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Abstract
In intelligent manufacturing, it is important to schedule orders from customers efficiently. Make-to-order companies may
have to reject or postpone orders when the production capacity does not meet the demand. Many such real-world scheduling
problems are characterised by processing times being dependent on the start time (time dependency) or on the preceding
orders (sequence dependency), and typically have an earliest and latest possible start time. We introduce and analyze four
algorithmic ideas for this class of time/sequence-dependent over-subscribed scheduling problems with time windows: a
novel hybridization of adaptive large neighbourhood search (ALNS) and tabu search (TS), a new randomization strategy for
neighbourhood operators, a partial sequence dominance heuristic, and a fast insertion strategy. Through factor analysis, we
demonstrate the performance of these new algorithmic features on problem domains with varying properties. Evaluation of the
resulting general purpose algorithm on three domains—an order acceptance and scheduling problem, a real-world multi-orbit
agile Earth observation satellite scheduling problem, and a time-dependent orienteering problem with time windows—shows
that our hybrid algorithm robustly outperforms general algorithms including amixed integer programmingmethod, a constraint
programming method, recent state-of-the-art problem-dependent meta-heuristic methods, and a two-stage hybridization of
ALNS and TS.

Keywords Time/sequence-dependent scheduling · Time windows · Hybrid algorithms · Adaptive large neighbourhood
search · Tabu search · Factor analysis

Introduction

Manufacturing planning is an essential element of supply
chain management (Jacobs et al. 2010). In intelligent manu-
facturing, efficient scheduling of orders fromcustomers plays
an important role to maximise productivity and profit. For
many make-to-order companies, orders have to be rejected
or postponed when the company’s capacity cannot meet the
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demand. Thismakes the problem become an over-subscribed
scheduling problem, consisting of simultaneously selecting
a subset of jobs to be processed as well as the associated
schedule. This problem is important because it represents a
class of real-world problems including the Earth observation
satellite scheduling problem (Augenstein et al. 2016; Akturk
and KiliÇ 1999), the order acceptance and scheduling prob-
lem (Oğuz et al. 2010; Wang et al. 2017), the orienteering
problem (Verbeeck et al. 2017), and selective maintenance
scheduling (Duan et al. 2018). Many real-world instances in
this class have time windows (e.g., from the time when the
factory receives the raw material to the user-specified dead-
line (Rebai et al. 2012)) and time/sequence-dependent setup
times (e.g., the time to prepare next batches of products in an
intelligent manufacturing system): the scheduled start time
of each job must be in its time window, and the setup time
between every two jobs depends on the specific pair of jobs
(Mirsanei et al. 2011) or their scheduled start times (Dong
et al. 2014).
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For the varying problem instances in this class with time
windows and time/sequence-dependent setup times, gen-
eral approaches such as mixed integer programming do not
perform very well (Cesaret et al. 2012; Verbeeck et al.
2017; Liu et al. 2017). There are also problem-specific
methods that use highly specialised subroutines (Liu et al.
2017; Silva et al. 2018; Poggi et al. 2010). The design
and implementation of such methods requires expertise and
effort. Our goal is to provide an intermediate approach: a
generic algorithm that performs well on different problem
variants.

The major contributions of this paper are as follows:

1. We propose a general algorithm with four algorithmic
features: a hybridization of adaptive large neighbour-
hood search (ALNS) and tabu search (TS), a new
randomization strategy for neighbourhood operators, a
partial sequence dominance heuristic, and a fast insertion
strategy.

2. Through factor analysis, we show the robust performance
of the newalgorithmic features, andwe derive useful con-
clusions on how to use tabu search for problem domains
with different properties.

3. By means of our algorithm, ALNS/TPF, we illustrate a
methodology for solving a larger class of problems with
high efficiency, without specifying a specialised method
for each domain.

4. There exist a limited number of publicly available
source codes and benchmark instances for this class
of problems. We publish the source codes of the algo-
rithms and the benchmark instances to enable future
studies.1

Two early versions of this hybrid algorithm have been
introduced in our preliminary work (He et al. 2018, 2019).
We first applied the algorithm to the time-dependent agile
Earth observation satellite scheduling problem (He et al.
2018) and then generalized the algorithm to the order
acceptance and scheduling problem (He et al. 2019). The
method in this paper is a further novel extension of the
previous methods. The tabu heuristic, the partial sequence
dominance heuristic and the insertion strategy have been
upgraded and more neighbourhood operators are introduced.
A more complete factor analysis of individual contribu-
tions of the new algorithmic features and the correlation
between the performances of the algorithm and the prop-
erties of problem instances are included. Besides, in this

1 The source code of our algorithm is available https://doi.org/10.4121/
uuid:3a23b216-3762-4a61-ba2c-d3df6dc53268, and the datasets used
in this paper are available https://doi.org/10.4121/uuid:1a4e5895-7dae-
4b6a-9315-a9e8cb463d73.

paper we evaluate the proposed algorithm on more problem
domains.

The remainder of this article is summarized as follows:
“Background” section provides background information;
“ALNS/TPF: tabu-based ALNS algorithm” section intro-
duces the ALNS/TPF algorithm; “Algorithmic analysis”
section introduces the algorithmic analysis of the proposed
algorithm. In “Comparison with state-of-the-art algorithms”
section, the algorithm is compared with state-of-the-art
methods on three problem domains; the conclusions are sum-
marized in “Conclusions” section.

Background

This section describes the mathematical formulation of the
problem, gives a review of approaches to instance domains,
and lastly describes the standard ALNS and TS algorithms.

Mathematical formulation

Here we present a high-level abstraction of the common
aspects of instances of the problem class. This model is pro-
posed based on the models of different problems from Oğuz
et al. (2010);He et al. (2018);Verbeeck et al. (2017). Detailed
specific constraints of problems are introduced in later sec-
tions.

Consider a set of jobs O = {o0, o1, . . . , on, on+1} that
can be potentially scheduled, where oo and on+1 are two
dummy jobs representing the start and end job in the solu-
tion sequence respectively. The order of other jobs is not
fixed. Each job has a revenue ri , a processing duration time
di , and a time window [bi , ei ]. Let xi be a binary variable
representing whether job oi is selected, yi j be a binary vari-
able representing whether job oi directly precedes job o j ,
pi be a decision variable representing the start time of oi ,
and M be a sufficient large constant. The problem can be
formulated as a mixed integer linear programming (MILP)
model:

max
n∑

i=1

xi ri (1)

subject to

pi + di + si j + (yi j − 1)M ≤ p j∀i ∈ {0, . . . , n}, j ∈ {1, . . . , n + 1}, i �= j (2)
n+1∑

j=1,i �= j

yi j = xi ∀i ∈ {0, . . . , n} (3)

n∑

j=0,i �= j

y ji = xi ∀i ∈ {1, . . . , n + 1} (4)

bi ≤ pi + (1 − xi )M ∀i ∈ {0, . . . , n + 1} (5)
pi ≤ ei + (1 − xi )M ∀i ∈ {0, . . . , n + 1} (6)

x0 = 1, xn+1 = 1 (7)
xi ∈ {0, 1} ∀i ∈ {1, . . . , n} (8)

yi j ∈ {0, 1} ∀i ∈ {0, . . . , n}, j ∈ {1, . . . , n + 1}, i �= j (9)
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The objective function (1) maximizes the total revenue
of scheduled jobs. Constraints (2) restrict the time between
every two adjacent jobs should be long enough for the setup,
where si j is the setup time between jobs oi and o j . The value
of si j depends on i and j for the sequence-dependent setup
time case (e.g., a table of setup times for all pairs of oi and
o j ) and depends on pi and p j for the time-dependent setup
time case (e.g., a function of pi and p j or a table of setup
times for all pairs of pi and p j ). Constraints (3) and (4)
restrict that each accepted job is succeeded by only one job
and precedes only one job. Constraints (5) and (6) define the
earliest and latest start time of a job. Constraints (7) restrict
that the two dummy jobs, the start and end jobs must be
selected. Constraints (8) and (9) define the domains of the
variables xi and yi j respectively F.

Domain instances

Due to the large number of problem variants and solution
approaches, the reader is referred to Slotnick (2011) and
Gunawan et al. (2016) for comprehensive surveys on this
class of over-subscribed scheduling problems with time win-
dows and time/sequence-dependent setup times.

The order acceptance and scheduling problem (OAS) is a
typical representative of this problemclass. Theproblemhap-
pens for instancewhen amanufacturing systemdoes not have
the capacity to meet demand. Oğuz et al. (2010) proposed
the OAS problem with a penalty for late completion, time
windows and sequence-dependent setup times. The problem
was approached by MIP (Cesaret et al. 2012), TS (Cesaret
et al. 2012), genetic algorithm (Nguyen et al. 2015; Chen
et al. 2014; Chaurasia and Singh 2017), artificial bee colony
algorithm (Lin and Ying 2013; Chaurasia and Kim 2019),
hyper-heuristic based methods (Nguyen 2016) and iterated
local search (Silva et al. 2018). Recently, Silva et al. (2018)
used Lagrangian relaxation and column generation to find
tight upper bounds of problem instances.

