Enriching Diversity of
Synthetic Images for
Person Detection

Graduation Thesis report
Chinmay Polya Ramesh /

] |
TUDelft



Enriching Diversity
of Synthetic Images
for Person Detection

by

Chinmay Polya Ramesh

To obtain the degree of Master of Science in Robotics at the Delft University of Technology.

PHILIPS

]
TUDelft

Delft University of Technology

Student Number: 5135125

Thesis Duration: August 02, 2021 - October 20, 2022

Thesis Committee:  Dr. L. Zhang, Philips, supervisor
Dr. H. Caesar, TU Delft, supervisor
Dr. J.EP. Kooij, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

%
TUDelft



Abstract

Camera-based patient monitoring is undergoing rapid adoption in the healthcare sector with the recent COVID-
19 pandemic acting as a catalyst. It offers round-the-clock monitoring of patients in clinical units (e.g. ICUs,
ORs), or at their homes through installed cameras, enabling timely, pre-emptive care. These are powered by
Computer Vision based algorithms that pick up critical physiological data, patient activity, sleep pattern, etc.,
enabling real-time, pre-emptive care. In this work, we develop a person detector to deploy in such scenarios.
These algorithms require huge quantities of training data which is often in shortage in the healthcare field
due to stringent privacy norms. Therefore looking for solutions to enrich clinical data becomes necessary. An
alternative currently popular among the Computer Vision community is to use synthetic data for training,
created using 3D modeling software pipelines. However, this type of technique often has limitations in data
diversity and data balancing as desired variations need to be provided explicitly. In this thesis, we propose
a data augmentation method for enriching diversity in synthetic data without using any additional external
data or software. In particular, we introduce a pose augmentation technique, which synthesizes new human
characters in poses unseen in the original dataset using Pose-Warp GAN. Additionally, a new metric is proposed
to assess diversity in human pose datasets. The proposed method of augmentation is evaluated using YOLOV3.
We show that our pose augmentation technique significantly improves person detection performance compared
to traditional data augmentation, especially in low data regimes.
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Introduction

1.1. About the Thesis

This thesis topic was offered by the Philips Research, Patient care Informatics and Analytics team, part of the
Patient care & monitoring Department which based out the High Tech Campus in Eindhoven, Netherlands.

1.2. Context

Remote/Contact-less Patient Monitoring is revolutionizing the patient care sector. Video cameras installed in-
side hospital wards, Intensive Care Units (ICUs), or at homes are used to monitor patients at real time. The
Image feed is processed using Computer Vision algorithms to measure vital signs (e.g. heart rate, respira-
tion rate, blood oxygenation saturation, body temperature, etc.) and also non vital signs (fall prevention, sleep
monitoring, activity monitoring etc,.). Periodic observations by staff proves costly in nurse hours. It can be sub-
ject to inconsistencies, disturb the patients (especially at night) and has the potential for cross-contamination.
Camera based monitoring on the other hand, facilitates round the clock monitoring, thus allowing sudden and
unexpected deterioration to be recognised early, and treated quickly. Owing to these advantages, Philips is
interested in developing its camera-based monitoring solutions.

In this research we are only interested in person detection, as a first step towards towards more fine-grained
tasks. The objective is to develop a general purpose, efficient person detector that is trained on minimum real
images. The detector is not just limited to hospital wards but can also be used in hallways, common rooms,
lobbys and at homes. However developing algorithms for these camera based techniques required large amount
of sensitive data. To train state-of-the-art person detectors requires high quality, high quantity images of
patients in hospital rooms sometimes in vulnerable states. This causes several problems:

Privacy of patients is breached.

Stringent norms like HIPAA (US) and GDPR (EU) regarding collection, handling, storing and utilizing
patient data.

« These norms allow de-identification (removing all direct identifiers from patient data) but the process is
expensive. There are huge penalties if data is leaked[4].

« Lack of sufficiently large datasets.
« Lack of diversity in datasets.

To combat problems surrounding real data, the use of synthetic data in Machine Learning is currently on
the rise with many field adapting and proving its effectiveness.

1.3. Synthetic data

The Remote Sensing team at Philips has been exploring methods to generate synthetic data with the intention
of training person detectors using transfer learning on real data. The figure 1.1 shows the current pipeline being
used to generate synthetic lab images containing people.
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Figure 1.1: Pipeline for generating synthetic data. Image borrowed from Philips.

A set of characters (patients, hospital staff, and visitors) are initially created using modelling tools having
different attributes (gender, age, built, and ethnicity). The characters are exported to an animation software to
introduce different actions like walking, sitting, standing etc. These characters are imported to blender along
with 2D image backgrounds and rendered to produce RGB images, segmentation masks and annotation text
files in different camera views as output. Figure 1.2 and 1.3 show an example outputs from the pipeline.

Figure 1.2: Example RGB output from Blender. Image borrowed from Philips

Although the generated images look promising, it has only a few variations of human poses, camera view-
points, illumination, textures and colors. In order to include more permutations and combinations manual work
is necessary. Also certain poses and effects like blankets draped on the body of a sleeping person do not seem
natural in a way that appears in real world. Therefore the idea is to investigate potential elegant methods that
requires less hard coding of variables to enrich the synthetic dataset.



1.4. Generative Adversarial Networks 3

(a) RGB Image (b) segmentation mask

Figure 1.3: Example output from Blender pipeline. Image borrowed from Philips.

Another approach is to use Generative Adversarial Networks(GAN’s). GANs have been used extensively
to augment Medical Image datasets. It would be interesting to see if it could be applied to our case.

1.4. Generative Adversarial Networks

Generative adversarial networks(GANs) are being used increasingly across fields for different tasks like gener-
ating images of people[25], fruits[5], mammograms [37] [3], data augumentation[23], image translation from
segmentation map to RGB[47], outline sketches to full pictures[21] to mention a few examples. All these ex-
amples utilize GANs to generate fake images that try to mimic the distribution of real images present in the
training set. Some examples are given below in fig??.

Figure 1.4: High resolution(10242) images of fake persons obtained from PGGAN[26] network

The revolution regarding generative networks was spurred by the landmark paper[16] that introduced GAN to
the DL community by Ian Goodfellow et al., in 2014. The vanilla GAN consists of two fully connected networks
that are pitted against each other in a zero sum game. The two networks are the Generator network and the
Discriminator network respectively. Refer to figl.5.

« Noise vector/Latent vetor(Z): A vector is drawn from randomly from a Gaussian distribution N(0,1), and
the vector is used to seed the generative process. After training, points in this multidimensional vector
space will correspond to points in the input data but in a compressed low dimensional format.

« Generator(G): The job of the Generator is to learn a function that maps this random input noise vector
to an image that is within the distribution of the training data.
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Figure 1.5: Vanilla GAN architechture, source

G(Z) corresponds to the fake image. The generator update equation is given by:

Vo, L S 1og (1- D (¢ (:))) (1)
i=1

This has the effect of encouraging the generator to generate samples that have a low probability of being
fake.

« Discriminator(D): The job of the discriminator is to distinguish the fake images generated by the generator
from real samples drawn from the training data. D(G(Z)) is either 0 or 1 depending on the Discriminators
assumption of the source of the image.

The Discriminator update equation is given by:

m

ng% > [1ogD (ac(i)) +log (1 -D (G (ZU)))] (1.2)

This has the effect of the discriminator trying to maximize the average of the log probability of real images
and the log of the inverse probability for fake images.

The architecture is called adversarial because the gain in performance of one network is at the cost of deterio-
ration of the other while playing the minmax(D,G) game. In the end, the networks are said to converge when
the accuracy of the discriminator is 50%. That is when the Discriminator is not able to tell the fake image from
the real. While GANs can be a viable solution to create images, there are some inherent problems with GANs
such as:

« Training is sensitive to hyperparameters.
+ Generated images are low quality.

« Generator fails to create diverse samples because it only cares that the discriminator is fooled. There is
no control on output of the generator.

The last two points are of importance, given that our aim is to enhance the diversity of synthetically generated
images.


https://sthalles.github.io/intro-to-gans/
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1.5. Goal

The end goal of this thesis is to improve the performance of a person detector trained on synthetic images.
Figure 1.6 shows the existing pipeline. Figure 1.7 shows the proposed pipeline. In the introduction we explained
how the Philips dataset being used currently is lacking in diversity. A possible direction is to explore GANs
as a method for augmenting synthetic datasets. However, Vanilla GANs are notorious for mode collapse and
struggle with handling complex data(images of humans in different poses). Therefore, in the next Section, we
look at the kind of synthetic datasets being used currently for computer vision tasks in the literature. We also
look at how GAN s are modified for augmenting datasets, particularly human image synthesis. We then proceed
to formulate our research questions.

