
 
 

Delft University of Technology

The costs and benefits of estimating T1 of tissue alongside cerebral blood flow and
arterial transit time in pseudo-continuous arterial spin labeling

Bladt, Piet; den Dekker, Arnold J.; Clement, Patricia; Achten, Eric; Sijbers, Jan

DOI
10.1002/nbm.4182
Publication date
2019
Document Version
Final published version
Published in
NMR in Biomedicine

Citation (APA)
Bladt, P., den Dekker, A. J., Clement, P., Achten, E., & Sijbers, J. (2019). The costs and benefits of
estimating T

1
 of tissue alongside cerebral blood flow and arterial transit time in pseudo-continuous arterial

spin labeling. NMR in Biomedicine, 33 (2020)(12), Article e4182. https://doi.org/10.1002/nbm.4182

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1002/nbm.4182
https://doi.org/10.1002/nbm.4182


Received: 27 November 2018 Revised: 9 July 2019 Accepted: 14 August 2019
DOI: 10.1002/nbm.4182
S P E C I A L I S S U E R E S E A R CH AR T I C L E
The costs and benefits of estimating T1 of tissue alongside
cerebral blood flow and arterial transit time in pseudo‐
continuous arterial spin labeling
Piet Bladt1 | Arnold J. den Dekker1,2 | Patricia Clement3 | Eric Achten3 | Jan Sijbers1
1 imec‐Vision Lab, Department of Physics,

University of Antwerp, 2610 Antwerp, Belgium

2Delft Center for Systems and Control, Delft

University of Technology, 2628 CD, Delft, The

Netherlands

3Department of Radiology and Nuclear

Medicine, Ghent University, 9000 Ghent,

Belgium

Correspondence

Piet Bladt, imec‐Vision Lab, Department of

Physics, University of Antwerp, 2610 Antwerp,

Belgium.

Email: piet.bladt@uantwerpen.be
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

This is an open access article under the terms of th

medium, provided the original work is properly cite

© 2019 The Authors. NMR in Biomedicine publishe

List of abbreviations: ASL, arterial spin labeling; ATT, arter

gradient‐echo and spin‐echo; HR, high resolution; KW, Kr

spin labeling; PCASL, pseudo‐continuous arterial spin labe

SAR, specific absorption rate; SCM, single‐compartment mo

NMR in Biomedicine. 2019;e4182.

https://doi.org/10.1002/nbm.4182
Multi‐post‐labeling‐delay pseudo‐continuous arterial spin labeling (multi‐PLD PCASL)

allows for absolute quantification of the cerebral blood flow (CBF) as well as the arte-

rial transit time (ATT). Estimating these perfusion parameters from multi‐PLD PCASL

data is a non‐linear inverse problem, which is commonly tackled by fitting the single‐

compartment model (SCM) for PCASL, with CBF and ATT as free parameters. The

longitudinal relaxation time of tissue T1t is an important parameter in this model, as

it governs the decay of the perfusion signal entirely upon entry in the imaging voxel.

Conventionally, T1t is fixed to a population average. This approach can cause CBF

quantification errors, as T1t can vary significantly inter‐ and intra‐subject. This study

compares the impact on CBF quantification, in terms of accuracy and precision, of

either fixing T1t, the conventional approach, or estimating it alongside CBF and

ATT. It is shown that the conventional approach can cause a significant bias in CBF.

Indeed, simulation experiments reveal that if T1t is fixed to a value that is 10% off

its true value, this may already result in a bias of 15% in CBF. On the other hand,

as is shown by both simulation and real data experiments, estimating T1t along with

CBF and ATT results in a loss of CBF precision of the same order, even if the exper-

iment design is optimized for the latter estimation problem. Simulation experiments

suggest that an optimal balance between accuracy and precision of CBF estimation

from multi‐PLD PCASL data can be expected when using the two‐parameter estima-

tor with a fixed T1t value between population averages of T1t and the longitudinal

relaxation time of blood T1b.
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1 | INTRODUCTION

Pseudo‐continuous arterial spin labeling (PCASL) is a non‐invasive magnetic resonance imaging (MRI) method to quantify brain perfusion.1-3 In

PCASL, a train of very short radiofrequency pulses and gradient pulses inverts the longitudinal magnetization of hydrogen nuclei in arterial blood

as they pass through a plane perpendicular to the blood flow in the carotid region.4 Labeled blood water, serving as an endogenous tracer, travels

through the arterial vascular tree to the brain tissue, where it exchanges with tissue water. After a certain post‐labeling delay (PLD), when (part of)

the labeled bolus has perfused into the brain tissue, a ‘labeled image’ is acquired.5 The difference between a labeled image and an image obtained

without prior labeling provides a relative measure of perfusion.5 Cerebral blood flow (CBF) can be absolutely quantified by fitting a perfusion

model to such difference image data. The accuracy and precision of CBF quantification from PCASL data depend on the ASL acquisition strategy

and the quantification model.

Choosing an acquisition strategy in which the perfusion signal is sampled at multiple PLDs has two distinct advantages. Firstly, it allows for

the quantification of the arterial transit time (ATT), which is the time it takes for blood to flow from the labeling plane to the imaging voxel,

alongside the CBF. Secondly, CBF quantification from multi‐PLD PCASL data is more accurate than from conventional single‐PLD PCASL,1,6,7

which is vulnerable to under‐ or overestimation of CBF, especially when the ATT varies over a large range in a subject or in the studied

population.6,7

The single‐compartment model (SCM), introduced by Buxton et al.,8 is the most widely used quantification model in multi‐PLD PCASL exper-

iments. The SCM takes local variability in the ATT into account and assumes that relaxation of the labeled spins is governed entirely by the lon-

gitudinal relaxation time of brain tissue T1t upon arrival in the imaging voxel.8 While it is known that the SCM overestimates the time the label

resides in tissue,9 this has no impact on the importance of T1t as a possible confounder when quantifying with the SCM. In most cases, T1t is fixed

to a certain population average for white matter (WM) and gray matter (GM). This can compromise the accuracy of CBF quantification for multiple

reasons. Firstly, there is no consensus on average population values for T1t.
10 Furthermore, it has been shown that T1t varies across patients, dif-

fers spatially within one tissue and changes in brain lesions with perfusion disorders, such as stroke,11 neurodegenerative diseases,12 or

tumors.13,14 Finally, ASL images are typically acquired at low spatial resolution, resulting in partial volume effects, which may influence the effec-

tive T1t. In order to avoid a possible estimation bias caused by fixing T1t to a certain value, it can be estimated locally alongside the perfusion

parameters, CBF and ATT. However, adding a parameter to be estimated reduces the estimation precision, which can be problematic in a low‐

SNR imaging modality such as ASL.

