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Abstract

In this thesis we study the boundedness of a generalization of the Hardy-
Littlewood maximal operator, involving rearrangement invariant Banach func-
tion space and indices of the spaces. We first consider a classical proof of
boundedness of the Hardy-Littlewood maximal operator on rearrangement
invariant Banach function spaces. After establishing necessary and sufficient
conditions for the boundedness of the Hardy-Littlewood maximal operator,
we consider a generalization of the Hardy-Littlewood maximal operator intro-
duced by C. Pérez. We investigate and slightly improve the known sufficient
conditions under which this more general maximal operator is bounded on a
rearrangement invariant Banach function space. After which we search and
find necessary conditions for boundedness in a general setting. In the final
section we study Boyd indices and fundamental indices, especially how they
are related to boundedness of the more general maximal operator. We also
introduce weak fundamental indices and investigate some of their properties
and uses. Finally we show how under certain assumptions we can state equiv-
alent necessary and sufficient conditions for boundedness on Lorentz spaces
Lp,q and Orlicz spaces LΨ.
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Introduction

The Hardy-Littlewood maximal operator is a classical operator used in real
and harmonic analysis. We know a lot about the classical operator, for
example its boundedness from L1 into weak L1, or the fact that it is bounded
on Lp for 1 < p ≤ ∞. A well known proof by G.G. Lorentz & T. Shimogaki
states sufficient and necessary conditions for boundedness on rearrangement
invariant Banach function spaces. In Chapter 2 we will investigate this proof
for a better understanding of the Hardy-Littlewood maximal operator.

There are a lot of generalizations of the Hardy-Littlewood maximal op-
erator, like the fractional maximal operator or a maximal operator based
on a general set function [6]. One such generalization is a maximal opera-
tor based on different rearrangement invariant norms, studied in [8]. They
give sufficient conditions for boundedness on rearrangement invariant Banach
function spaces. The result yields a condition for boundedness on weighted
Lp spaces. In this paper we investigate this generalization further, in hopes
of gaining a better understanding and finding more results.

Boyd indices prove useful in the theorem for boundedness of the Hardy-
Littlewood maximal operator. They will also be useful when studying the
more general maximal operator. They will however not be enough. Another
index of rearrangement invariant space is the fundamental index, which was
shown to not always be equal to the Boyd indices by T.Shimogaki. These
indices not only help us state the conditions for boundedness in a more read-
able fashion, they also improve the intuitive understanding of the results.
We will state the sufficient and necessary conditions for boundedness of the
general maximal operator in terms of Boyd, fundamental and weak funda-
mental indices. The weak fundamental indices are introduced in section 2.3,
where we discuss and explore their properties.
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Chapter 1

Preliminaries

Notation

• Let (R, µ) be a measure space.

• L(R, µ) is the set of µ-measureable functions.

• L0(R, µ) ⊆ L(R, µ) is a set of µ-a.e. finite functions.

• For any function space L containing functions mapping into [−∞,∞],
we denote the subset of functions mapping into [0,∞] as L+ ⊆ L.

• We use R+ as (0,∞).

• We use B(X, Y ) to denote the set of operators bounded from X into
Y , for convenience we write B(X,X) = B(X).

• We use
∫∞

0
f ∗(s)dϕ(s) = lims↓0 f

∗(s)ϕ(s)+
∫∞

0
f ∗(s)ϕ′(s)ds for a Riemann-

Stieltjes integral.

• We say a function f : R → R is locally in a Banach function space
X when for all compact sets E ⊆ R, fχE is in X. We denote the
collection of function that are locally in X by Xloc. Additionally, we
say f is locally integrable if f ∈ L1

loc.
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In this chapter we first introduce the reader to Banach function spaces,
discussing under which assumptions we work in this paper, and stating some
fundamental theorems. In second section we introduce the reader to rear-
rangements and rearrangement invariant Banach function spaces. We investi-
gate some useful tools like the elementary maximal operator, the Luxemburg
representation theorem and the fundamental function. Along the way we
also give examples of rearrangement invariant Banach function spaces.

1.1 Banach function spaces

Definition 1.1.1. Suppose ‖·‖X is a norm and let

X = {f ∈ L0(R, µ) :‖f‖X <∞}

Then
(
X, ‖ · ‖X

)
, or just X, is called a Banach function space, if the following

properties hold for all f, g, fn, (n = 1, 2, . . .), in L0(R, µ) and all measurable
subsets E of R.

(i) (the lattice property) If |g| ≤ |f | µ-a.e. and f ∈ X, then g ∈ X and
‖g‖X ≤ ‖f‖X .

(ii) (the Fatou property) Suppose fn ∈ X, fn ≥ 0, (n = 1, 2, . . .), and fn ↑ f
µ -a.e. If f ∈ X, then ‖fn‖X ↑ ‖f‖X whereas if f /∈ X, then ‖fn‖X ↑
∞.

(iii) Every indicator function χE of a set E of finite measure belongs to X.

(iv) To each set E of finite measure there corresponds a constant 0 < CE <
∞ such that ∫

E

|f |dµ ≤ CE‖f‖X

Note that, if we were to replace L0(R, µ) with L(R, µ), we would find that
X ⊆ L0 (see for example [1, Lemma I.1.4]). Intuitively this makes sense, as
we are only excluding f that are valued ∞ on positive measure sets. From
Fatou’s property, we get

Corollary 1.1.2 (Fatou’s lemma). If fn ∈ X, (n = 1, 2, . . .), fn → f µ-a.e.
and lim infn→∞ ‖fn‖X <∞, then f ∈ X and ‖f‖X ≤ lim infn→∞ ‖fn‖X .

Fatou’s lemma is then used to show that X is complete ([1, Theorem
I.1.6]).
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Example 1.1.3. Some familiar Banach function space are the Lebesgue spaces
associated with 1 ≤ p ≤ ∞, denoted by Lp. Let

‖f‖Lp =


(∫

R
|f |pdµ

)1/p
, (1 ≤ p <∞)

ess sup
R
|f |, (p =∞)

f ∈ L0(R, µ)

Indeed, property (i) follows from the linearity of the integral, (ii) from the
monotone convergence theorem, (ii) follows from the fact that charactaristic
functions on finite measure space have a finite integral and (iv) follows from
Hölder’s inequality.

Before we continue with rearrangements, it is useful to first consider some
properties of general Banach function space. We first look at the associate
space of a Banach function space for a useful representation of the norm.
Later, the associate space will be useful in getting a better understanding
of fundamental functions, which can tell us a lot about the Banach function
spaces they belong to (see Definition 1.2.13).

Definition 1.1.4. Let X be a Banach function space. The associate space
of X, denoted by X ′, is also a Banach function space. Its norm is given by:

‖g‖X′ = sup

{∫
R

|fg|dµ : f ∈ X,‖f‖X ≤ 1

}
In the case of Lp spaces, when 1 ≤ p < ∞, (Lp)′ = Lp

′
is the associate

space, with p′ satisfying 1
p

+ 1
p′

= 1. A classical inequality that goes hand in
hand with the definition of the associate space is Hölders inequality:∫

R

|fg|dµ ≤‖f‖X‖g‖X′

Though Hölder’s inequality is very useful and well known in analysis, we
won’t be using it all too often in this paper.

Theorem 1.1.5. Every Banach function space X coincides with its second
associate space X ′′. In other words, a function f belongs to X if and only if
it belongs to X ′′, and in that case ‖f‖X =‖f‖X′′

For a proof, see [1, Theorem I.2.7]. This gives us

‖f‖X = sup

{∫
R

|fg|dµ : g ∈ X,‖g‖X′ ≤ 1

}
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which is a useful representation, especially for proving the Luxemburg rep-
resentation theorem. Finally, we consider separability and the absolutely
continuity of the norm, which is a useful property, as it implies density of
the simple functions in some classes of function space.

Definition 1.1.6. A Banach function space X is said to have absolutely
continuous norm if for all f ∈ X, ‖fn‖X → 0 for every sequence {fn}∞n=1

satisfying fn ↓ 0 µ-a.e.

Example 1.1.7. A familiar space that does not have an absolutely continuous
norm is L∞. Indeed, we see that for fn = χEn , where En has positive but
finite measure for all n, such that fn ↓ 0 µ-a.e. Then we have‖χEn‖L∞ = 1
for all n.

We call a Banach space X separable when it contains a countable subset
that is dense. For Banach function spaces defined on a separable measure,
separability coincides with having an absolutely continuous norm (for proof,
see [1, Corollary I.5.6]). Note that for our purposes, only the first condition
will matter, as we only use separability when discussing spaces defined on
subspaces of Rd with the Lebesgue measure, which are indeed separable.

Theorem 1.1.8. Let X be a Banach function space on a separable measure
space (R, µ). If X is separable, then the simple functions are dense in X.
That is, for all f ∈ X and ε > 0 there exists a simple function g ∈ X such
that ‖f − g‖X < ε.

This is a result of [1, Theorem I.3.11] and the fact that X has an absolute
continuous norm when it is separable. Going back to example 1.1.7, we see
that indeed a function like f = χR with R of infinite measure. Then if
fn is a sequence of simple functions fn, we have µ({fn > 0}) < ∞. Then
‖fn − f‖L∞ ≥ 1, thus there does not exist a sequence of simple functions that
approaches f in L∞.

1.2 Rearrangement invariant Banach function

spaces

Now we are finally ready to introduce rearrangements, rearrangement invari-
ant norms and their properties. From this point on we will assume (R, µ)
to be a σ-finite measure space. We say a measure space is σ-finite when all
element of its σ-algebra, including R itself, can be represented as a count-
able union of sets of finite measure. The following definition will be useful
for making “rearranging” a function a more rigorous process.
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Definition 1.2.1. The distribution function µf of a function f in L0(R, µ)
is given by

µf (λ) = µ
(
{x ∈ R : |f(x)| > λ}

)
, (λ ≥ 0)

Note that µf only depends on |f |, similar to norms of Banach function
spaces. Observe that we do allow for µf to be +∞, as we are working in a
σ-finite measure space rather than a finite one.

Definition 1.2.2. Two functions f ∈ L0(R, µ) and g ∈ L0(S, ν) are said to
be equimeasurable if they have the same distribution functions, i.e.

µf (λ) = νg(λ), (λ ≥ 0)

Note that we require equality for all λ ≥ 0, but due to the right con-
tinuity of the distribution this is equivalent to being equal a.e. To better
understand the distribution of a function we introduce some basic properties
in the following proposition:

Proposition 1.2.3. Suppose f, g, fn, (n = 1, 2, . . . ), belong to L0(R, µ), let
A,B ⊆ R be disjoint and let a ∈ R \ {0}. The following hold:

µf is non-negative, decreasing and right continuous on [0,∞)

|g| ≤|f | a.e. =⇒ µg ≤ µf

µaf (λ) = µf

(
λ

|a|

)
, (λ ≥ 0)

µf+g(λ1 + λ2) ≤ µf (λ1) + µg(λ2), (λ1, λ2 ≥ 0)

|f | ≤ lim inf
n→∞

|fn| µ-a.e. =⇒ µf ≤ lim inf
n→∞

µfn (1.1)

µfχA∪B(λ) = µfχA(λ) + µfχB(λ) (λ ≥ 0) (1.2)

We only give a proof for (1.2), for the other properties a proof is given in
[1, Proposition II.1.3].

Proof.

µfχA∪B(λ) =µ({x ∈ R : |fχA∪B| > λ})
=µ({x ∈ R : |fχA|+ |fχB| > λ})
=µ({x ∈ A : |f(x)| > λ} ∪ {x ∈ B : |f(x)| > λ})
=µ({x ∈ A : |f(x)| > λ}) + µ({x ∈ B : |f(x)| > λ})
=µfχA(λ) + µfχB(λ)
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Example 1.2.4. To understand how a distribution function works, it will help
to compute the distribution function of a nonnegtive simple function f . Let

f =
n∑
i=1

aiχEi

be such that Ei are pairwise disjoint and all ai distinct and such that a1 >
a2 > · · · > an > 0. Then for a1 ≤ λ we have µf (λ) = 0, but for a2 ≤ λ < a1

we have that µf (λ) = µ(E1). Similarly we find for a3 ≤ λ < a2 that µf (λ) =
µ(E1) + µ(E2). Then we have

µf (λ) =
n∑
i=1

 i∑
j=1

µ(Ej)

χ[ai+1,ai)(λ) =
n∑
i=1

µ(Ei)χ[0,ai)(λ)

where an+1 = 0.

Definition 1.2.5. Suppose f belongs to L0(R, µ). The decreasing rearrange-
ment of f is the function f ∗ defined on [0,∞) by

f ∗(t) = inf
{
λ : µf (λ) ≤ t

}
, (t ≥ 0) (1.3)

We make use of the convention that inf ∅ = ∞. However, when f ∈
L0(R, µ) we have that f is finite µ-a.e. Thus f ∗(t) =∞ can only happen for
t = 0, when f is an element of a Banach function space. An interesting iden-
tity for equation (1.3) follows from the right continuity of µf , the decreasing
property of µf and the definition of distribution functions:

f ∗(t) = sup{s : µf (s) > t} = λµf (t) (1.4)

where λ is the Lebesgue measure.

Example 1.2.6. Let f be as in example 1.2.4, and let mi =
∑i

j=1 µ(Ei). By
definition we find f ∗(t) = 0 when t ≥ mn, f ∗(t) = an when mn ≥ t > mn−1.
We find

f ∗(t) =
n∑
i=1

aiχ[mi−1,mi)(t).