The Earth observation satellite scheduling (EOSS) prob-
lem is another important problem instance of this problem
class. In a limited scheduling horizon, the satellite can usu-
ally observe only a subset of the user-specified jobs. Besides,
the transition time for the satellite to change its observation
angle between two adjacent jobs is time/sequence-dependent
(Lemaître et al. 2002). The time windows in the EOSS are
usually much shorter than those in the OAS problem (Liu
et al. 2017). Akturk and KiliÇ (1999) studied the obser-
vation scheduling problem of Hubble Space Telescope, in
which the setup times jobs are sequence-dependent. A dis-
patching rule considering weighted shortest processing time,
setup times and nearest neighbour was proposed. Liu et al.
(2017) and Peng et al. (2018) studied the agile satellite
observation scheduling problem with time-dependent setup
times. Liu et al. (2017) proposed a mixed integer program-

ming (MIP) method and an ALNS algorithm, where they
also integrated ALNS with an insertion algorithm consider-
ing time-dependency by introducing forward/backward time
slacks. Peng et al. (2018) proposed an iterated local search
(ILS) algorithm. They further calculated the minimal transi-
tion time, the neighbours and earliest/latest start time of each
job to accelerate the insertion.

The selected travelling salesman problem (STSP), also
referred to as the orienteering problem (OP), defines a prob-
lem where the salesman visits a subset of cities to maximize
the total collected reward within a limited travel time. Com-
pared with the above two problem variants, the travelling
time (i.e., setup time) between cities is much longer, and
there exists a stronger correlation among cities depending
on the locations of them. Existing methods include genetic
algorithms (Abbaspour and Samadzadegan 2011), iterated
local search (Garcia et al. 2013), MIP (Verbeeck et al. 2017),
and act colony optimization (ACO) (Verbeeck et al. 2017).
Verbeeck et al. (2017) proposed the time-dependent OP with
time windows (TDOPTW). In their ACOmetaheuristic, they
used themax shift to fast determine the feasibility of an inser-
tion, which is similar to the ideas of Peng et al. (2018).

Despite all this work, there is no method capable of find-
ing good solutions to diverse real life instances within the
available solving time. In this paper, we propose a general
method which performs well on all above problem instances
in terms of solution quality and running time.

Standard ALNS and TS

Adaptive large neighbourhood search (ALNS) is one of the
most promising approaches for scheduling problems (Ropke
and Pisinger 2006). Since ALNS is less sensitive to the ini-
tial solution than general local search (Demir et al. 2012),
the initial solution is usually generated by a simple greedy
heuristic. The solution is updated by removing some jobs
from the current solution with the removal operators and
inserting some jobs back to the solution with the insertion
operators. Multiple removal and insertion operators can be
defined according to the problem characteristics. In each
iteration, an adaptive mechanism based on a roulette wheel
is used to select a pair of removal and insertion operators
according to their weights. The weight of the operator wi is
updated according to its accumulated score πi in the pre-
vious iterations, wi = (1 − λ)wi + λπi/

∑
j π j , where

λ is a constant weight update parameter in [0, 1]. When a
new solution is generated, it is accepted if it is better than
the current solution, otherwise its acceptance is determined
by a simulated annealing (SA) criterion with probability:

ρ = exp
(
100
T

(
f (S′)− f (S)

f (S)

))
, where f (S) and f (S′) are the

reward of current solution S and new solution S′ respectively,
and T is the temperature.
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Tabu search (TS) was first proposed by Glover (1986). In
TS, some simple local search moves are defined to update
the solutions. To prevent short-term cycling, recently visited
solutions or recently used local search moves are stored in
a tabu list, and may not be tried again while in the list. The
forbidden solutions or moves lose their tabu status after a
certain short time.

Žulj et al. (2018) proposed the first hybridization of ALNS
and TS and found that a simple hybridization of these two
metaheuristics outperformed both the standalone methods
for the order batching problem. Their method combines the
diversification capabilities of ALNS and the intensification
capabilities of TS. It uses ALNS to search for better solutions
and, if a certain number of ALNS iterations have passed,
invokes TS. Thus ALNS and TS are alternated in a simple
two-stage manner.

ALNS/TPF: tabu-based ALNS algorithm

In this section, we introduce four algorithmic features in
our approach: a more advanced tabu search hybridization
(TS), randomized heuristic neighbourhood operators, partial
sequence dominance (PSD), and a fast insertion algorithm
(FI) considering time/sequence-dependent setup times. The
resulting algorithm, called ALNS/TPF, is shown as Algo-
rithm 1.

Tabu search hybridization

Although ALNS has been widely successful (Thomas and
Schaus 2018), a main drawback is that its search efficiency
can founder due to re-visiting recent solutions. Although in
standard ALNS, large portions of the solution are destroyed
and rebuilt, and it would seem less likely a previous solution
would be visited than other local search algorithms with sim-
pler moves, the probability of short cycling still exists and
could be higher when ‘good’ jobs are identified and selected
a lot by the algorithm. Sometimes although jobs are inserted
in different orders by different insertion operators, the result-
ing solutions are the same. This motivates us to propose the
hybrid algorithm of ALNS and TS.

As noted earlier, Žulj et al. (2018) proposed the first
hybridization of ALNS and TS. However, since ALNS and
TS are used in separate stages, this hybridization does not
change the short-term cycling nature of ALNS. In contrast,
we propose a tight integration of ALNS with TS, which
includes three types of tabu heuristics: the removal tabu, the
insertion tabu and the instant tabu.

Removal tabu For each job, we declare a removal tabu
attribute. If a new solution is accepted, the removal of newly-
inserted jobs is forbidden for the following θ iterations;

Algorithm 1: Overview of ALNS/TPF
Input: Candidate job set: O
Output: Best solution: S∗

1 function ALNSTPF(O)

2 SI ← GenerateInitialSolution(O)2

3 Set SI as the current and the best solution: S ← SI , S∗ ← SI

4 repeat
5 Choose removal, insertion operators Di , Ri based on

weights
6 S′ ← Ri (Di (S))

7 Sc ← GenerateCompoundSolution(S, S′)
8 if f (Sc) > f (S′) ∧ Sc �= S then
9 S′ ← Sc

10 if f (S′) > f (S) ∨ SA accepts S′ then
11 S ← S′

12 if f (S) > f (S∗) then
13 S∗ ← S

14 Update removal and insertion tabu attributes of all jobs
15 Update scores and weights of operators
16 until Terminal condition is met
17 return S∗

otherwise, the removal of the jobs removed in this iteration
is forbidden for the following θ iterations.

Insert tabu For each job, we declare an insertion tabu
attribute. If a new solution is accepted, the reinsertion of
newly-removed jobs is forbidden for the following θ iter-
ations. Here we do not forbid the reinsertion of the jobs
inserted in this iteration if the new solution is rejected as
we do in the removal tabu, because in this case the removal
tabu is enough to prevent visiting a recent solution. Prevent-
ing the reinsertion of jobs can lead to a lower solution quality,
because this problem attempts to schedule as many jobs as
possible.

Instant tabu this tabu heuristic is used to prevent producing
a new solution same as the current solution.When inserting a
job to the destroyed solution by the insertion algorithm intro-
duced in “Fast insertion algorithm” section, if the resulting
solution assuming the candidate job is inserted is same as the
current solution, this insertion will be forbidden.

All the three heuristics are used in the solution update
process (Algorithm1, line 6). The removal and tabu attributes
are updated in Algorithm 1, line 14. For the values of the tabu
attribute θ , we follow Cordeau and Laporte (2005) and set
it to a random value in [0,√n/2], where n is the number of
jobs. Since the instant tabu is used only once in one iteration,
it does not have a tabu attribute.

We compare the three tabu types and the two ALNS–TS
hybridizations in “Tabu search” section.

2 We sort the jobs by an ascending order of begin times of their time
windows and we attempt to start each job as early as possible under all
the constraints. Jobs that cannot be inserted are given up.
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Randomized generic neighbourhood operators

ALNS uses multiple neighbourhood operators to update
solutions (Algorithm1, lines 5–6). Tomake sure that the algo-
rithm is efficient for a diverse range of problem instanceswith
varying properties, we use the following ten generic removal
operators and seven generic insertion operators, and intro-
duce a simple but effective randomization strategy to diverse
the search. These operators are adapted from Pisinger and
Ropke (2007) and Demir et al. (2012) to fit our problem,
while the randomization strategy is new. The randomization
strategy is similar to the idea of adding noise to the inser-
tion operators by Pisinger and Ropke (2007). However, we
extend this idea to both removal and insertion operators.

The ten removal operators are:

1. Random removal (RR) pd jobs are removed randomly
from the current solution. The worst-case time complex-
ity of this operator is O(n);

2. Min revenue removal (MRR) pd jobs with lower rev-
enue are removed. The worst-case time complexity of
this operator is O(n2);

3. Min unit revenue removal (MURR) pd jobs with lower
unit revenue are removed. The unit revenue is the job’s
revenue divided by its processing time. The worst-case
time complexity of this operator is O(n2);

4. Max setup time removal (MSTR) pd jobs with longer
setup time are removed. The worst-case time complexity
of this operator is O(n2);

5. Max opportunity removal (MOR)For the problemswhere
jobs havemultiple timewindows, pd jobs withmore time
windows are removed. The rationale of this operator is
that these jobs can be scheduled in other time windows
easily. The worst-case time complexity of this operator
is O(n2);

6. Max conflict removal (MCR) pd jobs with higher conflict
degree are removed. The conflict degree of job oi is cal-
culated by comparing its timewindowwith those of other
jobs: (

∑
o j∈O,i �= j T imeSpan(oi , o j ))/(ei + di − bi ),

where the function T imeSpan calculates the time span
that the timewindows of two jobs overlapwith each other.
Theworst-case time complexity of this operator isO(n2);

7. Worst route removal (WRR) This removal operator eval-
uates a small sequence of pd jobs in the current solution
by calculating the unit revenue of the sequence, which is
the revenue of the pd jobs divided by the time period of
the sequence. The worst sequence of pd jobs is removed.
The worst-case time complexity of this operator is O(n);

8. Max wait removal (MWR) pd jobs with higher waiting
time are removed. Let oi be the immediate precursor of
o j . The waiting time of job o j is calculated by p j −
(pi +di )− si j . This operator reduces the time wasted by

waiting for the release time of a job. The worst-case time
complexity of this operator is O(n2);

9. Historical setup removal (HSR) This removal operator
keeps track of the shortest setup time of each job. pd jobs
with setup times that have larger distance to their best
setup times are removed. Theworst-case time complexity
of this operator is O(n2);

10. Historical unit revenue removal (HURR) This removal
operator is similar to the min unit revenue removal oper-
ator. The main difference is that when calculating the
unit revenue, the setup times before and after the job are
considered. Let oi , o j , ok be a sequence in the solution.
The unit revenue of o j in the sequence is calculated by
r j/(pk − (pi +di )). This operator keeps track of the best
unit revenue each job in the sequence. pd jobs with lower
unit revenue in the sequence are removed. Theworst-case
time complexity of this operator is O(n2).

