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ABSTRACT
With the increasing ubiquity of safety-critical autonomous systems

operating in uncertain environments, there is a need for mathemat-

ical methods for formal verification of stochastic models. Towards

formally verifying properties of stochastic systems, methods based

on discrete, finite Markov approximations – abstractions – thereof

have surged in recent years. These are found in contexts where: ei-

ther a) one only has partial, discrete observations of the underlying

continuous stochastic process, or b) the original system is too com-

plex to analyze, so one partitions the continuous state-space of the

original system to construct a handleable, finite-state model thereof.

In both cases, the abstraction is an approximation of the discrete

stochastic process that arises precisely from the discretization of

the underlying continuous process. The fact that the abstraction is

Markov and the discrete process is not (even though the original

one is) leads to approximation errors. Towards accounting for non-

Markovianity, we introduce memory-dependent abstractions for

stochastic systems, capturing dynamics with memory effects. Our

contribution is twofold. First, we provide a formalism for memory-

dependent abstractions based on transfer operators. Second, we

quantify the approximation error by upper bounding the total vari-

ation distance between the true continuous state distribution and

its discrete approximation.

CCS CONCEPTS
•Computer systems organization→ Embedded and cyber-physical
systems; • Mathematics of computing → Markov processes; •
Computing methodologies→ Uncertainty quantification.

KEYWORDS
Abstraction, Stochastic system, Transfer operator, Memory Markov

model.
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1 INTRODUCTION
Autonomous systems operating in uncertain environments are be-

coming ubiquitous, with applications ranging from autonomous

driving, to robots in rescue missions, smart grids, smart build-

ings, etc. [2, 19]. Towards safe deployment of such autonomous

systems, mathematical methods to formally verify if they meet pre-

specified requirements (e.g., on safety or performance) are needed

[10, 15].

To mathematically analyze the aforementioned systems, while

accounting for uncertainty, stochastic models are often employed.

In this context, methods that are based on discrete approximations

of stochastic systems, called abstractions, have recently surged (see

[13] for a survey on abstractions for stochastic systems). Abstrac-

tions arise in two different contexts, that nevertheless present many

mathematical similarities: a) one has access only to partial, discrete

observations of the underlying original stochastic process (this is re-

lated to the work onMarkov state models [18, 20, 21]); b) the original
system is too complex to analyze, so one partitions its continuous

state-space to construct a finite-state abstraction (this is related to

the work on abstraction-based methods [1, 5, 6, 12–14, 17]). In both

cases, the abstraction takes the form of a finite (sometimes robust)

Markov chain.

In virtue of the above, the abstraction is an approximation of

the discrete stochastic process that arises from the discretization

of the original process. In particular, while the discrete process is

not Markov, even though the original continuous process is (see

Figure 1 for an example), for computational reasons, the abstraction

is generally constructed to be Markov. This leads to approximation

errors. To alleviate approximation errors due to non-Markovianity,

we introduce memory-dependent abstractions of stochastic sys-

tems (so far, only memoryless abstractions have been proposed; see

Related work below). The introduction of memory aims precisely at

capturing memory effects inherent in the non-Markovian discrete

process.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
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Figure 1: Loss of the Markov property. Consider a stochastic
system defined by 𝑥𝑘+1 = 𝑥𝑘 + 𝜋/2 +𝑤𝑘 (mod 2𝜋), where𝑤𝑘 is
a noise whose support is [0, 𝜋/10]. While the original system
is Markovian, the discrete process tracking only in which
region 𝑥𝑘 lies is not. Specifically, one can see that a state
𝑥𝑘 can jump from 𝐴2 to 𝐴1 with non-zero probability, i.e.
P[𝑥𝑘+1 ∈ 𝐴1 |𝑥𝑘 ∈ 𝐴2] > 0. However, when a larger memory
is considered, we see that, if this state was initially in 𝐴1, it
cannot jump successively to 𝐴2 and back to 𝐴1, i.e. P[𝑥𝑘+2 ∈
𝐴1 |𝑥𝑘+1 ∈ 𝐴2, 𝑥𝑘 ∈ 𝐴1] = 0. The Markov property is therefore
lost, since P[𝑥𝑘+1 ∈ 𝐴1 |𝑥𝑘 ∈ 𝐴2] ≠ P[𝑥𝑘+2 ∈ 𝐴1 |𝑥𝑘+1 ∈ 𝐴2, 𝑥𝑘 ∈
𝐴1].

Contributions. In this paper, we develop memory-dependent ab-

stractions of stochastic systems. Inspired by symbolic dynamics

[16], we extend the state space of the stochastic system to create

a lifted system, where each state represents an ℓ-long sequence

of states, ℓ being the considered memory. Further, akin to work

on Markov state models [18, 20, 21], we employ transfer-operator

theory and construct an ℓ-memory abstraction, through Galerkin

approximations of the lifted process’s transfer operator. Critically,

we provide an upper bound on the total variation distance be-

tween the distribution of the original continuous state system and

its discrete approximation, enabling formal verification through

the abstract model. Finally, we showcase through examples how

memory increases approximation accuracy in various situations.

This work therefore marks a significant step toward creating smart

memory-dependent abstractions for the analysis and control of

complex systems.

Related work. Memory-dependent abstractions have been devel-

oped for the analysis and control of deterministic systems [3, 4,

22, 23]. However, to the best of our knowledge, such techniques

have not been investigated for stochastic systems, where abstrac-

tions are memoryless (robust) Markov chains [1, 5, 6, 12, 14, 17].

Arguably, that is because incorporating memory in stochastic ab-

stractions is fundamentally different than the deterministic case.

For memory-dependent abstractions of deterministic systems, the

domino rule is employed, which, deeply rooted in determinism,

is simply not applicable for stochastic systems (see Figure 2 for

an explanation). Thus, extending memory-dependent abstraction

techniques to stochastic systems presents a non-trivial challenge,

and requires fundamentally different mathematical tools, which we

develop here.

Our work is also deeply related to and inspired by the work on

Markov state models [18, 20, 21], which employs Galerkin approxi-

mations of the underlying Markov process’s transfer operator, to

build a finite approximation in a partial-observation scenario. Our

contribution w.r.t. [18, 20, 21] is twofold. First, we introduce mem-

ory to the discrete approximation, whereas only the memoryless

case is studied in those works. Second, although we use interme-

diate results proven in [21], our bounds - even in the memoryless

case - fundamentally differ from those of the latter (see Remark 7

for more details).

Finally, our work is related to partially observable Markov deci-

sion processes (POMDPs for short, see [26] for a survey). Indeed,

the considered dynamical systems can be framed in the formal-

ism of POMDPs, where the continuous state space of the original

system and the discrete cells of the partition are the state and ob-

servation spaces, respectively, such as e.g. in [28]. Although the

loss of the Markov property for observations is a known phenome-

non in POMDP literature [7], our contribution departs from this

literature in that we focus on problems that arise in the frame-

work of (safety-critical) abstractions. That is, we study the loss of

the Markov property when the state space is continuous and is

approximated by cells corresponding to sets of states.

and

Deterministic system Stochastic system

Initial partition

and

Figure 2: Domino rule for memory-dependent abstractions.
Let 𝐴1 and 𝐴2 be two blocks of an initial partition on the
state space 𝐸. 𝐴1 and 𝐴2 correspond to states of a 1-memory
(memoryless) abstraction. Towards a 2-memory abstraction
for deterministic systems, the domino rule proceeds as fol-
lows. The cell 𝐴1 is divided into 𝐴1, 𝐴1 and 𝐴1, 𝐴2, the sets of
states that are in 𝐴1 and that will respectively be either in 𝐴1

or in 𝐴2 at the next timestep (the same happens to subdivide
𝐴2). For stochastic systems, such division is not possible, as
generally, even though the systemmight be in a specific state
in 𝐴1, it can visit any of 𝐴1 or 𝐴2 in the next step, due to
stochasticity; in other words, there is no set of states in 𝐴1

that deterministically visit either of 𝐴1 and 𝐴2 in the next
step (similarly for the states initially in 𝐴2).

Outline. This paper is structured as follows. Section 2 defines

the considered family of systems and the studied problem. Sec-

tion 3 introduces key theoretical concepts, covering probability

theory, transfer operators, and Galerkin approximations. Section 4

contains our overall method to abstract systems with ℓ-memory
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Markov models. We present the lifted system on which relies our

analysis, and we provide a mathematical framework that justifies

our method. In Section 5, we provide total variation guarantees.

Section 6 provides numerical experiments, and Section 7 concludes

with discussions on the approach, its limitation and future direc-

tions.

Notations. Given any set 𝐴, 𝜒𝐴 is the indicator function of 𝐴. R
andC respectively denote the sets of real and complex numbers. The

sets R>0 and R≥0 respectively denote the set of positive and non-

negative real numbers. For 𝑎 ∈ C, |𝑎 | denotes the modulus of 𝑎. For
a natural number 𝑛, the set [𝑛] denotes {1, . . . , 𝑛}. Let 𝐸 ⊆ R𝑑 , we
denote by B(𝐸) the Borel set of 𝐸, and the couple (𝐸,B(𝐸)) forms a

measurable space. All along this workwe consider probability spaces
(𝐸,B(𝐸), 𝜆), where 𝜆 : B(𝐸) → [0, 1] is a probability measure. A set

(𝐹, ⟨·, ·⟩) is called aHilbert space if ⟨·, ·⟩ is a dot product. In this paper,
given a measure 𝜇 on 𝐸, we consider the Hilbert space of square-
integrable functions, noted 𝐿2 (𝜇), defined as the set of functions

𝑓 : 𝐸 → R such that

∫
𝑥∈𝐸 (𝑓 (𝑥))

2𝜇 (d𝑥) < +∞, and where the dot

product is defined as ⟨𝑓 , 𝑔⟩ =
∫
𝑥∈𝐸 𝑓 (𝑥)𝑔(𝑥)𝜇 (d𝑥). The associated

norm is defined as ∥ 𝑓 ∥2 = ⟨𝑓 , 𝑓 ⟩1/2. Let 𝐿1 (𝜇) be the set of func-
tions such that

∫
𝑥∈𝐸 |𝑓 (𝑥) |𝜇 (d𝑥) < +∞, we consider that 𝜇 is such

that 𝐿2 (𝜇) ⊆ 𝐿1 (𝜇), and we define ∥ 𝑓 ∥1 =
∫
𝑥∈𝐸 |𝑓 (𝑥) |𝜇 (d𝑥). Let

𝑃 : 𝐿2 (𝜇) → 𝐿2 (𝜇) be an operator, the operator norm of 𝑃 is defined

as ∥𝑃 ∥𝑝 = sup𝑓 ∈𝐿2 (𝜇 ) :∥ 𝑓 ∥𝑝≤1 ∥𝑇 𝑓 ∥𝑝 , for 𝑝 = 1, 2. Finally, given a

measurable space (𝐸, F ), where F is any 𝜎-algebra, and given two

probability measures 𝜇 and 𝜈 on (𝐸, F ), the total variation distance
between 𝜇 and 𝜈 is defined as TV(𝜇, 𝜈) = sup𝐴∈F |𝜎 (𝐴) − 𝜈 (𝐴) |.