This makes sense intuitively, as we now have that f ∗(t) = a1 for 0 ≤ t < |E1|,
etc. such that f ∗ is indeed a decreasing function on R+ such that it is
equimeasurable with f .

Another interesting example to build some intuition is f(x) = 1 − 1
t+1

for t ∈ (0,∞). Its distribution function is simple to compute: µf (λ) = ∞
for 0 ≤ λ < 1 and µf (λ) = 0 for 1 < λ. Then f ∗(t) = 1 for t > 0. This
example shows that rearranging a function may throw away some information
of a function. However, we will study exactly those spaces for which such
information is irrelevant.
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Some more interesting properties of rearrangements will be introduced in
the next proposition.

Proposition 1.2.7. Suppose f, g, and fn, (n = 1, 2, . . .), belong to L0(R, µ),
let a be any scalar and let h(t) : [0,∞)→ [0,∞) be a strictly increasing func-
tion that vanishes in 0. The decreasing rearrangement f ∗ is a non-negative,
decreasing, right-continuous function on [0,∞). Furthermore

|g| ≤ |f | µ-a.e. ⇒ g∗ ≤ f ∗ (1.5)

(af)∗ = |a|f ∗

(f + g)∗ (t1 + t2) ≤ f ∗ (t1) + g∗ (t2) , (t1, t2 ≥ 0) (1.6)

|f | ≤ lim inf
n→∞

|fn| µ-a.e. ⇒ f ∗ ≤ lim inf
n→∞

f ∗n (1.7)

in particular,

|fn| ↑ |f | µ-a.e. ⇒ f ∗n ↑ f ∗ (1.8)

µf
(
f ∗(t)

)
≤ t,

(
f ∗(t) <∞

)
f and f ∗ are equimeasurable (1.9)(
|f |p
)∗

= (f ∗)p , (0 < p <∞) (1.10)

(fg)∗(t) ≤ f ∗(t)g∗(t) (1.11)

∀t ∈ [0,∞),∃λ ∈ [0,∞) : h(t)f ∗(t) ≤ λh(µf (λ)) (1.12)

Proof. Proofs for (1.5)-(1.10) can be found in [1, Proposition II.1.7], (1.11)
can be found at [5, pg.67, 10◦].

For (1.12), we use the identity in equation (1.4) to get

f ∗(t) = sup{λ : µf (λ) > t} (1.13)

Then assume that there exists a t ∈ [0,∞) such that h(t)f ∗(t) > λh(µf (λ))
for all λ ∈ [0,∞), we will show this leads to a contradiction. we find that

h(t)f ∗(t) > sup{λh(µf (λ)) : λ ∈ [0,∞)}
≥ sup{λh(µf (λ)) : µf (λ) > t, λ ∈ [0,∞)} (1.14)

Now, if (1.14) is equal to 0, our assumption on h tells us that there is no
λ > 0 such that µf (λ) > t. By (1.13) we find that f ∗(t) = 0, which is a
contradiction. Now assume that (1.14) is not equal to 0, then we get:

h(t)f ∗(t) ≥ sup{λh(µf (λ)) : µf (λ) > t}
> sup{λh(t) : µf (λ) > t} = h(t)f ∗(t)

Note that the last inequality is strict due to h(t) being strictly increasing.
This is again a contradiction, concluding the proof.
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Consider an inequality by Hardy & Littlewood,∫
R

|fg|dµ ≤
∫ ∞

0

f ∗(s)g∗(s)ds (1.15)

for a proof, see [1, Theorem II.2.2]. An intuitive way to look at the inequal-
ity would be to see the difference between the two as how “resonant” two
functions are. The more resonant they are, the smaller the difference. In this
analogy the right side would be like a forced perfect resonance by rearrang-
ing both functions to have their peaks at the same point. This idea becomes
more rigorous in the following definition:

Definition 1.2.8. A σ-finite measure space (R, µ), is said to be resonant if,
for each f, g in L0(R, µ), the following identity holds∫ ∞

0

f ∗(t)g∗(t)dt = sup

{∫
R

|fg̃| dµ : g̃ ∈ L0(R, µ), µg = µg̃

}
.

Trivial examples like a measure space with zero measure are clearly res-
onant. It is hard to see when a space in general is resonant. We will not
delve into the proofs of the following results, as they are not relevant to this
paper. They can be found in [1, Section II.2]. We will be using [1, Theorem
II.2.7], which states: a σ-finite measure space is resonant if and only if it is
one of the following two types:

(i) nonatomic;

(ii) completely atomic, with all atoms having equal measure.

An atom is a single element x ∈ R with positive measure µ({x}) > 0, a
nonatomic space is a space without atoms. An example of a resonant measure
space which we will be using a lot, is Rd with the Lebesgue measure. In our
pursuit for defining more general maximal function, we first introduce an
elementary maximal function.

Definition 1.2.9. Let f belong to L0(R, µ). We call f ∗∗ the maximal func-
tion of f defined by

f ∗∗(t) =
1

t

∫ t

0

f ∗(s)ds, (t > 0)

We will later find that the boundedness of this maximal function is equiv-
alent to that of the Hardy-Littlewood maximal function (see 2.1.7). Some
elementary properties of f → f ∗∗ are the following:
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Proposition 1.2.10. Suppose f, g, and fn, (n = 1, 2, · · · ), belong to L0(R, µ),
and let a be any scalar. Then f ∗∗ is non-negative, decreasing and continuous
on (0,∞). Furthermore, the following properties hold:

f ∗∗ ≡ 0 ⇐⇒ f = 0 µ-a.e.

f ∗ ≤ f ∗∗

|g| ≤ |f | µ-a.e. =⇒ g∗∗ ≤ f ∗∗

(af)∗∗ = |a|f ∗∗

|fn| ↑ |f | µ-a.e. =⇒ f ∗∗n ↑ f ∗∗.

A proof is given in [1, Proposition II.3.2]. Applying the inequality in
(1.15) to functions f and g = χE we find that

1

µ(E)

∫
E

|f |dµ ≤ f ∗∗(µ(E))

for all measurable sets E. If we have a resonant measure space we may take
the supremum over sets E of equal measure to find equality:

sup
E:µ(E)=t

1

µ(E)

∫
E

|f |dµ = f ∗∗(t)

For a proof, see [1, Proposition II.3.3]. Then on a resonant measure space
(R, µ) we find for t in the range of µ that f → f ∗∗ is subadditive:

(f+g)∗∗(t) = sup
|E|=t

1

µ(E)

∫
E

|f+g|dµ ≤ sup
|E|=t

1

µ(E)

∫
E

|f |+|g|dµ ≤ f ∗∗(t)+g∗∗(t)

(1.16)
Now that the rearrangements of functions have been well-defined and

understood, we are ready to define the spaces we will use throughout this
paper.

Definition 1.2.11. Let X be a Banach function space. We say X is rear-
rangement invariant(r.i.), when equimeasurable functions are equal in norm.
That is,

λ ≥ 0, µg(λ) = µf (λ) =⇒ ‖f‖X =‖g‖X .

r.i. Banach function spaces is a very general class of Banach function
spaces, including Lp, Lorentz spaces1 Lp,q and Orlicz spaces LΨ. We will

1Note that we use a slightly different norm from the usual norm. This is because the
usual norm is actually only a quasi-norm and does thus not define a Banach function
space.
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introduce latter two later. From [1, Proposition II.4.2] we find that, when X
is r.i., X ′ is also r.i. and the associate representation of the norm is equal to
the following representation:

‖f‖X = sup

{∫ ∞
0

f ∗(s)g∗(s)ds :‖g‖X′ ≤ 1

}
.

As a result, we find that on r.i. spaces that:∫
R

|fg|dµ ≤
∫ ∞

0

f ∗(s)g∗(s)ds ≤‖f‖X‖g‖X′

for f ∈ X and g ∈ X ′. The following result is the final norm representation
we will discuss in this paper. It shows that every r.i. norm may be represented
as an equivalent norm on R+. We will use this representation frequently.

Theorem 1.2.12 (Luxemburg representation theorem). Let X be a r.i. Ba-
nach function space over a resonant measure space (R, µ). Then there is a
(not necessarily unique) r.i Banach function space X̄ over (R+, λ) such that

‖f‖X =‖f ∗‖X̄ , (f ∈ L0(R, µ))

Furthermore, if Ȳ is any r.i. Banach function space over (R+, λ) which
represents X, in the sense that

‖f‖X =‖f ∗‖Ȳ , (f ∈ L0(R, µ))

then the associate space X ′ of X is represented in the same way by the asso-
ciate space Ȳ ′ of Ȳ , that is,

‖g‖X′ =‖g∗‖Ȳ ′ , (g ∈ L0(R, µ))

We refer to [1, Theorem II.4.10] for a proof. An interesting result of
the Luxemburg representation theorem is that r.i. spaces over a resonant
measure space (R, µ) are determined by r.i. spaces over (R+, λ). Note that,
the space X̄ is unique when restricted to [0, µ(R)). Thus, X is represented
uniquely if R has infinite measure, like Rd. One could also say that X on
(R, µ) is generated by X̄. A well known representation that is of this form
is of Lp(R, µ) for 1 ≤ p <∞:∫

R

|f |pdµ =

∫ ∞
0

(f ∗(t))pdµ =‖f ∗‖p
Lp

(1.17)
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For a nonnegative simple function f =
∑K

k=1 akµ(Ek) with aj in decreasing
order, we indeed have:∫

R

|f |pdµ =
K∑
k=1

apkµ(Ek) =
K∑
k=1

akλ
(
[µ(Ek−1), µ(Ek)

)
=

∫ ∞
0

(f ∗(t))p

where E0 = ∅ and λ is the Lebesgue measure. Using the monotone con-
vergence theorem and properties (1.7), (1.1) then gives the result for all
f ∈ Lp(R, µ). For L∞ we have a more obvious representation:

‖f‖L∞ = ess sup
x∈R
|f(x)| = inf{λ : µf (λ) = 0} = f ∗(0).

A useful way to characterize r.i. Banach function spaces is by how their
norm acts on characteristic function. Especially because characteristic func-
tions on sets of equal measure are equal in norm.

Definition 1.2.13. Let X be a r.i. Banach function space on a resonant
measure space (R, µ), then for t in the range of µ we have

ϕX(t) :=‖χA‖X , µ(A) = t

is called the fundamental function of X. The function is well defined on X
as it is r.i., so when we have A,B ⊂ R for which µ(A) = µ(B) we get that
χA and χB are equimeasurable so that ‖χA‖X =‖χB‖X .

Some useful things we know about the fundamental function are as fol-
lows:

Proposition 1.2.14. Let X be a r.i. Banach function space over a resonant
measure space (R, µ). Then the fundamental function ϕX of X satisfies:

ϕX(t)ϕX′(t) = t, (0 < t <∞) (1.18)

ϕX is increasing; ϕX(t) = 0 iff t = 0

t 7→ t−1ϕX(t) is decreasing (1.19)

ϕX is continuous, except perhaps at the origin.

ϕX(t)

t
≥ ∂

∂t
ϕX(t) for a.e. t > 0 (1.20)

Proof. We only prove property (1.20), for the proof of the other properties
we refer to [1, Theorem II.5.2, Corollary II.5.3]. Note that ϕX is a monotone
continuous function and therefore differentiable almost everywhere on (0,∞),
see [10, Chapter 7]. Using property (1.19) we get

0 ≥ ∂

∂t

[
ϕX(t)

t

]
=

(
∂
∂t
ϕX(t)

)
t− ϕX(t)

t2

17



then since t > 0 this is equivalent to:

0 ≥
(
∂

∂t
ϕX(t)

)
t− ϕX(t)

ϕX(t)

t
≥ ∂

∂t
ϕX(t)

Note that we have the inequality for exactly the t where ϕX(t) is differen-
tiable, which is exactly where we will be using it.

Two r.i. Banach function spaces can be equivalent in the sense that
they have the same functions, but not have equal norm. For example, if
‖f‖X = 2‖f‖Y , then f ∈ X ⇐⇒ f ∈ Y . Two spaces and their norms are
called equivalent when the spaces contain exactly the same functions. We
only say two spaces are equal when their norms are equal. Using the following
lemma, we find that even though a r.i. Banach norm isn’t necessarily such
that its fundamental function is concave, there always exists an equivalent
r.i. Banach norm such that it has a concave fundamental function. Note that
we do know the fundamental is always quasi-concave [1, Corollary II.5.3].

Lemma 1.2.15. Let X be a r.i. Banach function space over
(
R+, λ

)
. Then

X can be equivalently renormed with a r.i. norm such that the resulting
fundamental function is concave.

For a proof, see [1, Proposition II.5.11]. Using The Luxemburg represen-
tation theorem, we find that any r.i. Banach function space over a resonant
measure space may be renormed in such a way.