All the jobs removed by the above removal operators and
other unscheduled operators are stored in a candidate job
bank. Seven insertion operators are used to sort the jobs in
the job bank and insert themone by one from the top of the list
back to the solution. The insertion method is introduced in
“Fast insertion algorithm” section. The insertion stops until
no jobs can be inserted, or the total revenue of the repaired
solution plus the total revenue in the job bank (i.e., the upper
bound of the new solution in this iteration) is lower than the
current solution.

The seven insertion operators are:

1. Max revenue insertion (MRI)The jobs in the job bank are
sorted according to descending revenue. The worst-case
time complexity of this operator is O(n2);

2. Max unit revenue insertion (MURI) The jobs in the job
bank are sorted according to descending unit revenue.
Theworst-case time complexity of this operator isO(n2);

3. Min setup time insertion (MSTI)Due to the time/sequence-
dependency, the accurate setup time cannot be calculated
until the job is inserted in the solution; therefore for this
operator, the average setup time of jobs is calculated and
used to rank the jobs. The worst-case time complexity of
this operator is O(n2);

4. Min opportunity insertion (MOI) For the problemswhere
jobs have multiple time windows, the jobs are sorted
according to ascending numbers of time windows. The
jobs with fewer time windows are considered first. The
worst-case time complexity of this operator is O(n2);

5. Min conflict insertion (MCI) The jobs in the job bank
are sorted according to ascending conflict degree. The
worst-case time complexity of this operator is O(n2);

6. Historical unit revenue insertion (HURI)Opposite to the
historical unit revenue removal, this insertion operator
sorts the jobs according to descending historical unit rev-
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Fig. 1 An example of the partial
sequence

1 2 3 4 5Current 
solution

New 
solution

6 7 8 9 10

1 2 11 5 6 4 12 8 9 10

11 12

3 7

Scheduled job Removed job Unscheduled job

Start of a partial sequence

enue in the sequence. The worst-case time complexity of
this operator is O(n2);

7. Min distance insertion (MDI) This operator tries to insert
the jobs that are closest to the jobs in the solution. First,
the shortest distance to the current solution (i.e., the
shortest setup time to jobs in the current solution) of
each candidate job is calculated. Then the jobs are sorted
according to ascending nearest distance. The worst-case
time complexity of this operator is O(n2);

After selecting the removal/insertion operators by the
roulette wheel mentioned in “Standard ALNS and TS” sec-
tion, standard ALNS ranks the jobs according to the heuristic
values of the operators: e.g., for the min revenue removal
operator, the revenue is regarded as the heuristic value h,
the jobs are ranked in an ascending order of h, and the jobs
on the top of the list are removed. In order to diverse the
search, we add randomness to the heuristic values of selected
certain operators: h ← h × (1 + r), where r is a random
value in [0, 1]. Here we differ from the common approach
of selecting jobs randomly according to a probability that
depends on h, because we want to add limited randomness
and while keeping emphasis on following h. Our approach
here thus introduces a random component without neglecting
the heuristic.

When removing and inserting a job, if the job is forbidden
to be removed or inserted, the operator skips it and check the
next one. However, through an aspiration criterion, the tabu
status of a job can be revoked if the number of removed jobs
is smaller than pd for the removal tabu, and all other jobs that
are not forbidden by tabu have been tested for insertion and
there is still open space in the solution for the candidate job
for the insertion tabu. This aspiration criterion ensures that
there are enough jobs to remove and insert.

Partial sequence dominance

Besides solution cycling, a further drawback of ALNS is that
it evaluates a new solution depending on the quality of the
whole solution sequence. Hence, during the search process,
solutions with some good parts (i.e., parts of the solution
might have higher objective value while consume less time)

Current 
solution

New 
solution

Compound 
solution

Partial 
sequence 1

12 17 10

13 18 5

Total 
revenue

39

36

41

Partial 
sequence 2

Partial 
sequence 3

Fig. 2 An example of partial sequence dominance

are rejected due to the low quality of the whole sequence—
thus neglecting potentially valuable in-process information.
Due to the time-dependency and sequence-dependency, the
quality of a solution is influenced significantly by these small
parts.

Inspired by genetic algorithms, we propose the partial
sequence dominance (PSD) heuristic (Algorithm 1, lines 7–
9): we construct a compound solution which keeps better
partial sequences from the new solution and the current solu-
tion. The partial sequence is defined in Definition 1. An
example of the definition of the partial sequence is shown
in Fig. 1. The quality of the partial sequence is evaluated
by unit revenue: the objective function value divided by the
total period of the partial sequence. If the compound solu-
tion is better than the new solution and different from the
current solution, it replaces the new solution. Figure 2 shows
one example of PSD. In standard ALNS, the new solution is
given up. However, partial sequence 1 and partial sequence
2 of the new solution are better than the current solution. So
according to PSD, we keep partial sequence 1 and partial
sequence 2 of the new solution and partial sequence 3 of the
current solution, and we get the compound solution, which
is better than the current solution.

Definition 1 Apartial sequence is a sequence of jobs, starting
with the first job of each continuous sequence of unchanged
jobs.

The detailed process of constructing a compound solu-
tion from two solutions is shown in Algorithm 2. When a
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Algorithm 2: Process of constructing a compound solu-
tion

Input: Current solution S, New solution S′
Output: Compound solution Sc

1 function GenerateCompoundSoluion(S, S′)
2 Sc ← ∅
3 Partition S and S′ into two sets of partial sequences: Sp and

S′
p

4 for i ← 1 to #Sp do
5 U ← Calculate the unit revenue of the i th partial

sequence in Sp
6 U ′ ← Calculate the unit revenue of the i th partial

sequence in S′
p

7 if U > U ′ then
8 Add Sp into Sc
9 else

10 Add S′
p into Sc

11 Update jobs in Sc to remove duplicate ones and start each job
as early as possible

12 return Sc

new solution is produced, we partition it into multiple par-
tial sequences. We compare each partial sequence of the new
solution with the corresponding partial sequence of the cur-
rent solution. The partial sequence with higher unit revenue
is stored in the compound solution.

Achallenge for thePSDheuristic is that one job can appear
in different partial sequences of the current solution and the
new solution. Thus one job might be processed twice in the
compound solution. To maintain the feasibility, all the repet-
itive jobs in the compound solution are removed. Then the
start times of jobs in the solution are updated so that all jobs
in the compound solution start as early as possible.

Fast insertion algorithm

The last algorithmic feature of the algorithm is a fast insertion
algorithm, which is used to insert jobs back to the solution by
the insertion operators. We first proposed this method for a
scheduling problem with sequence-dependent setup times in
a previous paper (He et al 2019). To make sure the algorithm
is complete and clear to the reader, we give a short description
of the basic ideas of the insertion algorithm, and then we
generalize the fast insertion algorithm to the time-dependent
case.

The fast insertion algorithmuses the following two steps to
insert a candidate job. First, the feasibility of the insertion at
all positions of the solution is evaluated rapidly by a concept
called time slack. The time slack is the time a job can be
postponed before the solution becomes infeasible. Because
all the jobs in the current solution are started as early as
possible, the candidate job can be inserted before a job if the
time that the following job needs to be postponed is smaller

than its time slack.Note that in this step, all positions atwhich
if the candidate job is inserted and the resulting solution is the
same as the current solution are also forbidden because of the
new instant tabu. Then in the second step, the best possible
position is selected to insert the task. We select the position
which increases the least setup time and adds the least penalty
to the postponed jobs in the current solution. More details of
the fast insertion algorithm are given in Appendix A.

For the problems put forward in this paper, which have
time-dependent setup times, there are two challenges for the
above insertion algorithm: (1) how to calculate the latest start
time of a job so that we can calculate its time slack? This is
more complicated than the sequence-dependent case because
the setup time changes with the start time; (2) how to calcu-
late the increased setup time? We cannot know the exact
increased setup time unless we calculate the start times of
all the postponed jobs and the changed setup times, which
is too complex. For challenge 1, we can calculate the lat-
est start time of job oi by solving the equation: pLatei =
pLatej − Setup(pLatei , pLatej ), where pLatej is the latest start
time of the following job o j and Setup(t ime1, t ime2) is a
function to calculate the time-dependent setup times. How-
ever, for the problemwhere such an analytic function does not
exist, such as the agile Earth observation satellite schedul-
ing problem where the setup time is given by a table, the
dichotomy method by Liu et al. (2017) can be used to find
the latest start timeof a job given the latest start timeof its suc-
cessor. For challenge 2, we use the increased setup time of the
insertion position (e.g., if we insert candidate job oc between
oi and o j , the increased setup time of the insertion position
is sic + scj − si j ) to approximate the actual increased setup
time. On a time-dependent agile Earth observation satellites
scheduling problem benchmark (Liu et al. 2017) and a time-
dependent orienteering problem benchmark (Verbeeck et al.
2017), the average error of this approximation of the setup
time is 12.43% and 16.12% respectively.