The effect of T1t on quantification has been studied in previous work. In15, the impact of different T1t values on CBF quantification was shown

for single‐PLD continuous ASL. Qin et al16 used information criteria to conclude that estimating the CBF, the ATT and T1t is feasible, yet for a very

low spatial resolution (7mm isotropic). In this work, we compare the impact on CBF quantification accuracy and precision of either choosing a fixed

T1t value or estimating it alongside CBF and ATT when fitting the SCM to multi‐PLD PCASL data, acquired at a recommended1 spatial resolution

of 4mm in‐plane and 5mm through‐plane. Furthermore, in order to maximally compensate for the expected reduced precision when estimating

CBF, ATT, and T1t together, the design of the multi‐PLD PCASL experiment is optimized for this three‐parameter estimator. ASL MRI acquisition

settings have often been optimized for pulsed ASL (PASL).17-19 Besides the difference in the kinetic model between PASL and PCASL, experiment

design of PCASL has more parameters to be optimized. Indeed, the optimization of the PASL experiment design is limited to searching optimal

inversion times, while the design of the PCASL experiment can be optimized with respect to both the acquisition time points and the labeling dura-

tion, as will be done in this work. Optimizing the acquisition time points and the labeling duration for a three‐parameter estimator contrasts this

study from recent work of Woods et al.,20 in which the PLDs of a multi‐PLD PCASL experiment were optimized for two‐parameter (i.e., CBF and

ATT) estimation.

The statistical quality assessment of the two‐ and three‐parameter estimator is performed by means of test‐retest simulation and real data

experiments. Both options to solve the inverse problem at hand are at opposite sides of the accuracy‐precision trade‐off. It is our goal to provide

insight in which option balances accuracy and precision of CBF quantification best for the recommended spatial resolution1 in ASL.
2 | THEORY

This section consists of two major parts. Firstly, a two‐ and a three‐parameter estimator for parameter quantification from multi‐PLD PCASL data

are defined in sections 2.1 and 2.2. Secondly, an optimal experiment design method for maximizing the precision of perfusion parameter estima-

tion with the three‐parameter estimator is proposed in section 2.3.
2.1 | Single‐compartment quantification model for PCASL data

The intensity and dynamic evolution of the PCASL difference signal ΔM in a certain voxel depend on the acquisition settings and on the global or

local characteristics of the brain and its vasculatory system. When assuming that labeled water enters the tissue instantaneously upon arrival in
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the imaged voxel and that the concentration of labeled water is constant throughout the label bolus, PCASL difference data can be described by

Buxton's SCM8:

gðtÞ ¼

0 0 < t < Δt

2αM0bfT
′
1te

−Δt=T1b 1 − e
−t−Δt
T′
1t

� �
Δt < t < τ þ Δt

2αM0bfT
′
1te

−Δt=T1b e
−t−τ−Δt

T′
1t 1 − e−τ=T

′
1t

� �
t > τ þ Δt

8>>>><
>>>>:

(1)

with f the CBF, Δt the ATT, α the labeling efficiency,M0b the signal of a voxel filled with fully relaxed blood, T1b the longitudinal relaxation time of

blood, and T′
1t ¼ T1tλ=ðλþ fT1tÞ the apparent longitudinal relaxation time, with λ the equilibrium blood/tissue partition coefficient of water.8 The

time point t=0 is defined as the beginning of labeling.

In the model described by Equation (1), the labeling duration τ is assumed to be constant. PCASL data is acquired at a certain acquisition time

ti=τ+PLDi. In a standard PCASL sequence, it is not possible to acquire data during labeling. Therefore, for a fixed τ, data can only be acquired at

acquisition times t>τ. Hence, unless Δt>τ, a significant part of the dynamic increase of the difference signal, described by the second regime in

Equation (1), is not accessible for sampling, while it might contain valuable information. A way to nevertheless acquire data at acquisition times

t<τ is to choose a shorter labeling duration τs<τ and sample the signal at t=τs+PLDs, with PLDs a post‐labeling delay that is shorter than the minimal

Δt. This short PLD is crucial to allow sampling of the PCASL signal during the second regime. It has been shown by Buxton et al.8 that the entire

dynamic increase of the difference signal for a labeling duration τs<τ equals the initial part of this regime for a labeling duration τ.8 Therefore, the

entire evolution of the difference signal for a constant labeling duration τ, described by Equation (1), can be sampled at each time point t by using

the sampling procedure described above. Throughout this work, a multi‐time‐point PCASL acquisition scheme can therefore be defined by a single

constant τ and a set of acquisition time points t ¼ ftigNi¼1, knowing that for each ti<τ the real data acquisition needs to be performed with a unique

τs<τ in combination with a very short PLDs.

2.2 | Maximum likelihood estimation

Parameter estimation in this work is performed with the maximum likelihood estimator (MLE), which takes the probability distribution of the data

into account. PCASL difference data result from the voxel‐wise subtraction of two magnitude images, the control and label image. Typically, the

intensity of magnitude images, reconstructed from data acquired with multiple coils, follows a Rician or non‐central chi‐distribution, depending on

the reconstruction method.21 However, knowing that these images are typically acquired at a low spatial resolution, which guarantees a reason-

ably high SNR, it can be assumed that the intensities in control and label images follow a Gaussian distribution.22,23 In that case, the resulting dif-

ference data will also be adequately described by a Gaussian distribution. Therefore, the joint probability density function (PDF) of PCASL

difference data is well approximated by a multi‐variate Gaussian distribution. For independent Gaussian distributed data, having a constant (noise

induced) variance in each data point, the MLE is equivalent to the unweighted non‐linear least‐squares estimator (NLE)24:

bθ ¼ arg max
θ

LðθjΔMÞ ¼ arg min
θ

∑
N

i¼1
ΔMi−gðti; θÞð Þ2; (2)

with θ the parameter vector, bθ the MLE, ΔM ¼ fΔMigNi¼1 a set of PCASL difference data points acquired at acquisition times t ¼ ftigNi¼1 and

L(θ|ΔM) the likelihood function. Two options for the parameter vector, θ1={ f ,Δt} and θ2 ¼ f f; Δt; T0
1tg, give rise to a two‐parameter NLE

(NLE2) and a three‐parameter NLE (NLE3), respectively.

