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Summary 
 
Knowledge Based Engineering Techniques to Support  
Aircraft Design and Optimization 

Since the 1960s, the demand for air transportation has doubled every 15 years, 
resilient to every oil crises and international events. However, the current capability 
of the air transport management system, the demand of increasingly growing levels 
of quality, comfort, safety and security, and, above all, an environmental sensitivity 
as high as never before, seem to constrain any further growth.  The Advisory Council 
for Aeronautical Research in Europe (ACARE), similarly to NASA in the United States, 
has indicated a set of challenging objectives and devised a roadmap to help the 
aerospace industry stepping into a new age of sustainable growth.  

However, major technological advances will not be possible without significant 
improvements to the current design methodology. In this regard, the present 
research work aims at the development of new design methods and tools that 
are able to sustain the evolutionary improvement of current aircraft designs, as well 
as to support the investigation of novel aircraft configurations. To be successful, 
these design methods and tools must be able to facilitate the aircraft development 
process as it is currently carried across large and distributed supply chains. Besides, 
they must account for the increasing scarcity of intellectual resources and the 
consequent need to increase engineers’ productivity and freeing time for innovation. 

The Multidisciplinary Design Optimization (MDO) approach appears to be the 
most promising design methodology in the field of aircraft design, both to improve 
the performance of traditional aircraft configurations and to support the development 
of novel concepts. However, a number of technical and non-technical barriers have 
prevented full exploitation of the MDO approach and, so far, limited its industrial 
application to detail design cases.   

To this purpose, the concept of Design and Engineering Engine (DEE) has been 
developed at the Faculty of Aerospace Engineering in Delft, which is a modular, 
loosely integrated design system able to support distributed multidisciplinary analysis 
optimization by automating as far as possible the repetitive and non creative 
activities that hamper the design and analysis process. One of the DEE technology 
enabler is the Multi Model Generator (MMG), which actually represents the main 
outcome of this research work. The Multi-Model Generator (MMG) is a 
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Knowledge Based Engineering (KBE) application developed with the twofold 
intent of 1) providing designers with a parametric modeling environment to define 
generative models of conventional and novel aircraft configurations and 2) feeding 
various analysis tools with dedicated aircraft model abstractions, as required for the 
verification of the generated design. To meet these objectives, two types of 
functional blocks have been developed, which constitute the main ingredients of the 
MMG: the High Level Primitives (HLPs) and the Capability Modules (CMs). 

Four High Level Primitives have been defined, namely Wing-part, Fuselage-part, 
Engine and Connection-element. These can be figured out as a suite of advanced 
LEGO blocks that designers can manipulate to assemble the geometry (external 
surfaces and structural layout) of the aircraft concept they have in mind. Each HLP 
has been programmed as a class using the object-oriented programming 
language of the employed KBE system. This has allowed capturing the design rules 
that give the HLPs the capability to automatically adapt their own shape and 
topology, or to trigger events as a reaction of input changes. By means of the 
editable MMG input file, designers can assign different values to the attributes of 
each HLP class and call for multiple HLPs instantiations. In this way, both 
conventional and novel aircraft configurations can be automatically 
generated and then stretched/morphed into an infinite amount of variants.  

During the conceptual design phase, designers “see” the aircraft as an assembly of 
basic solutions to fulfill functionalities, such as generate lift and accommodate 
payload, rather than an assembly of points, curves, surfaces and solid features. The 
capabilities to support the designer’ functional thinking and capture knowledge in 
terms of design rules, have yielded the MMG primitives the “high level” connotation, 
in contrast with the “low level” primitives of conventional CAD. 

Once the model of the given aircraft is available, the preparation for the verification 
phase starts, which requires the set up of the various discipline abstractions (or 
views) that must be fed to the analysis tools. In the traditional design process, the 
preparation of these disciplinary models is acknowledged to be lengthy and 
repetitive, particularly when high fidelity analysis tools are involved. Up to 80% of 
the overall design process can be wasted just for these preprocessing activities. 
However, it has been observed that 1) independently from the aircraft configuration 
at hand, the same analysis tools and preprocessing methods are generally used by 
specialists; 2) large part of the preprocessing activities is rule-based and require a 
large deal of geometry manipulation, which actually represent the strengths of KBE 
technology. To support this phase of the design process, a set of Capability 
Modules (CM) has been developed to capture the “model preprocessing knowledge” 
of discipline experts and reuse it to automate the generation of models for a 
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broad range of low and high fidelity analysis tools, both proprietary and commercial 
off the shelf.  

The implemented approach has enabled the use of high fidelity analysis tools, 
such as FEM and CFD, already in the early stages of the design process, which 
not only increases the level of confidence in the designed product, but provides 
essential means for the study of innovative aircraft configurations, where semi-
empirical and statistics based methods fail and first principle analysis is the only way 
to go. 

Due to its ability to be accessed in remote, via web connections, and operated in 
batch, the MMG also demonstrated to be a valuable asset to support MDO 
processes across distributed design frameworks.  

The capability of the MMG has been demonstrated by means of several example 
applications and two relevant study cases addressed in this work. The first case 
concerns with the European project MOB, on distributed multidisciplinary design 
optimization of blended wing body aircraft configurations. The second deals with a 
MDO system developed in collaboration with Airbus to redesign the vertical tail of an 
existing passenger aircraft.  

A side objective of this work was to improve the dissemination of KBE technology, 
which is still a relatively young discipline that has not yet found the deserved level of 
attention and understanding, both in the world of industry and academia. To this 
scope, an extensive and original investigation on the Artificial Intelligence 
roots of KBE is provided and its object oriented paradigm thoroughly discussed. A 
best practice section to the development of KBE applications is included as well. 
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Samenvatting 
 
Knowledge Based Engineering technieken ter 
ondersteuning van vliegtuigontwerp en optimalisatie  

De vraag naar luchtvervoer is elke 15 jaar verdubbeld sinds de 60-er jaren, altijd 
herstellend van elke olie crises en internationale evenementen. Echter, de huidige 
capaciteit van het luchttransportmanagementsysteem, de vraag van de steeds 
groeiende kwaliteit, comfort, veiligheid en beveiliging, en vooral een 
milieubewustheid zo hoog als nooit tevoren, lijkt een beperking te zijn van elke 
verdere groei. De Advisory Council for Aeronautical Research in Europe (ACARE), 
vergelijkbaar met NASA in de Verenigde Staten, heeft een aantal uitdagende 
doelstellingen aangegeven en heeft een routekaart opgezet om de 
luchtvaartindustrie te helpen met de entree in de nieuwe era van duurzame groei. 

Echter, grote technologische vooruitgang zal niet mogelijk zijn zonder aanzienlijke 
verbeteringen aan de huidige ontwerp-methodologie. In dit verband richt het huidige 
onderzoek zich op de ontwikkeling van nieuwe ontwerpmethoden en –tools 
die in staat zijn evolutionaire verbetering van de huidige vliegtuigontewerpen kunnen 
ondersteunen, maar ook ondersteuning kunnen leveren aan het onderzoek naar 
nieuwe vliegtuigconfiguraties. Om succesvol te zijn, moeten deze ontwerpmethoden 
en –tools het proces van de vliegtuigontwikkeling faciliteren, aangezien dit nu over 
grote en verdeelde leveringsketens gaat. Bovendien moeten deze rekening houden 
met de toenemende schaarste van intellectuele resources en de daaruit 
voortvloeiende behoefte om de productiviteit van de ingenieurs te verhogen en tijd 
vrij te maken voor innovatie. 

De Multidisciplinaire Design Optimalisatie (MDO) benadering lijkt de meest 
veelbelovende ontwerpmethode te zijn op het gebied van vliegtuigontwerp, zowel 
voor het verbeteren van de prestaties van traditionele vliegtuigconfiguraties, alsmede 
voor de ondersteuning van de ontwikkeling van innovatieve concepten. Echter, een 
aantal technische (en niet-technische) belemmeringen hebben een volledige 
toepassing van de MDO-aanpak verhinderd en hebben tot nu toe de industriële 
toepassing gelimiteerd tot gedetailleerde ontwerptoepassingen. 

Voor dit doel is het concept van Design en Engineering Engine (DEE) ontwikkeld 
bij de faculteit van luchtvaart techniek in Delft, dat een modulair, losjes geïntegreerd 
ontwerpsysteem is, dat in staat is om verdeelde multidisciplinaire analyse-
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optimalisatie te ondersteunen, door de repetitieve en niet creatieve activiteiten die 
het proces belemmeren zoveel mogelijk te automatiseren.  

Eén van de DEE hoekstenen is de Multi Model Generator (MMG), welke het 
voornaamste resultaat van dit onderzoekswerk is. De Multi-Model Generator 
(MMG) is een Knowledge Based Engineering (KBE) applicatie ontwikkeld met 
de tweeledige bedoeling om 1) designers te voorzien van een parametrische 
modelleeromgeving waarin generatieve modellen van conventionele en innovatieve 
vliegtuigconfiguraties kunnen worden gedefinieerd en 2) het voeden van 
verschillende analysetools met specifieke abstracties van vliegtuigmodellen, zoals 
vereist voor de verificatie van het gegenereerde ontwerp. Om deze doelstellingen te 
verwezenlijken zijn twee soorten functioneel blokken ontwikkeld, welke de 
voornaamste ingrediënten van de MMG vormen: de High Level Primitives (HLPs) en 
de Capability Modules (CMs). 

Vier High Level Primitives zijn gedefinieerd, namelijk Vleugel-deel, Rompdeel, 
Motor en Verbinding-element. Deze kunnen worden ingeschat als een reeks 
geavanceerde LEGO blokken die ontwerpers kunnen manipuleren om de geometrie 
(externe oppervlakken en structurele lay-out) samen te stellen van het concept van 
de vliegtuigen die ze in gedachten hebben. Elke HLP is geprogrammeerd als een 
klasse met de object-georiënteerde programmeertaal van het gebruikte KBE 
systeem. Dit heeft mogelijk gemaakt om de ontwerpregels vast te leggen, die de 
HLPs het vermogen geven hun eigen vorm en topologie automatisch aan te passen, 
of om te reageren met veranderingen van invoer. Door middel van het bewerkbare 
MMG invoerbestand kunnen designers verschillende waarden aan de kenmerken van 
elke HLP-klasse toewijzen en meerdere HLP instanties genereren. Op deze manier 
kunnen zowel conventionele als innovatieve vliegtuigconfiguraties automatisch 
worden gegenereerd en vervolgens worden uitgerekt in een oneindige hoeveelheid 
varianten.  

Tijdens de conceptuele ontwerpfase “zien” de ontwerpers het vliegtuig als een 
samenstelling van fundamentele oplossingen van te vervullen functies zoals het 
genereren van lift en het onderbrengen van lading, in plaats van een samenstelling 
van punten, krommen en oppervlakken. De mogelijkheid om het functionele denken 
van de designer te ondersteunen en kennis in termen van ontwerpregels te vangen, 
hebben de MMG primitieven de "hoog niveau" bijbetekenis opgeleverd, in 
tegenstelling tot de "laag niveau" van conventionele CAD primitieven.  

Zodra het model van het gegeven vliegtuig beschikbaar is, start de voorbereiding 
voor de verificatie fase welke de set-up vereist van de verschillende discipline-
abstracties (of weergaven) die aan de analyse-instrumenten moet worden gevoerd. 
In het traditionele ontwerpproces is de voorbereiding van deze disciplinaire modellen 
erkend als langdurig en repetitief, in het bijzonder wanneer er high-fidelity analyse 
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tools betrokken zijn. Alleen al voor deze preprocessing activiteiten kan er tot 80% 
van het totale ontwerpproces worden verspild. Echter, men heeft opgemerkt dat 1) 
onafhankelijk van de betreffende vliegtuigconfiguratie, over het algemeen worden 
dezelfde analysis tools en preprocessing methodieken gebruikt door de specialisten; 
en 2) een groot deel van de preprocessing activiteiten volgen bepaalde regels en 
vereisen een grote hoeveelheid geometrie manipulatie, die eigenlijk de sterke punten 
van KBE technologie vertegenwoordigen. Ter ondersteuning van deze fase van het 
ontwerpproces is een set van Capability Modules (CM) ontwikkeld om de "model 
preprocessing kennis" te vangen van de discipline-deskundigen en dit te gebruiken 
voor het automatiseren van het genereren van modellen voor een breed scala 
van low- en high-fidelity analyse-instrumenten, zowel in-house developed als 
commercial-off-the-shelf.  

De geïmplementeerde aanpak heeft het gebruik van high-fidelity analyse tools, 
zoals FEM en CFD, al in de vroege stadia van het ontwerpproces mogelijk gemaakt. 
Deze verhogen niet alleen het niveau van vertrouwen in het ontworpen product, 
maar levert een essentieel instrument voor de studie van innovatieve 
vliegtuigconfiguraties waar semi-empirische en op statistieken gebaseerde methoden 
mislukken en een first-principle analyse is de enige oplossing.  

Vanwege de mogelijkheid om vanaf afstand toegankelijk te zijn, via web 
verbindingen, en in batch te bedienen, heeft de MMG laten zien een waardevolle 
aanwinst te zijn voor ondersteuning van MDO processen over verdeelde 
design frameworks.  

De bekwaamheid van de MMG is gedemonstreerd door diverse voorbeeld 
toepassingen en twee relevante studie casussen waarnaar wordt verwezen in dit 
werk. De eerste betreft met het Europese project MOB, over verdeelde 
multidisciplinaire design optimalisatie van blended wing body vliegtuigconfiguraties. 
De tweede gaat over een MDO systeem dat is ontwikkeld in samenwerking met 
Airbus om het verticale staartvlak van een bestaand passagiersvliegtuig te 
herontwerpen. 

Een nevendoelstelling van dit werk was het verbeteren van de verspreiding van KBE 
technologie, die nog steeds een relatief jonge discipline is welke de verdiende 
aandacht en het niveau van begrip nog niet heeft gevonden, noch in de wereld van 
de industrie, noch in de academisch wereld. Met dit doel wordt een uitgebreid en 
origineel onderzoek naar de wortels van de kunstmatige intelligentie van 
KBE geleverd en zijn object georiënteerde paradigma wordt uitvoerig besproken. 
Een best practice sectie met betrekking tot de ontwikkeling van KBE toepassingen 
is ook opgenomen. 
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Sommario 
 
Tecniche Knowledge Based Engineering per sostenere la 
progettazione e l’ottimizzazione di velivoli   

A partire dagli anni sessanta, la domanda di trasporto aereo ha continuato a 
raddoppiare ogni 15 anni, reagendo in maniera flessibile alle varie cirisi petrolifere e 
situazioni di crisi internazionale. Tuttavia, i limiti dell'attuale capacità del sistema di 
gestione del trasporto aereo, la crescente domanda di livelli di qualita’, comfort, 
sicurezza e protezione sempre piu’ alti, e soprattutto, un livello di sensibilita’ 
ambientale mai cosi elevato sembrano vincolarne ogni ulteriore crescita.  L’ACARE 
(Advisory Council for Aeronautical Research in Europe), l’organo di avviso per la 
ricerca aeronautica in Europa, e similmente la NASA negli Stati Uniti, hanno indicato 
una serie di obiettivi molto ambiziosi e messo a punto una tabella di marcia per 
portare l'industria aerospaziale verso una nuova era di crescita sostenibile.  

Tuttavia, il raggiungimento di importanti avanzamenti tecnologici rimarra’ molto 
difficile, fino a che le attuali metodologie di progettazione non verranno anch’esse 
adattate e migliorate in maniera significativa. A questo proposito, il lavoro di ricerca 
presentato in questo testo mira allo sviluppo di nuovi metodi e strumenti di 
progettazione che siano in grado di sostenere sia il miglioramento degli attuali 
velivoli da trasporto che lo sviluppo di configurazioni innovative e non convenzionali. 
L’effettivo successo di ogni nuovo strumento di progettazione dipendera’ dalla sua 
effettiva capacita’ di funzionare all’interno dei tipici processi produttivi, che 
generalmente si sviluppano attraverso una supply chain vasta e geograficamente 
distribuita. Inoltre, questi nuovi strumenti e metodi di progettazione dovranno tenere 
conto della la crescente scarsità di risorse intellettuali e, quindi della la necessità di 
aumentare la produttività dei progettisti e liberare il tempo necessario per 
l’innovazione. 

L'approccio di progettazione e ottimizzazione multidisciplinare (MDO, 
Multidisciplinary Design Optimization) sembra essere la metodologia più 
promettente nel campo della progettazione degli aeromobili, sia al fine di migliorare 
le prestazioni delle configurazioni tradizionali, che per sostenere lo sviluppo di nuovi 
concetti. Tuttavia, una serie di ostacoli tecnologici ha finora impedito il pieno 
sfruttamento dell'approccio MDO e ne ha limitato l’applicazione  in ambito industriale 
a soli casi di disegno di dettaglio. 
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A questo scopo, presso la facoltà di ingegneria aerospaziale dell’Universita’ di Delft, e’ 
stato sviluppato il concetto di Design and Engineering Engine (DEE, motore di 
progettazione e ingegnerizzazione). Il DEE è un sistema computerizzato modulare, 
adattabile e scomponibile, in grado di facilitare processi distribuiti di progettazione e 
ottimizzazione multidisciplinare,   attraverso l’automatizzazione di tutte quelle attività 
ripetitive e non creative che generalmente ne ostacolano e rallentano lo svolgimento. 

Uno degli moduli chiave del  DEE è rappresentato dal Multi Model Generator 
(generatore di modelli) che di fatto costituisce il principale risultato di questo lavoro 
di ricerca. Il Multi Model Generator (MMG) è un'applicazione Knowledge 
Based Engineering (KBE) sviluppata con il duplice intento di 1) fornire ai 
progettisti un ambiente avanzato di modellazione parametrica per la definizione di 
modelli generativi di velivoli convenzionali e non; 2) fornire ai vari moduli di analisi 
presenti nel DEE, gli specifici modelli (le varie astrazioni del velivolo) necessari per la 
fase di verifica del velivolo. A tal scopo, sono stati sviluppati due tipi di blocchi 
funzionali, che in effetti costituiscono gli ingredienti principali del MMG: le cosiddette 
High Level Primitives (primitive di alto livello) e i Capability Modules (moduli di 
capacità). 

Le High Level Primitives (HLPs) definite finora sono quattro: un elemento d’ala 
(Wing-part), un elemento di fusoliera (Fuselage-part), un motore (Engine) ed un 
elemento di connessione (Connection-element). Queste possono essere immaginate 
come un set di mattoncini LEGO speciali, che il progettista può manipolare e 
ricombinare al fine di assemblare la geometria  del velivolo che ha in mente (sia in 
termini di superfici esterne che struttura interna). Utilizzando il linguaggio di 
programmazione a oggetti disponibile all’interno della piattaforma KBE selezionata 
per questo lavoro, ogni HLP è stata definita come classe. Questo ha permesso di 
formalizzare all’interno di ogni primitiva le procedure (design rules) che permettono 
loro di adattare automaticamente la propria forma e struttura, e reagire ad ogni 
cambiamento degli input. L’utilizzatore del MMG puo’ modificare i valori dei vari 
attributi di ogni (HLP) classe e decidere il numero di instanze necessarie, 
semplicemente editando l’input file del MMG.  In questo modo, e’ possibile definire 
sia configurazioni di velivoli convenzionali che non,  per poi modificarle e plasmarle in 
un numero praticamente infinito di varianti parametriche.  

Durante la fase di progettazione concettuale, il progettista “vede” l’aeromobile come 
una combinazione di soluzioni per soddisfare funzionalità del tipo generare portanza 
e ospitare il carico utile. In effetti, il velivolo non e’ visto come un semplice insieme di 
punti, curve, superfici e solidi. E’ propio per questa loro capacita’ di supportare 
l’approccio di progettazione funzionale che che le primitive sviluppate in questo 
lavoro sono state definite di “alto livello”; in contrasto con le primitive di "basso 
livello" (punti, curve, etc..) dei sistemi CAD convenzionali.  
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Una volta disponibile la configurazione del velivolo, inizia la fase di preparazione (pre-
processing) per l’analisi. Questa richiede la generazione dei vari modelli, o “viste”, 
disciplinari, cosi’ come richieste dagli strumenti di analisisi presenti nel DEE. 
Specialmente nel caso di utilizzo di strumenti di analisisi molto accurati (High 
Fidelity), la preparazione di questi modelli disciplinari puo’ essere molto lunga lunga e 
ripetitiva e consumare fino al all'80% del tempo complessivo di progettazione. 
Tuttavia, è stato osservato che 1) indipendentemente dalla configurazione del 
velivolo, gli specialisti adoperano gli stessi metodi e strumenti per la preparazione dei 
modelli da analizzare; 2) gran parte delle attività di preparazione dei modelli è basato 
su procedure consolidate che richiedono intensive manipolazioni geometriche; di 
fatto, i punti di forza della tecnologia KBE.  
Al fine di aiutare il progettista in questa specifica fase di progetto, e’ stata sviluppata 
una serie di moduli, detti Capability Modules (CM, Moduli di Capacita’)  in grado di 
formalizzare e automatizzare la preparazione di modelli per una vasta gamma di 
strumenti di analisi, sia semplici che sofisticati, sia commerciali che sviluppati 
privatamente.   

In particolare, questo approccio ha permesso l'utilizzo di strumenti di analisi molto 
accurati, come codici ad elementi finiti e fluidodinamici, già a partire dalle prime fasi 
del processo di progettazione. Con il risultato che, non solo il livello di confidenza 
circa i risultati ottenuti ne giova, ma diventa di fatto possibile l’utilizzo di strumenti 
analitici essenziali per lo studio di velivoli innovativi, per i quali i tradizionali metodi 
semiempirici basati su dati storici risultano del tutto inadatti.  

Inoltre, le possibilita’ di accedere e utilizzare il MMG anche in remoto e senza il 
bisogno di alcuna interfaccia grafica, usando connessioni web standard, fanno del 
MMG una risorsa preziosa al fine di abilitare processi MDO distribuiti (dove i vari 
moduli computazionali sono istallati su macchine che operano e comunicano da 
diverse locazioni geografiche).  

La capacità del MMG è stata dimostrata attraverso varie applicazioni, tra cui due casi 
di rilievo descritti in questo lavoro. Il primo riguarda il progetto europeo MOB, sulla 
progettazione e ottimizazione multidiscilinare di velivoli tipo blended wing body. Il 
secondo riguarda lo sviluppo di un sistema MDO, definito in collaborazione con 
Airbus, al fine di ridisegnare la coda verticale di un aereo passeggeri.   

L’obiettivo secondario di questo lavoro consiste nel migliorare la diffusione della 
tecnologia KBE, che di fatto è una disciplina relativamente giovane, che non ha 
ancora trovato il meritato livello di attenzione e comprensione, sia nel mondo 
dell'industria che nell’ambito accademico. A questo scopo, viene qui fornita una 
trattazione ampia ed originale sui legami della tecnologia KBE con il mondo 
dell’intelligenza artificiale ed il paradigma della modellazione a oggetti. A 
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benificio degli interessati, questa trattazione include anche una sezione di best 
practice per lo sviluppo di applicazioni KBE. 
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List of Symbols and Acronyms 
 

ACARE  Advisory Council for Aeronautics Research in Europe 

AI   Artificial Intelligence 

BWB  Blended Wing Body 

CAD  Computer Aided Design 

CAE  Computer Aided Engineering 

CFD  Computational Fluid Dynamic 

CFRP  Carbon Fiber Reinforced Plastic 

CL   Common LISP 

CM   Capability Module 

COTS  Commercial Of The Shelf 

DEE  Design and Engineering Engine 

ES   Expert System 

FBS  Frame Based System 

FE, FEM Finite Elements Method 

FEA  Finite Element Analysis 

HLP  High Level Primitive 

GLARE  GLAss REinforced 

GUI  Graphical User Interface 

IGES  Initial Graphical Exchange Standard 

IT   Information Technology 

KA   Knowledge Acquisition 

KBE  Knowledge Based Engineering 

KB   Knowledge Base 

KBS  Knowledge Based System 

KE   Knowledge Engineering 
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KM   Knowledge Management  

MDO  Multidisciplinary Design Optimization 
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CHAPTER 1               
The Paradigm Shift for the New Era 
of Aviation 

1. A vision for the future of aviation  

2. Fast replay: one century of technology in the Air Transport System 

3. …the end of the second S-curve 

4. The twilight of the Kansas City Aircraft? 

5. In preparation for the breakthroughs 

6. High level goals and structure of this research work 

1.1 A vision for the future of aviation  
In 2020, the stressed-out passenger belongs to aviation past. There are no more 
queues and interminable waiting for a delayed departure or arrival. From start to 
finish, the entire flying experience is designed to ensure a contented traveler. At all 
prices, an airline ticket buys choice, convenience and comfort.  
There are more routes and more flights to and from most destinations. 99% of all 
flights arrive and depart within 15 minutes of the 
published timetable in all weather conditions. 
Airports are no longer a test of the traveler’s 
stamina and patience. It takes no more than 15 
minutes in the airport before departure and after 
arrival for short haul flights, 30 minutes for long 
haul. The entire airline system is operating with 
great efficiency. Aircraft cost less to own, operate 
and maintain. All these savings are passed on to 
paying passengers. 

In 2020, the skies are safer than ever 
because safety has remained the top priority of 
the aircraft builders and operators and of air 
traffic managers. 
Aeronautics has made huge steps towards 
eliminating accidents altogether by designs and 
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automatic systems that lighten the burdens on the crew and help them to make 
correct decisions in any situation.  

In 2020, aircraft are cleaner and quieter.  Though hydrocarbon-based fuel is 
still the main source of energy, improved engines allow a reduction of CO2 and NOx 
emissions by 50% and 80%.  With a reduction in perceived noise to one half of 
current average levels, transport aviation has ceased to be a nuisance to people 
living close to airports thanks to a concerted effort to develop quieter engines, 
optimize operational procedures and improve land planning and use around airports. 
The aeronautics sector’s contribution to a sustainable environment is widely 
understood and appreciated.  

In 2020, Europe has managed to create a seamless system of air traffic 
management that copes with up to three times more aircraft movements than today 
by using airspace and airports intensively and safely. The development of 
sophisticated ground and satellite-based communication, navigation and surveillance 
systems as well as free flight has made this possible.1 

In 2050, the sky is populated by blended wing bodies, joint-wings (Fig. 1.1), 
ultra-fast rotorcraft, tilt-rotors, multi-fuselage aircraft developed by European, 
American, Russian, Brazilian, Chinese, Japanese and Indian manufacturers. They are 
far quieter, more fuel efficient, safer, cleaner, faster and more comfortable than the 
2020 aircraft they replace (Fig. 1.2 right).  

                                        
1 “In 2020..” text from European Aeronautics: a Vision for 2020, prepared under initiative of the 
European Commissioner for Research P. Busquin (Group of Personalities, 2001). 

Fig. 1.1: Examples of advanced non conventional aircraft configurations for the 
future: the blended wing body (left) and the joint-wing aircraft (right), also knows as 
Prandtl-Plane (Frediani, 2004). 
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In 2050, aircraft use alternative bio-fuels and new types of engines. They are 
built with multifunctional, self healing bio composite material implementing nano-
technologies. They fly without control surfaces, morphing their surfaces as a bird 
(Fig. 1.2 left) and making use of extensive active 
flow control. They take off and land on very short 
runways thanks to their full vectoring thrust 
capability and extremely light weight structure.  

In 2050, self landing and taking off aircraft, 
one man controlled cockpit are normality. 
Unmanned, remote controlled freighters transport 
wares worldwide. Aircraft of any size fly in a 
worldwide interconnected, uncongested, green 
and safe airspace system. 

In 2050, customers are able to fly from next 
door facilities, directly to their final destination; 
they can call an air-taxi or directly book an 
aircraft at the closest drive-or-fly rental and fly it2. 
What a bold vision!  If it is true that in the 2020 
vision, the whole air transportation system will 
differ from today’s as much as the actual system 
differs from that of 1930s, the scenario 

                                        
2 “In 2050..” text elaborated by the author on the basis of the following reports: NASA Aeronautic 
Blueprint: Towards a Bold New Era in Aviation (NASA, 2002), the ACARE documents Strategic 
Research Agenda (release 1, 2 and addendum) (ACARE, 2002; 2004; 2008) and Aeronautics and Air 
Transport: beyond 2020 (Towards 2050) (ACARE, 2010). 

Fig. 1.3 The Jetsons, a popular 
Hanna-Barbera cartoon series 
from the 1960s 

Fig. 1.2: artist rendering of the NASA Morphing Airplane (left) [www.dfrc.nasa.gov]. The 
super efficient and silent Airbus concept plane presented at Farnborough 2010 (right) 
[www.airbus.com] 
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envisioned for 2050 by NASA and ACARE (Advisory Council for Aeronautics Research 
in Europe) seems closer to a Jetsons screenplay (Fig. 1.3) than a possible reality.  
Indeed the aeronautic community will have to make serious advances to cope with a 
demand that, since the 1960s, has doubled every 15 years, notwithstanding various 
oil crises and the dark years following September 11 (Fig. 1.4). Furthermore, now as 
never before the environmental sensitivity was so high. Adding to this the increasing 
cost of fuel and the current state of the ATM system approaching its limits, it is 
obvious that changes are just necessary to sustain any further air traffic growth. 