Definition 1.2.16. Let X be a r.i. Banach function space over
(
R+, λ

)
and

suppose X has been renormed as in Lemma 1.2.15 so that its fundamental
function ϕX is concave. The Lorentz spaces Λ(X) and M(X) are defined as
follows. The space M(X) consists of f in L0

(
R+, λ

)
such that the following

norm is finite:
‖f‖M(X) = sup

0<t<∞

{
f ∗∗(t)ϕX(t)

}
The space Λ(X) consists of all f in L0

(
R+, λ

)
for which

‖f‖Λ(X) =

∫ ∞
0

f ∗(s)dϕX(s) = lim
s↓0

ϕX(s)f ∗(s) +

∫ ∞
0

f ∗(s)ϕ′X(s)ds (1.21)

is finite.
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Theorem 1.2.17. Let X be a r.i. Banach function space over
(
R+, λ

)
and,

suppose X has been renormed to have concave fundamental function ϕX .
Then the Lorentz spaces Λ(X) and M(X) are r.i. Banach function spaces
and each has fundamental function equal to ϕX . Furthermore

Λ(X) ↪→ X ↪→M(X)

and each of the embeddings has norm 1

For a proof, see [1, Theorem II.5.13]. Due to the fact that these Lorentz
spaces only depend on the fundamental function of X we sometimes write
MϕX = M(X) and ΛϕX = Λ(X).

Remark 1.2.18. On the definition of the norm of Λ(X). We note that when
ϕX is continuous on [0,∞), we don’t have to consider the limit. This limit
is only necessary for when ϕX is discontinuous in 0. Then the derivative
ϕ′X only represents ϕX on (0,∞). The integral on the right side of (1.21)
acts as ‖f‖Λ(X) =

∫∞
0
f ∗(s)dϕ̃X(s), where ϕ̃X is equal to ϕX on (0,∞) and

ϕ̃X(0) = ϕX(0+).
A good example of when the limit is nonzero is L∞, where the Riemann-
stieltjes integral is defined as follows: a partition Pn of [0, n] is of the form
Pn = {0 = x0, x1, · · · , xk} with 0 < |xi − xi+1| < 1

n
, then define

S(Pn, f
∗, ϕX) :

k∑
i=1

f ∗(xi)[ϕX(xi)− ϕX(xi−1)]

then we have that ∫ ∞
0

f ∗(s)dϕX(s) = lim
n→∞

S(Pn, f
∗, ϕX)

Then since ϕL∞(t) = χ(0,∞) we find that∫ ∞
0

f ∗(s)dϕX(s) = lim
n→∞

S(Pn, f
∗, ϕX)

= lim
n→∞

f ∗(x1)χ(0,∞)(x1)

= lim
s↓0

f ∗(s)ϕL∞

= lim
s↓0

f ∗(s)ϕL∞ +

∫ ∞
0

f ∗(s)ϕ′L∞(s)ds

where the last equality is due to ϕ′L∞(s) = 0 on (0,∞).
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Definition 1.2.19. Suppose 1 < p < ∞ and 1 ≤ q ≤ ∞. For f ∈ L0(R, µ)
we define:

‖f‖p,q =


{∫∞

0
[t1/pf ∗∗(t)]q dt

t

} 1
q

(1 ≤ q <∞)

sup
0<t<∞

{t1/pf ∗∗(t)} (q =∞)

Then Lp,q(Rd) with its norm defined by‖·‖p,q is a r.i. Banach function space.

For a proof of the last statement, see [1, Theorem IV.4.6]. For 1 < p <
∞ we have that Lp,p is equivalent to Lp(see [1, Lemma IV.4.5]). We also
introduce the following

ρp,q(f) =


{∫∞

0
[t1/pf ∗(t)]q dt

t

} 1
q

(1 ≤ q <∞)

sup
0<t<∞

{t1/pf ∗(t)} (q =∞)

(1.22)

Note the subtle difference with the norm of Lp,q, we use f ∗ instead of f ∗∗.
By [1, Lemma IV.4.5], we get that

ρp,q(f) ≤‖f‖p,q ≤
p

p− 1
ρp,q(f).

ρp,q is easier to work with, but it does not always define a norm.

‖f‖M(Lp) = sup
0<t<∞

ϕLp(t)

t

∫ t

0

f ∗(s)ds = sup
0<t<∞

t1/pf ∗∗(t) =‖f‖Lp,q

It is a norm in the case that 1 ≤ q ≤ p <∞ (see [1, Theorem IV.4.3].

Example 1.2.20. For L1, with ϕL1(t) = t, it’s easy to see that Λ(L1) = L1 =
M(L1). Indeed, for f ∈ L0:

‖f ∗‖Λ(L1) =

∫ ∞
0

f ∗(s)ds =‖f ∗‖L1 = sup
s>0

∫ s

0

f ∗(t)dt =‖f ∗‖M(L1) (1.23)

For Lp with 1 < p <∞, we have ϕLp = t
1
p ,

‖f ∗‖M(Lp) = sup
s>0

s
1
p
−1

∫ t

0

f ∗ds

Hence we find that for f ∗ = t−
1
pχ[1,∞) we have f ∗ ∈ M(Lp) but f ∗ /∈ Lp, so

that M(Lp) 6= Lp but rather M(Lp) = Lp,∞. For Λ(Lp) we find:

‖f‖Λ(Lp) =

∫ ∞
0

f ∗(t)d(t1/p) =
1

p

∫ ∞
0

t1/p−1f ∗(t)dt

We see that ‖·‖Λ(Lp) has an equivalent norm to Lp,1.
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Chapter 2

Maximal Operators on
Rearrangement Invariant
Banach Function Spaces

Now that we have all the necessary knowledge of (r.i.) Banach function
space, we are ready explore maximal functions. Of course we already saw
the seemingly more elementary maximal function defined on rearrangements,
but in practice it can be challenging to compute the rearrangement of a
function. In this chapter we first look at the Hardy-Littlewood maximal
operator, which is more naturally defined on functions.We also find how the
boundedness of the Hardy-Littlewood operator is equivalent to that of f ∗∗ in
r.i. Banach function spaces. Finally find necessary and sufficient conditions,
as in [1, Theorem III.5.17], for when the Hardy-Littlewood maximal operator
is bounded on a r.i. Banach function space defined on Rd. In the next
section we generalize the idea of a maximal operator, in which the Hardy-
Littlewood operator is seen as a maximal operator defined using the L1-norm.
We find sufficient conditions for boundedness of these generalized maximal
operators using a result from [8]. These sufficient conditions include the
sufficient conditions found for the Hardy-Littlewood maximal operator in the
first section. Additionally, we find necessary conditions. We then show under
which hypotheses the necessary and sufficient conditions are equivalent.

2.1 Maximal operators

From here on, when we say X is a r.i. Banach function space on Rd, we use
the Lebesgue measure.
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Definition 2.1.1. Let f be a locally integrable function on Rd. The Hardy-
Littlewood maximal function Mf of f is defined by

(Mf) (x) = sup
Q3x

1

|Q|

∫
Q

|f(y)|dy, x ∈ Rd,

where cubes Q are assumed to have their sides parallel to the coordinate axes
and of equal length. The operator M : f 7→Mf is called the Hardy-Littlewood
maximal operator

Notice that M is sublinear:

M(f + g) ≤Mf +Mg; M(λf) = |λ|Mf.

Clearly M is bounded on L∞:

‖Mf‖L∞ ≤‖f‖L∞

∥∥∥∥∥sup
Q3x

1

|Q|

∫
Q

dy

∥∥∥∥∥
L∞

=‖f‖L∞ .

However, for f 6= 0 µ-a.e., (Mf)(x) never decays faster than |x|−d:

(Mf)(x) ≥ c

|x|−d
(|x| > 1).

This shows that M is not bounded on L1. The Lebesgue Differentiation
theorem will be of use in bounding a function by a maximal operator:

Theorem 2.1.2 (Lebesgue’s differentiation theorem). If f is a locally inte-
grable function on Rd, then

lim
|Q|→0
Q3x

1

|Q|

∫
Q

∣∣f(y)− f(x)
∣∣ dy = 0,

for almost every x in Rd.

A proof can be found in [1, Lemma III.3.4]. The Lebesgue differentiation
theorem is a central result in analysis, which we will be using to show a
fundamental property of the maximal function Mf :

Corollary 2.1.3. If f is locally integrable in Rd, then

|f(x)| ≤ (Mf) (x),

for almost every x in Rd.
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Proof. Using Theorem 2.1.2 and the triangle inequality, we find

lim
|Q|→0
Q3x

1

|Q|

∫
Q

|f(y)|dy = |f(x)|.

Taking the supremum instead of the limit gives us the result.

We would like to get an idea of the size of Mf relative to f for f ∈ L1(Rd).
To do that we will need the following Vitali covering lemma:

Lemma 2.1.4. Let Ω be an arbitrary measurable subset of Rd of finite mea-
sure. Let F be a collection of cubes Q that covers Ω. Then there exist finitely
many disjoint cubes, say Q1, Q2, . . . , Qk, from F such that

K∑
k=1

|Qk| ≥ 4−d|Ω|

For a proof, see [1, Lemma III.3.2]. Note that 4−d is not the largest
constant for which this statement is true, it works when we replace 4 with
any constant c > 3. However, for our purposes, 4−d is sufficient, as we require
it to be a constant depending only on the dimension, d.

Theorem 2.1.5. If f belongs to L1
(
Rd
)
, then

t (Mf)∗ (t) ≤ 4d‖f‖L1 , (t > 0) (2.1)

Proof. We begin with f ∈ L1 compactly supported, for which it is clear that,
for λ > 0, the set Eλ := {x ∈ Rd : (Mf)(x) > λ} has finite measure. For
each x ∈ Eλ we find by definition of Mf that there exists a cube Qx 3 x
such that

λ|Qx| <
∫
Qx

|f(y)|dy. (2.2)

Since is it clear that
⋃
x∈Eλ Qx ⊇ Eλ, Lemma 2.1.4 produces a finite

sequence of disjoint cubes Q1, Q2, · · · , Qk such that

k∑
n=1

|Qn| ≥ 4−d|Eλ|. (2.3)

Hence, combining (2.3) and (2.2), we find

|Eλ| ≤ 4d
k∑

n=1

|Qn| ≤
4d

λ

k∑
n=1

∫
Qn

|f(y)|dy ≤ 4d

λ
‖f‖L1 (2.4)
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Notice that |Eλ| is the distribution function of Mf , thus by property
(1.12) we get that for every t > 0 there exists a λ > 0 such that t(Mf)∗(t) ≤
λ|Eλ|, which implies the required estimate. In the general case of an inte-
grable function f , we may select an increasing sequence of non-negative sim-
ple functions fk ↑ |f | a.e. Then the monotone convergence theorem yields
Mfk ↑ Mf a.e., property (1.8) then tells us that (Mfk)

∗ ↑ (Mf)∗. Since
‖fk‖L1 ↑‖f‖L1 , we see that the required estimate holds for f , completing the
proof

We claim that an interesting consequence of (2.1) is that Mf is bounded
from L1 into weak L1, denoted by L1,∞. Its norm is usually defined by

‖f‖Lp,∞ = sup
0<t<∞

tµ
1
p

f (t).

However, for our purposes we will use the following definition1 :

‖f‖Lp,∞ = sup
0<t<∞

t
1
pf ∗(t), f ∈ L0.

Then we indeed find:

‖Mf‖L1,∞ = sup
0<t<∞

t(Mf)∗(t) ≤ 4d‖f‖L1

showing that M : L1 → L1,∞ is a bounded operator. Another interesting
observation is

(Mf)∗(t) ≤ 4d

t

∫ ∞
0

f ∗(s)ds,

revisiting the rough estimate in (2.4) gives rise to the suspicion that Mf
is bounded by f ∗∗. That suspicion is correct, in fact, Mf is an element of
X exactly when f ∗∗ is an element of X̄, which we will see in the theorem
following another covering lemma.

Lemma 2.1.6. Let Ω be an open subset of Rd with finite measure. Then there
is a sequence of dyadic cubes Q1, Q2, ..., with pairwise disjoint interiors, that
covers Ω and satisfies:

1. Qk ∩ Ωc 6= ∅, (k = 1, 2, · · · )

2. |Ω| ≤
∞∑
k=1

|Qk| ≤ 2d|Ω|

1For more information on this definition see [1, Definition IV.4.1]
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For a proof, see [1, Lemma III.3.2] on page 122. The reason that the the
Vitali covering Lemma 2.1.4 wont suffice, or any finite covering lemma, is
that we will need to cover an arbitrary set of finite measure entirely with
cubes. A good example of a set of finite measure that we can’t cover with
finite sets of finite measure is

A =
⋃
i∈N

Ai, with Ai = [i, i+ 2−i).

A dyadic covering lemma gives us exactly the control we need to cover sets
like that. It allows us to cover any set of finite measure with countably many
cubes so that the union of the cubes has finite measure, additionally the
cubes are also pairwise disjoint. Note that countability comes from the fact
that a dyadic grid is a made up of a countable set of cubes.

Theorem 2.1.7.

(Mf)∗(t) .d f
∗∗(t) .d (Mf)∗(t), (t > 0)

for every locally integrable function f on Rd

Proof. We fix t > 0, then for the left-hand inequality, we may assume that
f ∗∗(t) < ∞, else there would be nothing to prove. [1, Theorem II.6.2] gives
for t > 0 and f ∈ L0(Rd)L

inf
f=g+h

{
‖g‖L1 + t‖h‖L∞

}
= tf ∗∗(t).

Note that the infimum may depend on t, so for t > 0 and ε > 0 we know
there exist functions gt ∈ L1, ht ∈ L∞ such that f = gt + ht and

‖gt‖L1 + t‖ht‖L∞ ≤ tf ∗∗(t) + ε.

