joint panels. Cracking at the spandrel/joint interface was noted as the
initial crack location in the average and deep signifying that deformation Mode A occurred first. The
initial flexural crack only propagated vertically for the depth of one brick as the bond pattern resulted in
a discontinuous vertical mortar joint. This observation is in agreement with proposals for determining
the flexural strength of spandrels, which identify the interlocking phenomena as a source of flexural
strength. The interlocking originates at the interface between the end section of the spandrel and the
joint, due to the contiguous masonry [12].

* Mode B is the most frequently observed failure mode, with stair-stepped diagonal cracking following
the mortar joints at increased displacement amplitudes.

* Mode C describes the failure pattern that was observed in substructures which had shallow spandrel
depths. This mode is characterised by horizontal cracking that extends over the full length of the span-
drel and is evident in multiple courses. This type of failure has not previously been reported as a failure
mode for as-built URM spandrels. It has been instead documented after a full-scale test on an URM
sub-assembly [5]. Horizontal cracks as failure pattern are reported for spandrel components retrofitted
with an inorganic matrix-grid composite.






Reduction of Degrees-of-Freedom

In this chapter, the core of the intended approach of the project is presented. The lumped plasticity macro-
element model is introduced along with a brief comparison with the smeared plasticity approach. The hys-
teretic models suitable to capture the masonry failure modes are calibrated using the laboratory tests results
and the LS-DYNA numerical simulations.

3.1. SDoF conversion

Traditionally, in seismic engineering, the identification of an approximate structural model, such as equiva-
lent SDoF system, is performed. Often, the capacity curves of a structural system are obtained for the SDoF
system, as a way to compare them with the seismic demand, which is in practice defined by elastic response
spectra for SDoF systems. The SDoF simplification is usually adopted also for the derivation of analytical
fragility curves for buildings subjected to earthquake loading [36].

The standard conversion approach is based on the modal analysis [19] and leads to the definition of an
equivalent SDoE whose mass is computed starting from the modal shape, such that the natural frequency of
the lumped system complies with the exact fundamental frequency of the continuous system. This has the
advantage of acting as a reasonably simple and fast method, which provides robust results that have been
validated in the previous literature, typically frame-structures with mass lumping at floor level [27]. However,
the modal analysis is based on linear response of the structure and, hence, does not adjust the conversion
to account for non-linear deformed shapes which strongly characterize the dynamic behaviour of masonry
buildings.
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Figure 3.1: In-plane behaviour of URM walls tested in laboratory at EUCENTRE and TU Delft [3]
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In literature, few approaches have been proposed for the conversion to an equivalent SDoF system for
masonry structures under seismic loading [27] [29] [36]. However, they take into account the non-linear
behaviour of the structure when comes to the definition of the structural stiffness (Figure 3.1), but they all
assume the structure is moving according to one dominant mode only and that the deformed shape does
not change during the earthquake. The typical Dutch residential buildings instead are not characterized by a
single dominant mode.

3.2. A lumped plasticity approach

Alternatively, it is favourable to develop a lumped plasticity approach. Indeed, consistent damage observa-
tions [32] have identified key failure patterns within perforated in-plane loaded walls, which suggests that
perforated wall response due to lateral loading can be explained by delineating the wall into elements, being
vertical piers and horizontal spandrels. Damage is typically confined to either the pier or spandrel elements,
where shear and flexure failure modes are characteristic of both element types. The underlying hypothesis
states that the failure mode of the wall is defined by the failure mode of the individual elements [16].

For such reasons, according to [33][49] [51],the frame modelling strategy is a valuable approach for ma-
sonry structures idealization. This in fact consists in subdividing each resistant masonry wall in a set of de-
formable masonry elements (piers and spandrels), in which the deformations and the non-linear responses
are concentrated, and rigid panels that connect the deformable elements (see Figure 3.2).

EQUIVALENT
FRAME MODEL

.
4‘ef'f‘

D Rigid portions Pier Spandrel

Figure 3.2: URM wall idealization according to simplified and equivalent frame model [33]

The non-linear behaviour of the equivalent frame model is introduced by assigning inelastic discrete
hinges. In the lumped plasticity method, the pier elements are modelled with frame elements having elas-
tic properties based on the pier dimensions and assumed material properties. The non-linear behaviour is
captured via the localised hinges introduced into the frame element. The hinges only engage into plastic
deformation when the yield capacity of the hinge mechanism is reached.

3.3. Smeared plasticity approach

Before the definition of the macro-element framework, in this section an overview of the smeared plasticity
masonry model is included. This is essential for the understanding of the calibration and validation exercises
reported below. An Arup development version of the LS-DYNA software containing a user defined masonry
material model is used. It consists in a smeared crack formulation with crack plane directions pre-defined
according to mortar planes (bed joints and head joints). The model has been developed for shell elements,
which are particularly suitable for the representation of components with uniform thickness and in-plane ex-
tents much greater than their thickness. It is the case of the thin URM walls than characterise the Groningen
building stock.
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The inelastic stress strain constitutive low is representative of the crack opening, closing and shearing.
The opening displacement of cracks is tracked, so that they open and close in a realistic manner under hys-
teretic loading. Compression can be carried across closed cracks. The shear strength of bonds is the sum of a
cohesion component and a friction component. The cohesion and tensile strength of the bonds decay to zero
according to a rate independent damage law, while the friction coefficient remains constant. Tensile failure
of the bed joints is defined by a tensile strength and an energy release rate as illustrated in Figure 3.3. The
same bed-joint tensile response governs in-plane and out-of-plane failure modes.
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Figure 3.3: Tensile response of bed joints governing the in-plane failure
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Figure 3.4: Tensile response of bed joints governing the out-of-plane failure

Regarding the bed-joint response (Figure 3.5), the shear strength consists of a friction term and a bond
strength term. The bond strength decreases with shear displacement according to an energy release rate,
which increases with compressive stress normal to the joint. The input value of energy release rate applies at
zero compressive stress. The shear stress is taken as the resultant of in-plane and out-of-plane shear stresses,
thus in-plane and out-of-plane sliding are both taken into account.
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Figure 3.5: Shear response of mortar bed-joints

Finally, the diagonal cracking mode can be captured. However, only the propagation through head- and
bed-joints is allowed. Vertical cracks through the bricks are not described by the fracture mechanics law.
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Figure 3.6: Diagonal cracking through head- and bed-joints
Furthermore, the material model is implemented including element erosion techniques based on differ-
ent criteria:
¢ in-plane sliding displacement greater than half the brick length;
 out-of-plane sliding displacement greater than half the brick thickness;
* bed-joint opening gap grater to the height of the brick;

° compression strain grater than the ultimate strain in the compression curve (Figure 3.7).

Stress [MPa]

0.015 0.020 0.025
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Figure 3.7: Stress-strain compression curve of the masonry material model
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3.4. Macro-element

The core of the aforementioned equivalent-frame approach is the so-called macro-element. It is an assem-
bly meant to represent the fundamental in-plane behaviours of masonry piers. In this framework, each be-
havioural mechanism has an associated hinge, characterised by a non-linear force-displacement (or moment-
rotation) curve. The curves are calibrated with the geometrical properties of the pier, masonry material prop-
erties and its vertical load. In such a framework, the connections between horizontal members and walls are
assumed not to reach failure. In this way, one is sure that the dynamics behaviour is driven by the in-plane
behaviour of the wall components. The assembly is built up with two Euler-Bernoulli elastic beams, con-
nected via a translational springs placed at mid-pier height. At the two ends of the assembly, two rotational
springs are placed (see Figure 3.8).

Flexural hinge «— @

— Elastic member

Shear hinge <« %

— Elastic member

Flexural hinge «—

Figure 3.8: Macro-element model for in-plane pier behaviour

3.4.1. Stiffness of zero-length springs

As presented in Chapter 2, the in-plane stiffness of UMR piers is given by the contribution of the flexural
and the shear component. The macro-element assembly is modelled by sub-elements connected in series:
plastic hinge rotational springs at member ends, translational spring at mid-heigh and two elastic beam-
column element. Therefore, the structural properties of the member are a combination of the properties of
the sub-elements. Firstly, the stiffness matrix of an Euler-Bernoulli beam element can be written as follow
[58]:

12 6/ -12 6l

EI|... 412 -6l 2/?
K_Ts ee. ... 12 -s6l
472

The stiffness matrix of a zero length spring element is expressed as:

K:

p —u]
—H

By assembling the two stiffness matrices, it is possible to come up with the global stiffness matrix of the
system shown in Figure 3.9. Hence, the in-plane structural stiffness is computed applying a unit displacement
at one end-node and enforcing the boundary conditions at the two end-nodes, and solving the system of
equations f = ku. This results in the following expression:

*
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Figure 3.9: Euler-Bernoulli beam with rotational springs

The structural stiffness of pier member K,;,.;; can be related to the stiffness of the beam with hinges K *
(Equation 3.2) and the stiffness of the translational spring K;, according to the following equation:

Kmem = (%Hé)_l 3.2)
K,
pQ— ~©F
p n
/

Figure 3.10: Macro-element assembly

In order to define an element representative of the in-plane stiffness expressed by Equation 2.2, evident
choices for sub-element stiffnesses appear to be either:

e EI = o0, in which case K = Gfs and p = %;

° p=o0,in which case K; = GIAX.

However, both are not desirable in the context of numerical analysis. The first option, corresponding to
an infinite beam stiffness, would force all deformations into the plastic hinges springs which would lead to
the following problems:

* The elastic spring stiffness, which has to be defined a priori, would be the same regardless of the mo-
ment gradient in the beam element. In reality, the moment gradient may change during the NLTH
analysis, which would not be accounted for in this model;

 All damping would have to be assigned to the rotational springs, which causes spurious damping mo-
ments at frame joints when one chooses damping formulation based on initial member stiffness.

On the other hand, considering an infinite rotational spring stiffness would cause numerical instability
problems related to the integration of the differential equation with time-stepping techniques (e.g. Newton-
Raphson). Following the approach presented in [31], in order to avoid the issues related with the second
option, and minimize those related with the first, it has been decided to set the stiffness of the shear spring K

equal to Gfs , the rotational stiffness y = ZTEI and consequently adopt a increased moment of inertia I,,,o4 = 41.

3.4.2. Flexural spring calibration

The flexural behaviour of the masonry pier is captured by the rotational springs located at the two ends of the
piers. They are meant to represent the rocking failure mode presented in Chapter 2. The choice of lumping
the springs at pier ends is dictated by the nature of such a failure mode. As presented in Figure 3.12, the
plastic deformation for the rocking mechanism is usually lumped at pier ends, as bed-joint opening occurs
or a localized diagonal mode trough both the horizontal and vertical joints. This is indeed observed in the
quasi-static tests performed on CaSi specimens (Figure 3.11).
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Figure 3.11: Typical rocking-related damage patter observed in CaSi URM piers[3]
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Figure 3.12: Rocking damage plot predicted by a LS-DYNA for quasi-static analysis of a slender pier

As introduced in the previous chapter, during a displacement control test, the component starts deform-
ing elastically. Once the lateral actions overcome the vertical forces, the wall starts to tilt around its toes,
leading to the so-called gap opening. During the unloading, the gap closes until the wall starts moving elasti-
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cally again in the other direction.

Moment

Rotation

Figure 3.13: Idealized rocking behaviour with a non-linear elastic moment-rotation relationship

During the gap opening and closing, low-dissipative mechanisms occurs. It is the effect of the sliding
along the head- and bed-joints, that can be noticed in Figure 3.11, and the non-linear behaviour at the cor-
ners around which the component tilts. Therefore, during the un-loading the specimen does not follow ex-
actly the loading curve, but produces narrow loops before re-centering around the un-deformation position.

