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ABSTRACT

With the increasing ubiquity of safety-critical autonomous systems
operating in uncertain environments, there is a need for mathemat-
ical methods for formal verification of stochastic models. Towards
formally verifying properties of stochastic systems, methods based
on discrete, finite Markov approximations — abstractions — thereof
have surged in recent years. These are found in contexts where: ei-
ther a) one only has partial, discrete observations of the underlying
continuous stochastic process, or b) the original system is too com-
plex to analyze, so one partitions the continuous state-space of the
original system to construct a handleable, finite-state model thereof.
In both cases, the abstraction is an approximation of the discrete
stochastic process that arises precisely from the discretization of
the underlying continuous process. The fact that the abstraction is
Markov and the discrete process is not (even though the original
one is) leads to approximation errors. Towards accounting for non-
Markovianity, we introduce memory-dependent abstractions for
stochastic systems, capturing dynamics with memory effects. Our
contribution is twofold. First, we provide a formalism for memory-
dependent abstractions based on transfer operators. Second, we
quantify the approximation error by upper bounding the total vari-
ation distance between the true continuous state distribution and
its discrete approximation.
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1 INTRODUCTION

Autonomous systems operating in uncertain environments are be-
coming ubiquitous, with applications ranging from autonomous
driving, to robots in rescue missions, smart grids, smart build-
ings, etc. [2, 19]. Towards safe deployment of such autonomous
systems, mathematical methods to formally verify if they meet pre-
specified requirements (e.g., on safety or performance) are needed
(10, 15].

To mathematically analyze the aforementioned systems, while
accounting for uncertainty, stochastic models are often employed.
In this context, methods that are based on discrete approximations
of stochastic systems, called abstractions, have recently surged (see
[13] for a survey on abstractions for stochastic systems). Abstrac-
tions arise in two different contexts, that nevertheless present many
mathematical similarities: a) one has access only to partial, discrete
observations of the underlying original stochastic process (this is re-
lated to the work on Markov state models [18, 20, 21]); b) the original
system is too complex to analyze, so one partitions its continuous
state-space to construct a finite-state abstraction (this is related to
the work on abstraction-based methods [1, 5, 6, 12—14, 17]). In both
cases, the abstraction takes the form of a finite (sometimes robust)
Markov chain.

In virtue of the above, the abstraction is an approximation of
the discrete stochastic process that arises from the discretization
of the original process. In particular, while the discrete process is
not Markov, even though the original continuous process is (see
Figure 1 for an example), for computational reasons, the abstraction
is generally constructed to be Markov. This leads to approximation
errors. To alleviate approximation errors due to non-Markovianity,
we introduce memory-dependent abstractions of stochastic sys-
tems (so far, only memoryless abstractions have been proposed; see
Related work below). The introduction of memory aims precisely at
capturing memory effects inherent in the non-Markovian discrete
process.
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Figure 1: Loss of the Markov property. Consider a stochastic
system defined by xj.,; = x; + 7/2+wi (mod 27), where wy is
a noise whose support is [0, 7/10]. While the original system
is Markovian, the discrete process tracking only in which
region x; lies is not. Specifically, one can see that a state
X can jump from A; to A; with non-zero probability, i.e.
P[xryq € Ailxg € A2] > 0. However, when a larger memory
is considered, we see that, if this state was initially in A, it
cannot jump successively to A; and back to Ay, i.e. P[xp, €
A1lxgsq1 € Az, xi € A1] = 0. The Markov property is therefore
lost, since P[xp,; € Aj|xg € Az] # Plxgig € Aqlxpyq € A2, xp €
A1l.

Contributions. In this paper, we develop memory-dependent ab-
stractions of stochastic systems. Inspired by symbolic dynamics
[16], we extend the state space of the stochastic system to create
a lifted system, where each state represents an f-long sequence
of states, £ being the considered memory. Further, akin to work
on Markov state models [18, 20, 21], we employ transfer-operator
theory and construct an -memory abstraction, through Galerkin
approximations of the lifted process’s transfer operator. Critically,
we provide an upper bound on the total variation distance be-
tween the distribution of the original continuous state system and
its discrete approximation, enabling formal verification through
the abstract model. Finally, we showcase through examples how
memory increases approximation accuracy in various situations.
This work therefore marks a significant step toward creating smart
memory-dependent abstractions for the analysis and control of
complex systems.

Related work. Memory-dependent abstractions have been devel-
oped for the analysis and control of deterministic systems [3, 4,
22, 23]. However, to the best of our knowledge, such techniques
have not been investigated for stochastic systems, where abstrac-
tions are memoryless (robust) Markov chains [1, 5, 6, 12, 14, 17].
Arguably, that is because incorporating memory in stochastic ab-
stractions is fundamentally different than the deterministic case.
For memory-dependent abstractions of deterministic systems, the
domino rule is employed, which, deeply rooted in determinism,
is simply not applicable for stochastic systems (see Figure 2 for
an explanation). Thus, extending memory-dependent abstraction
techniques to stochastic systems presents a non-trivial challenge,
and requires fundamentally different mathematical tools, which we
develop here.
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Our work is also deeply related to and inspired by the work on
Markov state models [18, 20, 21], which employs Galerkin approxi-
mations of the underlying Markov process’s transfer operator, to
build a finite approximation in a partial-observation scenario. Our
contribution w.r.t. [18, 20, 21] is twofold. First, we introduce mem-
ory to the discrete approximation, whereas only the memoryless
case is studied in those works. Second, although we use interme-
diate results proven in [21], our bounds - even in the memoryless
case - fundamentally differ from those of the latter (see Remark 7
for more details).

Finally, our work is related to partially observable Markov deci-
sion processes (POMDPs for short, see [26] for a survey). Indeed,
the considered dynamical systems can be framed in the formal-
ism of POMDPs, where the continuous state space of the original
system and the discrete cells of the partition are the state and ob-
servation spaces, respectively, such as e.g. in [28]. Although the
loss of the Markov property for observations is a known phenome-
non in POMDP literature [7], our contribution departs from this
literature in that we focus on problems that arise in the frame-
work of (safety-critical) abstractions. That is, we study the loss of
the Markov property when the state space is continuous and is
approximated by cells corresponding to sets of states.