Then since gt + ht = f for all t > 0 we may use the triangle inequality for
rearrangements (1.6) and the sub-additivity of M , so that for all s > 0 we
obtain:

(Mf)∗(s) ≤ (Mgt)
∗(s/2)+ (Mht)

∗(s/2)
and then by Theorem 2.1.5 and the boundedness of M on L∞, for all s > 0
we get

(Mgt)
∗(s/2)+ (Mht)

∗(s/2) ≤ c

s

(
‖gt‖L1 + s‖ht‖L∞

)
Setting s = t gives

(Mf)∗(t) ≤ tf ∗∗(t) + ε
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letting ε→ 0 gives the first of the inequalities. For the right-hand inequality
we may again assume (Mf)∗(t) <∞. We consider

Ω := {x ∈ Rd : (Mf)(x) > (Mf)∗(t)}

and take x ∈ Ω. Then since (Mf)(x) > (Mf)∗(t), we know that there exists
a cube Qx 3 x such that

1

|Qx|

∫
Qx

|f(y)|dy > (Mf)∗(t),

hence Ω is open. Then since Mf and (Mf)∗ are equimeasurable by (1.9),
|Ω| < t. Applying Lemma 2.1.6, we obtain Q1, Q2, · · · disjoint such that

1. Qk ∩ Ωc 6= ∅, (k = 1, 2, · · · )

2.
∞∑
k=1

|Qk| ≤ 2dt

With F =
(⋃

kQk

)c
, we set

g =
∑
k

fχQk , h = fχF

so that f = g + h. The sub-additivity of f → f ∗∗, (1.16), gives

f ∗∗(t) ≤g∗∗(t) + h∗∗(t)

=
1

t

∫ t

0

g∗(t)dt+
1

t

∫ t

0

h∗(t)dt

=
1

t

∫ ∞
0

g∗(t)dt+‖h‖L∞
1

t

∫ t

0

dt

≤1

t
‖g‖L1 +‖h‖L∞ . (2.5)

Now, using that Qk ∩Ωc 6= ∅, that is, there is a x ∈ Qk such that x /∈ Ω, we
find that

1

|Qk|

∫
Qk

|f(y)|dy ≤ (Mf)∗(t), (k = 1, 2, · · · )

by the way that Ω is defined. Then the following

‖g‖L1 =
∑
k

∫
Qk

|f(y)|dy ≤
∑
k

|Qk|(Mf)∗(t)
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gives us
‖g‖L1 ≤ 2dt(Mf)∗(t) (2.6)

On the other hand, F is completely contained in Ωc, so on F we have
Mf(x) ≤ (Mf)∗(t). Then we have

‖h‖L∞ ≤‖fχF‖L∞ ≤
∥∥(Mf)χF

∥∥
L∞
≤ (Mf)∗(t).

Putting this, (2.6) and (2.5) together finalizes the proof.

We will later see that this equivalence of boundedness is an essential piece
in finding equivalent sufficient and necessary conditions for the boundedness
on a r.i. Banach function space X. We define the following operator in
preparation of finding those conditions.

Definition 2.1.8. Let Pa, 0 < a ≤ 1, be the integral operator defined on
L0(R+, λ) by

(Paf) (t) = t−a
∫ t

0

saf(s)
ds

s
, (0 < t <∞)

Note that for a = 1 we have an identity f ∗∗(t) = P1f(t). While Pa
has more uses, we use it because it is such a generalization and due to the
following lemma.

Lemma 2.1.9. If Pa is a bounded operator on X̄, that is

‖Pa‖B(X̄) = sup
{
‖Paf‖X̄ :‖f‖X̄ ≤ 1

}
<∞,

then there exists ε > 0 such that ‖Pa−δ‖B(X̄) <∞ for all δ < ε

Proof. Let ε > 0 be such that ε‖Pa‖B(X̄) < 1. Then the operator I − εPa
belongs to B(X̄), is invertible, and since X̄ is a Banach space the following
Neumann series is convergent in the norm of B(X̄):

(I − εPa)−1 =
∞∑
n=0

εnP n
a .

The operator

T = Pa (I − εPa)−1 =
∞∑
n=0

εnP n+1
a (2.7)

is therefore also in B(X̄). Take f ∈ X̄, we claim that the iterate P n+1
a of Pa

may be written in the closed form(
P n+1
a f

)
(t) =

∫ 1

0

f(st)
(log 1/s)n

n!
sa−1ds (2.8)
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The proof proceeds by induction on n. The case n = 0 follows immediately
from the definition of Pa, so suppose (2.8) holds for n = 0, 1, 2, . . . , N. Then(

PN+1
a f

)
(t) = Pa

(
PN
a f
)

(t) =

∫ 1

0

PN
a f(rt)ra−1dr

=

∫ 1

0

(∫ 1

0

f(srt)
(log 1/s)N

N !
sa−1ds

)
ra−1dr

so making the change of variable u = rs, we have

(
PN+1
a f

)
(t) =

∫ 1

0

(∫ r

0

f(ut)
(log r/u)N

N !
ua−1du

)
dr

r

Interchanging the order of integration and making the change of variable
v = r/u, we obtain

(
PN+1
a f

)
(t) =

∫ 1

0

(∫ 1

u

(log r/u)N

N !

dr

r

)
f(ut)ua−1du

=

∫ 1

0

(∫ 1/u

1

(log v)N

N !

dv

v

)
f(ut)ua−1du

=

∫ 1

0

(log 1/u)N+1

(N + 1)!
f(ut)ua−1du

This completes the induction and hence establishes (2.8) for all n. Combining
(2.7), (2.8), and using the monotone convergence theorem, we obtain, for non-
negative functions f in X̄

(Tf)(t) =

∫ 1

0

(
∞∑
n=0

(ε log 1/s)n

n!

)
f(st)sa−1ds =

∫ 1

0

f(st)sa−ε−1ds

By the usual device of splitting a function into its positive and negative parts
we obtain this identity for all f in X̄. Hence, T = Pa−ε. clearly it extends
to 0 < δ < ε as then we also have ‖Pa‖B(X̄) δ < 1, this concludes the proof.

Note that, even if we find that Pa is bounded for all a > b, that does not
necessarily mean Pb is bounded, since the ε found using this lemma depends
on a. The use for this lemma will become clear in Theorem 2.1.14. We
will want to define the upper Boyd index, before that we have to define the
following operator:
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Definition 2.1.10. Let s ∈ (0,∞) and f ∈ L0(Rd). Then the anti-dilation
operator Ds : L0 → L0 is defined by:

Dsf(x) := f(sx).

The anti-dilation operator will be useful in obtaining the final result
in this section, sufficient and necessary conditions for boundedness of the
Hardy-Littlewood operator on r.i. Banach function spaces. Furthermore, in
section 2.2 Ds will play a central role. It will therefore be useful to better
understand the anti-dilation operator, so we prove some of its properties in
the following proposition.

Proposition 2.1.11. Let X, Y be a r.i. Banach function space on (0,∞)
and Rd respectively. Let c > 0, f be in L0

(
Rd
)

and g ∈ X, then

µDtf (λ) =t−dµf (λ) (2.9)

(Dtf)∗ =Dtdf
∗ (2.10)

‖Dt‖B(X) ≤cmax{1, 1

t
} (2.11)

(Dsg)∗(t) =Dsg
∗(t) (2.12)

‖Dst‖B(Y ) ≤‖Ds‖B(Y )‖Dt‖B(Y ) (2.13)

Proof. We observe that

µDtf (λ) = µ
(
{x ∈ Rd : |f(tx)| > λ}

)
= µ

(
{xt−1 ∈ Rd : |f(x)| > λ}

)
Then by the dilation property of the Lebesgue measure: µ

(
{δx : x ∈ A}

)
=

δdµ(A) for A ∈ B(Rd), δ > 0, we get:

µDtf (λ) = µ
(
{xt−1 ∈ Rd : |f(x)| > λ}

)
= t−dµf (λ)

giving us (2.9). Then for (2.10) we obtain

(Dtf)∗(s) = sup{λ : µDtf (λ) > s} = sup{λ : µf (λ) > std} = Dtdf
∗

For (2.11) we use [1, Theorem III.2.2] , which tells us that X is an exact inter-
polation space between L1 and L∞, then since Ds is an admissible operator
for all s ∈ (0,∞) we get

‖Dt‖B(X) ≤ cmax
{
‖Dt‖B(L1(R+)) ,‖Dt‖B(L∞(R+))

}
.
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Clearly ‖Dt‖B(L∞(R+)) = 1, and∫ ∞
0

|Dtf(s)|ds =

∫ ∞
0

|f(ts)|ds =
1

t

∫ ∞
0

|f(s)|ds,

thus ‖Dt‖B(X) ≤ cmax
(
1, 1

t

)
. The constant c comes from renorming X with

a constant multiple of its original norm. For (2.12) we observe that g is a
function on R that is 0 on (−∞, 0), and then simply apply property (2.10).
For property (2.13) we point out an identity of the anti-dilation operator:
Dstf = DsDtf = DtDsf . Then we may simply write

‖Dst‖B(Y ) = sup
{
‖DsDtf‖Y :‖f‖Y ≤ 1

}
≤ sup

{
‖Ds‖B(Y )‖Dtf‖Y :‖f‖Y ≤ 1

}
=‖Ds‖B(Y )‖Dt‖B(Y ) .

Definition 2.1.12. Let X be a r.i. Banach function space on (R, µ), then
the upper Boyd index is given by:

ᾱX := inf
1<t<∞

log‖Dt−1‖B(X̄)

log t
= lim

t→∞

log‖Dt−1‖B(X̄)

log t
.

For a proof of the last equality, see [1, Proposition III.5.13]. ᾱX is one
of two Boyd indices, for now we will only need the upper one. Inspection of
the definition tells us that ᾱX is “the largest” number a such that
ta . ‖Dt−1‖B(X̄). In L1 we find for example that ᾱL1 = 1, we even have
‖Dt−1f ∗‖X̄ = t‖f ∗‖X̄ , which is a property we don’t have for every r.i. Banach
function space X.

A more interesting case could be Lp. Recall that for 1 ≤ p <∞ we have
(1.17), then for f ∈ Lp(Rd):

‖Dt−1f ∗‖Lp =

(∫ ∞
0

f ∗
(
s/t
)p

ds

) 1
p

=

(∫ ∞
0

tf ∗(s)pds

) 1
p

= t
1
p‖f ∗‖Lp

Thus we get that ᾱLp = 1
p
. For p =∞, we get:

‖Dtf
∗‖L∞ = f ∗(0) =‖f ∗‖L∞ , (f ∈ L∞(Rd)

Giving that ᾱL∞ = 0.

Lemma 2.1.13. For X a r.i. Banach function space on Rd with the Lebesgue
measure. Let 0 < a ≤ 1, 0 < s < 1 and g ∈ X ′ :‖g‖X′ ≤ 1, then∫ ∞

0

(
Dsf

∗(t)
)
g∗(t)dt =

∫ ∞
0

f ∗(st)g∗(t)dt ≤ as−a‖Paf ∗‖X̄
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Proof. ∫ ∞
0

f ∗(st)g∗(t)dt = as−a
(∫ ∞

0

f ∗(st)g∗(t)dt

)(∫ s

0

ua−1du

)
≤ as−a

∫ s

0

(∫ ∞
0

f ∗(ut)g∗(t)dt

)
ua−1du

= as−a
∫ ∞

0

g∗(t)

(∫ s

0

f ∗(ut)ua
du

u

)
dt

≤ as−a
∫ ∞

0

g∗(t)

(∫ 1

0

f ∗(ut)ua
du

u

)
dt

= as−a
∫ ∞

0

g∗(t)

(
t−a
∫ t

0

yaf ∗(y)
dy

y

)
dt

= as−a
∫ ∞

0

g∗(t)(Paf
∗)(t)dt ≤ as−a‖Paf ∗‖X̄

in the first inequality we use that f ∗ is a decreasing function and therefore
f ∗(ut) ≥ f ∗(st), in the second one the fact that f ∗ ≥ 0 and s < 1. This
is followed up by a change of variables, and finally we use the Luxemburg
representation theorem in the last inequality

Lemma 2.1.13 shows that there is a connection between the boundedness
of Pa and the upper Boyd index, this will become more clear in the proof of
the following theorem, where we make explicit use of this property.

Theorem 2.1.14. Let X be a r.i. Banach function space on Rd. Pa is a
bounded operator on X̄ if and only if ᾱX < a ≤ 1.