For the rotational springs, the OpenSees self-centering hysteretic models [37] is adopted. It provides the
abstraction for a one-dimensional rate-independent flag-shaped hysteresis (Figure 3.14). A similar force-
displacement behaviour is observed in the laboratory component testing [3], and described by [38] and [35].
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Figure 3.14: Parameter definition of the flag-shape hysteretic model for rotational springs
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M, Activation Moment
K Initial Stiffness
K Post-Activation Stiffness
B Ratio of Forward to Reverse Activation Moment

The yielding moment is calculated with the capacity expression given in Section 2.1.2. The initial elastic
tangent is to be computed based on the formulation given in Section 3.4.1. Particular attention is required for
the parameter B. It controls the size of dissipative loops in the model, and it is meant to capture the energy
dissipation at the two specimen ends. Being phenomenological rather than based on mechanics principles,
a multi-objective genetic algorithm [18] is adopted for the estimation the  parameter. By seeking for the
closest fit to the LS-DYNA force-displacement curves, one is able to come up with the optimal sets of pa-
rameters which is representative of the dissipative rocking behaviour of CaSi URM wall components. In this
case, the set of parameters is reduced only to one, namely the § parameter, since the backbone curve relies
on the mechanics principle presented in Chapter 2. In the figure below, the results of the optimization al-
gorithm is presented. In particular, for each quasi-static test performed with LS-DYNA on wall resembling
specimens tested at EUCentre and TU Delft, the parameter is plotted, as a way to come up with an average
value representative of the CaSi wall components. This value is later adopted for the dynamic tests.
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0.00
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Test number [-]

Figure 3.15:  parameter of the optimization algorithm
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Figure 3.16: Hysteresis curve comparison for a rocking pier component - LS-DYNA and macro-element

Table 3.1: Summary table: comparison LS-Dyna and Macro-element results on a slender pier component

Test Predominant failure | Initial Stiffness [kN/m] | Peak Strength [kN] | Dissipated Energy [N-m|]
Macro-element Rocking 32.1 25 1320
LS-DYNA Rocking 29.7 28 1370
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Figure 3.17: Internal energy comparison - LS-DYNA vs macro-element

In is important to notice the different rocking behaviour observed in the laboratory tests, compared to
the smeared plasticity numerical simulation.
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Figure 3.18: Force-displacement curve comparison for specimen failing with rocking mechanism - Test vs LS-DYNA
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Figure 3.19: Internal energy comparison - Test vs LS-DYNA
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The backbone parameters are in good agreement, whilst the energy dissipation predicted by LS-DYNA is
always lower compared to the test results.

Table 3.2: Summary table: comparison LS-DYNA and Lab test results on a slender pier component

Test Predominant failure | Initial Stiffness [kN/m] | Peak Strength [kN] | Dissipated Energy [N-m]
Lab Rocking 25.8 30 5020
LS-Dyna Rocking 29.7 28 1370

This is related to the masonry behaviour in compression. First, during the tilting, around the toes the
stress state varies from compression to zero value (tension is not allowed as the mortar bed-joint opens).
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During the un-loading and reloading, in the LS-DYNA material model, the curve follows the same path, while
compression tests on URM wallets shows the presence of dissipative loop originated during the un-loading
re-loading behaviour. In this regard, the numerical simulation is on the conservative side.
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Figure 3.20: Compression test of URM masonry wallets - stress-strain comparison between LS-DYNA and the laboratory test [3]

Flange effect Asdescribed in Section 2.3, in case there is full interlocking with the orthogonal transversal
wall, the in-plane web can benefits from the additional weight of the flange (see appendix E). In fact, for
equilibrium considerations, if the flange is in tension, its weigh acts as a stabilizing force for the system. This
has been observed also from quasi-static tests performed with LS-DYNA, comparing slender wall with and
without flanged section (Figure 3.22).
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Figure 3.21: Geometry definition for the flange effect study on a slender component

The force displacement curves for the two specimens are compared to assess the contribution of the
flange effect.
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Figure 3.22: Hysteretic curves comparison for a slender wall component: rectangular and flanged section

One may notice that the presence of the orthogonal wall leads to an asymmetric backbone in the two di-
rections, with significantly different yielding forces. This behaviour is described analytically in the previous
chapter. A new flag-shape material model has been developed (C++) and included in the OpenSees source
code. It relies on the same mechanics of the flag-shape model presented in Figure 3.14, but offers the possi-
bility to define a different activation moment for positive and negative rotations.
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Figure 3.23: Parameter definition of the modified flag-shaped model for flange effect

My, Activation Moment in the positive direction
Myn Activation Moment in the negative direction
K Initial Stiffness
K Post-Activation Stiffness

B Ratio of Forward to Reverse Activation Moment
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3.4.3. Shear spring calibration

The inelastic shear behaviour of URM walls is modelled via the translational spring located at of half of the
pier heigh. This is meant to be representative of the in-plane shear failure modes, namely, bed-joint-sliding
and diagonal tension presented in Chapter 2. The choice of lumping the shear spring at half heigh is dictated
by the nature of the failure modes observed during the testing campaign at TU Delft and EUCentre (Figure
3.24). As presented in Figure 3.25, the plastic deformation for such mechanisms is usually lumped around
half of the pier height, rather than the two ends, like in the case of the flexural behaviour.

Figure 3.24: Diagonal tension: damage plot observed in the laboratory components test[3]
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Figure 3.25: Diagonal tension: damage plot at end of analysis with LS-DYNA [3]

For the shear spring, an OpenSees bilinear model is adopted [37]. The hysteretic behaviour is charac-
terised by parallel loading and un-loading behaviour and smooth transition between initial and post-yielding
stiffness.
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Force

Displacement

Figure 3.26: Elasto-plastic material model adopted for the shear springs

F, Yield strength

K Initial elastic tangent

K Ratio between post-yield tangent and initial elastic tangent
Ry,CRy,CR, Parameters to control the transition from elastic to plastic branch

The mechanics of such a model resembles the behaviour observed during the laboratory component test-
ing [3], (Figure 3.27), and the LS-DYNA simulations results (Figure 3.25). For the shear spring yielding force,
the smaller between the value calculated according to the bed-joint-sliding and the diagonal cracking for-
mulation is used. The initial elastic tangent is to be computed based on the formulation given in Section
3.4.1.

In the figures below, a comparison between the laboratory test and the developed macro-element is
presented. It is a quasi-static test of a squat wall component. The results are compared in terms of force-
displacement curves and internal energy history.
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Table 3.3: Summary table: comparison Lab Test and Macro-element results on a squat pier component

Test Predominant failure | Initial Stiffness [kKN/m] | Peak Strength [kN] | Dissipated Energy [N-m]
Macro-element Diagonal cracks 219 102 5240
Lab Diagonal cracks 223 119 5320
LS-DYNA Diagonal cracks 223 119 5320

One should notice the initial stiffness and peak strength are in good agreement, as well as the energy
dissipation. In general, the macro-element seems to provide results on the conservative side, with less than

10% discrepancy from the test.
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Figure 3.29: Hysteretic curve comparison - LS-DYNA vs Laboratory test
Flange effect Analogously to what discussed to the flexural springs, the effect of a potential orthogonal

wall attached to the in-plane flange is analysed.
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Figure 3.30: Geometry definition for the flange effect study on a squat component

The force displacement curves are in agreement to the literature studies. For shear dominated building,
the presence of the flange does not significantly affect the response of the web. The mechanics of sliding or
diagonal cracking modes is such that no uplift can occur. Indeed, they act as purely translational motions,
and the additional weight of the flange is not included (see deformed shape in Appendix E). Therefore, it is
suggest to conservatively neglect the contribution of the orthogonal wall and describe a symmetric backbone

for the shear spring constitutive law.
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Figure 3.31: Hysteretic curves comparison for a squat wall component: rectangular and flanged section

3.4.4. Mass distribution

The distribution of mass within an URM building differs from the distribution in a typical reinforced concrete
frame building as the majority of the mass is within the walls themselves. Therefore a lumped mass model
where the mass is only lumped at the diaphragm level does not accurately portray the distribution of mass
within the wall [32]. Hence, a key part in the definition of the macro-element is the mass distribution along
the heigh of the element. Rotational inertia is neglected and the pier mass is distributed along the 4 nodes,
contributing in the in-plane translational inertia of the component (Figure 3.32). This choice has been vali-
dated by performing eigenvalue analyses for a squat pier model with cantilever condition. In particular, the
modal analysis has been performed with the software LS-Dyna and GSA, on the wall modelled with 2D shell
elements. Furthermore, the eigenvalue analysis has been performed for a Timoshenko beam model and fi-

nally, the proposed macro-element. The fundamental period for each of the above system is reported in Table
3.4.

2m

2m

Figure 3.32: Macro-element mass distribution
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Figure 3.33: Squat pier with cantilever boundary conditions

Table 3.4: Eigenvalue analysis results for different pier modelling approaches for a squat pier with cantilever condition

System First Natural Period [s]
2D shell wall (LS-DYNA) 0,01695
2D shell wall (GSA) 0,01664
Timoshenko beam 0,01683
Macro-Element 0,01721

The same approach has been followed for a slender pier with fix-fix condition (Table 3.5).

z

A

% v

Figure 3.34: Slender pier with fix-fix boundary conditions

Table 3.5: Eigenvalue analysis results for different pier modelling approaches for a slender pier with fix-fix condition

System First Natural Period [s]
2D shell wall (LS-DYNA) 0,09321
2D shell wall (GSA) 0,09313
Timoshenko beam 0,09311
Macro-Element 0,09421




Non-Linear Time History Analysis

In this chapter, the NLTH procedure for the evaluation of the transient response of inelastic systems is described.
Particular attention is given on the the integrator type for the smeared plasticity and the macro-element model.
The NLTH analyses are performed using the platform OpenSees (Open System for Earthquake Engineering Sim-
ulation), developed at the University of California, Berkeley and the Pacific Earthquake Engineering Research
Center [37]. Benchmark results are produced by the software LS-DYNA with the Arup-developed masonry ma-
terial model. Finally, an insight on the viscous damping modelling and the hysteretic damping is presented.

4.1. Numerical evaluation fo the dynamic response

The evaluation of the dynamic response of elastic system due to an external excitation is traditionally based
on modal analysis. The general solution is composed of the sum of the homogeneous solution and a partic-
ular solution. It is therefore necessary to first solve the homogeneous system, assuming a synchronic har-
monic motion for the free vibration. Analogously, the particular solutions is also assumed to be a summation
of eigenvectors, each of which is multiplied with an unknown time function. In mathematical terminology, it
is thus assumed that also in the case of forced vibration the response can be expanded in eigenvectors each
weighed with an unknown time function. Hence, by means of the orthogonality condition of the mass and
stiffness matrices, the system is decoupled into set of inhomogeneous differential equations. The uncoupling
of the modal equation however, is not possible if the system has non-classical damping or it responds into
non-linear range. This is the case in URM structures, which deform inelastically already at low intensity exci-
tations (see Figure 3.1). Hence, for such systems, coupled equations of motions in nodal coordinates need to
be solved by numerical methods. The time scale is divided into a series of time steps of constant duration.

The equation of motion is then evaluated at a selected time instant. If it is the current time ¢;, the integra-
tion method is said to be explicit. If the time ¢;;; at the end of the time step is used, the method is known as

implicit.

For an inelastic SDoF system subjected to an earthquake excitation the general equation of motion to be
solved numerically is:

mii+ct+ fy = —miig (4.1)

where m = mass of the system;
¢ = damping coefficient;
fs = f(u, sgn(w)), the resisting force;
iig = earthquake acceleration.

The system is subjected to the generic initial conditions:

45
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up=u(0) and 1o =11(0) (4.2)

The time-dependent applied excitation iig is discretized into a serie of values iig; = iig(%;), and the time
interval, assumed to be constant, can be expressed as:

Ati=tin1—t 4.3)

Therefore, the response is determined at the discrete time instants ¢;; the values of the displacement,
velocity and acceleration of the system, assumed to be know, satisfy Equation 4.1 at time ¢;:

mii; + ci; + (fs)i = —milg); (4.4)

where (f5); is the resisting force at time ¢;, which depends on the prior history of displacement (e.g. rate-
independent plasticity) and/or velocity (e.g. rate-dependent plasticity) for inelastic systems. Numerical pro-
cedures allow the estimation of the response quantities ii;1, #;+1, #;+1 at the time i + 1 that satisfy Equation
4.1 attime £;,1:

miiiy + ctiv1 + (fs)iv1 = —miig) it (4.5)

However, stepping form time i to time i + 1 is not an exact procedure. Many approximate procedures are
possible that are implemented numerically. In the present work, it has been chosen to adopt a method based
on assumed variation of acceleration: the Newmark’s method.