2.3 | Optimization of multi‐PLD PCASL acquisition settings for NLE3

The precision of NLE3 will be lower than that of NLE2 due to the larger amount of unknown parameters to be estimated. However, the precision

of NLE3 can be maximized by optimizing the experimental design. Cramér‐Rao lower bound (CRLB) theory is the tool of choice to build such an

optimization framework. The relation between the CRLB and the variance of any unbiased estimator bθ of θ is summarized by the Cramér‐Rao

inequality25:

covðbθÞ ≥ I−1ðθÞ; (3)

with covðbθÞ the covariance matrix of bθ and I−1(θ) the inverse of the Fisher information matrix (FIM). The inverse of the FIM is often referred to as

the CRLB matrix. The diagonal elements of the CRLB matrix are the Cramér‐Rao lower bounds on the variances of unbiased estimators of the

elements of θ.24
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The FIM I(θ) of a set of data points depends on the joint PDF of these data points and its dependence on the unknown parameter vector θ. The

latter dependence is captured by the parametric perfusion model g(θ) that describes the expected values of the data points. Since this model

depends on the acquisition settings of the multi‐PLD PCASL experiment, so does the FIM and the CRLB matrix. This last dependency can be

exploited for experiment design. Starting from the CRLB matrix, different optimization criteria can be chosen by transforming it to a scalar func-

tion26:

qh θð Þ ¼ ∂hðθÞ
∂θT

IðθÞ−1∂hðθÞ
∂θ

; (4)

with h(θ) a scalar function and ∂h(θ)/∂θT a row vector. In this work, the choice was made to focus on maximizing the precision of CBF estimation as

this is the main parameter of interest. The CRLB of f can be isolated by choosing h(θ)= f in Equation (4).

For a certain choice of τ, the CRLB of f can be minimized with respect to t. The CRLB also depends on the underlying parameter vector θ,

which varies spatially within the brain as well as between different subjects. Therefore, optimization of the acquisition settings should be per-

formed for a representative prior distribution p(θ) of θ in the target population. For a continuous prior distribution, the optimal acquisition times

t, for a given value of τ, are found by minimizing a weighted integral:

bt ¼ arg min
t
∫
θ
qhðθ; tÞpðθÞdθ

����
hðθÞ¼ f

: (5)

Note that Equation (5) represents a general framework for optimization of PCASL settings. Indeed, the scalar function h(θ) provides flexibility

with respect to which parameters are chosen for optimization of the acquisition settings. For example, the trace of I−1(θ) could be minimized with

hðθÞ ¼ f þ Δtþ T
0
1t.

The integral in Equation (5) can be approximated by evaluating qh(θ,t) at a large number M of randomly selected samples of p(θ). The optimi-

zation in Equation (5) can therefore be approximated by

bt ¼ arg min
t

1
M

∑
M

j¼1
qh θj; t
� ������

hðθÞ¼ f

; (6)

with θj a randomly selected sample from p(θ).

Besides t, the labeling duration τ and the number of PCASL label‐control image pairs N are also optimizable. Therefore, the optimization in

Equation (6) was repeated for multiple values of τ and N:

f~t; ~τ ; Ñg ¼ argmin
fτ; Ng

min
t

∑
M

j¼1
qhðθj; t; τÞ

�����
hðθÞ¼ f

8<
:

9=
;: (7)

Note that acquisition schemes are optimized for different values of τ and N instead of optimizing them alongside t, which would be impractical.

Indeed, optimizing N alongside t would change the dimensionality of the optimization space within the optimization, which is not possible in most

optimization algorithms. Furthermore, for each labeling duration, there will be a different set of optimal acquisition time points t. Therefore, opti-

mizing τ together with t will increase the number of local minima in the optimization space, and thereby increase the risk of ending up in a local

minimum. On top of that, this multi‐step approach allows to study how the minimized criterion changes as a function of τ and N.

In order to guarantee clinically feasible results, the optimization is performed under a fixed total acquisition time constraint. The total time

needed to obtain a PCASL label or control image is determined by the acquisition time ti, the read‐out time and the additional waiting period

for MR specific absorption rate (SAR) limit restrictions. Only ti is independent of the read‐out approach and the subject. As it is not our goal to

optimize for a specific readout strategy or a single subject, a total acquisition time constraint T was imposed only on the read‐out‐ and subject‐

independent acquisition time of N PCASL label‐control image pairs:

f~t; ~τ; Ñg ¼ argmin
fτ; Ng

min
t

∑
M

j¼1
qhðθj; t; τÞ

�����
hðθÞ¼ f;∑N

i¼12ti≤T

8<
:

9=
;; (8)

The optimization problem Equation (8) was solved using the MATLAB function patternsearch,27,28 thereby imposing ti<ti+1 (without loss of

generality) and using a large number of randomly generated starting points t0.



BLADT ET AL. 5 of 17
3 | METHODS

In order to analyze the accuracy and precision of the estimators, four distinct experiments were performed. As a first indication of the

identifiability of the parameters of NLE2 and NLE3, the condition number of both inverse problems is determined in section 3.1. In section 3.2,

details of the optimization experiment are specified starting from the optimization framework for NLE3 introduced in section 2.3. The perfor-

mance of NLE2 and NLE3 are compared in a simulation and a real data experiment. Details of these experiments are described in section 3.3

and 3.4, respectively. Throughout all experiments, α=0.854 and T1b=1.65 s.29 The equilibrium magnetization of blood M0b was set to one for

the optimization and in the simulation experiment. In the real data experiment, it was approximated using a proton density‐weighted image

M0t, according to recommendations,1 and subsequently given as a fixed value to the estimator.

3.1 | Parameter identifiability analysis

The identifiability of the parameters in a parameter estimation problem can be quantified by the condition number of the associated FIM. The

larger this condition number, the more ill‐conditioned (and hence noise sensitive) the estimation problem. The extreme case of an infinite condi-

tion number corresponds with a singular FIM, reflecting that the parameter estimation problem is ill‐posed. This means that the CRLB does not

exist and the model parameters are unidentifiable.24 In a more moderate case, a high FIM condition number indicates an ill‐conditioned inverse

problem symptomized by a low precision, high correlations between parameters and poor identifiability.30-33 The condition number κ of the

FIM I(θ,t,τ) is calculated for NLE2 and NLE3 as33:

κ I θ; t; τð Þð Þ ¼ jjIðθ; t; τÞ−1jj2jjI θ; t; τð Þjj2 ¼ σminðIðθ; t; τÞÞ
σmaxðIðθ; t; τÞÞ; (9)

with ||·||2 the Euclidean norm, and σmin(·) and σmax(·) the maximal and minimal singular value of the FIM, respectively. To compare the identifiability

of the parameters of the two‐ and three‐parameter model employed by NLE2 and NLE3, respectively, the condition number of the corresponding

FIMs were calculated for multiple randomly selected parameter vectors θ from the prior distribution p(θ) of WM and GM, defined in section 3.2,

and assuming an N=24 equidistant sampling scheme.