Proof. Suppose first that Pa is bounded on X̄. Let f and g be functions in
X̄ and X̄ ′ respectively, with

‖f‖X̄ ≤ 1, ‖g‖X̄′ ≤ 1. (2.14)

Using (2.12), which says (Dsf)∗(t) = Dsf
∗(t), and Lemma 2.1.13 we get for

t > 1 ∫ ∞
0

f ∗(t−1s)g∗(s)ds ≤ ata‖Pa‖B(X̄)

Taking the supremum over all f and g satisfying (2.14) gives us

‖Dt−1‖B(X̄) ≤ at−a‖Pa‖B(X̄) , (t > 1)

Thus,
log‖Dt−1‖B(X̄)

log t
≤ a+

log a‖Pa‖B(X̄)

log t
→ a
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as t→∞ Now by Lemma 2.1.9 we find that there exists a ε > 0 such that

ᾱX = lim
t→∞

log‖Dt−1‖B(X̄

log t
≤ a− ε < a

Now assume a > ᾱX and let f, g be such that they satisfy (2.14). Then∣∣∣∣∫ ∞
0

(Paf) (t)g(t)dt

∣∣∣∣ ≤ ∫ ∞
0

(
t−a
∫ t

0

|f(s)|sa−1ds

)
|g(t)|dt

=

∫ ∞
0

(∫ 1

0

|f(st)|sa−1ds

)
|g(t)|dt

=

∫ 1

0

(∫ ∞
0

∣∣Dsf(t)g(t)
∣∣ dt)sa−1ds

≤
∫ 1

0

‖Dsf‖X̄ s
a−1ds

≤
∫ 1

0

‖Ds‖B(X̄) s
a−1ds

≤
∫ ∞

1

‖Ds−1‖B(X̄) s
−a−1ds

Now, using limt→∞
log‖Dt−1‖

B(X̄)

log t
, we find that for ε > 0 such that a− ᾱX >

ε > 0 there is a ∞ > T > 1 such that for all s > T we have ‖Ds−1‖B(X̄) ≤
sᾱX+ε, giving

≤
∫ T

1

‖Ds−1‖B(X̄) s
−a−1ds+

∫ ∞
T

s−a+ᾱX+ε−1ds <∞

where, in the last step we know that the first integral is bounded since
‖Ds−1‖B(X̄) ≤ cmax{1, t}, by (2.11). Taking the supremum over f and g
satisfying (2.14), we find ‖Pa‖B(X̄) <∞

Theorem 2.1.15. Let X be a r.i. Banach Function Space on Rd. Then the
Hardy-Littlewood maximal operator M is bounded on X if and only if the
Boyd index ᾱX < 1.

Proof. It follows from Theorem 2.1.7 that M is bounded on X if and only if
P1 is bounded on X̄. Lemma 2.1.14 then concludes the proof

Using the Boyd indices we found for Lp, ᾱLp = 1
p
, we immediately find

that M is bounded on Lp(Rd) for 1 < p ≤ ∞. Similarly, by for example [1,
Theorem IV.4.6], we get that the Boyd indices of Lp,q are both equal to 1

p
.

Thus M is bounded on Lp,q(Rd) for all 1 < p <∞ and 1 ≤ q ≤ ∞.
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2.2 Maximal operators based on r.i. spaces

From this chapter on, if we don’t specify the measure on Rd or R+ we use
the Lebesgue measure. When looking at the Hardy-Littlewood maximal
operator, see that we may write

(Mf) (x) =sup
Q3x

1

|Q|

∫
Q

|f(y)|dy

=sup
Q3x

1

|Q|

∫
Rd
|f(y)|χQ(y)dy

=sup
Q3x

∥∥Dl(Q)(fχQ)
∥∥
L1

Where l(Q) is the side-length of a cube Q. This is the essential inspiration
for generalizing the maximal operator in the following way.

Definition 2.2.1. Let Y be a r.i. Banach function space on Rd. For f ∈ Yloc
the maximal operator based on Y is given by

MY f(x) := sup
Q3x
‖f‖Q,Y = sup

Q3x

∥∥Dl(Q)(fχQ)
∥∥
Y

Where Q is any cube in Rd with its sides parallel to the axes and all side
lengths equal.

This operator was first introduced by C. Pérez, and later studied further
in [8] by W. Masty lo and C. Pérez. As before, MY is still a sub-linear
operator:

MY (f + g) ≤MY f +MY g; MY (λf) = |λ|MY f, f ∈ L0(Rd)

and for f ∈ L∞(Rd) we have:∥∥MY (f)
∥∥
L∞
≤‖f‖L∞

∥∥MY (χRd)
∥∥
L∞

= ϕY (1)‖f‖L∞

so that all maximal operators based on r.i. Banach function spaces are
bounded on L∞(Rd).

We can obtain an analogous result to Theorem 2.1.3 for general MY quite
easily:

Theorem 2.2.2. Let f ∈ Yloc, then there exists a c > 0 only dependent on
the norm of Y such that

Mf(x) ≤ cMY f(x)

and in particular
|f(x)| ≤ cMY f(x)

for almost every x ∈ Rd.

33



Proof. Using [1, Theorem II.6.6] we find that for some c > 0, ‖·‖L1+L∞ ≤
c‖·‖Ȳ . By [1, Theorem II.6.4] we have that

‖f‖L1+L∞ =

∫ 1

0

f ∗(t)dt.

Using (2.10) we find

cMY f(x) = sup
Q3x

c
∥∥∥Dl(Q)

(
fχQ

)∥∥∥
Y

= sup
Q3x

c
∥∥∥D|Q|(fχQ)∗∥∥∥

Ȳ

≥ sup
Q3x

∫ 1

0

D|Q|
(
fχQ

)∗
(t)dt

= sup
Q3x

1

|Q|

∫ |Q|
0

(
fχQ

)∗
(t)dt

Notice that
(
fχQ

)∗
(s) is 0 for s > |Q|. We refer to (1.17) for the equality in

(2.15).

= sup
Q3x

1

|Q|

∫ ∞
0

(
fχQ

)∗
(t)dt

= sup
Q3x

1

|Q|

∫
Rd
|f(y)|χQ(y)dy (2.15)

= sup
Q3x

1

|Q|

∫
Q

|f(y)|dy = (ML1f)(x)

The first statement is then proved, as ML1 is the Hardy-Littlewood maximal
operator. The second statement follows from Theorem 2.1.3.

To work towards the main result, we begin by looking for sufficient condi-
tions for boundedness of MY on X. Firstly we view‖f‖Q,Y as a restriction of

a function F : B
(
Rd
)
→ R+ to cubes, where F is such that F (Q) =‖f‖Q,Y .

We call a function that maps B(Rd) into R+ a set function, where B(Rd) is
the smallest σ-algebra containing the open sets. To make use of the theorem
presented in [6], we need the following definition.

Definition 2.2.3. A set function F is called pseudo-increasing if there exists
a c > 0 such that for any finite collection of pairwise disjoint cubes {Qi} with
Q =

⋃
iQi we have

min
i
F (Qi) ≤ cF (Q)
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In the following lemma we use MF : Rd → R+ given by MF (x) =
sup
Q3x

F (Q) as in [6]. The supremum is taken over cubes Q in Rd with sides

parallel to the axes and all side lengths equal.

Lemma 2.2.4. Let F be a pseudo-increasing set function with constant c > 0
as in the preceding definition. Then, for any t > 0

(MF )∗(t) ≤ c sup
∞>|E|>4−dt

F (E)

where the supremum is taken over all sets E ∈ B(Rd) of finite measure
|E| > 4−dt.

A proof can be found in [6]. Note that the constant 4−d originates from
our Vitali covering, Lemma 2.1.4.

The following lemma follows [8, Lemma 3.4].

Lemma 2.2.5. Let Y be a r.i. Banach function space on Rd such that its
fundamental function is concave, Let E be the r.i. Banach function space
on Rd generated by Λ(Y ). Then for f ∈ Eloc we define the set function

F (A) :=
∥∥∥D|A|1/dfχA∥∥∥

E
. Then F is pseudo-increasing with constant c = 1

Proof. Let Ω = {Qi : 1 ≤ i ≤ n} be a finite set of cubes in Rd. Note that
the following equation holds (see [5, formula (5.4)]):

‖f‖Λ(Y ) =

∫ ∞
0

ϕY
(
µf (s)

)
ds, f ∈ Λ(Y ).

Let A,B ⊆ Rd be pairwise disjoint, using property (2.9) and the fact that
f and f ∗ are equimeasurable we get

F (A ∪B) =

∥∥∥∥D(|A|+|B|)
1/dfχA∪B

∥∥∥∥
E

=
∥∥D|A|+|B|(fχA∪B)∗

∥∥
Λ(Y )

=

∫ ∞
0

ϕY

(
µfχA∪B(s)

|A|+ |B|

)
ds

=

∫ ∞
0

ϕY

(
µfχA(s)

|A|
|A|

|A|+ |B|
+
µfχB(s)

|B|
|B|

|A|+ |B|

)
ds
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Note that, since A and B are disjoint we have µfχA∪B = µfχA +µfχB by (1.2).
Now using that ϕY is concave we find

≥
∫ ∞

0

ϕY

(
µfχA(s)

|A|

)
|A|

|A|+ |B|
+ ϕY

(
µfχB(s)

|B|

)
|B|

|A|+ |B|
ds

=
|A|

|A|+ |B|
∥∥D|A|(fχA)∗

∥∥
Λ(Y )

+
|B|

|A|+ |B|
∥∥D|B|(fχB)∗

∥∥
Λ(Y )

=
|A|

|A|+ |B|
F (A) +

|B|
|A|+ |B|

F (B) ≥ min{F (A), F (B)}.

Notice in the last step that we replace either F (A) or F (B) with the other,
depending on which is smaller. Choosing B = Q1 and A = Ω \Q1 gives

F (Ω) ≥ min
(
F (Q1), F (Ω \Q1)

)
We may reapply the inequality finitely many times to find

F (Ω) ≥ min

(
Q1,min

(
F (Q2), F

(
Ω \ (Q1 ∪Q2

)))
≥ · · · ≥ min

1≤i≤n
F (Qi).

The following lemma will give us a result analogous to the left bound of
Theorem 2.1.7 in a more general setting.

Lemma 2.2.6. Let Y be a r.i. Banach function space on Rd with a concave
fundamental function ϕY . Let E be a r.i. Banach function space on Rd be
generated by Λ(Y ), then for f ∈ Eloc we have

(MEf)∗(t) ≤
∥∥(D4−dtf

∗)χ[0,1)

∥∥
Λ(Y )

(2.16)

for every t > 0.

Proof. Let F (A) =
∥∥∥D|A|1/dfχA∥∥∥

E
, then combining Lemma 2.2.4 and Lemma 2.2.5

we find

(MF )∗(t) ≤ sup

{
F (A) :∞ > |A| > t

4d

}
(2.17)

Since we have (fg)∗ ≤ f ∗g∗ by (1.11) and (Daf)∗ = Dadf
∗ by (2.10) for f

on Rd

F (A) =
∥∥∥D|A|1/dfχA∥∥∥

E
=
∥∥D|A|(fχA)∗

∥∥
Λ(Y )

≤
∥∥∥D|A|(f ∗χ[0,|A|)

)∥∥∥
Λ(Y )

=
∥∥∥(D|A|f ∗)χ[0,1)

∥∥∥
Λ(Y )

(2.18)
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Combining the inequalities (2.18) and (2.17) and using the fact that Daf
∗(t)

is decreasing in a, we find

(MEf)∗(t) = (MF )∗(t) ≤ sup

{∥∥∥(D|A|f ∗)χ[0,1)

∥∥∥
Λ(Y )

: |A| > t

4d

}
≤
∥∥(D4−dtf

∗)χ[0,1)

∥∥
Λ(Y )

This lemma is a small improvement over [8, Lemma 3.4], as we do not
require ϕY (0+) = 0. Recall from (1.23) that Λ(L1) = L1. If we apply (2.16)
to Y = L1(Rd), then E = L1(Rd) and we obtain the discussed, slightly
sharper bound than the one given in Lemma 2.1.5:

(ML1f)∗(t) ≤ 4d
∫ 4−dt

0

f ∗(s)ds

instead of

(ML1f)∗(t) ≤ 4d
∫ ∞

0

f ∗(s)ds = 4d‖f‖L1 .

Note that, for Theorem 2.1.7 the rougher inequality was sufficient. In Theo-
rem 2.2.8, however, we see that the sharper inequality makes a real difference
as we only need the integral to be bounded around 0, but not as it tends to
∞. In the following lemma and proof we write

∥∥f(s)
∥∥
Y (s)

=‖f‖Y for clarity.

Lemma 2.2.7. Let X be a r.i. Banach function space on R+, then if ψ is
an increasing continuous function on [0,∞) then∥∥∥∥ ∫ ∞

0

Dsf
∗(t)dψ(s)

∥∥∥∥
X(t)

≤
∫ ∞

0

∥∥Dsf
∗(t)
∥∥
X(t)

dψ(s) (2.19)

The following proof follows [5, Lemma II.4.7].

Proof. In the following inequality we use that Dsf
∗(t) is decreasing in s. Now

for δ > 1 we find:∫ ∞
0

Dsf
∗(t)dψ(s) =

∞∑
k=−∞

∫ δk+1

δk
Dsf

∗(t)dψ(s)

≤
∞∑

k=−∞

Dδkf
∗(t)

∫ δk+1

δk
dψ(s)
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Then, using the triangle inequality for norms, we get∥∥∥∥∫ ∞
0

Dsf
∗(t)dψ(s)

∥∥∥∥
X(t)

≤
∞∑

k=−∞

∥∥∥Dδkf
∗(t)[ψ(δk+1)− ψ(δk)]

∥∥∥
X(t)

=
∞∑

k=−∞

∥∥Dδkf
∗(t)
∥∥
X(t)

[ψ(δk+1)− ψ(δk)]

=
∞∑

k=−∞

∥∥Dδkf
∗(t)
∥∥
X(t)

∫ δk+1

δk
dψ(s).