Synthetic Images Real Images Trained YOLO
person detector

Pre-Training

Wocec

Fine-Tuning

Figure 1.6: Existing pipeline for training a person detector

Synthetic + Augmented Images Real Images Trained YOLO
person detector

Pre-Training

GAN Wtfeees])
Augmented

Images

Fine-Tuning

Wfoeec

Figure 1.7: Proposed pipeline for training a person detector



Literature Study

2.1. Synthetic datasets in object detection

In this section we look at some examples of synthetic data being used in object detection training and how it
fares against real data.

In [33], the authors take a comprehensive look into the effects of replacing real data with synthetic data
for two types of training; mixed training and fine-tuning. It is reported that fine-tuning synthetic training
model with limited real data provides better results than mixed training. The authors claim that for the task of
pedestrian detection, using only 10% of real data while fine tuning provides decent results when pretrained on
synthetic data (Figure 2.1). Also, It is shown that the photo-realism is not as important as the diversity of the
data. Figure 2.2 shows example synthetic images used.

(b) Synthetic Training - Real Fine-tuning (KC)

0.60
Train Dataset
=] = 7D
033 = P4R
= CARLA
0.50 4 '_“* - K
sy :
& .45 X & ._\'4) Re-Rato
i ¢ A 2.5%
i I} !{/ W 5%
o J n
~ 0.40 — ® 10%
g 'y * 100%
[
- 0,354
0.30 4
0.25 1
0.20 - . ; ;
0.10 0.15 0.20 0.25 0.30 0.35

Average Recall

Figure 2.1: Graph shows that fine-tuning model trained on synthetic data using only 10% of real data still performs relatively well.
However model performance deteriorates drastically on further reduction on real data proportion[33].

The domain randomization technique[41] introduced by NVIDIA plays with lighting, pose, object textures,
in randomized and non-realistic ways to force the neural network to learn the essential features of the object of
interest. The approach is evaluated on bounding box detection of cars on the KITTI dataset using Faster-RCNN.
The authors observed that when using synthetic dataset to train, it resulted in an AP(average precision) of 83.7%
compared to an AP of only 56.1% when only COCO weights were used.

Similarly, [29] tested synthetic data on performance of remote sensing image aircraft detection. Although
synthetic data could not overtake the performance of 100% real data, the authors suggest that image translation

6
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Figure 2.2: Synthetic images of street scenes sourced from CARLA driving simulator and SYNSCAPES 7D[33]

from synthetic to real domain improves mAP by 40%.

With regards to usage of synthetic data in the context of person detection, [44] used a method of pasting
blender generated person image patches on randomly sampled images from original data (Figure 2.3). A similar
approach has been followed by [18] for the task of pose estimation. Multiple synthetic humans sourced from
the SURREAL[42] dataset are pasted on to the training set(Figure 2.4). The authors claim that networks trained
on such augmented datasets perform significantly better compared to that trained on the original dataset. Syn-
thetic data could effectively include diverse instances of occlusions and special artefacts and this increased
model performance. Surprisingly it was found that improving visual appearance of synthetic humans decreased
the accuracy.

Similar approach is followed for the tasks of pedestrian detection, re-identification, segmentation, and track-
ing in [12] and MOTsynth [13]. The authors show that real data can be completely replaced by 100% synthetic
data without a drop in detection performance. In Figure 2.5, an unannotated image set is taken as input. The
scale ratio of the pedestrian and vanishing points are extracted to calculate camera parameters. Synthetic 3D
characters basic animations are rendered with location-aware lighting and extracted camera parameters. The
synthetic pedestrians are overlayed on real backgrounds to produce an annotated training dataset, which is
further used to train a pedestrian detector. The trained pedestrian detectors outperform other general-purpose
pedestrian detectors by 5-13%.

In [20], authors improved multi-person 2D pose estimation by adding extra 3D modelled human images de-
picting “rare” poses from MPII human pose dataset. Backgrounds are randomly cropped patches from randomly
selected samples of VOC2012 dataset(Figure 2.6). The reason for improvement in pose detection is attributed
to an even distribution in the diversity of poses along with difficult occlusions present in the training set.

Overall these examples show that there is a potential to use synthetically generated datasets for training
our YOLO person detector, and expect reasonable performance.

Randomly varied Random real
rendered person background patch
model

Final image

Figure 2.3: Data is augmented by pasting blender generated human image patches over random images sampled from original data to
create additional annotations[44]
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Figure 2.5: Synthetic pedestrians overlayed on real backgrounds in [12]. Agents look realistic with different appearances and brightness
similar to the scene.

Figure 2.6: Synthetic pedestrians rendered using SMPL mesh and overlayed on real backgrounds in [20]
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2.2. GANs for data augmentation

It is also possible to generate more data from existing data by applying various transformations to the original
dataset. Some of them include random translations, rotations and flips as well as addition of Gaussian noise.
These transformations are quite easy and do not add much information to the data. On the other hand Gen-
erative Adversarial Networks(GANs) attempt to learn the internal representations of data and synthesize new
samples. [14] describes GANSs as a way to “unlock” additional information from a dataset.

In this section we look at examples of Generative Networks as a data augmentation technique and how
effective it is in enhancing small datasets.

GAN-based Data Augmentation was used by [14] for liver lesion classification. They report improved clas-
sification performance from 78.6% sensitivity and 88.4% specificity using classic augmentations to 85.7% sen-
sitivity and 92.4% specificity using GAN-based Data Augmentation. Figure 2.8 shows some examples of the
generator output. In Data Augmentation Using GANs[40], the authors generated totally synthetic data for a bi-
nary classification problem (cancer detection). Strikingly, they showed that a decision tree classifier performed
better when trained on this totally synthetic dataset than when trained on the original small dataset. As an-
other instance, [7] showed that greatest improvements through GAN augmentation can be seen in the cases
where real data is the most limited in the case of brain segmentation task(Figure 2.7).

In[32]GAN-based augmentation is used for detection of Pneumonia and COVID-19 in chest X-ray images.
The authors reports moderate improvements in AUC in anomaly detection. Besides medical applications, in
[48] CycleGANs[47] were used in the task of emotion classification to improve accuracy by 5-10%. In most of
these cases, GAN augmenting approach has been shown to work best in cases of limited data, either through a
lack of real data or as a result of class imbalance.

Ny,

(a) Real CT (b) Synthetic CT (c) Real MRI (d) Synthetic MRI

Figure 2.7: Example images of real and GAN generated images of brain scans for comparison[7]

Most of the augmentations covered above focus on improving downstream image classification, segmenta-
tion and few-shot learning applications.

In the case of object detection, GANs are used to augment scarcely available LIDAR point cloud datasets in
[38](Figure 2.9). The authors also introduce a new method of annotating these generated images. The YOLO
network is trained on the GAN augmented dataset to obtained improved results with respect to non-augmented
dataset. In [17] the authors propose a CycleGAN+YOLO combination for data augmentation to train a multi-
organ detector for CT images. The approach achieves accurate detection with a significant improvement over
YOLO detection alone. [34] investigates GAN augmentation in Structural Adhesive Inspection application.
Figure 2.10 shows example results of StyleGAN2 network trained on images of defective structural adhesive
beads. The authors claim almost 30% improvement in YOLO detection mAP on the StyleGAN based augumented
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Figure 2.8: Synthetic liver lesion ROIs generated with DCGAN for each category: (a) Cyst examples (b) Metastasis examples [14]

dataset(Figure 2.11). Other applications include image-to-image translation network for generating large-scale
trainable data for vehicle detection algorithms[19] and Large scale aerial data sets for environmental perception
of autonomous aerial vehicles[31].

Figure 2.9: First column shows LiDAR scan images from simulated CARLA. Second column shows fake LiDAR scans translated from the
domain of simulated images to the real domain using GANs. These scan images have characteristics/artefacts that are typical to real scan
images. Last column shows YOLO object detection performed on the fake GAN generated images.[38]

2.3. Human Image Synthesis using conditioning

It seems that the methods discussed in the section have limited editable capacity in the synthesis of full length
human images. Although high resolution images are possible, the methods mostly dealt with images having a
set layout like faces which are mostly centered. In contrast, the manifold of human images is very complicated
which can have infinite variations in size, poses, textures, viewpoints etc,. which becomes very difficult for
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Figure 2.10: Real and synthetic images of defective structural adhesive beads. First column depicts real images from the original dataset.
Second, third and fourth columns correspond to synthetic images. Last columns shows defect detection example using YOLO network.

(34]
Dataset mAP@0.15 mAP@0.30 mAP@0.50
Validation Set (60 discontinuity, 60 excess)
Synthetic 0.8141 0.7724 0.6755
Real 0.8662 0.8239 0.7221
Augmented (Simulation) 0.8870 0.8265 0.7339
Augmented (GAN) 0.9131 0.8569 0.7708

Figure 2.11: Table reported in [34] shows network trained on GAN augmented dataset shows superior performance compared to that
trained on purely synthetic or purely real datasets.

GAN networks to learn. Therefore an approach could be to disentangle these variations and target specific
important changes that induce maximum diversity in images. This would facilitate targeted image synthesis
and decrease the learning task for GANSs. In this section we look at some of human image synthesis techniques
that are conditioned such that a target image is synthesized based on the given condition.