Initial partition

As, A,

A1, 4y

Ay Ay As, Ay
/ and and
Ay, A

Andy | As Ay
AL A = =

Deterministic system Stochastic system

Figure 2: Domino rule for memory-dependent abstractions.
Let A; and A; be two blocks of an initial partition on the
state space E. A1 and A, correspond to states of a 1-memory
(memoryless) abstraction. Towards a 2-memory abstraction
for deterministic systems, the domino rule proceeds as fol-
lows. The cell A; is divided into A, A; and Ay, Ay, the sets of
states that are in A; and that will respectively be either in A;
or in A; at the next timestep (the same happens to subdivide
Ay). For stochastic systems, such division is not possible, as
generally, even though the system might be in a specific state
in Aj, it can visit any of A; or A in the next step, due to
stochasticity; in other words, there is no set of states in A;
that deterministically visit either of A; and A in the next
step (similarly for the states initially in Aj).

Outline. This paper is structured as follows. Section 2 defines
the considered family of systems and the studied problem. Sec-
tion 3 introduces key theoretical concepts, covering probability
theory, transfer operators, and Galerkin approximations. Section 4
contains our overall method to abstract systems with £-memory
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Markov models. We present the lifted system on which relies our
analysis, and we provide a mathematical framework that justifies
our method. In Section 5, we provide total variation guarantees.
Section 6 provides numerical experiments, and Section 7 concludes
with discussions on the approach, its limitation and future direc-
tions.

Notations. Given any set A, y4 is the indicator function of A. R
and C respectively denote the sets of real and complex numbers. The
sets Rso and Rx( respectively denote the set of positive and non-
negative real numbers. For a € C, |a| denotes the modulus of a. For
a natural number n, the set [n] denotes {1,...,n}. Let E € R?, we
denote by B(E) the Borel set of E, and the couple (E, B(E)) forms a
measurable space. All along this work we consider probability spaces
(E, B(E), M), where A : B(E) — [0, 1] is a probability measure. A set
(F, (-, -)) is called a Hilbert space if (-, -) is a dot product. In this paper,
given a measure p on E, we consider the Hilbert space of square-
integrable functions, noted L2 (p), defined as the set of functions
f : E — R such that fer(f(x))zy(dx) < 400, and where the dot
product is defined as (f, g) = fer f(x)g(x)p(dx). The associated
norm is defined as ||f]|2 = (f,f)l/z. Let L!(y) be the set of func-
tions such that | _.|f(x)|p(dx) < +oo, we consider that y is such
that L2(y) C L'(p), and we define ||f||; = fer |f(x)|p(dx). Let
P : L?(p) — L?(u) be an operator, the operator norm of P is defined
as ||P|lp = SUPFer2 ()| fllp<1 ITfllp, for p = 1,2. Finally, given a
measurable space (E, ), where ¥ is any o-algebra, and given two
probability measures p and v on (E, ), the total variation distance
between y and v is defined as TV(y, v) = sup g |0 (A) — v(A)|.

2 PROBLEM FORMULATION

2.1 System description
In this work, we consider discrete-time stochastic dynamical sys-
tems defined as

X1 ~ T(:|xg),

xo ~ Ao, ¢y

Y = h(xk),
where x;. € E is the state of the system at time k and the set E € R?
is the state space. For all x € E, 7(:|x) : B(E) — [0,1] is the
transition kernel. The probability measure Ag : B(E) — [0,1] is
the initial measure. y;. € F is the output at time k, and the set F
is the output space, which is assumed to be finite. Without loss of
generality, we consider that F = {1,..., n} throughout the paper.
The function h : E — F is called the output function and defines a
partition of the state space E. Indeed, let

A;j={x € E: h(x) =i}, (2)
then the collection of sets Aj, ..., Ay is such that

n
(covering) U Aj=E,
i=1

(pairwise disjoint) Vi# j:A;NA;=0.
A state sequence X, X1, ... of system (1) is a realisation of the
state stochastic process, which is denoted by (X]?O) k>0- When the

initial measure is clear from the context, we omit Ay from the no-
tation and simply write Xj. Given the definition of system (1), the
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probability measure associated to the state process is defined as
P[Xo € Aol = 20(Ao),

PIX; € Ayl = / / F(ARle_1) - . 7(dxax0) Ao (dxo),
Xk-1€E xo€E

0

P[X() EA(),.,.,Xk GAk] =

f / #(ARle_1) - . 7(dx1x0) Ao (dxo).
Xp—1€AK-1 Xg€A

where Ay, ..., Ay € B(E). We denote by Ay the probability measure
induced by P[X}. € ].
We now recall the definition of an invariant measure.

Definition 2.1 (Invariant measure). A measure y : B(E) — [0,1]
is said to be invariant for the system (1) if, for all A € B(E), it holds
that

/ A = (A,

Assumption 1 (Existence and uniqueness). System (1) admits a
unique invariant measure, denoted by p.

Assumption 2 (Ergodicity). System (1) converges in total varia-
tion to the invariant measure, that is

Jim TV, ) =o0.

Assumptions 1 and 2 are standard in the literature [8, 9], and
commonly met in many cases of practical interest. We leave the
extension to systems that do not satisfy Assumption 1 and Assump-
tion 2 as future work.

The output sequence yo, yi, . .. of system (1) is a realisation of
the output stochastic process, denoted by (YI:1 ")k>0- Again, we omit
Ao when it is clear from the context. The output process is defined
as

Y, =h(Xg) €{1,...,n}.
Observe that, although the continuous process (Xj )¢ is a Markov
process, the discrete process (Y )¢ is generally non-Markovian
[3, 21], that is

P[Yer1 = g1 Yk = ik, .., Yo = io] # P[Viyr = gy | Y = i ]

We invite the reader to see Figure 1 for an illustrative example of
this phenomenon.

2.2 Problem statement

In this paper, given an infinitely long output sequence {y; };, we aim
at approximating the continuous Markov process (X )g>o With a
discrete, {-memory Markov process, denoted by ({Q’,k)kz& That is,
we construct the discrete process (?l,k)kzo such that

P[Yg’k = ik|Y€,k71 =lig_1,--., Y0 = io]
=P[Ypk = iklYeh—1 = lk—1:- - Yoo = ik—e]-

In the literature, £~-memory Markov processes are also sometimes
referred to as Markov chains with memory £ (see e.g. [27]), and
constitute Markov chains in a lifted state space.