2 PROBLEM FORMULATION
2.1 System description
In this work, we consider discrete-time stochastic dynamical sys-

tems defined as 
𝑥𝑘+1 ∼ 𝜏 (·|𝑥𝑘 ),
𝑥0 ∼ 𝜆0,

𝑦𝑘 = ℎ(𝑥𝑘 ),
(1)

where 𝑥𝑘 ∈ 𝐸 is the state of the system at time 𝑘 and the set 𝐸 ⊆ R𝑑

is the state space. For all 𝑥 ∈ 𝐸, 𝜏 (·|𝑥) : B(𝐸) → [0, 1] is the
transition kernel. The probability measure 𝜆0 : B(𝐸) → [0, 1] is
the initial measure. 𝑦𝑘 ∈ 𝐹 is the output at time 𝑘 , and the set 𝐹

is the output space, which is assumed to be finite. Without loss of

generality, we consider that 𝐹 = {1, . . . , 𝑛} throughout the paper.
The function ℎ : 𝐸 → 𝐹 is called the output function and defines a

partition of the state space 𝐸. Indeed, let

𝐴𝑖 = {𝑥 ∈ 𝐸 : ℎ(𝑥) = 𝑖}, (2)

then the collection of sets 𝐴1, . . . , 𝐴𝑛 is such that

(covering)

𝑛⋃
𝑖=1

𝐴𝑖 = 𝐸,

(pairwise disjoint) ∀𝑖 ≠ 𝑗 : 𝐴𝑖 ∩𝐴 𝑗 = ∅.
A state sequence 𝑥0, 𝑥1, . . . of system (1) is a realisation of the

state stochastic process, which is denoted by (𝑋𝜆0
𝑘
)𝑘≥0. When the

initial measure is clear from the context, we omit 𝜆0 from the no-

tation and simply write 𝑋𝑘 . Given the definition of system (1), the

probability measure associated to the state process is defined as

P[𝑋0 ∈ 𝐴0] = 𝜆0 (𝐴0),

P[𝑋𝑘 ∈ 𝐴𝑘 ] =
∫
𝑥𝑘−1∈𝐸

· · ·
∫
𝑥0∈𝐸

𝜏 (𝐴𝑘 |𝑥𝑘−1) . . . 𝜏 (d𝑥1 |𝑥0)𝜆0 (d𝑥0),

P[𝑋0 ∈ 𝐴0, . . . , 𝑋𝑘 ∈ 𝐴𝑘 ] =∫
𝑥𝑘−1∈𝐴𝑘−1

· · ·
∫
𝑥0∈𝐴0

𝜏 (𝐴𝑘 |𝑥𝑘−1) . . . 𝜏 (d𝑥1 |𝑥0)𝜆0 (d𝑥0),

where𝐴0, . . . , 𝐴𝑘 ∈ B(𝐸). We denote by 𝜆𝑘 the probability measure

induced by P[𝑋𝑘 ∈ ·].
We now recall the definition of an invariant measure.

Definition 2.1 (Invariant measure). A measure 𝜇 : B(𝐸) → [0, 1]
is said to be invariant for the system (1) if, for all𝐴 ∈ B(𝐸), it holds
that ∫

𝑥∈𝐸
𝜏 (𝐴|𝑥)𝜇 (d𝑥) = 𝜇 (𝐴) .

Assumption 1 (Existence and uniqueness). System (1) admits a

unique invariant measure, denoted by 𝜇.

Assumption 2 (Ergodicity). System (1) converges in total varia-

tion to the invariant measure, that is

lim

𝑘→∞
TV(𝜆𝑘 , 𝜇) = 0.

Assumptions 1 and 2 are standard in the literature [8, 9], and

commonly met in many cases of practical interest. We leave the

extension to systems that do not satisfy Assumption 1 and Assump-

tion 2 as future work.

The output sequence 𝑦0, 𝑦1, . . . of system (1) is a realisation of

the output stochastic process, denoted by (𝑌𝜆0
𝑘

)𝑘≥0. Again, we omit

𝜆0 when it is clear from the context. The output process is defined

as

𝑌𝑘 = ℎ(𝑋𝑘 ) ∈ {1, . . . , 𝑛}.
Observe that, although the continuous process (𝑋𝑘 )𝑘≥0 is a Markov

process, the discrete process (𝑌𝑘 )𝑘≥0 is generally non-Markovian

[3, 21], that is

P[𝑌𝑘+1 = 𝑖𝑘+1 |𝑌𝑘 = 𝑖𝑘 , . . . , 𝑌0 = 𝑖0] ≠ P[𝑌𝑘+1 = 𝑖𝑘+1 |𝑌𝑘 = 𝑖𝑘 ] .

We invite the reader to see Figure 1 for an illustrative example of

this phenomenon.

2.2 Problem statement
In this paper, given an infinitely long output sequence {𝑦𝑖 }𝑖 , we aim
at approximating the continuous Markov process (𝑋𝑘 )𝑘≥0 with a

discrete, ℓ-memory Markov process, denoted by (𝑌̃ℓ,𝑘 )𝑘≥0. That is,
we construct the discrete process (𝑌̃ℓ,𝑘 )𝑘≥0 such that

P[𝑌̃ℓ,𝑘 = 𝑖𝑘 |𝑌̃ℓ,𝑘−1 = 𝑖𝑘−1, . . . , 𝑌̃ℓ,0 = 𝑖0]
= P[𝑌̃ℓ,𝑘 = 𝑖𝑘 |𝑌̃ℓ,𝑘−1 = 𝑖𝑘−1, . . . , 𝑌̃ℓ,𝑘−ℓ = 𝑖𝑘−ℓ ] .

In the literature, ℓ-memory Markov processes are also sometimes

referred to as Markov chains with memory ℓ (see e.g. [27]), and

constitute Markov chains in a lifted state space.

More precisely, we show that the discrete process (𝑌̃ℓ,𝑘 )𝑘≥0 in-
duces a probabilitymeasure

˜𝜆ℓ,𝑘 on the state space 𝐸, andwe address

the following problem.
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Problem 1. Given an infinitely long output sequence {𝑦𝑖 }𝑖 of
system (1), construct an ℓ-memory Markov process (𝑌̃ℓ,𝑘 )𝑘≥0 and
compute the distance

TV(𝜆𝑘 , ˜𝜆ℓ,𝑘 ), (3)

where
˜𝜆ℓ,𝑘 is the probability measure on the state space 𝐸 induced

by (𝑌̃ℓ,𝑘 )𝑘≥0.

Remark 1. In practice, as we employ ergodicity of system (1)

(see Assumption 2), the given output sequence {𝑦𝑖 }𝑖 has to be suffi-

ciently – not infinitely – long, so that the Markov process (𝑋𝑘 )𝑘≥0
has almost reached its steady state (in the sense that TV(𝜆𝑘 , 𝜇) < 𝜀,

for small 𝜀). See also Remark 4. ■

Observe that, through
˜𝜆ℓ,𝑘 and TV(𝜆𝑘 , ˜𝜆ℓ,𝑘 ), one can derive bounds

on probabilistic properties of system (1) (e.g., bounds on the prob-

ability of the state 𝑋𝑘 landing on some unsafe set, in some finite

horizon). Our work is motivated by two distinct settings, which

nevertheless present many mathematical similarities:

Case 1 - Partially observable systems.We would like to an-

alyze properties of the underlying process (𝑋𝑘 )𝑘≥0, but can only

observe (samples 𝑦𝑘 of) the output process (𝑌𝑘 )𝑘≥0. Thus, through
observing (𝑌𝑘 )𝑘≥0, we construct a discrete, ℓ-memory Markov

approximation (𝑌̃ℓ,𝑘 )𝑘≥0. Including memory is done precisely to

capture non-Markovian effects inherent to the observed process

(𝑌𝑘 )𝑘≥0. As it will become evident both from the theory and the

numerical examples, in certain cases, increasing memory ℓ leads to

tighter approximations. Overall, this is related to earlier works on

Markov state models [18, 20, 21].

Case 2 - Finite abstractions. System (1) is fully observable

(disregard the output process), but too complex to derive analytic

results on its properties. Akin to standard abstraction methods, we

discretize the state space to derive a finite partition {𝐴𝑖 }𝑖 . In con-

trast, through our method, we start from a coarser partition {𝐴𝑖 }𝑖 ,
and, towards tighter approximations, the refinement is performed

through increasing the abstraction’s memory ℓ ; hence, the title

of the paper. Alternatively, while standard abstraction methods,

towards approximating (𝑋𝑘 )𝑘≥0, through partitioning the state

space, implicitly approximate the non-Markovian process (𝑌𝑘 )𝑘≥0
by a (1-memory) Markov process, we approximate (𝑌𝑘 )𝑘≥0 by an

ℓ-memory Markov process (𝑌̃ℓ,𝑘 )𝑘≥0, aiming precisely at captur-

ing the non-Markov effects introduced exactly by partitioning the

state-space in the first place

Approach. To address Problem 1, we rely on the transfer operator

of the stochastic system and its spectral properties. In particular,

we define a lifted system that describes the evolution of a ℓ-long

slidingwindow of states (𝑥𝑘 , . . . , 𝑥𝑘+ℓ−1). We then construct amem-

ory Markov process so that the transition matrix of the latter is a

Galerkin approximation of the transfer operator of the lifted system.