3.2 | Experiment design optimization

When performing the optimization for NLE3 defined in Equation (8), a prior distribution p(θ) needs to be chosen that reflects the target population.

In this work, it is our goal to test the overall feasibility of NLE3, which is not specific to a certain pathology. To that end, p(θ) was approximated by

a Gaussian distribution based on reported distributions in the literature for both WM and GM in the general population,10,34-38 as shown in

Table 1. From the prior distribution of each parameter, for WM and GM, 10000 samples were randomly selected and combined to parameter vec-

tors θj. Therefore, the resulting optimization criterion consists of a sum of M=20000 CRLBs.

The set of evaluated labeling durations ranged from 0.8 to 1.8 s with increments of 0.1 s, while N ranged from 18 to 30 image pairs. As τ is set

to lower durations, the PCASL signal decreases, yet a higher amount of images N can be acquired within the time constraint T. Conversely, the

PCASL signal increases with longer label durations, at a cost of a lower amount of images though. The chosen ranges for τ and N were set wide

enough to explore both extremes and find the optimum in between.

The time constraint T was set to 2 minutes. The resulting total acquisition time depends on the read‐out approach and the SAR requirements.

In this work, real data acquisition was performed using a 3D gradient‐echo and spin‐echo (GRASE) readout scheme39,40 with a readout time of 330

ms per image. For whole brain coverage, two segments would be needed, doubling the total number of images. Assuming a waiting period after

each readout between 500 and 1500 ms to meet SAR requirements, the total acquisition time related to these optimized acquisition schemes was

5 to 8 minutes.
TABLE 1 Mean and standard deviation of Gaussian prior distributions p(θ) representative of the
distribution of the respective parameters in the general population. The prior distribution for T1t is
compatible with reported literature values for a 3T field strength10

White matter Gray matter

f [mL/100g/min] 23.0±5.034-36 53.9±11.037

Δt [s] 1.15±0.3038 0.95±0.3038

T1t [s] 0.89±0.0610 1.45±0.1410
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3.3 | Simulation experiments

Simulation data were generated using the following three‐step procedure. Firstly, starting from ground truth high resolution (HR) brain perfusion

parameter maps and using a five‐parameter two‐compartment perfusion model,16,43 HR PCASL data was created at N=24 conventional equidis-

tant and N=24 optimized acquisition times. The details of both acquisition schemes, which have an identical total acquisition time, are described in

Table 3. Note that Table 3 contains the optimized acquisition scheme, of which the details are more thoroughly described in section 4.2. The

ground truth parameter maps for each of the five parameters were created by assigning random values from their respective prior distributions

(see Tables 1 and 2) to a 1×1×1 mm3 HR brain tissue segmentation map derived from images of BrainWeb.44 For the Δt map, the selection was

performed pseudo‐randomly to guarantee limited differences in Δt values between neighbouring voxels, as they are expected to be supplied

by the same artery. Secondly, as PCASL data is usually acquired at a low resolution due to the low SNR, the HR data was downsampled to a res-

olution of 4×4×5 mm3 by averaging the signals of the 80 corresponding 1×1×1 mm3 HR voxels. Finally, zero‐mean Gaussian distributed noise with

a fixed standard deviation σ was added voxel‐wise to the LR data. Let the SNR in a voxel be defined as the difference signal intensity, averaged

over the entire dynamic perfusion signal range, divided by σ. Then, simulation experiments were run with average SNRs of 10, 15, 20, and 25 in

GM voxels.

Parameter estimation was performed with maximum likelihood estimators NLE2 and NLE3, as defined in section 2.2. For NLE2, T′
1t was fixed

to a tissue‐specific value. Knowing that in a real data experiment the average T1t in WM and GM is not accurately known, three versions of

NLE2 were implemented. The fT′
1;WM; T

′
1;GMg‐couple was set to {0.8 s,1.3 s},{0.9 s,1.45 s} and {1.0 s,1.6 s}, respectively. Note that the second

fT′
1;WM; T

′
1;GMg‐couple contains the true average simulation values. Estimation with NLE3 was studied on equidistant and optimal data. NLE2

was only evaluated using the equidistant data, as the optimization was performed specifically for NLE3.

The process of creating noisy data and re‐estimating the perfusion parameters was repeated K=50 times for each SNR. The performance of

both estimators was assessed in terms of accuracy and precision. To this end, estimates of the bias and standard deviation of the estimators

NLE2 and NLE3 of a given parameter of interest were obtained from the sample of K realisations by calculating the sample mean of the difference

between the ground truth value of this parameter and its estimates, and the sample standard deviation of the estimates, respectively. To calculate

the bias estimates, the ground truth LR parameter maps were obtained by downsampling the original ground truth HR parameter maps. Further-

more, an LR tissue segmentation map was obtained by labeling an LR voxel as a certain tissue type if more than 90% of the corresponding HR

voxels were labeled as that specific tissue type. All remaining voxels were considered voxels with partial volume effects (PVE). The LR tissue seg-

mentation map was used for two purposes. Firstly, in assigning a GM or WM T1t value for quantification with NLE2. In the case of PVE voxels, the

GM or WM T1t value was chosen dependent on the predominant tissue type. Secondly, the tissue segmentation map allowed to analyze the sim-

ulation results per tissue type, when needed.
3.4 | Real data experiments

Whole‐brain multi‐PLD PCASL data were obtained from three healthy volunteers (22 year‐old male, 30 year‐old female, 38 year‐old male)

using the 3D GRASE sequence (spatial resolution = 4×4×5 mm3, readout time per shot = 330 ms, segments for whole brain coverage = 2,

TE = 18ms, FOVread = 256mm, FOVphase = 192mm, FOVslice = 120mm), acquired on a Siemens 3.0T MR scanner with a 32‐channel head coil.