More precisely, we show that the discrete process (Y, x )i in-
duces a probability measure A, j on the state space E, and we address
the following problem.
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Problem 1. Given an infinitely long output sequence {y;}; of
system (1), construct an £-memory Markov process (Y x )k >0 and
compute the distance

TV(AIO j'1{’,/()5 (3)

where /{[’k is the probability measure on the state space E induced
by (Y i )k>o-

Remark 1. In practice, as we employ ergodicity of system (1)
(see Assumption 2), the given output sequence {y;}; has to be suffi-
ciently - not infinitely — long, so that the Markov process (Xj )k >0
has almost reached its steady state (in the sense that TV (A, ) < ¢,
for small ¢). See also Remark 4. [ ]

Observe that, through /if’ rand TV(Ag, /i[’ ), one can derive bounds
on probabilistic properties of system (1) (e.g., bounds on the prob-
ability of the state X landing on some unsafe set, in some finite
horizon). Our work is motivated by two distinct settings, which
nevertheless present many mathematical similarities:

Case 1 - Partially observable systems. We would like to an-
alyze properties of the underlying process (X )x>(, but can only
observe (samples yy of) the output process (Yi)x 0. Thus, through
observing (Y;)x>o, we construct a discrete, f-memory Markov
approximation (?{,k)k20~ Including memory is done precisely to
capture non-Markovian effects inherent to the observed process
(Yi)k>o0- As it will become evident both from the theory and the
numerical examples, in certain cases, increasing memory ¢ leads to
tighter approximations. Overall, this is related to earlier works on
Markov state models [18, 20, 21].

Case 2 - Finite abstractions. System (1) is fully observable
(disregard the output process), but too complex to derive analytic
results on its properties. Akin to standard abstraction methods, we
discretize the state space to derive a finite partition {A;};. In con-
trast, through our method, we start from a coarser partition {A;};,
and, towards tighter approximations, the refinement is performed
through increasing the abstraction’s memory ¢; hence, the title
of the paper. Alternatively, while standard abstraction methods,
towards approximating (Xi )¢, through partitioning the state
space, implicitly approximate the non-Markovian process (Y )r>o
by a (1-memory) Markov process, we approximate (Y )i >0 by an
f-memory Markov process (f/g,k) k>0, aiming precisely at captur-
ing the non-Markov effects introduced exactly by partitioning the
state-space in the first place

Approach. To address Problem 1, we rely on the transfer operator
of the stochastic system and its spectral properties. In particular,
we define a lifted system that describes the evolution of a ¢-long
sliding window of states (xg, . . ., Xg4o_1). We then construct a mem-
ory Markov process so that the transition matrix of the latter is a
Galerkin approximation of the transfer operator of the lifted system.
We derive two upper bounds on the total variation (3). The first one
consists of accumulation of projection errors, and increases with
k. The second one is a consequence of the convergence of both
models to the invariant measure, and decreases with k. For any
memory £, the combination of these two bounds therefore provides
a computable upper bound on the total distance.
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3 PRELIMINARIES

As explained in Section 2, our results rely on the theory of transfer
operators, and their Galerkin approximation. This section formally
introduces these concepts.

3.1 Probability theory

We recall that p denotes the unique invariant measure of system (1).
We first give a definition of p-weighted probability density functions.

Definition 3.1 (u-weighted probability density function [20]). A
function v : E — R is called a p-weighted probability density func-

tion if it is such that
[ stoutan =1,
x€E

and v(x) > 0 y-almost surely.

The following remark gives an interpretation of y-weighted prob-
ability density functions with respect to usual probability density
functions.

Remark 2. Let o : B(E) — [0, 1] be any probability measure on
the state space. If there exists v : E — [0, 1] such that

o(A) = f oot

for all A € B(E) and if the latter is uniquely defined up to y-null
sets, then v is the so-called Radon-Nikodym derivative of o with
respect to the invariant measure, and is denoted by do/dy (see e.g.
[25] for more details). By Definition 3.1, v is also a y-weighted prob-
ability density function. Note that, if it exists, the Radon-Nikodym
derivative of ¢ with respect to the Lebesgue measure, denoted by
p, is known as the usual probability density function, and satisfies

o(A) = / _
for all A € B(E). n

In this paper, since we assume the existence of a unique invariant
distribution, we only work with p-weighted probability density
functions and simply refer to them as probability density functions.

Remark 3. Since pu(A) = fxeAy(dx), the probability density
function corresponding to the invariant measure is the constant
function 1(x) = 1 for all x € E. n

Finally, consider two p-weighted probability density functions
v1 and vy that respectively correspond to two probability measures
A1 and Ay, then, the identity

1 1
TV(A1,A2) = §||01 —v2ll1 = 5/

X

. [1(x) = v2(x)|p(dx)
holds [8].

3.2 Transfer operator

The transfer operator corresponding to a transition kernel 7 is de-
fined as follows (see e.g. [21, 24]).

Definition 3.2 (Transfer operator). Given a state space E and a
kernel , the transfer operator is the operator T : L?(y) — L?(u)
such that

/ r(Alx)o(x)pu(dx) = / (To) (y)u(dy)
x€E yeA
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for all functions v € L2(y) and all sets A € B(E).

If the measure 7(-|x) admits a Radon-Nikodym derivative ¢ (-|x) :=
dr(+|x)/dp for all x € E, then the transfer operator is explicitly de-
fined as

(To)(y) = /EE t(ylx)o(x)pu(dx) ©

for all functions v € L2 ().

Intuitively, the operator T propagates square-integrable func-
tions of the state space in time, including probability density func-
tions in L% (). Let vg = dAg/du € L?(y) be the probability density
of Ay (the initial measure of System 1) then one can verify that

A(A) = PX; € A] = / (1o (). )

x€
We therefore write oy := TXvy in the rest of this paper. Note that v
is the y-weighted probability density function of the measure Ay.
Furthermore, as pointed out in [21], since 1 is the invariant density
(see Remark 3), T satisfies T1 = 1, and 1 is the only fixed point of
T. Finally we define the spectrum of T.

Definition 3.3 (Transfer operator spectrum). Let e € Cand u €
L2(p). If
Tu = eu,
then e and u form a pair of eigenvalue and eigenfunction of T. All
such pairs form the spectrum of T. Moreover, a set of eigenfunctions
{u1,...,um} is said to be orthonormal if
(uf, uﬁ) =0

foralli,j=1,...,msuchthati # j, and

O, — , €0\
”ul’”Z = <ui’ui> =1

foralli=1,...,m, where (., -) is the inner product defined as
(o= [ Fegtouan. ©
x€E

Note that the invariant density 1 is an eigenfunction of T with
eigenvalue 1, since T1 = 1.