We derive two upper bounds on the total variation (3). The first one

consists of accumulation of projection errors, and increases with

𝑘 . The second one is a consequence of the convergence of both

models to the invariant measure, and decreases with 𝑘 . For any

memory ℓ , the combination of these two bounds therefore provides

a computable upper bound on the total distance.

3 PRELIMINARIES
As explained in Section 2, our results rely on the theory of transfer

operators, and their Galerkin approximation. This section formally

introduces these concepts.

3.1 Probability theory
We recall that 𝜇 denotes the unique invariant measure of system (1).

We first give a definition of 𝜇-weighted probability density functions.

Definition 3.1 (𝜇-weighted probability density function [20]). A
function 𝑣 : 𝐸 → R is called a 𝜇-weighted probability density func-
tion if it is such that ∫

𝑥∈𝐸
𝑣 (𝑥)𝜇 (d𝑥) = 1,

and 𝑣 (𝑥) ≥ 0 𝜇-almost surely.

The following remark gives an interpretation of 𝜇-weighted prob-

ability density functions with respect to usual probability density

functions.

Remark 2. Let 𝜎 : B(𝐸) → [0, 1] be any probability measure on

the state space. If there exists 𝑣 : 𝐸 → [0, 1] such that

𝜎 (𝐴) =
∫
𝑥∈𝐴

𝑣 (𝑥)𝜇 (d𝑥),

for all 𝐴 ∈ B(𝐸) and if the latter is uniquely defined up to 𝜇-null

sets, then 𝑣 is the so-called Radon-Nikodym derivative of 𝜎 with

respect to the invariant measure, and is denoted by d𝜎/d𝜇 (see e.g.

[25] for more details). By Definition 3.1, 𝑣 is also a 𝜇-weighted prob-

ability density function. Note that, if it exists, the Radon-Nikodym

derivative of 𝜎 with respect to the Lebesgue measure, denoted by

𝑝 , is known as the usual probability density function, and satisfies

𝜎 (𝐴) =
∫
𝑥∈𝐴

𝑝 (𝑥)d𝑥

for all 𝐴 ∈ B(𝐸). ■

In this paper, since we assume the existence of a unique invariant

distribution, we only work with 𝜇-weighted probability density

functions and simply refer to them as probability density functions.

Remark 3. Since 𝜇 (𝐴) =
∫
𝑥∈𝐴 𝜇 (d𝑥), the probability density

function corresponding to the invariant measure is the constant

function 1(𝑥) = 1 for all 𝑥 ∈ 𝐸. ■

Finally, consider two 𝜇-weighted probability density functions

𝑣1 and 𝑣2 that respectively correspond to two probability measures

𝜆1 and 𝜆2, then, the identity

TV(𝜆1, 𝜆2) =
1

2

∥𝑣1 − 𝑣2∥1 =
1

2

∫
𝑥∈𝐸

|𝑣1 (𝑥) − 𝑣2 (𝑥) |𝜇 (d𝑥)

holds [8].

3.2 Transfer operator
The transfer operator corresponding to a transition kernel 𝜏 is de-

fined as follows (see e.g. [21, 24]).

Definition 3.2 (Transfer operator). Given a state space 𝐸 and a

kernel 𝜏 , the transfer operator is the operator 𝑇 : 𝐿2 (𝜇) → 𝐿2 (𝜇)
such that ∫

𝑥∈𝐸
𝜏 (𝐴|𝑥)𝑣 (𝑥)𝜇 (d𝑥) =

∫
𝑦∈𝐴

(𝑇𝑣) (𝑦)𝜇 (d𝑦)
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for all functions 𝑣 ∈ 𝐿2 (𝜇) and all sets 𝐴 ∈ B(𝐸).

If themeasure𝜏 (·|𝑥) admits a Radon-Nikodymderivative 𝑡 (·|𝑥) :=
d𝜏 (·|𝑥)/d𝜇 for all 𝑥 ∈ 𝐸, then the transfer operator is explicitly de-

fined as

(𝑇𝑣) (𝑦) =
∫
𝑥∈𝐸

𝑡 (𝑦 |𝑥)𝑣 (𝑥)𝜇 (d𝑥) (4)

for all functions 𝑣 ∈ 𝐿2 (𝜇).
Intuitively, the operator 𝑇 propagates square-integrable func-

tions of the state space in time, including probability density func-

tions in 𝐿2 (𝜇). Let 𝑣0 = d𝜆0/d𝜇 ∈ 𝐿2 (𝜇) be the probability density

of 𝜆0 (the initial measure of System 1) then one can verify that

𝜆𝑘 (𝐴) := P[𝑋𝑘 ∈ 𝐴] =
∫
𝑥∈𝐴

(𝑇𝑘𝑣0) (𝑥)𝜇 (d𝑥) . (5)

We therefore write 𝑣𝑘 := 𝑇𝑘𝑣0 in the rest of this paper. Note that 𝑣𝑘
is the 𝜇-weighted probability density function of the measure 𝜆𝑘 .

Furthermore, as pointed out in [21], since 1 is the invariant density

(see Remark 3), 𝑇 satisfies 𝑇1 = 1, and 1 is the only fixed point of

𝑇 . Finally we define the spectrum of 𝑇 .

Definition 3.3 (Transfer operator spectrum). Let 𝑒 ∈ C and 𝑢 ∈
𝐿2 (𝜇). If

𝑇𝑢 = 𝑒𝑢,

then 𝑒 and 𝑢 form a pair of eigenvalue and eigenfunction of 𝑇 . All

such pairs form the spectrum of𝑇 . Moreover, a set of eigenfunctions

{𝑢1, . . . , 𝑢𝑚} is said to be orthonormal if

⟨𝑢ℓ𝑖 , 𝑢
ℓ
𝑗 ⟩ = 0

for all 𝑖, 𝑗 = 1, . . . ,𝑚 such that 𝑖 ≠ 𝑗 , and

∥𝑢ℓ𝑖 ∥2 =
√︃
⟨𝑢ℓ

𝑖
, 𝑢ℓ

𝑖
⟩ = 1

for all 𝑖 = 1, . . . ,𝑚, where ⟨·, ·⟩ is the inner product defined as

⟨𝑓 , 𝑔⟩ =
∫
𝑥∈𝐸

𝑓 (𝑥)𝑔(𝑥)𝜇 (d𝑥). (6)

Note that the invariant density 1 is an eigenfunction of 𝑇 with

eigenvalue 1, since 𝑇1 = 1.

3.3 Galerkin methods
In this work, inspired by works on Markov state models [18, 20, 21],

we use a Galerkin method to approximate a lifted transfer operator.

Definition 3.4 (Projection operator). Let (𝐻, ⟨·, ·⟩) be a Hilbert

space, and let ∥ · ∥ be its associated norm. For a closed subspace

𝐷 ⊂ 𝐻 , the surjective map 𝑄 : 𝐻 → 𝐷 is an orthogonal projection

onto 𝐷 if 𝑄2 = 𝑄 and sup𝑓 ∈𝐻 :∥ 𝑓 ∥=1 ∥𝑄𝑓 ∥ = 1.

Consider (𝐿2 (𝜇), ⟨·, ·⟩), the Hilbert space of square-integrable
functions, where ⟨·, ·⟩ is the usual dot product (6), together with a

closed subspace 𝐷 ⊂ 𝐿2 (𝜇) generated by a finite set of functions,

that is

𝐷 = span({𝜙1, . . . , 𝜙𝑛})
for 𝑛 functions 𝜙𝑖 ∈ 𝐿2 (𝜇), and let 𝑄 : 𝐿2 (𝜇) → 𝐷 be the unique

projection operator defined above. Then the operator

𝑃 := 𝑄𝑇𝑄 : 𝐷 → 𝐷

is called the Galerkin approximation of 𝑇 . Since 𝑃 : 𝐷 → 𝐷 is a

finite-dimensional operator, it admits a matrix representation P ∈

R𝑛×𝑛
, defined as follows. For all 𝑓 ∈ 𝐷 , let f ∈ R𝑛

be the vector

representation of 𝑓 in the basis {𝜙𝑖 }𝑖∈[𝑛] , that is

𝑓 =

𝑛∑︁
𝑖=1

f𝑖𝜙𝑖 .

Then, if 𝑓 ′ = 𝑃 𝑓 with vector representation f ′, it holds that

f ′ = P⊤f .

In the following, we use boldface symbols to denote vector/matrix

representations of functions/operators.

4 MEMORY-DEPENDENT ABSTRACTIONS
In this section, we show how to approximate the true densities 𝑣𝑘
of system (1) with the densities 𝑣ℓ,𝑘 obtained from an ℓ-memory

Markov abstraction, itself derived by a Galerkin approximation

of the transfer operator of a lifted system. Finally, we prove the

correctness of our approach by upper bounding TV(𝜆𝑘 , ˜𝜆ℓ,𝑘 ).

4.1 Overall method
Our approach to approximate 𝑣𝑘 is summarized in Algorithm 1. We

recall that, in what follows, 𝜒𝐴 denotes the indicator function of

set 𝐴. Also, we consider transition matrices of ℓ-memory Markov

models, denoted Pℓ ∈ R𝑛ℓ×𝑛ℓ
, where each row and column of such a

matrix is labeled by ℓ-long sequences of outputs 𝑖0𝑖1 . . . 𝑖ℓ−1, where
𝑖 𝑗 ∈ {1, . . . , 𝑛}. Moreover, the matrix is such that

𝑖1 . . . 𝑖ℓ−1 ≠ 𝑗1 . . . 𝑗ℓ−1 =⇒ (Pℓ )𝑖0 ...𝑖ℓ−1, 𝑗1 ..., 𝑗ℓ = 0.