1.2 Fast replay: one century of technology in the Air 
Transport System 
Following the publication of the Vision 2020 document (Group of Personalities, 
2001), ACARE was formed and assigned the task to prepare a roadmap to bring the 
European aeronautical industry to the 2020 targets. This effort has resulted in the 
Strategic Research Agenda (updated several times since 2002), which opens with the 
performance analysis of the first century air transportation3.  The resulting plot (Fig. 
1.6) shows two evident S-curves, one covering the so called Pioneering Age of 
aviation, from the Wright brothers’ flyer to the 1950s, the other the so called 

                                        
3 The source does not specify the metric used for transportation performance. A conventional 
measure is based on the product of speed, range and payload divided by a measure for the operating 
costs. However, a correct measure of performance should account for the percentage of customer 
requirements satisfied. For instance, is the availability of showers on board increasing the 
transportation performance of the A380?  

Fig. 1.4: (resilience of the) global air traffic growth and forecast 2009-2028 (Airbus, 
2009).  (RPKs: Revenue Passenger Kilometers) 
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Commercial Age of aviation, from the debut of the jet engine to date. These curves 
reveal a progress of the performance based on breakthrough innovations and periods 
of evolutionary improvements.  
Indeed, the Wright’s flyer, at the beginning of the first S-curve, had barely any 
impact on the world of transportation, but further advances in structures and 
materials (metal riveted structures in place of wood, textiles and wires), 
aerodynamics (single wing with elliptical planform and retractable gears), propulsion 
(turbo-charged engines with 
variable pitch propeller) and 
navigation (inertial navigation) 
brought air transport to the 
extended practical use of the 
1930s, when the human 
perception of distance changed 
forever. At that point the end of 
the first S-curve was reached. By 
the way, the Wright’s flyer itself 
was the result of an evolutionary 
process that brought the available 
knowledge of aerodynamics and 
internal combustion engines to an 

Fig. 1.6: performance of civil air transport since the beginning of last century: the S-
curves. Based on (ACARE, 2002). 
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adequate level of maturity. As a matter of fact, each S-curve appears to be the result 
of a thread of micro S-curves, as shown in the close up of Fig. 1.5. As argued in 
Shock of the Old (Edgerton, 2006), it is the progress and mutations of old stuff that 
makes the gradual big difference. 

Around the end of WW II, the jet engine entered the scene as the new 
breakthrough. However, it neither affected the outcome of the war, nor had any 
immediate benefit on commercial aviation: that was just the beginning of the second 
S-curve. It was thanks to further progress in jet technology (axial compressor) and 
advance in aerodynamics (swept wings) that in the 1960s commercial aviation 
entered its rapid conversion to the jet age. Further developments in technology (fly-
by-wire, high by-pass ratio turbofan, supercritical airfoils) and new approaches in air 
traffic control and management (deregulation, hubbing, no-frills airlines) have 
brought the jet age to level of maturity and consolidation of these days and, 
apparently, to …  

1.3 …the end of the second S-curve  
McMaster and Cummings (McMasters and Cummings, 2004) narrate that, at the 
beginning at the 1980s, the Boeing 757 development team, as part of the 
explanation to their management on the reason why their new aircraft, in spite of 
the very large amount of money invested in research and development, the far larger 
development team and 25 more years of technology and knowledge to leverage, 
carried no more passengers, any farther and any faster than its predecessor from the 
1950s, the Boeing 7074, came out with a plot, indeed very similar to the one in Fig. 
1.6. In a performance vs. time plot similar to the one shown in Fig. 1.7, they showed 
three curves. The first was a horizontal asymptotic line, representing the theoretical 
upper bound established by the basic law of physics and economics. The second was 
an oscillating curve, representing what could be accomplished having perfect 
knowledge of the current technologies and no economic limits. The third line was 
indicative of the actual achievement: the progress made in years of efforts, striving 
to reach the asymptotic limits of the current technologies. 
And there it was the point of the 757 team: when the gaps between the three curves 
shrink, the opportunities of further gain in the traditional measures of performance, 
such as range, speed, payload capacity, become increasingly difficult and expensive 
to reach. 
Even if engineers learn to make a better use of current technology, they must run 
harder and harder to get smaller and smaller gains, because, on the other side, 

                                        
4 Actually, the 757 was developed as successor of the Boeing 727, which was the direct heir of the 
707. But this would not change the essence of the story. 
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customers get more sophisticated and regulation authorities put harder and harder 
constraints.  
Without planning a new breakthrough it will not be possible to sustain the future 
growth of air transport and, eventually, start a new curve in the plot: the 3rd curve of 
Sustainable Growth!  

1.4 The twilight of the Kansas City Aircraft?  
In the musical Oklahoma!, cowboy Will Parker, back from an excursion to Kansas 
City, sings like this:“‘Ev'rythin's up to date in Kansas City. They've gone about as fur 
as they c'n go!”.  
Apparently it is here that the nickname originated for the dominant airliner 
configuration, i.e., the quasi cylindrical fuselage with cantilever (swept) wing and tail 
empennages, and engines podded either under the wing or at the back of the 
fuselage. Indeed the Kansas City airplane has gone almost as far as it can go, 
particularly in terms of improved economic and environmental performance (Green, 
2003). That is clearly acknowledged also by ACARE, which states: “The 
environmental challenge has clearly identified the limits of current technology, which, 
while it has more to offer and more that will be achieved over the next decade or so, 
must be succeeded by completely fresh approaches that require an early start. The 
(Vision 2020) objectives are not achievable without important breakthroughs, both in 
technology and in concepts of operation (ACARE, 2002)”. 

Fig. 1.7: why the Boeing 757 “did not get any better” than the old 707.  Based on 
(McMasters and Cummings, 2004) 
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This is echoed by the Greener by Design Science and Technology Sub-Group, an 
initiative of the Royal Aeronautical Society, that points at the environmental impact 
“as the most serious long-term threat to the continued growth of air travel (Greener 
by Design, 2005)” 

After more than 60 years of optimization, the Kansas City Aircraft has become 
70% more fuel efficient and 20dB quieter than the first generation of jets airliner 
(Green, 2003), still maintaining the “classical” configuration inherited by the Boeing 
B-47 Statojet of 1947. Such a configuration, based on the early 1800 Caley’s concept 
of functional separation (i.e., fuselage for payload, wings for lift, tail empennage for 
control and stability, etc.), has definitely proven effective and dominated the entire 
passenger aircraft development story to date (van Tooren, 2003). The whole aviation 
infrastructure (airports, terminals, luggage handling systems, etc.) has evolved 
around that configuration; manufacturers have refined their design methods and 
developed their facilities to deal with that configuration. Also for passengers, flying is 
just about sitting in a cylinder with some small windows at the side...  
However, as in any optimization process, once close to the optimum any 
improvement on the objective function get just smaller. Even more, as in any 
optimization process, if the objective function and the constraints change, the design 
space is going to change and the optimum is going to be somewhere else. The effect 
of the new design objectives and constraints set for a sustainable growth of aviation 
are likely to bring the search towards areas of the design space where the Kansas 
City aircraft is not likely to be a winner any more. 

The A380, the new 787 and the A350 (Fig. 1.8) appear to be the last 
outstanding offspring of the Kansas City airplane. As suggested by ACARE, they will 
keep offering improvements in the new decade or so, but it is now the time to start 
preparing for a fresh new start. 

Fig. 1.8: From left: Airbus A380 (first flight: April 2005); Airbus A350 rendering (first 
flight scheduled in 2012 ); Boeing 787 (first flight: December 2009 ).  

[www.airbus.com, www.boeing.com]  
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1.5 In preparation for the breakthroughs 
Breakthroughs and inventions need to be scheduled. It means efforts must be 
invested on the development of the “technology components” (i.e., the micro S-
curves discussed in section 1.2), which can, together, lead to the realization of the 
actual breakthrough.   
What actually does not come too apparent from Fig. 1.6 and Fig. 1.5 is that a 
technology component to the realization of a breakthrough does not have to be 
necessary a new material, or a new electronic system, or a new engine, but can be 
also a new design approach or a new method to exploit the available intellectual 
resources.  
Indeed, it will be very difficult to tackle the challenges indicated by ACARE without 
first addressing the challenges associated to the very development of any new 
technological advance.   
To this purpose, the following sub-sections will address the organizational issues 
faced by the big aircraft manufacturers, including the problems related to the 
availability, productivity and management of the new intellectual resources. Finally, 
the capability of the current design methodology will be discussed as an introduction 
to the main focus of this research work.   

1.5.1 The challenges of the global organization 

The aeronautical industry is characterized by a very large body of knowledge and 
skills that can only be improved and applied against very large and long term 
investments. A lot of risks are taken while the margins of revenue are relatively small 
and sensitive to the world socio economical events (financial crises, fluctuation in the 
oil price and Euro/dollar exchange rate). Also in the case of the defense industry, 
after the “wealthy excitement” of the Cold War, the recurrent mantra is performance 
at affordable cost (McMasters and Cummings, 2004).  
One of the most visible consequences of the adaptation process the aeronautical 
industry has undergone in the last decades to survive the troubled seas of the global 
economy, is possibly its consolidation. In just 7 years (from 1990 to 1997), the 
scenario of the major American aerospace companies has passed through consortia 
and acquisitions from 15 large companies to just 4 major groups, namely, Lockheed-
Martin, Boeing, Raytheon and Northrop-Grumman (Raj, 1998). A similar process has 
happened in Europe, where the largest aeronautic industrial groups, both in the 
sector of defense and commercial aviation, have joined in the trans-national 
corporation EADS.  
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Consolidation operations actually go far beyond ‘one name, one goal, one budget’. A 
less evident process, but of extreme significance, is the enterprise conversion to a 
distributed organization that employs and coordinates professionals spread 
worldwide. This disrupts the historical perceived image of the company, once 
identifiable with its tangible asset, such as its plants and facilities, and now as one 
virtual brain and many arms that operates 24 hours a day across all the planet time 
zones.  

The other approach more and more commonly adopted by big manufacturers 
to make new development programs affordable and lower financial risk is to form 
partnerships with groups of selected risk-sharing suppliers that are willing to invest 
their own economical and intellectual resources in the development of major systems 
and components.   
This is the case of the Joint Strike Fighter (JSF) project coordinated by Lockheed 
Martin, and, very recently, of the Boeing 787 development program. Here, for the 
very first time Boeing decided to outsource (to Japan) also the development and 
manufacturing of a major system like the wing. Fig. 1.9 gives the feeling of the large 
number of international contributors to the project.   
Also Airbus, started as a trans-national joint venture between English, German, 

Fig. 1.9: worldwide contributions to the manufacturing of the Boeing 787 [www.boeing.com] 
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French and Spanish aerospace groups, has since long extended its collaboration 
outside the Airbus walls to many countries, including Russia, China, Australia, 
Austria, Belgium, Canada, Finland, Italy, Japan, South Korea, Malaysia, Netherlands, 
Sweden, Switzerland and the United States. 

The flip side of the coin is represented by the new challenges of effectively 
managing and synchronizing knowledge and resources, which are often rooted in 
very different socio-cultural backgrounds.  
At technical level, the exchange of data and models across scattered repositories and 
systems, the interfaces between codes, the protection of knowledge both from the 
side of the integrator and the suppliers, just to mention some, represent continuous 
headaches.  
It is also worth of consideration the effort to organize the logistics to gather parts 
and components produced around the world into one final assembly location. Often 
is not only matter of organization but also of development of new infrastructures to 
move assemblies and parts around, via sky, water and ground (Fig. 1.10). 
However, the logistic of wares, whatever the distance, the time schedule and the 
size, is eventually a less complicated issue than the “logistic of brains”. 
Communicating ideas, harmonizing practices, skills, know-how and aligning different 
people toward one common objective remain possibly the hardest tasks in any 
collaboration initiative. 

1.5.2 The challenges of intellectual resources. Knowledge Management 
issues 

The situation concerning the intellectual resources is rather complex and can be 
summarized with the following issues: 

• They are less 
• They are different 
• They lack the knowledge strength of the “old type of experts”  

 

Fig. 1.10: logistics efforts required by the transnational scale of the A380 
manufacturing: components transportation via sky, water and ground [www.airbus.com]. 
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Brains drain 
From one side the western society is facing an increasing scarcity of new 
aeronautical engineers (which, by the way, do not always remain in their field), 
while, on the other, there is an accelerated pace of baby boomer retirements, which 
is putting out of the companies the minds and the hands that built the story of 
aeronautics since the 1960s. 
In 2002, NASA reported that the 
average age of those employed in the 
American aerospace industry was 
slightly above 47 years, with the 
engineer and scientist community alone 
approaching the average of 57 years 
(NASA, 2002). NASA itself currently loses senior R&D expertise at twice the rate of 
incoming new researchers. More than 20% of Boeing workforce in this moment is 
eligible for retirement. Plenty of these data can be found in company magazines and 
Knowledge Management publications, just searching for “brains drain” (Dunlop, 
2010; Patton, 2006; Sopranos, 2005; DeLong, 2008). 

A new breed of workers: the Knowledge Workers 
The culture of work itself has changed in the last years and new professional figures 
populate the company positions. Some thirty years ago, Peter Drucker coined the 
term "knowledge worker" to address the evolved sort of high-profile professionals 
described in the insert below (Drucker, 1999). New generation experts do not belong 
anymore to the manual/clerical worker model inherited from the military culture of 
100 years ago. They are much more entrepreneurs oriented, they have a strong self-
conscience and potentially superior capability to enrich the company knowledge, but 
at the same time they are more complicated resources to manage. They are 

From “Management Challenges of the 21st Century” by P. Drucker  

 The knowledge worker 
 “[…] fewer and fewer people are subordinates - even in fairly low-level jobs. 
Increasingly they are knowledge workers. Knowledge workers cannot be managed as 
subordinates; they are associates […] This difference is more than cosmetic. Once 
beyond the apprentice stage, knowledge workers must know more about their job than 
their boss does - or what good are they? The very definition of a knowledge worker is 
one who knows more about his or her job than anyone else in the organization [...]” 

“What motivates workers, especially knowledge workers, is what motivates volunteers.  
Volunteers, we know, have to get more satisfaction from their work than paid employees 
precisely because they do not get a pay check. They need, above all, challenge. They 
need to know the organization's mission and to believe in it. They need continuous 
training. They need to see results.” 

 

WANTED: Retired Boeing scientists and 

engineers who want to enjoy retirement to 

its fullest, while having a flexible, paid 

part-time career in their disciplines 

[www.yourencore.com] 
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continuously in search of professional challenges for which they often change 
position inside the company, or move elsewhere.  

Less and longer projects 
Since the 1950s, there has been a continuous reduction in the amount of new 
aircraft development programs, caused by their growing complexity and required 
development time.  
The evolution to the actual situation, relatively to military programs, is represented in 
Fig. 1.11, although a similar trend is experienced by civil aviation.  As pointed out in 
(van Tooren, 2003), the consequence is that people who entered the aeronautic 
business not long ago have matured their professional experience on a relatively low 
number of aircraft development projects. Newcomers will possibly never get the 
opportunity to be involved in any single complete project, during their entire career. 
The recently booming interest in UAV and UCAV development might change this 
trend, at least for this particular category of aircraft. 

The direct consequences 
The first obvious consequence of the brains drain is that the aerospace industry, at 
least in the short/midterm period, will be forced to bear the development of more 
complex systems, with a lower amount of intellectual resources (more with less).   
When considering also the other two points mentioned above, then some other 
knowledge management-related issues arise.  
The first is that, while the risk of losing knowledge when an experienced employee 
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Fig. 1.11: the decreasing amount of professionals’ specific experience and the 
diminishing number of aerospace military program during time (van Tooren, 2003). 
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leaves the company is rather evident, the risk associated to professionals’ mobility 
(within the same company) are often underestimated, although similar.  Indeed, 
when a company moves one of its professionals to a new business area, often with 
the intent to secure such intellectual resource, as well as to exploit his/her 
knowledge in other areas, there is the threat of making inaccessible or unused part 
of the knowledge that was developed and maintained by the employee during 
his/her former assignment. In both situations gaps are created between the 
knowledge the organization needs to do business and the knowledge the 
organization has ready available to deploy (McBriar et al., 2003). 

The second concerns with the “type of” knowledge on which the organization 
will have to account. In this respect, McBrair propose a distinction between 
knowledge depth and strength (McBriar et al., 2003). A deep type of knowledge is 
typical for a well educated professional and allows mastering a specific discipline and 
performing certain tasks. A strong type of knowledge is what distinguishes a 
“veteran” from a novice and provides a broader problem solving competence, as well 
as the capability to understand complex cause-effect systems. It gives the possibility 
to see beyond the borders of the simple task and solve problems of higher 
complexity (also in terms of strategy).  
On the same line, Quinn proposes a classification of four professional intellect levels 
(Quinn, 1998) and claims that for an organization to be successful all must be 
available (see insert below). In this case, the system understanding level 
corresponds to McBriar’s knowledge strength concept.  

The cost for the company and required actions 
The lack of knowledge sharing and retention plans comes always at a cost for the 
company, generally far higher than the cost of any knowledge management 

The four levels of a professional intellect. J.B. Quinn 

Cognitive knowledge (know-what): the basic mastery of a discipline that 
professionals achieve through extensive training and certification. 

Advanced skills (know-how): translate “book learning” into effective execution. Ability 
to apply the rules of the discipline to complex real-world problems. 

System understanding (know-why): deep knowledge of the web of cause-and-effect 
relationships underlying a discipline. It permits professionals to move beyond the 
execution of simple tasks, to solve larger and more complex problems and create 
extraordinary value. 

Self-motivated creativity (care-why): will, motivation and adaptability for success. 
Highly motivated and creative groups often outperform groups with greater physical or 
financial resources. 
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initiative. In the words of DeLong, the economic consequences can be summarized 
as follows (DeLong, 2004): 

1. Reduced capacity to innovate: fewer "prepared minds" to connect the dots 
and create something new. 

2. Ability to pursue growth strategies threatened: expanding the current business 
requires people that understand both the business and the technologies. 

3. More costly errors: fewer people around who have already made the mistake 
the new guys are about to make. 

4. Less efficiency: loss of the knowledge of how to get things done within the 
organization. 

Indeed, the competitiveness of a company on the market is strongly affected by its 
capability to deliver the right product at the first time, and the lessons learnt in 
previous projects can the best guide to avoid reiterating old mistakes.  This might 
sound obvious, but the accessibility to such knowledge in a large, transnational 
company is far from reality (not only in aerospace companies!). It is a matter of fact 
that many companies are continuously “re-inventing the wheel”. For example, 
studies carried in the late 1990s at Rolls Royce revealed that 40% of problems 
tackled within company projects appeared to have been already solved in past 
assignments (Clarkson, 2000). Today Rolls Royce is a leading company in terms of 
knowledge management initiatives. 

Although it is not the author’s intention to further deepen into the pure 
knowledge management issues of the aeronautic industry, it is clear that knowledge 
has to be recognized as a business key asset. As such it needs to be managed and 
engineered, aiming at the maximum return of investment.  

1.5.3 The challenge of the design approach 

In the early days, creative spirit and practical knowledge of few basic disciplines 
were enough to allow a very small number of talented individuals to be in control of 
the whole aircraft development process, from scratch to flight testing. After the 
1930s the situation started to change towards the complex. Wind tunnel testing, 
analysis of thin-walled structures, and the need for controllable and scalable 
manufacturing processes called for an enlarged team of experts. Such a process of 
specialization and discipline segregation actually never stopped.  
For many years, the subdivision of a complex product design process into disciplinary 
areas has appeared as the only suitable way to make it controllable, as well as 
workable within the capability boundaries of available people, design tools and 
computational systems. Although such an approach has produced satisfactory results 
for a long period, it does not seem adequate to keep up with the continuously 
increasing complexity of new development programs, organizations and 
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technologies. The day the experienced designers/systems engineers will leave 
without breading a next generation, the system might just turn into loose sand. 
While segregation started as a solution to a problem, eventually, it turned back into a 
challenge! 
The success of new aircraft development program depends upon quality and timing 
of decisions throughout the entire design process, which again strongly depends 
upon timely availability of knowledge. Since, by definition, design is a decision 
making process within uncertainties, it is of extreme importance that designers can 
get reliable and fast answers to all their what-ifs.  
Unfortunately the reliability of analysis results is generally inversely proportional to 
the time required for their generation. Time is a scarce and precious resource, which 
in the current design approach is often wasted in repetitive activities and 
organizational inefficiency, at expenses of creativity and innovation. Nonaka, one of 
the Japanese fathers of knowledge management used to say that “companies need 
plenty of slack to remain creative” (Nonaka and Takeuchi, 1998). Indeed, lack of 
time leads to reapplying the same solution without giving new designs the chance to 
be fairly traded-off against conventional ones.  

Now, more than in the past, there is the opportunity to capitalize on the 
convergence of a broad front of multidisciplinary advances in technology. In order to 
make a step change in aviation, a paradigm shift in the design methodology will be 
required. The availability of new integrated and lean design methods and tools that 
are able to harness the available knowledge, investigate with agility the cause-effect 
network of all the involved disciplines and exploit their optimal integration, will be the 
key to enable and speed up the transition of new concepts and technologies into 
operation.  

1.6 High level goals and structure of this research work 
The challenges discussed above constitute the motivations at the basis of this 
research work. Indeed, the high level goal of this work consists of the development 
of new design methods and tools that are able to sustain the evolutionary 
improvement of current aircraft designs and lower the risk associated to the 
development of novel aircraft configurations.  
Such design methods and tools should facilitate the aircraft development process as 
currently carried across a large and distributed supply chain. Besides, they should 
largely increase the productivity of knowledge workers through a better exploitation 
of their knowledge and the company know-how, thereby reducing the time wasted in 
the repetitive and non-creative activities of the design process, and freeing the time 
necessary for innovation. 
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The description of the work carried in this research work has been structured as 
follows: 

Chapter 2 
The need and the opportunities of a transition from the traditional design approach 
to the one based on multidisciplinary design optimization (MDO) are addressed in 
this chapter. To this purpose, a review on the current state of MDO is provided, 
together with a description of the current implementation challenges.  
Then, the concept of the Design and Engineering Engine (DEE) is introduced, which 
is the advanced design system to support MDO currently under development within 
the chair of Systems Engineering and Aircraft Design of the TU Delft faculty of 
aerospace engineering. In particular, the role of the Multi Model Generator (MMG) is 
highlighted, being this a core component of the DEE as well as the main outcome of 
this doctoral research. 
The MMG is a Knowledge Based Engineering (KBE) application with the twofold role 
of providing the designer with a smart parametrical tool to model the geometry of 
different aircraft configurations, and automatically extract from these models specific 
abstractions (views) to support multidisciplinary analysis. 

Chapter 3 
Chapter 3 is fully dedicated to KBE technology. Its main characteristics as well as its 
roots in the field of Artificial Intelligence are discussed in this chapter, with the intent 
of shedding light on the similarities and the fundamental differences between a true 
KBE system, a CAD system and a Knowledge Based Systems. Furthermore, the 
chapter elaborates on the objected-oriented programming language and the 
integrated CAD modeling capabilities featured by a KBE system, being the 
combination of these two the key to effectively capture engineering rules and 
automate geometry manipulation.  

Chapter 4 
In this chapter the development of the MMG concept introduced in chapter 2, is fully 
elaborated. The architecture of the system is described together with the concepts of 
High Level Primitives (HLP) and Capability Module (CM), which actually constitute the 
two main functional components of the MMG. Few High Level Primitives can provide 
the necessary building blocks for generating parametric models of different aircraft 
configurations and variants, either with conventional or novel architectures. Several 
CMs provide the mechanisms to automatically preprocess the generated geometry 
and initiate the MDO process.  

Chapter 5 
In Chapter 5, the software implementation of the HLP by means of the selected KBE 
system is described in detail. The goal of this chapter is to explain how the Object 
Oriented programming language and the geometry manipulation rules addressed in 
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Chapter 3 can be used to achieve the modeling capabilities illustrated in Chapter 4. 
In particular the modular architecture and the functionality of three HLPs are 
described.  The parametric modeling mechanisms to generate the aerodynamic 
surface of wings, fuselages and their internal structure are illustrated and 
commented.  

Chapter 6 
In this chapter, the software implementation of some Capability Modules is detailed. 
In particular the functionalities of those CMs that have enabled the integration of the 
MMG to external aerodynamic and structure analysis codes are thoroughly described. 
How expert knowledge can be translated into KBE applications that effectively 
increase designers’ productivity is explained here.  
In order to demonstrate the capability of the MMG, two relevant study cases are 
discussed in this chapter. The first concerns with the European project MOB, on 
distributed multidisciplinary design optimization of blended wing body aircraft 
configurations. The second deals with the role of the MMG in an MDO system 
developed in collaboration with Airbus to redesign the vertical tail of an existing 
passenger aircraft.  

Chapter 7 
On the light of the MMG capabilities explained and demonstrated in the previous 
chapters, chapter 7 provides some considerations and guidelines for an appropriate 
exploitation of KBE technology. Typical cases are described where KBE has the best 
chances to make an impact, as well as cases where KBE might not be the best 
solution. A methodological approach to the development of KBE applications is then 
provided, based on the state of art in industry. To conclude, this chapter presents an 
overview on the trends and evolution of KBE technology and a list of 
recommendations and expectations for KBE systems of the next generation.  

Chapter 8 
In this chapter the main achievements of this research work are summarized and 
some conclusions are drawn.  The recommendations section includes a glimpse on 
the current state of development of a new generation MMG system, still based on the 
HLP and CM concepts introduced in this work, but implemented in a latest generation 
KBE platform.     
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CHAPTER 2                 
From the traditional aircraft design 
process to the MDO approach. 
Paradigm of the Design and 
Engineering Engine  

1. Introduction 

2. From the traditional aircraft design approach to the promise of MDO 

3. Towards innovative aircraft configurations. Role of MDO in design innovation 

4. Evolution and current state of MDO technology in aircraft design 

5. Towards suitable design systems to support MDO and design space exploration 

6. The Design and Engineering Engine solution 

7. The keystone role of the model generator and development challenges 

8. Development of the DEE Multi Model Generator: beyond the capabilities of conventional CAD  

9. A brief discussion on non-technical barriers to MDO 

2.1 Introduction 
In the design process of a complex product, such as an aircraft, a car, or a generic 
mechanical component, a diverging and a converging phase can be generally 
distinguished, as represented in Fig. 2.1 (van Tooren, 2003).  
During the first conceptual phase, many potential solutions are synthesized to find 
best compliance with the list of requirements provided by the market/customer. The 
broader the amount of proposed solutions, the higher the chance to have enclosed 
the most appropriate or the closest to the best. On the other hand, the broader the 
amount of proposed solutions, the larger the design and analysis effort.  
In fact, all these solutions, which can be either variants of one product concept, or 
completely different configurations, must be analyzed (and possibly optimized) in 
order to perform a fair trade-off. This will initiate the converging phase of the design 
process, where the best solutions are selected for the next design level. This 
diverging-converging process is actually strongly iterative and requires a continuous 
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adaptation and modification of each proposed configuration during the design loops. 
Large amounts of data and information are continuously generated and exchanged 
across various discipline experts with their multitude of dedicated design and analysis 
tools. The generated output from one tool often needs to be re-processed in order to 
be transformed in usable 
inputs for others.  
As a matter of fact, the 
typical design process is 
much more complex than 
sketched in Fig. 2.1, 
because many diverging-
converging blocks are 
typically required to 
address the product at 
hand in all its major 
systems, subsystems, and 
components. Besides, the 
results of a given 
diverging/converging block 
can actually demand the 
iteration of some previous 
blocks. For example, when 
the overall configuration of 
an aircraft has been 
selected through the diverging/converging process described above, another 
diverging/converging phase will start for the design of the wing structure, and again 
another for the design of the manufacturing tooling, and so on.  

Although the challenges of the engineering design process are generally well 
acknowledged, the current/traditional approach still shows inherent limitations in 
handling such complexity with efficiency and effectiveness. In this chapter the 
specific issues of the aircraft design process will be addressed.  

First the organization of the traditional aircraft design process in industry and 
its actual effectiveness will be addressed. Having considered the current design 
process limitations, the advantages, as well as the associated challenges, of the 
Multidisciplinary Design and Optimization (MDO) approach will be illustrated.  

The capabilities of current design systems and tools to implement the MDO 
approach will be discussed and, based on evidence from literature and working 
experience, a list of needs for future MDO tools development is compiled.  

Then, the Design and Engineering Engine (DEE) will be presented, which is an 
innovative design system concept, currently under development at the Design of 
Aircraft and Rotorcraft group of TU Delft, to support aircraft MDO. In particular the 

Fig. 2.1: the typical diverging/converging phases of 
the design process 
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role of the Multi Model Generator (MMG), a cornerstone module in the DEE 
infrastructure, and its development challenges will be discussed. The conceptual 
development and technical implementation of the MMG, which actually constitute the 
main achievements of this research work, will be addressed later, in Chapter 4 and 5. 

2.2 From the traditional aircraft design approach to the 
promise of MDO 

2.2.1 The traditional aircraft design approach 

The current aircraft design process, as it is generally presented in the main reference 
text books on aircraft design  (Torenbeek, 1982; Raymer, 2006) is organized in three 
main phases, namely the conceptual, the preliminary and the detail design phase 
(see Fig. 2.2). This phases’ distinction is not just an academic argument. Aircraft 
manufacturers present their product development programs actually organized in this 
way, as confirmed by Fig. 2.3, which shows the various steps and milestones of an 
Airbus aircraft development program1.  
Discrimination between the three abovementioned design phases is related to the 
differences in the different activities that take place, the differences in the tools that 

                                        
1 In the Airbus process, the conceptual design phase ranges from the second to the fourth technical 
milestone (M2 - M4). The preliminary phase starts, with some overlap, on M3, in correspondence of 
the selection of the most appropriate aircraft concept. This second design phase ends at M5, when a 
detailed and validated aircraft concept is delivered. If the market is favorable and finance for the 
project is assured, the management can give the Instruction to Proceed (ITP). The ITP triggers the 
detail design phase, which ends at M7, with the completion of the design of all aircraft components. 