3.3 Galerkin methods

In this work, inspired by works on Markov state models [18, 20, 21],
we use a Galerkin method to approximate a lifted transfer operator.

Definition 3.4 (Projection operator). Let (H, (-,-)) be a Hilbert
space, and let || - || be its associated norm. For a closed subspace
D c H, the surjective map Q : H — D is an orthogonal projection

onto D if 0? = Q and SUP fe | f|=1 [1Ofll = 1.

Consider (L%(p), {-,-)), the Hilbert space of square-integrable
functions, where (-, -) is the usual dot product (6), together with a
closed subspace D ¢ L?(y) generated by a finite set of functions,
that is

D = span({¢1,...,¢$n})
for n functions ¢; € L?(u), and let Q : L?(yr) — D be the unique
projection operator defined above. Then the operator

P:=QTQ:D—D

is called the Galerkin approximation of T. Since P : D — D is a
finite-dimensional operator, it admits a matrix representation P €
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R™*" defined as follows. For all f € D, let f € R" be the vector
representation of f in the basis {¢;};c[n], that is

n
f=) figi
i=1
Then, if f* = Pf with vector representation f’, it holds that
f' =P'f.

In the following, we use boldface symbols to denote vector/matrix
representations of functions/operators.

4 MEMORY-DEPENDENT ABSTRACTIONS

In this section, we show how to approximate the true densities v
of system (1) with the densities o, obtained from an £-memory
Markov abstraction, itself derived by a Galerkin approximation
of the transfer operator of a lifted system. Finally, we prove the
correctness of our approach by upper bounding TV (A, j.[’k)A

4.1 Overall method

Our approach to approximate vy is summarized in Algorithm 1. We
recall that, in what follows, y4 denotes the indicator function of
set A. Also, we consider transition matrices of £~-memory Markov
models, denoted Py € R"(X”(, where each row and column of such a
matrix is labeled by £-long sequences of outputs ipi . . . ip—1, where
ij € {1,...,n}. Moreover, the matrix is such that

it.de-1 #F 1o Je-1 = Peigeiporijrenje = 0

Indeed the state i .. .i;_; of the f~-memory Markov model repre-
sents the event Yy = iy, ..., Y—1 = ip—1, and the state ji, ..., jr rep-
resents the event Y; = ji,..., Yy = jy. Thus naturally there can be
no transition from iy, ..., ip—1 to j1,...,jeif i1 ... ip—1 # j1... je—1.
As a consequence, the matrix P, contains only n‘*! possibly non-
zero entries. Each considered vector v/ € R™ also has entries
labeled with iy . .. ig—1, such that the matrix-vector product Povl is
well defined.
Algorithm 1 proceeds as follows:

1. An £-memory Markov chain is built, based on the steady-
state dynamics (the dynamics when on the invariant mea-
sure). Each entry (P¢)j,...i,_,.i,...i, contains the probability to
go to the blocks A;, knowing the ¢ last blocks were A;, ...,
Ap—1. It directly follows from (7) that this matrix is stochastic.

2. The initial probability vector on the n’ output sequences
ig ... ip—1 is computed. Again, it follows from (8) that this
vector sums to 1.

3. This probability is propagated k — £ + 1 times with the ¢-
Markov chain transition matrix P;. The vector now contains
entries labeled ix._yy1 . .. i; containing the approximated out-
put joint probability from time k — £ + 1 to time k.

4. The joint probability is marginalized so that the vector (v, x )i
contains the approximated probabilities at time k, from which
one may compute 9y k.

The returned function in Algorithm 1 is a piecewise constant p-
weighted probability density function, denoted o .. It is such that

Tor(A) = / ol ~ / () = A
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Algorithm 1 Compute ., the £-memory approximation of vy

1: Compute the £-memory transition probabilities of the output
process (Y: k>0 of system (1), initialized at the invariant mea-
sure

(Po)iy..iporiis.oie =P [YY = 0¥} =i0....Y} =iea] . (7)

2: Compute the initial £-long joint probabilities
ig.oipy =P [YOAO = ip, . ~~,Yf_°1 = it’—l] (®)

3: Propagate the [-long joint probabilities with the £-memory
Markov model

.
<t _ k—{+1 =L
Vi—er1 = (Pz ) Yo ©)

4: Marginalize

n n

- -

(V[’k)ik = Z Z (Vk+t’—1)ik—f+1~~ik—1ik
ik—pe1=1  Qg-1=1

n (‘N’t’,k)ik

return o, (x) = 20, —F——
’ FERIYf = i

XAy, (Xp).-

forall A € B(E), where o, = T¥uy is the true y-weighted probability
density function at time k, and ~ denotes that we use j.[’k (or 9y 1)
as an approximation of Ay (resp. vg). This will be further explained
in the next subsections.

Remark 4. In practice, computing the invariant output proba-
bilities (7) can be done in at least two ways. Either one samples a
sufficiently large number of (£ + 1)-long output traces initialized at
the invariant distribution. Or, employing ergodicity and Birkhoff’s
theorem (see e.g. [25]), one samples a very large output trace ini-
tialized at any initial distribution. [ ]

In the rest of this section, we introduce the mathematical for-
malism surrounding the construction of the abstraction.

4.2 Lifted system

Our approach is based on the study of the lifted state process
(Xk> - - -» Xgrr—1)k >0 and output process (Y, . . ., Yirp—1)k>0. In the
following subsections, we show that the abstraction constructed in
Algorithm 1 is a Galerkin approximation of the transfer operator
of this lifted process. In this section, we formally define it along
with its invariant distribution. We then conclude by making the
link with the original system 1.
The lifted system is defined as

(Xka1s -+ o5 Xgap) ~ T[('|xk’ cees X - 1)
(X0, - Xe-1) ~ A, (10)
Yk - - > Ykwe—1) = (h(x), - - o h(Xgrp-1)).