Where in the first equality we use that ψ is increasing. Now using properties
(2.11) and (2.13) of anti-dilations we get∥∥Dδ−1δk+1f ∗(t)

∥∥
X(t)
≤δ
∥∥Dδk+1f ∗(t)

∥∥
X(t)

giving∥∥∥∥∫ ∞
0

Dsf
∗(t)dψ(s)

∥∥∥∥
X(t)

≤δ
∞∑

k=−∞

∥∥Dδk+1f ∗(t)
∥∥
X(t)

∫ δk+1

δk
dψ(s) (2.20)

On the other side we have∫ ∞
0

∥∥Dsf
∗(t)
∥∥
X(t)

dψ(s) =
∞∑

k=−∞

∫ δk+1

δk

∥∥Dsf
∗(t)
∥∥
X(t)

dψ(s)

≥
∞∑

k=−∞

∥∥∥Dδk+1

f ∗(t)
∥∥∥
X(t)

∫ δk+1

δk
dψ(s), (2.21)

where we again use that
∥∥Dsf

∗(t)
∥∥
X(t)

is decreasing in s. Combining the

inequalities in (2.20) and (2.21) we find:∥∥∥∥∫ ∞
0

Dsf
∗(t)dψ(s)

∥∥∥∥
X(t)

≤ δ

∫ ∞
0

∥∥Dsf
∗(t)
∥∥
X(t)

dψ(s)

since δ > 1 is arbitrary we find that (2.19) is satisfied.

This lemma is the last essential piece of the puzzle, as it helps us bound
the operator found in Lemma 2.2.6 with the norm of f and ‖Ds‖X̄ as a
function in ΛϕY .

The following theorem follows [8, Theorem 3.6] closely.
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Theorem 2.2.8. Let Y,X and E be r.i. Banach function spaces on Rd, such
that X is generated by X̄ on (0,∞), E is generated by Λ(Y ) and∫ 1

0

‖Ds‖B(X̄) dϕY (s) <∞

Then the following statements hold:

1. there exists a constant C > 0 such that

‖MY f‖X ≤ C‖f‖X , f ∈ Eloc (2.22)

2. if Eloc ∩X is dense in X, MY is bounded on X.

Proof. 1. By Lemma 1.2.15 we find the Y may be equivalently renormed such
that its fundamental function is concave, so without loss of generality we may
assume it is concave. Then by Theorem 1.2.17 we have that for f ∈ E:

‖f‖E =‖f ∗‖Λ(Y ) ≥‖f
∗‖Ȳ =‖f‖Y

So that we have MEf ≥ MY and (MEf)∗ ≥ (MY f)∗. By Lemma 2.2.6, for
all f ∈ Eloc we find

‖MY f‖X =
∥∥(MY f)∗

∥∥
X̄
≤
∥∥(MEf)∗

∥∥
X̄
≤

∥∥∥∥∥
∫ 1

0

DtD4−df
∗(s)dϕY (s)

∥∥∥∥∥
X̄(t)

≤

∥∥∥∥∥
∫ 1

0

DsD4−df
∗(t)dϕY (s)

∥∥∥∥∥
X̄(t)

We define ϕ̃Y (t) to be equal to ϕY (t) for all t ∈ (0,∞), and define ϕ̃Y (0) :=
limt↓0 ϕY (t). Note that this limit exists since ϕY is monotone and bounded
near 0. Now ϕ̃Y is continuous on [0,∞) so that we may use Lemma 2.2.7

=

∥∥∥∥∥lim
s↓0

ϕY (s)(Ds4−df
∗(t)) +

∫ 1

0

DsD4−df
∗(t)dϕ̃Y (s)

∥∥∥∥∥
X̄(t)

=

∥∥∥∥lim
s↓0

ϕY (s)(Ds4−df
∗(t))

∥∥∥∥
X̄(t)

+

∥∥∥∥∥
∫ 1

0

DsD4−df
∗(t)dϕ̃Y (s)

∥∥∥∥∥
X̄(t)

(2.23)

Notice that (2.22) is as follows:∫ 1

0

‖Ds‖B(X̄) dϕY (s) = lim
s↓0
‖Ds‖B(X̄) ϕY (s) +

∫ 1

0

‖Ds‖B(X̄) ϕ
′
Y (s)ds <∞.
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Note that for every n ∈ N we have ϕY (1/n)(D 1
n
D4−df

∗(t)) ∈ X̄ since ϕY (1/n)

is a positive constant and Ds is a bounded operator by (2.11). Using Fatou’s
lemma we find:∥∥∥∥lim
s↓0

ϕY (s)(DsD4−df
∗(t))

∥∥∥∥
X̄(t)

=

∥∥∥∥lim inf
n→∞

ϕY (1/n)(D 1
n
D4−df

∗(t))

∥∥∥∥
X̄(t)

≤ lim inf
n→∞

∥∥∥ϕY (1/n)(D 1
n
D4−df

∗(t))
∥∥∥
X̄(t)

≤‖D4−d‖B(X̄) lim inf
n→∞

ϕY (1/n)
∥∥∥D 1

n

∥∥∥
B(X̄)

∥∥f ∗(t)∥∥
X̄(t)

≤‖D4−d‖B(X̄)‖f‖X lim
s↓0

ϕY (s)‖Ds‖B(X̄)

By property Lemma 2.2.7 we find∥∥∥∥∥
∫ 1

0

DsD4−df
∗(t)dϕ̃Y (s)

∥∥∥∥∥
X̄(t)

≤‖D4−d‖B(X̄)

∫ 1

0

∥∥Dsf
∗(t)
∥∥
X̄(t)

dϕ̃Y (s)

≤ C‖f‖X
∫ 1

0

‖Ds‖B(X̄) dϕ̃Y (s)

Combining these two bounds with (2.23) gives:∥∥∥∥lim
s↓0

ϕY (s)(DsD4−df
∗(t))

∥∥∥∥
X̄(t)

+

∥∥∥∥∥
∫ 1

0

DsD4−df
∗(t)dϕ̃Y (s)

∥∥∥∥∥
X̄(t)

≤‖D4−d‖B(X̄)‖f‖X

(
lim
s↓0

ϕY (s)‖Ds‖B(X̄) +

∫ 1

0

‖Ds‖B(X̄) dϕ̃Y (s)

)

=‖D4−d‖B(X̄)‖f‖X
∫ 1

0

‖Ds‖B(X̄) dϕY (s) <∞.

property (2.11) finishes the proof for all f ∈ Eloc.
2. Note that MY is a positive sublinear operator and so, for all f, g ∈ Yloc,

we have
|MY f −MY g| ≤MY (f − g), a.e.

Since Eloc ∩ X is dense in X, the above estimate allows us to extend the
inequality obtained in 1. for all f ∈ X by density.

Remark 2.2.9. Suppose X is separable, then by Theorem 1.1.8 we have that
the simple functions are dense in X. Since E and X are both r.i. Banach
function spaces, they contain the simple functions. Thus, Eloc ∩X is dense
in X.
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Theorem 2.2.8 is a slight improvement over [8, Theorem 3.6] in that we
don’t require ϕY (0+) = 0, which is due to the improvement in Lemma 2.2.5
over [8, Lemma 3.4]. Additionally, the requirement that Eloc ∩ X is dense
is slightly weaker as well. An example of this would be L1 = Y , which we
discuss after Corollary 2.3.6. An interesting note is that, if MY is bounded on
X, it is necessary to have X ⊆ Yloc. Indeed, if f ∈ L0 such that f /∈ Yloc, we
find there exists a compact set A of positive measure such that‖fχA‖Y =∞,
then MY f /∈ L0 giving MY f /∈ X.

Having established one of the main results, sufficient conditions for bound-
edness, we will now state a necessary condition in a general setting.

Theorem 2.2.10. Let X, Y be r.i. Banach function spaces defined on Rd.
If MY is bounded on X, then∥∥∥∥ϕY (min{1, 1

t
})
∥∥∥∥
X̄

<∞

where ϕY (t) is the fundamental function of Y .

For convinience’s sake we will write max{|x1|, · · · , |xd|} =‖x‖`∞ , x ∈ Rd

in the following proof:

Proof. Let f := χ[−1,1)d , then using (2.10) we find the following:

∥∥Dl(Q)(fχQ)
∥∥
Y

=

∥∥∥∥D|Q|(χ[−1,1)dχQ

)∗∥∥∥∥
Ȳ

=

∥∥∥∥D|Q|χ[0,λ([−1,1)d∩Q)
)∥∥∥∥

Ȳ

=

∥∥∥∥χ[0,λ([−1,1)d∩Q)|Q|−1
)∥∥∥∥

Ȳ

We now try to find an appropriate Q. Let Qx be a closed cube such that
one of its corners is the origin with side length l(Q) = ‖x‖`∞ . Then, we
require x ∈ Qx. Note that this gives multiple but finite options for Qx, any
will suffice. For clarification: Say that x = (2, 1) in R2, then there is only
one closed cube such that it has one corner in the origin, side length 2 and
contains x. If x = (2, 0), the cube there are 2 closed cubes containing x.

If‖x‖`∞ > 1, then Qx has one corner at the origin and a side length larger
than 1, we find |[−1, 1)d ∩Q| = 1, and

|[−1, 1)d ∩Qx||Qx|−1 = |Qx|−1 =‖x‖−d`∞ .
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If ‖x‖`∞ ≤ 1 we find that Qx ⊆ [−1, 1)d, then

|[−1, 1)d ∩Qx||Qx|−1 = |Qx||Qx|−1 = 1.

Then we find that∥∥∥∥χ[0,λ([−1,1)d∩Qx)|Qx|−1
)∥∥∥∥

Ȳ

≥
∥∥∥∥χ[0,min{1,‖x‖−d`∞}

)∥∥∥∥
Ȳ

Taking the supremum over Q 3 x gives

MY f(x) = sup
Q3x

∥∥∥∥χ[0,λ([−1,1)d∩Q)|Q|−1
)∥∥∥∥

Ȳ

≥
∥∥∥∥χ[0,min{1,‖x‖−d`∞}

)∥∥∥∥
Ȳ

= ϕY

(
min

{
1, ‖x‖−d`∞

})
We define the following two functions

g : Rd → R+

g(x) := ϕY

(
min

{
1, ‖x‖−d`∞

})
h : R+ → R+

h(t) = ϕY

(
min

{
1, t−1

})
Now by definition,

x ∈ {x ∈ Rd : g(x) > s} ⇐⇒ ‖x‖d`∞ ∈ {t ∈ R+ : h(t) > s}.

Now notice h(t) is decreasing and continuous on (0,∞), then

{t ∈ R+ : h(t) > s} =
(
0, λ({t ∈ R+ : h(t) > s})

)
.

Thus for s > 0

λg(s) =λ({x ∈ Rd : g(x) > s})

=λ

({
x ∈ Rd :‖x‖d`∞ ∈ {t ∈ R+ : h(t) > s}

})
=λ

({
x ∈ Rd :‖x‖d`∞ < λ

(
{t ∈ R+ : h(t) > s}

)})
=2dλ({t ∈ R+ : h(t) > s}) = 2dλh(s)
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Using property (2.9) we find:

λg(s) = λD
2−dh

(s)

Thus, have that g and D2−dh are equimeasurable, and thus:

MY (χ[−1,1)d)
∗(t) ≥ D2−dh(t)

Note the fact that for r.i. Banach function spaces we have χ[−1,1)d ∈ X, then

by the boundedness of MY on X we have that
(
MY (χ[−1,1)d)

)∗
∈ X̄, finally

(2.11) concludes the proof.

Due to the abstract definition of a r.i. norm, it will be hard to formulate
when exactly ‖ϕY ‖X̄ is finite for a given r.i. Banach function space Y . It
will however, be easier to formulate this condition for a given X: Suppose
1 < p < ∞, then recall we have the r.i. norm of Lp in explicit form (1.17).
Theorem 2.2.10 gives the following necessary condition for boundedness of
MY on Lp: ∫ 1

0

ϕY (s)ps−2ds =

∫ ∞
1

ϕY (1/t)pdt <∞

This is equivalent to the necessary condition for boundedness of MY on Lp

shown in [8, Theorem 3.9]: ∫ c

0

ϕY (s)p

s2
ds <∞

In the next section we will show that under some assumptions, this necessary
condition is equivalent to the sufficient conditions given in Theorem 2.2.8.

2.3 Indices on rearrangement invariant Ba-

nach function spaces

In this section we look at how the Boyd indices and fundamental indices ef-
fect boundedness of the generalized maximal operator defined in section 2.2.
We also introduce weak fundamental indices and prove some useful proper-
ties. Finally we show under which assumptions we can formulate equivalent
necessary and sufficient conditions for boundedness of a maximal operator
MY on Lorentz spaces Lp,q, and Orlicz spaces LΨ. We begin by defining all
indices, we also restate the definition of both Boyd indices for completeness’s
sake.
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Definition 2.3.1. Let X be an r.i. Banach function space on Rd and let
ΦX(t) = sup

0<s<∞

ϕX(st)
ϕX(s)

, The upper and lower Boyd indices are given respectively

by:

ᾱX := inf
1<t<∞

log‖Dt−1‖B(X̄)

log t
, and, αX := sup

0<t<1

log‖Dt−1‖B(X̄)

log t

Secondly we define

β̄X := inf
1<t<∞

log ΦX(t)

log t
, and, β

X
:= sup

0<t<1

log ΦX(t)

log t
(2.24)

Which are called the upper and lower fundamental indices. Lastly, the upper
and lower weak fundamental indices are given by:

γ̄X := lim inf
t→∞

logϕX(t)

log t
, and, γ

X
:= lim sup

t↓0

logϕX(t)

log t

Notice that the weak fundamental indices are defined with lim sup and
lim inf rather than the supremum and infimum themselves. This is due to the
fact that ϕX lacks some of the properties that ΦX and ‖Dt‖B(X̄) have. We
will need the following definition to formulate some properties of the indices.