Fig. 2.2: Main phases and milestones in the traditional aircraft development process 
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are used, the differences in the amounts of people and expertise that take part in the 
process, the different time scale and, consequently, the different costs involved. See 
Table 2.1 for a few details.  
In the first, the conceptual, design phase, creativity plays an important role. It is 
here that many different aircraft solutions are proposed and briefly investigated. 
Here the design is so fluid that everything is allowed to change, including the very 
topology of the aircraft. However, in order to keep such flexibility affordable, the 
level of detail is kept very low, as well as the fidelity of the employed analysis tools. 
As a matter of fact, the aircraft in the conceptual phase is quasi geometry-less, in the 
sense that is mostly described by simple parameters and analyzed/sized (also 
guesstimated!) by means of simple equations. Simple CAD models are generated to   
visualize the final results of the conceptual design, rather than to facilitate the 
conceptual design process.   

 

Activity Time scale 
People 

involved 

Conceptual design:  
• Definition of the performance goals  
• Generation of many possible concepts 
• Evaluation of possible competing concepts 
• Selection of a baseline design (3 views + data) 

Weeks�months 
1% of the 

engineering 
staff 

Preliminary design:  
• Refined sizing of the baseline design concept 
• Parametric studies 
• Global design frozen with the  possibility to change 

only a few details 

Months�Months/years ≈9% “ “ 

Detail design:  
• Detailed design of the whole aircraft down to each 

single detail  
• Accurate evaluation of performances 
• Fine tuning of the design  
• Release of production drawings 

years ≈90% “  “ 

 

Table 2.1: summary of the main activities, duration and resources for the three main 
design phases within an aircraft development program 
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Fig. 2.3: Activities and milestones in the development program of an Airbus 
aircraft (courtesy of Airbus). 
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The accuracy and the level of detail produced during the conceptual phase are 
so low that it is impossible to decide about the quality of the design and make any 
production commitment. That is why the preliminary design phase is necessary, 
where the designs synthesized during the conceptual phase are investigated with the 
highest level of accuracy. Here all the discipline specialists enter the design arena 
with their sophisticated suite of tools, and testing is initiated (typically most of the 
wind tunnel tests hours are logged in this phase). However, the amount of time and 
resources required by this multidisciplinary analysis and testing is so high that it 
would not be possible to assess a large number of aircraft configurations. That is 
why from the conceptual design phase only one (or very few) baseline design(s) can 
be accepted, whose configuration is not going to be varied that much. A canard 
concept does not turn into a conventional design during preliminary design. 

At the end of the preliminary phase so much should be known about the 
technical and economic performances of the design, that management should have 
the confidence to give the Instruction to Proceed (ITP). As from this moment, the 
most expensive part of the whole aircraft development process starts: huge 
resources must be committed to transform the design into a producible product and 
initiate the manufacturing phase.  One of the most evident characteristics of the 
current design approach is the unbalanced involvement of the various disciplines 
during the design phases. This is illustrated in Fig. 2.3, from (Schrage et al., 1991). 

Fig. 2.4: Re-distribution of the disciplines across the main phases of the traditional 
aircraft design process (Schrage et al., 1991). 



Chapter 2     From the traditional aircraft design process to the MDO approach. Paradigm of the DEE            

25 

 

In the traditional approach, the synthesis and optimization of the overall aircraft 
design concept is based on achieving compliance with the customer top level 
requirements (such as payload, speed, range, etc.) through parametric variation of a 
few critical design parameters, such as wing loading, thrust-over-weight ratio and 
aspect ratio. Since aerodynamics and propulsion are generally the two most critical 
disciplines to achieve the required vehicle performance, they take the largest 
attention during the conceptual phase.  As the baseline configuration is selected and 
enters the preliminary design phase, structures discipline begins to play a more 
dominant role. It is only during the detailed design phase that controls discipline gets 
the same attention as structure. Eventually, also manufacturing plays a primary 
attention role in this phase, in view of the preparation activity for production.   

This design approach has proven satisfactory for many years, however, due to 
the changes “at the boundary conditions” discussed in Chapter 1, it is showing 
increasingly evident flaws and limitations, which are preventing any further 
sustainable growth in the field of aircraft design. Indeed, aerospace vehicles are 
engineering systems whose performance depends on the not always evident 
interaction of many parameters. Very large sets of coupled and complex governing 
equations would be required to model the behavior of such systems. In order to 
manage complexity, engineers deal with these equations by partitioning them into 
subsets corresponding to the major disciplines, such as aerodynamics, structures and 
flight controls. Nevertheless, the couplings among the subsets would be too 
burdensome to be accounted fully. Hence, during this process of pragmatic 
partitioning, couplings are retained or neglected judgmentally, on the basis of what is 
known - or just assumed - about their strength in a particular vehicle category 
(Schrage et al., 1991).  

It is evident that the traditional aircraft design process has developed as a 
compromise between design freedom and complexity affordability, but how effective 
is this compromise?   
Already at the beginning of the 1990s, the aircraft design community has started 
questioning the validity of the traditional design approach and highlighting the main 
limitations:  
• The conceptual design phase is far too short, especially on the light of the 

enormous impact that any design decision taken in this phase has on the overall 
success of the development program in terms of technical performance as well as 
cost. Fig. 2.5 from (Schrage et al., 1991) shows that at least 70% of the lifecycle 
costs are already committed during the conceptual design phase, while only 1% of 
the total costs are incurred (see also (Staubach, 2003)). 

• The quality of the baseline concept, which is generated during the conceptual 
phase and often undergoes just some tweaking during the rest of the design 
process (Vandenbrande et al., 2006), is mainly based on designers’ experience 
and the results of simple analytical models. However, these often oversimplified 
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analytical models, typically address only a few disciplinary aspects of the aircraft, 
as shown in Fig. 2.4. Hence simple conceptual design tools become just 
inadequate, as soon as requirements are given on aspects like noise emission, 
manufacturability costs, or some other of the various –ility requirements (e.g., 
maintainability, evolvability, supportability, observability) that are becoming 
increasingly important both for civil and military applications. 

• Considering the fact that new aircraft design programs are fewer and farther apart 
in time, past experience is less available as the main guide in making design 
decisions. Considering the increasing complexity of new aircraft and the fact that 
the more advanced the vehicle, the more complex and relevant the coupling 
between disciplines, the possibility to judge a priori which couplings can be 
neglected or simplified, is fading. 

• The current design approach is responsible for the so called knowledge paradox: 
as the designer increases his knowledge about the design, at the same time he 
loses the freedom to act on that knowledge (see the two curves in Fig. 2.4). It has 
been demonstrated also mathematically that this approach may actually lead to 
suboptimal design (Schrage et al., 1991).  

2.2.2 The Aircraft multidisciplinary design and optimization approach 

The need of a true, systematic, integrated Multidisciplinary Design and Optimization 
(MDO) approach started becoming evident at the beginning of the 1990s, when the 

Fig. 2.5: Leverage of design decisions in the developing process: life cycle-cost 
committed versus incurred by life-cycle phase (Schrage et al., 1991). 
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main design objective started shifting from pure vehicle performance to a balance 
between performance and life cycle costs. The experience of the 1960s, particularly 
with military aircraft, had shown that a design driven solely by performance (e.g., 
speed) becomes usually unattractive in terms of other characteristics, such as, for 
example, manufacturability or operational costs.  The lesson learnt was that the 
overall system must be optimized, not just performance. The same lesson had been 
learned earlier by the airlines when meticulous cost accounting had pointed towards 
high potential cost savings linked to improved reliability and maintainability (Schrage 
et al., 1991). 

At date, the great interest in complex aircraft configurations and technologies 
such as blended wing body aircraft, morphing wings and aeroelastic tailored 
composite structures, just increases the urgency of a suitable design approach to 
integrate more disciplines earlier in the design process and to account systematically 
for their mutual interaction.   

Multidisciplinary Design Optimization is then proposed as a design methodology 
able to solve the abovementioned knowledge paradox and reduce design time, hence 

Fig. 2.6: the dashed line projection from the "Knowledge about Design" reflects the 
requirement that more knowledge will have to be brought forward to the conceptual and 
preliminary design phases. The dashed line projection from the "Design Freedom" curve 
reflects the need to retain more design freedom later into the process in order to act on 
the new knowledge gained by analysis, experimentation, and human reasoning (Schrage 
et al., 1991). 
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reducing the overall design process duration or allowing in the typical time lap the 
evaluation and optimization of more design configurations. 
As shown in Fig. 2.6, the MDO approach supports a longer conceptual design phase 
and systematically anticipates the participation to this phase for many of the 
disciplines that are traditionally confined to the last design stage. In the words of the 
first AIAA Technical Committee on Multidisciplinary Design and Optimization, “MDO is 
seen as a means to achieve the above compression by bringing more information 
about the entire life cycle and the vehicle performance and cost aspects earlier into 
the design process. This will enable engineers to make design decisions on a rational 
basis that gives equal consideration to all the influences disciplines exert on the 
system, directly, or indirectly through their complex interactions. Doing this early in 
the process exploits the leverage of the uncommitted design variables. On the other 
hand, it is equally important to extend the MDO-based approach to the later phases 
of the design process in order to take advantage of the new information that 
becomes available during that process through creative thinking, analysis, 
experimentation, and exploration of alternatives. In order to do that, the design 
variables that in the conventional design process are decided and set early, need to 
be retained as free variables much longer into the process (Schrage et al., 1991)”. 

2.3 Towards innovative aircraft configurations. Role of 
MDO in design innovation  
In three steps, Fig. 2.7 summarizes 50 years of “evolution” in the configuration 
layout of passenger transport aircraft. As a matter of fact, the classical “cylindrical 
fuselage - cantilever wing - aft tail” configuration seems to have no alternative in civil 
transport aviation, even though proposed in the largest assortment of sizes. This is 
even truer ever since the retirement of the Concorde. A study on 40 years evolution 
of the figure of merit M×L/D (i.e., the product between Mach and the maximum lift-
to-drag ratio) seems to confirm also a substantial stagnation in the field of 
aerodynamic design. See Fig. 2.8 from (Liebeck et al., 1998). 

In the last decades, several new and “unorthodox” aircraft configurations, like 
the blended wing body, oblique and joint wings aircraft, have been proposed by 
visionary designers, not only for military applications. Several internal programs 
(Boeing/Nasa BWB (Liebeck, 2004)), as well as a number of collaborative research 
programs (Table 2.2), have been looking into these unconventional configurations. 
However, the transition from a research study to the industrialization of a new, non-
conventional passenger aircraft is not yet at the horizon.  
The fact today’s aircraft still look like those of 50 years ago, is too often given as 
argument for the inherent superiority of the conventional design. As far as market 
and customers’ requirements stay the same, this might be true, but considering the 
changes in requirements already discussed in Section 2.3 of Chapter 2, it is very 
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unlikely the “Kansas City” configuration still remains the best possible (Morris, 2002; 
Greener-by-Design-group, 2005). Considered the large amount of specific knowledge 
and experience matured so far by the major aircraft manufacturers, the actual 
conservatism is understandable. The financial risk associated to the development of a 
novel configuration of unproven advantages could be unacceptable.  
In the end, everything boils down to the need of an adequate design approach to 
mitigate that risk, by generating at least digital experience of some interesting novel 
configurations and estimate their advantages using the most accurate and reliable 
analytical model. However, the traditional design approach is too much dependent on 
the legacy of previous programs and loses most of its validity as soon as the new 
design starts deviating too much from reference designs.  
Furthermore, new designs, as the abovementioned blended wing body, are supposed 
to achieve a technical and economic quantum leap just by exploiting the synergistic 
interaction between system components and functions. Conventional techniques 

 

MOB: A computational design engine 
for Multidisciplinary  design and 
Optimisation of Blended wing body 
configuration (Morris, 2002) 

EU FP5  

 

VELA: Very Efficient Large Aircraft 
(Greener by Design, 2005) 

EU FP5 

 

ROSAS: Research Of Silent Aircraft 
concepts (Brodersen et al., 2005) 

EU FP5 

  
NACRE: New Aircraft Concepts 
Research (Greener by Design, 2005) 
 

EU FP6 

 
SAI: Silent Aircraft Initiative 
(Dowling and Hynes, 2006) 

UK DTI (UK-
US 
initiative) 

 

The Prandtl Plane (Frediani, 2004) 
Pisa and 
other Italian 
universities 

Table 2.2: Innovative aircraft configurations investigated in recent European and 
national  research projects. 
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appear to be inadequate to deal 
with such integrated 
configurations.  

Therefore, to bring the 
aerospace community on the 3rd 
S-curve, a truly MDO approach 
is necessary, as well as the 
development of new tools and 
design systems able to support 
such an approach (van Tooren, 
2003; Morris, 2002; Bowcutt, 
2003; Doherty and Dean, 2007). 
As far as the only tool in use is a 
hammer, everything will keep on 
looking like a nail (Carty and 
Davies, 2004 ). 

On the contrary of the previous provoking statement, Fig. 2.8 is actually a proof 
that MDO can improve the design quality of aircraft design. Indeed during the 30 
years of design evolution considered in the plot, the fuel consumption of aircraft has 
halved, not only because of better engines. Kroo argues the surprisingly constant 
value of M×L/D is not a reflection of stagnation in aerodynamic design, but rather an 
indication that the major aircraft companies do a good job of multidisciplinary design 

Fig. 2.7: 50 years of evolution in the configuration layout of passenger transport aircraft 

 

The European project MOB (Morris, 2002; 
Morris et al., 2004; Laban et al., 2002) has 
clearly demonstrated that designing a blended 
wing body aircraft is an extremely complex 
task just because of the highly integrated 
nature of its configuration: aerodynamics, 
control and stability, structures, propulsion, 
payload layout, etc. are all strongly coupled.  
Small changes to improve one aspect have 
strong impact on the others. The development 
of a computational system able to capture and 
master the complex interaction between the 
disciplines is a major necessity to address the 
design of such an integrated configuration. 
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(Kroo, 2004). Indeed, improvements in design methodology and understanding of 
transonic flow phenomena could have produced gains in M×L/D of at least 15% to 
20%. Instead, advances in cruise aerodynamics have been largely exploited in 
parameters associated with other disciplines. For example, supercritical airfoils have 
not been used to increase cruise Mach number, which is actually not beneficial with 
the increased engine bypass ratios. In fact, the higher drag divergence Mach values 
have been exploited to increase wing thickness and lower wing sweep, hence 
reducing the wing structural weight and requiring simpler hence cheaper high lift 
devices.  

However, while the use of MDO on current mature design can yield 
improvements in the order of 1-2%, Phantom Works Scientists (Bowcutt, 2003; 
Vandenbrande et al., 2006) estimate 8-10% gains for new but evolving designs and 
40-50% for radically new and undeveloped concepts, like blended wing body and 
hypersonic vehicles! Eventually, MDO appears to be the most promising design 
technology to deal with the very large design space associated to many strongly 
coupled variables, where there is the chance to discover unique and non intuitive 
design solutions. 

Fig. 2.8: Evolution of M×L/D for long haul commercial transport from 1960 -1990 
(Liebeck, Page and Rawdon, 1998) . 
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2.4 Evolution and current state of MDO technology in 
aircraft design  
In (Kroo, 1997) there is mention of a relevant AIAA Wright Brothers Lecture from 
1982, entitled "On Making Things the Best—Aeronautical Uses of Optimization” 
(Ashley, 1982), where the author surveyed more than 8000 (!!) papers dealing with 
optimal control, aerodynamic and structural optimization, however, without any 
single case where the formal MDO procedure discussed in the paper lead to a real 
application in industry.  
Also the outcome of the first 30 years of MDO application (1970–1997) in conceptual 
and preliminary aircraft design was not impressive. The two possible main reasons:  
• Too low fidelity level of the analysis methods usable in the MDO framework. 

Obtained results were not credible, especially those concerning fundamental 
aerodynamic figures such as drag and CLmax, which cannot be produced with low 
fidelity analysis methods. 

• Slow computer allowed handling MDO problems with 5-10 variables, hence 
problems almost solvable by hand (at least one order of magnitude higher was 
needed to make the formal MDO approach really interesting).   
 
In 1998, less than ten years after the first TC-MDO white paper, a second one 

was published in (Giesing and Barthelemy, 1998), entitled “A summary of Industry 
MDO applications and needs” This paper provides a picture of the state of the art of 
MDO utilization in industry and is based on a critical review of ten relevant industrial 
applications of MDO (not only aerospace related). The results of the review were 
summarized in Fig. 2.9. Though MDO had started getting the interest of industry, 
there were strong limitations in setting up a true MDO system based on high level 
fidelity analysis. Eventually, high fidelity tools could only be used for monodisciplinary 
optimization or simple tradeoffs. Real multidisciplinary optimization could only be 
achieved by using low fidelity analysis tools, which is in contrast with the idea of 
bringing as much knowledge-about-the-design as possible to the early design stage 
(Fig. 2.6). The paper highlights a broad set of open issues and needs, among which 
the following two were indicated for outstanding criticality: 
• The impossibility to automate the operation of high fidelity tools due to their lack 

of robustness, as well as for the inherent complexity of generating high fidelity 
models 

• The long computational time required by high fidelity analysis tools 
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In 2006, during the European-U.S. MDO colloquium, about 70 participants from 
industry and academia presented and discussed their latest achievements and 
current state of MDO. Some of the results were collected in (de Weck et al., 2007). 
The conclusion was that the actual application of MDO methods and techniques in 
industry had definitely started, though yet hampered by many of the issues 
previously highlighted in the TC-MDO white papers. Indeed it was observed that the 
use of genuine MDO methods within industry at large is still rather limited and, for 
the most part, started at the detail design stage. Also, it was observed that the use 
of high fidelity models is not yet achievable at preliminary design level, though there 
is a clear trend of moving upstream. This is qualitatively illustrated in a slide 
presented by Boeing (see Fig. 2.10), showing the continuous advances across 
successive aircraft families, towards the target of a full MDO/True physics modeling 
designed aircraft. It was explained that in the development of the 787, the MDO 
approach was indeed used with success to improve the design of a few aircraft 
subsystems. However, major advances are still required to apply MDO based on high 
fidelity analysis tools to a complete aircraft configuration.  

Fig. 2.9: Design process fidelity and level of MDO (Giesing and Barthelemy, 1998) 

Trade studies: point designs generated and graded relative to each other 
without formal optimization. 

Limited Optimizations/Iterations: disciplinary sub-optimization or 
optimization with limited disciplinary interaction.  

Full MDO: vehicle level optimization with most critical disciplines involved. 
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At the end of 2008, presentations from TC-MDO members (Alonso, 2008; 

Bathia, 2008; Gaudin, 2008) at the 12th AIAA MA&O Conference still address the 
need to move towards the application of MDO in preliminary design founded on high 
fidelity analysis tools. This, again, calls for higher tools robustness and an enhanced 
level of design automation, by seamless integration of tools and the use of advanced 
parameterized/associative models.  
 

In conclusion, advances in research have not yet lead to a large scale 
exploitation of MDO in the aerospace industry. Though a positive trend is manifest, a 
number of technical and non technical barriers are still constraining the transition of 
MDO from a high potential innovative design methodology to a consolidated practice.  

2.5 Towards suitable design systems to support MDO 
and design space exploration 

2.5.1 A collection of needs 

On the base of the above study of the state of art of MDO in aerospace and the 
previous considerations on the traditional design approach (Chapter 5 Section 5.2), a 
list of needs has been compiled by the author, for a design system able to support 
the MDO design approach.  

Fig. 2.10 Towards full aircraft MDO across successive Boeing aircraft 
families (de Weck et al., 2007) 
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The following collection of requirements has been structured in four main groups to 
address the fundamental aspects of any MDO design system, namely overall 
architecture, analysis capability, geometry modeling and optimization capability.  
 

Overall system architecture 

� The system should have a loosely coupled modular structure to adapt, i.e., allow 
reconfiguration and scalability, to different design cases and to the specific needs 
of the various design process phases  

� The system should be able to support closely coupled analysis when needed to 
fulfill high computation speed requirements 

� The system should be able to integrate both of-the shelf and in house developed 
design, analysis and optimization tools, as well as data sharing and 
communication systems 

� The system should guarantee the synchronization of the data/models used by the 
various disciplinary analysis tools to guarantee a consistent design and 
optimization process  

� The data exchange among the various MDO system components should be based 
on standard data representation formats 

� The system should support automation of all the repetitive activities related to the 
iterative nature of the MDO approach 
� This should include pre-processing of data and models as required to feed 

different design and analysis tools 
� This should include post-processing of the data generated by the various 

design and analysis tools 
� This should include the transfer and storage of data between the various 

design and analysis tools 
� The system should make use of dedicated software frameworks for the 

integration of the various analysis and design tools involved, i.e., to support 
process coordination and communication among the various design, analysis and 
optimization tools. 
� The system’s framework should be able to control process execution across 

the distributed networks of software tools 
� The system’s framework should be robust and easy to set up 
� The system should provide visibility of the overall, complex design process 

workflow 
 
Analysis capability 
� The system should not have any limit on the number of disciplines that can be 

integrated 
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� The system should allow the use of analysis tools with different levels of fidelity, 
with the possibility to switch level (possibly automatically, based on the results of 
some accuracy sensitivity analysis)  

� The system should support the use of the highest fidelity analysis tools  
� The system should account for the lack of robustness of current high fidelity 

tools 
� The system should account for the difficulty of automating the operation of 

current high fidelity analysis tools 
� The system should account for the large computation time normally required 

by high fidelity analysis tools (e.g., support parallel, grid computing) 
 
Geometry modeling  
� The system should provide a sharable common vehicle description to facilitate 

communication among all disciplines (and among companies, sites and design 
team involved) 

� The geometry model should support the use of both low and high fidelity analysis 
tools 

� The geometry modeling system should not constrain the user to conventional 
aircraft configuration 

� The geometry model should have parametric/associative characteristics to 
maintain accuracy and consistency as design variables are changed  

� The geometry model should support the level of automation and robustness 
required for the use in a MDO framework 

� The parameterized geometry description should be compatible with current CAD 
systems and transferrable through standard data exchange formats 

 
Optimization 
� The system should be able to deal with the lack of robustness of many current 

optimization packages 
� Hybrid optimization schemes should be supported, able to deal with continuous 

and discrete design variables 
� The system should be able to support multilevel design decomposition and 

optimization 
� It should be possible to provide designers with visualizations of the design space 

and not only with single optimum points, to facilitate them judging the robustness 
and the sensitivity of the reached design point 



Chapter 2     From the traditional aircraft design process to the MDO approach. Paradigm of the DEE            

37 

 

2.5.2 The different paradigms of current MDO systems: strengths and 
limitations 

Without entering in the details of any specific implementation, a generic MDO system 
for aircraft design is built up of the following three functional components 
(Vandenbrande et al., 2006)  illustrated in Fig. 2.11: 
1. A modeling and analysis component able to compute the multidisciplinary 

behavior of multiple aircraft designs (indicated by the responses f1, f2, .., fn)   
2. A design points generator to sample conveniently the design space and define 

the aircraft variants - indicated by the variables vectors (x1, x2, .., xn) - to be 
modeled and analyzed by the component above  

3. An optimizer to spot the most promising area in the design space, based on the 
feedback responses. Optimizers often perform both this function and the one 
above 

When compared with the traditional aircraft design approach where the designer is in 
charge of judging which and to what extent the design variables should be changed 
in order to improve the aircraft performance, an MDO system is based on a 
systematic search approach, enabled by the modeling and analysis system.  

Today, different implementations exist of the generic MDO system of Fig. 2.11. In 
particular we can distinguish the following three kinds of implementation: 
• The geometry-less implementation, typically used for conceptual aircraft design 
• The grid-perturbation implementation, which makes use of a detailed-but-

discipline specific geometry representation of the aircraft, particularly suitable for 
detail design.  

• The geometry-in-the-loop implementation, which offers the possibility to feed the 
various disciplinary analysis with geometry models that are updated by the 
optimizer during each cycle 

In Ref. (Vandenbrande et al., 2006), Boeing scientists provide a description of the 
abovementioned systems, as well as reference to some examples in literature.   

Fig. 2.11: generic architecture of an MDO system (Vandenbrande, 
Grandine and Hogan, 2006) 
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Geometry-less implementation 
In the geometry-less implementation, the aircraft is described by sets of coupled 
equations including parameters/variables like weight fractions, lift coefficients, wing 
loading values, etc., which are varied by the optimizer in order to minimize/maximize 
a given objective function. The analytical tools used in this sort of implementation 
can compute optimal values of geometric variables, such as wing span and sweep 
angles, eventually used to generate simple drawings for the sole purpose of visual 
inspection (see Fig. 2.12). 
The geometry-less aircraft design approach is only possible and useful when the 
designer has availability of semi-empirical and statistical models that are based and 
validated for aircraft configurations similar to the one at hand.  
However, the lack of any reference and statistical data makes the applicability of 
these models extremely limited - if not useless - to novel aircraft configurations. In 
this case, it is necessary to go back to “first principles” and make use of high fidelity 
analysis tools that need appropriate geometric representations of the aircraft 
configuration at hand.  

 
Grid-perturbation implementation 
The grid-perturbation implementation (see sketch Fig. 2.13) uses a detailed 
geometry model of the baseline aircraft configuration for the generation of a 
computational grid. During the optimization (part of) the grid is perturbed to 
investigate the effect of shape modification on objective functions and constraints. 
The optimizer perturbs either single grid points or groups of points, when special grid 
parameterizations techniques are used. Only small perturbations are generally 
allowed to prevent grid quality deterioration. Complex techniques are required to 

Fig. 2.12: implementation of geometry-less MDO system. Geometry 
generation, if present, is outside the loop (Vandenbrande et al., 2006) 



Chapter 2     From the traditional aircraft design process to the MDO approach. Paradigm of the DEE            

39 

 

perturb the grid without creating undesired discontinuities that invalidate 
computation loops. This MDO system implementation has proven its value especially 
during detail design, when “sand-paper work” is required for improving a mature 
aircraft configuration, rather than drastic shape changes or even topology variations 
(Samareh, 2004; Zang and Samareh, 2001). Another limitation of this system is that 
one grid is generated (and modified during the optimization process), which is 
generally tailored to the need of the main analysis code in the system. Therefore, the 
other analysis tools might have to deal with representations non optimal for their 
specific needs. 
 
Integrated Geometry Generation implementation 
The third method brings the geometry right inside the loop, hence it does not 
present the limitations of the two implementations discussed above: disciplinary 
analysis can be performed using actual geometry representations, rather than 
analytical approximations or extrapolations from statistics or previous designs. These 
geometry representations can be updated during each optimization loop (if required) 
and tailored to the needs of the various analysis tools. While in theory this kind of 
MDO system has the right credentials to fulfill many of the needs listed in Section 
2.5.1, it actually brings a huge burden on the geometry generator and turns it into 
the key element of the whole approach.  

Examples have been found in recent literature on advanced aircraft design 
systems that belong to this third category of MDO implementation. In 
(Vandenbrande et al., 2006), Vandenbrande, Grandine and Hogan discuss the 
paradigm of the Boeing design system (Fig. 2.14) and illustrate the functionality of 
the General Geometry Generator, the geometry generator tool developed on 

Fig. 2.13: Implementation of an MDO system based on grid perturbation. One CAD 
geometry is generated for gridding. The grid is used by the discipline analyses during 
optimization (Vandenbrande et al., 2006) 
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purpose. In (Carty and Davies, 2004 ) , Carty illustrates the advantages of Rapid 
Conceptual Design, the integrated multidisciplinary design system developed at 
Lockheed Martin. In (Werner-Westphal, Heinze and Horst, 2007; 2008) the 
Preliminary Aircraft Design and Optimization (PrADO) system developed during the 
last 20 years at the Technical University of Braunschweig is addressed, where an 
integrated geometry generator communicates with in house developed aerodynamic 
and FE codes. 

 
Since 2002, the Design of Aircraft and Rotorcraft group of the University of 

Technology in Delft is also developing a loosely integrated design system to support 
multidisciplinary design, analysis and optimization of aircraft, called Design and 
Engineering Engine (DEE). The first development activities started within the 
framework of the European Project MOB and they have kept evolving through other 
national research projects and collaboration with industry.  
The paradigm and functionalities of the DEE will be discussed in the next section. 
The conceptual development and technical implementation of the DEE Multi Model 
Generator (MMG) will cover most of this work, being the main contribution of this 
doctoral research to the DEE development. 

2.6 The Design and Engineering Engine solution  
The DEE consists of a multidisciplinary collection of design and analysis tools, able to 
automatically interface and exchange data and information, with the purpose of 
supporting and accelerating MDO of complex products, through the automation of 
the non-creative and repetitive design activities. In this thesis, focus will be on an 
aircraft DEE. 

Fig. 2.14: MDO design system with integrated geometry generation 
capability (Vandenbrande et al., 2006) 
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The paradigm of the Design and Engineering Engine is illustrated Fig. 2.15. Note that 
is a simplified representation of the system; no details are shown of the components’ 
internal architecture and only the main communication lines are drawn.  The DEE is 
an integrated design system built up of loosely coupled modules, which can vary in 
number and type according to the design case at hand. For example, different 
analysis modules can be included or left out of a specific DEE implementation as 
considered opportune. Indeed, what is shown in Fig. 2.15 should be considered the 
generic template of a design system that can be customized to the user needs. For 
example, the DEE can be used for mono and multidisciplinary what-if studies or for 
mono and multidisciplinary optimization studies.  