2.3.1. Domain Transfer

There examples of CycleGAN technique being employed for tasks related to human images. In [22] a mapping
from person images to their respective poses is learned(Figure 2.12(a)). In [10], a video to video translation
method using pose keypoints as an intermediate representation is discussed (Figure 2.12(b)). Openpose[8]is
used to detect pose keypoints from source video. An Image-Image translation technique is used to generate
video frames in the target domain conditioned on the detected keypoints. Using unpaired training data, this
method of conditioning can be used to generate images of a given person in multiple desired poses unseen in
the training data.

(a) (b)

Figure 2.12: CycleGAN applied to translate from the domain of human images to corresponding poses in (a)[22] and (b)[10]
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2.3.2. Pose Transfer

In these methods, full scale humans are synthesized conditioned on a given pose. For example, in [2] two inputs-
(a)Source image (b) Target pose keypoint are concatenated and fed into the network. The network learns to
synthesize a new image of the same person depicting the condition pose while preserving the same background
clothing colours, clothing texture and lighting from the source image. The networks achieves this by splitting
the network into different modules which perform its own sub-tasks.These sub-tasks are trained jointly using
only a single target image as a supervised label. The full architecture is provided in Figure 2.14. What is remark-
able in this technique is that even fine details like lights and shadows seen on the source image are preserved
in the newly synthesized image as can be seen in Figure 2.13. An adversarial discriminator is used to force the

network to learn such realistic details.

Source Image

Figure 2.13: Synthesizing a new image of the same person depicting the conditioned pose[2]

Target Pose

A. Source Image Segmentation

J
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ks —E’.%
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Figure 2.14: Architecture of [2]. First, image segmentation is done by module A on I by separating body parts from the background.
Module B performs spatial transformation of body parts in Is. Module C synthesizes the image of the person v, on the conditioned
pose, by fusing the body parts and also outputs a foreground mask M; in parallel. Module D creates a background image, yp,4 using

P Pt >

B. Spatial Transformation )

Spatial
Transform (T)

hole-filling. Finally, y ¢, and ¥4 is combined to produce y.
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Tennis =2 Golf Tennis =2 Yoga
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Figure 2.15: The method generalizes satisfactorily even for new poses not seen in the training set. Here, network is trained only on
Tennis poses but tested to synthesize humans in Golf/Yoga poses. [2]

As another example, in [28], given a synthetic image silhouette of a projected 3D body model, the network
synthesizes new persons with similar pose and shape but in different clothing styles (see Fig. 1). A silhouette of
a 3D model of a person is provided as the condition. Figure 2.16 shows sample output images from the network.

Figure 2.16: Example output from [28] overlapped on indoor backgrounds

« Input: Image of SMPL model
« Output: Multiple human images in different attires condition on input.

2.3.3. Text-Conditioning

In these methods a synthesized image is conditioned on natural language descriptions. In [46], a text description
is used as input to synthesize a complete person in the pose and action mentioned. However in this method,
the target pose is selected from a bank of standard poses based on the text. The bank of standard poses are
basic in nature and do not contain much variability. Figure 2.17 shows some results from this method. One can
observe that the input word “walking forward” has resulted in images of person walking in the same pose. This
hinders our original problem of introducing multiple poses. Moreover, these methods require labelled images.
It is an exhaustive to generate different labels of colour and pose and therefore proves counter productive to
our case.

An Asian man in [a white shirf], black pants, and carrying PA woman in a yellow shirt, [ pair of gray pants] and a pair
a jug of water. He is walking forward to the camera. : of pink and white shoes. She has head inclined forward.
input yellow blue purple green  :  input green black blue white

Figure 2.17: A method for generating human images conditioned on text descriptions[46].


https://smpl.is.tue.mpg.de/
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2.3.4. Segmentation based

Another method is to condition images on human parsing segmentation masks to generate new images of
people in different clothing/textures. In [43] an image in-painting method is employed to complete missing
boxes of pixels from an image. Although it is meant for portrait image editing tasks, the method could be used
for generating unique appearances of people by removing clothing information from images. For example, in
Figure 2.18 clothing details are removed by boxing it out of the image. The network employs a human parser
to obtain body part segmentations from the input. Then, a Generator learns a mapping from random noise to
a clothing texture borrowed from the input image domain. The segmentation map is again used to fill in the
image with generated texture.

Although these methods provide a method to generate controllable human images in terms of clothing,
there is no control on pose. Also it would take a lot of effort and time to create paired datasets of people images
and respective body part segmentations. We would also need to provide target segmentations which is also
counter-productive to our case.

%)

Figure 2.18: GAN network learns to fill blocks of missing pixels to result in new clothing textures[43].

2.3.5. Without conditioning

In [45], a person re-identification dataset is augmented by synthesising all combinations of poses and appear-
ances of people seen in the dataset. However, the network doesn’t need an explicit condition vector as an
input. The network achieves this by training encoders to learn latent representations of structure(pose, body
size, background etc.,) and appearance(clothing, shoes, texture etc.,) separately. The two representations are
mixed and fed to Generators which map it back to the image domain borrowing styles from both representa-
tions. Figure 2.19 shows example outputs. This allows a user to select the structure and appearance of choice
and synthesize N (row) * N (column) new images.

However, in this method no new pose is synthesized. The method ensures that all possible combinations
of available poses and appearances are possible. Therefore if the reference data is skewed containing a lot of
poses that look similar, the augmented dataset would also contain a similar distribution.

2.3.6. Pose augmentation

In the previous section we saw skeleton like structures called "keypoints” being used to represent human poses.
There are some works in the literature that play around with these pose keypoints with the intention of synthe-
sizing new pose keypoints that are not seen in the original dataset. A couple of those techniques are discussed.

In [24], person re-identification performance is improved by increasing the occurrence of people in diverse
poses. First, a Gaussian mixture model(GMM) is used to cluster the ground truth poses into 7 clusters. The 7
cluster centers are considered as unique poses. Each character queried is then conditioned on these 8 poses
to synthesize new images of the same character in new poses(Figure 2.20). Such a dataset is then trained on
person re-id networks to obtain superior detectors.

In [20], the performance of pose-detection is improved by increasing the occurrences of “rare” poses in the
training set. In the wild human pose datasets have more samples of upright standing poses and less of other
types of poses. The authors addresses this by oversampling the minority poses and synthesizing synthetic im-
ages in those minority poses and achieve class balance. First, ground truth keypoints from the training set are
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Figure 2.19: Each row and column corresponds to different appearance and structure of people. New images are synthesized by mixing
appearance and structure encoding[45].

grouped into clusters using K-Means clustering. Figure 2.21 shows the poses that represent the cluster cen-
ters for K=7. The distance between a pose sample and the cluster center(CD), is compared with a pre-defined
distance threshold (DT) to determine whether it is a rare sample or not. Figure 2.22 shows the authors’s classi-
fication of rare and non-rare poses. The filtered poses from this method are then duplicated in the dataset by
synthetic people using SMPL mesh[30]. The authors claims an improvement of 13.5 mAP through this method.

These examples show that there is some scope in aiming for better detection performance by enriching
pose diversity in training samples. However, these techniques mostly addressed class imbalance by duplicat-
ing certain poses in newly synthesized images having new colours and textures(new person same pose). An
improvement on this could be to synthesize truly new poses that do not occur in the training set.

Figure 2.20: The poses represent the resulting 7 cluster centers after GMM clustering on poses extracted from the dataset. Example
output when a queried image is conditioned on all 8 poses[24]



2.4. Common Metrics used 16

Figure 2.21: Poses represent cluster centers resulting from K-Means clustering. Rarity of a pose is defined as how far a point is w.r.t to
the cluster center[20]

Non rare pose Rare pose

Figure 2.22: Example images of what rare poses and non rare poses look like as defined by[20].None rare poses happen to be mostly
upright

2.4. Common Metrics used

In this section we discuss the different types of metrics to evaluate the performance of the methods to be
employed.

Comparing Distributions

For high dimensional data, PCA/t-SNE can be applied to obtain a 2-D projection[39] of the high dimensional
space. A visual comparison can then be made between the two distributions. Figure 2.23 shows visualization
of images from different GAN datasets using t-SNE method. In the example provided by [15], the fake images
generated by CycleGAN are distributed uniformly(measure of diversity) and merge relatively well with the
distribution of real images(measure of realism/sanity). This is not the case when compared with fake images
generated by StyleGAN as the two distributions are linearly separable.

Cosine Similarity

By using the cosine similarity the distance from one vector to another can be computed without being corrupted
by the varying length of the vectors. To compare human poses with one another, a metric commonly used in
pose-detection networks is cosine similarity. Cosine similarity measures the likeliness between two vectors
by measuring the cosine of the angle between them. The metric is ideal because the value is not affected by
the magnitude of the vectors(size/scale of pose).Suppose we have vectors A and B then the cosine similarity
equation is as follows:
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Figure 2.23: t-SNE visualization used to compare perceptual quality of fake samples generated by CycleGAN and StyleGAN with respect
to real samples[15]. In CycleGAN there is some overlap in the visualization which means the fake images are pretty close to the real ones.
In StyleGAN the distribution is linearly separable which means the fake images are distinguishable from the real ones.