Definition 2.3.2. We say a function ϕ : (0,∞)→ [0,∞) is submultiplicative
near 0 when there exist c, ε > 0 such that for all ε > t > 0 we have

ϕ(st) ≤ cϕ(s)ϕ(t), (s ∈ (0,∞)).

Similarly, we say ϕ is submultiplicative for large t when there exist T, c > 0
such that for all t > T we have

ϕ(st) ≤ cϕ(s)ϕ(t), (s ∈ (0,∞)).

A function is called submultiplicative if there is a c > 0 such that the in-
equality holds for all t. We can interchange submultiplicative with supermul-
tiplicative when the same holds with the inequalities turned around.

We see that both ΦY and‖Dt‖B(X̄) are submultiplicative. For fundamen-
tal functions ϕY this is not necessarily the case. We first show some useful
properties of ΦY and ϕY :
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Proposition 2.3.3. Let X be an r.i. Banach function space on Rd, then

ΦX(ts) ≤ ΦX(t)ΦX(s) for all 0 < s, t <∞ (2.25)

ΦX(t) =tΦX′

(
1

t

)
(2.26)

ϕX(t) ≤ϕX(1)ΦX(t) (2.27)

ΦX(t) ≤cϕX(t) near 0 or for large t when ϕX is submultiplicative

with constant c > 0 near 0 or for large t respectively. (2.28)

Proof. We first note that

ΦX(st) = sup
0<u<∞

ϕX(stu)

ϕX(u)
= sup

0<u<∞

ϕX(stu)

ϕX(su)

ϕX(su)

ϕX(u)
≤ ΦX(t)ΦX(s)

giving us property (2.25). Consider the following identity, which we obtain
using (1.18):

ΦX(t) = sup
0<s<∞

ϕX(st)

ϕX(s)
= sup

0<s<∞

tϕX′(s)

ϕX′(st)
= t sup

0<s<∞

ϕX′(
s
t
)

ϕX′(s)
= tΦX′

(
1

t

)
giving us (2.26)
Property (2.27) follows from:

ϕX(1)ΦX(t) = ϕX(1) sup
0<s<∞

ϕX(st)

ϕX(s)
≥ ϕX(1)ϕX(t)

ϕX(1)

For property (2.28) we suppose ϕX is submultiplicative near 0 and for large
t. Then there is a T, c, ε > 0 such that

ΦX(t) = sup
0<s<∞

ϕX(st)

ϕX(s)
≤ sup

0<s<∞

ϕX(s)cϕX(t)

ϕX(s)
= cϕX(t),

(
∞ > t > T,

ε > t > 0

)
this shows both cases for the inequality in(2.28), concluding the proof.

In the following proposition we will see what effect the submultiplicativity
of ϕY has on the indices. We also prove a lot of useful properties for the
indices in general.
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Proposition 2.3.4. Let X be an r.i. Banach function space on Rd, then

β
X′

= 1− β̄X , β̄X′ = 1− β
X

(2.29)

β
X

= lim
t↓0

log ΦX(t)

log t
(2.30)

β̄X = lim
t→∞

log ΦX(t)

log t
(2.31)

0 ≤ αX ≤ β
X
≤ β̄X ≤ ᾱX ≤ 1 (2.32)

ᾱX = lim
t→∞

log‖Dt−1‖B(X̄)

log t
, αX = lim

t↓0

log‖Dt−1‖B(X̄)

log t
(2.33)

If ϕX(t) is submultiplicative near 0, then γ
X

= β
X

(2.34)

If ϕX(t) is submultiplicative for t large enough, γ̄X = β̄X (2.35)

β
X
≤ γ̄X , γX , γ̄X , γX ≤ β̄X (2.36)

Proof. From (2.26) we immediately get

log ΦX(t)

log t
= 1−

log ΦX′
(

1
t

)
log 1

t

, (0 < t <∞) (2.37)

Combining (2.37), (2.24) and the fact that X ′′ = X( Theorem 1.1.5) gives
us both identities in (2.29).

For the next property we refer to [1, Lemma III.5.8], which states that
an increasing subadditive function ω on (−∞,∞) for which ω(0) = 0 we

have that ω(s)/s tends to a finite limit a = lim
t→∞

ω(s)
s

= inf
s>0

ω(s)
s

Then due to

the submultiplicativity of ΦX(t) and the fact that ΦX(1) = 1 we get that
log ΦX(et) is such a function and thus

lim
t→∞

log ΦX(t)

log t
= lim

s→∞

log ΦX(es)

s
= inf

s>0

log ΦX(es)

s
= inf

t>1

log ΦX(t)

log t

This gives us (2.31). Then combining this result with (2.37) and the second
equation in (2.29) we obtain (2.30).

For the fact that 0 ≤ αX ≤ ᾱX ≤ 1 we refer to [1, Proposition III.5.13]
Now notice that we have

ΦX(t) = sup
0<s<∞

ϕX(st)

ϕX(s)
= sup

0<s<∞

∥∥Dt−1χ[0,s)

∥∥
X̄

ϕX(s)
≤‖Dt−1‖B(X̄)

We find that log ΦX(t) ≤ log‖Dt−1‖B(X̄) since log is an increasing function

on R+. Plugging this inequality into our definitions we get β̄X ≤ ᾱX since
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log t > 0 for t > 1, similarly, αX ≤ β
X

since log t < 0 for 0 < t < 1. Finally,

using the submultiplicativity of ΦX(t) we find 1 = ΦX(1) ≤ ΦX(t)ΦX

(
1
t

)
.

Hence, for all t > 1,

log ΦX

(
1
t

)
log 1

t

=

log

(
1

ΦX( 1
t )

)
log t

≤ log ΦX(t)

log t

Letting t → ∞ and using both (2.30) and (2.31) then gives us β
X
≤ β̄X ,

giving us property (2.32). For property (2.33) we refer to [1, Proposisition
III.5.13].
From now on in this proof we will use (2.30) and (2.31) interchangeably with
the definition of the fundamental indices. To prove (2.34) we assume that
ϕX(t) is submultiplicative near 0 with ε, c > 0. Then, using properties (2.28)
and (2.27), for 0 < t < ε we have

ΦX(t) = sup
0<s<∞

ϕX(st)

ϕX(s)
≤ cϕX(t) ≤ cϕX(1)ΦX(t).

Notice that for all c > 0 we have

lim
t↓0

log cΦX(t)

log t
= lim

t↓0

log ΦX(t) + log c

log t
= lim

t↓0

log ΦX(t)

log t
(2.38)

, the same is true for ϕX and the lim sup. Then indeed

β
X

= lim
t↓0

log ΦX(t)

log t

≥lim sup
t↓0

logϕX(t)

log t
= γ

X

≥ lim
t↓0

log cϕX(1)ΦX(t)

log t
= β

X

giving β
X

= γ
X

. The proof of (2.35) is similar, and will be left as an exercise

for the reader. For (2.36), we first show β̄X ≥ γ̄X and β
X
≤ γ

X
. By (2.27)

we obtain that

logϕX(1)ΦX(t)

log t
≤ logϕX(t)

log t
, (0 < t < 1)

logϕX(1)ΦX(t)

log t
≥ logϕX(t)

log t
, (∞ > t > 1)

Using (2.38), we find that:

β
X

= lim
t↓0

log ΦX(t)

log t
= lim sup

t↓0

logϕX(1)ΦX(t)

log t
≤ lim sup

t↓0

logϕX(t)

log t
= γ

X
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Similarly we find

γ̄X = lim inf
t→∞

logϕX(t)

log t
≤ lim inf

t→∞

logϕX(1)ΦX(t)

log t
= lim

t→∞

log ΦX(t)

log t
= β̄X

Now what is left to do is to show β̄X ≥ γ
X

and β
X
≤ γ̄X . Using

ϕX(t)ϕX′(t) = t, (1.18), we find

γ̄X = lim inf
t→∞

logϕX(t)

log t
= lim inf

t↓0

logϕX
(

1
t

)
log 1

t

= lim inf
t↓0

log

(
1

ϕX( 1
t )

)
log t

= lim inf
t↓0

log
(
tϕX′

(
1
t

))
log t

(2.39)

Then using (2.26) we find

lim
t↓0

log ΦX(t)

log t
= lim

t↓0

log
(
tΦX′

(
1
t

))
log t

now using that ϕX′(1)ΦX′(t) ≥ ϕX′(t) (2.27), the fact that log is increas-
ing and that log t < 0 for 0 < t < 1 we find

β
X

= lim
t↓0

log ΦX(t)

log t
= lim inf

t↓0

log
(
tΦX′

(
1
t

))
log t

≤ lim inf
t↓0

log
(
tϕX′

(
1
t

))
log t

= γ̄X

Using the same trick for γ
X

as we did in (2.39) for γ̄X we find

γ
X

= lim sup
t→∞

log
(
tϕX′

(
1
t

))
log t

and we similarly obtain

β̄X = lim
t→∞

log ΦX(t)

log t
= lim sup

t→∞

log
(
tΦX′

(
1
t

))
log t

≥ lim sup
t→∞

log
(
tϕX′

(
1
t

))
log t

= γ
X

Note that the inequality is the other way because log t > 0 for t > 1. This
concludes the proof.
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We see that we don’t yet have γ
X
≤ γ̄X when ϕX is not submultiplicative.

Note that to obtain this ϕX need only be submultiplicative on one side for
this inequality to hold. As if it were submultiplicative either near 0 or for
large t, one of the bounds in (2.36) would yield equality by (2.34) or (2.35).

Lemma 2.3.5. Let Y,X be r.i. Banach function spaces on Rd such that ϕY
is concave. Then∥∥∥‖Dt‖B(X̄) χ[0,1)(t)

∥∥∥
Λ(Y )

<∞ =⇒ γ
Y
≥ ᾱX (2.40)∥∥∥‖Dt‖B(X̄) χ[0,1)(t)

∥∥∥
Λ(Y )

<∞ ⇐= γ
Y
> ᾱX (2.41)

Proof. For (2.40), consider

lim
t↓0
‖Dt‖B(X̄) ϕY (t) ≤ lim

t↓0
‖Dt‖B(X̄) ϕY (t) +

∫ 1

0

‖Ds‖B(X̄) ϕ
′
Y (s)ds

=
∥∥∥‖Dt‖B(X̄) χ[0,1)(t)

∥∥∥
Λ(Y )

<∞

Then by (2.32) we have thatᾱX = limt↓0
log‖Dt‖B(X̄)

log 1/t
, giving

lim
t↓0
‖Dt‖B(X̄) ϕY (t) = lim

t↓0
tγY −ᾱX <∞

so that indeed ᾱX ≤ γ
Y

. By Proposition 1.2.14 we have that ϕ′Y (t) ≤ ϕY (t)
t

for almost every t. Then,∥∥∥‖Dt‖B(X̄) χ[0,1)(t)
∥∥∥

Λ(Y )
= lim

t↓0
‖Dt‖B(X̄) ϕY (t) +

∫ 1

0

‖Ds‖B(X̄) ϕ
′
Y (s)ds .

≤ lim
t↓0

tγY −ᾱX +

∫ 1

0

‖Ds‖B(X̄)

ϕY (s)

s
ds

Then since

lim
t↓0

log‖Dt‖B(X̄)

log 1
t

= ᾱX < γ
Y

= lim sup
t↓0

logϕY (t)

log t

we get that for ε > 0 with ᾱX + ε < γ
Y
− ε, there exists a T < 1 such that

log‖Dt‖B(X̄)

log 1
t

< ᾱX + ε < γ
Y
− ε < logϕY (t)

log t

49



for all t < T . Then∫ 1

0

‖Ds‖B(X̄)

ϕY (s)

s
ds ≤

∫ T

0

sγY −ε−(ᾱX+ε)−1ds+‖DT‖B(X̄)

∫ 1

T

ϕY (1)

s
ds <∞

Note that ϕY (t) ≤ ϕY (1) for t ≤ 1 since ϕY is increasing. This concludes the
proof of (2.41).

These statements are close to being equivalent, however, we have the
following counter examples to show that such an equivalence is false: X =
Y = L∞ has that 0 = ᾱL∞ ≥ γ

L∞
, and Λ(L∞) = L∞( see Remark 1.2.18).

Then indeed ∥∥∥‖Dt‖B(L̄∞) χ[0,1)(t)
∥∥∥

Λ(L∞)
=
∥∥χ[0,1)

∥∥
L∞

<∞

showing that (2.40) cannot be improved to a strict inequality. On the other
hand, for L1 we have γ

L1 = 1 = ᾱL1 and by Example 1.23 we have∥∥∥‖Dt‖B(L̄1) χ[0,1)(t)
∥∥∥

Λ(L1)
=

∫ 1

0

1

t
dt =∞.

which shows us that the strict inequality in (2.41) cannot be relaxed.

Corollary 2.3.6. Let Y,X and E be r.i. Banach function spaces on Rd,
with E generated by Λ(Y ). If Eloc ∩X is dense in X and

γ
Y
> ᾱX or β

Y
> ᾱX , (2.42)

MY is a bounded operator on X.

Proof. For γ
Y

this follows directly from Lemma 2.3.5, Lemma 1.2.15 and
Theorem 2.2.8. For β

Y
this follows from (2.36) and the same argumentation.