The repetition time for each label‐control pair was set to the sum of the labeling duration, PLD, readout time and an additional waiting period

to comply with SAR requirements, depending on the subject. The labeling plane was positioned based on a 40s angiogram, adhering to recom-

mendations.1 The acquired data consisted of multiple sets of N=24 label‐control image pairs, obtained alternating between the equidistant and

optimized acquisition scheme (see Table 3). The total acquisition time of each set of 24 label‐control pairs was 5 to 8 minutes, depending on

individual SAR requirements. Including an HR anatomical image (sequence: MPRAGE, spatial resolution = 1×1×1 mm3, TR = 2250ms, TE = 4ms,

TI = 900ms, FOVread = 256mm, FOVphase = 256mm, FOVslice = 176mm) for tissue segmentation and an equilibrium magnetization image (M0t)

(sequence: 3D GRASE, spatial resolution = 4×4×5 mm3, segments for whole brain coverage = 2, TR = 6000ms, TE = 18ms, FOVread = 256mm,

FOVphase = 192mm, FOVslice = 120mm) for absolute quantification, data acquisition was within one hour for each subject. With this acquisition
TABLE 2 Mean and standard deviation of Gaussian prior distributions of kw, the blood‐to‐water
exchange rate of water accounting for a finite permeability of the capillary wall, and δa, the intra‐
voxel travel time accounting for an extended travel time through non‐permeable vasculature, in the
five‐parameter PCASL model defined in16

White matter Gray matter

kw [s−1] 2.10±0.3041 1.83±0.3041

δa [s] 0.573±0.06242 0.573±0.06242



TABLE 3 (a) Equidistant and (b) optimal acquisition settings. The labeling duration τ equals 1800ms and 1100ms for the equidistant and opti-
mized scheme, respectively. For acquisition times t<τ, a shorter labeling duration τreal<τ was used for real data acquisition, as described in section
2.1. For t−τ<100ms, τreal was also shortened to comply with a lower bound in scanner software of 100ms on the PLD. In all other cases, τreal=τ

τreal [ms] PLD [ms] t [ms] τreal [ms] PLD [ms] t [ms]

400 100 500 1033 100 1133

574 100 674 1100 243 1343

748 100 848 1100 337 1437

922 100 1022 1100 607 1707

1096 100 1196 1100 694 1794

1270 100 1370 1100 792 1892

1444 100 1544 1100 897 1997

1617 100 1717 1100 988 2088

1791 100 1891 1100 1050 2150

1800 265 2065 1100 1100 2200

1800 439 2239 1100 1181 2281

1800 613 2413 1100 1221 2321

1800 787 2587 1100 1261 2361

1800 961 2761 1100 1314 2414

1800 1135 2935 1100 1395 2495

1800 1309 3109 1100 1496 2596

1800 1483 3283 1100 1568 2668

1800 1657 3457 1100 1665 2765

1800 1830 3630 1100 2597 3697

1800 2004 3804 1100 2611 3711

1800 2178 3978 1100 2622 3722

1800 2352 4152 1100 2624 3724

1800 2526 4326 1100 2648 3748

1800 2700 4500 1100 2659 3759

(a) (b)
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time limit, the number of sets of N=24 label‐control image pairs acquired at equidistant and optimal sampling schemes was K=3 for one subject

and K=4 for two subjects. For each subject, the control images, label images, and M0t image were scaled with a single global scaling map, kept

static for the duration of data acquisition, for bias field correction. The label images, control images, and M0t image per subject were mutually

aligned using mutual information motion correction.45 After registration, PCASL difference images were created by pairwise subtraction of label

images from control images.

Perfusion parameters were estimated from the different sets of N=24 difference images with the same estimators as in the simulation

experiment described in section 3.3. For absolute quantification, M0b was approximated by M0t/λ with λ=0.9.1 As NLE2 estimation and

analysis of the results requires WM and GM tissue segmentation in the LR difference images, an LR WM and GM mask was calculated in

a multi‐step approach. First, from the HR anatomical image, an HR WM and GM mask was obtained by means of multilevel image

thresholding.46 From the HR tissue segmentation map, an HR GM and WM mask were isolated. Second, a geometrical transformation matrix

was obtained from a multi‐modal intensity‐based registration between the HR anatomical image and the LR M0t image. Third, the geometrical

transformation was applied to the HR GM and WM masks. Finally, as geometrically transforming an HR mask removes its binary character,

voxels in the map resulting from the geometrical transformation of an HR mask were set to zero or one with 0.5 as a threshold to obtain

an LR WM and GM mask.

Assuming underlying perfusion parameters remain constant within a single scan session, the repeated acquisition of the equidistant and opti-

mized datasets allowed for a performance assessment of the different estimators. As there is no ground truth information, the accuracy of the

estimators can only be judged relative to each other by comparing their sample means for a certain parameter. The precision of the estimators

for f in GM was evaluated using a voxel‐wise and a slice‐based metric. As a voxel‐wise metric, the relative sample standard deviation sðbf Þ was

defined as the sample standard deviation divided by the sample mean. As a slice‐based metric, the Pearson correlation coefficient (PCC) between
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the estimates of f of two different runs within an axial slice of the brain can be determined.47 If there are K runs of the experiment, ∑K−1
m¼1m PCCs

can be determined for a single axial slice. This procedure was performed in ten axial slices.
4 | RESULTS

The optimal acquisition settings for NLE3 are presented and analyzed in section 4.2. The accuracy and precision of NLE2 and NLE3 are compared

by examining the results of the simulation and real data experiment in section 4.3 and 4.4, respectively.
4.1 | Parameter identifiability analysis

The FIM condition numbers associated with NLE2 and NLE3 are summarized in Figure 1. These results clearly show that the NLE3 inverse prob-

lem is more ill‐conditioned. It is an indication that NLE3 will be more vulnerable to poor identifiability of parameters and low estimation precision

compared to NLE2. Extracting maximal information in a certain total acquisition time by means of optimal experiment design can improve the

conditionedness of the estimation problem of NLE3.
FIGURE 1 Distribution of the condition numbers κ(I(θ,t,τ)) of NLE2 and NLE3 for multiple parameter vectors θ randomly selected from the prior
distribution p(θ), defined in Table 1, and assuming an N=24 equidistant acquisition scheme

FIGURE 2 Minimal optimization criterion value associated with the optimal acquisition times ~t, for different combinations of τ and N. The

minimum is located at Ñ ¼ 24 and ~τ ¼ 1:1 s and corresponds with the optimal settings defined by Equation (8)
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4.2 | Experiment design optimization

The optimization criterion value after optimization for different τ and N is shown in Figure 2. For a fixed labeling duration, increasing the

amount of images adds information up to the point where optimizing acquisition times has to be balanced with the total acquisition time con-

straint. The minimum of this set of values is the final result of the optimization defined in Equation (8) for NLE3, which is reached for Ñ ¼ 24,