Algorithmic analysis

The proposed ALNS/TPF algorithm consists of four fea-
tures (i.e., tabu search, randomized generic operators, partial
sequence dominance and fast insertion algorithm). In this
section, we study how the discussed algorithmic features per-
form on different problem domains in order to understand
how and when to use them depending on the domain prop-
erties.

We first introduce three problem domains and the datasets
we used to test our algorithm. Then, we analyze the algorith-
mic features individually. For each new feature, we compare
the algorithm without this feature against the full algo-
rithm to understand its performance on the three problem
domains. For each removed algorithmic feature, we calcu-
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late the decrease in solution quality (the percentage of the
decrease of the objective function value compared with the
full algorithm) and the increase in running time (the percent-
age of the increase of the running time compared with the
full algorithm). A higher decrease in solution quality and
increase in running time shows that the corresponding algo-
rithmic feature performs better.

Problem datasets

We choose three representative problem domains, the order
acceptance and scheduling (OAS) problem with time win-
dows and sequence-dependent setup times, the agile Earth
observation satellite scheduling problem (AEOSS), and the
time-dependent orienteering problem with time windows
(TDOPTW).

We consider the OAS problem from Cesaret et al. (2012).
In this problem, the setup time between two jobs is sequence-
dependent. Besides, the setup of a job can only start
after its release, which makes the setup constraint become:
max{b j , pi + di } + si j + (yi j − 1)M ≤ p j . This prob-
lem is also special because of the tardiness penalty: if a
job oi starts after its due time ēi , it receives penalty ωi Ti
on its revenue, where ωi is the penalty weight and Ti is the
tardiness, Ti = max{pi − ēi , 0}. Therefore, the objective
function becomesmax

∑n
i=1 xi (ri−ωi Ti ).Weuse the bench-

mark dataset published by Cesaret et al. (2012). Three main
parameters were used to generate these instances. The first
parameter is the number of jobs n = 10, 15, 20, 25, 50, 100
and we only test the larger instances with 25, 50 and 100
jobs; the second parameter, τ , influences the length of time
windows: when τ is larger, the time windows are smaller; the
third parameter, R, influences the range of the end time and
the due time of timewindows: when R is larger, the deadlines
spread broadly, so the overlap of time windows gets smaller.
Both τ and R have five values: 0.1, 0.3, 0.5, 0.7, 0.9. Ten
random instances are generated for each parameter setting,
giving 750 instances in total.

We consider the AEOSS problem from Liu et al. (2017).
The transition timebetween twoadjacent jobsoi ando j is cal-
culated by: si j = t+|Ai (pi )−A j (p j )|/v, where t is constant
time for stabilizing the satellite, function Ai is represented
by a table returning the angle of the satellite for observing oi
at the start time of the observation, and v is the satellite tran-
sition velocity. The scheduling horizon is 24 hours, which
means there are multiple time windows for each observation
job. Let wi be the total number of time windows for job i ,
and k be the k-th time window of job i . The objective func-
tion becomes max

∑n
i=1

∑wi
k=1 xikri , where xik ∈ {0, 1} is a

decision variable, meaning whether the k-th time window is
selected. Since each job can only be processed once, an addi-
tional constraint should be considered:

∑wi
k=1 xik ≤ 1 ∀i .

The original dataset of AEOSS problem was not published,

we generate the dataset following the configuration from Liu
et al. (2017). The jobs are generated according to a uniform
random distribution over two geographical regions: China
and the whole world. For the Chinese area distribution mode,
fifteen instances are designed and the number of jobs con-
tained in these instances changes from 50 to 400 with an
increment of 25. For theworldwide distributionmode, twelve
instances are designed and the number of jobs contained in
these instances changes from 50 to 600 with an increment of
50.

We consider the TDOPTW problem from Verbeeck et al.
(2017). In this problem, the scheduling horizon is divided into
several 15-minute time slots and for each time slot, a travel-
ling velocity starting in this time slot is given. Therefore, the
travelling time (i.e., setup time) is given by a piecewise lin-
ear function, dependent on the end time of the preceding job:
si j = μ(pi + di ) + υ, where μ and υ are two parameters,
and the values of them depend on the time slot of the end
time. This dataset was generated by Verbeeck et al. (2017).
It has instances with job number 20, 50 and 100. For each
set of instances with the same number of jobs, there are four
variations in scheduling horizon tmax (8, 10, 12 and 14h)
and three random variations in the lengths of time windows
(small, medium and large). Therefore, in total there are 36
instances.

Although these are sequence/time-dependent scheduling
problems with time windows, there are in fact some dif-
ferences. Table 1 compares all the differences of the three
problem domains we have noticed.

1. The number of time windows: in the AEOSS problem,
each job has multiple time windows, while in the other
two problems, each job has only one time window;

2. The length of time windows: the length of time win-
dows is evaluated by the average length of time windows
divided by the length of the scheduling horizon. It is clear
that the AEOSS problem has very short time windows,
the TDOPTW problem has medium time windows, and
the OAS problem has time windows with more varying
lengths;

3. Congestion ratio: this value is calculated by adding up
the processing time and the average setup time of each
job, divided by the horizon, to evaluate howcongested the
instance is. In the three problems, the TDOPTWproblem
is the most congested, and the AEOSS problem is the
least;

4. Earliest start time: the OAS problem is quite special for
its start time. The setup time of a job can only start after
its release (i.e., the start time of its time window);

5. Late penalty: the OAS problem has a late penalty on the
revenue of a job if it starts after its due time;
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Table 1 Comparison of the
three problem domains

Difference OAS AEOSS TDOPTW

Number of time windows Single Multiple Single

Length of time windows 0.09–0.87 0.0007–0.0009 0.22–0.38

Congestion ratio 0.93–1.66 0.03–0.43 2.42–22.09

Earliest start time of t j max{b j , ci } + si j max{b j , ci + si j } max{b j , ci + si j }
Late penalty Yes No No

Setup time dependency i and j pi and p j pi

Length of setup time 0.43–0.84 1.36–1.47 4.26–5.49

Triangle inequality No Yes Yes

Conflict of jobs 3.82–96.83 0.4–24.84 8.72–75.61

Correlation among jobs’ locations Weak Strong Strong

Job oi is the immediate precursor of job o j . Let pi and p j be the start time, and ci and c j be the completion
time of oi and o j respectively

6. Setup time: the setup time of the OAS problem is
sequence-dependent, while the setup time of the other
two is time-dependent;

7. The length of setup time: the length of setup time is
evaluated by the average of setup time divided by the
processing time of a job. Among the three problems, the
TDOPTW problem has the longest setup times, and the
OAS problem has the shortest setup times;

8. Triangle inequality: the setup times of the OAS problem
are generated randomly, which means it does not follow
the triangle inequality. The setup time from job oi to
job o j might be longer than the time for the sequence
oi , ok, o j . As a result, when removing a job for the OAS
problem, the start time of the job after the removed job
should be checked to maintain the feasibility;

9. Conflict of jobs: we use the formula in the max conflict
removal operator to calculate the conflict of jobs. The
TDOPTW problem has the highest conflict degree, and
the AEOSS has the least;

10. Correlation among jobs: since the setup times of the
OAS problem are generated randomly, there exists lit-
tle correlation if two jobs are not adjacent in the solution.
However, for the AEOSS and the TDOPTW problems,
the setup times are calculated based on real locations
of the jobs, and jobs influence each other if they are
close. We believe such property makes the location-
related operators such as the worst route removal and the
min distance insertion work well on these two problems.

Tabu search

In this section we aim to answer the following questions:
how the three tabu types perform on problem domains with
varying properties; whether TS helps to avoid recent solu-
tions; whether TS can improve the performance of ALNS on
the three problem domains; whether our tight hybridization
is better than the two-stage hybridization? These studies help

us to understand the performance of the tabu search heuristics
so that we can use them efficiently.

Performance of three tabu types

In “Tabu search hybridization” section, we introduced three
types of tabu: the insertion tabu, the removal tabu and
the instant tabu. The first type is more common in over-
subscribed problems (Bianchessi et al. 2007; Cordeau et al.
2001; Cordeau and Laporte 2005; Rogers et al. 2006; Prins
et al. 2007). The only removal tabu we found in the litera-
ture is from Rogers et al. (2006). However, their strategy is
for updating an infeasible solution by inserting jobs first and
then removing jobs. Therefore, their removal tabu is used in
the intermediate solution (i.e., the infeasible solution) while
ours is used in the repaired solution (i.e., the feasible solu-
tion). The third tabu type, instant tabu, is new according to
our knowledge.

In this section, we study how the three tabu types perform
on problem domains with varying properties. We compare
the standard ALNS with each tabu type against the standard
ALNS without any new algorithmic features except the fast
insertion algorithm, which is necessary in the insertion pro-
cess of the ALNS algorithm. We find that the performance
of the removal tabu and insertion tabu correlates with the
proportion of jobs that can be fulfilled, which we call the
completion ratio,3 and the performance of the instant tabu
correlates with the number of jobs in the solution.