2.6.1 Architecture of the DEE 

The main components of the DEE architecture and the way they interact during the 
MDO process are described in the following subsections (refer to Fig. 2.15) 
 
The Multi-Model Generator (MMG) is the software tool developed in this doctoral 
research with the twofold intent of providing designers with a parametric modeling 
environment to generate models of conventional and novel aircraft configurations 
and automate the generation of input data and specific disciplinary models for 
various disciplinary analysis tools. The MMG will be discussed later in full detail. 
 
The Initiator module actually consists of a collection of sizing tools, able to provide 
an initial set of values for the MMG parameters, i.e., the first of the variables vectors 
(x1, x2, .., xn) mentioned in Section 2.5.2. In fact, the MMG offers the possibility to 
instantiate an aircraft model based on a given set of parameters values, but does not 
have any knowledge to select/calculate those values autonomously. Prototypes of 
various parameters initiating tools have been developed, e.g., to define the fuselage 
layout of a conventional aircraft given the payload requirements (Alagna, 2005), or 
to compute a complete aircraft baseline configuration, starting from a limited set of 
customer and regulations requirements and using simple conceptual design 
handbook methods supported by optimization techniques (Langen, 2011). Also a 
structure specific initiator tool has been developed to provide a rough estimation of 
mass and stiffness distribution in lifting surfaces, based on a preliminary estimation 
of the aerodynamic loads (Cerulli et al., 2006; Schut and van Tooren, 2007). 
Eventually, the scope of the Initiator is to provide the MMG with a feasible initial 
solution prior to start with the multidisciplinary analysis and optimization process 
(see the “Feasilization” concept in (Schut and van Tooren, 2007)). Though not shown 
in Fig. 2.15, the Initiator might also use a MMG (at least part of its capabilities) to 
extract, for example, some geometry information required to perform the 
feasilization process. Furthermore, the Initiator can also make use of optimization 
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techniques and employ a kind of Converger/Evaluator tool (see below). In other 
words the Initiator can be a DEE by itself. 
 
The disciplinary analysis tools can be both low and high fidelity analysis 
computational systems (such as panel codes or CFD), either in-house developed or 
Commercial of the Shelf (COTS) tools. As anticipated, the DEE does not “contain” a 
fixed suite of analysis tools, but different tools can (have been) used according to 
various project needs. Examples of COTS that have been integrated in various DEE 
implementations are Fluent (Lisandrin, 2007), VSAero (Brouwers, 2007; Dircken, 
2008), NASTRAN (Nawijn et al., 2006; Koopmans, 2004; van der Laan and van 
Tooren, 2005) and Abaqus (Krakers, 2009) (more details in Chapter 6).  Though Fig. 
2.15 shows the disciplinary analysis tools as separate silos, direct data exchange 
(i.e., not throughput via the MMG) can occur among them. For example, a structural 
analysis tool can use the loads computed by an aerodynamic analysis module. In 
case of highly coupled analysis tools a discipline silo should be regarded as a 
multidisciplinary tool. 
 
The Converger&Evaluator functionalities are generally provided by a single off-
the-shelf optimizer, whose tasks are checking if the various analysis tools have 
reached convergence and if the performance/characteristics of the evaluated design 
have met the objectives set by the designer. This module receives the results 
generated by the various disciplines (typically post-processed in terms of significant 
figures of merit, such as aerodynamic efficiency or weight) and generates a new 
variables vector (x1, x2... xn) to feed the MMG, according to the implemented 
optimization algorithm. The MMG will modify consequently the aircraft model and 
produce updated data to support a new analysis loop. The generation of the 
variables vectors (x1, x2... xn) can be performed either using a search algorithm 
(e.g., a gradient based approach) or following a selected strategy to sample the 
design space (e.g., Latin hypercube).  
In case of the impossibility to fulfill the initial requirements, the Evaluator/Converger 
will quit the interaction with the MMG and call again the Initiator, which will have to 
synthesize a different aircraft configuration, feed it to the MMG, etc… 

 
The communication framework, represented in Fig. 2.15 by the set of connectors 
linking the various DEE components, takes care of the data and information flow 
between the various design and analysis tools and manages the overall design 
process sequence. An innovative agent-based architecture has been implemented to 
provide the DEE with a very high level of flexibility (Berends and van Tooren, 2007 ) 
(see next insert). The agents system allows fast set up and reconfiguration of the 
overall MDO process, according to the specific design case at hand and the type and 
location of the available design and analysis tools. The agents use the web to link 



Chapter 2     From the traditional aircraft design process to the MDO approach. Paradigm of the DEE            

43 

 

sets of heterogeneous design and computational tools, which can be installed on 
different servers and computers, possibly running different operating systems and 
belonging to separate networks. 
  

 
 
 
 
 
 
 

Fig. 2.15: Paradigm of the Design and Engineering Engine  (arrows  show execution 
order). 
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Conceptual and technical development of the DEE agent based framework 

The agent-based communication framework developed by Berends (Berends, van Tooren 
and Schut, 2008; Berends and van Tooren, 2007 ) aims at mimicking the organizational 
structure of a design build team  (DBT), where the various human actors work and 
interact in a flexible service oriented approach rather than in a rigidly predefined 
procedural (throw-over-the-wall) scheme. The figure below shows how the previously 

illustrated DEE paradigm (Fig. 2.15) is actually a formal and simplified representation of 
a DBT. In this software implementation of the DTB structure, all DEE specialist’s tool 
need to be wrapped by a software agent, which enables interfacing with other tools. Each 
specialist’s tool can be replaced by a different one (or an upgraded version of the same 
tool) if the interface is kept consistent, hence the agents facilitate a plug-and-play set up 
of the DEE.  

The framework uses a kind of peer-to-peer/server-client architecture, where one of 
the DEE agent-wrapped tools is appointed server, while all the others are the clients. 
Each agent-tool combination, in order to join the DEE, must register to the server, from 
which it receives the updated list of all the other available registered clients (with relative 
contact data such as host name and IP number and status of activity). The role of server 
is played by the “most expert” agent (i.e., the longest active agent in the DEE), but in 
case of necessity each agent in the DEE can equally function as server. If the formerly 
appointed server agent disconnects from the network, the second eldest agents takes 
over so that the integrity of the DEE structure and the continuity of the design process is 
guaranteed (as in the human DBT model). 

The agents based framework does not need a predefined description of the process 
flow, as most currently available integration systems, but uses a demand driven (or 
service oriented) approach to self-configure the process flow on the fly.  
Each agent is able to initiate the design 
process when the output of its 
wrapped tool is requested, either by 
another agent, or by the designer. 
Since each agent is aware of the input 
needed to start its internal tool, it 
broadcasts the request for necessary 
input to all the agents presently alive in 
the DEE. Each agent is also aware of 
the output that its wrapped tool is able 
to generate. In case an agent is able to 
satisfy the broadcasted request, it will 
start a peer-to-peer connection with 
the requesting agent. The required 
input data will be generated and their 
storage location will be communicated 
to the requesting client for retrieval. 
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2.6.2 Modular structure to support flexibility and distributed design 

In order to participate in the DEE structure, each of the software components 
addressed above must be able to operate (also) in batch mode and be accessible in 
remote. That is to say, they must allow hands-off operation (without human 
interaction) and be accessible and controllable from other computer systems than 
the one where they are physically installed. This might be a stringent requirement for 
tools which have been originally developed to operate via graphical user interfaces 
and expect the user intervention (e.g., by means of selection menu) during 
operation. However, it is a killer requirement for the automation of any process that 
involves multiple computational modules or is based on an iterative approach. 

The modular architecture is an enabling factor for the DEE flexibility.  
Modularity comes with the price of interfaces development and, possibly, with a 
penalty of overall process speed.  However, unless extreme computing speed is 
required, e.g., for real time calculations, a modular architecture is the key to system 
scalability, adaptability and maintainability.   

A modular architecture becomes a necessity for supporting collaborative and 
distributed design, where different discipline specialists must be enabled to 
participate to the design process with their own trusted tools (Morris et al., 2004; 
Bartholomew, 1998). The wish to use trusted tools is typical for collaborative projects 
that involve different companies, or different departments of the same company, 
that want to collaborate and contribute with their best practice analysis tools.  
Nevertheless, there are continuous attempts by industry and academia to develop 
complex integrated design tools to cover the whole aircraft design cycle, from 
drafting to high fidelity multidisciplinary analysis and optimization (Butler et al., 
1998). The exploitation of these systems within distributed, collaborative design 
programs appears always very problematic: the eventual substitution of one of the 
integrated analysis functionalities with an external analysis tool becomes easily an 
overwhelming problem. Similarly, when only some of the “super integrated tool” 
functionalities are needed, it might result impossible to disintegrate its monolithic 
structure into separately usable bits. For this reason, soon after the beginning of the 
MOB project (Morris, 2002), it was decided to pursue the development of the MMG 
(thoroughly described in Chapter 4-6), rather than proceed with the Prado system 

Large, monolithic MDO systems can be difficult to understand, manage and extend.  
Many grandiose plans for completely integrated aircraft design systems have fallen by 
the wayside because they quickly became unmanageable. I. Kroo – Stanford University 
(Kroo, 1997) 

Requirements instability hampers design, but it is here to stay so it is necessary that 
design systems and methods are developed accounting for that and support agile 
reconfigurations. W. Tam – Aerojet (Tam, 2004) 
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(Werner-Westphal et al., 2008) as planned. Although mature and sophisticated, 
Prado did not have the required flexibility to integrate and support the exploitation of 
the design and analysis tools provided by the consortium partners.  

The presence of the initiator tool inside the DEE has the purpose to blend into 
one system the systematic design space exploration capabilities offered by the MDO 
approach with the exploitation of the best design knowledge available. The DEE 
allows the possibility (via the Initiator) to use handbook methods to synthesize a 
baseline configuration to feed to the “MDO machine”; or also use first principles, but 
for a simplified problem (i.e., simplified design options, requirements and methods). 
However, the DEE offers the designer also the possibility to use directly the MMG1 
(as a standalone tool) to build the model of the aircraft configuration he previously 
sketched “on the back of an envelope” and then proceed with the multidisciplinary 
analysis and optimization process. In this sense, the DEE offers a possible solution to 
what Lockheed Martin’s specialists indicate as the need to successfully leverage the 
best design knowledge available, but push beyond results predestined by heritage 
databases and empirical correlations (Carty and Davies, 2004 ).  
It should be noted how this implementation of the MDO approach blurs some of the 
distinctions between the conceptual and preliminary design (and even part of the 
detail design) discussed before. Indeed, the DEE is an attempt to merge the large 
design freedom of the conceptual design with the systematic multidisciplinary trades, 
typical of the traditional preliminary design phase.  

As a human designer can substitute the functionality of the Initiator, the same 
is possible for other DEE software components. For example, the designer can also 
decide which and in what extend to change the design variables, without having an 
optimizer system in place. Also the expert’s judgment or guesstimation can be used 
in place of a discipline analysis tool. Future developments of the DEE implementation 
are envisioned, where the agent-based framework will directly contact and request 
the knowledgeable services of a human expert in between the execution of an MDO 
process.  

2.7 The keystone role of the model generator and 
development challenges  
As discussed in Section 6.5, the development of the geometry model generator is of 
paramount importance to the implementation of a design system like the DEE. 

                                        
1 As it will be discussed later, the technology used to develop the MMG allows capturing and reusing 
design knowledge directly within the parametric geometry modeler. Hence the initiator is not the only 
occasion to seed some knowledge in the aircraft model, before starting the MDO process. 
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Advocates of the geometry-in-the-loop approach indicate the geometry generation as 
the keystone to succeed and often the greatest impediment to integrated design 
(Bowcutt, 2003). The geometry modeler represents a key technological enabler, as 
well as one of the most difficult and complex tasks (Samareh, 2004; Vandenbrande 
et al., 2006). This is generally true for the design of most aeromechanical systems. 
Other sort of systems, such as wire harnesses, still need a MMG, but pose less 
demands in terms of geometry complexity (van der Elst and van Tooren, 2008). 
A list of relevant needs concerning the geometry modeling aspects of an MDO 
system was previously provided in Section 2.7. In the next subsections, the 
associated challenges will be elaborated in more detail, to justify the MMG 
development approach described in the next chapters.  

2.7.1 Modeling flexibility and robustness 

A suitable geometry modeler to support design exploration and MDO should not have 
any representation related restriction on allowable geometry changes. That is to say 
it should allow investigating any aircraft configuration, conventional and not, without 
constraining the design process to the available descriptions of the product. This 
goes beyond conventional parametric modeling and shape deformations and requires 
the capability to deal with topology changes and product re-configurations.  

The level of flexibility discussed above should be combined with adequate 
modeling robustness to survive the harsh perturbations dictated by an optimizer. 
This requires the capability to maintain spatial integration whatever the combination 
of parameters values. In other words “any feasible combination of parameter and 
variable values should deliver a healthy geometry model”. Ensuring spatial 
integration can be a rather complicate task, though partly achievable using a smart 
definition of the model parameters (also addressed in literature as hypercube 
parameterization (Bowcutt, 2003). More in Chapter 4) and by embedding in the 
modeler some knowledge to deal with the limitations of the employed CAD engine 
(e.g., to trap errors generated by inaccuracy and missed intersections. More in 
Section 4.10)  

The modeler should offer the capability to embed also some engineering 
knowledge, such as, for example, mathematical rules to generate particularly 
engineered shapes (or to compute the number/position of certain geometry features.  
The possibility to embed knowledge in the geometry modeler (e.g. by combining 
parameters with rules) would also relieve the optimizer from the burden of too many 
constraints and would simplify the set up of the optimization problem. 
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2.7.2 Models consistency and synchronization 

To suit the needs of the DEE, the geometry generator must be able to provide the 
different types of geometric representations required by the various disciplinary 
analysis tools involved in the MDO process, both low and high fidelity, in-house 
developed and COTS. 
To avoid any inconsistency, the model generator should allow the definition of one 
shareable common vehicle description (the master model), but at the same time 
should be able to generate a number of model abstractions to suit the needs of the 
various analysis tools.  These abstractions reflect somehow the different views that 
various discipline specialists have on the same aircraft Fig. 2.16. Different model 
abstractions often include different vehicle components and non coincident surfaces. 
Also they might feature a different dimensional representation of the same 
component (e.g., the wing skin as a 2D surface or as a solid 3D plate with a given 
thickness). The generation of these models would typically require some massaging 
and adaptation of the original geometry, such as the suppression of some features, 
modifications and additions of elements (e.g., control volume contours for CFD), 
splitting or grouping of surfaces, etc.   
The capability of the model generator could go as far as delivering completely 
preprocessed models ready for the solver(s) (Fig. 2.17, case b), or directly analytical 
results (Fig. 2.17, case d). In the latter case, the risk of too tight integration of 
modeling and analysis functionalities is evident.  The model generator should at least 
take care of the geometry preparation for discretization and then submit a suitable 
model abstraction to a grid generator, before running the analysis (Fig. 2.17, case a). 

Fig. 2.16 the different views of discipline specialists on the same product 
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In the traditional design approach followed by many organizations, drafting and 
analysis are carried out by different specialists. Typically, geometric models delivered 
by draftsmen need a lot of preprocessing to become suitable for analysis (Fig. 2.17, 
case c), just because draftsmen are not always aware of the diverse and specific 
needs and preferences of their customers, neither of the problems that may rise 
during the export of their models to a different platform2. A single geometry 

                                        
2 As matter of fact, most high fidelity analysis tools provide their own preprocessors to fix and 
massage the model geometry from the CAD, prior to apply the mesh. For example, Fluent uses 
Gambit, Nastran uses Patran. 

Fig. 2.17: Generation of model abstractions to support multidisciplinary design and 
optimization: 

Case a: MG produces a model abstraction that needs further processing before analysis 

Case b: MG produces a model abstraction which is ready for analysis 

Case c: MG does not produce any abstraction. The transformation of the master model 
geometry into a suitable model for analysis has to be performed by the analysis 
preprocessor (and the specialists) 

Case d: MG uses integrated analysis capabilities to generate results directly 
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generator can overcome this problem, but needs to be developed in collaboration 
with the discipline specialists to make sure their requirements on the quality of the 
output model abstractions are fulfilled. 
A robust integration of the tools used for analysis with those used to develop the 
design (under a geometric standpoint) is indicated by Lockheed Martin specialists as 
a need to exploit MDO such that is possible to affect real world aircraft. With regard 
to that, they comment on the peculiar fact that the worlds of Computer Aided 
Analysis and CAD have developed independently3, whilst multidisciplinary analysis is 
not possible without a practical design to start with, and CAD without analysis does 
not have any scientific foundation (Carty and Davies, 2004 ). 

The generation of input data and/or geometry abstractions for in-house 
developed tools can present some challenges for the geometry generator. In-house 
developed tools typically lack flexible and standard interfaces and require a very rigid 
and specific input data format. This demands embedding some knowledge in the 
model generator in order to enable the generation of tailored data files.   

Whatever the level of fidelity and standardization of the analysis tools, the 
geometry generator should be able to deal with the iterative nature of the MDO 
approach.  Any change in the aircraft shape or configuration (either required by the 
optimizer, or due to changes in the top level requirements) must lead to the 
automatic re-generation of updated data and geometry abstractions for all the 
involved disciplines. It is the responsibility of the model generator to guarantee the 
synchronization and harmonization of the analysis process, avoiding disciplines 
working on obsolete or inconsistent definitions of the aircraft configuration.  

2.7.3 Supported usage of High Fidelity analysis 

The challenges discussed above just get amplified when the model generator must 
support the use of high fidelity analysis tools. However the exploitation of High 
fidelity analysis tools is of paramount importance to the development of novel aircraft 
configurations and to the credibility of the MDO approach. 
In general, the preparation of model for high fidelity analysis such as FE or CFD can 
be more time consuming than just performing the analysis (since calculation time 
can often be attacked with computational brute force). It has been estimated that 
80% of a FEM analysis cost is spent just preparing the mesh (Chapman and Pinfold, 
2001), provided the geometry of the model is free from native corruptions and 
irresolvable inaccuracies.  

                                        
3 Interesting developments: In 2005, Dassault Systemes, the company of the CAD system CATIA, 
acquired Abaqus, the developer of the homonymous popular FE package. In 2003, UGS (since 2007 
Siemens PLM Software), the developer of NX (one of the direct competitor of CATIA), purchased a 
royalty-free license for the FEA software product MSC Nastran, since then evolved as NX Nastran. 
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NASA specialists claim that grid generation for aerospace vehicles is a number one 
issue and they challenge the grid generation community to develop tools suitable for 
automated MDO (Zang and Samareh, 2001). However, though the capabilities of 
commercial grid generators are increasing, especially with the developments in the 
field of associative and unstructured grids, (as well as of meshless methods) a lot of 
geometry manipulations are still required, just to have the aircraft model ready to be 
meshed.  
In order to have a model generator able to perform the preprocessing work and/or 
the generation of grids, it is evident that knowledge will have to be embedded to 
capture and automate some of the specialists’ best practice.  
Besides, the level of robustness and flexibility of current high fidelity tools needs to 
increase. Developers should consider offering more possibilities to interact with the 
grid generator via a programmable interface, rather than the usual “click and select” 
approach. 

2.7.4 Process automation 

Considered the strong unbalance (in the order of 20:80) between creative/skillful 
work and routine/repetitive work (e.g. for preparing model for analysis) typical of the 
current design approach, improving the level of automation should be a primary 
goal; especially to support a design methodology such as MDO, which is so strongly 
based on iterations.  
Therefore, the model generator (as well as all the other components of the DEE) 
should be able to work in batch mode.  Hence it should be accessible in remote, 
possibly using web connections, and should be able to operate completely hands off,  
whereas the use of GUIs should be limited to set up the system or for “off line” 
interactive work.  It appears that the only way to achieve such capabilities is by 
writing code, such that the required knowledge can be recorded directly inside the 
model generator.  
The automatic (re-)generation of the various model abstractions should be robust 
enough to avoid checking the quality of all output during the iteration of an MDO 
process (see spatial integration issue addressed above).  
In general any kind of manual rework should be avoided. The model generator 
should give designer the confidence that everything can be easily changed; each 
design choice can be evaluated and eventually withdrawn. Designers should feel the 
confidence that suitable models for analysis (especially those for high fidelity 
analysis) can always be available at demand4. 

                                        
4 The capability enabled by automation to perform more analyses in a shorter time can actually result 
in a shift of the current MDO systems’ bottleneck from generating data to make proper use of these 
data.  J. Staubach, a Pratt & Whitney MDO specialist, speculates on a close future, where automated 
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CAD systems relate to the physical description of a concept; they are not suited for 
transforming customer requirements to abstract functional descriptions and then to a 
physical description. The process of concept creation that occurs in the earliest 
conceptual design stage is quite often vague, and not well understood. How an engineer 
generates good design concepts remains a mystery that researchers from engineering, 
computer and cognitive sciences are working together to unravel.  

P. Raj – Lockheed Martin Aeronautical Systems (Raj, 1998) 
 

2.8 Development of the DEE Multi Model Generator: 
beyond the capabilities of conventional CAD  
In view of developing a Multi Model Generator tool able to function within the DEE 
framework, as well as a standalone system, the designers’ needs and the foreseen 
development challenges have been thoroughly discussed.  
Looking at the available technologies, as soon as generation and manipulation of 
geometry are involved, CAD systems appear to be the prime choice. Indeed, they are 
excellent tools for detail design and offer a wealth of options for interactive 
modeling.  
However, the MMG must enable designers to model all the aircraft configurations of 
interest in a fast and effective way, in order to proceed as swiftly as possible with the 
analysis of their performance. During the conceptual and preliminary phases, 
configurations can change so fast and so radically, that building models by means of 
the low level primitives of a conventional CAD systems (points, lines, curves, solids 
etc.) can be slow and cumbersome.  
Besides, designers think in terms of functions, not of points, splines, etc. Especially 
during the conceptual phase, designers are busy considering and rearranging 
possible solutions to fulfill a number of basic functionalities, such as storing payload, 
generating lift, provide control, etc. For this purpose, the availability of some kind of 
high level design objects (rather than the low level CAD primitives) would accelerate 
the transition of concepts and insights from the designer’s head to a (geometrical) 
model to start the verification process. Ideally, such high level design objects should 
be “smart enough” to guarantee spatial integration, while the designer is 
experimenting with large parameters variations. 

                                                                                                                  

analysis and optimization capabilities, supported by the enormous available computational power, will 
enable the concept of zero design time. Machines will keep computing continuously different solutions 
in the whole design space, while engineers will just need to update the parametric CAD models and 
the constraints limit of the physics models to account for eventual technological improvements (e.g. 
availability of new materials). When the customer’s need and the company’s financial situation align, 
the design will be ready and waiting to go (Staubach, 2003). 
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To enable the automatic transformation of the aircraft model in the various 
disciplinary abstractions, the Multi Model Generator would need some embedded 
knowledge, as discussed in the previous section. Ideally, the abovementioned higher 
level design objects should “know” how to transform themselves to facilitate the 
multidisciplinary analysis and optimization process. Again, the low level primitives of 
a conventional CAD system could not help because of their inadequate knowledge 
recording capabilities. 

In the light of these considerations, a new aircraft modeling methodology has 
been developed during this research work, based on the object oriented modeling 
approach. Then, Knowledge Based Engineering (KBE) has been selected as the most 
suitable technology to implement such modeling approach in the development of the 
Multi Model Generator.   
In order to introduce the background technology and the modeling approach 
implemented in the Multi Model Generator, Chapter 3 will cover the fundamental 
characteristics of Knowledge Based Engineering and the basic elements of the Object 
Oriented paradigm. Finally, Chapters 4-6 will cover the conceptual development of 
the MMG and its implementation into software.   

2.9 A brief discussion on non-technical barriers to MDO 
The increasing amount of dedicated publications and international conferences, the 
explicit interest on MDO-oriented proposals by the European Commission, the 
growing trend within universities to incorporate MDO courses in their curricula, they 
are all evidence of the great interest of the international community on this design 
methodology and the efforts to create awareness and momentum.   
Nevertheless it should be acknowledged that what is hampering the explosion of the 
MDO approach are not only technology limitations, but also non-technical barriers. 
These are rising from the culture and the working attitude of professionals, both at 
technical and management level (Blouin, Summers and Fadel, 2004; Malone, 2002), 
as well as from organizational structures intrinsically inadequate to the MDO needs. 
Belie claims non-technical barriers must be addressed with the same systematic 
approach, as used for the technical ones (Belie, 2002).  

One of the problems is associated to the black box perception that engineers 
might get of an MDO system, hence the fear to be not in control, or even obsoleted 
by a software system. Ironically, current more manually oriented processes have 
many of the same attributes as the big MDO black box, but in this case familiarity 
has bred unfounded confidence (Belie, 2002). MDO will not replace the design team, 
on the contrary, the team interaction with the process is absolutely necessary to 
learn about the design, assess the ground rules, add/replace constraints, furnish 
guidance in area not modeled and keep the optimization on track (Wakayama and 
Kroo, 1998). 
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In addition, as Belie correctly points out,  many disciplines have been constrained by 
the tedious tasks associated with their expertise for so long that the automation of 
“no brainers” (like meshing) seems somehow undesirable (Belie, 2002).  

In the actual contingency of budget cuts and cost avoidance, management 
may look at a MDO framework just as an irrelevant and large expense, 
underestimating or completely ignoring the advantages in the mid/long term. This 
reluctance needs to be addressed by providing management with an adequate metric 
and tools to estimate and measure MDO costs and benefits. Also a change from a 
product to process oriented culture seems necessary. 

Important changes must happen at the organization level of the aircraft 
company, which has evolved through the years towards an aggregation of discipline 
focused groups. Typically, new approaches and tools like those for computational 
advance are assimilated best if they automate traditional tasks and do not cross 
organizational boundaries. “Unfortunately”, MDO is, by its very nature, cross 
disciplinary and non-traditional (Giesing and Barthelemy, 1998).  
Ensuring buy-in of the disciplinary experts to the MDO approach may be difficult 
(Bennett et al., 1998), but it is necessary because the whole approach is based on 
the collaboration and integration of the various discipline, which requires experts’ 
commitment to share and translate their knowledge in procedures and explicit rules 
to be implemented in the MDO framework and modules. Eventually, setting up a 
design framework as the DEE discussed in the previous sections, would not only 
enable automation, but would contribute to a better process understanding, control 
and standardization within the company. 

In the current organization, MDO does not have a real home thus no ownership 
(Hoenlinger, Krammer and Stettner, 1998). However, the set up of a dedicated group 
would be already a wrong approach to integration. An organizational balance has to 
be found in order to leave the disciplinary groups in charge of the excellence and the 
continuous development of their tools, while, the current conceptual design group 
could assume MDO responsibility and play an integrating function, rather than keep 
on using and developing simple tools (just to avoid and limit the coordination with 
the various disciplines) 

Most organizations can’t afford to run a program inefficiently; however, they can’t 
find the time to introduce efficiency techniques. 

B. Malone - Phoenix Integration (Malone, 2002) 
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CHAPTER 3                      
Knowledge Based Engineering. The 
AI roots and the OO paradigm 

1. Introduction 

2. What is Knowledge Based Engineering? 

3. The AI roots of Knowledge Based Engineering 

4. Knowledge Based Systems + Engineering = Knowledge Based Engineering Systems 

5. KBE systems and KBE applications. The programming approach 

6. KBE languages: A survey of main characteristics 

7. The extra gear of KBE languages: Runtime caching and dependency tracking 

8. The rules of Knowledge Based Engineering 

9. KBE product models to capture the What, the How…and the Why of design 

10. On the convenience of the programming approach 

11. Summary 1: How KBE systems differ from conventional KBSs 

12. Summary 2: How KBE differs from CAD 

3.1 Introduction 
In the Chapter 2, the keystone role of the Multi Model Generator to support the MDO 
approach has been discussed. A number of challenges has been highlighted that 
traditional design tools, as conventional CAD systems, do not seem able to meet. The 
need to substantially increase the level of automation in the design process calls for 
the ability to embed more knowledge in the employed tools. In this case, the use of 
Knowledge Based Engineering technology appears to be an appropriate choice.  

KBE technology stands at the cross point of diverse fundamental disciplines, 
such as Artificial Intelligence (AI), Computer Aided Design (CAD) and computer 
programming. Though these single contributing disciplines are widely represented in 
scientific literature, Knowledge Based Engineering is not at all. At date, not a single 
book has been written on this topic!  As a matter of fact, KBE has been for many 
years restricted domain of a few and highly competitive industries (aerospace and 
automotive in particular) and never turned into a subject of academic research. The 
very limited amount of available information, mainly in form of pamphlets from KBE 
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vendors, has not stimulated the interest of the scientific community on KBE as a real 
engineering discipline. On the contrary, it has contributed generating the mixture of 
misunderstanding and skepticism that has marked the difficult story of KBE at date. 

The main purpose of this chapter is to provide a clear understanding of this 
technology (i.e., what Knowledge Based Engineering is) on the base of a few years 
of hands-on experience, literature study and valuable conversations with KBE-
practitioners from the industry.  
First a comprehensive definition of KBE is provided. Then, roots and background of 
KBE are discussed in order to put it in the right context with respect to closely 
related technologies such as Knowledge Based Systems and CAD, and the object 
oriented modeling paradigm. Also we try to answer the recurrent question why 
“knowledge based” engineering? Is there some other way on earth of doing 
engineering that is not based on knowledge! 
Then, the most relevant characteristics of a KBE system are identified and 
elaborated. It is discussed how a KBE system works and how it is structured. In 
particular, the use and the nature of KBE programming languages will be elaborated 
on.  The actual opportunity of using a programming language to capture design 
knowledge will be discussed, as well as the required characteristics for this “wish-
language”. Though KBE technology inherits many features and characteristics both 
from traditional CAD and Knowledge Based Systems, it clearly stands out as a 
technology with its own identity. The chapter will conclude summarizing the main 
differences between KBE and the abovementioned technologies. 