~τ ¼ 1:1 s and a certain set of acquisition times ~t. These optimal acquisition settings are shown in Table 3, alongside the equidistant sampling

scheme with τ=1.8 s used throughout this work. Note that the settings in Table 3 are described for real data acquisition, in accordance with

the explanation in the final paragraph of section 2.1. More specifically, ti is shorter than τ=1.8s for the first 8 acquisition times in the equidis-

tant scheme. Therefore, images were acquired with adjusted labeling durations τs for these acquisition times. Furthermore, as scanner software

imposed a lower limit of 100ms on the PLD in real data acquisition, the ninth acquisition time in the equidistant scheme and the first acqui-

sition time in the optimized scheme were also acquired with a slightly shortened labeling duration (see Table 3). An example in a single voxel of

data acquired with both acquisition schemes, accompanied by a fit of the perfusion model with the parameters estimated with NLE3, is shown

in Figure 3.
FIGURE 3 An example of PCASL difference data, acquired with the equidistant (blue asterisks) and optimal acquisition settings (red circles)
described in Table 3, in a gray matter voxel of one of the subjects. The blue and red curve represent the NLE3 fit to the equidistant and
optimal data, respectively

FIGURE 4 For each parameter of NLE3, the normalized summed Fisher information at each acquisition time point ti, as defined in section 3.2, is
shown. The Fisher information for a parameter θj of a single time point ti, assuming Gaussian distributed data, is defined as (∂g(ti;θ)/∂θj)2(1/σ2).
Maxima in the Fisher information correspond to acquisition times that contribute maximally to the estimation precision for that specific parameter
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The distribution of the optimal acquisition times can be explained by examining the contribution of each possible acquisition time point to

the Fisher information. The Fisher information for a single parameter θkj at a single time point ti, assuming Gaussian distributed data, is closely

related to the FIM and is defined as ð∂gðti;θjÞ=∂θkj Þ2ð1=σ2Þ.24 For f , Δt and T′
1t, the Fisher information was calculated for each of the M=20000

parameter vectors θj at acquisition time points starting at 0 s and up to 6 s with increments of 1 ms. For each of the three parameter, the M

Fisher information values were summed at each time point. Subsequently, for each parameter, the set of summed Fisher information values

between 0 and 6 s were normalized to the maximum value. Assuming τ=1.1 s, the normalized summed Fisher information for f , Δt and T′
1t

at each acquisition time point is shown in Figure 4. The optimal acquisition times are grouped into two distinct parts: a set distributed between

1 and 3 s and repeated measurements around 3.7 s. The distributed set coincides with the peaks of the Fisher information of the three param-

eters of NLE3 (Figure 4). The repeated measurements around t=3.7 s can be attributed to the local maximum in the Fisher information for T′
1t.

This shows that, despite of optimizing the acquisition settings for estimating f , the resulting optimal settings also include acquisition times that

are of high importance for precisely estimating Δt and T′
1t.
FIGURE 5 The first and second row show one and the same slice of, respectively, the estimated bias and standard deviation maps for the CBF
obtained from simulation experiments for an average SNR of 10 in GM, as described in section 3.3. NLE2‐1, NLE2‐2 and NLE2‐3 refer to the
different versions of NLE2 with T′

1;GM fixed at 1300, 1450 and 1600 ms, respectively. The ‘equi’ and ‘opt’ labels refer to whether the estimator was
examined using the equidistant or optimal datasets. The third and fourth row, on the one hand, and the fifth and sixth row, on the other hand,

show the estimated bias and standard deviation maps for the ATT and T′
1t, respectively. Note that T′

1t is only estimated with NLE3
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4.3 | Simulation experiments

The results for the simulation experiment performed with an average SNR of 10 in GM, which is to be expected in background‐suppressed 3D

GRASE real data,48 are summarized in Figure 5. The bias and standard deviation estimates of f for NLE2 and NLE3 in a slice of the simulated brain

are shown in the first two rows of Figure 5.

The bias of NLE2 depends strongly on the choice of fixed T1t value. In WM and GM, the spatial mean value of f increases by 15% when theT1t

value is reduced by approximately 10%. Regardless of theT1t choice, the bias of NLE2 is highest in voxels with PVEs on the edges betweenWM and

GM. NLE3 is showing a bias in the estimation of f that is hardly substantial, even in voxels affected by PVE. In such PVE voxels, NLE3 findsT′
1t values

between the T′
1t values it would find for voxels containing onlyWM and only GM.While the T′

1t value in such voxels has no physiological meaning, it

allows NLE3 to accurately estimate f . Note that among the NLE2 estimators, NLE2‐3 with fT′
1;WM ¼ 1:0 s; T′

1;GM ¼ 1:6 sg has the lowest bias,

while the underlying average values of T1t are lower. This can be attributed to the creation of simulation data with a more accurate, more complex

two‐compartment perfusion model with a prolonged stay of the labeled bolus in the blood compartment. Compared to the SCM, relaxation towards

equilibrium of the labeled spins is governed for a larger percentage byT1b in the two‐compartment model. Furthermore, the bias of NLE2‐3 is slightly

lower than the bias of NLE3, except in voxelswith partial volume effects. This is remarkable, because it is not possible for NLE2 to have a better good-

ness of fit thanNLE3, knowing that both estimators use the samemodel, with NLE3 having a higher degree of freedom. It can be explained by the fact

that the data was simulatedwith amore complexmodel than the estimationmodel. This makes it possible for NLE2‐3 to have a lower CBF estimation

bias than NLE3, even though NLE3 provides a better model fit.

The standard deviation estimates of f show the expected superior precision of NLE2 compared to NLE3. The average gain in precision when

estimating with NLE3 using optimally acquired data instead of equidistant data is 20%. Despite this improvement, the precision of NLE3 can still

not compete with that of NLE2. Indeed, NLE2 and the optimized NLE3 have an average relative sample standard deviation of 9% and 19%,

respectively.

The results for Δt and T′
1t are shown in the remaining four rows of Figure 5. Estimation of Δt follows the same overall trends as estimation

of f , except for the fact that the average standard deviation for estimation of Δt with NLE3 is approximately equal when using equidistant or

optimally acquired data. This is to be expected as the acquisition settings were optimized for the CBF parameter only. The bias maps for T′
1t

show that NLE3 overestimates T′
1t, which is compatible with the observation that NLE2 has the lowest bias for T′

1t values between the under-

lying T′
1t and T1b. Furthermore, compared to f and Δt, the standard deviation for estimation of T′

1t, relative to its underlying value, is signifi-

cantly higher.