It is based on the following equations:

Uiyl = U+ [(A=p)AL]il; + (YA il (4.6)

Wit1 = uj + Attt + [(0.5— B)(AD?Tii; + [BAD il 4.7

These two equations, combined with the equilibrium Equation 4.5 at the end of the time step, provide the
basis for computing ii; 1, %41, Ui+ at time ;4 for the known ii;, i;, u; at time ¢;. Iteration is required to
implement these computations because the unknown appears in the right side of Equation 4.1.

In this framework, the equation of motion can be written in its incremental form:

mAii; + cAt; + (A(fs)); = —-m(biig); (4.8)

In Newmark’s methods the solution at time #;4; is determined from Equation 4.8, which is equivalent to
the use of the equilibrium condition (Equation 4.5) at time #;4;. Such methods are called implicit methods.
The generic formulation is given by:

G(Y (), Y(#i+1)) =0 (4.9)

With the LS-DYNA software, an explicit solver is instead used: the state of the current time ¢; is enough to
compute the state of the next time step f;+; is used. Hence, the state f;.; can efficiently be calculated, since
the stress at state ¢; is known, and therefore, the nodal acceleration can be derived and used to compute the
next stress state. The generic formulation can be expressed as:

Y(ti) =F(Y (%) (4.10)

However, in order to avoid numerical drifting during the explicit integration, the time steps must be suf-
ficiently small. In a finite element framework, in order to ensure the stability of the solution, this is translated
into the inequality condition At < At;, where At, is the so-called critical time step. At. can be estimated
with the Courant condition, which states that the time step must be smaller than the time it takes for a stress
wave to travel through an element, and it is limited by the speed of sound. For a beam element, the Courant
condition is expressed as:

(4.11)

0.51
At, <min {lc L < }

B 31[4 + L]
121+ A2 ° Al2

For a shell element:
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At < (4.12)

1P < lc
NES T
p(1-v?)
where At = critical time-step;
l; = critical lengh for beam and shell element;

p =volumetric mass density;

E =Young’s modulus;

c=4/ % = speed of sound through the elastic medium;

I = moment of inertia;
A = cross-sectional area;

v = Poisson’s ratio.

In equation 4.11, the first terms is related to the axial pressure, while the second to the bending vibrations.

For large complex models, a relatively small element can govern the critical time step. In fact, for a rel-
atively fine mesh, necessary to ensure the smear cracking pattern, the critical step could be of the order of
1079, leading to a computational time of several hours for short duration input signals.

Instead, the equation of motion for the proposed macro-element is solved numerical with an implicit
time-stepping integration and can be expressed in relative coordinates as:

Mii + Ca + fs = —Miig (4.13)

where M is the mass matrix, u the DoF vector, C the damping matrix ,fs the resisting force matrix and iig
the excitation vector.

In particular, the fg depends of the displacement history according to the rate-independent hysteretic
rules described in Section 3.4. Below, the initial stiffness contribution to the fg matrix is shown. It is denoted
as Kjp, initial stiffness matrix. The vector of the DoF is presented as well, for the fix ended boundary condi-
tion. The mass matrix formulation follows the distribution presented in Section 3.4.4. The damping matrix
formulation is instead given in the next section.

[ 1 EI EI EI
-65 1254k, -6% —K 0 0
EI EI El EI EI El
Ke=| 27 L 67 6% 27
n 0 K, 6% 12% +K; —12% 6%
0 0 —6% —121% 12% —6%
EI E 1 El
0 0 27 61—3 —61—3 /J+4T

Accelerated-Newton (AN) methods strike a compromise between the Newton-Raphson (NR) and Modified-
Newton (MN) methods. Generally, the compromise is to hold the stiffness matrix constant during iteration,
but to use selected information from previous iterations to accelerate convergence of the MN method. Its per-
formance in the non-linear analysis of structures is comparable to NR, requiring only a few more iterations to
converge while taking less computational time than both NR and MN. The Krylov subspace based algorithm
developed by Carlson and Miller (1998) accelerates the convergence of the MN iteration. The acceleration
brings the rate of convergence close to that of NR at a lower computational expense.

Table 4.1: Dynamic analysis parameters

Type
Analysis Transient
Algorithm Krylov-Newton [52]
Integrator Newmark: =0.5y =0.25
Convergence criterion | NormDisplIncr: tol= 1.0E-5 iter= 800
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The chosen values of § and y for the Newmark’s method corresponds to the assumption of constant aver-
age acceleration during the time-step (Figure 4.1).
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Figure 4.1: Average acceleration method [19]

4.2. Damping in NLTH analysis for earthquake excitation
In this section, the damping matrix C assembly is discussed along with the contribution of the hysteretic
damping. In the dynamic response of inelastic systems, one may identify two sources of damping:

¢ Intrinsic viscous damping
° Hysteretic damping
The fraction of critical damping for a non-linear system is given by an expression of the following form:

Ceqg="Ceqv +Ceq,h (4.14)

where (¢4, and {4, represent energy dissipation resulting from viscous and inelastic hysteresis respectively.

Hysteretic damping is generated via the non-linear response of various materials which create hystere-
sis loops and dissipate energy. Intrinsic viscous damping is used to cover the other sources of damping that
are not considered in the model, such as energy dissipation generated from friction and damage to non-
structural components.

For linear analyses (e.g. response spectrum analysis) it is common practice to use a standard viscous
damping ratio, as way to indirectly cover the contribution coming from the non-linearities of the materials.

One of the major benefits of NLTH analyses relies on the possibility of explicitly consider the material
damping, so that the viscous component can be reduce to low values of { ¢, -

4.2.1. Rayleigh damping

One way to formulate the viscous damping matrix C is to follow the Rayleigh damping modelling approach.
In this method, the damping matrix can be specified as a sum of mass and stiffness proportional terms, with
two constants to be specified in terms of desired modal damping ratios. Rayleigh damping involves two
components: the mass proportional component, which provides energy dissipation inversely proportional
to frequency; and the stiffness-proportional component, which increases linearly with frequency.

C=aM and C=pK (4.15)

In both of the expressions, the matrix C is diagonal by virtue of the modal orthogonality property of the
matrices M and K; therefore the Rayleigh damping formulation leads to a classical damping matrix.

Adding the two components leads to a U-shaped curve in the frequency domain, with a relatively uniform
plateau in vicinity of the minimum (Figure 4.2).
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c=am+ fk (4.16)

The coefficients a and § can be determined from specified damping ratios {; and {; for the ith and jth
modes respectively, according to the following relations:

o= 2w1w2(( w2 — (Hrw1) _ 2((ow2 — (1w1)

2_ 2 B 2_ 2
W, — Wy w; — Wy

(4.17)

Assuming w, > w1, the numerator determines the sign of a and 3, leading to three possible combinations:

(A) a>0andﬁ>oif‘;}’—;<%<%

(B) a>0and f=<0if 2 <

(1~ w2

(@) asOandﬁ>Oif§—f2w2

w1
If the coefficient are known, the damping ratio {; for any other principal mode can be expressed as:

a B
2 P 4.18
(i 20; 2% ( )

In the figure below, the relation is illustrated for the three cases.

5" D _S O

g] \\ _________

.»:2 <
\/W \\\\ _________________ L\/\%a),- case A

&\ & o

\ = case B
\ &

& | \’/\\““““——————--_______/_i_%?[ _____________

é 5_2 > a)2

51 a)l
g . C
51 /{/

Figure 4.2: Variation of modal damping rations with natural frequency [19]

In case A, all values of {; are positive. In case B, the damping ratio {; becomes negative for natural fre-
quencies w; > v/a/ — , which is unacceptable on physical ground. In case C, the damping ratio {; becomes
negative for natural frequencies w; < \/—a/ B, which is unacceptable on physical ground.
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However, based on experimental data [19], it is reasonable to assume that same damping ratio for the two
modes, leading to the following relations:
20;w; 2

a={——— B=¢

a),-+wj a)l-+wj

(4.19)

In such case, for any combination of natural frequencies, the damping ratio {; given by equation 4.18 is
positive. However, for natural frequencies w; < w < w, {; is lower than the specified {. For natural frequen-
cies w > w; and w < w1, the damping ratio is higher than the specified (.

The stiffness proportional part of Rayleigh corresponds physically to linear viscous dampers that inter-
connect the degrees of freedom of a structure. In a non-linear analysis where the non-linearity is of the
softening type, limits on the restoring forces are imposed by various mechanics such as yielding, cracking,
sliding and buckling. If the initial linear stiffness matrix is employed to construct the stiffness-proportional
damping terms, then the damping forces in a softening element can reach unrealistically high values com-
pared to element restoring forces. However, since the initial stiffness of the structure is used in forming the
motion equation, the calculated damping is overestimated. The linearity assumption on the damping forces
means they are always proportional to the velocities, no matter how large they become [6].

Therefore, the Rayleigh damping model, which is pervasive in non-linear response history analysis of
building, is shown to develop spurious’ damping forces and lead to inaccurate response results with lumped
plasticity models [20]. Replacing the stiffness-proportional part of Rayleigh damping by the tangent stiffness
matrix is shown to improve response results. In such case, the damping matrix can be formulated as follows:

c=am+ Bk (4.20)

where k; is the tangent stiffness matrix, and is updated at each time step during the numerical integration
of the equation of motion (e.g. Equation 4.8). However, this model is not recommended because it lacks a
physical basis and has conceptual implications that are troubling: hysteresis in damping force-velocity rela-
tionship and negative damping at large displacements. Furthermore, the model conflicts with the constant-
damping model that has been the basis for fundamental concepts and accumulated experience about the
inelastic response of structures.

4.2.2. Caughey damping

An alternative method is available for assembling the damping matrix associated with any given set of modal
damping ratios [21]. This is shown to eliminate the spurious’ forces and it is the recommended damping
model for NLTH analysis [20]. Assuming that the damping matrix c is built up such that the eigenvectors
possess the characteristic of orthogonality with respect to it, the modal damping matrix C is forced to be a
diagonal matrix. Hence, the modal diagonal matrix of generalized damping coefficients is given by pre- and
post-multiplying the damping matrix by the mode-shape matrix:

(1w My 0 0
0 (zngz 0
C=0Tcp=2 . (4.21)

0 0 (3w3Ms3

One may notice that the damping matrix ¢ can be obtained by pre- and post-multiplying modal damping
matrix C by the inverse of the transposed mode-shape matrix and the inverse of the mode-shape matrix,
respectively, resulting in the following equality:

@7 'co” = [@"1'oTcod ! =¢ 4.22)

However, inverting the mode-shape matrix requires a large computational effort. Hence, making use of
the orthogonality property of the mode shapes relatively to the mass matrix, one may obtain:

M= " mod (4.23)
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I=M'M=M'0"mo=0"'0 (4.24)

From Equation 4.24, it is evident that:

@717 = moM ™ (4.25)

Substituting the last expression into Equation 4.22, one may obtain:

c=[mo®M CM~'® ' m] (4.26)

Since matrix C is diagonal and contains elements C,, = 2{,,w, M, the elements of the diagonal matrix c
can be obtained from the product of the three central diagonal matrices, resulting into:

20,0
d, = M 4.27)
My,
In such way, the Equation 4.22 may be written as:
c=mddd ' m (4.28)

where d is the diagonal matrix containing the elements d,,. In this framework, each modal damping ratio
provides an independent contribution to the damping matrix:

¢, =m®,d,® 'm (4.29)

Therefore, the total damping matrix is obtained by the sum of the modal contributions:

N
c= chzm
n=1

The nth term in this summation is the contribution of the nth mode with its damping ratio (;, to the
damping matrix c; if it is not included, the resulting ¢ implies zero damping ration in the nth mode.