In the next chapters, it will be explained how Knowledge Based Engineering 
and the underlying object oriented modeling approach have been used in this 
research work for the conceptual development and technical implementation of the 
Multi Model Generator tool.    

3.2 What is Knowledge Based Engineering? 
It is rather difficult to fit an exhaustive definition of KBE in one sentence. Various 
definitions can be found in literature and typically reflect the different views on KBE 
by different “KBE customers”. For example, a company manager sees KBE as a 
technology to compress product development time and cut engineering costs, 
whereas the user of a KBE system (a KBE developer) sees it as a particular kind of 
software (programming) tool. Someone in MDO might see KBE as a solution to 
support multidisciplinary design, someone into Knowledge Management as a solution 
to capture company knowledge for effective reuse.  
KBE is all of this and lead to our extended definition shown in the insert below. This 
definition includes the most relevant aspects of KBE and reflects the various 
constituents of this thesis work. It formalizes the link with the Knowledge 
Management area addressed in Chapter 1. It emphasizes the capability to automate 
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the repetitive activities typically encountered in the product development process, 
hence to enhance engineers’ productivity as argued in chapter 2. Besides it 
addresses the capability of supporting conceptual and multidisciplinary design. The 
latter in particular is our extension, or specialization to the KBE definition of the “old 
fathers” and it will be extensively discussed in the second part of this thesis work.  

3.3 The AI roots of Knowledge Based Engineering 
It would not be fair presenting KBE as a novel revolutionary product from the world 
of computer science. The strong legacy from the 1970s technology of knowledge 
based systems (KBSs) must be acknowledged. Undeniably, many characteristics of 
current KBE systems, including much of the related terminology, are rooted in the 
field of Artificial Intelligence (AI). 
AI is the branch of computer science concerned with the use of machines to simulate 
the intelligent behavior of human beings (i.e. the capability of learning and solving 
problems) and KBSs are one of its most relevant outcomes.  
Just as Artificial Neural Networks represent the main result in the simulation of the 
humans’ learning process, knowledge based systems represent the most outstanding 
AI achievement in the area of problem solving. Both the fundamentals and the added 
value of KBE systems cannot be discussed without having addressed first the basics 
of knowledge based systems.  

3.3.1 Knowledge Based Systems. Functionality and structure  

Knowledge based systems are computer applications that use stored knowledge for 
solving problems in a specific domain (Negnevitsky, 2005; Engelmore and 
Feigenbaum, 1993).  
Similarly to a human expert, a KBS applies some kind of reasoning approach to 
derive an answer to the posed problem, based on the knowledge existing in its 
memory. Like a human expert, a KBS is able to justify its decisions and explain how it 
did get to the solution or why it needs certain information to carry out the problem 
solving process.  Due to the intent of emulating the behavior of human experts, at 

Knowledge based engineering (KBE) is a technology based on dedicated software 
tools called KBE systems, that are able to capture and reuse product and process 
engineering knowledge. The main objective of KBE is the reduction of time and 
costs of product development by means of the following: 
• Automation of repetitive, non creative, design tasks  
• Support of multidisciplinary design optimization in all the phases of the design 

process 
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the beginning of the 1970s, KBSs started to be addressed as Expert Systems (ESs). 
Since then, the terms KBS and ES are used synonymously. 
The typical structure of a KB system is represented in Fig. 3.1. At glance, five main 
components can be distinguished, which are addressed below.  

The knowledge base (KB) represents the dedicated storage container where the 
domain expert knowledge to perform certain tasks is recorded. The content of the KB 
is independent from the problem at hand. In other words, the same knowledge can 
be used by the KBS to solve different specific problems. In a cognitive model of the 
human expert, the KB would resemble his/her long term storage memory.  
The knowledge stored in the knowledge base has a symbolic representation, which 
makes it intelligible to humans as well as a computer. For example, knowledge can 
be stored in the form of rules, such as IF Condition THEN Action. As will be discussed 
in the coming two sections, different knowledge representations can be used, which 
yield to different types of KBSs. 

The work space, or work area, (also known as “blackboard”) represents the short 
term memory of the KBS. Here the problem to be solved is stored, together with the 
collected facts and data. These can either be the case specific, intermediate results 
produced by the rules stored in the knowledgebase, or facts and data provided 
directly by the user during the various steps of the problem solving process (typically 
on request of the inference engine).  

The inference (or reasoning) engine consists of one or more programmed 
reasoning mechanisms, which allow the KBS to reason upon the stored knowledge 
and solve a posed problem with the competence of a domain expert (Engelmore and 
Feigenbaum, 1993). What the inference engine actually does is trying to match all 
the rules stored in the knowledge base with the facts contained and continuously 
added to the workspace, until a solution is found. Thereby, it uses the knowledge 
base to alter the contents of the work space (Milton, 2008). The systematic approach 
used for selecting and matching the various rules (i.e., the reasoning mechanism) 
can follow different schemes, like the forward-chaining and/or the backward-chaining 
mechanism discussed in next section.   
The inference mechanism may not be able to derive a solution in case of missing 
data or lacking knowledge. However, when a solution is found, it is always consistent 
with the rules of KB and, as such, it can always be explained.  

The Explanation subsystem is the KBS subsystem dedicated to provide the user 
with the explanation of the found solution (or proposed advice). The explanation 
subsystem traces all the rules fired during the problem solving session and provides 
the user with the firing sequence, together with the facts used/obtained step by step 
during the process. Hence a KBS can explain how a certain solution was derived and, 
in case, why additional data were needed to arrive at a solution.   
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The Users’ interfaces. As shown in Fig. 3.1, it is possible to distinguish three 
different actors interacting with the KBS, namely the domain expert, the software 
engineer and the end user. In certain cases, the same person can play different 
roles. However, in general, three different interfaces are required to facilitate the 
three actors carrying out their specific competences. The domain expert (or the 
knowledge engineer) needs to update and maintain the KB. The software engineer is 
responsible for programming and debugging the inference system. Eventually, the 
end user employs the KBS as a commodity tool. In this case, a good User Interface 
UI can make a critical difference in the perceived utility of the overall KB system, 
regardless of the system’s performances (Engelmore and Feigenbaum, 1993).  

One of the most relevant characteristics of KBS, which already emerges from 
the structure described above, is the crisp separation between the knowledge and its 
processing: This characteristic has favored the development and commercialization 
of a number of of-the-shelf tools that facilitate the set up of a KB system. Some are 
described in (Negnevitsky, 2005), pp. 391-406. These tools, called shells or 
skeletons, provide the basic components of a KB system, such as a repository to 
store and organize the knowledge and one (or more) inference mechanisms. As 

Fig. 3.1: modular structure of a knowledge base system and definition of a shell. 

Shell boundary 
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indicated by the dashed contour line in Fig. 3.1, a shell is actually a KBS with an 
empty knowledge base, but provided with the required interfaces to fill the 
knowledge base and operate the system. A shell reduces or completely eliminates 
the need of any programming activities for building a KB system. However, shells do 
not provide any support concerning the knowledge acquisition phase, which remains 
one of the most critical activity in the whole development process of a KBS (Milton, 
2007; Shreiber et al., 2000). 

3.3.2 Rule based Expert Systems. Production rules and inference 
mechanisms 

In order to be stored in the KB and be accessible to the inference engine, knowledge 
has to be structured and formalized by means of some symbolic representation.  In 
the field of knowledge based systems, rules and frames are the two most common 
means for representing knowledge, the first being the well known IF-THEN construct, 
and the second a description of a given entity (or object) by a list of attributes and 
associated values.  
Expert systems where the whole domain knowledge is codified in the form of IF-
THEN rules are called rule based expert systems, while those systems using only 
frames are called frame based expert systems. The former represent the most 
common typology of expert systems and are discussed below; the latter will be 
addressed in the next section.  
Rules are actually statements built up of at least two main components: an if-part 
called antecedent (or premise) and a then-part, called consequent (or conclusion). In 
general, both the antecedent and consequent can be composed of multiple facts (or 
conditions) and actions (or conclusions), respectively, linked by logical operators 
such as AND, OR. Each fact and action is built of a linguistic object and value, linked 
by an operator. See the example in Fig. 3.2.  
When the antecedent of the rule is true (when both Fact A and Fact B are true in our 
example) the rule fires and produces – hence the name production rule – the results 

Fig. 3.2: Structure of a production rule 
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indicated in the consequent part (in the example, Action 1 and Action 2).   
Note that, in order for this rule to fire, the antecedent (i.e., the facts t < 10 mm and 
material = Steel) must be available in the KBS work space, either provided by the 
user or generated by some other rule that fired first. The result of a rule firing will be 
the generation of new facts that will be stored in the work space. When the rule of 
our example fires, the two facts cost = 10$ and weight = 1 Kg will be added to the 
work space. 

Once the knowledge base has been populated with rules, the inference engine 
can put them in use for solving a problem. There are two fundamental ways an 
inference engine operates, namely by means of the forward-chaining or backward 
chaining mechanisms (or a combination of the two). These two approaches, as it will 
be discussed in the next two subsections, reflect two different approaches typically 
used by human experts for solving problems.   

Forward chaining inference technique  
This inference technique is also called data driven or eager approach. On the basis of 
the data initially available in the KBS work space, the inference engine will search 
and fire all the fireable rules in the KB (hence all the rules whose antecedent match 
with the available data in work space). When fired, these rules will either modify or 
add new facts to the work space. The match and fire process proceeds in cycles, 
where each cycle ends when all the rules in the knowledge base have been scanned 
for a match with the current facts in the work space. The whole inference process 
stops when no further rules can be fired. Two basic conditions apply:  
1. During each cycle, the inference mechanism examines the rules sequentially, 

starting from the topmost rule stored in the knowledge base 
2. Each rule is fired only once during the whole problem solving process 

Fig. 3.3 shows an example of forward-chaining inference, where A, B, C, D and E 
are the facts initially available in the work area. At the end of the inference process, 
the facts Z and L are discovered. In order to find Z, X and Y were also computed and 
added to the work space. By using the forward chaining approach, all the fireable 
rules fire, no matter if relevant to the problem at hand. If, for example, the goal of 
using the system was the evaluation L, then the generation of fact X and all the 
operations occurring in cycle 2 and 3 result in a waste of time and computational 
resources. If we consider that a real rule based system generally contains thousands 
of rules, then the use of the forward-chaining mechanism to infer only one particular 
fact might result very inefficient. 
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  On the other hand, this approach is appropriate for expert systems that must 
perform analysis and interpretation work, hence infer all possible facts based on the 
available knowledge and a few initial facts.  In fact this approach reflects the typical 
behaviour of an expert who is requested to evaluate a complete scenario depending 
on a given set of facts.  

Backward chaining inference technique   
In case only one specific solution must be evaluated, backward chaining is the most 
appropriate mechanism. This inference technique is also called goal-driven (or lazy) 
approach. In fact, the reasoning process starts by assuming a hypothetical solution 
(the goal) and only the rules that are useful to prove the solution are used.  
The inference process goes as follow. First, a rule is searched which contains the 
hypothetical solution in its THEN-part. The data (facts) in the work space are used to 
check if the IF-part of the selected rule is true (hence if the given rule can fire). In 
case the data currently available in the work space are not sufficient for evaluating 
the conditional part of that rule, the rule is stacked and the facts contained in its IF-
part become the new (sub-)goals. Hence, other rules are searched in the knowledge 
base that can produce those sub-goals. In case no facts can be generated to prove 
one of the sub-goals, the inference system asks the user directly to provide those 
facts, which is a substantial difference with respect to the forward chaining approach 
discussed before.  In case also the user is not able to provide those facts, the 
inference mechanism abandons the initially selected goal (the hypothetical solution) 
and starts again searching the rule base for another rule with a possible solution for 
the problem at hand contained in its THEN-part. In other words, a new goal is issued 

Fig. 3.3: Example of forward chaining (or data driven) inference mechanism 
(Negnevitsky, 2005). 
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and the process is continued until the system either finds a solution that can be 
demonstrated, or raises the white flag.  
Fig. 3.4 shows a backward chaining process example. In this case Z is the first 
hypothetical solution assumed by the inference engine, for which the conditions Y 
and D must be true. While D is a known fact in the work space, Y is not; hence Y 
becomes the new sub-goal, the first rule is stacked and another rule to produce Y is 
searched in the KB.  At Pass 4, the third rule in the list fires, allowing also the other 
stacked rules to fire in the next passes. Eventually, all the facts have been generated 
to prove Z. If fact A would have not been available in the work space, the inference 
engine would have asked it directly to the user. In case of no answer, the initially 
assumed solution Z would have been abandoned and a new goal selected. 

Fig. 3.4: Example of backward chaining (or goal-driven) inference mechanism 
(Negnevitsky, 2005) 
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Note how both the rule base and the initially available facts in this example are the 
same as for the forward chaining example of Fig. 3.3. However, only three rules have 
been used in this case, which were all indispensable to prove the hypothetical 
solution Z. No resources were wasted to evaluate facts (like L) not needed to support 
the direct line of reasoning. 

The backward-chaining approach simulates the typical behaviour of a domain 
expert who first thinks of a possible solution to the problem at hand and then finds 
data that, either confirm his/her hypothesis, or suggest a different answer. Typically, 
the backward chaining reasoning approach is implemented in diagnostic purpose 
expert systems, where for example a disease or a system failure can be assessed on 
the base of symptoms (and by consequence a cure or some other corrective actions 
can be suggested). 

3.3.3 Frame based Expert Systems. The object oriented paradigm applied 
to knowledge based systems. 

While rule-base expert systems require domain knowledge to be completely 
expressed in terms of IF-THEN rules, frame-based expert systems provide a more 
advanced representation of knowledge by means of frames. A frame is a simple but 
effective solution, proposed in 1970 by Minsky, to store relevant knowledge relative 
to a certain object, into a single data structure (Minsky, 1975).  
In Fig. 3.5 an example of a frame relative to the Fokker 100 aircraft is shown. Each 
frame has its own name (in this case, Fokker 100) and a list of attributes, also called 
slots, which describe the given object (e.g., number of passengers and range). Each 
slot can have a value associated to it (in this case, 107 and 2500 Km).  

In the intention of Minsky, frames were 
means for representing generic concepts and 
stereotyped situations (Negnevitsky, 2005; 
Auty, 1988; Lassila, 1990). By assigning 
values to the frame slots, it is possible to 
create specific instantiations of the generic 
concept in the frame. For example, the 
Fokker 100 frame of Fig. 3.5 can be 
considered a specific case for a more generic 
Aircraft frame. To distinguish between generic 
and specific frames Minsky introduced the 
terms of class-frame and instance-frame (in 
short class and instance), where the latter is 
an instantiation (a specification) of the former 
generated by assigning specific values to the 
frame slots. Any different set of values yields 

Fig. 3.5: Example of frame, a 
widely used mean of knowledge 
representation. 

Fokker 100  

MTOW 43000 Kg 

No of passengers 107 

Wing span 28 m 

Total length 35.5 m 

Wing area 93.5 m2 

Range 2500 Km 
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a different instance frame of the same class frame. 
For those familiar with the Object Oriented programming paradigm, the distinction 
between the OO concepts of class and objects and those of class and instance-
frames proposed by Minsky might result extremely hazy. As a matter of fact, frame-
based systems are often seen as the application of Object-Oriented paradigm in the 
field of expert systems (Negnevitsky, 2005; Auty, 1988; Lassila, 1990). For what 
concerns the scope of this thesis, we will not make a distinction between the concept 
of frames and classes1. Besides we will take advantage of this introduction on frame 
based systems to discuss in the next subsections, two of the conceptual pillars of the 
Object Oriented paradigm, namely abstraction and inheritance. 

Abstraction 
According to the object oriented approach to the representation (modeling) of 
knowledge, every entity (or object) is a unique instantiation of a generic class. 
Besides, every class can be a specialization of an even more generic class.  
As exemplified in the UML diagram of Fig. 3.6, the objects Fokker100 and Fiat500 are 
two possible instances of the Aircraft and Car classes, respectively. The process of 
instantiation happens in the very moment that a set of values is assigned to all the 
attributes contained in the classes’ slots. Also, the Aircraft and Car classes of the 
example are both specializations of the more generic class called 
MeansOfTransportation. This is said to be a superclass (hence a generalization) of 
the more specific concepts of Car, Train and Aircraft.    
When defining objects, classes and superclasses, what we are actually doing is 
applying a process of abstraction, which helps us structuring given domain 
knowledge in a way that is efficient and suitable to focus on the problem at hand. 
When abstracting we are actually isolating those aspects that are relevant to the 
problem under consideration and suppress unimportant aspects (Rumbaugh et al., 
1991). If we are looking at the concept of means of transportation, as in the example 
of Fig. 3.6, we might not be interested in a more detailed definition of the aircraft 
concept than the one provided there. But if we are interested in the very concept of 
aircraft, a more refined description of such concept will be useful. Our level of 
abstraction changes and some details ignored before, become relevant. For example, 
it might be opportune to generate a hierarchy of Aircraft subclasses. Possibly the 
Fokker 100 aircraft will become an instantiation of the SingleAisleAircraft superclass, 

                                        
1 Discussions can be found in literature about differences between FBS and actual OO programming. 
Most authors agree the main differences exist in the background and the scope of these systems 
rather than in the technical aspects. FBSs have a cognitive/psychological background and are mainly 
aimed at building knowledge representation systems, while the OO paradigm comes from the IT 
programming field and it is mainly aimed at data processing.  
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which in turn will be a subclass of the JetEngineAircraft superclass, in turn a 
specialization of the ConventionalPassengersAircraft superclass.  
At a different level of abstraction, it might be appropriate to define the Fokker 100 
aircraft as a class rather than an instance. For example, if we are looking at the 
fleets operated by various airlines companies, the hypothetical Fokker 100 named 
“City of Amsterdam”, owned by KLM-Cityhopper, will be a possible instance of the 
Fokker 100 class. 

Inheritance 
Classes and objects are aware of their interrelationships. An object “knows” its class 
as well as a class knows its superclass(es). This information is stored in what we can 
call an implicit slot. The type of relationship between a superclass and its classes, like 
superclass MeansOfTransportation and the classes Aircraft, Car and Train of the 

Fig. 3.6: UML diagram representing classes, superclasses and classes instantiation 
(objects) and relative inheritance relationships. 

is a 

Fokker 100 
defined as object 
(instantiation of 
the class Aircraft) 

Fokker 100 
defined as class 

Multiple inheritance 
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example in Fig. 3.6, is called either specialization or generalization according to the 
direction of the semantic. For example, Aircraft is a specialization of 
MeansOfTransportation, which is a generalization of Aircraft. Note how in the UML 
this link is represented by means of empty arrow connectors. The interesting 
characteristic of this relationship is that each class inherits all the slots from the 
relative superclass, including eventual default values. So all the attributes used to 
define a superclass automatically cascade down the hierarchy of classes, without the 
user having to specify them again and again. As showed in the example of Fig. 3.6, 
since the slot number of passengers has been specified in the 
MeansOfTransportation superclass, Aircraft, Train and Auto automatically inherit that 
slot. So do their eventual subclasses. Typically, new slots are added at each subclass 
level, as the level of specialization is supposed to increase down the hierarchy. In the 
example above, the subclass aircraft has added the slot cruise altitude and the train 
subclass the slot number of wagons. Furthermore, certain inherited slots can be 
deleted and some inherited values redefined. An eventual UAV subclass of the 
Aircraft superclass, would exclude the number of passengers slot.  

Most of the frame based systems (and Object oriented programming 
languages) support also the concept of multiple inheritance; hence a class can inherit 
from more than one superclass. In the example of Fig. 3.6, the class FlyingCar 
inherits from both the Aircraft and Car superclasses. 

3.3.4 Aggregation and association links 

Besides the specification/generalization link discussed above, which is the base for 
specifying taxonomies, i.e., hierarchies of concepts based on the relationship is-a, 
frame based systems allow also the representation of part-whole systems, i.e. 
hierarchies of concepts based on the relationship has-part. A frame slot, apart from 
attribute values, can actually contain pointers to other frames to specify their 
belonging to an aggregation.  For example, the class frame Aircraft could have a slot 
called components, pointing at some other separately defined classes such as Wing, 
Fuselage and Tail.  This is the so called aggregation link, or has-part link, which is 
indicated in the UML by means of diamond connectors (see diagram in Fig. 3.7)2. 
Note that, for simplification, the slot with pointers to other frames is not shown in 
Fig. 3.7, whereas connectors show the links. 
                                        
2 A stronger version of the aggregation link exists, which is called composition link (indicated in the 
UML by a filled diamond connector, whereas non-filled diamond are used for aggregation). The 
components of an aggregation exist also outside the aggregation, while the components of a 
composition exist only within that composition (e.g., a hole might be a component of a Flange class, 
but, in general, it does not make sense as a standalone component). Eventually, the difference 
between the two links depends on the level of abstraction used to represent the given domain 
knowledge. 
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Apart from is-a and has-part links for specialization and aggregation, actually any 
kind of semantic relationship between classes can be defined by means of slots. For 
example, in case of the Fokker 100 aircraft, a hypothetical slot Operator can point at 
a number of Airlines frames such as KLM-Cityhopper and Air Berlin, hence 
representing the operated-by relationship.  A slot route can point to a number of 
flight route frames (e.g., Amsterdam-London), representing the relation fly-route.  
Any semantic relationship between classes, which is not of the generalization or 
aggregation type, falls automatically into the more generic association link category. 
This is indicated in the UML by a simple connector with an explanation tag attached. 

In conclusion, a frame based system (and more in general any system based 
on the object oriented representation) results in a network of nodes and relations 
that provides a structured and concise representation of the given domain 
knowledge. This represents a major difference with respect to the rule based system 
described in the previous section, where all the domain knowledge is translated in a 
flat list of if-then statements.  

3.3.5 Inference mechanism in frame based systems. Methods, demons and 
production rules 

The value of FBSs goes beyond the merit of an effective knowledge representation 
system. FBSs provide also the mechanisms for manipulating and reasoning upon the 
represented knowledge.  
In the previous sections, it is mentioned that a slot can contain a value or a pointer 
to some other frame. In fact, a slot can also specify the procedure to compute its 
value. This procedure can either consist of a simple production rule (where the slot 
value is computed according to the evaluation of some preconditions) or even a 
sequence of commands and operations necessary to compute that value. Method is 
the technical term used in OO parlance to indicate the procedure for computing a 
slot value.  

The capability to include into one structure, both elements of declarative and 
procedural knowledge (by means of attributes and methods respectively) is 
acknowledged to be one of the most relevant features of the object oriented 
paradigm. It should be noted that methods offer a significant advantage with respect 
to classic rule based systems, because simple production rules are generally not 
effective at dealing with procedural knowledge (Negnevitsky, 2005). 

Actually, two types of methods are used in FBS: the so called when-needed 
and when-changed methods. The former are executed when the value of a given slot 
is required and not directly available. The latter, often addressed in literature as 
demons, work as dormant processes, which fire in the very moment that certain 
monitored slot values change. For example, a demon can start a process whenever a 
certain button is pushed by the user, or can issue a warning when a certain rule is 
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violated. Fig. 3.7 shows a simple example of a possible implementation of the two 
methods. Note that the execution of methods within one frame can also involve the 
evaluation of attributes from other frames’ slots. In this case, the so-called reference 
chain of the attributes must be provided, i.e. the name of the frame where the 
required slot is contained. In the example, the Aircraft’s method MTOW adds the 
fuselage weight from the frame Fuselage, the wing weight from the frame Wing, etc. 

Contrarily to rule based systems, in KBS the inference system is not required 
to perform exhaustive searches of the workspace and rule base, looking for matching 
rules. When a slot value is set as a goal, the inference mechanism directly executes 
the method associated to that slot and accesses the slots of other frames in the 
system, according to a demand driven process. That is to say, the reference chain 
attached to each attribute informs the inference engine about the specific frame to 
be accessed for obtaining the needed slot value. The presence of both when-needed 
and when-changed methods is such that the inference mechanism can work both 
with forward and backward chaining. 

Even if methods represent the most typical means of knowledge interaction 
between frames, FBSs do not exclude the possibility of using the typical knowledge 
representation and problem solving approach of rule base systems (previously 

Fig. 3.7: Example of frames with when-needed and when-changed methods. (N.B. the 
graphical representation of the methods and their syntax are just fabricated for the 
purpose of exemplification). 
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described in section 3.3.2). In fact, lists of production rules can be stored in the 
knowledge base, next to the collection of frames, and used by the inference system 
to obtain the value of some frame slots. However, within frame based system, rules 
always play an auxiliary role while frames remain the main knowledge carriers. The 
inference mechanism will be informed by a special tag (called facet) applied to the 
given slot when the value has to be computed by using the rule base, rather than 
querying other frames. Typically, a backward inference mechanism is used here, 
where the value of the given slot is set as goal for the reasoning process. 

To conclude, FBSs add the knowledge structuring power and efficiency of the 
OO paradigm to the relative simple mechanisms of rule based systems. However, 
with great power comes great responsibility! Here the user is left with the overhead 
of deciding both the most suitable way of structuring the knowledge at hand and the 
mechanism(s) to manipulate that. What are the correct levels of abstractions? How 
many frames will be required and what is their network of semantic relationships? 
Are frames sufficient or a separate rule base is also necessary? When to use methods 
or demons?  
In this sense, frame based systems deny the main advantage of rule based systems: 
a simple and straightforward approach to store and update knowledge. In FBSs is 
not possible to simply add, modify or delete rules to make the system smarter. The 
overall hierarchical structure of the knowledge has to be modified. It has to be 
decided if new classes and attributes have to be added, and if those previously 
defined need any modification. In case, it should also be considered whether the 
relationships between classes must be adapted. Eventually, the crisp separation 
between knowledge and inference engine typical of rule based system, starts to get 
blurry. Indeed, methods are pieces of programs where knowledge and execution 
control are closely intertwined.  

3.4 Knowledge Based Systems + Engineering = 
Knowledge Based Engineering Systems 
Since the beginning of the 1970s, knowledge based systems started penetrating the 
market of software applications, addressing problems of various complexity from 
different knowledge domains. MYCIN (Shortliffe, 1976), DENDRAL (Feighenbaum, 
Buchanan and Lederberg, 1971) and PROSPECTOR (Duda, Gaschnig and Hart, 1979) 
are three examples of successful knowledge based systems developed for the 
diagnosis of blood infections, analysis of chemicals and advice on mineral 
exploration, respectively. These were outstanding systems in the success story of 
KBS, but many others just entered the range of daily commodity tools, such as “help 
on line” and planning/scheduling systems (Engelmore and Feigenbaum, 1993; Milton, 
2008).  
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However, KBSs did not really have an impact on the field of engineering 
design, including here aerospace, automotive and all those areas generally 
concerned with the development of complex hardware products. Apart from the 
inherent challenge of translating design knowledge into formal rules, the main reason 
for KBSs limited success is their inability to deal with two essential activities of the 
engineering design process, i.e., geometry manipulation and data processing. As 
discussed in the previous section, KBSs are tools developed to solve problems by 
reasoning about facts and not really to perform computations to derive facts or some 
other complex data processing task (apart from the limited data processing 
capabilities discussed for FBSs). Besides, KBSs in general do not have any 
competence in dealing with geometry and any related shape configuration activity.  

Most of the engineering work requires and produces output that involves 
geometry manipulation, deals with the generation and management of complex 
products configurations, delivers data to various kinds of discipline analysis tools and 
depends on the results of these analyses to advance the design process. An 
aerodynamicist, for example, will need the results of an aerodynamic computation to 
decide on the shape of the wing at hand. But, before that, he/she will need an 
adequate geometric model of the wing to feed the selected aerodynamic analysis 
tool.  Indeed, the generation and manipulation of geometric models take a relevant 
part of the engineering design process. As a matter of fact, specialized tools for 
geometry manipulation, data processing and computation in general proliferate in the 

engineering world. 
Those are the well 
known computer aided 
design (CAD) systems 
and computer aided 
analysis (CAA) tools, 
such as FEA and CFD 
tools.  

Therefore, the 
question rises whether 
specific systems exist 
that can merge the 
capabilities of CAD and 
CAA systems with the 
reasoning competence 
and knowledge 
capturing and 
representation ability of 
KBSs. To a certain 

Fig. 3.8: KBE systems: computer programs containing 
knowledge and reasoning mechanisms plus geometry 
handling capabilities to provide engineering design 
solutions. 
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extent the answer is positive: special kinds of KBSs exist, which either have the 
capabilities of a CAD system built in, or are tightly integrated to an external CAD 
system (also a combination of the two). These systems allow both implementing 
analytical procedures (e.g. computational algorithms) and communicating with 
external CAA tools. They are called Knowledge Based Engineering (KBE) systems!  

KBE systems can be defined as an evolution of knowledge based systems 
towards the specific needs of the engineering domain. Actually, the name Knowledge 
Based Engineering originated just from the fusion of the two terms knowledge based 
systems and engineering. Certainly not in contraposition of doing engineering, not 
based on the use of knowledge!  

In agreement with Lovett, Ingram and Bancroft, we can state that KBE 
systems are likely to be the best tools at hand whenever a candidate application area 
involves engineering domain knowledge and demand geometry manipulation and 
product (re)configuration (Lovett, Ingram and Bancroft, 2000). 