Indeed the state 𝑖0 . . . 𝑖𝑙−1 of the ℓ-memory Markov model repre-

sents the event 𝑌0 = 𝑖0, . . . , 𝑌ℓ−1 = 𝑖ℓ−1, and the state 𝑗1, . . . , 𝑗ℓ rep-

resents the event 𝑌1 = 𝑗1, . . . , 𝑌ℓ = 𝑗ℓ . Thus naturally there can be

no transition from 𝑖0, . . . , 𝑖ℓ−1 to 𝑗1, . . . , 𝑗ℓ if 𝑖1 . . . 𝑖ℓ−1 ≠ 𝑗1 . . . 𝑗ℓ−1.
As a consequence, the matrix Pℓ contains only 𝑛ℓ+1 possibly non-

zero entries. Each considered vector vℓ ∈ R𝑛ℓ
also has entries

labeled with 𝑖0 . . . 𝑖ℓ−1, such that the matrix-vector product Pℓvℓ is
well defined.

Algorithm 1 proceeds as follows:

1. An ℓ-memory Markov chain is built, based on the steady-

state dynamics (the dynamics when on the invariant mea-

sure). Each entry (Pℓ )𝑖0 ...𝑖ℓ−1,𝑖1 ...𝑖ℓ contains the probability to
go to the blocks 𝐴𝑖ℓ knowing the ℓ last blocks were 𝐴𝑖0 , . . . ,

𝐴ℓ−1. It directly follows from (7) that this matrix is stochastic.

2. The initial probability vector on the 𝑛ℓ output sequences

𝑖0 . . . 𝑖ℓ−1 is computed. Again, it follows from (8) that this

vector sums to 1.

3. This probability is propagated 𝑘 − ℓ + 1 times with the ℓ-

Markov chain transition matrix Pℓ . The vector now contains

entries labeled 𝑖𝑘−ℓ+1 . . . 𝑖𝑘 containing the approximated out-

put joint probability from time 𝑘 − ℓ + 1 to time 𝑘 .

4. The joint probability ismarginalized so that the vector (ṽℓ,𝑘 )𝑖𝑘
contains the approximated probabilities at time𝑘 , fromwhich

one may compute 𝑣ℓ,𝑘 .

The returned function in Algorithm 1 is a piecewise constant 𝜇-

weighted probability density function, denoted 𝑣ℓ,𝑘 . It is such that

˜𝜆ℓ,𝑘 (𝐴) =
∫
𝑥∈𝐴

𝑣ℓ,𝑘 (𝑥)𝜇 (d𝑥) ≈
∫
𝑥∈𝐴

𝑣𝑘 (𝑥)𝜇 (d𝑥) = 𝜆𝑘 (𝐴)
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Algorithm 1 Compute 𝑣ℓ,𝑘 , the ℓ-memory approximation of 𝑣𝑘

1: Compute the ℓ-memory transition probabilities of the output

process (𝑌 𝜇

𝑘
)𝑘≥0 of system (1), initialized at the invariant mea-

sure

(Pℓ )𝑖0 ...𝑖ℓ−1,𝑖1 ...𝑖ℓ := P
[
𝑌
𝜇

ℓ
= 𝑖ℓ

��𝑌 𝜇

0
= 𝑖0, . . . , 𝑌

𝜇

ℓ−1 = 𝑖ℓ−1
]
. (7)

2: Compute the initial ℓ-long joint probabilities

(ṽℓ
0
)𝑖0 ...𝑖ℓ−1 := P

[
𝑌
𝜆0
0

= 𝑖0, . . . , 𝑌
𝜆0
ℓ−1 = 𝑖ℓ−1

]
(8)

3: Propagate the 𝑙-long joint probabilities with the ℓ-memory

Markov model

ṽℓ
𝑘−ℓ+1 =

(
P𝑘−ℓ+1ℓ

)⊤
ṽℓ
0

(9)

4: Marginalize

(ṽℓ,𝑘 )𝑖𝑘 :=

𝑛∑︁
𝑖𝑘−ℓ+1=1

· · ·
𝑛∑︁

𝑖𝑘−1=1

(ṽℓ
𝑘+ℓ−1)𝑖𝑘−ℓ+1 ...𝑖𝑘−1𝑖𝑘

return 𝑣ℓ,𝑘 (𝑥𝑘 ) =
∑𝑛
𝑖𝑘=1

(ṽℓ,𝑘 )𝑖𝑘
P[𝑌 𝜇

𝑘
= 𝑖𝑘 ]

𝜒𝐴𝑖𝑘
(𝑥𝑘 ).

for all𝐴 ∈ B(𝐸), where 𝑣𝑘 = 𝑇𝑘𝑣0 is the true 𝜇-weighted probability

density function at time 𝑘 , and ≈ denotes that we use
˜𝜆ℓ,𝑘 (or 𝑣ℓ,𝑘 )

as an approximation of 𝜆𝑘 (resp. 𝑣𝑘 ). This will be further explained

in the next subsections.

Remark 4. In practice, computing the invariant output proba-

bilities (7) can be done in at least two ways. Either one samples a

sufficiently large number of (ℓ + 1)-long output traces initialized at

the invariant distribution. Or, employing ergodicity and Birkhoff’s

theorem (see e.g. [25]), one samples a very large output trace ini-

tialized at any initial distribution. ■

In the rest of this section, we introduce the mathematical for-

malism surrounding the construction of the abstraction.

4.2 Lifted system
Our approach is based on the study of the lifted state process

(𝑋𝑘 , . . . , 𝑋𝑘+ℓ−1)𝑘≥0 and output process (𝑌𝑘 , . . . , 𝑌𝑘+ℓ−1)𝑘≥0. In the
following subsections, we show that the abstraction constructed in

Algorithm 1 is a Galerkin approximation of the transfer operator

of this lifted process. In this section, we formally define it along

with its invariant distribution. We then conclude by making the

link with the original system 1.

The lifted system is defined as
(𝑥𝑘+1, . . . , 𝑥𝑘+ℓ ) ∼ 𝜏 ℓ (·|𝑥𝑘 , . . . , 𝑥𝑘+ℓ−1),
(𝑥0, . . . , 𝑥ℓ−1) ∼ 𝜆ℓ

0
,

(𝑦𝑘 , . . . , 𝑦𝑘+ℓ−1) = (ℎ(𝑥𝑘 ), . . . , ℎ(𝑥𝑘+ℓ−1)) .
(10)

In the definition above, for all𝐴1, . . . , 𝐴ℓ ∈ B(𝐸) and all𝑥0, . . . , 𝑥ℓ−1 ∈
𝐸, the lifted kernel 𝜏 ℓ is defined as

𝜏 ℓ (𝐴1 × · · · ×𝐴ℓ |𝑥0, . . . , 𝑥ℓ−1)

=

{
𝜏 (𝐴ℓ |𝑥ℓ−1) if 𝑥1 ∈ 𝐴1, . . . , 𝑥ℓ−1 ∈ 𝐴ℓ−1,

0 otherwise.

(11)

For all sets 𝐴0, . . . , 𝐴ℓ−1 ∈ B(𝐸), the initial measure 𝜆ℓ
0
is defined

as

𝜆ℓ
0
(𝐴0 × · · · ×𝐴ℓ−1)

=

∫
𝑥0∈𝐴0

· · ·
∫
𝑥ℓ−1∈𝐴ℓ−1

𝜏 (d𝑥ℓ−1 |𝑥ℓ−2) . . . 𝜏 (d𝑥1 |𝑥0)𝜆0 (d𝑥0).

Owing to Assumption 1, the lifted system admits a unique in-

variant measure 𝜇ℓ (see e.g. [8, Equation (4.1)]), defined as

𝜇ℓ (𝐴0 × · · · ×𝐴ℓ−1)

=

∫
𝑥0∈𝐴0

· · ·
∫
𝑥ℓ−1∈𝐴ℓ−1

𝜏 (d𝑥ℓ−1 |𝑥ℓ−2) . . . 𝜏 (d𝑥1 |𝑥0)𝜇 (d𝑥0).
(12)

Lifted system (10) admits a transfer operator 𝑇ℓ , according to

Definition 3.2. The initial measure 𝜆ℓ
0
admits a 𝜇ℓ -weighted prob-

ability density function, denoted 𝑣ℓ
0
(𝑥0, . . . , 𝑥ℓ−1), which is a joint

probability density function on the first ℓ states. These joint den-

sities are propagated with the lifted transfer operator, and, for all

𝑘 ≥ ℓ − 1,

𝑣ℓ
𝑘−ℓ+1 (𝑥𝑘−ℓ+1, . . . , 𝑥𝑘 ) = (𝑇𝑘−ℓ+1

ℓ 𝑣0) (𝑥𝑘−ℓ+1, . . . , 𝑥𝑘 )
is the joint probability density on the states 𝑥𝑘−ℓ+1 to 𝑥𝑘 . The

corresponding measure is denoted by 𝜆ℓ
𝑘−ℓ+1.

Remark 5 (Notations). Study of joint measures and joint proba-

bility density functions are at the center of this work. We therefore

draw the reader’s attention on the fact that, all along the paper, we

note joint measure (resp. 𝜇ℓ -weighted density) on 𝐸ℓ with a super-

script 𝜆ℓ (resp. 𝑣ℓ ), whereas measures (resp. 𝜇-weighted densities)

on 𝐸 are without any superscript 𝜆 (resp. 𝑣). In contrast, super-

scripts on operators, e.g., 𝑃𝑘 or 𝑇𝑘
, denote powers (or recursive

applications of the operator). ■

4.3 Abstraction
In this section, we show that the transition matrix of the ℓ-memory

Markov chain constructed in Algorithm 1 corresponds to a Galerkin

approximation of the transfer operator 𝑇ℓ . In particular, we specify

the basis of functions with which we project 𝑇ℓ , and re-interpret

Algorithm 1 in terms of functions and operators. Doing this will

allow us to derive bounds in Section 5 on the total variation dis-

tance between 𝑣𝑘 and the approximated function 𝑣ℓ,𝑘 given by

Algorithm 1.