N
Y (Dndnd)ﬂm (4.30)
n=1

In the figure below, a comparison between the three damping models described above is presented. It is
the time history drift of the top node of the macro-element subjected to a low intensity acceleration signal.
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Figure 4.3: Drift history comparison with damping matrix formulated with the initial stiffness Rayleigh model (RI), tangent stiffness
Rayleigh model (RT) and the Caughey or modal damping model (M) - Linear response
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Figure 4.4: Peak drift comparison in the linear range

The differences in the three damping models have essentially no effect on the structural responses to a
scaled-down version of a GM record, as presented in Figure 4.3 and 4.4. The peak displacements are unaf-
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fected by the damping model if the structure does not yield.

The high-intensity record drives the system into the inelastic range, and its response is influenced by the
choice of the damping model.
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Figure 4.5: Initial vs tangent-stiffness proportional damping in the shear response

This is evident from Figure 4.5. The RI model leads to the least conservative results. As mentioned above,
at yielding, the damping forces are unrealistically high and this results into a smaller peak displacement and
consequently a smaller residual drift in the system. This outcome is in agreement also with the study on
SDoF inelastic systems presented in [30]. The RT model leads to results that display the right trends. How-
ever, for the reasons described above, the Caughey damping model is favourable approach for NLTH of URM
structures.

4.2.3. Harmonic vibrations

A benchmark study is carried out as way to assess if the smeared plasticity model and the macro-element
model exhibit a comparable equivalent damping ratio. The viscous damping and the hysteretic damping
contributions are compared. Firstly, (¢4, can be estimated by from the damped-vibration response for the
system undergoing freely decaying vibration as presented in Figure 4.6).
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Figure 4.6: Damped-vibration curve for a visco-elastic system undergoing freely decaying vibration

By measuring 6, the natural logarithm of the ratio of two successive amplitudes of damped free oscilla-
tions, one may determine the decay constant related to the viscous damping ratio for the system.

0 X1
legv=—F———= d=In|— (4.31)
T Vemz+or (xz)

Both the shell element model and the macro-element are in good agreement, with approximately 2%
viscous damping ratio in the linear range of vibrations.
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Figure 4.7: Normalised response for the macro-element model undergoing freely decaying vibration
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Figure 4.8: Normalised response for the shell element model undergoing freely decaying vibration

4.2.4. Energy dissipation

In addition, the hysteretic equivalent portion of damping is compared for the two systems. In order to under-
stand its contribution, the equation of motion for a damped SDoF system subjected to an earthquake record
is given:

mii+cu+ fy=—miig (4.32)

where iig is the ground acceleration and u, i, ii are the relative displacement, velocity and acceleration,
respectively, with respect to the ground. The absorbed energy is evaluated according to the energy balance
equation, derived from integrating over time the equation of motion, representing the equilibrium of forces,
multiplied by the instantaneous displacement du = utdt:

t t t t
f miludr+f cuudr+f fsudt = —f miigudt (4.33)
0 0 0 0

The first term depicts the relative kinetic energy of the system, as measured with respect to the ground,
representing energy temporarily stored in the kinematics of the system. The second is the damping energy
dissipated by viscous damping, and the third is termed the absorbed energy, consisting of the irrecoverable
hysteretic energy and the recoverable strain energy. The right-hand-side term is the relative input energy
imparted by the ground motion to the system, as measured relative to the ground, excluding any rigid body
translation.

The hysteretic energy, absorbed by a structural system during a seismic event that is strong enough to
induce a certain amount of non-linearity to the system, has been recognized by several researchers as a po-
tentially useful seismic performance indicator [7]. In the absorbed energy history E(¢), the parameter ¢t may
be the real time or an ordering parameter (pseudo-time) for quasi-static analyses. E(#) is defined starting
from the force and displacement histories recorded during the laboratory test, F(¢) and §(¢) respectively, as:

o(1) t ds
E(1) :f F(5(t))d5=[ F(r)—dr (4.34)
0 0 dr

In general, stable hysteretic loops with large energy dissipation capacity at a member level are thought to
guarantee a better deformation performance of the system, implying that there is a good correlation between
the dissipated hysteretic energy and the inelastic deformation demands. This notion is often linked to quasi-
static cyclic test results, where it seems apparent that between two systems with similar strength, tested under
the same cyclic loading protocol, the one with the higher energy absorption (i.e. larger hysteresis loops)
should exhibit superior performance.

The absorbed energy is linked to the equivalent inelastic damping ratio, also know as loss factor, and it is
defined as [19]:

1 Ep

— (4.35)
4m Eg,

(eq,h =
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Figure 4.9: Definition of energy loss Ep in a cycle and maximum strain energy Es, [19]

The (4,1, for the two tests presented in Section 3.4.2 and 3.4.3 is hence computed, as way to evaluate the
matching between the modelling approaches, as well as to estimate the amount of hysteretic damping pro-
vided by the shear and the rocking behaviour of URM components.

In the figures below, the force-displacement curves of the squat pier component are presented both for
laboratory test and the macro-element analysis. The reference cycle for the damping ratio estimation is in-
cluded in red. The third cycle after the system moves into the inelastic range is adopted, as suggested in
[44]. Tt is likely to be representative of the full inelastic behaviour, since in the considered tests no damage
is observed. In addition, no damage parameters are included in the hysteretic law proposed for the macro-
element. However, in case of damage-based constitutive rules, it is expected to observe an evolution of the
hysteretic damping ratio under cyclic loading.
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Figure 4.10: Reference cycle for energy loss calculation
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Table 4.2: Equivalent hysteretic damping ratio comparison for the squat component

System Ceq,n (%]
Laboratory test 30.4
Macro-element 325

It can be noticed that the shear hysteretic model matches well the lab test results, resulting in only 6%
difference for the Laboratory. Indeed, the energy dissipated by the system presented in Figure 3.28 shows a
good match. It is important to highlight also that the shear mechanisms are quite dissipative, involving large

sliding along mortar bed-joints.
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Figure 4.12: Reference cycle for energy loss calculation



58 4. Non-Linear Time History Analysis

Macro-element _
2000041 —— Ref Cycle
10000 A
z
T 0
]
ey
(V]
—10000 A
—20000 A :

-0.02 -0.01 0.00 0.01 0.02
Displacement [m]
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Table 4.3: Equivalent hysteretic damping ratio comparison for a slender component

System (eq,n %]
LS-DYNA 3.5
Macro-element 3.7

It can be noticed that the rocking hysteretic model matches well the laboratory test results, resulting in
only 5% difference. Indeed, the energy dissipated by the system presented in Figure 3.17 shows a good match.
Itis important to highlight also that the rocking mechanism, theoretically consisting in a rigid body motion, is

unable to dissipate energy. The behaviour could be modelled with the non-linear elastic presented in Figure
4.14 [46].

Moment

Rotation

Figure 4.14: Non-linear elastic model idealization for rocking motion of walls.



In-plane Dynamic Test on URM Wall Piers

In this chapter, the proposed lumped plasticity macro-element approach is validated against two dynamics
test performed with the software LS-DYNA: a slender URM wall component with fix-fix boundary condition,
and a squat URM wall component with cantilever boundary condition. The results are compared in terms of
displacement history, base shear force history and computational cost. A point cloud analysis is performed
to assess the response with different input signals. The specimen geometries are the same as the laboratory
component tests presented in Chapter 3. Analogously, the overburden mass is selected to induce a compres-
sion state comparable to laboratory component tests. In the table below, the calcium silicate (CaSi) masonry
material properties adopted for the analyses are presented.

Table 5.1: Masonry material properties: Calcium Silicate post-1960

Measured Properties
Young’s Modulus 3.5E3 MPa
Compressive strength 7.0 MPa
Poisson’s ratio 0.2
Bed-joint shear strength 0.25 MPa
Diagonal-tension strength 0.1 MPa
Bed-joint friction coefficient 0.45

5.1. In-plane dynamic test of a fix-fix slender wall

A NLTH analysis is performed on a slender masonry wall with fix-fix condition. The two systems are subjected
to the same earthquake acceleration history at the bottom nodes of the system, Earthquake Record 0 (Figure B. 1
in Appendix B). Seismometer-related effects may be observed in the post-peak part of the earthquake record,
due to the electronic recording procedure. This phenomenon is assumed not to affect the time-history response
of the systems since corresponds to the low intensity range of input accelerations.
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Figure 5.1: Input record and 5%-damping response spectrum
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The geometry of the system is described in Table 5.2. An overburden mass is placed at the top nodes, to
simulate the inertia coming from an eventual upper floor.

B ' L L

Figure 5.2: In-plane dynamic test of a slender wall

Table 5.2: Geometry of the system

Dimension
Thickness 0.1m
Height 27m
Length 1.1m
Boundary condition Fix-Fix
Overburden mass 3ton
Natural frequency 68.1rad/s

The earthquake record was scaled with a factor corresponding to a PGA level of 0.5g in order to induce
the development of the rocking mechanism.

5.1.1. Results

The outcomes in terms of failure mechanism, displacement and base shear force history are compared for
the two modelling approaches. In particular, the same failure mechanism is predicted by both: it is a flexural
mechanism which entails rocking of the system and gap opening at the two ends of the wall. The crack
width predicted by LS-DYNA is up to 2.3 mm. In the case of the macro-element, only the non-linearity of the
rotational springs is activated, while the shear spring remains in the linear range of deformation.
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Figure 5.3: Failure mechanism - LS-DYNA - Slender component

The displacement history comparison is presented in Figure 5.4. One may notice that the period of vibra-
tion of the two system is fairly close both in the linear and non-linear range. The absolute peak displacement
is not similar. One may notice that the shell element model starts deforming inelastically earlier than the
macro-element model. Around 1 second in the time-history response, the period of LS-DYNA is twice as the
macro-element one, which is still in the liner range. This is likely to be related to the sharp change between
the elastic and post-yielding branch of the lumped plasticity model. The LS-DYNA model instead smoothly
moves into the non-linear range. This is reflected in the internal energy history described in Section 5.3.1
(Figure 3.17). Furthermore, such a difference leads to a small shifting in the time-history response between
the two models. The relative displacement between the positive and the negative peaks is similar, proving
that effecting mass in the large non-liner range is comparable. Zero residual displacement at the end of the
analysesis predicted by the two systems. This is related to the self-centering nature of rocking systems. Unless
large displacements (P-Delta effect) lead to the complete wall overturning, the self and overburden weight of
the wall brings it in it un-deformed position.
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Figure 5.4: Displacement history comparison - Slender component

The base shear history plot shows a good agreement between the two approaches, both in the linear and
non-linear range. The capacity of the pier component is around 12 kN.
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Figure 5.5: Base shear force history - Slender component

5.2. In-plane dynamic test of a cantilever squat wall

A time history analysis is performed on a squat CaSI URM wall, modelled with shell elements and with the
macro-element approach. The geometry of the system is described in Table 5.3. Also in this case, an overbur-
den mass is placed at the top nodes, to simulate the inertia coming from an eventual upper floor.
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Figure 5.6: In-plane dynamic test of a squat wall

Table 5.3: Geometry of the system

Dimension
Thickness 0.1m
Height 27m
Length 4.0m
Boundary condition | Cantilever
Overburden mass 25 ton
Natural frequency 68.5rad/s

The earthquake record was scaled with a factor corresponding to a PGA level of 0.5g.

5.2.1. Results

The outcomes in terms of failure mechanism, displacement and base shear force history are compared for
the two modelling approaches. Diagonal cracking along head- and bed-joints is predicted by the LS-DYNA
numerical simulation. The crack width at the end of the analysis is up to 3.0 mm. In the macro-element
assembly, the shear spring deforms inelastically, while the rotational springs vibrate linearly
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Figure 5.7: Failure mechanism - LS-DYNA - Squat component

The displacement history is presented in Figure 5.8. One may notice that the period of vibration of the two
system is fairly close both in the linear and non-linear range. The absolute peak displacement match between
the two, while the one in the positive direction is slightly underestimated by the macro-element. Finally, the
residual displacement at the end of the analysis results in less than 1 mm difference between LS-DYNA and
the macro-element, which is on the conservative side.
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Figure 5.8: Displacement history

The base shear plot shows a good agreement in terms of capacity between the two models, a part from
localised high-frequency spikes in the shell model output. This phenomenon is further described in Section
5.3.2.
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Figure 5.9: Shear history

5.2.2. Computational cost

It is worth to compare the computational cost of the two analyses. Clearly, the high-fidelity output achieved
by the LS-DYNA (e.g. stress concentration, cracking pattern) cannot be reached with the lumped-plasticity
model. However, the latter is more than 20 times computationally more efficient (notice also the different
CPU number), this possibly allows different sensitivity studies for the same wall geometry, and proves its
suitability in a fragility-curves development framework.