As illustrated in Fig. 3.8 and often stated in literature (Chapman and Pinfold, 
1999), KBE systems can be considered as the merger of Artificial Intelligence and 
Computer Aided Design technology.  Not by chance, two of the founding fathers of 
ICAD Inc., the company that in 1984 developed ICAD, the first KBE tool ever on the 
market, were coming one from the AI laboratories of MIT and the other from the 
CAD company Computervision, later Parametrics and nowadays  PTC (Rosenfeld's 
profile; Knudson; ICAD).  

Whilst the entry of ICAD on the market can be considered as the very 
beginning of KBE, it cannot be considered the start of AI in CAD (or AI and CAD). At 
the beginning of the 1980s, a significant part of the international scientific 
community was already involved with the development of experimental systems to 
bring Knowledge Engineering capabilities into CAD (Tomiyama, 2007). As a matter of 
fact, the term intelligent CAD3 was already coined in 1983 by Tomiyama (Tomiyama 
and Yoshikawa, 1983; 1985) just to address this novel concept of CAD systems able 
to store knowledge and reason on that to support geometry generation. The two 
epoch-making conferences organized in 1984 and 1987 on Knowledge Engineering in 
CAD and Expert Systems in CAD by the IFIP Working Group 5.24, were just a proof 
of the great activity in the field (Gero, 1985; 1987). The scientific discussion on 
Intelligent CAD, Expert CAD, Knowledge-based CAD, etc. has continued and evolved 
during the years, however, the ICAD system and the other KBE platforms that have 

                                        
3 According to the ICAD developers, the name ICAD was not the acronym of Intelligent CAD. 

4 International Federation for Information Processing [http://www.ifip-wg51.org]. In 2006 Group 5.2 
(on Computer Aided Design) has merged into Working Group 5.1 (on Information technology in the 
Product Realization Process)  
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followed, possibly represent, still at date, the most successful industrial 
implementation of the whole “intelligent CAD” concept. 

3.5 KBE systems and KBE applications. The 
programming approach 
In order to practice knowledge based engineering, specific software tools, called KBE 
systems (or KBE platforms), are normally required. A KBE developer uses a KBE 
system to build so called KBE applications: dedicated programs to solve specific 
problems, generally (but not necessarily) related to the modeling and configuration 
of hardware products (both in terms of geometry and metadata). ICAD, GDL, 
Knowledge Fusion and AML are some examples of typical KBE systems. A list of 
commercial KBE tools, with some related information has been compiled in Appendix 
A. KBE tools market is very dynamic, refer to (Knowledge-based engineering) for up 
to date information .  

A KBE system, similar to an expert system shell, is a general purpose tool, 
hence does not contain any knowledge about any specific domain (apart from the 
knowledge required to generate some primitive geometric entities, like points, boxes, 
cylinders, etc.). While a rule based shell allows the user to fill the knowledge base, 
by putting in rules via a proper interface, a KBE system requires a programming 
language to generate an adequate formalization of the given domain knowledge. 
Hence, while in the development of a rule based system no programming is required 
(if a shell is used), the development of a KBE application is just about writing code! 
State-of-the-art KBE systems provide the user with an object oriented programming 
language, which allows modeling the domain knowledge as a dynamic network of 
classes, in a way similarly to what we discussed concerning frame based systems.  
Once a KBE application has been finalized, it can be packaged and deployed as a 
conventional Computer Aided Engineering (CAE) tool. In this case, designers, 
engineers and others involved in the design and engineering process can just use it, 
without being confronted with the syntax of the programming language running 
under the hood. As a matter of fact, KBE vendors usually commercialize two types of 
licenses: a development license, which enables the generation, modification and 
debugging of KBE applications and a runtime license to allow the use of compiled 
KBE applications just as normal executables (hence without any access to the source 
code).  

Different from RBSs, but similar to FBSs, a KBE application shows no crisp 
separation between knowledge and inference mechanism. The domain knowledge 
and the control structure to access and manipulate this knowledge are strongly 
intertwined.  Again, different from RBSs, but rather similar to FBSs, KBE systems 
leave the burden of modeling the knowledge domain (i.e. the selection of the 
adequate levels of abstraction and the definition of the proper networks of classes 
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and objects) to the developer. Expanding, updating and maintaining a KBE 
application is not just adding or deleting rules from a list. Even though the OO 
approach provides a sustainable way of writing spaghetti code (Graham, 2004), it is 
up to KBE developers to enhance their programming skill to enable code scalability 
and maintainability. On the other hand, the high level of flexibility and control 
provided by the OO approach is exactly what is required to build applications fully 
tailored to the users’ need and to the peculiarities of the given products to be 
developed.  

3.6 KBE languages: A survey of main characteristics 
As discussed in the previous section, state-of-the-art KBE systems generally put at 
developers’ disposal a programming language that supports the object oriented 
paradigm. As a matter of fact, KBE languages are very often based on object 
oriented dialects of the LISP programming language: 

• IDL, the ICAD Design Language, is based on Common LISP, which is a dialect of 
LISP, including the CLOS (Common LISP Object System) object-oriented facility.  

• GDL, the Genworks’ General-purpose Declarative Language, is based on the ANSI 
standard version of Common LISP.  

• AML, the Adaptive Modeling Language of Technosoft, was originally written in 
Common LISP, though, subsequently recoded in a proprietary–yet–LISP-similar 
language.  

• Intent!, the KBE proprietary language developed by Heide Corporation and now 
integrated in the Unigraphics’ system Knowledge Fusion, belongs also to the 
family of LISP-inspired languages.  

 

Table 3.1: KBE-specific and LISP-inherited characteristics of KBE languages 

Coding features KBE specific LISP inherited 

Object oriented paradigm √ √ 

Declarative coding   √ 

Dynamic typing  √ 

Runtime value caching & dependency tracking √  

Interpreted/compiled mode  √ 

Automatic Memory management  √ 

CAD capabilities √  
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This non accidental occurrence of LISP in the KBE area is just another strong clue of 
the AI roots of knowledge based engineering. As a matter of fact, the LISP language, 
the second oldest programming language after FORTRAN, is still the favored 
programming language for artificial intelligence research and implementation.  
Though many high-level OO languages have been developed during LISP’s 50 years 
lifetime, such as C++, JAVA, Perl, Python and Ruby, LISP is still an extremely 
powerful and modern language (LISP itself has developed a lot). In the words of Paul 
Graham, famous LISP hacker and essayist “If you look at these languages in order, 
Java, Perl, Python, Ruby, you notice an interesting pattern. [...] Each one is 
progressively more like LISP. Python copies even features that many LISP hackers 
consider to be mistakes. And if you’d shown people Ruby in 1975 and described it as 
a dialect of LISP with syntax, no one would have argued with you. Programming 
languages have almost caught up with 1958. (Graham, 2004)”. 
The name LISP stands from LISt Processing, being lists the language major data 
structure. LISP source code is itself made up of lists. As a result, LISP programs can 
manipulate source code as a data structure, giving rise to the macro systems that 
allow programmers to create new syntax or even new "little languages" embedded in 
LISP. From here follows Foderaro’s definition of LISP as a programmable 
programming language (Foderaro, 1991). Though LISP is by itself a high-level 
language, it is possible to use LISP to build even higher-level layers on top of itself. 
The result is a so called superset of LISP, and KBE languages like ICAD IDL and GDL 
are outstanding examples of supersets. To the user of these KBE languages, it 
means the full LISP language (and eventual LISP libraries) is always available and, 
on top of that, also special macros are available to provide the user with higher-level 
and user-friendly language constructs. Indeed, the availability of these macros 
represents the very added value of a KBE language with respect to raw LISP.  
Table 3.1 shows a list with the main characteristics of a true KBE system (like ICAD 
and GDL) and, indicated whether the given characteristic is either KBE specific or just 
inherited from the LISP language.  

3.6.1 KBE macros to define classes and objects hierarchies 

The most outstanding example of a macro provided by various KBE systems (though 
in different form/syntax) is the one used for defining classes and objects hierarchies. 
Mastering the use of such macro is fundamental for developing any KBE application.  
As a representative case, the ICAD-specific macro defpart is discussed in this section, 
since ICAD is the KBE system used for this research. In fact, GDL and Knowledge 
Fusion (KF) provide their own version of the same construct, though different names 
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and a slightly different syntax are used5. The simple (and very incomplete) mapping 
Table 3.2 shows the structure of the GDL define-object and KF defclass macros, 
which are the specific counterparts of the ICAD macro defpart.  

The defpart macro (or the non ICAD equivalent) is the basic means to apply 
the object oriented paradigm in KBE applications. It allows defining classes, 
superclasses, objects and relationships of inheritance, aggregation and association, 
as discussed in section 3.3.  The defpart macro is basically structured as follow (see 
also the code sample of Fig. 3.9): 

                                        
5 The similarity of the three KBE tools mentioned above is not accidental. GDL is the youngest of the 
bunch, but like ICAD is based on Common LISP and has been developed as the natural heir of ICAD 
after the latter, in 2005, was acquired and put out of the market by Dassault Systemes. This similarity 
is exploited by GDL, which features a dedicated module to convert large chunks of legacy ICAD 
models directly into GDL, without any formal code translation required by the user. 

Intent!, the KBE language at the base of UGS Knowledge Fusion, was licensed to Unigraphics by the 
Heide Corporation company. Mr Heide was one of the main developers of the ICAD system. 

ICAD GDL Knowledge Fusion (UGS) 
defpart Define-object defclass 
Inputs Input-slots1 Any data type2 followed by the behavioral 

flag3 parameter (plus optional default value) Default-inputs Input-slot :settable (or 
:defaulting) 

attributes computed-slots Specification of several data types, plus an 
optional behavioral flag (e.g., lookup, 
uncached and parameter) 

Modifiable-
attributes 

computed-slot :settable A data type followed by the behavioral flag 
modifiable 

Descendant-
attributes 

Trickle-down-objects all attributes descendant by default 

Type  Type Class 

Parts Objects Child 

Pseudo-parts4 Hidden-objects4 Class name starts with %4 

1: the term slot recalls the terminology of frame based systems 
2: differently than ICAD and GDL, KF does not support dynamic typing (see section3.6.2). Hence 
the type of the attribute must always be specified, e.g., number, string and Boolean. 
3: a behavioral flag might be used to specify the behaviour of an attribute. The flag parameter is 
used to create a correspondent of the input or input-slot keyword.  
4: these objects will not be visualized in the object tree. When % is used as the first character of an 
attribute name, such attribute will not be visible from outside the object definition. That is how 
information hiding is supported in KBE languages. 

Table 3.2: equivalence table for the class definition keywords of ICAD, GDL and UGS 
Knowledge Fusion. 
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• Name of the class 
• Mixin-list: list of superclasses or other classes from which the class here 

specified will inherit all the characteristics (attributes and components). The 
classes specified here can either be formal superclasses (of which the class 
specified in the defpart is an actual specialization), or other classes with which 
this class is to share attributes and parts (see next item).   

• Input-attributes: list of parameters to be assigned in order to generate an 
instantiation of the given class. This set of parameters represents the so called 
class protocol. Default values can be specified outside the protocol. 

• Attributes: these attributes are generally expressions which return a value when 
computed (see also the concept of method described for the FBSs). These 
expressions can either be production rules or any other mathematical, logic or 
engineering rule (see section 3.8 for a detailed list of possible rules). To evaluate 
these expressions, values of other attributes can be used or combined, such as 
the input-attributes or the attributes inherited by the classes specified in the 
mixin-list. It is also possible to use the attributes of the children (see next bullet) 
defined in the given defpart, or the attributes of any descendant or ancestor 
objects in the instantiated object tree: in this case the reference chain will have 
to be specified, as already discussed in 3.3.5.  

• Parts: this is the list of objects contained in the instance of the defpart. They are 
also called children of the defpart instance. For each part, the following must be 
specified: 
o the object name  
o the name of the relative class to be instantiated (by using the keyword type)  
o values for the input-parameters of the class to be instantiated. This parameter 

list must sufficiently match the protocol of the class to be instantiated (i.e. at 
least its required input-attributes) 

• Methods: these are similar to attributes, but they can accept arguments. Their 
computed return-values are not cached as is done by default with the attributes 
(see section 3.7 for caching) 

Further details can be found in the relative documentation of the various KBE 
systems. 

Any KBE application basically consists of a number of defpart (in the case of 
ICAD) definitions, properly interconnected as required to create structured models of 
both products and processes. Therefore, the whole network of defparts definitions is 
typically addressed as the product model, whereas the hierarchical structure of 
objects obtained by instantiating the various classes is called the objects tree or 
product tree.  

Raw Common LISP already provides the capability to define classes and 
objects; what is the value of a macro like defpart, then? The defpart macro provides 
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a much simpler, user friendly and intuitive way of creating complex hierarchies of 
objects, without requiring engineers (the target users of KBE systems) to possess the 
hacking capability of a LISP expert. The defpart macro provides a kind of high level 
interface to the Common LISP object facility and maps any ICAD defined object to an 
actual Common Lisp object. This explains the double check in the OO paradigm slot 
of Table 3.1. 

On top of that, the defpart macro brings in caching and dependency tracking 
capabilities (addressed in detail in section 3.7), which are normally not available in 
raw Common LISP. Indeed, behind the concise definition of a macro, there is 
generally hidden a voluminous and opaque chunk of LISP code, which automatically 
expands at compile time, (luckily) in a way that is fully transparent to the user. Some 
macroexpansion examples are given in the appendix of (Cooper and La Rocca, 
2007). 

 

The ICAD defpart. An example  
Fig. 3.9 illustrates a sample of ICAD code, where the defpart macro is used to define 
the hypothetical class ConventionalAircraft. In Fig. 3.10, the UML class diagram and 
objects tree relative to this KBE application sample are provided as well6. Note that 
next to the specification of the class name, the mixin list appears, which is the list of 
other classes (Aircraft and CostEstimationModule in our example) from which 
ConventionalAircraft inherits. All the attributes and components of these two classes 
are readily available to ConventionalAircraft.  
The two attributes horizontalTailSpan and verticalTailSpan, used to define the Tail 
part, are neither defined as inputs nor attributes of ConventionalAircraft; although 
not shown in the example, it can be assumed they are inherited from the superclass 
Aircraft.  
The CostEstimationModule (rather than a real superclass) represents a hypothetical 
class containing some kind of costs calculation procedure. By including it in the 
ConventionalAircraft mixin list, any instantiation of ConventionalAircraft will inherit 
the capability of computing costs.   
ConventionalAircraft is actually an aggregation of the 4 classes (since 4 parts are 
defined in the defpart) Fuselage, Tail, Wing and AircraftCog. It means any 
instantiation of ConventionalAircraft will be composed of 4 objects, of which 3 

                                        
6 Note how the name of classes, objects, attributes, etc. indicated in the diagrams respect the UML 
standards, i.e., class names are indicated as single words with capital letter; objects and attributes as 
single words in low case (in case of multi-words names, all the words are connected but opportunely 
capitalized). On the other hand, the names of the corresponding classes and attributes used in the 
ICAD code reflect the free style allowed by the programming environment. In the text above, for 
clarity, we will refer to the various classes, objects, etc.. using the UML style.   
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represent main aircraft subsystems, whereas the instantiation of AircraftCog is a non 
geometrical object with the ability to compute the position of the aircraft’s center of 
gravity. This means that both geometrical and non geometrical components can be 
heterogeneously structured in the object tree. 
As specified in Fig. 3.9 by means of the command “Type” and partly visualized in the 
UML diagram of Fig. 3.10 (top), the classes Fuselage, Wing and AircraftCog are 
specializations of the classes Cylinder, WingGenerator and CogEstimationModule, 
respectively. On the other hand, the superclass of Tail is dynamically evaluated by 
means of an IF-THEN rule. For instance, it can be a “null object” in case the attribute 
typeOfTail is evaluated to “tailless”, or some other kind of tail, such as a the 
conventional configuration assumed in the example of Fig. 3.10 (bottom). 
Although not shown in the example, clearly, this KBE application must contain the 
definitions of the defparts WingGenerator, Cylinder, CogEstimationModule and some 
other classes to define different types of tail. While the class Cylinder is actually one 
of the geometry classes predefined in ICAD (the so called ICAD geometry primitives), 
the others will have to be defined by the user using some other defpart.  

In order to create an instantiation of the ConventionalAircraft class, the ICAD 
command “make-part” will be used. Then, the user will be prompted to provide 
values to the list of input-parameters (unless the ConventionalAircraft class is 
instantiated as part of some other class, in which case the parameter values will be 
passed down by its parent). Default values for the input-parameters can be assigned, 
which will be overwritten by fresh values provided by the user, or by the parent 
when applicable. The attribute values specified for the various parts will be the input 
values for their relative defparts; hence they will have to sufficiently match those 
defparts’ protocol.  

As shown in the UML representation of Fig. 3.10 (bottom), the object myTail 
contains two instantiations of the classes HorizontalTail and VerticalTail (although not 
shown in the example, both HorizontalTail and VerticalTail could be instantiations of 
two specializations of the class WingGenerator, similar to myWing).  Hence, myTail is 
1) parent of the two children myHorizontalTail and myVerticalTail, 2) a child of 
myAircraft, and 3) sibling of myWing and myFuselage.  
The object tree shown at the bottom of Fig. 3.10 is the way a KBE system presents 
the modeled product to the user (actually a simplified version of the UML graph in 
the picture). Indeed, such has-part hierarchies are very familiar to engineers dealing 
with complex product configurations consisting of assemblies, subassemblies, 
components, subcomponents, parts and so on. The amount of hierarchical levels in 
the object tree generated by a state-of-the-art KBE system is actually unlimited. 
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(defpart  conventional -aircraft  (aircraft, cost -estimation -module ) 

 

:inputs  

(:fuselage-length  

 :wing-span  

 :tail-span ) 

:optional-inputs  

(:type-of-tail “T-tail”) 

 

:attributes  

(:wing-positioning  (half (the: fuselage-length)) 

  :total-weight (+ (the :fuselage :weight)  

                        (the :tail :weight)  

                        (the :wing :weight) ) 

  :aircraft-cost (the :total-cost) 

) 

:parts  

  ((fuselage   :type  ‘cylinder  

              :length (the :fuselage-length) 

                    :diameter 10)             
 

   (tail   :type  (IF (eql (the :type-of-tail) “tailless” ) ‘null-part   (the  :type-of-tail)) 

           :h-span  (the :horizontal-tail-span) 

           :v-span  (the :vertical-tail-span) 

           :center (translate center :longitudinal (the :fuselage-length))) 

   

 (wing  :type  ‘wing-generator  

             :span  (the :wing-span) 

             :center (translate :center :longitudinal (the :wing-positioning))) 
 

(aircraft-c.o.g  :type  ‘c.o.g.-estimation-module  

                        :components-list (flatten ((the :fuselage) (the :tail) (the :wing)))) 

)) 

 

Mixin-list: list of superclasses for 
inheritance and/or classes for association  

List of input parameters required to 
instantiate the class (the class protocol) 

List of computed attributes 

Class name 

Reference to attributes of objects from 
the conventional-aircraft aggregation   

Reference to an attribute from an external 
object (defined by the cost-estimation-
module class indicated in the mixin list) 

List of objects belonging to the conventional-aircraft object tree. That is to 
say, the children (or parts) of the conventional-aircraft aggregation 

Class instantiated by conventional-aircraft to 
form an object tree (these classes belong to 

the conventional-aircraft aggregation) 

Dynamic specification 
of the object class  

Attributes inherited from 
superclass aircraft 

Fig. 3.9: example of ICAD code, showing a class definition by means of the macro 
defpart. 
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numberOfPassengers = 100
flightAltitude = 12000m
cruiseSpeed = M 0.8
fuselageLength
wingSpan
tailSpan
typeOfTail = conventional
totalWeight
wingPositioning
aircraftCost

myAircraft : ConventionalAircraft

horizontalTailSpan
verticalTailSpan
typeOfTail = conventional

myTail : Tail

length = 40m
diameter = 4m

myFuselage : Fuselage

length = 40m

myWing : Wing

has part

has part

has part myHorizontalTail

myVerticalTail

has part

has part

Fig. 3.10: (Top) UML Class diagram for the ConventionalAircraft class showing 
inheritance and composition links.  (Bottom) Object tree resulting from the 
instantiation of the ConventionalAircraft class.  

Tree’s root, parent of myWing, 
myFuselage and myTail; ancestor 
of myTail’s children 

Children of myAircraft 
(siblings to each other) 

Parent of myHorizontalTail 
and myVerticalTail  

Tree’s leaves and 
myTail’s children  
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3.6.2 Flexibility and control: dynamic typing, dynamic class instantiation 
and objects quantification 

One of the characteristics of KBE languages based on LISP, like ICAD and GDL (not 
Knowledge fusion as indicated in table 4.1, which is written in a proprietary 
language) is that values have types, but attributes not (at least not necessarily). 
Hence, contrarily to many general programming languages, like FORTRAN, attributes 
(variables) do not need to be declared ahead of time to be of a particular type. They 
can simply be created and modified on the fly, e.g., an attribute can change at 
runtime from a Boolean value like “NIL” to an integer number. Indeed, defining the 
type of an attribute value or object directly at runtime offers a high level of flexibility 
(Graham, 1995; Seibel, 2005). This programming style is known as dynamic typing.  

Another relevant feature shown in the example of Fig. 3.9, is the possibility to 
use logic expressions for determining the object type at runtime (see the type 
definition of the part Tail and further examples later, in Fig. 3.12). Indeed the name 
of the class to instantiate can be treated as a variable. 
In addition, each part can be defined as a series of objects, where the number of 
instances can also change at runtime, depending on the evaluation of specific rules. 
Defining series of objects in a KBE system is different from just creating “carbon 
copies” of the same part/feature as typical in many CAD systems. KBE systems allow 
the instantiation of each single object of the series by using different parameter 
values, as well as different parameters, since each object in the series can be the 
instantiation of a different class (see some examples later in Fig. 3.12). It follows 
that the topology of the product tree, i.e., the number of tree levels as well as the 
kind of objects in the tree, is not fixed but reconfigurable at runtime. The whole KBE 
model is dynamic by nature.   

3.6.3 Communication between objects: the message passing mechanism  

Objects interact by sending messages to each other. The input-attributes, attributes 
and methods of an object are all considered messages the given object is able to 
answer. In the code sample of Fig. 3.9, any instantiation of the ConventionalAircraft 
class (e.g., the object myAircraft of Fig. 3.10) sends a request to the Fuselage 
instance asking for its weight, which is needed to compute the totalWeight attribute. 
This is accomplished by including the addendum (the :fuselage :weight)  in the 
specification of the attribute totalWeight. In object oriented parlance, any 
instantiation of Fuselage is said to be able to answer to the weight message.  
To compute the expression associated to the definition of given attribute, an object 
might need to combine values of other attributes, which can be of its own, inherited 
from the classes specified in the mixin-list, or attributes of other objects belonging to 
the same aggregation (Cooper and La Rocca, 2007). In the example of Fig. 3.9, any 
instantiation of the ConventionalAircraft class is able to answer the message 
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totalWeight. In order to do that, it will send the message weight to the instances of 
its children fuselage, tail and wing.  
As could be noted in the examples above, the operation of sending messages is 
performed by using the referencing macro <the>. This macro is used both to refer to 
the value of messages within the current object (e.g. the :fuselage-length7), or, 
through reference-chaining, to the values of messages in other descendant or 
ancestor objects from the instantiated object tree (e.g., the :fuselage :weight or the 
:tail :vertical-tail :span). The reference chain can be thought of as the complete 
address of the object we are sending a message.  

Talking of parent/children relationships and inheritance might easily generate 
confusion.  It should be clear that, in KBE parlance, children do not inherit from their 
parent, but from the classes they are a type of. In the example of Fig. 3.9, the 
children Fuselage and Tail inherit from the classes Cylinder and WingGenerator, 
respectively. However, they get the parameter values length, diameter, span and 
center passed down (or cascaded down) by the given ConventionalAircraft instance. 
The process of passing down parameter values from parent to children is the main 
mechanism to have information flowing down the object tree. On the other hand, the 
attribute totalCost (N.B. not the attribute’s value) is inherited by ConventionalAircraft 
from its superclass Aircraft. Indeed, classes inherit from other (super)classes 

To conclude, by inheritance, parameters are transmitted across hierarchies of 
classes (linked by is-a relationship); by passing down, parameter values flow down 
part-whole hierarchies of objects (linked by has-part relationship). 

3.6.4 Declarative coding style 

When writing a piece of code using a KBE language, in general there is no “start” or 
“end”. The order in which attributes are declared and objects defined is not relevant 
at all. For example we can define attributes for the computation of the total weight 
of an assembly, before specifying the attributes defining the weight of the 
components of the assembly. The program interpreter/compiler will figure out at 
runtime the right order to trigger attributes evaluation and object instantiation. This 
coding style is opposed to the so called procedural style used, for example, in 
FORTRAN, where any procedure has to be defined step-by-step using the right 
temporal order of the events. 
Common LISP is very special in this sense (and all the KBE languages based on CL), 
because it can support both styles. In facts, it is defined a multi-paradigm language. 
While the declarative code is extremely useful for writing dynamic software 

                                        
7 Note the correct way of referring to the value of a message within the current object is <the :self 
:message>, however the variable self is implicitly assumed when no other object is indicated in the 
reference chain. 
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applications, a local switch to the procedural approach is useful for example in cases 
like “IF Fact A is True THEN first Do this, then do that and subsequently do the 
other”.   

3.6.5 Polymorphism and encapsulation 

The UML graphical representation for a class, as shown in Fig. 3.10, provides a slot 
for attributes and a slot for operations. The way classes are defined in a KBE system, 
for example by using the defpart macro, can make this distinction rather fictitious. 
Operations, indeed, are often executed by evaluating attributes. An attribute does 
not just contain a value but a method to compute it. As a consequence, when 
sending a message to an object a method is used to answer that message. Different 
objects can answer the same message but using different methods. In the example 
discussed so far, myAircraft sends a message to all its children to compute their 
weight. Each child will typically use a different, specific method to answer the 
message (e.g. the procedure to compute the weight of the fuselage will be different 
from the one to compute the wing weight). Hence, the operation computeWeight() is 
said to be polymorphic.  

When sending a message to an object, the recipient object might need to 
start instantiating other objects and trigger the evaluation of several attributes in 
order to answer. In the example above, the object tail will have to force the 
instantiation of the two children horizontal-tail and vertical-tail in order to answer the 
weight message. However all these internal procedures and the associated clutter 
stay encapsulated inside the structure of the various objects and can be 
accessed/used via the message passing mechanism.  As long as the interface of the 
given objects (i.e. the list of messages these objects are supposed to answer) to the 
external world stays the same, the internal structure can be changed, modified, 
updated without affecting the rest of the KBE application. This enabling feature for 
modular code development is called encapsulation and is provided by any OOP 
language. Indeed encapsulation (or information hiding), polymorphism, abstraction 
and inheritance represent the four required characteristics for a language to be 
considered object oriented (Rumbaugh et al., 1991). 

3.7 The extra gear of KBE languages: Runtime caching 
and dependency tracking 
As anticipated in section 3.6.1, the defpart macro (or the equivalent in other KBE 
languages than IDL) not only provides a high-level interface to the CL objects facility, 
but brings in runtime caching and dependency tracking capabilities. These two 
features, which are actually complementary to each other, are not present in raw CL 
and represent one of the most outstanding characteristics of a real KBE language.  
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Caching refers to the ability of the KBE system to memorize at runtime the results of 
computed values (e.g., computed attributes and instantiated objects), such that they 
can be reused when required, without the need to recompute them again and 
again…unless necessary. And here the dependency tracking mechanism kicks in, 
keeping track of the current validity of the cached values. As soon as these values 
are no longer valid (stale), they are set to unbound and recomputed only in the very 
moment their demanded again.   

A dependency tracking mechanism is at the base of associative modeling, which 
is of extreme interest as will be shown later in this work. For instance, the shape of a 
wing rib can be defined accordingly to the shape of the wing aerodynamic surface. In 
case the latter is modified, the dependency tracking mechanism will inform the 
system that a regeneration of the rib shape is required because the previous 
definition (e.g., the contour of the rib flanges) is no longer valid.  

In conventional programming, these activities need to be explicitly coded by the 
application developer, which is a non-trivial programming task. A KBE language does 
it automatically and completely transparently to the user. While in the past, people 
could argue about the large memory consumption due to the caching mechanism, 
the evolution of commodity computers has actually neglected such issue. Besides, 
every time a value or an object becomes stale, the LISP garbage collector takes care 
of claiming back the relative space in memory. This happens completely 
automatically and transparently to the user, who does not have to be involved at all 
in any memory management activity. 

3.7.1 The power of demand driven evaluation 

In general a KBE system has two possible ways of operating, namely by eager or lazy 
evaluation (or a combination of the two). We already discussed these two 
approaches when dealing with rule based and frame based inference mechanisms 
(sections 0.0.0 and 0.0.0). The KBE language compiler/interpreter in this case, either 
“eagerly” computes all the chains of values when some attribute has changed (e.g., 
a modifiable attribute gets a new value)8, or “lazily” computes only those chains of 
values whose last value is demanded. The latter modus operandi, also called 
demand-driven approach is possibly the most interesting, hence typically set as 
default mode, for at least three reasons: 
• The system computes values when and only when they are demanded (Cooper 

and La Rocca, 2007; Cooper, Fan and Li, 2001), hence there is no waste of 
computational resources (in terms of computing time and used memory). 