According to Fig. 3, the removal and insertion tabu works
better when the completion ratio is low. Since all the OAS

3 The completion ratio of the OAS problem and the AEOSS problem is
high and the completion ratio of the TDOPTWproblem is low. To cover
a larger range of completion ratio, besides the three problem datasets
that we have, we further generate an AEOSS dataset to study the tabu
heuristics. The dataset follows the same configuration as the Chinese
area distribution mode. The number of jobs changes from 50 to 1000
with an increment of 25. For each number of jobs, six instances are
generated.
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(b) Insertion tabu

Fig. 3 The improvement of solution quality (i.e., the value of the objective function) by two types of tabu for different completion ratios on the
three problem domains

instances have relatively high completion ratio, these two
tabu heuristics do not showobvious improvements. The Pear-
son correlation coefficient is − 0.60 between the completion
ratio and the performance of the removal tabu, and − 0.63
between the completion ratio and the performance of the
insertion tabu, showing negative correlation between the per-
formance of these two tabu heuristics and the completion
ratio. However, when the completion ratio is too low, the per-
formance of the removal and insertion tabu starts to decrease.
This is because our tabu length θ is calculated according to
the total number of jobs n. If the completion is too low, the
jobs that are forbidden to remove or insert are too many for
the number of jobs in the solution sequence. This can be
improved by decreasing the value of θ .

Although the performance of the removal and insertion
tabu is similar, the difference between them is statistical sig-
nificant: the p value in a paired t test is 4.25×10−3. We find
that the performance of the insertion tabu decreases with the
completion ratio faster than the removal tabu. As a result, the
insertion tabu works better than the removal tabu when the
completion ratio is low (i.e., in Table 2, the the insertion tabu
is better for the TDOPTW problem and the AEOSS problem
when the completion ratio is low), while the removal tabu
works better than the insertion tabu when the completion
ratio is high (i.e., in Table 2, the removal tabu is better for the
OAS problem and the AEOSS problemwhen the completion
ratio is high).

Then we study the instant tabu. According to Fig. 4, the
instant tabu works well when there are fewer jobs in the
solution. Therefore, it works much better on the TDOPTW
problem than it does on the other two problems. This is
because when there are fewer jobs in the solution, the prob-

Table 2 The difference between the performance of the removal and
insertion tabu

Problem Completion
ratio (%)

Average
improvement
by tabu
Removal (%) Insertion (%)

AEOSS > 50% 0.69 0.47

AEOSS < 50% 1.05 1.07

OAS > 50% 0.06 0.03

TDOPTW < 50% 0.66 0.71
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Fig. 4 The improvement of solution quality (i.e., the value of the objec-
tive function) by the instant tabu for different numbers of jobs in the
solution on the three problem domains

ability that the new repaired solution is the same as the old
solution is higher, and the instant tabu can prevent this.

Overall, we conclude that it is better (although marginally
so) to include the insertion tabu and the removal tabu for
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problemswith low completion ratio. But since these two tabu
heuristics also help increasing the performance of the algo-
rithm when the completion ratio is high, we suggest using
them also for problems with high completion ratio such as
the OAS problem. The instant tabu works better when the
solution sequence is short; on problems with longer solution
sequences, such as the AEOSS and OAS problems, perfor-
mance is not improved. Further, as the length of the solution
sequence increases, the time used for comparing solutions by
the instant tabu increases. The instant tabu should not be used
in this case. Therefore, in the following experiments, we use
the insertion tabu and the removal tabu for the OAS problem
and the AEOSS problem, and all the three tabu heuristics for
the TDOPTW problem. We refer to it as the TS strategy.

Percentage of revisited recent solutions

In this section, we test whether the TS strategy helps to
reduce the probability of short-term cycling search process
of ALNS. We run the algorithm with and without TS on the
three problems, and the average percentages of iterations vis-
iting a solution which has been visited within the previous
50 iterations are shown in Fig. 5.

According to Fig. 5, it is obvious that the probability that
the algorithm re-visits a recent solution is reduced consid-
erably by TS. This proves that the short-term cycling of the
standard ALNS is reduced by TS. For the AEOSS problem,
the instance with 50 jobs of the worldwide distribution is too
simple for the algorithm and it can schedule all the jobs in
the initial solution and terminate. Therefore, the percentage
of recent solutions in this instance is 0.

We also observe that the gap between the percentages
of revisited recent solutions with and without TS tends to
increase when the problem grows in size. This is because
when the problem instance grows in size, the completion
ratio gets lower. According to “Performance of three tabu
types” section, the insertion tabu and the removal tabu work
better when the completion ratio is lower.

Performance of the TS strategy

We test the performance of the TS strategy as follows. We
compare the algorithm without the TS strategy (ALNS/PF)
with the full ALNS/TPF algorithm. For the three problems,
we divide the instances into three groups (i.e., small, medium
and large) according to the number of jobs. Figure 6 shows
that without TS, all the gaps are increased on all the three
problems. For the three problem, TS contributes to the solu-
tion quality more when the instance grows in size. This is
consistent with the observations in “Performance of three
tabu types” and “Percentage of revisited recent solutions”
sections. The performance of TS on the TDOPTW is not
very obvious, because the algorithm with our other tech-
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Fig. 5 The average percentages of iterations visiting a recent solu-
tion. For the OAS problem, each point shows the average value of 50
instances with the same number of orders and the same τ . For the
TDOPTWproblem, eachpoint shows the averagevalueof four instances
with the same number of orders and the same size of time windows

niques is already quite efficient for the TDOPTW, especially
for small instances (i.e., the decrease in the solution qual-
ity when removing TS is 0). For the OAS problem and the
AEOSS problem, TS also reduces the CPU time much by
forbidding useless removal of jobs from the solution. For
the TDOPTW problem, TS increases the CPU time, because
the instant tabu is time-consuming for comparing the new
solution with the current solution.
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Fig. 6 The performance of ALNS/PF compared to the full ALNS/TPF algorithm
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Fig. 7 The performance of ALNS-TS compared to the full ALNS/TPF algorithm
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Fig. 8 The performance of different neighborhood operators on three problem domains
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Comparison with the two-stage hybridization

We further compare our tight hybridization with the two-
stage hybridization of ALNS and TS (ALNS-TS). Let us
assume for the full ALNS/TPF, the maximum iteration is N .
In ALNS-TS, TS is run for 0.015N iterations after every
0.1N iterations of ALNS. In each TS iteration, 10 new
neighbourhoods by our removal and insertion operators are
examined to find the best local move. The whole process is
run four times, hence for N neighbourhood moves in total.
Recently visited solutions are inserted in a tabu list for

√
n/2

iterations. Note that ALNS-TS might examine more neigh-
bours than N in order to find unvisited ones.

From Fig. 7, it is obvious that the two-stage strategy pro-
duces much worse solutions. For the OAS problem, the gap
increases when the instance gets larger. We also observe that
the two-stage hybridization works less well than even the
standalone ALNS, by comparing ALNS-TS with ALNS/PF.
When ALNS and TS share a total number of iterations,
the standalone ALNS performs better than the two-stage
hybridization of them. This shows that ALNS has a higher
search efficiency than TS does for the OAS problem. For the
TDOPTW problem, ALNS-TS does not use as much CPU
time as for the other two problems, because the solutions for
the TDOPTW problem are relatively short, and the TS com-
ponent which compares different solutions does not consume
much time.

Randomized generic neighbourhood operators

In the proposed algorithm, we use ten removal operators and
seven insertion operators to update solutions.

Comparison of the different operators

We compare the performance of these operators on the three
problem domains. Figure 8 shows the percentage of usage
of different operators. Operators which perform better are
selected by the adaptive mechanism of ALNSmore often, so
that they have higher percentage of usage.

In the removal operators, themax revenue removal (MRR)
operator performs best and the max conflict removal (MCR)
performs worst on the three domains. In the insertion
operators, the max revenue insertion (MRI), the max unit
revenue insertion (MURI) and the historical unit revenue
insertion (HURI) perform best. We can also observe that
location-related operators (worst route removal,min distance
insertion) do not work well on OAS, because the setup times
of jobs in the OAS problem are generated randomly and the
jobs have little dependency on the location. Setup-related
operators (max setup time removal, historical setup removal,
max setup time insertion) perform well on the TDOPTW
problem. This is because the setup times of TDOPTW prob-

lem are very long compared with the processing time. The
setup times are useful heuristic information. The opportunity
operators (max opportunity removal, min opportunity inser-
tion) perform better on the AEOSS problem than the other
two problems, because the jobs in the AEOSS problem have
multiple time windows.

From the aboveobservations,we can see that the algorithm
adapts itself well by selecting different operators according
to the different properties of different problems. However,
this selection strategy of ALNS can still be improved. For
example, although the opportunity operators (max oppor-
tunity removal, min opportunity insertion) perform best on
the AEOSS problem, they are also used a lot on the other
two problems, where these operators should be very ineffi-
cient because there is only one time window for each job.
If such selections can be avoided or reduced, the search effi-
ciency ofALNS can be improved.Wewill investigate a better
online-learning strategy for these instance-dependent neigh-
bourhood operators in our future work.

Performance of the randomization strategy

Then, we test the performance of the randomization strategy
in the operators. We compare the algorithm with neigh-
bourhood operators without randomness (ALNS/TPF (No
random)) with the full ALNS/TPF algorithm. Figure 9 shows
that the randomization strategy helps to increase the perfor-
mance onmost of the instances of the three problems. For the
three problems, the randomization strategy contributes more
for larger instances. When there are more jobs, the random-
ization strategy can help visiting more states in the solution
space.