Table 5.4: Computational cost comparison for example presented in Section 5.2

LS-DYNA | OpenSees
Elements 1120 5
DoF’s 3444 8
CPU 10 1
Analysis time 447s 20s

5.3. Point cloud

It is clear that the time-history response of a non-linear system is very much dependent on characteristics
of the excitation (intensity, duration, frequency content), the ground acceleration history in the present case.
Hence, an essential way to assess the applicability of the simplified model is to apply different GM signals to
cover the range of frequencies the system might experience and PGA measures. NLTH anlyses are performed
using 10 different records, with PGA from 0.20g to 0.70g, in steps of 0.02g, with a total number of 250 runs.
Analogously to the previous section, the macro-element model is validated for both a squat and a slender
geometry.

5.3.1. Slender component

The wall description is presented in Table 5.2. Regarding LS-DYNA, the analyses are performed with massively
parallel processing (MPP), which allows to run the solver over a cluster of machines. The macro-element
approach analyses are instead run with a single CPU. The maximum drift for each GM vs the PGA level is
plotted in the figure below. A drift limit value corresponding to the near collapse limit state is calculated with
the expression given in Table 2.1, for elements governed by flexure.
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Figure 5.10: Pier drift vs PGA for the lumped plasticity model - Slender wall example

As expected, the response in terms of peak displacement is highly dependent on the shape of the variance
spectrum of the input signal, and not only the amplitude of the largest absolute acceleration in the time
domain record of the ground acceleration (PGA). In this case, the EQ3 is the governing one, for which the
displacement capacity is exceeded at 0.44g PGA level. EQ4, EQ7 and EQ8 are not able to induce the non-
linearity even at high levels of PGA. Indeed, it is essential to evaluate other earthquake intensity measures. In
particular, the duration of the signal, the spectral acceleration estimated at the elastic period of the system,
the Arias intensity and the Housner intensity are compared below.

The spectral acceleration SA is expressed as follows:

SA=SA(=5%,T =Tg) (5.1)
The Arias intensity I, is defined as the time-integral of the square of the ground acceleration:

T,
T d
Ih=—| d*mdr (5.2)
2g Jo
The Housner intensity I is defined as the integral of the pseudo-velocity spectrum within the period
range 0.1-2.5 seconds. In the present work, the modified version proposed by [26] is used. For short period
structures, such as masonry buildings, the range of periods is set between 0.1 and 0.5 seconds.

0.5
Iy :f PSV((=5%,T)dT (5.3)
0.1

In the graphs below, a comparison of these intensity measures is presented for the 10 records, at PGA level
of 0.4g.
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Figure 5.11: Input signal characterization at 0.4g PGA level - Slender component
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It can be observed that the governing earthquake EQ3 is associated to the highest spectral acceleration
and Hoursner intensity. In addition, the Arias intensity is also conspicuously high. It is important to notice
the correlation between the duration of the signal, and its Arias intensity. EQ6 has the highest 14, due to its
very high duration, compared to the other signals. EQ4, EQ7, EQ8 are characterised by low Arias intensity,
Housner intensity and relatively low SA. For such reasons, even for high PGA levels, the response of the sys-
tems is in the linear range of deformations.

In the graph below, the comparison with LS-DYNA is presented. The 50th, 16th 84th percentiles of the
point cloud data are highlighted. Assuming a normal distribution of the drifts for each PGA level, the graph
represents the area within one standard deviation around the median.
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Figure 5.12: Pier drift vs PGA comparison - Slender component

The shell element model reaches failure for drift exceedance for a lower PGA level (0.38g), placing LS-
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DYNA on the conservative side. This is likely to occur due to the aforementioned impact phenomenon ob-
served in the shear component example. In fact, one of the conspicuous features of rocking wall seismic
behaviour is the presence of gap opening and closing phenomenon, characterized by an interaction of wall
base and foundation top. This phenomenon is assessed in Appendix D.

Priorly to the point cloud capacity curves assembly, a butter-worth filter is adopted to remove the high-
frequency spikes of the base shear force time series. It is a second order digital butter-worth filter with cut-off
angular frequency of 0.1 %, in which the transfer function in the Z-domain is given by:

_ B(z) _ b0+b1Z_1 +I92Z_2

H(z) = =
@) Alz) l1+azl4+ayz2

(5.4)

For both the modelling approaches, the trend of the point cloud is identified with a tenth order polyno-
mial fitting.
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Figure 5.13: Capacity curve comparison - Slender component

The initial stiffness is in good agreement, and the macro-element results in the conservative side in terms
of maximum capacity. The very sharp transition between initial-and post yielding is due to the flag shape law
adopted.

In addition, the hysteretic energy is compared for the two approaches. As mentioned in the previous
sections, the hysteric energy, absorbed by the structural system during a seismic event has been recognized
to be useful seismic performance indicator. In the picture below, the hysteretic energy for the 10 GM’s is
presented at 0.40g of PGA level.
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Figure 5.14: Energy dissipation for the 10 records at 0.40g PGA - Slender component

It can be noticed that at the same PGA level, the shape of the input signal does very much influence the
response of the specimen and leads to a considerably different seismic demand. The discrepancy between
each GM reflects the input signal characterisation presented in Figure 5.11. It is worth mentioning also that
amount of energy that the rocking system can dissipate is significantly less from the shear driven specime
presented in Figure 5.22.

In the graph below, a comparison between the macro-element approach and the LS-DYNA model is pre-
sented in terms of internal energy.
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Figure 5.15: Energy dissipation comparison for the 10 records at 0.40g PGA - Slender component

The output of the two model is significantly different, and it can be ascribed to two reasons. Firstly, re-
garding the GM’s which induce the system lightly in the inelastic range, the discrepancy comes from the
flag shape hysteretic model adopted. In the 2D shell element model, the smooth curvature of the transition
between initial- and post-yielding stiffness is such that the energy dissipation starts already at low level of
inelastic strains. Instead, the sharp change of stiffness in the rotational springs of the macro-element entails
that the system enters in the yielding domain at a later stage. This has been observe already in Section 3.4.2.
In particular the internal energy plot shows that for low displacement level, the LS-DYNA model energy is
always higher (Figure 5.16). This effects vanishes as the drift level increases. This can be observed for GM 1, 4,
5, 7, 8, for which the discrepancy is more than 50%. One should notice that in this regard the macro-element
model is on the conservative side.
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Figure 5.16: Energy dissipation comparison at low drif levels during quasi-static test

For high level of drifts, such are those related to GM 1, 3, and 6, another phenomenon characterised
conspicuously the 2D shell element models. It is the gap opening and closing phenomenon (Appendix D).
This entrails a discrepancy of 30% in average.

5.3.2. Shear component

The same test is carried about out on a squat wall component. The geometry is described in Table 5.3. With
the software LS-DYNA, the analysis are performed with MPP. The macro-element approach analyses are in-
stead run with a single CPU. A comparison in terms of computational cost is given in Table 5.5. Despite the
lower CPU number, the lumped plasticity approach is computationally more efficient by two orders of mag-
nitude. It is assumed that using parallel processing, the macro-element could reduce the computational time
by at least one order of magnitude [57].

Table 5.5: Computational cost comparison for the point cloud analysis

LS-DYNA Macro-element
Elements 1120 5
DoF’s 3444 8
CPU 20 1
n. of GM 10 10
PGA range 0.20+0.70g 0.20+0.70g
n. of runs 250 250
Analysis time 2400 min 20 min

The pier drift vs the PGA per ground motion record is presented for the proposed model in Figure 5.17. As
described in Section 2.2, the upper-bound for the drift capacity of the shear component is set to 0.53%.
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Figure 5.17: Pier drift vs PGA for the lumped plasticity model - Squat wall example

The governing GM’s spotted by the model are EQ1 and EQ3, exceeding the displacement capacity at a
PGA level between 0.54g and 0.56g. EQ4, EQ7 and EQS8 are the ones leading to the lowest drifts. As observed
for the rocking behaviour, a large scattering characterises the response. This can be explained comparing
the intensity measures introduced in the previous section. Hence, in the graphs below, the input signals
are compared in terms of spectral acceleration at the elastic period, arias intensity, Housney intensity and
duration. A reference PGA level of 0.5g has been selected for the comparison.
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Figure 5.18: Input signal characterization at 0.5g PGA level - Squat component

Analogously to case of the slander component, it can be observed that the governing earthquakes EQ3
and EQI are associated to the highest spectral acceleration and Hoursner intensity. In addition, the Arias in-
tensity is also conspicuously high. EQ4, EQ7, EQ8 are characterised by low Arias intensity, Housner intensity
and relatively low SA. For such reasons, even for high PGA levels, the response of the systems is in the low
inelastic range of deformations.
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In the graph below, the macro-element and the 2D shell element model are compared in terms of drift
vs PGA level. The area bounded by one standard deviation around the median is highlighted. The governing
GM’s spotted by the 2 models are the same, EQ1 and EQ3, exceeding the displacement capacity at a PGA level
between 0.54g and 0.56g . Large scattering for PGA level is observed also in the LS-DYNA trend.
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Figure 5.19: Pier drift vs PGA - Comparison between LS-Dyna and macro-element model - Squat component

Finally, the point cloud backbone is built for the two systems. The trend is identified with a tenth order
polynomial fitting (Figure 5.20).

200000
® LS-DYNA

175000 A ® Macro-element

150000 5

125000 - ﬂ: - - e

100000 -

75000 +

Max Shear [N]

50000 A

25000 A

0 T T T
0.2 0.4 0.6 0.8 1.0

Max Drift [%]

o
=}

Figure 5.20: Capacity curves comparison - Squat component

At low levels of drift the macro-element matches well the LS-DYNA response. The capacity described
by the lumped plasticity approach seems to be in the conservative side. Very localised spikes of maximum
shear force (observed also in Section 5.2) at high PGA levels in LS-DYNA are likely to originate from an impact
phenomenon. It is the effect of short-duration large-amplitude gap opening and closing along the horizontal
mortar joints (left of Figure 5.21), superimposed to the purely translational diagonal mode (right of Figure

5.21). This behaviour is described in Appendix D.1.
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Figure 5.21: High-frequency bed-joint opening (left), superimposed to the translational diagonal mode (right)

In addition, the hysteretic energy for the 10 signals at 0.50g PGA level is compared in the graph below.
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Figure 5.22: Energy dissipation comparison at 0.50g PGA - Squat component

It is clear that the shape and the duration of the input signal, not only the maximum acceleration in-
fluence the response of inelastic systems. The very different seismic demand reflects the results presented in
Figure 5.18. The large scattering of the response proves that it is essential to perform the analyses with several
input records. Only in this way, one is sure to cover a reasonably large number of scenarios. The hysteretic
energy of the macro-element model is compared to the smeared plasticity model results.
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Figure 5.23: Energy dissipation comparison for the 10 records at 0.50g PGA - Squat component

There is a good agreement between LS-DYNA and the macro-element model, proving that the elasto-
plastic law proposed is suitable for the prediction of shear driven wall components. Less than 10% discrep-
ancy is observed for all signals.






Benchmark building

In this chapter, the macro-element developed is assemble into an equivalent frame structure, a two-storey pro-
totype composed of calcium silicate masonry walls and concrete floors. The scope is to perform a validation
test of the lumped plasticity approach. The assembled structure is representative of a typical terraced house
built in the period between 1960 and 1980 in the Groningen area. The benchmark quasi-static results consist
on the quasi-static laboratory test and the LS-DYNA displacement-controlled analysis. Regarding the dynamic
response, the benchmark results are produced with the LS-DYNA NLTH analyses.

6.1. Description of the assembled structure

The assembled structure represents the inner bearing leaf of a terraced house, which was typically built in
1960-1980 in the Netherlands.

z
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Figure 6.1: 3D view of the assembled structure

The replicated masonry adopted in the tested assemblage is composed of calcium silicate bricks and
general purpose mortar.