                                        
8 This is what actually happens in spreadsheet applications like Excel. As soon as a value in a cell 
changes, the value of all the linked cells is automatically and immediately updated.  
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• A typical object tree can be structured in hundreds of branches, unlike the very 
simple example of Fig. 3.10. The possibility to compute only those branches that 
are actually demanded allows a very efficient use (as well as test and debugging) 
of very large models.  

• Application prototyping and maintenance is facilitated. The developer can focus 
on a limited part of his/her KBE application, while the rest of it may be possibly 
left incomplete or even incorrect. Since this latter part will not be evaluated 
automatically at run time (unless explicitly demanded), it will not generate any 
error, which would prevent the developer from testing just the branches of 
interest.  

3.8 The rules of Knowledge Based Engineering  
In section 3.3.2 it was discussed how in rule based systems the whole domain 
knowledge is represented in form of production rules. Frame based systems offer a 
much more sophisticated way of modeling the knowledge domain. Not only 
production rules are used, but also some simple data processing capabilities are 
present, and the entire knowledge domain can be structured according to the object 
oriented paradigm.  
KBE systems, though commonly addressed as systems to perform rule based design, 
are much more similar to FBSs than traditional RBSs. KBE does not force expressing 
the whole domain knowledge in terms of production rules and, as discussed in 
section 3.6.1, offers special programming language constructs to define dynamic 
object hierarchies. In KBE parlance, all the possible expressions used to define 
attributes, to specify the number and type of objects, to communicate with other 
tools, etc. are all addressed with the generic term of rules (or engineering rules).  
Within this large and heterogeneous group of rules, indeed we can distinguish a 
number of rule typologies, whose proposed definition is provided in the following 
subsections.  

3.8.1 Logic rules (or conditional expressions)  

Apart from the basic IF-THEN-ELSE rule, KBE languages like ICAD provide some 
more sophisticated conditional expressions, like case and cond, which are directly 
inherited from Common Lisp. From the ICAD manual: 

case expression (test consequent) &optional otherwise otherwise-expression 
Returns consequent if expression evaluates to test; if expression does not 
evaluate to any test, this returns otherwise-expression (if supplied) or nil (if 
otherwise-expression is not supplied).  
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cond [(test consequent) ...] 
Returns consequent if test evaluates to t; if no test evaluates to t, this returns 
nil. 

3.8.2 Math rules  

Any kind of mathematical rule is included in this group, including trigonometric 
functions and operators for matrices and vectors algebra. Basic mathematical 
operators such as +, -, * are just Common LISP functions; many others are functions 
and macros provided by the given KBE language.  
The mathematical expression: 

LCSVL ⋅⋅= 2

2

1 ρ   maps into the attribute definition 

(:L (* 0.5 (the :rho)(^2(the :V))(the :S)(the :CL)) )  

where “^2” is a macro. Note the use of the prefix notation and the absence of the 
symbol “=”, which is a Common LISP function to check whether two numbers are 
the same. These rules are commonly used for evaluating attribute values in a defpart 
and compute inputs for the parts to be instantiated.  Of course, mathematical rules 
can be used both in the antecedent and consequent part of any production rules (IF-
THEN rule).    

3.8.3 Geometry handling rules 

In this category we can include both the rules for the generation and manipulation of 
geometric entities and the parametric rules.  
The first (see examples in Fig. 3.11) are actually KBE language constructs that allow 
the generation of many different kinds of geometrical entities, ranging from basic 
primitives (points, curves, cylinders, etc.) to very complex surfaces and solid bodies. 
Rules exist also to perform operations with the defined geometric entities, e.g., 
curves projections, surfaces intersections, solids subtractions and many others. In 
fact, these rules allow performing, via a programming language, many (all of the) 
operations normally possible in a CAD system by using the mouse and selecting the 
various menu/options provided by a graphical user interface. The big difference is 
that a CAD drawing eventually is just the recording of the final result of a human 
design process, while KBE rules can be applied to record directly the human design 
process and not just one specific end result.  
Normally, geometry handling rules remain outside the range of conventional rule 
based and frame based systems. Unfortunately, these CAD-like capabilities often lead 
to the misconception that KBE systems are just CAD systems – and of very 
inconvenient species – where you are forced to write done in rules with syntax what 
you could normally do with the fancy GUI of a true CAD system. 
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Also parametric rules belong to the category of geometry handling rules. They 
allow expressing dimensions, position and orientation of a model element as function 
of the dimensions, position and orientation of another model element or some other 
constraint. These rules enable changes that are made to an individual element of the 
model to be automatically reflected throughout the rest of the model.  
For example (not in syntax): 

Position_of_point_A = Position_of_point_B + Translation_vector 

Diameter _Hole = Diameter _Pin + Clearance_value 

Generally, this kind of rules do not generally exist in rule based or frame based 
systems, because their evaluation requires the notions of space and relative 
positioning of assembly/parts/features. Indeed, these rules are typically available in 
conventional parametric CAD systems.  
However, the possibility in KBE systems to combine these rules with logic rules and 
configuration selection rules (see next subsection) adds another dimension to the 
controllability of the model parameters. Spatial integration can be guaranteed also 
during dynamic variations of the product configuration. 

Fig. 3.11: Examples of rules for the generation and manipulation of geometric entities. 

Definition of a class called container, which 
is a box of dimensions 10X20X30 

Definition of a class called wing, as a smooth 
surface that interpolates (lofts) the two 
previously defined curves airfoil1 and airfoil2 

Definition of a class’ child called my-curve, 
as the intersection curve between two 
previously defined surfaces called first-
surface and second-surface 

Definition of a class’ attribute called 
distance-object, as the minimum 
distance between the previously defined 
surface my-surface and curve my-curve. 

(Defpart container (box)  
   :attributes  
   (:length 10  
    :width 20  
    :height 30)) 
 
(Defpart wing (lofted-surface)  
:attributes  
 (:curves (list airfoil1 airfoil2))) 
 
 

 (:parts  
  (:my-curve 
    :Type surface-intersection-curve 
    :surface-1 (the: first-surface) 
    :surface-1 (the: second-surface))) 
 
 

:attributes 
(:distance-object  
   (the :my-surface  
   (:minimum-distance-to-curve  
   (the :my-curve)))) 



Chapter 3                                  Knowledge Based Engineering. The AI roots and the OO paradigm  

89 

 

3.8.4 Configuration selection rules (or topology rules) 

These rules are actually a combination of mathematical and logic rules. However, 
they have a different effect than just evaluating a single numerical or Boolean value; 
hence they deserve a special label. They are used to change and control dynamically 
the number and type of objects in an object tree. Hence they can affect the topology 
of any product and process KBE model. Some examples are provided in Fig. 3.12. 
Note how it is possible to define dynamic series of objects, where each instance in 
the series can be individually specified in terms of attributes and type as well. As 
already discussed in section 3.6.2, these rules are generally not available in 
conventional CAD systems and represent an extremely powerful prerogative of KBE. 
Without this sort of rules, no real generative design exists! 

3.8.5 Communication rules 

In this group all the specific rules that allow a KBE application to communicate 
and/or interact with other software applications (not necessarily KBE) and data 
repositories are included. Rules exist that allow accessing databases or various kinds 
of files to parse and retrieve data and information to be processed within the KBE 

 
parts  
 (:my-beam 
  :Type ‘Beam 
  :Quantify : series (round (div (the :total_load) (the :allowable_beam_load))) 
  :Beam-length (if (eql (the-child :index) 1) 10 8))) 
 
  
 
: parts  
 (:my-beam 
  :Type ‘Beam 
  :Quantify : series (IF (> (the :total_load) 100)) THEN 3 ELSE 2)) 
   
 
 
: parts  
  (airfoil 
  :Type (IF (> (the :mach-num 0,75) ‘supercritical-airfoil  ‘NACA0014) 

The number of beam instantiations is defined by a 
mathematical expression. The attribute beam-length of 
each series’ objects is evaluated, based on a logic rule. 

The number of beams is computed based on the 
evaluation of a production rule. A mathematical 
expression is computed to evaluate the premises. 

Fig. 3.12:  Examples of configuration selection rules (topology rules) 

The class of the object airfoil (i.e. the type) 
is selected at runtime based on a logic rule. 



90 

 

application. Other rules exist to create files containing data and information 
generated by the KBE application. For instance, it is possible for a KBE application to 
generate as output standard geometry exchange data files like IGES and STEP, or 
XML files or any sort of free format ASCII files. Rules also exist to start at runtime 
external applications, wait for results, collect them and return to the main thread. 

3.9 KBE product models to capture the What, the 
How…and the Why of design? 
As anticipated in section 3.6.1, a KBE application eventually consists of a structured 
and dynamic network of classes and objects definitions, where both product and 
process knowledge, geometry-related and non are modeled using a broad typology 
of rules. This is the so-called KBE product model, and represents the core and 
essence of any KBE application.  
The product model is occasionally addressed in literature as rule base (and the KBE 
approach as rule based design). This can be considered acceptable only if the 
fundamental differences between the flat and static structure of the rule base in a 
RBS and the dynamic, object oriented nature of the KBE product model are 
acknowledged first.  
A product model is a generic representation of the product type for which the KBE 
application has been created. It is not made up of fixed geometric entities, with fixed 
dimensions, in a fixed configuration. Instead, it can contain the engineering rules 
that determine the design of the product (Cooper et al., 2001). The product model 
can function as a knowledge carrier to collect both the information concerning the 
physical definition of a given product (such as geometry, material and functional 
constraints), and the process used to design, analyze and manufacture it.  

In particular, the focus of KBE is capturing the knowledge about how to 
design a product, rather than producing a static representation of the design process 
outcome. For example, the detailed drawing of an aircraft wing, including structural 
elements and systems, does not represent the design process and the knowledge 
required to generate such a wing design, but it is just the final result obtained from a 
specific instantiation of the knowledge owned by the team of wing design specialists. 

A KBE product model is often claimed in literature to be the container of the 
What, the How and the Why of the design (Cooper et al., 2001). The What refers to 
the capability of capturing the physical definition of a product, with its shape, 
components configurations and features. The How refers to the sequence of steps, 
actions and transformations required to derive a product configuration, based on 
input requirements.  

The Why has a more subtle meaning: it refers to the fact that a KBE system, 
similarly to rule based systems (see the RBSs’ explanation subsystem description in 
section 3.3.1), is able to provide the user with the chain of reasoning/actions which 
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has led to the final solution. The Why, in the sense of the true intent behind the 
single rule, or the definition of the single procedure, or the justification of the levels 
of abstraction used to define classes, actually represents tricky knowledge to capture 
in the product model. Indeed, such knowledge is not even necessary for the KBE 
system to operate. To a limited extent, this “type of why” can be captured by means 
of comments and remarks to be inserted in the code, at discretion of the developer. 

3.9.1 The generative capability 

The functionality of the product model can be described by the simplified 
representation of Fig. 3.13 from (Cooper et al., 2001): a set of input values is 
assigned to the parameters used in the product model, the KBE system applies the 
rules which process the input values and finally the engineered design is generated, 
with little or no human intervention. This is typically addressed as generative design, 
and, not by chance, the product model is 
also known as generative model. 

The example of Fig. 3.13 assumes 
the product model to contain the 
structured formalization of the multitude 
of corporate and regulatory standards and 
the handbook principles implemented by 
some company to deliver an engineered 
design. As a matter of fact, this example, 
where a fully engineered product is 
automatically generated starting from a 
list of input parameters, represents the 
use of KBE as envisioned by the first 
practitioners and promoted by the early 
(?) KBE vendors. Although success stories 
of fully integrated KBE design tools are 
reported in literature, in the author’s 
opinion a different approach is necessary 
when dealing with very complex products 
and distributed design. As anticipated in 
Chapter 2 and discussed later in Chapter 
6, a broader, modular design system is 
proposed, where KBE is used only for the 
development of one of the system 
components: namely an advanced 
parametric model to feed external analysis 
tools.  

Fig. 3.13: the product (or generative) 
model of a KBE application takes 
input specifications, applies relevant 
procedures and generates a product 
design automatically. 

Drawings, 3-D Models, 2-D Models, 
Bills of Materials, Tool design… 

Size, Materials, Positioning… 
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in any case, whatever the level of complexity and “knowledge richness” of a 
product model, the way it enables generative design does not change substantially. 
The user has to create an instance of the class which defines the root of the product 
tree (in the example of Fig. 3.10 the root class was Aircraft). To do that he/she will 
have to provide a set of values to the input attributes of that class. Then he/she can 
ask the product model to forcibly compute all or specific branches of the product 
tree. Hence the root object will force the instantiation of its children (passing down 
the needed attribute values) and each child will do the same.  

Otherwise, after having instantiated the root class, the user can ask the product 
model to deliver some specific output (like the bill of materials of the example of Fig. 
3.13). In this case the demand driven mechanism will force the computation of just 
the branches and attributes of the product tree which are strictly required to deliver 
the requested output. 

The relation between the given set of input data fed into the product model and 
the output design is univocal and totally unambiguous. Any time the product model is 
instantiated with the same input values, the same rule will be evaluated, the same 
objects will be generated, and the same results will be generated. The product 
model, by its nature guarantees conformity to all the rules implemented and the 
engineers can rely on the fact that all design derives from a documented and 
deterministic approach. The definition of the product model provides the clear reason 
for every dimension, design decision and configuration feature in the generated 
output, which represents invaluable information, both for designers and for those 
who review the design. 

3.10 On the convenience of the programming approach 
Knowledge based engineering is mostly about writing code. The use of a 
programming language represents the most salient operational characteristic of any 
true KBE system. The debate over the convenience of using a programming 
language to support engineering design is open since the first availability of IT 
systems and tools. The imposed use of a programming language, rather than the 
convenience of it, has possibly been the item number one into the discredit 
campaign of CAD vendors towards KBE technology. However, in the author’s opinion, 
the advantages of a programming approach to support engineering design are 
multiple and evident: 
• Capture and communicate the design/model rationale. When asked to 

show how “a thing” looks like, a person would probably start sketching something 
on a paper. When asked to explain how to make “the thing”, very likely a person 
would start telling a story. To capture and communicate a design process, rather 
than its output, a language is required. To bake a cake, the picture of a baked 
cake is not sufficient, it is necessary to read the recipe. 



Chapter 3                                  Knowledge Based Engineering. The AI roots and the OO paradigm  

93 

 

• Flexibility and control. Designing by a sequential selection of commands 
displayed via a graphical user interface (GUI), though user-friendly, intuitive and 
often esthetically appealing, will inevitably limit the freedom of the designer9. Any 
user of a GUI driven tool has faced the problem of missing the button/menu 
choice to perform some specific operation. The availability of a programming 
language would enable generating the “whish-button”. In general, a 
programming language can provide the means to capture reasoning schemes and 
control different series of events, without the need to go through often 
unnecessary series of menu selections. 

• Support automation and consistency. Having a programmed generative 
model (as described in section 3.9.1) is like having a process recorded on some 
kind of playable medium. Every time the generative model is “played”, there is 
guarantee that the same process can be repeated consistently (the same rules 
and reasoning mechanisms will be used) for different valid input values, whoever 
the operator and however large the number of re-plays. There are many cases in 
engineering design, such as design optimization, where the human interaction in 
repetitive processes is only an obstacle to automation and a potential source of 
errors. 

• A step toward standardization. A request for proposal of a platform-
independent model for the exchange of knowledge has been placed by the Object 
Management Group (Object Management Group, 2005). By using a programming 
language to capture engineering rules and relations, various KBE vendors have 
generated specific constructs, which, though syntactically different, are 
semantically equivalent. As shown by the class definition mapping Table 3.2, 
there are possibilities to create a standard to facilitate the transfer/exchange of 
engineering knowledge from one system to another.  

                                        
9 In order to provide more flexibility to the designers, without spoiling use simplicity, some advanced 
CAD systems offer the possibility to write programmable macros or make use of function calls to 
external routines (written in Fortran, C, C++, Visual Basic, etc.). However, hardcore programming at 
API level is generally the only way to access and manipulate all the features of the CAD system. In 
general, the results are not at the level of true KBE, where the programming approach is native. For 
example, Visual Basic macros are typically orders of magnitude slower than true KBE applications, 
because they are interpreted and not compiled. On the other hand, powerful languages such as C++ 
allow writing efficient code. However, the programming skills required to perform such CAD systems 
hacks are often higher than those required to develop standard KBE applications, which cancels the 
initial claim of use simplicity. 
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3.10.1 The characteristics of the ideal KBE-language 

How should a programming language look like to be considered suitable for 
Knowledge Based Engineering? In two words we could say that it must be engineer 
oriented. More explicitly it should be: 
• High-level. The programming language should be far more close to human 

language than machine language. It should keep engineers thinking and 
expressing themselves like engineers and not force engineers to think like 
machines. All the memory management activities should be taken over by the 
language, in a way completely transparent to the user 

• Concise. While some languages need only a few lines of code to do something, 
others need pages of code. A lean language is required to support engineers 
working efficiently. A clear semantic and just a few axioms should be available 
(Graham, 2004), with the possibility to build on top of those. 

• Readable and comprehensible. The main purpose of a language is to allow 
communication and knowledge transfer. If this is somehow prevented or limited 
to the scope of providing instructions to a computer, then the language is not 
adequate.  Programs must be written for people to read and only incidentally for 
machines to execute (Graham, 2004). 

• Suitable to prototyping. A language should allow the user to “sketch code” 
without forcing him to write optimally structured code at first hand.  A language 
should allow telling the computer what to do, without entering in the details of 
how to do it. Dynamic typing and declarative style (see section 3.6.2 and 3.6.4) 
are two features that totally support code prototyping.  

• Efficient. In the sense that it should make the work of the programmer efficient, 
rather than (or at least before) the work of the machine. Languages that take a 
lot of memory or do not have top of the class speed (with due limits of course), 
but allow designers to build working applications in a fast way are considered 
efficient. As Graham provocatively states “Inefficient software isn’t gross, what’s 
gross is a language that makes programmers do needless work. Wasting 
programmers’ time is the real inefficiency, not wasting machine times…especially 
when computers are just getting faster and faster (Graham, 2004)”. 

• Support reusability. The concept of a language by itself is already about 
reusability: a limited amount of words that can be reused to express any kind of 
concept. However, some languages are more reusability supportive. The object 
oriented paradigm and the use of macro as discussed in the previous section are 
good examples. Reusability is at the base of code maintainability and scalability. 

• Multifunctional. A language to support engineering design must encompass the 
heterogeneous aspects of the engineering design process. That is to say, it 
should support calculation and data processing, it should support the problem 
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solving/reasoning activity, and, last but not least, it should support the 
manipulation of geometry. 

3.11 Summary 1: How KBE systems differ from 
conventional KBSs  
This chapter has discussed the common roots and genes of KBE systems and 
traditional Knowledge Based Systems, like rule-based and frame-based systems. 
Knowledge acquisition, knowledge representation, and implementation of reasoning 
mechanisms are relevant aspects of commonality. However, in this chapter, also the 
substantial differences have been highlighted, which can be summarized as follow: 
• KBE systems have geometry manipulation capability, because of the internal CAD 

engine or the capability to tightly integrate an external one. 
• KBE systems have calculation and data processing capabilities, while conventional 

KBSs do not, or only to a very limited extent. 
• In rule based systems there is a crisp separation between the knowledge base 

and the inference mechanism, whereas in KBE systems the functionalities of 
storing rules and using them to solve problems are intertwined. 

• In rule based systems the whole knowledge domain has to be translated in terms 
of IF-THEN-like rules. In KBE systems there are far more possibilities. 

• The programming approach used to define a KBE product model is such that 
there is never the risk of conflicting rules, which on the other hand, is a typical 
issue in rule based systems10. 

The typicality of KBE systems is such that the author still prefers addressing them as 
knowledge based engineering systems, rather than just knowledge engineering 
systems, as often found in literature. 

3.12 Summary 2: How KBE differs from CAD 
As Cooper (Cooper and Smith, 2005) well indicates, the original KBE systems were 
indeed created in response to a lack of capability in CAD systems and because of 
this, their marketing and overall positioning tended to be CAD-oriented11. However, 
as these systems quickly grew and became full general-purpose programming 

                                        
10 In order to help the inference mechanism selecting the right rule to fire in case of more (and 
conflicting) matching rules, extra metaknowledge needs to be added to the rule base. For example, a 
priority score is assigned to each rule, or priority is given to rules which use the most recent data, or 
priority is given to the rules with the longest list of matching conditions. 

11 In some cases this was evidenced by the name itself, such as The ICAD System. Nevertheless the 
company that developed the ICAD system has always denied it. 
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environments, clearly they fell into a category different from CAD systems. Anyway, 
the association in the marketplace with “plain old” CAD systems has persisted for 
many years and severely limited market penetration of KBE systems. It is only 
recently, possibly since world PLM/CAD leaders Dassault Systemes and Unigraphics 
UGS have entered the KBE services arena, that the awareness of KBE technology has 
reached other industries than giants like Airbus, Boeing, GE, Rolls-Royce and GM. 
Still, current systems like CATIA V and UGS Knowledge Fusion are CAD centric and 
have more KBE-ish than true KBE capabilities (Milton and La Rocca, 2008; Cooper 
and La Rocca, 2007). In the end, despite some points of contact, CAD and KBE 
represent two different technologies, as discussed in this chapter and summarized 
below:  
• Developing a KBE application is 90% about writing code and 10% interacting with 

the GUI; in CAD 99% is about interacting with the system GUI.  
• CAD systems can only output models, which are human driven records of the 

geometric results of a human centered design process. Whereas KBE systems are 
there to record the design and modeling processes (e.g., procedures, reasoning 
mechanism, best practices, computation and data processing) that lead to final 
(geometric) results.  

• CAD is the most suitable tool for drafting, sketching and detailing. In those 
specific areas the interactive drawing capability of traditional CAD systems is 
more appropriate and efficient than the KBE programming approach. 

• While CAD focuses on handling and delivering geometry, KBE focus on rules and 
knowledge capturing, with geometry being just one of the many types of output 
that can be generated. There are estimates that less than 50% in a KBE 
application is directly related to geometry (Chapman and Pinfold, 1999). 

• The use of conditional and configuration rules (section 3.8) in the definition of a 
KBE product model allows dynamic alterations of the final product configuration 
which are far more drastic then the scaling/stretching and the variation of 

Fig. 3.14: Examples of very different aircraft movable configurations (e.g., rudders, 
airbrakes, elevators, ailerons), all generated as different instantiations of the same 
product model (skin removed to show inner structure) (van der Laan and van Tooren, 
2005) 
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features’ patterns normally allowed by standard CAD systems. See the example in 
Fig. 3.14 from (van der Laan and van Tooren, 2005). 

• CAD systems generally link to other software applications or analysis tools via 
standard data exchange format, such as IGES and STEP (or via specific interfaces 
developed by vendors to ease integration with specific commercial packages). 
KBE systems support standard data exchange format, but allow programming 
writer/parser modules for any kind of custom data format. 

Interaction and automation, heuristic and by-the-rules, geometry related or not, one-
off and repetitive are the typical coexistent and interrelated aspects of the design 
process: CAD and KBE can both contribute to this process and complement each 
other capabilities in a smart integrated approach. 
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CHAPTER 4           
Conceptual development of the MMG. 
High Level Primitives and Capability 
Modules  

1. Introduction 

2. From designers’ mind to concept visualization… 

3. …and back! Object oriented modeling and functional thinking 

4. High Level Primitives for the MMG modeling approach 

5. Geometry modeling capabilities of the MMG 

6. HLPs definition: an heuristic approach 

7. From the aircraft geometry model to the abstractions for multidisciplinary analysis. Role and 
definition of the Capability Modules 

8. Automatic generation of aircraft model abstractions 

9. The MMG architecture: flexibility through modularity 

10. Dealing with CAD engine limitations: capturing workarounds for robust modeling 

11. Discussion 

4.1 Introduction 
Based on the discussion in Chapter 2, on the needs and challenges of developing a 
design tool that is able to support design space exploration and distributed MDO, this 
chapter will discuss the development of the DEE Multi Model Generator (MMG). It will 
be discussed how the object oriented modeling approach and the KBE technology 
presented in Chapter 3 have been exploited to achieve the following two main goals: 
1. Provide an intuitive and effective modeling system for aircraft configurations and 

their variants, including non-conventional concepts. 
2. Support and accelerate the (multi)disciplinary analysis of aircraft concepts, by 

automation of repetitive design activities, especially those required for analysis 
processing. 

Whereas this chapter focuses on the conceptual development and the main 
functionalities of the MMG and its components, the KBE implementation details and 
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some application cases of the MMG will be presented in the Chapter 5 and 6, 
respectively. 

4.2 From designers’ mind to concept visualization…  
As anticipated in Chapter 2, designers are, by nature, very good in translating 
customer requirements into product functional requirements and synthesize an 
adequate aircraft configuration. The way their creativity, engineering knowledge and 
past experience are exploited is not really understood and still constitutes an 
interesting topic for researchers in computer and cognitive science.  What is 
acknowledged is that designers can do this part well and fast and there is hardly any 
need of computer aid. Actually, designers like so much this part of their job that they 
would hardly surrender it, even if software would possibly allow them to do it faster 
and better (Smith, 2007) 
However, once the new concept is sparkling in the designer’s mind, it is necessary to 
fix it on an adequate support (the mythical back of the envelope is not always the 
most ideal one), at least for the following reasons: 

• Designers need to have their mental concept visualized to reflect on it 
• Designers must be able to communicate the concept (to customers, 

specialists, etc.) 
• Designers need to have suitable models to initiate the analysis and verification 

phase. Although some of these models for analysis might not relate directly to 
the physical shape of the aircraft, most of them contain geometry information, 
because the performance of an aircraft strongly depends on the interaction of 
its shape with the external world (i.e., passengers, fluids, ground, etc.) 

The transformation of the designer’s mental concept into a displayable model might 
definitely benefit from computer aid. Three practical approaches can be identified: 

1. The use of a classical CAD system, where any possible geometry model can be 
assembled via a process of selection and manipulation of geometric primitives, 
such as points, curves, solids, etc. and, possibly, some other predefined CAD 
features.  

2. The use of a modeling system in which a large (infinite?) number of 
predefined parametric aircraft configurations have been stored.  The designer 
could choose the (best) matching `prefab´ aircraft model and adjust it by 
tuning the parameters values and/or switching on/off some of its features. 

3. The use of a modeling system where a limited number of predefined 
parametric modules (components) is available, which the designer can adjust 
and combine to assemble large number of aircraft configurations and 
configuration variants. 
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The first approach is the traditional one; it comes at the cost of efficiency: the 
process has to be manually repeated any time a different aircraft configuration is 
suggested. Besides, it provides limited support for the later verification phase within 
a MDO framework (see Section 2.7 on the role and development challenges of the 
MMG). Eventually, this approach does not comply with the way engineering 
designers think, which is generally not in terms of geometry primitives like splines, 
points, etc. 

The second approach is much more suitable for automating the model 
generation process. However, it is applicable only when the number of configurations 
to be examined is limited and predictable. If none of the available aircraft 
configurations fits, a new one has to be generated and added to the catalogue, 
which typically requires the use of a CAD system, as discussed above. Elsewhere, the 
risk is that designers are forced to adapt their idea to what is already available in the 
models catalogue. Also this method is not fully in line with the methodological 
approach of designers, which (mostly1) think in functions and not directly in 
solutions. The creative generation of a solution follows the need to fulfill a given 
functionality. 
In this modeling approach, solutions are provided, which hopefully can fulfill the 
needed functionalities. In this case, truly innovative design does not appear to be 
properly supported. 

The efficiency and effectiveness of the third approach, which is actually the one 
pursued in this research work, depend on the definition of the parametric modules 
that are provided to the user to play LEGO®... To understand how to define the 
appropriate parametric modules, it was considered opportune to “go back into the 
head of the designer” and try to capture his/her way of generating and visualizing 
solutions.  

4.3 …and back! Object oriented modeling and functional 
thinking 
The object oriented modeling paradigm, introduced in Chapter 2, has a very good 
reason for its appeal: models built from objects allow a good mimic of the real world 
(Phillips, 1997; Sully, 1993). At least, the concepts of classification, abstraction and 
inheritance described in the previous sections seem to be very much in line with the 
way our mind “perceives” the world.  

                                        
1 Indeed, designers make use of their experience and in a certain extent “recycle” ideas that have 
proven effective in previous design cases (also from different domains). Cognitive science is exploring 
this problem solving method, known as case based reasoning.  
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The concept of objects is 
richly used in the field of 
cognitive psychology, 
and the sub-
specialization concerned 
with knowledge 
representation. It has 
been demonstrated that 
people tend to represent 
knowledge in term of 
hierarchies, where the 
lower parts in the 
hierarchy are 
specializations of more 
general classes (sitting 
at higher hierarchical 
levels) and may have 
characteristics that add 
to or override some of 

those inherited from the general classes. 
E. Rosch, a psychologist working in the area of concept representation, 
demonstrated that people record memory of objects in terms of a prototypical 
schema, which incorporates all the key representative characteristics of the objects in 
the form of a generalized abstract schema (Rosch, 1978). This prototypical schema 
becomes then the root of a hierarchy that possesses specializations. The more an 
item resembles “something”, the more it is categorized in that “something” 
abstraction; hence it is included within an implicitly defined range of typicality. This 
natural process of memory and knowledge representation provides us with an 
efficient and economical way of arranging information and gives rise to the concept 
of cognitive economy, i.e. storing of information with the least possible effort (Sully, 
1993). An example of how this knowledge representation schema can apply to an 
aircraft is shown in Fig. 4.1. 

Some understanding of the prototypical schema structure and the way the 
typicality range is set could offer the opportunity to define a more effective modeling 
system, fine-tuned to the designer’s own mental schema.  