In the definition above, for all Ay, . .
E, the lifted kernel 7f is defined as

LAp € B(E) andallxo,. L, Xe—1 €

' (Ay X+ X Aglxo, ..., xe-1)
_ T(A[lX[_l) ifx1 € Aq,...,xp—1 € Ap—1, (11)
0 otherwise.
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For all sets Ay, ..., Ar—1 € B(E), the initial measure Ag is defined
as

).g(A() X XA[_l)

- / / r(derrfxe—2) ... o(dxr o) Ao (do).
X0€Ao Xe-1€Ap_q

Owing to Assumption 1, the lifted system admits a unique in-
variant measure pi’ (see e.g. [8, Equation (4.1)]), defined as

pE(Ag X -+ X Ag_y)

- / / 2(dxe_1lxe—2) ... (s o) (dxo).
Xo€Ag Xp-1€Ap-1

Lifted system (10) admits a transfer operator T;, according to
Definition 3.2. The initial measure Ag admits a pf-weighted prob-

(12)

ability density function, denoted vg(xo, ...,X¢—1), which is a joint
probability density function on the first ¢ states. These joint den-
sities are propagated with the lifted transfer operator, and, for all
k>¢-1,

k—e+1
T 00) (Xk—prts - - %K)

is the joint probability density on the states xj_p.q to xg. The

corresponding measure is denoted by /1]{;_ o1

t
Up_p41 (k—pr1s - XK) = (

Remark 5 (Notations). Study of joint measures and joint proba-
bility density functions are at the center of this work. We therefore
draw the reader’s attention on the fact that, all along the paper, we
note joint measure (resp. u‘-weighted density) on EY with a super-
script A? (resp. v’), whereas measures (resp. y-weighted densities)
on E are without any superscript A (resp. v). In contrast, super-
scripts on operators, e.g., Pk or TF , denote powers (or recursive
applications of the operator). [ ]

4.3 Abstraction

In this section, we show that the transition matrix of the £-memory
Markov chain constructed in Algorithm 1 corresponds to a Galerkin
approximation of the transfer operator T;. In particular, we specify
the basis of functions with which we project T7, and re-interpret
Algorithm 1 in terms of functions and operators. Doing this will
allow us to derive bounds in Section 5 on the total variation dis-
tance between vy and the approximated function o, given by
Algorithm 1.

Given the output partition Ay, ..., A, on the original state space
E (as defined in (2)), we consider the subspace of piecewise constant
functions DY, ¢ L2(p’), defined as

Dy, = span ({I//il"'if}il,.“,ife[n])’
where
XA, (x1) - xa,, (xe)
P[X} € Aj,... X} € Ay

Viy.ig (X1, ., xp) = . (13)
where we recall that y4 denotes the indicator function of A. DY, is
therefore a set of piecewise constant functions on E’.

In this work, we make the assumption that the denominator in
(13) is positive (as formally stated below in Assumption 3). We claim
that this assumption is not restrictive for two main reasons. First, it
holds in many practical cases such as unbounded noise. Second, it
also suffices to assume that P[Xf €A, .. ,,Xf,’ € A;,] = 0 implies
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]P)[Xf0 € A,.. .,X;O € Aj,] = 0. That is, zero measure steady
state correspond to zero measure initial conditions. For the sake of

brevity and simplicity, we leave this extension for further work.

Assumption 3. The system (1) is such that its invariant measure
1 satisfies

P[X] € Ajy,.... XY € Aj,] >0 (14)

for all sequence A;, ..., A;, of blocks of the output partition.

The following proposition shows that Py, the matrix built in
Algorithm 1, is the matrix representation of the Galerkin approxi-
mation of Ty. For the sake of readability, all proofs can be found in
Appendix A.

PROPOSITION 4.1. Let Qp : L2(u*) — DY be a projection operator
as defined in Definition 3.4, and let
Pe = QeTy Qe
be the Galerkin approximation of Ty on D},. Then it holds that
Petiy..ipy

C 15
= Z PV =ifY) =io,.... Y0 | =ie—1] Vi, (15)
i=1

foralliy,...,ip—1 € [n]. Therefore Py, as defined in (7), is the matrix
representation of Pp.

We can therefore re-interpret Algorithm 1 through the lens of
transfer operators and their Galerkin approximations. Figure 3
summarizes this interpretation. First, we compute Py, the Galerkin
approximation of Ty, whose matrix representation is P,, as com-
puted in (7) in Algorithm 1. Second, we compute the piecewise
approximate initial density

04 (x0, - - ., Xp—1) ~ T4 (x0, - - ., Xp—1)
=(Qr 05+ - s Xp—1),
(Qevf) (x xe-1)

whose vector representation is \73, computed in (8) in Algorithm 1.
Third, we approximate the joint density from xp_,,; to x; with

¢ ~¢
O o1 Fkmpats -+ 5 X)) B 0 _py (XK pi1s -5 Xg) 16)
k—t+1 ¢
= (PE~100) (St 0.
Since Py = Q¢T;Qy, it holds that
k—t+1,¢ _ pk—t+1 ¢ k—t+1~¢
P, + vy = P, + (Qevy) =Py gt
. ~f PO 4
and therefore that the vector representation of 5, ,  isv;_, . as
computed in (9). Finally, we marginalize 5£_ o1 Xk—pr1 -5 Xg) to

get 9y i (xy), whose vector representation in Dy, is V.

5 TOTAL VARIATION GUARANTEES

In this section we upper bound TV (v, 9, ), the total variation
between the true density vy and o, , the approximated density
given by Algorithm 1, thereby providing formal guarantees on the
correctness of our approach. To derive our bounds, we require
certain assumptions on the spectrum of the lifted transfer operator
Ty, which are equivalent to those considered in [21] and formally
defined in Assumption 4.
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Assumption 4. The lifted transfer operator T, admits m real eigen-

values e/ 1,...,eqm such that 1 = epo > ep1 > ...epm, together
with an orthonormal set of eigenfunctions 1 = ne uf, el ufn (see

Definition 3.3). Moreover, for some r; < |eg,m|, all remaining eigen-
values e;; € C for i > m are such that |e;;| < r,. Finally let
I, : L2(uf) — L2(u’) be the operator defined by

I f! = i(f[,uf)uf. (17)
i=1

We assume that IT,T; = II,T;II,.

Remark 6. Assumption 4 is related but not the same as Assump-
tion 1 and Assumption 2. As discussed in [21], sufficient conditions
for Assumption 4 to hold are reversibility and sufficient ergodicity
(such as defined in [21, Remark 2.1]), which are stronger assump-
tions than Assumption 1 and Assumption 4. As stated in [11, 21],
reversibility and sufficient ergodicity are natural and satisfied for a
large class of dynamical systems. n

Similarly as in [21], our bound relies on the quantity

8= max [|Qeul —ufll2, (18)
i=1,...m
which quantifies the maximal projection error on the spectrum.