Given the output partition 𝐴1, . . . , 𝐴𝑛 on the original state space

𝐸 (as defined in (2)), we consider the subspace of piecewise constant

functions 𝐷ℓ
𝑛 ⊂ 𝐿2 (𝜇ℓ ), defined as

𝐷ℓ
𝑛 := span

({
𝜓𝑖1 ...𝑖ℓ

}
𝑖1,...,𝑖ℓ ∈[𝑛]

)
,

where

𝜓𝑖1 ...𝑖ℓ (𝑥1, . . . , 𝑥ℓ ) :=
𝜒𝐴𝑖

1

(𝑥1) . . . 𝜒𝐴𝑖ℓ
(𝑥ℓ )

P[𝑋 𝜇

1
∈ 𝐴𝑖1 , . . . , 𝑋

𝜇

ℓ
∈ 𝐴𝑖ℓ ]

, (13)

where we recall that 𝜒𝐴 denotes the indicator function of 𝐴. 𝐷ℓ
𝑛 is

therefore a set of piecewise constant functions on 𝐸ℓ .

In this work, we make the assumption that the denominator in

(13) is positive (as formally stated below in Assumption 3). We claim

that this assumption is not restrictive for two main reasons. First, it

holds in many practical cases such as unbounded noise. Second, it

also suffices to assume that P[𝑋 𝜇

1
∈ 𝐴𝑖1 , . . . , 𝑋

𝜇

ℓ
∈ 𝐴𝑖ℓ ] = 0 implies
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P[𝑋𝜆0
1

∈ 𝐴𝑖1 , . . . , 𝑋
𝜆0
ℓ

∈ 𝐴𝑖ℓ ] = 0. That is, zero measure steady

state correspond to zero measure initial conditions. For the sake of

brevity and simplicity, we leave this extension for further work.

Assumption 3. The system (1) is such that its invariant measure

𝜇 satisfies

P[𝑋 𝜇

1
∈ 𝐴𝑖1 , . . . , 𝑋

𝜇

ℓ
∈ 𝐴𝑖ℓ ] > 0 (14)

for all sequence 𝐴𝑖1 , . . . , 𝐴𝑖ℓ of blocks of the output partition.

The following proposition shows that Pℓ , the matrix built in

Algorithm 1, is the matrix representation of the Galerkin approxi-

mation of 𝑇ℓ . For the sake of readability, all proofs can be found in

Appendix A.

Proposition 4.1. Let 𝑄ℓ : 𝐿
2 (𝜇ℓ ) → 𝐷ℓ

𝑛 be a projection operator
as defined in Definition 3.4, and let

𝑃ℓ := 𝑄ℓ𝑇ℓ𝑄ℓ

be the Galerkin approximation of 𝑇ℓ on 𝐷ℓ
𝑛 . Then it holds that

𝑃ℓ𝜓𝑖0 ...𝑖ℓ−1

=

𝑛∑︁
𝑖ℓ=1

P
[
𝑌
𝜇

ℓ
= 𝑖ℓ

��𝑌 𝜇

0
= 𝑖0, . . . , 𝑌

𝜇

ℓ−1 = 𝑖ℓ−1
]
𝜓𝑖1 ...𝑖ℓ

(15)

for all 𝑖0, . . . , 𝑖ℓ−1 ∈ [𝑛]. Therefore Pℓ , as defined in (7), is the matrix
representation of 𝑃ℓ .

We can therefore re-interpret Algorithm 1 through the lens of

transfer operators and their Galerkin approximations. Figure 3

summarizes this interpretation. First, we compute 𝑃ℓ , the Galerkin

approximation of 𝑇ℓ , whose matrix representation is Pℓ , as com-

puted in (7) in Algorithm 1. Second, we compute the piecewise

approximate initial density

𝑣ℓ
0
(𝑥0, . . . , 𝑥ℓ−1) ≈ 𝑣ℓ

0
(𝑥0, . . . , 𝑥ℓ−1)

= (𝑄ℓ𝑣
ℓ
0
) (𝑥0, . . . , 𝑥ℓ−1),

whose vector representation is ṽℓ
0
, computed in (8) in Algorithm 1.

Third, we approximate the joint density from 𝑥𝑘−ℓ+1 to 𝑥𝑘 with

𝑣ℓ
𝑘−ℓ+1 (𝑥𝑘−ℓ+1, . . . , 𝑥𝑘 ) ≈ 𝑣ℓ

𝑘−ℓ+1 (𝑥𝑘−ℓ+1, . . . , 𝑥𝑘 )

= (𝑃𝑘−ℓ+1ℓ 𝑣ℓ
0
) (𝑥𝑘−ℓ+1, . . . , 𝑥𝑘 ) .

(16)

Since 𝑃ℓ = 𝑄ℓ𝑇ℓ𝑄ℓ , it holds that

𝑃𝑘−ℓ+1ℓ 𝑣ℓ
0
= 𝑃𝑘−ℓ+1ℓ (𝑄ℓ𝑣

ℓ
0
) = 𝑃𝑘−ℓ+1ℓ 𝑣ℓ

0
,

and therefore that the vector representation of 𝑣ℓ
𝑘−ℓ+1 is ṽ

ℓ
𝑘−ℓ+1, as

computed in (9). Finally, we marginalize 𝑣ℓ
𝑘−ℓ+1 (𝑥𝑘−ℓ+1, . . . , 𝑥𝑘 ) to

get 𝑣ℓ,𝑘 (𝑥𝑘 ), whose vector representation in 𝐷𝑛 is ṽℓ,𝑘 .

5 TOTAL VARIATION GUARANTEES
In this section we upper bound TV(𝑣𝑘 , 𝑣ℓ,𝑘 ), the total variation

between the true density 𝑣𝑘 and 𝑣ℓ,𝑘 , the approximated density

given by Algorithm 1, thereby providing formal guarantees on the

correctness of our approach. To derive our bounds, we require

certain assumptions on the spectrum of the lifted transfer operator

𝑇ℓ , which are equivalent to those considered in [21] and formally

defined in Assumption 4.

Assumption 4. The lifted transfer operator𝑇ℓ admits𝑚 real eigen-

values 𝑒ℓ,1, . . . , 𝑒ℓ,𝑚 such that 1 = 𝑒ℓ,0 > 𝑒ℓ,1 ≥ . . . 𝑒ℓ,𝑚 , together

with an orthonormal set of eigenfunctions 1 = 𝑢ℓ
0
, 𝑢ℓ

1
, . . . , 𝑢ℓ𝑚 (see

Definition 3.3). Moreover, for some 𝑟ℓ < |𝑒ℓ,𝑚 |, all remaining eigen-

values 𝑒ℓ,𝑖 ∈ C for 𝑖 > 𝑚 are such that |𝑒ℓ,𝑖 | < 𝑟ℓ . Finally let

Πℓ : 𝐿
2 (𝜇ℓ ) → 𝐿2 (𝜇ℓ ) be the operator defined by

Πℓ 𝑓
ℓ =

𝑚∑︁
𝑖=1

⟨𝑓 ℓ , 𝑢ℓ𝑖 ⟩𝑢
ℓ
𝑖 . (17)

We assume that Πℓ𝑇ℓ = Πℓ𝑇ℓΠℓ .

Remark 6. Assumption 4 is related but not the same as Assump-

tion 1 and Assumption 2. As discussed in [21], sufficient conditions

for Assumption 4 to hold are reversibility and sufficient ergodicity
(such as defined in [21, Remark 2.1]), which are stronger assump-

tions than Assumption 1 and Assumption 4. As stated in [11, 21],

reversibility and sufficient ergodicity are natural and satisfied for a

large class of dynamical systems. ■

Similarly as in [21], our bound relies on the quantity

𝛿ℓ := max

𝑖=1,...,𝑚
∥𝑄ℓ𝑢

ℓ
𝑖 − 𝑢ℓ𝑖 ∥2, (18)

which quantifies the maximal projection error on the spectrum.

Our total variation bound consists of two components. The first

component increases with 𝑘 and arises from the cumulative projec-

tion errors, becoming more conservative as 𝑘 grows. On the other

hand, the second component is characterized by the convergence

of both the true density and the approximated one towards the in-

variant density 1, and decreases with 𝑘 . Unlike the first component,

it is initially conservative but tightens progressively over time. The

increasing and decreasing components are studied respectively in

Theorem 5.1 and Theorem 5.2 for the joint densities, and the final

bound is given for the marginalized densities in Corollary 5.3. We

stress that both Theorem 5.1 and Theorem 5.2 bound the same quan-

tity. However, these bounds are complementary, as one is producing

better bounds for small 𝑘 , while the other for large 𝑘.

Theorem 5.1 (Increasing). For any memory ℓ ≥ 1, horizon 𝑘 ≥ ℓ

and initial joint density 𝑣ℓ
0
∈ 𝐿2 (𝜇ℓ ), let 𝜆ℓ

𝑘−ℓ+1 and
˜𝜆ℓ
𝑘−ℓ+1 be the

joint measures respectively defined by

𝑣ℓ
𝑘−ℓ+1 = 𝑇𝑘−ℓ+1

ℓ 𝑣ℓ
0
,

𝑣ℓ
𝑘−ℓ+1 = 𝑃𝑘−ℓ+1ℓ 𝑣ℓ

0
,

and similarly for 𝜆ℓ
𝑘−ℓ and

˜𝜆ℓ
𝑘−ℓ . Then, if Assumption 4 is satisfied, it

holds that

TV(𝜆ℓ
𝑘−ℓ+1,

˜𝜆ℓ
𝑘−ℓ+1) ≤ TV(𝜆ℓ

𝑘−ℓ ,
˜𝜆ℓ
𝑘−ℓ )

+ 1

2

(
𝑚𝑒ℓ,1𝛿ℓ + 𝑟ℓ

)
𝑒𝑘−ℓℓ,1 ∥𝑣ℓ

0
∥2,

(19)

where 𝛿ℓ is defined in (18).