75
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Table 6.1: TUD-BUILD-1 material properties

Measure Properties
Young’s Modulus 3.5E3 MPa
Compressive strength 7.0 MPa
Poisson’s ratio 0.2
Bed-joint shear strength 0.25 MPa
Diagonal-tension strength 0.1 MPa

The structure consists of two loadbering walls on the west and east side, and two facaded composed on
two piers with width of 660 mm and 1100 mm. The floors consisted of two prefabricated concrete slabs span-
ning between the loadbearing walls. The two concrete slabs were in-situ connected by reinforced concrete
dowels. At fist floor level, the floor was connected horizontally to the piers by anchors of 6 mm diameter. At
second floor level, the floor was laid on both the loadbering walls and the piers. However, during construc-
tion, the floor was laid on the loadbearing walls and subsequently the joint between the piers and floor was
filled with mortar. As a consequence, the load is carried out only by the loadbering walls.

The geometry of the assemblage has been designed to investigate the influence of the following building
characteristics:

* Presence of slender piers, due to the presence of large openings in the facades
* Presence of long transversal walls that are connected to the facades by the running bond

* Limited connection between concrete floor and masonry wall

The assembled structure has been tested under quasi-static cyclic pushover load and at different stages
a dynamic identification test has been performed [48]. The objective of pushover test is to determine the
structural response of the structure under cyclic loading in terms of load-displacement relationship, which
provides information on the capacity and ductility of the structure, and to investigate the crack propagation
during the test. The objective of the dynamic identification test is to determine the eigen-frequencies of the
structure at different damage states.

6.2. Modelling approach

In this section , the modelling approach of the macro-element assembly is presented, with particular atten-
tion on the mass lumping and the non-linear springs behaviour. A brief overview on the LS-DYNA modelling
approach is included.

Figure 6.2: Macro-element approach - TUD-BUILD-1

Following the equivalent frame approach mentioned in Section 3.2, each of the four pier is assembled
by using two macro-elements on top of each other. This is implemented due to the necessity of having a
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mid-heigh node where to connect the first floor mass. Consequently, the rotation at the mid-height node is
constrained to be equal for the two rotational springs, since the construction detailing is such that the el-
ements present structural continuity from the base to the second floor level. The floors are modelled with
rigid beams, both in axial and bending behaviour, in such a way to enforce a fix-fix boundary condition for
the piers.

As presented in the introduction, the macro-element approach relies on the assumption that the dynamic
behaviour in the horizontal and vertical direction is uncoupled. Hence, the mass of the floors, flanges and
piers in the vertical direction is used for the calculation of the spring yielding moments, which are supposed
not to change during the analysis. The vertical forces acting on the structure are presented in Figure 6.4.

In the horizontal direction, the masses are assembled in the mass matrix of the translational equation of
motion. Regarding the first floor, the total mass given by the the mass of the concrete floor and the portion
of the transversal wall from mid-heigh of the first floor to mid-heigh to the second floor. Analogously, for
the second floor, the total mass consists on the mass of the concrete floor and the half heigh portion of the
transversal wall.

L,

Figure 6.3: Mass lumping at floor level

In the vertical direction, the mass of floors, piers and transversal walls is used for the estimation of the
yielding moment. The following assumption are made in order to carry out the calculations.

* The entire weight of the floor is equally transferred to the four piers.
* Independently on the loading direction both piers are active and can take up lateral loading.
e The floor acts as a fully rigid restrain for the top of the piers.

e Part of the transversal wall (moving out-of-plane) moves together with the pier.

The assumptions translate into the force distribution presented in the figure below.
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Akey aspect is related to the estimation of portion of the transversal wall, uplifted during the pier rotation.
Following the approach proposed in [14] and considering the wall-to-pier connection as fully interlocked

connection, a trapezoidal part of the transversal wall is assumed to cooperate with the piers.
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Figure 6.5: Portion of the transversal wall, assumed to contribute on the in-plane behaviour [14]

Therefore, the flag-shaped material model developed for the flange effect is assigned to the rotational
springs providing the asymmetric hysteretic curves presented in the figure below.
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Figure 6.6: Cyclic behaviour of west pier (left) and east pier (right) - Macro-element - Active and passing pier effect due to flange
participation
The flange effect contribution is indeed observed also in the smeared plasticity model.
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Figure 6.7: Cyclic behaviour of west pier (left) and east pier (right) - LS-DYNA model

With LS-DYNA, in order to evaluate the behaviour of masonry, homogenized shell masonry material (Sec-
tion 3.3) model is used with fully integrated shell elements. Shell elements and beam elements are used to
model the non-linear concrete floors and the anchors respectively.
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Figure 6.8: Shell element model - TUD-BUILD-1

6.3. Experiment results

In this section the main experimental results are presented. The pushover test was performed in three phases

namely initial, pre-peak and post-peak phase. The global behaviour for the structure is presented in terms of
capacity curve in the figure below.
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Figure 6.9: Response of the assembled structure: capacity curve and corresponding backbone curve

Due to the different pier width, the behaviour in capacity and ductility are asymmetric. The capacity
asymmetry is directly related to the flange effect mentioned in the previous section. The ductility asymmetry
is linked to the crack patter evolution during the test.
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6.4. Dynamic identification test

The dynamic identification is based on the hammer impact method which is a non-destructive identification
method. The structure can be excited globally provided that the connections between the various parts of
the structure are monolithic (i.e. the connections are such that the energy flow between the various parts can
be ensured). The hammer impact generates waves which are guided through the structure. The reflection of
those waves at the various boundaries of the structure forms a standing wave pattern or the modal shapes of
the system under investigation. The dynamic properties normally identified are the natural frequencies, the
modal shapes and the modal damping; the focus in the present section is on the first and second elements
only. For the data analysis, the choice was to focus only on the first global bending mode of the assembled
structure along the X-direction.
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Figure 6.10: Dynamic test: First eigen-mode of the structure in X-direction

The impact tests were performed at the following moments of the pushover test:

e Test 1: Before the cyclic pushover test started. The assembled structure was undamaged.

o Test 2: At the end of the pre-peak phase, at which a reduction of the stiffness was observed from the
capacity curve and also significant cracking could be visually observed.

e Test 3: At the end of the pre-peak phase, at which a reduction of the stiffness was observed from the
capacity curve and also significant cracking could be visually observed.

The laboratory results in terms of mode shape and eigenvalue at the un-damaged state (test 1) are com-
pared with the shell-element model and the lumped plasticity model. Given the high non-linearities of the
masonry material model even at small strains, the eigenvalue analysis is not the favourable approach for the
identification of the first mode of the structure. Alternatively, the dynamic identification test is performed
numerically with software LS-DYNA. A displacement of the magnitude of 1 mm is applied at the top floor and
the structure is left freely to vibrate. The acceleration history of a representatives node belonging to the top
part of the structure is recorder (nodal acceleration vs time curve). By applying the Fourier transform of the
time-based signal the function can be converted between the time and frequency domain [21].
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Figure 6.11: Fourier transform of the time-based signal to obtain the response in the frequency domain

H(w) =f h(t)e'®tdt 6.1)

In the present case, the h(f) function is the nodal acceleration history. From the frequency domain ex-
citation the first natural frequency corresponding to the first dominant mode can be estimated. The same
procedure has been performed for the structure modelled with the proposed macro-element model. The re-
sults are presented in Table 6.2. Regarding the quasi-static test, the stiffness matrix K can be determined on
the basis of the stiffness of the first and second floor as measured during the cyclic pushover. The stiffness of
the assembled structure can be evaluated via linear regression of the capacity curves in terms of displacement
at the second and first floor level [48].

Table 6.2: A comparison between the identified natural frequency by the dynamic tests, with the stiffness obtained in the push-over
test, with LS-DYNA and the macro-element approach.

Type of test Test 1

[Hz]

Experimental results of the dynamic identification test 4.05
Calculated based on the stiffness obtained in the quasi-static pushover test | 4.07
Dynamic identification on 2D shell model 4.35

Dynamic identification on macro-element assembly 4.38
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Both LS-DYNA and the macro-element model seem stiffer than the prototype. This is to be expected,
given that intrinsic scattering the material properties of the laboratory specimen. For instance, the numerical
models adopt only a single value of the masonry Young’s moduls, whilst in assembly is made of mortar and
bricks, and hence different parameters could be measured at different locations.

6.5. Displacement-controlled test

A quasi-static blind test is performed with LS-DYNA and the macro-element model. It is a displacement con-
trolled analysis prescribed at the second floor level, in the weak-direction of the structure (X-direction). The
loading protocol is shown in Appendix B. The modelling approach is compared in terms of force-displacement
curves and internal energy history, with respect to the laboratory tests results.
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Figure 6.13: Laboratory test capacity curve and backbone up to 40 mm at top floor

Itis of interested to compare the results up to 40 mm at the second floor in the both positive and negative
direction. Up to this drift level, the maximum capacity has been reached and intensive damage is observed at
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the ends of both the smaller and larger piers. Furthermore, in both the transversal walls, the nearly 45 degrees
cracks are observed, proving the activation of the flange-effect for the in-plane piers. For displacement larger
than 40 mm, the accumulated damage in the the positive direction leads to the formation of through-brick di-
agonal cracks in the wider piers. This induces strength degradation and large energy dissipation. The lumped
plasticity model, based on elasto-plastic backbones is not able to predict the development of a different fail-
ure mode, once another has previously occurred (the first global rocking mode). Furthermore, as mentioned
above, the typical short duration of the induced earthquakes is such that the structures usually oscillate in-
elastically only for few cycle, and do not absorb the amount of energy to develop a significant degradation
of strength and stiffness. It is more likely the high drift level to suggest the identification of a near collapse
limit state. This is indeed reflected in the NLTH analyses results of the next section: the results do not show

high residual permanent deformation at the end of the test, and the structure fails for global overturning (see
Figure 6.31).

Even though it is not observed at the component level, a low-intensity pinching phenomenon has been
observed in the response of the assembled structure. Pinching is a sudden loss of stiffness caused by cracks
opening and closing in cyclic loading. This phenomenon is taken into account in the rocking behaviour via
an energy-based phenomenological flag-shaped rule.
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Figure 6.14: Pinching effect in the assembly response

The results in terms of force-displacement curves and energy dissipation history are presented in the
figures below.
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Figure 6.15: Force-displacement curves comparison between LS-DYNA and test results [2]
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The capacity in the two loading directions predicted by the smeared plasticity model is in good agreement
with the test results. Strength degradation is predicted already at small inelastic displacements, whilst is not
the case for the laboratory specimen. One may notice that the small residual displacement at zero base shear
force is predicted in the opposite direction (Figure 6.15).
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Figure 6.16: Force-displacement curves comparison between the macro-element model and test results

The macro-element predicts the asymmetric backbone due to the flange effect, and the gradual transition
from the elastic and yielding branch in the negative displacements, compared to the positive displacements.
This is related to the earlier formation of plastic hinges in the narrow piers, due to the different geometry.
The capacity is however overestimated of about 20% in both the directions. The reasons lies behind three
different aspect:

* The assumption of fully fixed boundary condition at the second floor level translates into an upper
bound estimation of the capacity and, as mentioned in Section 2.1.1, is usually not present in actual
buildings. One may expect a lower capacity if the diaphragm is left free to bend with a finite out-of-
plane stiffness.

* The actual diaphragm deformability is likely to alter the vertical weigh transferred to each pier during
the analysis (assumed to be constant and equal to one fourth of the floor weigh).