Figure 2.24

A-B

Cosine Similarity = Sc(A, B) = cos(0) = W

(2.1)

2.4.1. Person detection evaluation metrics

The end goal of the this work is to improve person detection performance of a detector like YOLO [6] by
training on the enriched dataset. Some common evaluation metrics used for object detection performance are
mentioned.

Precision
Precision gives information regarding the proportion of correct predictions(TP) vs all predictions that the model
reported as positive(TP + FP).

TP

" TP+ FP (22)

Precision

Recall
Recall gives information about how many correct predictions(TP) the model picked up out of all the true occur-
rences in ground truth(TP + FN).

TP

Recall = m (23)
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Average Precision(AP)

There is generally a trade off between Precision and Recall depending on the model’s sensitivity. Therefore Av-
erage Precision is a superior metric because it takes into account both Precision and Recall. It can be considered
as the area under the interpolated curve from a Precision vs Recall plot(Figure 2.25).
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Figure 2.25: Average precision is the area under the interpolated Precision vs Recall curve
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2.5. Conclusion and research gaps

The first section introduced the problem statement for this work. There is a necessity for augmenting synthetic
datasets that are generated using 3d softwares for their lack of diversity. A possible direction is to use GANs
as a method to extract more information from a given dataset and enhance its diversity. In the second section
we saw examples of synthetic data being effectively used in training for object detection tasks. A comparison
of available popular synthetic human datasets was made. In the third section we looked at some of the works
which studied the effectiveness of GANs as a data augmentation technique for popular computer vision tasks
like classification, segmentation and object detection. Finally in the last section we looked at targeted human
image synthesis techniques using image conditioning followed by some of the commonly used metrics used for
our case.Here are the observations and research gaps found from the literature study:

+ Networks pre-trained on Synthetic data and fine-tuned on small real data is shown to outperform pure
real data training. Training on 100% synthetic data(no fine-tuning) and testing on real data is also shown
to perform reasonably well for multiple vision tasks. There are some interesting techniques of increasing
training annotations by pasting synthetic/real people patches on real backgrounds. This direction can be
explored for augmenting our person detection training set.

« GANSs can provide an effective way to fill in gaps in the discrete training data distribution and augment
sources of variance which are difficult to augment in other ways. However, variance will not extend to
points beyond the extremes of the training data[7].

« Performance of GANs depend on the number of training samples. The quality and diversity of GAN gen-
erated images depend on the number of samples and diversity in the training data used. This becomes a
chicken and egg problem.

« There is scope for enriching diversity in terms of human poses seen in datasets. Papers that attempted this,
approached it as a class balancing problem by oversampling the minority poses[20]. Another, changed
appearances of people depicting these poses [24]. A possible direction is to synthesize new, unseen poses
from available poses. Full scale humans can then be synthesized in those poses using Pose-Warp GAN[2].

« Photo realism of synthetic data is not as important important as diversity of data[33].

2.5.1. Research Questions
From the observations made above, the following main research question and sub questions can be formulated:
Can a synthetic person detection dataset be enriched with new characters in unseen poses using a GAN?

Q. 1 How to synthesized new, diverse poses from poses present in the original dataset?
Q. 2 How to measure the diversity of poses in a given dataset?

Q. 3 Does increase in diversity of poses seen in the augmented dataset translate to improved person detection
performance?



Methodology

In the following chapters, all mentions of the word “source” refers to the dataset of synthetic human-in-the-
scene images that is lacking in diversity. The goal of this work is to enrich/augment this limited dataset in
terms of the variety of human poses seen in the dataset. Accordingly, all mentions of the word augmented”
refers to the enriched/augmented dataset obtained through the proposed method in this work.

This chapter explains the step by step approach to answering the main research question and its sub-
questions arising from the previous chapter. Figure 3.1 shows the entire design pipeline and its evaluation.
Section 3.1 (Step 1) explains source data preparation. In Section 3.2 (Step 2), a method of augmenting source
poses is detailed. In particular, Section 3.2.1 introduces pose sampling from the source poses distribution us-
ing Gaussian sampling. In Section 3.2.2 the sampled poses are augmented using Interpolation as a technique.
Section 3.2.3 introduces a metric to compare pose data distributions and proposes Least Neighbours Filtering
to obtain a diverse set of human poses. Section 3.3 (Step 3) deals with synthesis of human characters depicting
poses obtained from Section 3.2. In particular in Section 3.3.1, Pose Warp GAN][2] takes pairs of source image
and conditioned pose and generates a new human character. In Section 3.3.2, the characters are pasted on open
source real backgrounds to obtain the augmented dataset. Finally Section 3.4 (Step 4) performs person detection
performance evaluation and comparisons between source and augmented datasets. In Section 3.4.1, YOLOV3
object detection network is trained on the source and augmented datasets. It is later fine-tuned and evaluated
on real images in Section 3.4.2 and 3.4.3 respectively.

3.1. Step 1: source Data Preparation

The SURREAL synthetic dataset[42] consists of 60000 video files each containing 100 frames. It also comes with
accompanying ground truth pose, depth maps, and segmentation masks for the corresponding frame numbers.
We choose this dataset as our source dataset as it already consists of considerable diversity. We want to improve
on what is already possible using 3D tools. Poses in the dataset are sourced from the CMU MoCap database[9].
CMU MoCap contains more than 2000 sequences of 23 high-level action categories. For this work, only RGB
images and corresponding pose keypoint files are required as inputs for further steps. Figure A.5 shows some
example images from the SURREAL dataset .

For investigating the effect of source dataset size, 3 datasets consisting of 6000, 12000, 25000 images respec-
tively are extracted from the video files. Videos are picked randomly from the dataset and 4 frames are selected
from each video having constant frame number difference. It is convenient that the dataset already contains
ground truth pose keypoint files. Figure 3.2 (a) shows an example image overlapped with keypoints from the
SURREAL dataset. Pose keypoint files are in the format of [24X2] matrices corresponding to 24 body joints.
Each value represents the x-y pixel coordinate of the corresponding body joint. Figure 3.2 (b) shows the order
of indices considered in the SURREAL keypoint files. However the input fed to the Pose-Warp GAN in Step 3
takes the pose keypoints file in the format of [14X2] matrices as shown in 3.2 (c). Accordingly, a processing
step performs this reordering. Additionally an extra joint is added at the top of the head which is missing in
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Figure 3.1: The complete pipeline showing all the Steps followed. In Step 1 pose keypoint files are extracted from source images. In Step

2 source poses are augmented and filtered using Least Neighbours method. In Step 3 pairs of Image and required pose are fed into

Pose-Warp GAN to generate new human characters. These are pasted on background images sourced from [27] to create the augmented

dataset. Step 4 involves training YOLOv3[36] on the augmented dataset and fine-tuning on images from [1] to give a trained person

detector.

SURREAL keypoints. This extra joint is extrapolated from the slope of line connecting joints 13-15 in figure
3.2 (b). Resulting overlapped figure is shown in figure 3.2 (d). The head joint is approximated in the following

manner:

Joint 0,, = Joint 0,, + 2.5 * (Joint 0,, — Joint 1,)

Joint 0, = Joint 0,, 4 2.5 * (Joint 0, — Joint 1)

(3.1)
(3.2)
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In case another dataset is used, Openpose[8] can be used to extract corresponding human pose keypoints
from RGB images. Accordingly, this should be followed by an indices reordering step to make it compatible

with inputs for Step3.
g “_

[——

(a) (b) (©) (d)

Figure 3.2: (a) and (b) show pose keypoints style and joints ordering in SURREAL[42] format. (c) and (d) shows the format acceptable by
Pose-Warp GAN[2]. Head joint 0 position in (d) is approximated by extrapolating line connecting joints 13,15 in (b)

3.2. Step 2: Pose Augmentation

Poses obtained from Step 1 is taken as input for this Step. The [14X2] matrix is flattened to a [28x1] vector.
To visualise the pose data, a Principal Component Analysis is performed. Figure 3.3 shows the PCA projec-
tion of the source poses on a 2D space by taking the first two components contributing to maximum variance.
Although the cumulative explained variance is 55% on a 2D space, the figure reveals the clear issue with the
source poses. A majority of the points are concentrated densely in one part of the space while other parts are
sparsely populated. There are also pockets of space between point clusters that are empty. An ideal distribution
would have the points spread evenly covering the whole space.

3.2.1. Interpolation
This section addresses the following research questions:
Q 1. "How to synthesized new, diverse poses from poses present in the original dataset?”