Theorem 5.2 (Decreasing). For any memory ℓ ≥ 1, horizon 𝑘 ≥
ℓ and initial joint density 𝑣ℓ

0
∈ 𝐿2 (𝜇ℓ ), let 𝜆ℓ

𝑘−ℓ+1 and 𝜆
ℓ
𝑘−ℓ+1 be the

joint measures respectively defined as in (19). Then, if Assumption 4
is satisfied, it holds that

TV(𝜆ℓ
𝑘−ℓ+1,

˜𝜆ℓ
𝑘−ℓ+1) ≤ 𝑒𝑘−ℓ+1ℓ,1 ∥𝑣ℓ

0
∥2 .



HSCC ’25, May 6–9, 2025, Irvine, CA, USA Banse et al.

Step a. Step b. Step c. Step d.

Figure 3: Summary of the method described in Algorithm 1, from left to right. Step a) We consider the lifted process defined
in (10). Step b) We project the 𝑥0-to-𝑥ℓ−1 joint distribution on a finitely generated space 𝐷ℓ

𝑛 . Step c) We propagate it with the
Galerkin approximation 𝑃ℓ to get the approximate 𝑥𝑘−ℓ+1-to-𝑥𝑘 joint distribution. Step d) We marginalize it to retrieve the
approximate density at 𝑥𝑘 .

Note that the following corollary is a result on the final marginal-

ized densities, and not the joint densities such as in Theorem 5.1

and Theorem 5.2.

Corollary 5.3. For any memory ℓ ≥ 1, horizon 𝑘 ≥ ℓ and initial
joint density 𝑣ℓ

0
∈ 𝐿2 (𝜇ℓ ), let

TVinc := TV(𝜆ℓ
0
, ˜𝜆ℓ

0
) +

(
𝑚𝑒ℓ,1𝛿ℓ + 𝑟ℓ

) 1 − 𝑒𝑘−ℓ+1
ℓ,1

1 − 𝑒ℓ,1
∥𝑣ℓ

0
∥2,

TVdec := 𝑒𝑘−ℓ+1ℓ,1 ∥𝑣ℓ
0
∥2,

where 𝛿ℓ is defined in (18). Also, let 𝜆𝑘 and ˜𝜆ℓ,𝑘 be the measures
respectively defined by

𝑣𝑘 = 𝑇𝑘𝑣0,

𝑣ℓ,𝑘 output of Algorithm 1.

Then it holds that

TV(𝜆𝑘 , ˜𝜆ℓ,𝑘 ) ≤ min

{
TVinc, TVdec

}
.

Remark 7. We should stress that, although we rely on similar

tools, our bounds differ from those of [21], even in the memoryless

case (ℓ = 1). Indeed the authors of [21] consider the operator norm

∥𝑄1𝑇
𝑘
1
𝑄1 − (𝑄1𝑇1𝑄1)𝑘 ∥2

as the error, which makes the assumption that the ground truth

probability is 𝑣𝑘 = 𝑄1𝑇
𝑘
1
𝑄1𝑣0. The setting of [21] therefore does

not correspond to the setting of this paper, as we consider that the

ground truth is 𝑣𝑘 = 𝑇𝑘
1
𝑣0. Taking into account this continuous

ground truth makes our error larger, and consists in a supplemen-

tary technical challenge than a simple extension of [21]. ■

6 NUMERICAL EXPERIMENTS
In this section we motivate the method described in Section 4.1 for

the two cases described in Section 2. In both cases, we consider the

following dynamical system.

Example 6.1. Consider the 2-dimensional linear system of the

form 
𝑥𝑘+1 = 𝐴𝑥𝑘 +𝑤𝑘 ,

𝑤𝑘 ∼ N(𝑚𝑤 , Σ𝑤),
𝑥0 ∼ N(𝑚0, Σ0),

with

𝐴 =

(
0.995 0.005

0 0.98

)
(20)

and 𝑚𝑤 = (0, 0)⊤, Σ𝑤 = 0.07𝐼2,𝑚0 = (−0.4,−0.4)⊤, Σ0 = 0.3𝐼2,

with 𝐼2 the 2-dimensional identity matrix. Since𝐴 is stable, this sys-

tem converges in total variation to a unique invariant distribution

𝜇 = N(𝑚𝜇 , Σ𝜇 ), where𝑚𝜇 = (0, 0)⊤ and

Σ𝜇 ≈
(
7.36896 0.347856

0.347856 1.76768

)
. (21)

The latter was computed by solving the Riccati equation Σ𝜇 =

𝐴Σ𝜇𝐴
⊤ + Σ𝑤 with the MatrixEquations.jl package.1 ■

In the experiments below, the matrices Pℓ have been computed

with one very long trajectory {𝑦𝑖 }𝑖=1,...,105 (see Remark 4), and

the initial vectors vℓ
0
have been computed with 10

5/ℓ samples of

length ℓ . More details about how TV(𝜆𝑘 , ˜𝜆ℓ,𝑘 ) has been computed

in practice can be found in Appendix B.

Case 1 - Partially observable systems. In this case, the sys-

tem is only partially observable, and we only have access to the

outputs. The state space is discretized as follows: each dimension is

partitioned into (−∞,−1), (1,∞), and the interval [−1, 1] is further
partitioned into 𝑝 subintervals of equal size. Thus the partition con-

tains 𝑛 = (𝑝+2)2 cells. In this case, we fix 𝑝 = 3, leading to a 25 cells

partition, and we approximate the discrete process (𝑌𝑘 )𝑘≥0 with the
process (𝑌̃ℓ,𝑘 ) as defined in Section 4, for ℓ = 1, 2, 3. More precisely,

we compute 𝑣ℓ,𝑘 with Algorithm 1, and compute TV(𝜆𝑘 , ˜𝜆ℓ,𝑘 ) for
𝑘 ∈ {0, . . . , 100}.

The results are in Figure 4. One can see that increasing memory

reduces TV(𝜆𝑘 , ˜𝜆ℓ,𝑘 ) for most horizons 𝑘 , thereby increasing the
approximation quality. Moreover, one can see that the observed

1
See https://github.com/andreasvarga/MatrixEquations.jl.

https://github.com/andreasvarga/MatrixEquations.jl
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bounds follow the theoretical setting of Theorem 5.1 and Theo-

rem 5.2, as the bounds seem to follow two regimes, first increasing

and then decreasing.

Figure 4: Approximation quality of ℓ-memory Markov mod-
els for partially observable systems. Introducing memory
improves approximation quality.

Case 2 - Finite abstractions. In this case, the state process of

the system is available, but the state space is discretized in order to

abstract the system. We consider two comparable settings:

(1) (Classical Markov chain) The state space is discretized in

𝑛 = 729 blocks in the same fashion as above (with 𝑝 =

25). Memory ℓ = 1 is considered, leading to 729
2 = 531441

transition probabilities (P1)𝑖1,𝑖2 with 𝑖1, 𝑖2 ∈ {1, . . . , 729}.
(2) (2-memory Markov model) The state space is discretized in

the same way (uniformly in the square [−1, 1]2) in 𝑛 = 81

blocks (𝑝 = 7). Memory ℓ = 2 is considered, also lead-

ing to 81
3 = 531441 transition probabilities (P)𝑖1𝑖2,𝑖2𝑖3 with

𝑖1, 𝑖2, 𝑖3 ∈ {1, . . . , 81}.
The two settings lead to discrete objects of the same size, since one

only needs to store 531441 values to save them. For these two set-

tings, we compute 𝑣ℓ,𝑘 with Algorithm 1, and compute TV(𝜆𝑘 , ˜𝜆ℓ,𝑘 )
for 𝑘 ∈ {0, . . . , 100}. The results are in Figure 5. We observe that,

even though the initial partition is coarser, larger memory leads to

a better approximation, showcasing the fact that memory allows to

construct smarter abstractions than classical approaches.

7 CONCLUSIONS AND FURTHERWORK
In summary, in this work, we have introduced memory-dependent

abstractions for stochastic systems. Our formalism, based onGalerkin

approximations of lifted transfer operators, provides a theoretical

framework for studying these abstractions. We have also upper

bounded the approximation error, that we define as the total varia-

tion distance between the true distribution on the state space and

the one of the memory-dependent approximation. We showed that

this error consists of two regimes, one increasing (because of the

accumulation of projection errors), and one decreasing (thanks to er-

godicity). Through numerical experiments, we have demonstrated

that increasing memory reduces the approximation error in vari-

ous scenarios, highlighting how memory-dependent abstractions

Figure 5: Approximation quality of memory-dependent ab-
stractions of an observable system. One can see that, for the
same number of transition probabilities (𝑛ℓ+1 = 531441 in
both cases), starting from a coarser partition and increasing
the memory leads to better approximations.

effectively address the issue of non-Markovianity of the discrete

process induced by the discretization.

There are many interesting directions for future work. First,

our numerical experiments suggest that for partially observable

systems with a fixed partition, increasing memory allows to im-

prove the approximation quality. Identifying the class of systems

for which increasing memory guarantees a better approximation

is an interesting direction for further research. Second, we plan to

extend this work to the data-driven setting, and exploring aspects

such as sample complexity as a function of the number of blocks

and memory. Third, while our current bounds are valid, they suffer

from conservatism and often exceed 1, the maximal value of any

total variation distance. Therefore, we aim to investigate alternative

approaches that directly rely on intermediate results on the 1-norm,

rather than relying on 2-norm results as we do here.
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A PROOFS
Our results rely on the Hölder’s inequality, that we recall here-

inafter.

Lemma A.1 (Hölder’s ineqality). Given a measurable space
(𝐸, F ), together with a measure 𝜇, and 𝑝, 𝑞 ∈ [0, +∞] such that

1/𝑝 + 1/𝑞 = 1. Then, for all 𝑓 : 𝐸 → R and 𝑔 : 𝐸 → R, it holds that

∥ 𝑓 𝑔∥1 ≤ ∥ 𝑓 ∥𝑝 ∥𝑔∥𝑞 .