Partial sequence dominance

We test the performance of PSD by comparing the algo-
rithm without PSD (ALNS/TF) with ALNS/TPF. According
to Fig. 10, PSD shows obvious improvements on AEOSS
problems, while it does not improve the performance of the
algorithmmuchon theOASproblemand theTDOPTWprob-
lem. There are two reasons for this. For the OAS problem
and the TDOPTW problem, the solution sequences are rela-
tively short. PSDworkswell when the solution sequence gets
long, because more partial sequences can be ignored in the
long solution sequence. The second reason is that the time
windows of the OAS problem and the TDOPTW problem
are relatively long. If the time window is long, one order can
exist in different partial sequences in the current solution and
in the new solution respectively, reducing the quality of the
compound solution. This can be further proved in Fig. 11,
where for the OAS problem, PSD works better when τ is
larger (i.e., when the time window is shorter).
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Fig. 9 The performance of ALNS/TPF (No random) compared to the full ALNS/TPF algorithm
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Fig. 10 The performance of ALNS/TF compared to the full ALNS/TPF algorithm
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Fig. 11 The performance ofALNS/TF compared to the full ALNS/TPF
algorithm on the OAS problem for different values of τ

Fast insertion algorithm

The fast insertion algorithmcontains two ideas: the time slack
strategy and the best position selection strategy. We study
each in turn.

Performance of the time slack strategy

First, to test the performance of the time slack strategy, we
compare it with the backward/forward time slack strategy
of Liu et al. (2017). Both the strategies have the same time
complexity O(n), but ours creates much more space in the
schedule by considering postponing all the possible jobs in
the solution, while Liu et al. (2017)’s method only creates
limited space by moving two jobs.

In Fig. 12, ALNS/TPF with Liu et al. (2017)’s strategy
is denoted as ALNS/TP (no time slack). It is obvious that
our time slack strategy uses less time and has higher solution
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Fig. 12 The performance of ALNS/TP (no time slack) compared to the full ALNS/TPF algorithm
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Fig. 13 The performance of ALNS/TP (no time slack) compared to the full ALNS/TPF algorithm on the OAS problem for different values of τ

and R

quality. And among all the strategies, the time slack strategy
contributes most performance. For all the three problems, the
time slack strategy works better when there are more jobs.
Because when there are more jobs, the superiority of post-
poning multiple jobs becomes obvious compared with Liu
et al. (2017)’s strategy, which only moves two jobs. Besides,
according to Fig. 13, for the OAS problem, the time slack
strategyworks better when τ is smaller and R is larger.When
τ is smaller, the time window is longer and the time slack
strategy can make more use of the long time window. When
R is larger, the gap between the due time and end time of
a time window grows. The due time slack strategy works
better in this case. Similarly, according to Fig. 14, for the
TDOPTW problem, the time slack strategy works better for
longer scheduling horizon and larger variance in the lengths
of time windows.

Performance of the best position selection strategy

Second, we study the best position selection strategy. The
local optimality of this strategy can be proved in the premise
that no look-ahead strategy is considered in this insertion
algorithm, which will increase the complexity of the inser-
tion algorithm. If we assume that when inserting a job, the
following jobs are not considered, the optimal insertion posi-
tion should be the one that increases the least setup time. This
is because when we try to insert a job, the revenue and the
processing time of the job are fixed. Since the total schedul-
ing horizon is limited, the optimal insertion should be the
one that inserts the job successfully (i.e., receives the rev-
enue) as well as maximizes the remaining scheduling space
for following jobs. The strategy guarantees that if a job can be
inserted, the increased setup time is minimal. So this strategy
finds the optimal insertion of a job.
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Fig. 14 The performance of ALNS/TP (no time slack) compared to the full ALNS/TPF algorithm on the TDOPTW problem
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Fig. 16 The performance of ALNS/TP (no selection) compared to the full ALNS/TPF algorithm on the OAS problem for different values of τ and
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The algorithm without selection (ALNS/TP (no selec-
tion)) is compared with ALNS/TPF in Fig. 15. The strategy
works significantly better on the OAS problem than it does
on the other two domains. This is because for the AEOSS
problem, the time windows of jobs are relatively short com-
pared with the scheduling horizon. And for the TDOPTW
problem, the number of jobs in the solution is small. There-
fore for these two problems, when inserting a candidate job,
the number of possible positions to insert the job is limited
compared with the OAS problem. The selection of the best
position does not improve the performance of the algorithm
on these two domains much. This can also be proved by
Fig. 16. For the OAS problem, the selection works better
when τ is smaller and R is larger. When the time window is
longer, the number of possible insertion positions also gets
larger. In this case a sorting strategy to compare the inser-
tion positions works well. When R is larger, the jobs in the
current solutions have similar time windows. The candidate
job to be inserted can neighbour more jobs in the solution,
resulting in a larger number of possible insertion positions.

To sum up, from the algorithmic analysis of this section,
we derive the following conclusions: (1) the insertion tabu
and the removal tabu work better when the completion ratio
is low, and the instant tabu works better when there are fewer
jobs in the solution sequence; (2) our tight hybridization of
ALNS and TS works better than the two-stage hybridization;
(3) the multiple neighbourhood operators can be selected
adaptively by the algorithm according to the properties of
different problems; the randomization strategy performswell
by improving the solution quality and reducing runtime; (4)
the PSD works better when the instance grows in size, which
proves that it helps to combine parts of different solutions,
when the solution sequence gets long; (5) the best position
selection contributes much to the solution quality, but also
consumes more time; and (6) the time slack strategy works
well in terms of solution quality and time complexity.

Comparison with state-of-the-art algorithms

In this section, we compare the performance of the full algo-
rithm, ALNS/TPF, against state-of-the-art algorithms and
solvers on each of the three domains.4 Furthermore, we com-
pare the proposed algorithm with IBM ILOG CP Optimizer
(CPO) (Laborie et al. 2018) on a relaxed OAS problem. We
do not compare the algorithm with CPO on the three original
problems because CPO does not support the time-dependent
setup constraints of the AEOSS problem and the TDOPTW

4 The source code of our algorithm is available https://doi.org/10.4121/
uuid:3a23b216-3762-4a61-ba2c-d3df6dc53268, and the datasets used
in this paper are available https://doi.org/10.4121/uuid:1a4e5895-7dae-
4b6a-9315-a9e8cb463d73.

problem and the special setup constraints (i.e., with the ‘max’
term) of the OAS problem well. More details about this can
be found in “Comparison with CP optimizer” section.

Parameter setting

First, we provide the parameter setting of the algorithm for
the three problems. The use of TS, the randomized oper-
ators, PSD, and FI is set according to the conclusions of
the algorithmic analysis reported in “Algorithmic analysis”
section. Other parameters such as the number of jobs to
remove are set empirically through some exploratory exper-
iments. Although these parameters are not optimal for all the
instances, they provide relatively good solutions. The param-
eters are listed in Table 3. In Table 3, ca is the coefficient of
annealing to update the temperature. The temperature at the
i th iteration is Ti = caTi−1. The three score increments are
used for different performances of the selected operators: σ3
is added to the score if a new best solution is found; σ2 is
added to the score if a new solution which is better than the
current solution is found; σ1 is added to the score if a new
solution which is worse than the current solution is found,
but it is accepted by the SA criterion.

Note that among all these parameters, only the maximum
iteration and the use of the instant tabu are different on the
three domains, which shows the robust performance of our
algorithm on diverse problem instances.

The algorithm has two terminal conditions: when the
maximum iteration is reached or when all the jobs are sched-
uled and get the full revenue (i.e., when the upper bound is
reached). The maximum iteration is set so that the algorithm
has similar runtime as its competing algorithms on the three
domains. For the AEOSS problem, we set another terminal
condition, when the solution is not improved for continuous
1000 iterations, because the algorithm converges fast on the
AEOSS domain.

OAS problem

The ALNS/TPF algorithm is compared with state-of-the-
art algorithms including DRGA (Nguyen et al. 2015), LOS
(Nguyen 2016),ABC (Lin andYing 2013),HSSGA (Chaura-
sia and Singh 2017), EG/G-LS (Chaurasia and Singh 2017),
and ILS (Silva et al. 2018). A MILP formulation by the
CPLEX solver has been tested byCesaret et al. (2012), which
shows bad performance for large instances withmore than 15
instances. Therefore we do not compare ALNS/TPF against
CPLEX in this section.

OurALNS/TPF is run on Intel Core i5 3.20GHzCPUwith
8GB memory, using a single core. The results of other meth-
ods are from the respective articles, which were obtained
using different machines with Intel Core i5, i7 and Xeon
CPU, 3.00–3.40GHz, 4–16GB memory. Besides, unmen-
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Table 3 Parameter setting of the
algorithm for the three problems

Parameter name OAS AEOSS TDOPTW

Maximum iteration 1000n 10,000 50,000

Maximum iteration of no improvement – 1000 –

Number of jobs to remove pd 0.1|S| 0.1|S| 0.1|S|
Weight update parameter λ 0.5 0.5 0.5

Coefficient of annealing ca 0.9975 0.9975 0.9975

Score increment σ1 10 10 10

Score increment σ2 20 20 20

Score increment σ3 30 30 30

Removal tabu Yes Yes Yes

Insertion tabu Yes Yes Yes

Instant tabu No No Yes

Randomized neighbourhood operators Yes Yes Yes

Partial sequence dominance Yes Yes Yes

Fast insertion algorithm Yes Yes Yes

tioned details such as cache size can have a significant effect
on the runtime. Hence we do not report detailed CPU time.
On average, all the methods have comparable performance
in terms of CPU time. According to the data reported in the
references, ILS uses most time and ABC the least.