* The geometry of the trapezoidal area assumed to contribute as additional weigh (flange effect) for the
piers relies on arigid body assumption. The out of plane accumulated damage (see Figure 6.17) is likely
to deviate the behaviour from such a simplified assumption.
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Figure 6.17: Out-of-plane damage of the traversal wall acting as a flange

In order to assess the dynamic behaviour of the building modelled with LS-DYNA and the macro-element
approach, itis necessary to calibrate the capacity of latter to be in line with the LS-DYNA values. By applying a

reduction factor of 0.75, the backbone behaviour of the equivalent frame is comparable with the shell element
model and the laboratory results.
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Figure 6.18: Force-displacement curves comparison after the macro-element capacity reduction - Laboratory test and macro-element
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Figure 6.19: Force-displacement curves comparison after the macro-element capacity reduction - LS-DYNA and macro-element

West Pier East Pier
200004 —— LS-DYNA = —— LS-DYNA
Macro-element 7 - 500079 Macro-element
4

15000
z z 04
8 10000 g
L L
= S oond
3 5000 § 000
< <
i 5
v o
g ] g
3 0 & —~10000 A

~5000

~15000 4
~0.04 —0.03 -0.02 —0.01 000 0.0l 002 003 004 -0.04 -0.03 -0.02 -0.01 0.00 001 002 003 0.04
Displacement [m] Displacement [m]

Figure 6.20: Pier hysteresis comparison
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Figure 6.21: Internal energy comparison - LS-DYNA, macro-element and test results

Summarising, up to 40 mm, both the LS-DYNA and the macro-element model identify a rocking mode of
the four piers. This is reflected in the (nearly) self-centering behaviour of the results. LS-DYNA and laboratory
results display a pivot point which is not coincident with the origin, as it is for the macro-element. This is due
to the permanent sliding deformation superimposed to the global rocking behaviour. In terms of energy
dissipation, at the end of the protocol (up to 40 mm), the LS-DYNA model for low drift level initially displays
high energy dissipation respect to the other two systems. In this regard, the macro-element model is on the
conservative side.

6.6. NLTH analysis

Analogously to what presented in Section 5.3, a point cloud dynamic analysis is performed to assess the
validity of the macro-element approach with respect to the smeared plasticity model. Hence, the dynamic
response of the assembly is assessed using 7 input signals (see Appendix B) with increasing PGA levels, from
0.02g to 0.50g, in steps of 0.02g, with a total number of 168 runs. With the LS-DYNA, the analysis are per-
formed with MPP, while the macro-element model analyses run on a single CPU. The excitation signal is
applied only in the weak direction of the structure (X-direction in Figure 6.2). The Y-direction is regarded as
the "strong" direction of the building, given the geometry of the two walls representing the resisting system.
In the analysis, the vertical component of the ground motion is neglected (see Appendix C). A comparison in
terms of computational cost is presented in Table 6.3.

Table 6.3: Computational cost comparison for the point cloud analysis of TUD-BUILD-1

LS-DYNA OpenSees
CPU 20 1
n. of GM 7 7
PGA range 0.02+0.50g | 0.02+0.50g
n. of runs 168 168
Analysis time 100 hr 30 min

Analogously to the outcomes presented in Section 5.3, it is clear the very high computational demand
of the smeared plasticity models. In a fragility curves development framework, which requires at least 4000
accelerograms [22], LS-DYNA leads to an extremely high computational time. The proposed approach acts as
a suitable moderate-fidelity model for such a purpose. It requires only few characteristics of the building that
can greatly simplify modelling of large number of buildings in the Groningen region. On the other hands, the
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most computationally-efficient structural models using equivalent SDoF conversion are referred to as “low-
fidelity models” [57].

In the figures below, the point cloud analyses results are presented, in terms of maximum drift achieved

during the analysis at a certain PGA level. A drift limit value corresponding to the near collapse limit state is
calculated with the expression given in Table 2.1, for elements governed by flexure.
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Figure 6.22: Drift vs PGA level - LS-DYNA

The LS-DYNA model reaches collapse with EQ3 at 0.30g PGA level, due to flexural drift limit exceedance.
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Figure 6.23: Drift vs PGA level - Macro-element model

The macro-element model reach collapse with EQ3 at 0.40g PGA level, due to flexural drift limit ex-
ceedance, placing the approach on the un-conservative side with respect to the smeared plasticity model.
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However, considering EQ2, LS-DYNA predicts drifts lower than the limit close to 0.50g PGA level, whilst the
macro-element model collapses earlier. This is again a clear example of the importance of utilizing a large
number of input motions for the assessment of the dynamic behaviour of non-linear systems. In this re-
gard, the proposed approach has the advantage of being computationally efficient and thus allows to perform
NLTH analyses with a large number of accelerograms. Despite of the differences, the trends of the cloud show

a good agreement between the two approaches.
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Figure 6.24: Drift vs PGA level - Modelling approach comparison

In the graphs below, the earthquake records are compared in terms of duration, Arias intensity, Housner
intensity and spectral acceleration estimated at the initial elastic period (see Table 6.2), at PGA level of 0.3g.
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Figure 6.25: Input signal characterization at 0.3g PGA level- TUD-BUILD-1
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It can be observed that the governing earthquake EQ3 is associated to an high spectral acceleration and
the highest Hoursner intensity. In addition, the Arias intensity is also conspicuously high. EQ4 is charac-
terised by low Arias intensity, Housner intensity and SA. For such reasons, even for high PGA levels, the sys-
tem does not reach collapse for drift limit exceedance. One may notice that EQ1, even though characterised
by high values of Arias intensity, Housner intensity and relatively high SA, is the signal leading to lowest drifts
also for high PGA levels. However, for periods longer than 0.5 s (damaged state of the structure), EQ1 has the
lowest acceleration spectrum and the pseudo-velocity spectrum. Indeed, the dynamic identification test at
the end of the pre-peak phase of the hysteretic curve shows a 40% reduction of the natural frequency in the
X-direction [48], corresponding a natural period of 0.4 s. For the post peak response, one may expect values

of atleast 0.5 s.
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Figure 6.26: Acceleration spectra and pseudo-velocity spectra for the 7 earthquake records

In the figure below, the capacity curves of the two systems are compared. For both the modelling ap-
proaches, the trend of the point cloud is identified with a tenth order polynomial fitting.
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Figure 6.27: Point cloud backbone comparison - TUD-BUILD-1

The comparison shows that LS-DYNA capacity is always higher in average terms. The very initial stiffness
is in good agreement (which was indeed spotted by the dynamic identification), whilst the macro-element
reaches a first yielding point earlier than LS-DYNA, due to the sharp asymmetrical pier behaviour related to
the flange-effect (see Figure 6.6). This is observed also in the quasi-static force-displacement curves compar-

ison in Figure 6.21.



92 6. Benchmark building

As an example of the dynamic behaviour predicted by the two modelling approach, the results in terms
of displacement history, base shear force history and hysteretic behaviour are presented below. They refers
to the excitation EQ1, with a PGA level of 0.40g.
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Figure 6.28: 2nd floor displacement history comparison - EQ1 - PGA 0.4g
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Figure 6.29: Hysteretic curves comparison - EQ1 - PGA 0.4g
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Figure 6.31: Damage state and magnified deformed shape at peak displacement - EQ1 - PGA 0.4g - Rocking mode of the four piers

As mentioned in Section 6.5, the short duration of the strong motion part of the input record is such that
the structure deforms inelastically only for few cycles. Hence, the dominant rocking mode does not develop
into a diagonal cracking mode with large residual deformations and conspicuous strength degradation. This
can be observed from the self-centering hysteretic behaviour and the deformed shape in correspondence of
the peak displacement. The macro-element displacement history in the linear range and strong motion part
of the earthquake are in line with LS-DYNA. However, one may notice in the post peak displacement history,
the accumulated damage leads to a much longer period of vibration respect to the macro-element model.

Another relevant example is related to EQ2, with a PGA level of 0.32g. In this case, the high compression
stresses recorded at the integration points in the pier corners exceed the compression strength of the ma-
sonry and leads to element erosion of the related shells (see element erosion in Section 3.3). In this way, the
initial length of the pier, which appears on the capacity estimation in Equation 2.3 is reduced and changes
significantly the response both during the strong motion part and during the post-peak response of the earth-
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Conclusions and Recommendations

In this chapter, the proposed methodology and the numerical results are critically evaluated based on the initial
assumptions. Next, recommendations for further improvements and future research are discussed.

Conclusions

Calibration

The analytical formulations for the estimation of static stiffness and failure mechanism capacities are
in line with the smeared plasticity numerical simulation and laboratory test results. For the considered
slender component, the discrepancy with respect to LS-DYNA is within 10% for the two quantities. For
the considered squat component, the discrepancy is within 5%.

Quasi-static cyclic simulations on rocking components with LS-DYNA show a large underestimation
(more than 100% discrepancy) of the internal energy history compared to laboratory tests. This is re-
lated to the different masonry hysteretic behaviour in compression. Since the dynamic validation tests
are performed with LS-DYNA, it is favourable to calibrate the rocking hysteretic behaviour against the
smeared plasticity force-displacement curves. The LS-DYNA cyclic response of squat component is
instead in line with the laboratory tests.

The genetic algorithm adopted acts as a reliable tool for the definition of an energy-based phenomeno-
logical description of the un-loading constitutive law of the rotational springs.

The flag-shaped rule and elasto-plastic rule respectively for rocking and shear driven components pro-
duce results in line with LS-DYNA, during quasi-static cyclic loading, in terms of static stiffness, peak
strength and energy dissipation.

The asymmetric backbone self-centering system developed is suitable for capturing the flange effect of
slender wall components interlocked to large transversal walls. Numerical simulations on wall compo-
nents show that the flange contribution can be neglected for squat piers.

Component Validation

Dynamic tests on shear driven component show good agreement between LS-DYNA and the macro-
element, reaching collapse for drift limit exceedance with the same governing earthquake at the same
PGA level. Point cloud backbone curves and energy dissipation are also comparable.

Regarding the slender component, the macro-element approach predicts the same governing earth-
quake but at higher PGA levels. An impact-related phenomenon has been observed during the rocking
behaviour of the LS-DYNA simulations. This has not been noticed in the calibration phase, proving
the limitation of a rate-independent rotational spring model, calibrated with quasi-static loading pro-
tocols. This phenomenon is the reason of the dissipated energy discrepancy (up to 30%) for high drift
levels. The sharp transition between elastic and post-yielding branch in the rotational springs is likely
to cause the high discrepancy (up to 50%) for low inelastic drifts.

Benchmark building

At large displacements, the laboratory prototype damage pattern turns into a diagonal cracking at the

bottom portion of the large piers. This sequence of actions cannot be predicted by the lumped plasticity
model for which, once the non-linearity is induced, the failure mechanism is stable.

The capacity predicted by the macro-element is about 20% higher than the test results. The reason lies
behind three different phenomena:
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— the assumption of fully fixed boundary condition at the second floor level translates into an upper
bound estimation of the capacity;

— the actual diaphragm deformability is likely to alter the vertical weight transferred to each pier
during the analysis (assumed to be constant and equal to one fourth of the floor weight);

— the out-of-plane accumulated damage is likely to deviate the behaviour from the simplified rigid
body assumption that considers a the trapezoidal area with a fixed angle.

* NLTH LS-DYNA simulations show a self-centering behaviour, without the large residual deformation
predicted by the quasi-static laboratory test. The typical short duration of the induced earthquakes is
such that the structures usually oscillate inelastically only for few cycle, and do not absorb the amount
of energy to develop a significant degradation of strength and stiffness.

* Even though in terms of first collapse occurrence the macro-element is less-conservative, the trend of
the drift point cloud displays a good agreement between the two systems. The same governing earth-
quake is predicted by the two systems and collapse is reached for limit drift exceedance due to a rocking
mechanism of the four piers.

* Due to the high compression stresses in the pier toe during tilting, crushing of masonry is observed in
LS-DYNA simulations. This induces element erosion of pier shell elements, which significantly affects
the response of the building in terms of period of vibration. In general, progressive damage in the
smeared plasticity model produces evident discrepancy compared to the macro-element for high levels
of drift.

* Analogously to the component tests, a large scattering is observed for the same PGA level. Housner
intensity, spectral acceleration and arias intercity reflect the scattering, with the exception of the record
EQ1. Even though linked to a severe spectral acceleration, it leads to the lowest drifts among all the
records. This shows that the spectral acceleration at the elastic period is not fully reliable as an hazard
parameter for high non-linear systems.