Besides for an SNR of 10 in GM, the simulation experiment was also repeated for an SNR of 15, 20 and 25 to assess how estimation accu-

racy and precision of NLE2 and NLE3 change as a function of SNR. The average relative estimation bias and average relative standard devi-

ation for GM for the considered SNRs are shown in Figure 6. In terms of estimation accuracy, there were no significant differences

between the different SNRs (Figure 6a). In terms of precision, an SNR of 20‐25 is necessary for the NLE3 in optimized conditions to match

the average standard deviation of NLE2 at an SNR of 10 (Figure 6b). Assuming that doubling the total acquisition time to acquire another rep-

etition of the data set increases the SNR of the data set with a factor
ffiffiffi
2

p
, the acquisition time would need to be increased with a factor of 4 to

6.25 in order for estimation with NLE3 to be as precise as estimation with NLE2, considering their precisions are equal for an SNR of 10 and

20‐25, respectively.
FIGURE 6 The average relative bias (a) and average relative standard deviation (b) for CBF estimation in GM as a function of the average SNR
obtained from simulation experiments described in section 3.3. Results are shown for NLE2 using equidistant data, and NLE3 using equidistant
and optimal data



FIGURE 7 For one subject, f maps are
shown resulting from applying NLE3 and
three versions of NLE2 to the equidistant data
subsets and NLE3 to the optimal data subsets.
Only voxels with an f<120 mL/100g/min
were retained. For NLE2, WM and GM voxels
were differentiated using a segmentation map
created from an acquired HR anatomical
image
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4.4 | Real data experiments

The estimates of f for the different runs, for one subject, are shown in Figure 7. Two important features can already be observed qualitatively.

Firstly, similar to the observation in the simulation experiment, estimation values of f increase as T1t is fixed to a smaller value. Secondly,

NLE3 produces more physiologically unrealistic results, especially in white matter. All voxels with f >120 mL/100g/min were filtered out, resulting

in f maps that are more sparsely filled. The SNR in white matter is too low to estimate f with reasonable precision from 24 multi‐PLD difference

signals with NLE3.
TABLE 4 For each subject, the spatial mean and standard deviation of the parameters in GM are shown per estimator

S1 S2 S3

NLE2‐1‐equi 51.7±19.4 52.1±19.2 50.4±18.2

NLE2‐2‐equi 47.6±18.1 48.2±17.9 46.6±17.1

NLE2‐3‐equi 44.1±17.0 44.7±16.7 43.4±16.1

NLE3‐equi 47.7±21.6 49.7±20.1 48.4±20.4

NLE3‐opt 48.4±21.2 50.6±19.9 47.1±20.5

(a) bf in GM [mL/100g/min]

NLE2‐1‐equi 708±360 847±457 1230±575

NLE2‐2‐equi 686±358 827±460 1203±575

NLE2‐3‐equi 664±354 811±458 1181±577

NLE3‐equi 631±266 830±390 1145±453

NLE3‐opt 709±241 855±435 1205±387

(b) cΔt in GM [ms]

NLE3‐equi 1687±732 1855±926 1873±914

NLE3‐opt 1529±619 1901±927 2025±1078

(c)
c
T′
1t in GM [ms]
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For all subjects and every estimator, the spatial mean and standard deviation are shown for the different perfusion parameters in GM

(Table 4). For each subject, an increase of 150 ms in NLE2‐T1,GM value causes a decrease of 7% to 10% in spatial mean estimate of f (first

three rows of Table 4a). These results confirm the dependence of NLE2 on the choice of a fixed T1t value for estimation of f . A similar

decrease is seen for Δt, however limited to 1% to 3% (first three rows of Table 4b). The spatial mean estimates of f and Δt obtained with

NLE3 from equidistant and optimal data (final two rows of Table 4a and 4b) lie within the range of the results of the different versions of

NLE2. Furthermore, for f , the difference in spatial mean estimate value, obtained from using NLE3 on equidistant and optimal data, respec-

tively, is limited. However, the mean T′
1;GM results for NLE3 (Table 4c) are high compared to most literature values of T1,GM,

10 knowing that

the difference between T′
1t and T1t should only be about 1%.8 Note that this overestimation of T′

1t can be partly due to a prolonged stay

of labeled spins in the blood compartment, which is not correctly accounted for in the SCM.9,16 Also, the spatial standard deviation for

T′
1;GM is very large, indicating NLE3 is not reliable for T′

1t estimation. It is noteworthy that all these results are in agreement with the trends

observed in the simulation experiments in section 4.3.

The distribution of sðbf Þ within GM for every estimator and every subject is shown in Figure 8a. Similarly, for each subject and each estimator,

the PCCs for f are grouped and compared in Figure 8b. The relative sample standard deviation and PCC metric show compatible results. Firstly,
FIGURE 8 Boxplots of (a) the relative sample standard deviations sðbf Þ in all GM voxels and (b) the per‐slice PCCs for f. Each boxplot shows the
results for a certain estimator applied to data of a certain subject. A non‐parametric KW test comparing the results of NLE3 for equidistant and
optimal data was performed. The p‐values related to the KW test are shown between the respective boxplots
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NLE3 performs at a significantly higher precision when applied to optimal data compared to equidistant data. Non‐parametric Kruskal‐Wallis (KW)

tests comparing the sets of sðbf Þ for both data types show a significantly lower median sðbf Þ in the optimized experiment for all three subjects. Sim-

ilarly, KW tests demonstrate a significantly higher correlation between test‐retest results in the optimized experiment. Secondly, not surprisingly,

both metrics show that NLE2 operates at a precision unattainable for NLE3, even in optimized conditions.

Note that NLE2 achieves an median relative precision between 7 and 12% for f estimation (first three boxplots for each subject in Figure 8a),

while for NLE3 in optimized conditions it ranges from 15 to 25% (last boxplot for each subject in Figure 8a). Contrary to the slice‐based metric, the

relative sample standard deviation provides quantitative results on the precision of an estimator. To the best of our knowledge, no such results

have been previously reported on CBF estimation in multi‐PLD PCASL.
5 | DISCUSSION AND CONCLUSIONS

In this paper, the accuracy and precision with which perfusion parameters can be estimated from multi‐PLD PCASL data, using a single‐

compartment model, were studied. A two‐ (NLE2) and three‐parameter (NLE3) estimator were compared, where the only difference between both

estimators was whether T′
1t was fixed at a certain value or estimated alongside the perfusion parameters, respectively. As the total acquisition time

for each multi‐PLD PCASL imaging sequence was 5 to 8 minutes and recommendations regarding spatial resolution were respected, the reported

statistical quantitative measures are representative for a clinically feasible multi‐PLD PCASL experiment.