The solution quality of instances with 25–100 jobs are
shown in Tables 4, 5 and 6.5 Regarding the solution quality,
we compare the gaps of these algorithms to the upper bounds
by Cesaret et al. (2012). ALNS/TPF, TDRGA, LOS and ILS
are run ten times on each of the instances. The average gaps
of the ten runs for each instance are calculated first. Then
for each group of instances with the same parameters, we
calculate the minimum, average and maximum gaps of the
ten instances in this group. The other three algorithms, ABC,
HSSGA and EA/G-LS are run only once for each instance.
Due to this, these methods can sometimes reach the opti-
mal solution, resulting in a lower solution gap. DRGA and
LOS only reported rounded-down integer values. But it is
still obvious that ALNS/TPF produces the best solutions on
nearly all the instances.

AEOSS problem

We compare the proposed ALNS/TPF with our previous
algorithm called ALNS/TPI (He et al. 2018), the standard
ALNS (Liu et al. 2017), the ILS algorithm (Peng et al. 2018),
and an MIP model from He et al. (2018). We have obtained
the source codes for the standard ALNS and the ILS algo-
rithm from the corresponding authors. All algorithms are run

5 For the gaps of instances with 25 and 50 jobs reported by Silva et al.
(2018), we identify some mistakes because the gaps in their table are
smaller than the gaps between their tight upper bounds and the upper
bounds by Cesaret et al. (2012). Therefore we decide not to include ILS
in the comparison of instances with 25 and 50 jobs.

on an Intel Core i5 3.20GHz CPU, 8GB memory, running
Windows 7; only a single core is used. IBM ILOG CPLEX
version 12.8 is used forMIP solving. A time limit of 3600s is
set forMIP solving, which uses more than 100x asmuch run-
ning time as ALNS/TPF does. The results for metaheuristics
are the average of ten runs.

We compare the solution quality and the CPU time. The
solution quality is the percentage of the total revenue of
scheduled jobs (i.e., the objective value) divided by the total
revenue of all the jobs. Table 7 shows the comparison of the
five different algorithms. It shows that the CPU time of the
ALNS/TPF increases slowly with the increasing number of
jobs, and is about ten times faster than ILS, which is the
fastest one among other algorithms. The solution quality is
consistently higher than that of ILS, ALNS/TPI and ALNS.
As expected, MIP by CPLEX can only find optimal solu-
tions for small-size instances but performs badly when the
instance size gets large. For the four small instanceswith opti-
mal solutions by CPLEX, ALNS/TPF, ALNS/TPI and ILS
also find the same optimal solution. Among all the methods,
the standard ALNS performs the worst, consuming a long
time to produce solutions with the lowest quality. Finally,
Fig. 17 shows the anytime quality of different algorithms for
the instance with 600 jobs distributed worldwide (CPLEX
found no feasible solution within the time limit).

Then we study how the performance gaps between
ALNS/TPF and other algorithms change with the increasing
number of jobs. We evaluate the performance gap between
an algorithm A and ALNS/TPF by the following formula:

GapA = SolutionQuali t yALNS/T PF − SolutionQuali t yA
SolutionQuali t yALNS/T PF

(10)
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From Fig. 18 we can find that gaps between the perfor-
mance of ALNS/TPF and those of other algorithms tend to
grow when there are more jobs and when jobs are distributed
densely (i.e., when the conflict among jobs is higher). The
performance of the standard ALNS decreases quickly when
the problem grows in size and our proposed ALNS/TPF per-
forms well for large and difficult instances.

TDOPTW problem

The ALNS/TPF algorithm is compared with the ACS algo-
rithm by Verbeeck et al. (2017). A MILP formulation by the
CPLEX solver has been tested by Verbeeck et al. (2017),
which shows bad performance for large instances with more
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Fig. 17 Anytime quality of different algorithms for the instance with
600 jobs distributed worldwide

than 20 instances. Therefore we do not compare ALNS/TPF
against CPLEX in this section.

Our ALNS/TPF is run on Intel Core i5-3470 3.20GHz
CPU with 8GB memory, using a single core. For the ACS
method, we present the results from the respective article.
Since ACSwas run on a high performance computing system
(48 Intel Xeon processors and 384 GBmemory), the runtime
of the two algorithms cannot be compared directly. We do
not report detailed CPU time here.

The solution quality of this problem is evaluated by the
total revenue of the solution (i.e., the value of the objective
function). The total revenue of instances with 25–100 jobs is
shown in Table 8. ALNS/TPF produces the best solutions on
all the instances. Besides, ALNS/TPF performs much better
than ACS when the instances grow in size (i.e., more jobs
and longer scheduling horizon).

Comparison with CP Optimizer

Finally, we compare ALNS/TPF with the state-of-the-art
commercial optimizer for scheduling problems, the IBM
ILOGCPOptimizer (CPO), which is widely used in schedul-
ing problems and shown to be very effective for this class of
problems (Laborie et al. 2018).

CPO has a global constraint propagator NoOverlap for
setup constraints,which is very efficient (Laborie et al. 2018).
However, NoOverlap does not support time-dependent con-
straints of the AEOSS problem and the TDOPTW problem
and the ‘max’ term in the setup constraints of the OAS
problem mentioned in “Problem datasets” section. It is pos-
sible to build a constraint programming model that reasons
only locally on direct neighbours of jobs. However, such a
model turned out to be too slow to be acceptable. According
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Fig. 18 The gaps of different algorithms to ALNS/TPF on the AEOSS problem. Cplex can only find the optimal solution for four instances within
the 3600 s time limit
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Table 8 Total revenue of ACS
and ALNS/TPF on the
TDOPTW problem

Name n tmax (h) Time windows ACS ALNS/TPF

S, M, L Min Avg Max Min Avg Max

20.1.1 20 8 S 159 159 159 159 159 159

20.1.2 20 8 M 173 173 173 173 173 173

20.1.3 20 8 L 183 183 183 183 183 183

20.2.1 20 10 S 188 188 188 188 188 188

20.2.2 20 10 M 201 201 201 201 201 201

20.2.3 20 10 L 195 195 195 195 195 195

20.3.1 20 12 S 277 277 277 277 277 277

20.3.2 20 12 M 245 245 245 245 245 245

20.3.3 20 12 L 259 259 259 259 259 259

20.4.1 20 14 S 274 274 274 274 274 274

20.4.2 20 14 M 275 275 275 275 275 275

20.4.3 20 14 L 268 268 268 268 268 268

50.1.1 50 8 S 288 288 288 288 288 288

50.1.2 50 8 M 274 274 274 274 274 274

50.1.3 50 8 L 289 289 289 289 289 289

50.2.1 50 10 S 298 298 298 298 298 298

50.2.2 50 10 M 310 310 310 310 310 310

50.2.3 50 10 L 340 340 340 340 340 340

50.3.1 50 12 S 339 339 339 346 346 346

50.3.2 50 12 M 404 404 404 404 404 404

50.3.3 50 12 L 366 366 366 366 366 366

50.4.1 50 14 S 471 476.6 478 478 478 478

50.4.2 50 14 M 435 439.8 441 441 441 441

50.4.3 50 14 L 450 450 450 450 450 450

100.1.1 100 8 S 275 275 275 275 275 275

100.1.2 100 8 M 278 278 278 278 278 278

100.1.3 100 8 L 343 343 343 343 343 343

100.2.1 100 10 S 351 351.2 352 351 351.2 352

100.2.2 100 10 M 366 366.6 367 367 367 367

100.2.3 100 10 L 370 370 370 370 370 370

100.3.1 100 12 S 435 436 437 437 437 437

100.3.2 100 12 M 444 446.6 454 449 453.5 454

100.3.3 100 12 L 466 467 468 470 470 470

100.4.1 100 14 S 478 480 484 482 483.8 484

100.4.2 100 14 M 491 494.6 497 495 496.8 497

100.4.3 100 14 L 519 526.8 538 538 539.6 540

Avg. 327.1 327.9 328.8 328.7 329 329.1

The best results among the algorithms compared are highlighted in bold

to the experiments with time limit of ten minutes, for the
AEOSS problem, it only finds feasible solutions for 5 out
of 27 instances tested; for the OAS problem, it only finds
feasible solutions for 20 out of 75 instances tested; for the
TDOPTW problem, it finds no feasible solution for all the
instances within the time limit. The solution quality is also
poor compared with the solutions found by the metaheuris-
tics. According toAguiarMelgarejo (2016), a CPmodel with
such constraints reasoning locally on direct neighbours is

around 100 times slower than the model with the global con-
straint propagator. Clearly, CPO is not suitable for the three
problem domains studied in this paper.