An approach is to use the minority oversampling technique SMOTE[11]. In this method, new points are syn-
thesized by interpolating between neighbours of a point sampled from the minority class as shown in figure
A.2. The technique requires class labels for each point. Interpolating between neighbours ensures that the
synthetically generated point is not an exact replica of an existing data point, while also ensuring that it is not
too dissimilar from known observations in the minority class. Although this is a viable option for our case, it
has certain disadvantages. There are many ways of clustering the poses point cloud and therefore what pockets
constitute “minority class” is ambiguous. Also, interpolated new points between points that are already close
together, as in the case with our point cloud, do not add to diversity. The problem to solve is not just of class
imbalance, but also to obtain significantly different poses.

As an alternative, in this work new poses are synthesized by interpolating between pairs of points selected
randomly from the poses dataset. Additionally Poses are sampled from a Gaussian Mixtures Model that is
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Figure 3.3: PCA projection of source poses on 2D space. The distribution shows a densely populated cluster of points in one region while
other region are empty or sparsely populated. This says that majority of poses in the source are similar to each other.

trained on the source Poses. A GMM is a generative, probabilistic model that assumes all the data points are
generated from a mixture of a finite number of Gaussian distributions with unknown parameters. Under the
hood it performs a generalizing k-means clustering to incorporate information about the covariance structure
of the data as well as the centers of the latent Gaussians. An advantage of using a GMM is that it already gener-
ates poses that are not exact duplicates of the source Poses but rather approximates from the learnt distribution.
Also, GMM allows Soft clustering and Captures non-spherical cluster distributions while being computationally
efficient. Most importantly, GMM allows sampling upto 10° points at a time. This makes a large combinations
of interpolations possible.

Accordingly a GMM is used to learn the distribution of source Poses. The optimal value for hyperparameter
k(number of clusters), is decided by minimizing the Akaike Information Criterion(AIC).AIC is an estimator of
prediction error. It estimates the relative amount of information lost by a given model: the less information a
model loses, the higher the quality of that model. This provides a means of correcting for over-fitting by adjust-
ing the model likelihoods. Figure A.1 shows the plot AIC vs Number of clusters for 1000 poses. The minima is
at 100 clusters which is set as the value for k.

Next, the learnt model is sampled for 10° points separately twice to create two sets P; and P» . A new set
Py is created by interpolating between random pairs of points from the two sets. Figure 3.4 shows an example
of an interpolated pose between two poses. The volume of coverage of the interpolated point cloud Pr should
clearly be lesser than P; and P». To mitigate this, source poses are concatenated with P;.

3.2.2. Least Neighbours Filtering
This section addresses the following research question:
Q 2. "How to measure the diversity of poses in a given dataset?”

Although the resulting set from the previous section contains new points, it will still contain pockets that
are densely populated. This work proposes the Least Neighbours Filtering to create a diverse pose dataset. This
technique aims to weed out those poses which are mostly similar to each other while preserving dissimilar
poses. This is done by employing the Cosine Similarity metric discussed in Section 2.4.2. The metric outputs
a scalar value in the range [0,1]. A value close to 0 means the pair of poses are similar to each other. A value
close to 1 means they are dissimilar. Let the number of poses in P; be denoted by IV. Let p; and p; denote the
ith and j'" pose respectively in Py, where i € {0, N} and j € {0, N}. Then the Similarity Score S;; between
any two poses p; and p; is given by:
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P, P, Py

Figure 3.4: Example pair of Poses from two different Gaussian sampled sets P; and P> interpolated to give an intermediate Pose
belonging to set Pr.

Sij =1{1— (33)
’ ’ szllllpgll ‘
A threshold t decides if the poses are "neighbours”. The outcome is stored in bool;;. This is given by:
0 S§;; <t
bool;; = Y= ,where t € (0,1 3.4
’ {1 o2 0.1 64

This value is summed along one of the axis to obtain neighbours; which gives the count of neighbours for any
point p; in the point cloud P;. This is given by:

N
neighbours, = Zboolij (3.5)
§=0

This results in the list neighbours whose elements corresponds to the count of neighbours for every point in
the point cloud P;. Pris then indexed by the sorted indices of list neighbours. From this, the first n points are
picked which gives a subset P; . This resulting set should consist of points that have the least neighbours on
average comparatively. This is given by:

Prr = Pg") = P[argsort(neighbours)][: n] (3.6)

To illustrate with an example refer to figure 3.5. The figure shows a heat map of matrix of Similarity Scores
between the first 10 poses from P;. For example, the Similarity Score Sp; between poses py and p; is given
by the value 0.72 at the the intersection of 0" row and 1°¢ column. All the diagonal elements are zero as it
compares similarities of every pose with itself. The matrix is symmetric. The list on the right shows the count
of neighbours for each point in the point cloud considered. For example, Pose Number 0 (po) has 2 neighbours.
This is calculated by counting the number of values in the 0! row of the matrix that exceed threshold ¢=0.3.
The mean of list netghbours, i,y gives the mean count of neighbours for the point cloud considered. In this
example, on average a point has 2.8 neighbours. The mathematical expression for p,, is given by:

1 N N
NZZH ||pl||pj|’ ] 37

i=0 j=0
The metric ji,,; provides a method of comparing diversity in Pose data distributions. Consider two sets
having the same number of points. Then, the set having the lower (i, consists of points that have less neigh-
bours on average. If a distribution has to accommodate the same number of points at a lower (i, then the
distribution needs to be more spread out. Therefore, it can be inferred that the distribution having the least ji,,;,
has the most diverse samples. It is to be noted that 1,,;, depends on the number of points in the dataset and the
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Figure 3.5: Heat map of Pose Similarity Scores for first 10 poses from P;. Pose Similarity Score between any two poses is given by
checking for the value along matching row, column number. All diagonal elements are 0 as it compares Pose Similarity with itself.
Column on the right shows the count of neighbours for each pose. For example Pose 0 and Pose 5 have 5 neighbours each. In this
example, a pose is considered as a neighbour if their Pose Similarity Score falls below threshold ¢ = 0.3. py,p gives the mean count of
neighbours. Here, on average a pose has 2.8 neighbours.

threshold cutoff ¢ considered.The reasoning is substantiated further visually in the results Section 4.1.

Figure 3.6 shows all pose pairs making up the first 5 elements of 0*" row from the matrix in figure 3.5. The
Pose on the left(Pose 0) is maintained the same for all sub-figures. Pose 0 is upright, standing which represents
majority of poses seen in source dataset. Figures 3.5(a),(b) shows comparisons with poses like kneeling and sit-
ting which return Similarity Scores closer to 1. Figures 3.5(c),(d) shows comparisons with upright poses having
variations in gait and body orientation. These return proportional Similarity Scores closer to 0. The difference
in scale of the poses bears no influence on their Similarity Scores.

Figure 3.7(a),(b) shows the distance between these same pairs on 2D and 3D PCA projected spaces respec-
tively. In Figure 3.7(a) it can be observed that all distances between point pairs are proportional to their respec-
tive Similarity Scores except the pair P0-P4. This is because the 2D projection accounts for only 55% of the total
variance in the dataset. This is verified by the 3D projection in figure 3.7(b), where all lengths are proportional
to their respective Similarity Scores.

To conclude, filtering using Equation 3.6 results in the dataset P;r. This augmented dataset is more diverse
and uniform in comparison to the source dataset P.



3.3. Step 3: Synthesizing New Images 26

Similarity Score:0.72 Similarity Score:0.67
. Pose 0 0 Posel . Pose 0 0 Pose2
50 =0 50 =0
100 100 ﬂ\' 100 100
150 150 150 150
200 200 200 200
o 50 w150 2 ] 50 we B0 20 o 50 w150 2 ] 50 we B0 20
(a) (b)
Similarity Score:0.19 Similarity Score:0.34
. Pose O 0 Posed . Pose 0 0 Posed
50 50 50 =0
100 00 100 100
150 150 150 150
200 200 200 200
] 50 W 150 ] 50 W 150 20 o 50 w150 2 ] 50 we B0 20

(c) (d)

Figure 3.6: Example pairs of poses from Pr . Pose on the left is maintained same for all pairs for comparison sake. Upright poses similar
to Pose 0, like in (c) (d) return Similarity Scores closer to 0. Poses significantly different such as squatting and kneeling (a) (b), return
Similarity Scores closer to 1.
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Figure 3.7: Point pairs from figure 3.6 highlighted on PCA projected 2D and 3D spaces. In the 2D projected space (a), distances between
all pairs are proportional to their Similarity Scores except pair P0-P4. This is because the cumulative explained variance on 2D is just 55%
of the actual. On the 3D projected space(b) all distances are proportional.