For a space with submultiplicative ϕY , like Lp, the inequalities in (2.42)
are the same. However, in general we don’t know if ϕY is submultiplicative.
The following is an example of how we can formulate equivalent sufficient
and necessary conditions. The sufficient conditions given in Corollary 2.3.6
include the sufficient conditions we found in Theorem 2.1.15 as the particular
case of Y = L1, since we have

L1
loc ⊇ L1 + L∞ ⊇ X̄,

so that the density condition is always satisfied. Then indeed since γ
L1 = 1

we again find that ML1 is bounded on X if and only if ᾱX < 1.
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Corollary 2.3.7. Suppose 1 < p < ∞, 1 ≤ q < ∞ and let Lp,q(Rd) be as
in Definition 1.2.19. Let Y,E be r.i. Banach function spaces on Rd such
that ϕY is submultiplicative near 0 and E is generated by Λ(Y ). Then MY

is bounded on Lp,q if and only if β
Y
> 1

p
.

Proof. Notice first that by [4, Theorem 1.4.13] we find that simple functions
are dense in Lp,q for 0 < q < ∞, since all r.i. Banach function spaces
contain the simple functions we find that Eloc ∩ Lp,q is dense in Lp,q. As
mentioned before, the Boyd indices of Lp,q are given by αp,q = ᾱp,q = 1

p
. By

Corollary 2.3.6, β
Y
> ᾱp,q is a sufficient condition for boundedness of MY on

Lp,q. Now suppose that MY is bounded on Lp,q, then by Theorem 2.2.10 we
find that

∥∥ϕY (min{1, 1/t})
∥∥
p,q
<∞. Recall for ρp,q, as in (1.22), we have

ρp,q(f) ≤‖f‖p,q ≤
p

p− 1
ρp,q(f).

Then since ϕY is submultiplicative near 0, by (2.28) we find there is a c > 0
and 1 > ε > 0 such that

ΦY (t) ≤ cϕY (t)

for all 0 < t < ε. Then by definition of β
Y

we get for all 0 < t < ε that

log cϕY (t)

log t
≤ log ΦY (t)

log t
≤ sup

0<s<1

log ΦY (s)

log s
= β

Y

We use that log is an increasing function and log t < 0 when t < 1. Now see
that

ρqp,q(ϕY (min{1, 1/t})) =

∫ ∞
0

[t1/pϕY (min{1, 1/t})]q dt

t

≥
∫ ∞
ε−1

[t1/pϕY (1/t)]q
dt

t

≥
∫ ∞
ε−1

[t1/p
1

c

(
1/t
)β

Y ]q
dt

t

≥ 1

cq

∫ ∞
ε−1

[t1/p−βY ]q
dt

t

The observation that this last integral diverges to∞ when β
Y
≤ 1

p
combined

with the fact that ρp,q(f) ≤‖f‖p,q then concludes the proof for q <∞.
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Note that for q =∞, a proof of this kind fails to hold, since

sup
0<s<∞

t1/p−βY = 1

when 1/p = β
Y

.

Lemma 2.3.8. Let Y,X be r.i. Banach function spaces. If MY is a bounded
operator on X, then the weak fundamental indices satisfy:

γ̄X ≤ γ
Y

Proof. Using Theorem 2.2.10 and Theorem 1.2.17 we get that there exists
some c > 0 such that

∞ > c
∥∥∥ϕY (min{1, t−1}

)∥∥∥
X̄
≥
∥∥∥ϕY (min{1, t−1}

)∥∥∥
MϕX

= sup
0<t<∞

ϕX(t)

t

∫ t

0

ϕY
(
min{1, s−1}

)
ds

≥ sup
0<t<∞

ϕX(t)ϕY
(
min{1, t−1}

)
≥ lim

t→∞
ϕX(t)ϕY

(
t−1
)
≥ lim

t→∞
tγ̄X−γY .

Then indeed this limit is only finite when γ̄X ≤ γ
Y

.

Lemma 2.3.8 may give more extensive results when combining it with
Proposition 2.3.4. Note that the inequality in Lemma 2.3.8 cannot be im-
proved to a strict inequality in the general case, for example take ML∞ which
is bounded on L∞ itself. Then indeed γ̄L∞ = 0 = γ

L∞
. For our final result,

we introduce Orlicz spaces, a generalization of Lp.

Definition 2.3.9. Let ψ : [0,∞)→ [0,∞] be increasing and left-continuous,
with ψ(0) = 0. Suppose on (0,∞) that ψ is neither identically equal to 0
or ∞, that is, there exists x ∈ (0,∞) such that 0 < ψ(x) < ∞. Then the
function Ψ2 defined by

Ψ(s) =

∫ s

0

ψ(u)du, (s ≥ 0)

is said to be a Young’s function.

2Usually we use Φ to represent the Orlicz space, but to avoid confusion with Φ defined
for the fundamental indices we use Ψ.
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Definition 2.3.10. Let Ψ be a Young’s function. The Orlicz space LΨ(R+),
with its norm given by:

‖f‖LΨ(R+) = inf{k :

∫ ∞
0

Ψ(k−1f(x))dx ≤ 1}

In [9, Theorem 2.6.9] it is shown that this is a Banach function spaces,
in [7, Page 120] it is shown that this norm is r.i. Then using [1, Theorem
II.4.9] we find that the following norm is r.i. and produces a Banach function
space:

‖f‖LΨ(Rd) :=‖f ∗‖LΨ(R+) .

In the sense of the Luxemburg representation theorem we have LΨ(Rd) =
LΨ(R+). From now on we will use LΨ to denote a space on Rd and LΨ a
space on R+. Consider the following:

Definition 2.3.11. Let Ψ be a Young’s function, then we call

Ψ−1(t) = sup{s : Ψ(s) ≤ t}

the right continuous inverse.

Now let s0 = sup{s : Ψ(s) = 0} and s∞ = inf{s : Ψ(s) = ∞} then by
its definition we find that Ψ is strictly increasing and continuous on [s0, s∞).
Then we find that:

s = Ψ−1(t) ⇐⇒ Ψ(s) = t, (s0 < s < s∞).

In other words, Ψ is bijective from (s0, s∞) to (0,∞). The following lemma
gives a useful explicit form for the fundamental function of an Orlicz space.

Lemma 2.3.12. Let Ψ be a Young’s function, then the fundamental function
of LΨ is given by

ϕΨ(t) =
1

Ψ−1(1/t)
, (0 < t <∞)

Additionally, ϕΨ is submultiplicative for large t when Ψ−1 is supermultiplica-
tive near 0 and vice versa.

Proof. ∫ ∞
0

Ψ(kχ[0,t)(s))ds =

∫ t

0

Ψ(k)ds = tΨ(k)
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Then we have by definition:

ϕΨ(t) =
∥∥χ[0,t)

∥∥
LΨ = inf{k : Ψ(k−1) ≤ 1/t}

=
(
sup{k−1 : Ψ(k−1) ≤ 1/t}

)−1

=
(
sup{k : Ψ(k) ≤ 1/t}

)−1
=

1

Ψ−1(1/t)
.

Furthermore, if ϕΨ is submultiplicative for large t we have the following:
there exists a ∞ > T > 0 such that for all t > T and all s ∈ (0,∞) we have

Ψ−1
(
1/(st)

)
=

1

ϕΨ(st)
≥ 1

cϕΨ(s)ϕΨ(t)
=

1

c
Ψ−1(1/s)Ψ−1(1/t).

The other way around is shown the same way.

Note that we still have ϕΨ(0) = 0. For the final proof we will need the
following theorem:

Theorem 2.3.13. Let Ψ be a Young’s function, and define:

g(t) = sup

{
Ψ−1(s)

Ψ−1(st)
: s ∈ (0,∞)

}
, t ∈ (0,∞)

Then the upper and lower Boyd indices of LΨ are given by:

ᾱΨ = lim
s→0+

− log g(s)

log s
, αΨ = lim

s→∞

− log g(s)

log s

A proof is given in [2]. For our purposes we rewrite this to:

ᾱΨ = lim
s→0+

− log g(s)

log s
= lim

s→0+

log g(s)

log 1/s
= lim

s→∞

log g(1/s)

log s
(2.43)

αΨ = lim
s→∞

− log g(s)

log s
= lim

s→∞

log g(s)

log 1/s
= lim

s→0+

log g(1/s)

log s
(2.44)

Then notice that ΦLΨ(t) as defined in Definition 2.3.1 can be written as
follows by Lemma 2.3.12:

ΦLΨ(t) = sup
0<s<∞

ϕΨ(st)

ϕΨ(s)
= sup

0<s<∞

Ψ−1(1/s)

Ψ−1(1/st)
= sup

0<s<∞

Ψ−1(s)

Ψ−1(s/t)
= g(1/t)

(2.45)

Corollary 2.3.14. Let Ψ be a Young’s function, then

ᾱΨ = β̄Ψ, αΨ = β
Ψ
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Proof. It follows directly from combining Theorem 2.3.13 with equations
(2.43), (2.44) and (2.45).

Now we are ready to present the theorem for boundedness on Orlicz
spaces:

Theorem 2.3.15. Let Y,E be r.i. Banach function spaces on Rd such that
ϕY is submultiplicative near 0 and E is generated by Λ(Y ). Let Ψ be a
Young’s function such that Ψ−1(t) is supermultiplicative near 0, s∞ = ∞
and such that Eloc ∩ LΨ is dense in LΨ. Then MY is bounded on LΨ(Rd) if
and only if β

Y
> ᾱΨ.

Proof. Sufficiency follows by applying Corollary 2.3.6. For necessity we use
Lemma 2.2.10. Firstly, note that by Lemma 2.3.8 and properties (2.34) and
(2.35) from Lemma 2.3.4, we have that β̄Ψ ≤ β

Y
is necessary. It will thus

suffice to show that β̄Ψ = β
Y

leads to MY not being bounded. Now by
Lemma 2.3.12, ϕΨ(t) is submultiplicative for large t, thus we find that there
are constants c1, c2 > 0 and 1 > ε1, ε2 > 0 such that:

ΦY (t) ≤ c1ϕY (t), ΦΨ(s) ≤ c2ϕΨ(s), (0 < t < ε1, 1/ε2 < s <∞)

Set c = max{c1, c2} and ε = max{ε1, ε2}. Since log is strictly increasing on
(0,∞) and log t < 0 for t ∈ (0, 1) we obtain

log cϕY (t)

log t
≤ log ΦY (t)

log t
≤ sup

0<s<1

log ΦY (s)

log s
= β

Y
(0 < t < ε)

Similarly, for t > 1 we have log t > 0 and thus:

log cϕΨ(t)

log t
≥ log ΦΨ(t)

log t
≥ inf

s>1

log ΦΨ(s)

log s
= β̄Ψ, (ε−1 < t <∞)

We consider :∫ ∞
0

Ψ
(
ϕY (min{1, 1/t})

)
dt =

∫ 1

0

Ψ(ϕY (1))dt+

∫ ∞
1

Ψ(ϕY (1/t))dt

≥
∫ ε−1

1

Ψ(ϕY (1/t))dt+

∫ ∞
ε−1

Ψ

(
cϕY (1/t)

c

)
dt

≥
∫ ∞
ε−1

Ψ

(
1

ctβY

)
dt

In the last inequality, we use cϕY (u) ≥ uβY for 0 < u < ε < 1 and that Ψ
is increasing. Additionally we use that Ψ is a nonnegative function in both
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inequalities. Similarly we find that cϕΨ(u) ≥ uβ̄Ψ for 1 < ε−1 < u < ∞,
using Lemma 2.3.12 we obtain

u−β̄Ψ ≥ 1

cϕΨ(u)
=

Ψ−1(1/u)

c

Then we we get ∫ ∞
ε−1

Ψ

(
1

ctβY

)
dt ≥

∫ ∞
ε−1

Ψ

(
Ψ−1(1/t)

c2

)
dt

Let k ∈ R+, then since s∞ =∞, we know that there exists an∞ > δk > 0
such that Ψ−1(δk) ≥ ck. Using the submultiplicativity of ϕΨ for t > ε−1 we
find:

Ψ−1(1/t)

k
=

1

kϕY (t)
≥ 1

ckϕY (δkt)ϕY (δ−1
k )
≥ Ψ−1(1/tδk)

giving ∫ ∞
ε−1

Ψ

(
Ψ−1(1/t)

k

)
dt ≥

∫ ∞
ε−1

1

δt
dt =∞

Then we find∥∥ϕY (min{1, 1/t})
∥∥
LΨ ≥

∥∥χ[ε−1,∞)Ψ
−1(1/t)

∥∥
LΨ =∞

By [3, Theorem 2.1] we find that we may drop the requirement of density
for LΨ with β

Ψ
> 0, as LΨ is separable in this case.

Remark 2.3.16. In general we cannot yet state an if and only if statement,
we can, however, state the following: In general, for two r.i. Banach function
spaces on Rd X and Y , we know from Lemma 2.3.8 and Lemma 2.3.6 that
for boundedness of MY on X, that γ

Y
≥ γ̄X is necessary, and that γ

Y
> ᾱX

is sufficient given that for Eloc on Rd, generated by Λ(Y ), Eloc ∩X is dense
in X.

While in many spaces we have γ̄X = β̄X = ᾱX , like Lp,q, these lemmas
still don’t lead to an if and only if statement. Indeed, as we saw in Theo-
rem 2.3.15 and Corollary 2.3.7, we used Theorem 2.2.10 to show that, under
some assumptions, boundedness of MY on restricted X is only attainable for
Y such that γ

Y
> ᾱX .
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