A major part of this work consisted of optimizing the acquisition settings of NLE3 in order to maximally compensate for the expected drop in

precision caused by the addition of an extra parameter compared to NLE2. In PCASL, acquisition times can be optimized for a certain labeling

duration or they can be optimized simultaneously. Furthermore, a choice can be made to either allow acquisition times ti≤ τ or conversely only

allow ti≥ τ, which de facto becomes an optimization of the PLDs only.49 In the present work, optimal acquisition times t were searched for dif-

ferent labeling durations τ, while allowing ti≤ τ. Compared to only optimizing the PLDs, this optimization approach pushes the boundaries of

the multi‐PLD PCASL experiment to higher levels of estimation precision. Simulation and real data experiments showed an increase of 10 to

20% in precision for NLE3 in optimized conditions compared to conventional equidistant acquisition settings. In terms of precision, however,

NLE3 in combination with an optimal acquisition scheme is still no match for NLE2. More importantly, the median relative CBF precision for

the optimized NLE3 was still as high as 15‐25% in real data experiments. This level of reproducibility is unacceptable in a clinical setting.

The NLE2 had a higher precision with a median sample standard deviations in the real data experiment between 7 and 12%. However, the

simulation and real data experiments clearly showed a dependence of CBF estimation on the choice of fixed T′
1t value. A reduction of approxi-

mately 10% in T′
1t value for GM resulted in an average CBF value increase of 15% in the simulation experiment and 7‐10% in the real data exper-

iment. Note that these results are relative, comparing versions of NLE2 with different fixed T′
1t values. The simulation experiment showed that the

largest inaccuracies are to be expected at the edges between two tissue types. Inaccuracies related to PVE will be present for any NLE2 estimator,

independent of the fixedT′
1t choice. Therefore, NLE2 in combination with a fixed T′

1t value is inherently inaccurate. However, the simulation exper-

iment showed that CBF estimation bias in NLE2 is lowest for a fixed T′
1t value in between the true underlying T′

1t and T1b value, reflecting the

prolonged stay of the labeled bolus in the blood compartment in the more accurate two‐compartment model.

The optimization of PCASL acquisition settings described in sections 2.3 and 3.2 for NLE3 was also repeated for NLE2. The theoretical gain in

precision compared to estimating with NLE2 using equidistant settings was found to be of the same order as for NLE3 using the optimized settings

compared to the equidistant acquisition strategy, in simulations as well as in real data experiments. These results were not included in this work as

they have no impact on which estimator performs better. It was shown in simulations that NLE2 and NLE3 perform approximately equally well in

terms of bias when an appropriate fixed T1t value is chosen for NLE2. In terms of precision, NLE3 in optimized conditions still had a significantly

lower precision than NLE2 using equidistant data. As the performance balance in terms of accuracy and precision is already tipped in favor of

NLE2, further increasing the precision of NLE2 by means of experiment design is not vital for the comparison between NLE2 and NLE3.

It is important to note that, next to T′
1t, other parameters in the SCM (i.e., T1b, M0b and α) can also cause inaccuracies due to a difference

between the fixed or determined value and the true underlying value. It should however be stressed that T1b, M0b and α are not good candidates

to estimate voxel‐wise alongside the CBF and ATT, contrary to T′
1t. The CBF, T1b, M0b and α are not independently identifiable in the SCM (see

Equation (1)). An alternative would be to estimate α and T1b from data obtained in separate MRI experiments,50,51 similarly to how M0b is esti-

mated from a proton density image. Which one of these parameters has the highest possible impact on CBF quantification accuracy deserves fur-

ther study. On top of that, the SCM is inherently biased as it is an approximation of the underlying physical perfusion process. Therefore, even

with exact knowledge of all fixed parameters, CBF and ATT estimation will remain biased to a certain degree.

Replacing the SCM by a more complex (i.e., more accurate) model could be a viable option. Multiple studies have improved upon single‐

compartment models in terms of a more accurate representation of the evolution of the ASL signal. Accounting for a finite permeability of the

capillary wall to water diffusion in a two‐compartment model,9,43 incorporating a prolonged stay of labeled water in arterial microvasculature after

arriving in the imaged voxel,5,52 allowing a change of concentration of labeled water as a function of time43 and correcting for dispersion of the
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labeled bolus53 are the most notable developments. Unfortunately, extra parameters are introduced in these models. This work has made clear

that it is not a feasible option to estimate extra parameters alongside the CBF and the ATT within the boundaries of data acquisition at the rec-

ommended spatial resolution and a limited total acquisition time. Hence, extra parameters need to be fixed to certain literature values, which again

introduces inaccuracies, or have to be obtained from other experiments, which prolongs the total acquisition time. The only case in which another

model might improve upon the SCM in terms of estimation accuracy and precision, is if estimation of only the CBF and the ATT with this model is

less susceptible to fixing certain parameters in the model. Future work will focus on finding and testing suitable candidate models. The simplified

solution to the two‐compartment model neglecting backflow, as proposed by Parkes et al,9 could be such a candidate.

In conclusion, it is shown that T1t plays a central role in quantification of CBF from multi‐PLD PCASL with the single‐compartment model. Fix-

ing T′
1t to a certain value may cause a significant bias when estimating the CBF and the ATT with NLE2. Estimating T′

1t alongside the CBF and the

ATT with NLE3 is too detrimental to the precision, even with optimized acquisition settings. One may raise the question: is it at all possible to

estimate the CBF with sufficient accuracy and precision while using the single‐compartment model? Regarding precision, the experiments pre-

sented in this paper clearly indicate that NLE2 is the only viable option within the limits of a reasonable total acquisition time and a recommended

spatial resolution.1 Despite the dependence of NLE2 CBF estimation on the T′
1t choice, simulation experiments suggest that fixing T′

1t in between

the population average of T1t for either WM or GM and the population average of T1b minimizes the risk of a systematic bias in CBF estimation.

Therefore, CBF estimation from multi‐PLD PCASL data acquired at the recommended1 spatial resolution with NLE2 using such prolonged fixed T′
1t

values provides the optimal balance between accuracy and precision.
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