3.3. Step 3: Synthesizing New Images

In this section Pose-Warp GAN discussed in Section 2.3.2 is used to generate human characters in new poses.
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3.3.1. Image conditioning

Refer Step 3 in Figure 3.1 for the full pipeline. Initially the network is trained on our source dataset instead of
using the trained weights provided by the authors of the paper directly. This is done because the model released
by the authors was trained on a dataset of limited action classes. The source images and poses are split into two
parts to create ground truth labels for training. The network takes pairs of RGB image, and conditioning pose
as Inputs which are picked at random. The task of the Generator network is to synthesize a new image showing
the input character in the conditioned pose. The Discriminator network compares the output of the generator
with the ground truth image. The training loop adjusts the weights of both the Discriminator and Generator for
two losses— 1) L loss that corrects for high level structure (pose), 2) Ly cg+can loss that corrects for finer
details and realism. The model is trained for 50000 iterations at a learning rate 1e ~® for 48 hrs using 1 P100 GPU.

Once trained, only the Generator is used during test time. The augmented Poses dataset Prr from the pre-
vious section serves as the input in this step. Refer Step3 in figure 3.1. Poses are picked at random from P;p
and paired with random source images. The network gives two outputs— 1) Segmented human character from
the source image, 2)Segmented human character synthesized by the generator depicting the conditioned pose.
Output 2 is the important one as this constitutes our augmented characters. An example output is provided in
figure 3.8 which shows the desired intention of this work clearly. A character from the source is conditioned
on 4 different poses taken from the augmented Poses set P;r. The network outputs 4 characters that takes
appearance cues from the source image(cloth type, color), and overall structure(pose, scale, orientation) from
the conditioned pose. Such control allows the synthesis of an unlimited number of human characters in the
desired pose.
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Figure 3.8: Example outputs from Pose-Warp GAN in Step3. A character in source image is augmented by conditioning on different
poses to generate multiple characters in desired poses.

3.3.2. Background addition

The characters are then pasted alternatively on images sourced from Google Open Images [27]. From the
repository, only those images that do not contain any person annotations are downloaded so as to not corrupt
our training dataset. Originally, the background in the source images were sourced from LSUN bedrooms
dataset by the authors. When visually inspected it was observed that they lacked in diversity. Pasting the
characters on backgrounds that include better variations sets up the trained model to perform better. A similar
approach has been followed in [20]. Figure 3.10 shows some example images from the augmented image dataset.
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Figure 3.10: Example images from the source data after background addition.

3.4. Step 4: Training and Evaluation

This section involves evaluation of the methods proposed in this work. It aims to answer the main research
question:

Q 3. Does increase in diversity of poses seen in the augmented dataset translate to improved person detection
performance?

3.4.1. Training

The end goal of this thesis is to improve person detection performance. YOLOv3[36] is used as the person
detection network for training and evaluation in this work. Changes are made to the Config file to adapt the
network to single class object detection for our case. Ground truth bounding boxes for the source characters
are already available in the SURREAL dataset. Ground truth bounding boxes for the augmented images are
obtain by locating the extreme joint locations along both the x and y axes. Subsequently, YOLOV3 is trained
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on both the source and augmented datasets.

3.4.2. Fine tuning

Itis to be noted that the human characters present in the source images that was downloaded from the SURREAL
dataset were generated synthetically using 3D software tools. As a consequence, the GAN generated images
also seem similarly “synthetic” as they borrow appearance characteristics from the source image. Visibly, there
is a clear domain shift between real images of people seen in public datasets compared to human characters in
our dataset. A network trained on such images shows poor performance when tested on real images, which
was verified. To handle this domain shift, the weights are fine-tuned by training the network once again on a
small number of images from MPII dataset[1].

3.4.3. Evaluation

Finally the trained YOLOv3 model is tested on held out samples from the MPII human pose dataset[1]. This
dataset is chosen because it contains images of people displaying a wide variety of action classes. The dataset
is usually used for training pose detection networks. The comprehensive dataset includes 800 human activities.
Figure 3.11 for a plot of different categories.
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Figure 3.11: Action classes in MPII human pose dataset

The diversity and complexity of poses in this dataset makes it suitable to employ it for our case. Using such
a test set allows for a fair evaluation of our method.



Results

This chapter presents the results of the methods explained in the methodology in chapter 3. Section 4.1 provides
an analysis on different methods of pose augmentation by visualizing PCA projections of the resulting distri-
butions and comparing respective ji,; values. Section 4.2.1 details the Person detection training and testing
setup and hyperparameters used. Section 4.2.1 presents the results of an evaluation of the different methods
explained in Section 4.1. Section 4.2.3 investigates the role of source image dataset size, towards affecting the
contribution of the data augmentation technique proposed by this work.
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Pose Augmentation

Poses extracted from the source images are augmented by the technique explained in Section 3.2. In this Section,
an ablation study is performed to asses the individual contributions of each component. Additionally the pose
filtering technique proposed by [20] is reproduced for comparison. Below, we list the different combinations:

A:

These are source poses. They are the ground truth poses of the dataset that we intend to augment. If they
aren’t available already, they are extracted from the images using pose detectors like Openpose[8]. This
forms the baseline.

: This dataset is created by sampling from a GMM that is trained on the source poses as explained in Section

3.2.1.

: This dataset is created by interpolating between poses from the source without Gaussian sampling.

: Thisis created by sampling a large number of poses from a trained GMM and filtered using cluster distance

method discussed in[20] to be left with “rare poses”. A pose is considered rare by the authors if its distance
from its cluster center exceeds a certain threshold in the euclidean space. The method is covered in Section
2.3.6.

This is created by sampling from GMM, followed by interpolation like in Section 3.2.1 and filtering using
the cluster distance method.

This is created by sampling from GMM and filtered using the Least Neighbours method as explained in
Section 3.2.2.

This is created by sampling from GMM, interpolating and filtering using the Least Neighbours method
as explained in Section 3.2.2. This is the complete method with all components included.

These are ground truth poses from the test set used for evaluating our trained YOLO models in the next
section. Test images are sourced from MPII Human Pose dataset[1].

30
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’ Dataset label \ Method Hnbt=0.3) \

A source 288
B Gaussian Sampling 267
C Interpolation 493

D ([20]) Gaussian Sampling + Filtering (CD) 197
E Gaussian Sampling + Interpolation+ Filtering (CD) 101
F Gaussian Sampling + Filtering (LN) 40

G (Ours) Gaussian Sampling + Interpolation +Filtering (LN) 15
H MPII test set 3

Table 4.1: An ablation study to determine contributions of individual components. Dataset G (Ours) having the least zt,,} is the most
diverse.

Table 4.1 shows the results of pose augmentation. Column y,,;, shows Mean Neighbours for each of the
methods. Figure 4.1 shows PCA projections on 2D space for respective methods. Each point represents a pose.
Figure 4.2 shows heat maps of similarity matrices for respective methods in the format explained in Section
3.3.2. Each line represents a similarity comparison of one pose with all other poses in the set. Take the example
of source dataset A. On average, a pose in A has 288 neighbours. Figure 4.1 (A) shows the respective distribu-
tion. Points are mostly concentrated in one big pocket. Points in other regions are sparse and contain empty
pockets in between. This shows that most poses in the dataset are of one kind. Those poses that are different do
not have equal representation. Figure 4.2 (A) shows the heat map for A. It contains dark lines in majority with
streaks of lighter lines. This shows most points have a large number of neighbours and only a few proportion
of points are unique. Following the same sequence of analysis for method B, we can see that it shows the same
characteristics as A. It has around the same p1,,;, value. Accordingly, points distribution (figure 4.1 (b)) and heat
map (figure 4.2 (B)) is similar to A visually. This is expected given that B is sampled from a GMM trained on
A. Points obtained by interpolation in method B is denser in comparison. Although 2D projection of C (figure
4.1 (C)) looks similar to A and B, shade of heat map (figure 4.2 (c)) matches with the increase in fi,p. A possi-
ble explanation could be that, points that are already close to each other in A when interpolated result in an
extra neighbour. Because C is not filtered it has resulted in a denser but not uniform distribution. Method D
and E add the filtering through cluster distance step to methods B and C. This additional step decreases ;5 in
both. PCA projection of D shows a distribution mostly similar to A,B with slight increase in area of the densely
populated cluster (figure 4.1 (D)). This has resulted in a decrease in i, . Accordingly corresponding heat map
shows a lighter shade (figure 4.2 (D)).In E, points are distributed more evenly with increased coverage due to
new points being generated from interpolation (figure 4.1 (E)). Accordingly the heat map (figure 4.2 (E)) has
increased number of lighter shaded lines. Method F and G replaces the filtering technique used in D and E with
Least Neighbours filtering method proposed by this thesis. The value of p,,; for F and G is lowered in both
cases compared to D and E. Respective PCA projections (figure 4.1 (F), figure 4.1 (G)) and heat maps (figure
4.2 (F), figure 4.2 (G)) make the improvements more evident. This improvement can be attributed to the way
points are filtered in E and F. In the D and E, poses are filtered based on their distance to their respective mean
pose. This can result in poses that are away from the mean but similar to each other. On the other hand, in E
and F, filtering takes into account similarity of points with each other. Figure 4.1 (AG) shows projections of A
(source) and the best method G (complete version) overlapped. Figure 4.3 shows histogram plots for A and G
overlapped. Most of the points in A have more than 300 neighbours each. On the other hand, most points in G
have neighbours less than 100. This shows that G is significantly more diverse than A.