¢ In conclusion, the macro-element is able to predict the in-plane dynamic behaviour of URM wall com-
ponents with reasonable accuracy, in terms of drift, capacity and energy dissipation. In the equivalent
frame model, the response is qualitatively in line with the actual building results, in terms of failure
mode and hysteretic shape.

Seismic hazard parameters

* A large scattering is observed in the maximum drift vs PGA trend for non-linear dynamic analyses.
Three different physical intensity measures are considered for the investigation: Arias intensity, modi-
fied Housner intensity and spectral acceleration estimated at the elastic natural period. The outcomes
clearly indicate the differences of the GM, at the same PGA level. The governing earthquake is the one
characterised by the high values of the three physical intensity parameters. This is also reflected in the
scattering of the energy dissipated by the components at the same PGA intensity.

Computational demand

* High-fidelity smeared plasticity models have proven to achieve accurate results in the blind-prediction
tests performed in the laboratories of TU Delft and EUCentre. However, due to their high computa-
tional demand, they do not seem suitable for large-scale calculations, like the fragility curves develop-
ment framework. The analyses performed with the proposed macro-element approach turned out to
be faster by two orders of magnitude compared to the smeared plasticity models.
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Recommendations

Hysteretic rules

* Given the outcomes of the dynamic analysis performed on slender components and the prototype
building, it is recommended to include new parameters in the flag-shaped hysteretic rule proposed for
rocking systems, to control the transition from elastic to plastic branches. In this way, one may expect
the inelastic response at low inelastic drifts to be significantly improved. In addition, the convergence
of the numerical algorithms may benefit as well.

* Even though it is not observed at the component level, a low-intensity pinching phenomenon has been
observed in the response of the assembled structure. It is recommended to investigate the response of
the macro-element including pinching parameters both in the rocking and the shear hysteretic mate-
rial models.

* The genetic algorithm presented in Appendix A may be used for the calibration of damaged related
parameters. In particular, although not directly observed in most of the component laboratory tests,
strength degradation might be adopted to simulate the element erosion techniques of the smeared
plasticity software.

¢ In the present work, a drift-based limit state assessment has been adopted. In the case of a strength-
deteriorating model, it is recommended to investigate a limit state associated with a certain loss of
capacity under repetitive loading.

Soil-structure-interaction

* Given the computational efficiency of the approach, further research may focus on the soil-structure-
interaction under dynamic loading. Additional degrees-of-freedom may be calibrated to capture the
non-linear soil behaviour at the building foundation level. The natural period is likely to elongate and
the building response may change significantly when subjected to given a free-field ground motion in
the unbounded domain.

Capacity calibration

 Further research is necessary to achieve a more accurate calibration of the non-linear spring capacities.
The simplified trapezoidal rigid body assumption leads to an overestimation of the building strength.
An extensive numerical study may be performed to identify the set of parameters that influence the
actual additional weight provided by the flange effect.

* Alternatively, machine learning techniques may be adopted, using the existing analyses database as a
learning set to train the algorithm. This may also contribute to a less deterministic definition of the
flange effect in building codes. In this framework, the learning dataset may be used also to train the
algorithm for a more sophisticated estimation of the  parameter in the flag-shaped hysteretic rule,
based on the actual wall properties: geometry, boundary conditions and mechanical parameters.

Equivalent-frame approach

e Itis recommended to further improve the equivalent-frame model by introducing an axial DoF for the
piers. This may be dynamically coupled to the horizontal DoF’s and hence, extends the applicability of
the approach to structures sensitive to the vertical component of the ground motion.






Appendix

A.1. Multi-objective Genetic Algorithm

Being phenomenological rather than based on mechanics principles, all these models rely on some param-
eters that make behaviour experimentally observed, but whose physical meaning is not immediately recog-
nisable. An important phase prior to the seismic analysis is thus the calibration of the non-linear elements
modelling critical components.

Calibration is generally carried out by looking for the set of model parameters that, inserted in the model,
fit the response measured in experimental tests as close as possible. Often the calibrations tests are quasi-
static cyclic tests following specific loading protocol, developed to give a reliable estimate of the cyclic defor-
mation demand of the considered structural system.

For this purpose, an automatic multi-objective calibration algorithm [18] has been adopted. Calibration
or parameter identification of a numerical model means finding the set of parameters p such that the com-
puted response given by a simulation of a test y.(p) is as close as possible to the experimental response yey.
When Ny calibration tests are performed, this implies solving the optimization problem:

p= argl;leig{wl(p),...,wm(p)} A1)

NYexp,i—Ye,i (P
Myexpll
imental and computed quantities for the i-th test, and P the set of all possible parameters combinations. The

minimization of w; may be accomplished by using different optimization methods. In the present case, the
solution of Equation A.1 is obtained by means of the non-dominated Sorting Genetic Algorithms II, NSGA-II,
coupled to Linear Ranking based on domination and crowding distance, and Blend-«a crossover.

where w (p) = is the discrepancy function measuring the inconsistency between the exper-

In the context of multi-objective optimization, the concept of Pareto optimality replaces the usual notion
of optimality. A solution is referred to as Pareto optimal if it is not dominated by any other solution. The
ensemble of all Pareto optimal solutions is said Pareto Front PF, and it represents the general solution of
Equation A.1. At the end of the analysis, a unique compromise solution pcompr may be extracted from the
Pareto Front, according to the rule:

= i - i A.2
Pcompr arg;]relll)r}llw(p) Wytopiall (A.2)
where w(p) = [w1 (P .. Ny (p)] T and Wyropia is the vector of the minimum discrepancy.
A.2, Calibration of the flag-shaped hysteretic model
In this appendix, the outcomes of the optimization algorithm used for the calibration of the 8 coefficient of
the flag-shaped rule are presented. The material mode relies on 4 parameters: My, K1, K2, and . While first
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3 are fixed, since computed based on the mechanics formulation of Chapter 2, the  parameter reflects the
energy dissipation coming from the sliding at the joint
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Appendix

B.1. Earthquake records

The ground motion for the point cloud analyses are selected from a database of over 4000 accelerograms,
which has been set up for the non-linear dynamic analyses, by combining recordings from the NGA1 [17],
European and Groningen databases [8]. The moment magnitude, epicentral distance and 5-75% significant
duration for each accelerogram has been obtained/calculated, and it has been ensured that they cover the
range of these parameters used in the probabilistic risk assessment for the Groningen field. In particular, the
magnitude range has been taken to be between 3.5 and 6.5, and epicentral distances up to 60 km have been
used.
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B.2. Quasi-static loading protocol
In the figure below, the reference loading protocol adopted for the quasi-static tests in the laboratory and
numerical simulations is presented. For each test, the curve is scaled in the x-axis in order avoid the activation

of inertia forces. Analogously, the curve is scaled in y-axis to ensure the deformation of the systems into the
inelastic range.
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Figure B.12: Loading protocol for quasi-static analyses






Appendix

C.1. Impact of the vertical component of the ground motion

It is known that for shallow earthquakes, the ratio vertical to horizontal PGA of the ground motion is close to
the unit, differently from the typical tectonic events, in which the S-waves predominate on the P-waves. This
has been indeed observed in the signal recorder by the accelerometers located near Westeremden on the 16th
of August, 2012 (Figure C.1).
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Acceleration (cm/s2)
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Figure C.1: Radial, transversal and vertical components recorded on 16th of August, 2012 near Westeremden [25]

However, for several reasons, the structural systems under consideration are not considered to be sensi-
tive in the vertical direction:
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* The buildings are designed to resisted the vertical gravity loads;

* The system does not include horizontal or nearly horizontal structural members spanning 20 m or
more [15];

* The system does not include horizontal or nearly horizontal cantilever components longer than 5 m
(155

In addition, the URM structure could be potentially affected in case of lose floor to wall connections,
unable to prevent the uplift of the diaphragm, or in case of a loose soil supporting the foundation system.
However, as mentioned above, in the present work, connection failure, as well as soil structure interaction are
not been investigated.

Despite of the reasons discussed here, it has been decided to carry out a sensitive study on the effect
of vertical component of the ground motion on the response of an URM building prototype. It is the one
presented in Chapter 6. First, the analysis is performed applying the acceleration history on in the weak
direction of the buildings (i.e. only horizontal component). Then, the same analysis is performed, including
also the vertical component of the accelerogram. The results are presented in Figure C.2.
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Figure C.2: Global hysteresis comparison: horizontal GM component of the only, and both horizontal and vertical GM components

It can be noticed that although the PGA level in the vertical direction is up to 3g, and the ratio vertical to
horizontal around 0.6g, the response seems not to be affected by the introduction of the vertical motion. In
particular, the same failure mechanism is induced (i.e. rocking mode - Figure C.3) and while the capacity and
maximum drift achieved differ from less than 5% (Figure C.2).
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Figure C.3: Damage state at peak displacement due to pier rocking for H GM only (top) and for H and V (bottom)







Appendix

D.1. Sinusoidal input motion

The slender pier specimen modelled with shell elements and lumped plasticity, described in Section 5.1 is
subjected to a sinusoidal input acceleration signal order to assess the impact of the shock-effect observed in
Section 5.3.1 and described in [46]. It is a short-duration, high-velocity contact in a dynamic domain able to
induce short-duration large-amplitude accelerations, both in horizontal and vertical directions (horizontal
acceleration spikes and vertical acceleration spikes).

Figure D.1: Sinusoidal input motion test on a slender wall component

This has not been observed in the QS tests performed at EUCentre and Pavia [3]. Being the displacement
applied with a very low rate, inertia effects are prevented.

Firstly, the specimen in subjected to a sinusoidal acceleration record, with a low amplitude, such that the
response of the systems remain linear throughout the duration of the test. The output in terms of acceleration
history recorded at the top node of the specimen is presented below.
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Figure D.2: Acceleration history comparison - Low intensity sinusoidal input motion

6.0

In the linear-range, the response of the two systems in really close. The rocking mode has not developed
yet, therefore, no impact effects can arise at the bed-joint locations. In addition, the same signal is scaled up
in such a way to induce the non-linearity in the system. The outputs in terms of displacement, base shear
force, acceleration history and energy history are presented below.
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Figure D.3: Acceleration history - High intensity sinusoidal input motion

6.0

From the top node acceleration history of the LS-DYNA model, it is evident the presence of high frequency
spikes of horizontal acceleration. These are due to the impact phenomenon at the mortar joint location, due

to opening and closing of the gaps.
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Figure D.4: High-frequency impact phenomenon due to bed-joint opening and closing

The same high frequency vibrations can be noticed in the vertical acceleration history recorded at the top
of the shell element wall. Of course, these vibrations cannot be captured my the macro-element mode. The
width of the pier is not explicitly introduced in the model. For such a purpose, one would need a multi-spring
fiber model, with contact springs.

Figure D.5: Multi-spring fiber based model

However, one may realize that, with such a representation, the computational demand would increase
significantly. In addition, the infinitely stiff boundary conditions enforced in the model are likely to overesti-
mate this phenomenon. In a real system, neither the bottom, nor the top of the wall are fully fixed, due to the
presence respectively of the soil and the upper floor.
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Figure D.6: Vertical acceleration spikes due to impact effect - High intensity sinusoidal input motion

Naturally, the base shear force history of the LS-DYNA model presents the same frequency content as the
horizontal acceleration, leading to spurious capacity values.
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Figure D.7: Base shear history - High intensity sinusoidal input motion

In [46], the results of the full scale Knoxville laboratory test on a reinforced concrete wall are presented.
It is an in-plane uni-axial dynamic test. From the top acceleration history displayed below, it is clear the

gap contact phenomenon influences the response: a short duration mode is super-imposed to the dominant
larger rocking mode.
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Figure D.8: Horizontal acceleration spikes observed for Knoxville dynamic test on RC rocking wall [46]
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In this appendix, the damage state comparison is presented, for pier components with and without flange.

E.1. Flange effect in slender component
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Figure E.1: Average acceleration method [19]
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Figure E.2: Average acceleration method [19]

E.2. Flange effect in squat component
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Figure E.3: Average acceleration method [19]



E.2. Flange effect in squat component 121

Max Displacement in
any cracking mode

00
o7
i3
20
26
33
40
46
53
60
66
73
79

86

[mm)

Figure E.4: Average acceleration method [19]
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