A direct consequence of Hölder’s inequality is that, for all func-

tion 𝑓 ∈ 𝐿2 (𝜇), it holds that

∥ 𝑓 ∥1 ≤ ∥ 𝑓 ∥2 .

Our proofs also rely on the following lemma, that holds under

Assumption 4.

Lemma A.2 ([21, Lemma 2.2]). For all initial densities 𝑣ℓ
0
∈ 𝐿2 (𝜇ℓ ),

and 𝑘 ≥ ℓ − 1 it holds that

∥𝑃𝑘−ℓ+1ℓ 𝑣ℓ
0
− 1∥2 ≤ ∥(𝑇ℓ𝑄ℓ )𝑘−ℓ+1𝑣ℓ0 − 1∥2 ≤ 𝑒𝑘−ℓ+1ℓ,1 ∥𝑣ℓ

0
∥2 .

Finally, we will also need the fact that all transfer operator has a

unitary norm.

Lemma A.3. Given a state space 𝐸 and a kernel 𝜏 , the transfer
operator 𝑇 : 𝐿2 (𝜇) → 𝐿2 (𝜇) is such that ∥𝑇 ∥1 = 1.

Proof. We first recall the operator norm

∥𝑇 ∥1 = sup

𝑓 ∈𝐿2 (𝜇 ) :∥ 𝑓 ∥1≤1
∥𝑇 𝑓 ∥1 .

First we prove that ∥𝑇 ∥1 ≥ 1. Take any nonnegative function

𝑓 : 𝐸 → R≥0 such that ∥ 𝑓 ∥1 = 1. Then it holds that

∥𝑇 𝑓 ∥1 =
∫
𝑥∈𝐸

| (𝑇 𝑓 ) (𝑥) |𝜇 (d𝑥) .

By definition of the transfer operator, if 𝑓 is nonnegative, then 𝑇 𝑓

is also nonnegative. Therefore,

∥𝑇 𝑓 ∥1 =
∫
𝑥∈𝐸

(𝑇 𝑓 ) (𝑥)𝜇 (d𝑥)

=

∫
𝑥∈𝐸

𝑓 (𝑥)𝜇 (d𝑥)

= 1,

where the first equality holds by (4), and the second by assumption.

By definition of sup, this proves the first claim.

Now we prove that ∥𝑇 ∥1 ≤ 1. Any function 𝑓 : 𝐸 → R can be

written as 𝑓 = 𝑓 + − 𝑓 − , where 𝑓 + : 𝐸 → R≥0 and 𝑓 − : 𝐸 → R≥0
are respectively the positive and negative parts of 𝑓 . Therefore, for
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all functions 𝑓 such that ∥ 𝑓 ∥1 ≤ 1, it holds that

∥𝑇 𝑓 ∥1 =
∫
𝑥∈𝐸

| (𝑇 𝑓 ) (𝑥) |𝜇 (d𝑥)

=

∫
𝑥∈𝐸

| (𝑇 (𝑓 + − 𝑓 −)) (𝑥) |𝜇 (d𝑥)

=

∫
𝑥∈𝐸

| (𝑇 𝑓 +) (𝑥) − (𝑇 𝑓 −) (𝑥) |𝜇 (d𝑥)

=

∫
𝑥∈𝐸

(𝑇 𝑓 +) (𝑥) + (𝑇 𝑓 −) (𝑥)𝜇 (d𝑥)

=

∫
𝑥∈𝐸

(𝑇 𝑓 +) (𝑥)𝜇 (d𝑥) +
∫
𝑥∈𝐸

(𝑇 𝑓 −) (𝑥)𝜇 (d𝑥)

=

∫
𝑥∈𝐸

𝑓 + (𝑥)𝜇 (d𝑥) +
∫
𝑥∈𝐸

𝑓 − (𝑥)𝜇 (d𝑥)

=

∫
𝑥∈𝐸

𝑓 + (𝑥) + 𝑓 − (𝑥)𝜇 (d𝑥)

=

∫
𝑥∈𝐸

|𝑓 + (𝑥) − 𝑓 − (𝑥) |𝜇 (d𝑥)

=

∫
𝑥∈𝐸

|𝑓 (𝑥) |𝜇 (d𝑥)

≤ 1,

which concludes the proof. □

A.1 Proof of Proposition 4.1
First we define an orthonormal basis for𝐷ℓ

𝑛 , given by {𝜙𝑖1 ...𝑖ℓ }𝑖1,...,𝑖ℓ ∈[𝑛] :

𝜙𝑖1 ...𝑖ℓ (𝑥1, . . . , 𝑥ℓ ) =
𝜒𝐴𝑖

1

(𝑥1) . . . 𝜒𝐴𝑖ℓ
(𝑥ℓ )√︃

P[𝑋 𝜇

1
∈ 𝐴𝑖1 , . . . , 𝑋

𝜇

ℓ
∈ 𝐴𝑖ℓ ]

.

The orthogonality of the basis follows, since for all 𝑖1, . . . , 𝑖ℓ ∈ [𝑛],

⟨𝜙𝑖1 ...𝑖ℓ , 𝜙𝑖1 ...𝑖ℓ ⟩

=

∫
𝑥1∈𝐴𝑖

1

· · ·
∫
𝑥ℓ ∈𝐴𝑖ℓ

𝜏 (d𝑥ℓ |𝑥ℓ−1) . . . 𝜏 (d𝑥1 |𝑥0)𝜇 (d𝑥0)

P[𝑋 𝜇

1
∈ 𝐴𝑖1 , . . . , 𝑋

𝜇

ℓ
∈ 𝐴𝑖ℓ ]

= 1,

and for all 𝑖1 . . . 𝑖ℓ ≠ 𝑗1 . . . 𝑗ℓ , ⟨𝜙𝑖1 ...𝑖ℓ , 𝜙 𝑗1 ... 𝑗ℓ ⟩ = 0. As a consequence,

by definition of 𝑄ℓ , it holds that

𝑄ℓ𝑣
ℓ =

∑︁
𝑖1 ...𝑖ℓ

⟨𝑣ℓ , 𝜙𝑖1 ...𝑖ℓ ⟩𝜙𝑖1 ...𝑖ℓ (22)

for all 𝑣ℓ ∈ 𝐿2 (𝜇ℓ ).
Now, by definition of 𝑃ℓ and by (22), for all 𝑖0, . . . , 𝑖ℓ−1 ∈ [𝑛],

𝑃ℓ𝜓𝑖0,...,𝑖ℓ−1

= 𝑄ℓ𝑇ℓ𝑄ℓ𝜓𝑖0,...,𝑖ℓ−1

= 𝑄ℓ

(
𝑇ℓ𝜓𝑖0,...,𝑖ℓ−1

)
=

∑︁
𝑗1,..., 𝑗ℓ ∈[𝑛]

⟨𝑇ℓ𝜓𝑖0,...,𝑖ℓ−1 , 𝜙 𝑗1,..., 𝑗ℓ ⟩𝜙 𝑗1,..., 𝑗ℓ

=
∑︁

𝑗1,..., 𝑗ℓ ∈[𝑛]

〈
𝑇ℓ

(
𝜒𝐴𝑖

0

. . . 𝜒𝐴𝑖ℓ−1

)
, 𝜒𝐴 𝑗

1

. . . 𝜒𝐴 𝑗ℓ

〉
P[𝑋 𝜇

0
∈ 𝐴𝑖0 , . . . , 𝑋

𝜇

ℓ−1 ∈ 𝐴𝑖ℓ−1 ]
𝜓 𝑗1,..., 𝑗ℓ .

(23)

By (11) , the dot product above equals zero if 𝑗1 . . . 𝑗ℓ−1 ≠ 𝑖1 . . . 𝑖ℓ−1,
and, otherwise, is equal to∫
𝑥0∈𝐴𝑖

0

· · ·
∫
𝑥ℓ−1∈𝐴𝑖ℓ−1

𝜏 (𝐴 𝑗ℓ |𝑥ℓ−1)𝜏 (𝑑𝑥ℓ−1 |𝑥ℓ−2) . . . 𝜏 (d𝑥1 |𝑥0)𝜇 (d𝑥0)

= P[𝑋 𝜇

0
∈ 𝐴𝑖0 , . . . , 𝑋

𝜇

ℓ
∈ 𝐴 𝑗ℓ ] .

Therefore, inserting this in (23) yields

𝑃ℓ𝜓 𝑗0,..., 𝑗ℓ−1 =
∑︁

𝑗1,..., 𝑗ℓ ∈[𝑛]

P[𝑋 𝜇

0
∈ 𝐴𝑖0 , . . . , 𝑋

𝜇

ℓ
∈ 𝐴 𝑗ℓ ]

P[𝑋 𝜇

0
∈ 𝐴𝑖0 , . . . , 𝑋

𝜇

ℓ−1 ∈ 𝐴𝑖ℓ−1 ]
𝜓 𝑗1,..., 𝑗ℓ ,

which is (15) by definition of the output process, and the proof is

completed. □

A.2 Proof of Theorem 5.1
First, by the triangular inequality, it holds that

TV(𝜆ℓ
𝑘−ℓ+1,

˜𝜆ℓ
𝑘−ℓ+1) ≤ TV(𝜆ℓ

𝑘−ℓ+1, 𝜆
ℓ

𝑘−ℓ+1) + TV(𝜆ℓ𝑘−ℓ+1, ˜𝜆ℓ𝑘−ℓ+1),

where 𝜆ℓ
𝑘−ℓ+1, 𝜆

ℓ

𝑘−ℓ+1 and
˜𝜆ℓ
𝑘−ℓ+1 are respectively the measures

corresponding to

𝑣ℓ
𝑘−ℓ+1 = 𝑇𝑘−ℓ+1

ℓ 𝑣ℓ
0
,

𝑣ℓ
𝑘−ℓ+1 = 𝑇ℓ𝑃

𝑘−ℓ
ℓ 𝑣ℓ

0
,

and

𝑣ℓ
𝑘−ℓ+1 = 𝑃𝑘−ℓ+1ℓ 𝑣ℓ

0
.