To summarize, an ablation study was performed comparing contributions of individual components. The
effect of adding extra components are largely additive in nature. The exception is interpolation without filtering
which further increased pi,,;, compared to baseline A. The PCA projections of distributions and heat maps match
the change in p,,;, values. The model having the least (,,;, was found to be the method G which includes all
components. It is an improvement upon the method used in [20].

Following this, Step 3 explained in the previous section is performed to obtain augmented images. Six
different sets of augmented images are obtained by using six different sets of Poses (B, C, D, E, F, G).
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Figure 4.1: Pose keypoints from different datasets projected on 2D space using PCA. Points in Dataset G shows the best coverage and is
most uniform
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Figure 4.3: Histograms of source and augmented pose datasets. source data consists of majority points having greater number of
neighbours. Augmented data has lesser points with less number of neighbours. This shows augmented data is more diverse compared to
source

4.2. Person detection evaluation
This step involves validation of the proposed data augmentation technique using a person detection network
and comparing metrics with baseline.
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4.2.1. Training set up

Training

YOLOv3[6] is used as our person detection network. The images for training are obtained from the methods
explained in the previous section. The training strategy recommended by[35] is followed. The number of
training images is 12000 for all methods. Weights until bottom last 3 layers are frozen for first 10 epochs.
Only last 3 layers are trained initially at learning rate le 2. After 10 epochs all weights are unfrozen and
trained with a learning rate 1e~*. Further learning rates are set by a scheduler. Weights from ImageNet trained
DarkNet-53[36] model are used for initialization. Data augmentation like rotations, flipping, random scaling
and cropping is performed online. An early stopping mechanism is built into the training loop. Training time
is 15hrs using 1 P100 GPU (Google Colab Pro+ Environment).

Fine tuning

Trained weights are fine tuned on 250 images from MPII human pose dataset[1] for adjusting to domain shift.
Learning rate for first 5 epochs is le~* with partially frozen weights and le=> with all weights unfrozen.
Training time is 30 min.

4.2.2. Ranking methods

’ Dataset Label ‘ Method Precision (%) ‘ Recall (%) ‘ F1 (%) ‘ AP (%) ‘

A source 68.4 55.0 61.3 46.5

B Gaussian Sampling 68.0 56.1 61.5 46.1

C Interpolation 67.6 52.1 58.8 45.1

D[20] Gaussian Sampling + Filtering (CD) 73.4 55.1 63.5 47.2

E Gaussian Sampling + Interpolation+ Filtering (CD) 73.1 56.3 63.6 47.2

F Gaussian Sampling + Filtering (LN) 773 59.1 67.0 48.6

G (Ours) Gaussian Sampling + Interpolation +Filtering (LN) 68.0 60.2 63.9 51.3

Table 4.2: Results tabulated for YOLOv3 trained on different methods and tested on MPII dataset[1]

Table 4.2 presents the results on four metrics—1)Precision, 2)Recall, 3)F1 score, 4)Average Precision . Pre-
cision gives an idea of accuracy of predictions. Recall gives an idea of proportion of True Positives picked.
F1 score is the best of both Precision and Recall at an optimal confidence threshold. Average Precision (AP)
measures the area under the Precision vs Recall curve plotted for different confidence threshold. In terms of
priority, AP comes first because it is calculated globally and is therefore more robust. It is also the most used
metric in academia for object detection. This is followed by the F1 score.

The person detector trained on dataset G (complete method), shows the best performance overall at AP=51.3%.
AP is increased by 4.8 percentage points compared to the baseline A. AP for B is around the same as A. This
is expected because poses in the dataset were sampled from a GMM trained on source poses. A dip in AP is
shown for C, the interpolated set. This matches with the observation made in the previous section regarding
the increase in p,,5. Datasets D,E which use filtering technique proposed by [20] shows an improvement upon
baseline A. F is the second best performing model showing AP=48.6%.Figure 4.4 shows the Precision vs Recall
curve for the same at an IOU=0.5.

Some interesting observations can be drawn by plotting all the metrics discussed against ji,,5, shown by Fig-
ure 4.7. In general there is a strong negative correlation between f,,;, and Recall. Recall increases steadily with
decrease in fi,,;,. This is understandable because decrease in p,,;, means points are spread more uniformly along
the space.This happens when distribution covers a larger area, ending up with more diverse samples. As a re-
sult, a network trained on such a dataset picks up defections of people in difficult poses, that weren’t otherwise
picked. This directly improves the Recall of the model. Recall influences AP and therefore we see a constant
improvement in AP. There is however a small abberation seen in dataset B to this trend. However this may
be attributed to the random seed hyperparameter of the GMM that controls the generation of random samples
from the fitted distribution. The GMM outputs a different set of samples for the same distribution depending
on the seed. This would affect the results in a small way on either side. Therefore, this does not question the
correlation observed. Precision also increases with decrease in ji,,;, except in G. A combination of interpolation
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Figure 4.4: Precision vs Recall curve for differnt methods.

and filtering with Least neighbours seems to decrease precision. However AP increases nevertheless, since it
is more sensitive to Recall than Precision.

To summarize, the evaluation showed that YOLO object detection network trained on dataset G improved
AP by 4.8 percentage points compared to the baseline A. G represents the dataset created by including all
components of the data augmentation method proposed by this work. It was also shown that decrease in (i,
translates to an increase in AP. This means that (1, can be used as a metric to assess diversity in pose datasets.
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Figure 4.5: Plot of j1,,5 vs object detection metrics for all datasets. It shows a negative correlation between fi,,;, and AP. This shows

increase in pose diversity translates to improved person detection performance.
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4.2.3. Effect of dataset size

In this Section we investigate the influence of source dataset size on the effectiveness of the proposed augmen-
tation technique. The previous section saw experiments with 12000 source images. Two more source datasets
are created having 6000, 25000 images respectively. Pose Augmentation is performed on each of these datasets
using method G.Number of images is maintained the same for both source and augmented images for a fair
comparison. The number of images used for fine-tuning is also maintained the same for all datasets.

Table 4.3 summarizes the test results.Augmentation results in an increase of AP for small and medium sized
source datasets (6000,12000 images) considered. For the smallest source dataset, augmentation improved AP
by 8.4 percentage points. For medium sized source dataset (12000 images), augmentation improved AP by 4.8
percentage points. For the large source dataset (25000 images), augmentation has in-fact decreased the perfor-
mance slightly by 1 percentage point. Figure 4.6 further emphasizes the case of diminishing returns. Precision,
Recall, F1 and AP values are plotted for all the datasets considered. For example, "Src 6k” refers to source
dataset having 6000 images. It can be observed from the AP plot that slope decreases gradually until it tapers
off at Src 25k. It infact decreases slightly at Aug 25k. Let us first look at only source images. source images
also show a diminishing increase in performance with increase in dataset size. This is already expected. This
matches with the observations made in [33], discussed earlier in Section 2.1. The authors observed that impact
of pre-training networks with synthetic data was more pronounced for low data regimes. However, we are
more concerned about the impact of additional data augmentation using our technique. Observing the slopes
between Src and Aug for different dataset sizes shows that here too, the difference is highest for the smallest
source dataset. The same behaviour is observed by [7] (Table 3) for GAN augmented images, discussed earlier
in Section 2.1. Using GAN generated image patches, the authors observed an improvement in brain CT scan
segmentation performance by 3.3 percentage points for small dataset vs only 1.2 percentage points improve-
ment for large dataset. This should be expected because we technically did not add any "new” information to
the source datasets. The pose data augmentation part added variety through interpolations. Synthesis using
Pose-Warp GAN added extra characters in already seen clothes and colours. This resulted in more permutations
and combinations inside the manifold of all possibilities. However larger datasets might already have enough
diversity. Therefore, the regularizing effect of this kind of data enrichment should have a theoretical limit. It
should also be noted that in all the experiments, the entire set of source images was not carried over to the
augmented dataset. In order to maintain the same number of total images between the two datasets, part of
source images (that are less diverse) were removed during the filtering step. This information loss could also
influence the true contribution of the proposed data augmentation.

Dataset \ Training Annotations \ Fine-tuning Annotations | Precision (%) \ Recall (%) \ F1 (%) \ AP (%) ‘
source 6000 250 53.9 38.0 44.6 28.7
augmented (G) 6000 250 58.8 47.2 52.4 371
source 12000 250 66.4 55.0 61.3 46.5
augmented (G) 12000 250 68.0 60.2 63.9 51.3
source 25000 250 73.3 66.9 70.0 53.8
augmented (G) 25000 250 69.4 66.0 67.0 52.8

Table 4.3: Results of YOLOV3 trained on different sized source and augmented datasets and tested on MPII dataset[1].