Our total variation bound consists of two components. The first
component increases with k and arises from the cumulative projec-
tion errors, becoming more conservative as k grows. On the other
hand, the second component is characterized by the convergence
of both the true density and the approximated one towards the in-
variant density 1, and decreases with k. Unlike the first component,
it is initially conservative but tightens progressively over time. The
increasing and decreasing components are studied respectively in
Theorem 5.1 and Theorem 5.2 for the joint densities, and the final
bound is given for the marginalized densities in Corollary 5.3. We
stress that both Theorem 5.1 and Theorem 5.2 bound the same quan-
tity. However, these bounds are complementary, as one is producing
better bounds for small k, while the other for large k.

THEOREM 5.1 (INCREASING). For any memory € > 1, horizonk > ¢
and initial joint density Ug € L2(yh), let Ai—[ﬂ and Ai—[ﬂ be the
Jjoint measures respectively defined by

¢ _ k—t+1 ¢
Vk—er1 = I Vo>
) _ pk—t+1_ ¢
Uk—er1 = Pr o>

and similarly for Ai_[ and ii_[. Then, if Assumption 4 is satisfied, it
holds that

TV(A

3 4 ’a
k—t+1° )'k—{’+1) < TV(Ak—[’ )’k—t’)

1 _
+5 (meg18¢ +re) 65,1 loflla,
where Op is defined in (18).

THEOREM 5.2 (DECREASING). For any memory ¢ > 1, horizon k >
C e 1 . . 2
¢ and initial joint density ug e L2(ub), let1£7[+1 andl£7[+1 be the
Jjoint measures respectively defined as in (19). Then, if Assumption 4
is satisfied, it holds that

TV(A

1t k—t+1y,,.¢
k—t+1 Me—per) S€p1 ol
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Yo Yo 9y = Qevg o1 =By g Utk
Step a. Step b. Step c. Step d.

Figure 3: Summary of the method described in Algorithm 1, from left to right. Step a) We consider the lifted process defined
in (10). Step b) We project the xo-to-x,_; joint distribution on a finitely generated space D/,. Step c) We propagate it with the
Galerkin approximation P, to get the approximate x;_,,;-to-x; joint distribution. Step d) We marginalize it to retrieve the

approximate density at xj.

Note that the following corollary is a result on the final marginal-
ized densities, and not the joint densities such as in Theorem 5.1
and Theorem 5.2.

COROLLARY 5.3. For any memory € > 1, horizon k > ¢ and initial
Jjoint density vg € L2(u"), let

1— ek—t’+1

4,1 ¢
—— —llogllz,

Winc = TV(A(,/ig) + (mem& + r[)
1—ep1

ESVa k—t+1y,.¢
TViee = €r1 * ||UO||25

where 8¢ is defined in (18). Also, let Ay and /i[’k be the measures
respectively defined by

O = TkZJ(),
gk output of Algorithm 1.

Then it holds that
TV (A Ag ) < min {TVine, TV gec} -

Remark 7. We should stress that, although we rely on similar
tools, our bounds differ from those of [21], even in the memoryless
case (¢ = 1). Indeed the authors of [21] consider the operator norm

101TF Q1 = (Q1 1) |12

as the error, which makes the assumption that the ground truth
probability is v = Q1T1kQ100- The setting of [21] therefore does
not correspond to the setting of this paper, as we consider that the
ground truth is vy = le vg. Taking into account this continuous
ground truth makes our error larger, and consists in a supplemen-
tary technical challenge than a simple extension of [21]. [ ]

6 NUMERICAL EXPERIMENTS

In this section we motivate the method described in Section 4.1 for
the two cases described in Section 2. In both cases, we consider the
following dynamical system.

Example 6.1. Consider the 2-dimensional linear system of the
form
Xk+1 = Axk + Wi,
wi ~ N (myy, Z),
x0 ~ N(mo, Zp),
with

0 098 (20)

and m,, = (0,0)7,2,, = 0.07I,,mp = (=0.4,—-0.4)T,% = 0.3,
with I the 2-dimensional identity matrix. Since A is stable, this sys-

tem converges in total variation to a unique invariant distribution
pg= N(m,l, ZF), where my = (0,0)T and

0.347856
1.76768 |

A (0.995 0.005)

7.36896

™ (0.347856 @

The latter was computed by solving the Riccati equation %, =
AS,AT +3,, with the MatrixEquations. j1 package.! m

In the experiments below, the matrices Py have been computed
with one very long trajectory {yi};—;__1¢s (see Remark 4), and
the initial vectors vf; have been computed with 10°/¢ samples of

length ¢. More details about how TV (A, i{’k) has been computed
in practice can be found in Appendix B.

Case 1 - Partially observable systems. In this case, the sys-
tem is only partially observable, and we only have access to the
outputs. The state space is discretized as follows: each dimension is
partitioned into (—oo, —1), (1, ), and the interval [—-1, 1] is further
partitioned into p subintervals of equal size. Thus the partition con-
tains n = (p+2)2 cells. In this case, we fix p = 3, leading to a 25 cells
partition, and we approximate the discrete process ( Yy )i > with the
process (f/[,k) as defined in Section 4, for £ = 1, 2, 3. More precisely,
we compute ;. with Algorithm 1, and compute TV (4, i(,k) for
k € {0,...,100}.

The results are in Figure 4. One can see that increasing memory
reduces TV(Ag, il,k) for most horizons k, thereby increasing the
approximation quality. Moreover, one can see that the observed

1See https://github.com/andreasvarga/MatrixEquations.jl.
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bounds follow the theoretical setting of Theorem 5.1 and Theo-
rem 5.2, as the bounds seem to follow two regimes, first increasing
and then decreasing.

n =25 - memory £=1
n — 25 - memory { =2
25 - memory 3

02

TV, A )

0.0 -

L L L L L

0 25 50 75 100
Horizon k

Figure 4: Approximation quality of /~-memory Markov mod-
els for partially observable systems. Introducing memory
improves approximation quality.