To compare ALNS/TPF against CPO with global con-
straint NoOverlap, we relaxed the setup constraint of the
OAS problem as pi + di + si j ≤ p j . Note that we do not do
this on the other two problems because relaxing the time-
dependent setup constraints will make them too different
from the original ones.We compare the total revenue (i.e., the
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Table 9 Comparison between ALNS/TPF and CPO on relaxed OAS
problem

n = 100 R Total revenue CPU time (s)

τ ALNS/TPF CPO ALNS/TPF CPO

0.1 0.1 1076.10 1075.00 27.22 600.00

0.3 979.10 978.00 28.79 600.00

0.5 1169.00 1169.00 0.72 0.09

0.7 1039.00 1039.00 0.02 0.09

0.9 1163.00 1163.00 0.02 0.09

0.3 0.1 1018.40 1017.00 25.83 600.00

0.3 1045.00 1041.00 26.89 600.00

0.5 1030.00 1030.00 27.95 600.00

0.7 1184.20 1185.00 18.56 18.83

0.9 1094.00 1094.00 20.07 1.63

0.5 0.1 1217.40 1210.00 22.56 600.00

0.3 989.80 988.00 25.54 600.00

0.5 1043.50 1042.00 27.78 600.00

0.7 1030.41 1032.00 28.90 600.00

0.9 1094.59 1094.00 30.39 600.00

0.7 0.1 1039.70 1039.00 20.09 600.00

0.3 1126.60 1124.00 22.27 600.00

0.5 985.90 981.00 22.96 600.00

0.7 1020.06 1016.00 21.86 600.00

0.9 1019.48 1014.00 31.77 600.00

0.9 0.1 1027.10 1027.00 13.60 600.00

0.3 975.10 976.00 13.69 600.00

0.5 897.21 889.00 16.25 600.00

0.7 983.56 983.56 17.64 600.00

0.9 928.57 927.24 19.10 600.00

Avg. 1047.07 1045.35 20.42 480.83

The best results among the algorithms compared are highlighted in bold

value of the objective function) and CPU time of ALNS/TPF
and CPO on the relaxed problem, with time limit of ten min-
utes for each instance.Other settings are as in “OASproblem”
section. In this experiment, we only run the algorithms on the
first instance in each group of the OAS instances with 100
jobs and the same τ and R, because there are 10 instances in
each group, and running the algorithms on all the instances
takes too long time. The results of ALNS/TPF and CPO are
shown in Table 9. The values of ALNS/TPF are the aver-
age of ten runs. It is clear that ALNS/TPF produces better
solutions with less time compared with CPO.

Conclusions

The application of artificial intelligence techniques in the
intelligent manufacturing industry offers a crucial opportu-
nity to improve productivity and profit (Rao et al. 1999).

This article studied an important class of over-subscribed
scheduling problems in the intelligent manufacturing indus-
try, which is characterised by time-dependency and/or
sequence-dependency with time windows. We developed a
novel hybridization of adaptive large neighbourhood search
(ALNS) and tabu search (TS).We further introduced random-
ized generic neighbourhood operators, a partial sequence
dominance heuristic, and a fast insertion strategy to the
ALNS-TS hybridization. A detailed analysis of the algo-
rithmic features provided evidence that: (1) the insertion
tabu and the removal tabu work better when the comple-
tion ratio is low, and the instant tabu works better when there
are fewer jobs in the solution sequence; (2) the randomiza-
tion strategy in the neighbourhood operators works well in
terms of the solution quality and the running time; (3) the
partial sequence dominance heuristic performs better when
the problem instance grows in size, indicating that it helps
to combine parts of different solutions, when the solution
sequence gets long; and (4) the fast insertion strategy con-
tributes most to the performance, but also consumes the most
time compared with other features.

An extensive empirical study on three domains demon-
strated that, compared with the state-of-the-art approaches,
our proposed ALNS/TPF produces solutions with higher
quality in less time. The proposed algorithm is an intermedi-
ate approach between general methods and problem-specific
methods, which exhibits better efficiency in solving this
class of scheduling problems and can be generalized to dif-
ferent problem domains easily. Our work also proves that
tight ALNS and TS hybridization is an efficient method for
this class of scheduling problems. We believe generalizing
this algorithm to other similar scheduling problems such as
the multi-machine scheduling problem and the vehicle rout-
ing problem is relatively straightforward, since these novel
techniques are applicable on such problems with similar
sequencing and selecting properties.

In this article, we reported the identified correlations
between algorithmic features and problem properties. How-
ever, selecting the optimal algorithmic features for new
problems remains difficult. A research challenge remaining
for further work is to let the algorithm learn this automati-
cally.We believe the combination of onlinemachine learning
and optimization is a promising research direction towards
this goal. The algorithm could learn such correlations dur-
ing the optimization process and uses this knowledge to tune
itself towards different problem domains, so that it can be
applied to a set of problems without careful customization.
By publishing the source code of our algorithm and providing
all problem instances, we aim to facilitate such further study
of the use of artificial intelligence techniques formanufactur-
ing, as well as the use of this algorithm for other real-world
problem domains.
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Appendix A: Fast insertion algorithm

The fast insertion algorithm first evaluates the feasibility and
the cost of all the positions rapidly by a concept called time
slack. Then the best position is selected to insert the job. The
insertion algorithm is used in the repairing process when we
insert jobs back to the solution. The detailed process of the
fast insertion algorithm is shown in Algorithm 3.

Time slack and due time slack We set all the jobs to start
as early as possible. Therefore when inserting one job into
the current solution at a position, it is possible to create more
space for the candidate job by postponing some jobs in the
solution. In order to determine how much one job can be
postponed, we adopt the time slack idea from Verbeeck et al.
(2017). We further propose the due time slack heuristic for
problems like the OAS problem fromOğuz et al. (2010) with
tardiness penalty. The due time is a time point in the time
window of a job. If a job starts after its due time, it receives
some penalty on its revenue.

The time slack is defined as themaximumamount of time a
job can be postponed before the solution becomes infeasible.
The time slack of each job depends on the latest start time of
its succeeding job. Thus it is calculated from the last job to
the first one in a back-propagation manner. Let oi be the i th

job in the current solution, oi+1 be its immediate successor

Algorithm 3: Fast insertion algorithm
Input: Current solution S, Destroyed solution SD , candidate job

oc
Output: The solution SD

1 function FastInsertion(S, SD, oc)
2 for each scheduled job oi in SD do
3 if ec > bi then
4 t1 ← Calculate the start time of oc if it is inserted

after oi
5 tT emp ← Calculate the temporary start time of oi+1

after oc
6 t2 ← tT emp − pi+1
7 if t1 > ec ∨ t2 > time slack of oi+1 then
8 continue
9 else

10 if t1 ≤ ēc ∧ t2 ≤ due time slack of oi+1 then
11 Positioni .SetupIncrease ←

sic + sc(i+1) − si(i+1)
12 Add Positioni into position list PL1
13 else
14 Positioni .Fitness ← Calculate the total

fitness if oc is inserted
15 if Positioni .Fitness > f (SD) then
16 Add Positioni into position list PL2

17 if PL1 �= ∅ then
18 Best Posi tion ← Select the position increasing

minimum setup time
19 Insert oc into SD at Best Posi tion
20 Update start times and time slacks
21 else
22 if PL2 �= ∅ then
23 Best Posi tion ← Select the position increasing

maximum fitness
24 Insert oc into SD at Best Posi tion
25 Update start times and time slacks

26 return SD

and |S| be the number of jobs in the current solution S. The
latest start time of oi is calculated by:

pLatei =
{
max{min{pLatei+1 − si(i+1) − di , ei }, bi } if 1 ≤ i < |S|
ei if i = |S|

(11)

The latest start time of the last job in the solution is the latest
start time defined by its time window. Then the time slack of
oi can be calculated by pLatei − pi .

The due time slack is the maximum amount of time a
job can be postponed without adding any penalty to any job.
Similarly, to calculate the due time slack of a job, the latest
start time of the job without receiving any penalty should be
calculated. Let bi < ēi < ei be a time point called the due
time in the timewindow of oi , after which if the job is started,
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it receives some penalty on its revenue. The latest start time
of the job without receiving any penalty is

pDueLate
i

=
{
max{min{pDueLate

i+1 − si(i+1) − di , ēi }, bi } if 1 ≤ i < |S|
ēi if i = |S|

(12)

Then the due time slack of oi can be calculated by pDueLate
i −

pi .
These heuristics facilitate determining the feasibility and

the cost of one insertion only by comparing the time needed
with the corresponding slack.

Best position selection For every candidate job, we cal-
culate all possible insertion positions by comparing its time
windowwith the current solution. For each possible solution,
we do the following evaluation: Suppose we are evaluating
the position between jobs oi and oi+1 for the candidate job
oc, we calculate the start time of oc if it is inserted after oi
(denoted as t1) and the time oi+1 needed to be postponed
(denoted as t2). If t1 is bigger than the latest start time of
oc or t2 is bigger than the time slack of oi+1, the position
is given up; if t1 is smaller than the due time of oc and t2 is
smaller than the due time slack (note that the due time slack is
always smaller than the time slack), we calculate the increase
of setup time if inserting oc, which is sic + sc(i+1) − si(i+1)

and add the position to candidate position list 1, PL1; oth-
erwise (i.e., if t1 is larger than the due time of oc or t2 is
larger than the due time slack), we calculate the total fitness
of the solution if we insert the job at this position and if it
increases the fitness, we add the position to the candidate
position list 2, PL2. Finally, if PL1 is not empty, the posi-
tion with the smallest value of the increase of setup time
in PL1 is selected to insert the job; otherwise, the position
with the highest total fitness in PL2 is selected to insert the
job. If both PL1 and PL2 are empty, the candidate job is
given up.

We select the position according to the above strategy
because when PL1 is not empty, the candidate job can be
inserted without receiving any penalty, whichmeans the total
fitness can be increased with the revenue of the candidate
job. In this case we select the position increasing the min-
imum setup time. The rationale is that it is better to use
the time more for processing jobs instead of setting up. If
PL1 is empty, some jobs will receive a penalty. In this case
we have to compute the fitness to find the best insertion
position.

When a job is inserted, the start times of all its succeed-
ing jobs are updated until one whose start time does not
change. The time slacks of all the jobs before the candi-
date job and the jobs whose start time is changed are also
updated.
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