Additionally we perform perform two more tests. To analyse the impact of pre-training using synthetic data,
YOLOv3 was trained on only real images. The number of training images is kept the same as what was used
during fine-tuning for previous methods. Next, we create another augmented dataset whose images contain
multiple human characters. This is done because in all previous tests, datasets contained single annotation per
image. Also, the entire set of source images is added to the augmented set. Therefore the total annotations in
this case is 50000 with equal proportion of source and augmented characters. Results for the two experiments
are presented in Table 4.4. Training only on 250 real images results in very poor performance. This shows that
synthetic pre-training provides a good initialization for further fine-tuning on real images. Synthetic data is
therefore a viable option for pre-training networks and is consistent with observations made in literature study
in Section 2.1. Next we look at the performance of the augmented dataset. This dataset reports the best results
compared to all previous experiments. This can be attributed to increased number of total annotations. Also,
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pasting multiple characters on the same image creates occlusions and overlapping body parts, which makes
for a more difficult dataset. Such scenarios occur routinely in real world images. Refer figure A.9 for example
images from the dataset. Figure A.10 shows detections picked up by the network when trained on images with
multiple characters, that were missed previously.

’ Dataset \ Training Annotations

Fine-tuning Annotations

Precision (%) \ Recall (%) \ F1 (%) \ AP (%) ‘

Real Images

250

NA

10.10

6.20

7.7

2.2

Aug Multi Annot (G)

50000

250

70.8

69.8

70.3

59.8

Table 4.4: Results for YOLOv3 trained dataset of only real images and a dataset with images having mutiple characters per image.

4.3. Discussion

In this Section, we provide further commentary on the results obtained and postulate on some of the behaviours
observed.

The technique of interpolating between poses to obtain new poses has both pros and cons. Interpolation
resulted in new poses with more variations that were unseen in the source data. Characters in these new poses
were synthesized by the GAN successfully which enriched the data. Figure A.3 shows some examples. This
increased the Recall of the model when trained as was observed in the previous section from Figure 4.7. Figure
A.4 shows some detections of people in “difficult” poses that were otherwise not picked. However, interpola-
tion also sometimes produces poses that seem unrealistic and impossible because there is no control. Joints can
end up bent either too much, or the direction reversed. Figure A.6 shows some example of such poses resulting
from interpolation. Pose-Warp GAN sometimes already produces outputs that are missing limbs and incoher-
ent. When it is asked to synthesize characters conditioned on such implausible poses, the outputs are even
poorer. This adds noise to the dataset as the network is forced to learn these blotchy pixels to be detections.
This can result in increased False Positives and decreased Precision. Figure A.8 shows some examples of False
positives. The network incorrectly classifies rectangle shaped silhouettes as persons including reflections. This
trade of between Precision and Recall is more pronounced for larger datasets as observed in figure 4.6. This
could be because the larger dataset already has a considerable amount of pose variations. Also, It is to be noted
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Figure 4.7: Precision vs Recall curve for different sized datasets.

that although interpolation fills holes in missing regions, it does not extend the boundaries of the distribution.
This can only be done by adding new data.

Ultimately, to expect good performance, the training distribution must be representative of the test distri-
bution. To unlock the true potential of augmentation, one must ensure that the test set is diverse enough. This
can be verified from figure 4.8. The figure shows the 2D PCA projections of poses from source, augmented
set and the test set overlapped. Points in the test set cover a larger area and is distributed more uniformly.
Accordingly, this set returned the lowest Mean Neighbours (i4,,5,=3) out of all the distributions seen. Figure 4.2
(H) shows the corresponding heat map. Therefore, it can be reasoned that increase in diversity of poses resulted
in an increased person detection performance.

In the experiments conducted in the previous section, the size of the augmented data was forced to be
the same as the source data. In the real world this is not necessary as augmented images were cheap and
required no extra labels. There is no limit to the number of images that could be synthesized this manner.
Therefore it would be interesting to understand the limit of performance improvement by testing on different
sized augmented sets.
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Conclusion

This goal of this research was to improve the performance of person detection networks when trained on images
that are synthetic images. The problem working with synthetic images that are generated using 3D softwares is
that,it requires manual effort in infusing diversity and ensuring class balance. For example, in order to include
more variations of poses and colours, one needs to explicitly provide the animations and clothing skins to the
rendering pipeline. As an alternative, we proposed to augment synthetic datasets with new human characters
in unseen poses using a pose conditional GAN. In this section, we summarize the results from the previous
section and reiterate the answers to the research questions listed at the end of Section 2.

5.0.1. Pose Augmentation
Q. 1 How to synthesized new, diverse poses from poses present in the original dataset?

Q. 2 How to measure the diversity of poses in a given dataset?

Regarding Q.1, Section 3.1 and 3.2 explained the proposed method of pose augmentation. The steps in-
volve sampling poses from a GMM, interpolation between poses and filtering using Least Neighbours Filtering
technique. This resulted in a dataset of poses that was more diverse and uniform compared to the poses in
the Source(original) dataset. This was verified quantitatively by visualizing the respective distributions using
2D PCA projections(figure 4.1). The distribution of points in the augmented dataset was more spread out and
uniform.Further, an ablation study was performed in Section 4.1 to assess the individual contributions of the dif-
ferent components in our proposed method of augmentation. The effect of adding extra components were found
to be largely additive in nature. This was again verified by observing their respective PCA projections(figure
4.1).

Regarding Q. 2, Section 3.2 introduced a metric f1,,;, that gives the mean number of neighbours for of a given
pose in the dataset. It is a measure of diversity in pose distributions. For similar sized datasets, if poses in the
augmented dataset have lesser number of neighbours compared to the Source, then the augmented set needs to
be more spread out. This is verified in the results, in Section 4.1 by comparing (., values of different methods
and their respective distributions (refer Table 4.2). The correlation was further emphasized through heat maps
and a histogram plot in Section 4.1(figures 4.2, 4.3). Finally, The model having the least p,,; was found to be the
method G, the proposed technique which includes all components. This method is an improvement upon the
method used in [20].

5.0.2. Person detection Evaluation
Q. 3 Does increase in diversity of poses seen in the augmented dataset translate to improved person detection
performance?

Regarding Q. 3 Experiments were conducted in Section 4.2.4 for different methods of pose augmentation.
Results showed a clear negative correlation between respective fi,,;, values and AP. For dataset size of 12000
images, the person detector trained on dataset G(complete method), showed the best performance overall at
AP=51.3% . AP increased by 4.8 percentage points for G compared to the baseline A. It is also more than 4.1

40



5.1. Recommendations and Future scope 41

percentage points compared to D and hence and improvement upon [20].

Experiments in Section 4.2.3 and 4.2.4 investigated the effect of our data augmentation method for different
sized datasets. Given that we had forced our Augmented dataset to have same size as the Source dataset, a
diminishing increase in performance was observed with increase in dataset size. The highest improvement in
performance(8.4 percentage points) was observed for the dataset with least number of images. This trend is
consistent with what was observed in the literature[7][34]. The best reported AP out of all experiments was
59%, for the Augmented dataset with multiple annotations per image. This dataset had occluded people which
mimicked scenarios occurring in real world images. Also, it is important to note that for all the experiments,
traditional data augmentation (rotations, scaling, flipping, cropping) was built into the image loader during
training. Therefore our data augmentation is an improvement over and above traditional data augmentation
methods.

5.1. Recommendations and Future scope

« The interpolation technique used in this work to augment poses did not set limits to joint rotations,
resulting in some unrealistic poses. Synthesis of human characters with Pose-Warp GAN conditioned
on such poses gave incoherent pixel patches. This added noise to the dataset. An improvement could be
to set joint limits. A mask with appropriate joint limits can be multiplied with the interpolated pose to
obtain more "human-like” poses.

Alternatively, using a superior pose conditioned GAN that can generalize better to different poses, can

also result in less noise by synthesizing better images.

« Pose-Warp GAN ensures that the characters in the input image and the output image have the same
clothes. If data augmentation is the goal this is not necessary. The network could be modified to pick a
random color from a user provided color palette. This can increase color variations seen in the dataset.

« It would be interesting to apply the proposed data augmentation for pose detection application as it di-

rectly deals with augmenting poses. This could have a much bigger impact compared to object detection.
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Figure A.1: AIC estimates the relative amount of information lost by a given model. At some point there is over-fitting when the number
of clusters are too high. Number of clusters corresponding to lowest loss is selected.

Figure A.2: Oversampling technique in [11]. (a) shows minority class 1 points thinly populated. (b) shows new points in class 1 after
interpolating between neighbouring points.
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Figure A.5: Example images from SURREAL dataset[42]
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Figure A.8: Examples of False positives picked up by YOLOv3 trained on noisy Augmented dataset

Figure A.9: Augmented Images containing multiple characters resulting in desirable occlusions
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Figure A.10: (a)Detections picked when YOLOV3 trained on dataset with single character per image. (b) Detections picked when YOLOv3
trained on dataset with multiple characters per image.
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