Case 2 - Finite abstractions. In this case, the state process of
the system is available, but the state space is discretized in order to
abstract the system. We consider two comparable settings:

(1) (Classical Markov chain) The state space is discretized in
n = 729 blocks in the same fashion as above (with p =
25). Memory ¢ = 1 is considered, leading to 7292 = 531441
transition probabilities (P1);, i, with iy,i2 € {1,...,729}.
(2) (2-memory Markov model) The state space is discretized in
the same way (uniformly in the square [-1,1]?) in n = 81
blocks (p = 7). Memory ¢ = 2 is considered, also lead-
ing to 813 = 531441 transition probabilities (P);, i, i,i; With
i1, i,i3 € {1,...,81}.
The two settings lead to discrete objects of the same size, since one
only needs to store 531441 values to save them. For these two set-
tings, we compute 9 ;. with Algorithm 1, and compute TV (4, /i[)k)
for k € {0,...,100}. The results are in Figure 5. We observe that,
even though the initial partition is coarser, larger memory leads to
a better approximation, showcasing the fact that memory allows to
construct smarter abstractions than classical approaches.

7 CONCLUSIONS AND FURTHER WORK

In summary, in this work, we have introduced memory-dependent
abstractions for stochastic systems. Our formalism, based on Galerkin
approximations of lifted transfer operators, provides a theoretical
framework for studying these abstractions. We have also upper
bounded the approximation error, that we define as the total varia-
tion distance between the true distribution on the state space and
the one of the memory-dependent approximation. We showed that
this error consists of two regimes, one increasing (because of the
accumulation of projection errors), and one decreasing (thanks to er-
godicity). Through numerical experiments, we have demonstrated
that increasing memory reduces the approximation error in vari-
ous scenarios, highlighting how memory-dependent abstractions
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0.3

n=T29 - memory (- 1
n =8l - memory (=2

02 r

0.0

L L L L L

0 25 50 75 100
Horizon k

Figure 5: Approximation quality of memory-dependent ab-
stractions of an observable system. One can see that, for the
same number of transition probabilities (n‘*! = 531441 in
both cases), starting from a coarser partition and increasing
the memory leads to better approximations.

effectively address the issue of non-Markovianity of the discrete
process induced by the discretization.

There are many interesting directions for future work. First,
our numerical experiments suggest that for partially observable
systems with a fixed partition, increasing memory allows to im-
prove the approximation quality. Identifying the class of systems
for which increasing memory guarantees a better approximation
is an interesting direction for further research. Second, we plan to
extend this work to the data-driven setting, and exploring aspects
such as sample complexity as a function of the number of blocks
and memory. Third, while our current bounds are valid, they suffer
from conservatism and often exceed 1, the maximal value of any
total variation distance. Therefore, we aim to investigate alternative
approaches that directly rely on intermediate results on the 1-norm,
rather than relying on 2-norm results as we do here.
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A PROOFS

Our results rely on the Holder’s inequality, that we recall here-
inafter.

LEMMA A.1 (HOLDER’S INEQUALITY). Given a measurable space
(E, F), together with a measure y1, and p,q € [0,+o0] such that

Banse et al.

1/p+1/q=1.Then, forall f : E — R andg: E — R, it holds that

Ifglln < 1If1pllgllg-

A direct consequence of Holder’s inequality is that, for all func-
tion f € L%(p), it holds that

Il < 111l

Our proofs also rely on the following lemma, that holds under
Assumption 4.

LemmA A.2 ([21, LEMMA 2.2]). For all initial densities Ué € L2(ub),
andk > ¢ — 1 it holds that

k—t+1 ¢ k—t+1 ¢ k—t+1,,.¢
”P[ * [ 12 < I(TeQe) * Uy — 12 < €r1 * ”U()HZ-

Finally, we will also need the fact that all transfer operator has a
unitary norm.

LEMMA A.3. Given a state space E and a kernel 7, the transfer
operator T : L*(y) — L?(p) is such that ||T||; = 1.

Proor. We first recall the operator norm

Tl = sup TSl
fel2(w:liflh<t

First we prove that ||T||; > 1. Take any nonnegative function
f+E = Ryxp such that || f||; = 1. Then it holds that

IT£lls = / TN,

By definition of the transfer operator, if f is nonnegative, then T f
is also nonnegative. Therefore,

ITfll = / (TP

- / Fou(d)
x€E

=1,

where the first equality holds by (4), and the second by assumption.
By definition of sup, this proves the first claim.

Now we prove that ||T||; < 1. Any function f : E — R can be
written as f = f* — f~, where f* : E > Rypand f~ : E - Ry
are respectively the positive and negative parts of f. Therefore, for


https://arxiv.org/abs/2307.02884
https://arxiv.org/abs/2307.02884
https://api.semanticscholar.org/CorpusID:51990013
https://api.semanticscholar.org/CorpusID:51990013
https://doi.org/10.1017/cbo9780511809187
https://doi.org/10.1017/cbo9780511809187
https://doi.org/10.1145/581339.581406
https://doi.org/10.1007/s00440-011-0373-4
https://doi.org/10.1109/tac.2015.2398883
https://doi.org/10.1016/j.automatica.2022.110617
https://doi.org/10.1016/j.automatica.2022.110617
https://doi.org/10.1016/j.nahs.2020.100880
https://doi.org/10.1016/j.nahs.2020.100880
https://doi.org/10.1017/cbo9780511626302
https://doi.org/10.1109/ojcsys.2023.3294829
https://doi.org/10.1109/tase.2021.3118737
https://doi.org/10.1109/tase.2021.3118737
https://doi.org/10.1063/1.3565032
https://doi.org/10.1137/090764049
https://doi.org/10.1016/j.sysconle.2014.08.005
https://doi.org/10.1016/j.sysconle.2014.08.005
https://doi.org/10.1109/cdc.2015.7403294
https://doi.org/10.1109/cdc.2015.7403294
https://doi.org/10.1007/978-3-642-56589-2_9
https://doi.org/10.1007/978-0-387-72206-1
https://doi.org/10.1007/978-0-387-72206-1
https://doi.org/10.1007/978-3-031-75778-5_7
https://doi.org/10.1007/978-3-031-75778-5_7
https://doi.org/10.1016/j.amc.2017.01.030
https://doi.org/10.1109/TAC.2010.2042005

Memory-dependent abstractions of stochastic systems
all functions f such that ||f]|; < 1, it holds that
ITflh = / NI @ad)
- / GOETICITER
- / ) = (1)l
. / 0 + () (ul)
- / (TF) (x)u(dx) + / (Tf) () ()
x€E x€E
- [ @ [ eoua
x€E x€E
= [ rr@ e eouta)
- / P () = £ (o) l(dx)
x€E
- / 1) ()
x€E

<1,

which concludes the proof. O

A.1 Proof of Proposition 4.1

x4y, (x1) - xa,;, (xr)
Giy..ip (X1, ! L

..,xK) =

\/P[X{‘ €Ay, X! € Ayl

The orthogonality of the basis follows, since for all iy, . .., i¢ € [n],
<¢7i1<-~ie’ ¢i1--<ie>
./xlEA,-l cee ./xgEAi(, T(ng|X[_1) . r(dx1|xo),u(dxo)

P[XI € Aiy,.... X} € Aj,]

=1,

andforalliy...i¢ # ji...je, {(i...ip» Pjy...jo) = 0. As aconsequence,
by definition of Qy, it holds that

Qo' = > (0 iri )iy (22)

iy g

for all o € L2(4f).