First, we show that

TV(𝜆ℓ
𝑘−ℓ+1, 𝜆

ℓ

𝑘−ℓ+1) ≤ TV(𝜆ℓ
𝑘−ℓ ,

˜𝜆ℓ
𝑘−ℓ ).

It holds that 𝑣ℓ
𝑘−ℓ+1 = 𝑇ℓ𝑣

ℓ
𝑘−ℓ , and that 𝑣ℓ

𝑘−ℓ+1 = 𝑇ℓ𝑣
ℓ
𝑘−ℓ . Therefore,

by definition of the total variation distance and by Lemma A.3,

TV(𝜆ℓ
𝑘−ℓ+1, 𝜆

ℓ

𝑘−ℓ+1) =
1

2




𝑇ℓ (
𝑣ℓ
𝑘−ℓ − 𝑣ℓ

𝑘−ℓ

)



1

≤ 1

2

∥𝑇ℓ ∥1∥𝑣ℓ𝑘−ℓ − 𝑣ℓ
𝑘−ℓ ∥1

=
1

2

∥𝑣ℓ
𝑘−ℓ − 𝑣ℓ

𝑘−ℓ ∥1

= TV(𝜆ℓ
𝑘−ℓ ,

˜𝜆ℓ
𝑘−ℓ ) .

Second, we show that

TV(𝜆ℓ𝑘−ℓ+1, ˜𝜆ℓ𝑘−ℓ+1) ≤
1

2

(𝑚𝑒ℓ,1𝛿ℓ + 𝑟ℓ )𝑒𝑘−ℓℓ,1 ∥𝑣ℓ
0
∥2 .

It holds that 𝑣ℓ
𝑘−ℓ+1 = 𝑇ℓ𝑣

ℓ
𝑘−ℓ , and that 𝑣

ℓ
𝑘−ℓ+1 = 𝑃ℓ𝑣

ℓ
𝑘−ℓ = 𝑄ℓ𝑇ℓ𝑣

ℓ
𝑘−ℓ .

Therefore, by definition of the total variation distance, and by

Hölder’s inequality, it holds that

TV(𝜆ℓ𝑘−ℓ+1, ˜𝜆ℓ𝑘−ℓ+1) =
1

2

∥(𝑇ℓ −𝑄ℓ𝑇ℓ )𝑣ℓ𝑘−ℓ ∥1

≤ 1

2

∥(𝑇ℓ −𝑄ℓ𝑇ℓ )𝑣ℓ𝑘−ℓ ∥2 .

Now we follow a similar reasoning as in the proof of [21, Theo-

rem 3.1]. Let 𝑄⊥
ℓ
= Id −𝑄ℓ , where Id the identity operator. Since
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𝑄⊥
ℓ
1 = 0, it holds that

∥(𝑇ℓ −𝑄ℓ𝑇ℓ )𝑣ℓ𝑘−ℓ ∥2 = ∥𝑄⊥
ℓ 𝑇ℓ𝑣

ℓ
𝑘−ℓ ∥2

= ∥𝑄⊥
ℓ 𝑇ℓ𝑄ℓ (𝑇ℓ𝑄ℓ )𝑘−ℓ𝑣ℓ0∥2

= ∥𝑄⊥
ℓ 𝑇ℓ𝑄ℓ ((𝑇ℓ𝑄ℓ )𝑘−ℓ𝑣ℓ0 − 1)∥2

≤ ∥𝑄⊥
ℓ 𝑇ℓ𝑄ℓ ∥2∥(𝑇ℓ𝑄ℓ )𝑘−ℓ𝑣ℓ0 − 1∥2 .

Following [21, Eq. (63)], the first factor is such that

∥𝑄⊥
ℓ 𝑇ℓ𝑄ℓ ∥2 ≤ 𝑚𝑒ℓ,1𝛿ℓ ,

and, by Lemma A.2, the second is such that

∥(𝑇ℓ𝑄ℓ )𝑘−ℓ𝑣ℓ0 − 1∥2 ≤ 𝑒𝑘−ℓℓ,1 ∥𝑣ℓ
0
∥2,

which concludes the proof. □

A.3 Proof of Theorem 5.2
By the triangular inequality, it holds that

TV(𝜆ℓ
𝑘−ℓ+1,

˜𝜆ℓ
𝑘−ℓ+1) ≤ TV(𝜆ℓ

𝑘−ℓ+1, 𝜇
ℓ ) + TV(𝜇ℓ , ˜𝜆ℓ

𝑘−ℓ+1),

where 𝜇ℓ is the lifted invariant measure as defined in (12). By

Hölder’s inequality and by Assumption 4, it holds that

TV(𝜆ℓ
𝑘−ℓ+1, 𝜇

ℓ ) ≤ 1

2

∥𝑣ℓ
𝑘−ℓ+1 − 1∥2 ≤ 1

2

𝑒𝑘−ℓ+1ℓ,1 ∥𝑣ℓ
0
∥2 .

By Lemma A.2, we can follow the exact same reasoning as above

to get

TV(𝜇ℓ , ˜𝜆ℓ
𝑘−ℓ+1) ≤

1

2

𝑒𝑘−ℓ+1ℓ,1 ∥𝑣ℓ
0
∥2,

which concludes the proof. □

A.4 Proof of Corollary 5.3
First, by Theorem 5.1, it holds that

TV(𝜆ℓ
𝑘−ℓ+1,

˜𝜆ℓ
𝑘−ℓ+1)

≤ TV(𝜆ℓ
0
, ˜𝜆ℓ

0
) +

𝑘−ℓ∑︁
𝑖=0

1

2

(
𝑚𝑒ℓ,1𝛿ℓ + 𝑟ℓ

)
𝑒𝑖ℓ,1∥𝑣

ℓ
0
∥2

= TV(𝜆ℓ
0
, ˜𝜆ℓ

0
) + 1

2

(
𝑚𝑒ℓ,1𝛿ℓ + 𝑟ℓ

) (
𝑘−ℓ∑︁
𝑖=0

𝑒𝑖ℓ,1

)
∥𝑣ℓ

0
∥2

= TV(𝜆ℓ
0
, ˜𝜆ℓ

0
) + 1

2

(
𝑚𝑒ℓ,1𝛿ℓ + 𝑟ℓ

) 1 − 𝑒𝑘−ℓ+1
ℓ,1

1 − 𝑒ℓ,1
∥𝑣ℓ

0
∥2 .

Now it remains to show that

TV(𝜆𝑘 , ˜𝜆ℓ,𝑘 ) ≤ TV(𝜆ℓ
𝑘−ℓ+1,

˜𝜆ℓ
𝑘−ℓ+1).

By definition of the total variation distance,

TV(𝜆ℓ
𝑘−ℓ+1,

˜𝜆ℓ
𝑘−ℓ+1)

= sup

𝐴𝑘−ℓ+1,...,𝐴𝑘 ∈B(𝐸 )

�����𝜆ℓ𝑘−ℓ+1 (𝐴𝑘−ℓ+1 × · · · ×𝐴𝑘 )
− 𝜆ℓ

𝑘−ℓ+1 (𝐴𝑘−ℓ+1 × · · · ×𝐴𝑘 )

�����
≥ sup

𝐴𝑘 ∈B(𝐸 )

�����𝜆ℓ𝑘−ℓ+1 (𝐸 × · · · × 𝐸 ×𝐴𝑘 )
− 𝜆ℓ

𝑘−ℓ+1 (𝐸 × · · · × 𝐸 ×𝐴𝑘 )

�����
= sup

𝐴𝑘 ∈B(𝐸 )
|𝜆𝑘 (𝐴𝑘 ) − 𝜆ℓ,𝑘 (𝐴𝑘 ) |

= TV(𝜆𝑘 , 𝜆ℓ,𝑘 ),
and the proof is completed. □

B DETAILS ABOUT THE NUMERICAL
EXPERIMENTS

In order to compute TV(𝜆𝑘 , ˜𝜆ℓ,𝑘 ) from Example 6.1 and 𝑣ℓ,𝑘 , we

proceed as follows. First, we know that

𝜆𝑘 = N(𝑚𝑘 , Σ𝑘 ),
where𝑚𝑘 and Σ𝑘 satisfy the recurrence

𝑚𝑘+1 = 𝐴𝑚𝑘 , Σ𝑘+1 = 𝐴Σ𝑘𝐴
⊤ + Σ𝑤 .

The 𝜇-weighted probability density function 𝑣𝑘 ∈ 𝐿2 (𝜇) is given by

𝑣𝑘 =
d𝜆𝑘

d𝜇
=

d𝜆𝑘

d𝜆∗
d𝜆∗

d𝜇
=

d𝜆𝑘

d𝜆∗

(
d𝜇

d𝜆∗

)−1
,

where 𝜆∗ is the Lebesgue measure. Therefore, 𝑣𝑘 is defined as

𝑣𝑘 (𝑥) =
𝑓N(𝑚𝑘 ,Σ𝑘 ) (𝑥)
𝑓N(𝑚𝜇 ,Σ𝜇 ) (𝑥)

,

where 𝑓N(𝑚,Σ) is the usual probability density function of Gaussian

distributions with respect to the Lebesgue measure. Finally, we

compute the total variation with a Monte-Carlo approximation,

that is

TV(𝜆𝑘 , ˜𝜆ℓ,𝑘 ) =
1

2

∫
𝑥∈𝐸

|𝑣𝑘 (𝑥) − 𝑣ℓ,𝑘 (𝑥) |𝜇 (d𝑥)

≈ 1

2

10
4∑︁

𝑖=1

|𝑣𝑘 (𝑥𝑖 ) − 𝑣ℓ,𝑘 (𝑥𝑖 ) |,

where 𝑥𝑖 are i.i.d. samples from the invariant measure.
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