Now, by definition of Py and by (22), for all iy, ..., i,—1 € [n],
Petpig,..ipy

= QeTeQeYiy, g

= Q¢ (Tevig,....ipr)

= Z TeYi,csie—1> Pirsecnsie ) Ptseene (23)
Jiseje€ln]

Z <Tt’ (XA,-O -~~)(A,-H),)(zcx,-1 S XA >1//~ A

- n n Jis-ssjer

Jirejelnl P[XO EAio""’X[_l EAi[_l]
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By (11), the dot product above equals zero if j; ... je—1 # i1 ... i1,
and, otherwise, is equal to

/ / #(Aj e (o1 [xe—2) ... (doey xo) (o)
X0 €Aj, Xe-1€Ai, 4
=P[X}) € Ai..... X} € Aj,].

Therefore, inserting this in (23) yields

P[X) € Ai..... X} € Aj,]
G PIX) € Ay, X0 € A, ]

Jise-sdie>

Pejo,..joor = - Z

which is (15) by definition of the output process, and the proof is
completed. O

A.2 Proof of Theorem 5.1
First, by the triangular inequality, it holds that

¢ e ¢ -t ¢ i
TV Aemet) S TV gy Aemeet) + TV (Miempsts e piy)s

_[ ~
¢ ¢ ;

where Ak—t{+1’ Ag—e1 and A, _, | are respectively the measures
corresponding to

I3 _ rk—t+1 ¢

Vg1 =Tt 00

=t _mopk—t,t

Uk—ee1 = TePy 7 0p,
and

=0 _ pk—t+1,¢

Oeenn =P¢ 00

First, we show that

_{7 ~
TV(AL Memest) S TVOY_p A_y)-

k—t+1°
¢ — Tl =t _ Tt
Itholds thato,_,, , = Trv_,, and that oy _, , = T;0; _,. Therefore,
by definition of the total variation distance and by Lemma A.3,
¢ ¢ _1 ¢ ~p
TV (A Ae—es1) = 3 HTf (Uk—t’ - Uk—f)Hl
1 ¢ -
< S ITellallog_p = 3 lla

Lo e ~p
= Envk_[ - vk_[”l

_ 4 YA
=TV AL ).

Second, we show that
V(L A )< l(me Se+reek T llobll
k=t+1> Ap_pyy) S S Me100 T Te)€pq 1T l2-

—¢ _ sl ~p _pt _ ~p
Itholds thatv, _, = Tedy._ and that Op_ppy = Pety_, = QeTyty _,.

Therefore, by definition of the total variation distance, and by
Holder’s inequality, it holds that

— - 1 .
TV-est M) = 51T = QT _ Iy

IA

1 -
ST - QeT)o;_,l2.

Now we follow a similar reasoning as in the proof of [21, Theo-
rem 3.1]. Let Qj‘ = Id — Qp, where Id the identity operator. Since
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Q; 1 = 0, it holds that
I(Te = QeT)oy_,ll2 = 1Q7 Tedy._,lla
= ||Q;TeQ[<TeQz>k*"5"||z
= 10F T Qe ((TeQe)* 55 — D)2

IIQ?TfoIIzII(Tfo)k[ 1.
Following [21, Eq. (63)], the first factor is such that

107 TeQellz < meg,16e,
and, by Lemma A.2, the second is such that

(TeQe)* 5

which concludes the proof. O

-t
=12 < 3[1 ||U()||25

A.3 Proof of Theorem 5.2
By the triangular inequality, it holds that

TV ) < TV by + TV (L, AL

k—£+1° k +1 k—e+1 H k— f+1)

where yf is the lifted invariant measure as defined in (12). By
Holder’s inequality and by Assumption 4, it holds that

1 k—e+1), ¢
TV, 1) < §||Uk_g+1 1|2 < 56“ Hiogl2-

By Lemma A.2, we can follow the exact same reasoning as above
to get

TV(/J Ak [.,.1) = _6{1“1“00”

which concludes the proof. O

A.4 Proof of Corollary 5.3
First, by Theorem 5.1, it holds that

VG, AL

e ee)
k—6+1 Tk—t+1

(meg18¢ +1e) 621 llog I

B k-t 1
STVOG A + ). 3
i=0

k-t
. 1 .
= TV(A[,A({;) + E (me[’15g + r[) (Z 6;)1) ”1)6”2

i=0
k £+1
050y, 1
=TV(45, A) + 3 (meg18¢ +1¢) = llog 2.
Now it remains to show that
V(A Aege) S TVAL AL, ).

By definition of the total variation distance,

TV(Ak +1 k7[+1)

= sup
Ak-p415--- A €B(E)

M per (Akmpr X -+ X Ag) ‘
— gy Akmpyr X+ X Ag)
(Ex---XEXAg)

k £+1
= sup
AreB(E) k(+1(EX - X E X Ag)
= sup Ak (Agp) = Apk(Ap)l
Ax€B(E)
= TV(Ak’ Al’,k))

and the proof is completed. O
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B DETAILS ABOUT THE NUMERICAL
EXPERIMENTS

In order to compute TV(/‘{k,/{[}k) from Example 6.1 and 9, we
proceed as follows. First, we know that

Ak = N(my, Z),
where mj. and X satisfy the recurrence
Mpy1 = Amy,  Zpp = ASLAT +3,.
The p-weighted probability density function v € L?(p) is given by
d _ dAg dAT _ dd ( du )‘1

kT4 T aar dg v \ar
where A" is the Lebesgue measure. Therefore, vy is defined as
x
o () = IN iz € )’
IN(mys,) (%)

where fj/(m5) is the usual probability density function of Gaussian
distributions with respect to the Lebesgue measure. Finally, we
compute the total variation with a Monte-Carlo approximation,
that is

VO = 3 [ 1) =504

104

—Z log (xi) = e (i),

where x; are 1.i.d. samples from the invariant measure.
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