Whether conventional or out-of-the-box, any aircraft concept a designer could 
conceive, must fulfill a number of basic functionalities, such as accommodating 
payload, generating lift, etc. As a matter of fact, fuselage and wing like elements 
fulfill those functionalities mostly because of their characteristic shape (though some 
other shape could exist that allow integrating more functionalities). Possibly, the 
recurrent presence of such geometrical elements could determine the membership of 

One of the appeals of the object oriented paradigm is 
that it seems to be right in line with human nature. 
Perhaps we categorize the objects around us because 
it is easier for our brains to deal with a few categories 
rather than with many instances. Recent research 
points to brain areas involved in object categorization. 
Psychologists Isabel Gauthier and Michael Tarr used 
novel objects (greebles), purposely designed for this 
research, in conjunction with imaging techniques that 
show the brain in action. 

They found that as people learned 
to categorize these objects 
(according to rules defined by the 
experimenters), the fusiform gyrus, 
a specific area in the cerebral 
cortex, became increasingly active 
(Shmuller, 2004b). 

A greeble 
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a given concept to the aircraft typicality range.  Some X-configuration that does not 
feature any of these functional elements (i.e. a fuselage and/or a wing like element) 
is likely to fall outside the aircraft typicality range, which does not give the certainty 
the X-configuration cannot be a proper aircraft, but it is certainly a good hint.

Fig. 4.1: the object oriented model of the aircraft. Prototypical schema and typicality 
range. 

The object oriented model of the aircraft 

At the top of the hierarchy there is the prototypical schema of the aircraft: this 
aircraft abstraction features all the typical characteristics of a small tourism 
aircraft plus those of a commercial jetliner plus those of a fighter aircraft. An 
actual commercial airliner will be just a specialization of the prototypical aircraft 
abstraction. In turn there will be further specializations of the commercial airliner 
such as a high-wing turboprop, a T-tail version with fuselage mounted engines, a 
freight configuration, etc. Each one of these specializations adds to and/or 
overrides some of the characteristics inherited by the category abstraction it 
belongs to. For example, the freight aircraft overrides the characteristic “has 
passengers accommodations” of the commercial airliner abstraction, but inherits 
some other characteristics, such as “has low wings”, etc. 
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4.4 High Level Primitives for the MMG modeling 
approach 
On the base of the considerations above, it was decided to define a number of 
functional blocks able to capture elements of similarity among very different aircraft 
configurations and use them as the parametrical modules for the third practical 
modeling approach proposed in section 4.2. These modules have been given the 
name of High Level Primitives (HLPs), mainly to address the fundamental distinction 
with the low level primitives of conventional CAD systems. Their implementation is at 
the base of the modeling capabilities of the Multi Model Generator. 

With the definition of just four High Level Primitives, such as Wing-part, 
Fuselage-part, Engine and Connection-element (Fig. 4.2), it is possible to assemble a 
very large number of aircraft configurations, even with radically different topologies.  
The functionality of the first three HLPs is obvious; the connection element is needed 
to join the others into a continuous, watertight surface. Fig. 4.2 and Fig. 4.3 
demonstrate the concept, by showing the (re)use of the High Level Primitives to 
model a traditional airliner and a blended wing body aircraft. 
The HLPs allow a much more efficient transition from mental concepts to displayable 
models, than the low level geometry primitives of a traditional CAD system. Whilst a 
new CAD model must be manually generated for every different aircraft 

Fig. 4.2: multiple instantiation of the wing trunk HLP to model all lifting 
generating aircraft components 
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configuration, the HLPs will take care of generating the required curves, surfaces, 
etc., for the final geometry visualization of the aircraft configuration at hand. What 
Fig. 4.2 and Fig. 4.3 show is that the HLPs can capture elements of the aircraft 
prototypical schema, hence not instances but concepts and mental categories, which 
can be adapted to record different specific models. Indeed, the same wing part 
primitive, can be used to model wing parts, winglets, canard wings, tail empennages, 
as well as movable components as rudders, ailerons, etc.  
Again the object oriented paradigm suits the case. Indeed, the HLPs can be modeled 
as classes that, once provided with a new set of attribute values, can be instantiated 
in different objects1 . For example, the class WingPart  can be instantiated in the 
winglet of the Boeing 737-800, the fin of the Airbus 340-500, the canard of the Sonic 
Cruiser, or the outer wing of the MOB blended wing body.  

                                        
1 To distinguish between the HLPs and the classes defined for the software implementation of the 
HLPs, the following notation will be used: 

Wing-part (the HLP) � WingPart  (the class used for the software implementation) 

Fuselage-part � FuselagePart  

Connection-element � ConnectionElement  

Engine � Engine  

Fig. 4.3: multiple instantiation of the connection element HLP to blend the other 
HLPs instantiations in a continuous water-tight surface 
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Given its capability to fully embrace the object oriented paradigm and bring along the 
geometry manipulation ability of parametric CAD, Knowledge Based Engineering 
appears the right technology to implement the HLPs principles for the development 
of the Multi Model Generator. Eventually, the selected KBE system employed for this 
work is ICAD (see Chapter 3), which, at the time the MMG development started, was 
the top-of-the-class system in the field.  
The HLPs have been modeled using the defpart macro discussed in Chapter 3 and 
integrated in the architecture of a more complex product model. In fact, the goal of 
the MMG is to allow modeling of complete aircraft configurations, not just and only 
single components. The UML diagram of Fig. 4.4 offers an interesting view on the 
conceptual definition of the MMG, excluding the implementation details, which will be 
addressed later in this chapter and in Chapter 5.   
In this graph the MMG product model (here addressed as 
GenericAircraftProductModel ) is represented as an aggregation of the three 

HLPs2 classes FuselagePart , Engine  and ConnectionElement  and a fourth 

assembly called LiftingSurface . The LiftingSurface  assembly can be used 
to model a wing, or a tail empennage, or a movable, which, in fact, are all indicated 
in the graph as specializations of LiftingSurface . LiftingSurface  is actually 

an assembly composed by an unlimited number of WingPart  and 

ConnectionElement  HLP classes. Indeed, it is possible to use more Wing-part 
primitives to model a lifting surface, as shown in the examples of Fig. 4.2 and Fig. 
4.3, where four instantiations of the Wing-part HLP are used for the center section, 
the inboard wing, the outboard wing and winglet of the blended wing body lifting 
surface, respectively. The number of instantiations of the Connection-element HLP is 
not predefined, but it is computed on the fly according to the need of enforcing 
surfaces continuity at component fuselage-lifting surface intersections (e.g., 
wing/fuselage) or between the various WingPart instantiations in the same lifting 
surface.  
 
 
 
 
 
 
 

                                        
2 Note how, though the aircraft product model and the HLPs are actually classes, they have been 
defined using the special stereotypes «MMG» and «HLP». This was done to highlight their role of 
“special classes” and add more meaning to the graph. Stereotype customization is a possibility offered 
by the UML (Shmuller, 2004a). 
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Fig. 4.4: UML class diagram representing the generic aircraft metamodel (the aircraft 
of the mind) and a number of instances (i.e. the aircraft of the sky). Representation 
of the High level primitives’ aggregation. 
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Eventually, the MMG of Fig. 4.4 can be considered an attempt to mimic the 
functionality of the prototypical schema addressed in Section 4.3. In this case, the 
HLPs enable the generation of different aircraft configurations, within a certain 
typicality range. On top of the graph, there is a heterogeneous set of aircraft (the 
aircraft of the sky), which, during this research work, have been generated as 
instantiations of the aircraft product model (the aircraft of the mind). The class 
diagram of the MOB blended wing body aircraft (La Rocca et al., 2002) is shown in 
Appendix C, as an example of a specialization of the aircraft product model. 

4.5 Geometry modeling capabilities of the MMG  
The geometry modeling capabilities of the MMG mostly depend on the definition of 
the various high level primitives. The HLPs can be considered as a kind of rubber 
LEGO® blocks, which can be individually morphed due to their parametric definition 
and assembled to build up a potentially infinite range of different aircraft 
configurations and variants. Indeed, the parameters used to define the various HLPs 
represent the actual degrees of freedom of the primitives and determine the 
typicality-range of the specific instantiations that can be generated. 
The ability of the Wing-part HLP, for example, to capture the resemblance of (a part 

of) a wing, a canard, a fin, a 
winglet, etc., depends on the fact 
that parameters such as chord 
lengths, span, sweep and twist 
angle, as well as type and location 
of the various airfoils can all be 
defined and controlled by the 
designer. In case a complex wing 
configuration has to be modeled, 
featuring a number of kinks and 
different values of dihedral and 
sweep at the various wing 
sections, the designer can use 
multiple instantiations of the 
Wing-part primitive. In this case, 
a set of parameter values must be 
provided for each instantiation of 
Wing-part.  
Fig. 4.5 shows some examples of 
aircraft models generated by the 
MMG. The family of blended wing 
bodies has been generated by 

Genes and families 
According to a sort of genetic engineering 
interpretation of the HLPs concept, the rules 
defined inside the HLPs classes (e.g., to fit 
curves, generate surface) constitute the gene 
print of the primitives, hence they represent the 
commonality elements of the HLPs: they 
encapsulate the knowledge to perform certain 
tasks and, eventually, determine the typical 
behavior of all the class instantiations. 
On the other hand, the HLPs’ parameters (e.g., 
length, width, sweep angle) allow the 
morphologic variation of the primitives, hence 
they represent the individuality elements: a 
different set of parameter values yield an HLP’s 
instantiation with a different shape, which makes 
it unique among all the other instantiations.  
This approach based on the definition and 
combination of commonality and individuality 
elements to generate individual/specific models, 
that anyway share common characteristics and 
behavior, is addressed as family-thinking. 
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using the same HLPs aggregation, and modifying only the parameter values of some 
primitive instantiation. The family of more conventional aircraft on the right has 
required also modifications to the number of HLPs instantiations to change the 
number of engines and the type of tail configuration. 
Eventually, the procedures used by the HLPs to perform the various geometric 
operations, such as the generation and positioning of curves with respect to 
opportune reference frames, the interpolation and intersection of various surfaces 
etc., are all stored in the form of rules inside the body of the relative defpart 
definition. Not only geometry handling rules, but practically all the types of rules 
described in Chapter 3, Section 3.8 have been used to define the MMG components. 
For example the connection-element HLP, use topology rules to check whether the 
generation of connection surfaces is necessary to blend adjacent wing-parts in case 
of different dihedral angle. Geometry rules, then, enforce the generation of an 
appropriate connection shape that guarantees overall surface continuity (i.e. based 
on the local tangency vectors of the adjacent wing-part surfaces to be connected). 
The technical details on the HLPs implementation can be found in Chapter 5. 
Indeed, the KBE approach offers the possibility to encapsulate knowledge inside the 
various HLPs (in this case the knowledge required to perform geometry 
manipulation), which transforms them in smart and dynamic objects, by far superior 
to the low level primitives of traditional CAD systems. See this concept illustrated in 
Fig. 4.6.  
Whenever a parameters value is changed and/or the number and type of HLPs used 
to model a given aircraft configuration, the rules integrated in the aircraft product 
model definition will enable the model to reconfigure and adjust itself, automatically 

Fig. 4.5: Generation by the ICAD MMG of many aircraft configurations and 
configurations variants, based on the use of High Level Primitives. 
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and without any burden for the designer. This is the power of the KBE generative 
modeling!  

4.5.1 MMG input file definition for batch modeling 

In order to avoid the use of various pop-up menus and other forms of graphical user 
interface, all the parameters values that are required to instantiate the complete 
aircraft product model are exposed and assigned via a dedicated input file (see 
examples of the MMG input file in Appendix D, related to the discussion of Chapter 
5). This file is easy to edit either by hand or, automatically, by other software tools 
(e.g., by an optimizer). Indeed, this represents an important feature, because it 
allows using the MMG also in batch mode, as required by the operation of the Design 
and Engineering engine (see previous discussion in chapter 2). The input file is 
“mixed in” at the root defpart of the aircraft product model, which takes care of 
passing the parameters values down the product tree’s hierarchy levels (sections 
3.6.1.1 and 3.6.3 discuss the use of mixins and the attribute values cascading 
mechanism, respectively).  
 
 
 
 
 

Fig. 4.6: Generation of aircraft models - the KBE High Level Primitives vs. the low 
level primitives modeling approach of traditional CAD systems. 
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Fig. 4.7: Examples of structural models generated by the MMG. Top left: spars, ribs 
and riblets of a lifting surface. Top right: connection elements between wing and 
winglet spars. Middle: floor beams, frames and stringers in the center section of low 
and high wing transport aircraft. Bottom left: floor panels, pressure bulkhead and 
center section structure in a passengers aircraft. Bottom right: detail of center wing 
structure and keel beam in a low wing aircraft. 
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4.5.2 Definition of the HLPs’ internal structure 

The definition of the wing-part, fuselage-part and connection-element HLPs is not 
limited to the parametric description of the aerodynamic surfaces (La Rocca and van 
Tooren, 2002b), but includes also the internal structure. So far, the MMG offers the 
possibility to define the typical spar/ribs and frames/stringers/floors structure 
solutions for wing and fuselage-like elements, respectively (La Rocca and van 
Tooren, 2002a).  
Van der Laan has extended the range of possible structure solutions to include the 
use of sandwich, though the implementation is so far limited to a movables 
dedicated model generator (a kind of MMG KBE tool, for aircraft movables such as 
rudders, elevators, ailerons etc.), based on the use of the same MMG wing-part HLP 
(van der Laan and van Tooren, 2005). 

By adjusting the values of a dedicated set of input parameters in the MMG input 
file (examples are provided in Appendix G, I), the designer can modify the position 
and orientation of each single structural element (e.g., ribs and spars), as well as the 
overall structure topology (i.e., modify the number of spars, ribs, floors, etc.). The 
challenge here was to give designers the maximum freedom for positioning the 

single structural 
components inside 
each HLP, while 
limiting the number 
of required 
parameters, as well 
as the possibility of 
spatial integration 
errors. Similarly to 
the definition of the 
outer surfaces, also 
here the possibility 
to capture rules 
inside the HLPs 
definitions was the 
enabling factor to 
the generative 
design. Rules are 
necessary to 
determine the 
amount of 
connection elements 
(if required) to 

Fig. 4.8 The internal structure definition is associated with 
the external surface of the aircraft and adapts to its 
modification. 
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guarantee spars continuity across adjacent wing-parts. Rules are required for 
interpreting the values of the input parameters and accordingly use different 
positioning algorithm for ribs and spars. Fig. 4.7 shows various examples of 
structural configurations generated with the MMG, and give an idea of the achieved 
level of modeling flexibility. Note some of the details in the top left wing element: 
there are both continuous and running out spars. The ribs defined in the wing box 
and in the leading/ trailing edge sections are all individually oriented, and do not 
have to run necessarily from front to back spar. It is acknowledged that the level of 
modeling detail of each structural element is rather low, yet sufficient for conceptual 
and preliminary study (also by means of Finite Elements analysis) of complete 
aircraft configurations. Indeed, ribs, spars, skins, etc. are represented as simple 
surfaces, without any cutout or details such as flanges, caps, etc. As a matter of fact, 
what we address here as a spar model is actually the model of a spar web! 
Nevertheless, this modeling approach represents a very good compromise of 
complexity and fidelity. 
The actual definition of the modeling approach for the various structural elements, 
the use of the relative input parameters and the implementation details in the KBE 
system are all covered in Chapter 5.  

One of the most relevant characteristics of the structure definition is its 
associative link with the HLP outer surface. That is to say the geometry of the 
various structural elements is defined using the outer HLP surface as boundary, 
hence when the latter is modified the shape of the structural elements will 
automatically adapt. Fig. 4.8 shows examples of radical modifications enforced to the 
design of a blended wing body aircraft: in the bottom-left case, the outer wing is 
significantly deflected downward, but the shape of the spars geometry adapts 
without generating discontinuities at the connection elements; in the bottom-right 
case, the center body has been “inflated” by the implementation of ultra thick 
airfoils, still the geometry of the internal walls structure adapts automatically. 
In the word of Carty, MDO systems specialist at Lockheed Martin, “the benefits of 
having associative geometry models are almost something that has to be 
experienced to be appreciated” (Carty and Davies, 2004 ). Indeed, the possibility to 
investigate even large design modifications, with the possibility to weight 
systematically any aerodynamic improvement against the consequences on the 
structure design, is a fundamental enabler of the MDO approach.  

4.5.3 Definition of main systems and other non structural masses (the 
MOB prototype) 

During the MOB project framework, the prototype of a modeling system for non 
structural masses (NSMs) has been implemented in the MMG (La Rocca and van 
Tooren, 2002a). This model includes the definition of typical aircraft systems such as 
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movables’ actuators, landing 
gears, environmental control, 
electrics and hydraulics, etc. For 
the purpose of 
conceptual/preliminary design 
they have all been represented as 
lumped mass collocated in the 
assumed center of gravity of the 
system itself (see Fig. 4.9).  
The actual mass of the various 
non structural items was 
determined by an external 
module to the MMG (which 
worked as kind of initiator tool), 
based on handbook methods and 
engineering judgment. Since all 

the masses were estimated by the initiator only once for the reference aircraft 
configuration, rules were implemented in MMG to scale the masses of items such as 
de-icing systems and movables’ actuators with the actual size of the movables and 
the length of the various lifting surfaces leading edge. In fact, during the aircraft 
optimization the number and size of the movables, as well as the wing span and 
sweep angle were varied, hence updated values of the abovementioned masses were 
required.   
The distribution of the various NSMs was required not only by the weight&balance 
discipline, but also for an accurate structural analysis. Therefore, apart from some 
simple parametrical rules to define the position of the various NSMs with respect to 
the overall aircraft configuration (or the position of certain aircraft components) (La 
Rocca and van Tooren, 2002a; La Rocca et al., 2002), other more complex rules 
have been defined to establish the NSMs/structure connectivity, i.e., what NSM item 
is attached to which aircraft structural components. The former rules allow the MMG 
to generate a formatted table (see example in Table 4.1) containing mass value and 
c.g.’s coordinates of each NSM item, whereas the latter allow the generation of the 
NSMs connectivity information, required for the preparation of FE models. This 
information is stored inside a dedicated attribute of the various aircraft structural 
elements. In other words, each structure element “is informed” about the specific 
NSMs items it has to support. During the project, a system was implemented to 
harvest this information from the product model and to use it to automate the 
generation of connection elements (RBE) linking all the NSM with their supporting 
structure elements, directly inside the FEA environment (La Rocca and van Tooren, 
2002c; Pearson, 2001). Fig. 4.10 shows an example of connectivity between the 

Fig. 4.9: Aircraft systems represented as lumped 
masses, parametrically positioned with respect to 
the aircraft structure elements (aircraft upper skin 
and structure removed) (Laban et al., 2002) 
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wing back spar elements and the actuation system of the various trailing edge 
movables. 
Eventually, the positioning and connectivity rules mentioned above guarantee an 
associative link between the NSMs model and the main structural model. Any 
change, either in the shape of the aircraft or in the number and positioning of the 
structure components, would yield an updated table of masses and c.g.s’ positions, 
as well as a new consistent connectivity definition. Indeed, in the case a spar or a rib 
is removed, the connectivity rules will enforce other contiguous structural elements 
to take over the NSMs supporting role. 

NSM item                       Mass_(kg)    X_cg       Y_cg       Z_cg 
 
GROUP_FUSELAGE_(left_half) 
TED_1_CTRL                            153.9    4199 2.3    -1505.9     1320.2 
TED_2_CTRL                            248.4    4199 2.3    -5515.3     1712.2 
TED_3_CTRL                            225.5    4199 2.3   -10399.1     2189.8 
DE-ICE_(fus)                           59.0    1916 9.6    -9570.2      736.4 
FUS_FUEL_SYS                          124.4    2990 0.0    -3263.2    -1551.5 
COCKPIT_ITEMS                         929.6     175 0.0     -553.8     -415.5 
ELEC                                  586.0    2785 1.6    -5615.9     1171.8 
APU                                   250.0    4199 2.3        0.0     1173.0 
CARGO_HAND                           3900.0    2640 2.8    -5615.9     1171.8 
AIRCO                                 250.0    3360 0.0    -7501.0        0.0 
HYDR_PNEU                             387.0    3398 4.0    -5746.0      146.8 
 
GROUP_WING_(left_half) 
TED_4_CTRL                            308.8    4115 3.7   -15152.8     2445.1 
TED_5_CTRL                            293.1    4100 6.5   -20403.2     2592.4 
TED_6_CTRL                            286.1    4418 6.5   -27226.0     3143.8 
TED_7_CTRL                            159.9    4846 7.8   -34037.2     3901.6 
DE-ICE_(iw-ins)                        61.6    2804 0.9   -15277.8     1235.7 
DE-ICE_(iw-out)                        82.8    3261 7.9   -20487.7     1774.6 
DE-ICE_(ow)                           209.3    4190 7.8   -31062.2     3067.5 
WING_FUEL_SYS                         420.5    3613 5.0   -17438.1     2064.3 
WING_TRAP_FUEL                        200.0    3387 0.1   -12984.1     1697.4 
WING_INST_ELEC_HYDR                   322.0    3944 7.5   -23433.2     2493.1 
 
GROUP_WINGLET_(left_half) 
TED_8_CTRL                            208.0    5165 9.2   -39518.4     7510.3 
DE-ICE_(wl)                            40.0    5047 2.0   -39641.2     7488.6 
 
GROUP_PROPULSION_(left_half) 
MID_ENG                              4655.7    4375 8.0        0.0     4142.9 
MID_ENG_STR                           470.0    4375 8.0        0.0     2185.7 
SIDE_ENG                             9311.3    3975 0.0    -7501.0     5411.0 
SIDE_ENG_STR                          940.0    3975 0.0    -7501.0     3453.7 
 
GROUP_LANDING_GEARS_RETRACTED_(left_half) 

Table 4.1: mass values and c.g.’s position of non-structural items of the MOB 
BWB (La Rocca and van Tooren, 2002a). 
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4.6 HLPs definition: an heuristic approach  
As elaborated in Sections 4.3 and 4.4, the definition of a High Level Primitive is the 
end result of an abstraction process. Every modeling activity is actually the result of 
an abstraction process, during which the modeler decides what to include and what 
to leave out from the model; what are the relevant object’s properties and operations 
to be captured and which are not interesting for the use at hand.  
Quite a deal of subjectivity is involved in this process, so that there is not a single, 
correct way to define a high level primitive such as the wing-part or the fuselage-part 
addressed before. In the end, the use of different rules and parameterization 
approaches can yield similar levels of modeling flexibility and capability. As general 
guideline, the development process of HLPs-like elements and the overall MMG 
system must be always user oriented. A model cannot be judged good in an absolute 
sense, but it is good if it can fulfill the designers’ needs during the design and 
analysis approach at hand; i.e., if it can fulfill the defined use case. Although this 
might sound obvious, many are the software tools that have been developed upon a 
wrong use case (or without any use case study at all). 
In the next subsections, some other guidelines are given, which should provide the 
minimum common denominator to any possible parameterization approach.  

4.6.1 Parameters and variables 

Before discussing about the parameterization approach of the MMG, a clarification is 
due: whilst in optimization there is a clear distinction between parameters and 

Rear spar elements 
TEDs’ front spar Wing ribs 

TEDs’ control system CG 

Fig. 4.10: Example of the non structural masses modeling approach. The control 
systems of the wing trailing edge devices (TEDs) are represented by lumped masses, 
located in the systems’ centers of gravity. Information is generated concerning the 
connectivity between the lumped masses and relative support structure elements. 
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variables, in the development 
of a parametrical model such 
as the MMG, this distinction is 
not applicable. Each attribute 
that designers can explicitly 
change to affect shape, 
configuration or some other 
information related to the 
product model is addressed 
here as parameter. Only 
during the set up of an 
optimization process, it will 
be decided which of these 
parameters will be selected 
as variable for the optimizer, 
and which will be kept as 
parameter for the traditional 
parametric studies. It follows 
that the use of a large 
number of parameters can 
improve the flexibility of the 
model, without necessarily 
making the model unsuitable 
for optimization. 

4.6.2 Ambiguous parameter definition 

All parameters should be defined in a way to avoid any ambiguity, which could lead 
to over/under constraining of the geometry. For example, if the airfoil thickness (i.e. 
the wing depth) and the dihedral angle are both selected as parameters to define the 
wing-part geometry, the variation of the dihedral angle value should not affect the 
value assigned to the airfoils’ thickness. Fig. 4.11 shows the consequences of 
enforcing the dihedral by shearing the wing sections rather than applying a rigid 
rotation to the whole wing: the wing depth is affected (decreased), even though the 
airfoil thickness is not explicitly varied by the user.  

4.6.3 Parameter definition for spatial integration and robustness 

Parameters should be defined in order to guarantee spatial integration and 
robustness. A bad choice of parameters, possibly not supplemented by appropriate 
constraining rules, cannot prevent an optimizer generating unfeasible aircraft 
geometries (Vandenbrande et al., 2006) such as the wing planform shown in Fig. 

Fig. 4.11: Different approaches to apply the dihedral 
angle to a wing element. Bottom-left) correct approach: 
wing thickness and dihedral angle uncoupled. Bottom-
right) incorrect approach: increasing dihedral angle 
values lower the wing thickness. 
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4.12-bottom, or configurations 
with disconnected or self 
penetrating components, as 
illustrated in Fig. 4.12-top. This 
might lead either to parametric 
models that break and generate 
errors (hence making the model 
generator crash) or to a waste of 
computational resources when 
unfeasible configurations get 
analyzed anyhow.  
It should be considered that, 
during optimization studies, it is 
not always possible (neither 
convenient in terms of efficiency) 
to visually inspect the models 
generated at each cycle. Hence 
precautions must be taken to 
guarantee the quality of all the 
generated models. A sound 
parameterization can improve the 
robustness of the model and 
guarantee spatial integration, as 
well as simplify the set up of the 
optimization problem. For 
example, the longitudinal position 
of wing and tail empennages can 
be better indicated as a 
percentage of the total fuselage 
length, rather than as an absolute 
coordinate value. The position of a rib can be better indicated relatively to the length 
of a reference spar or to the wing/empennage span. For example, a parameter value 
ranging from 0 to 1 can be used for rib positioning, where the zero value indicate a 
root placement and 1 a tip placement. Whatever the length of the given wing, a 
feasible placing of the rib is guaranteed for all the possible values of the rib 
positioning parameter.  
In alternative, rules could be added to the HLPs definition, which skip the generation 
of badly defined components (hence preventing the generation of intersection 
errors), or overrule some user defined parameter values with valid default values. 
For instance, some rules could be implemented (Chapter 3, section 3.8.3) to 
measure the minimum distance between the surfaces of the engine nacelle and 

CR

ΛLE

CT

Correct wing planform 
parameterization

CR

ΛLE

ΛTE

WRONG wing planform 
parameterization

Fig. 4.12: wrong parameterization might cause 
problem of spatial integration. Top) the parameter 
determining the engine lateral position is not 
constrained with respect to the fin position, hence 
fin/nacelle penetration can occur during engine 
installation study. Bottom-right) unfeasible wing 
planform generation allowed by bad parameters 
selection (and uncontrolled variation) 
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vertical tail surface (Fig. 4.12), and automatically overrule a badly defined engine 
positioning with a predefined minimum clearance value. 
If the robustness of the model is not guaranteed at modeling level, then extra 
constrains and special bounds must be added to the formulation of the optimization 
problem, which is generally neither trivial nor efficient. 

4.6.4 Modeling aspects decoupling  

Unnecessary coupling between different modeling aspects of the primitives should be 
avoided (unless really necessary). For example, a design rule that defines the winglet 
surface positioning at a certain distance from the wing spars’ edges would force the 
product model to generate first the wing surface, then the wing structure and, once 
the position of the wing spars is known, then the winglet surface generation could 
finally take place. This approach triggers a chain of avoidable computations (i.e., 
those related to the wing structure instantiation) and prevents the possible 
instantiation of the complete aerodynamic surface model until also the structure 
model is fully developed. Indeed, it should be possible to evaluate the aerodynamic 
functionality of a winglet without the need to have predefined any wing structural 
model. Eventually, this unnecessary coupling has effect on the robustness and 
efficiency of the parametric model, as well as on the flexibility and maintainability of 
the overall modeling system. 

4.6.5 A sense of familiarity… 

Parameters should have a clear meaning to the different users/customers of the 
model (aerodynamicists, structure designers etc.). The HLPs should result familiar 
objects to the user, hence they should capture the “natural view” of the user on the 
product at hand. For instance, aerodynamicists rather manipulate airfoils than clouds 
of points to interpolate a wing surface; they define the wing sweep angle between a 
certain wing axis and the lateral aircraft axis, not the longitudinal. Eventually, 
compliance with designers’ conventions has also implications on parameters naming. 
For example, the designer might not be familiar with a parameter defined as “wing-
edge-curves-distance” but he is familiar with the concept of wing span; “edge curves 
relative rotation” does not sound as familiar as wing twist angle, etc. 

4.6.6 Parameters = degrees of freedom of the model  

The parameters somehow represent the degrees of freedom of the model. On their 
selection it depends how far and to what detail the user can affect the geometry of 
the model. In case the designer is simply interested in the manipulation of a wing 
planform, a parametric model based on very few parameters (span, chord lengths 
and sweep) will do the job. However, this model will never be able to deliver other 
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than trapezoidal shapes. It will be inadequate for more advanced aerodynamic 
studies, where the designer wants to investigate the effect of different airfoils, twist 
distribution, curved and cranked edges, etc. A different and richer parameterization 
will be required to improve the model flexibility, i.e., extend its degrees of modeling 
freedom. The challenge is to allow detailed control of the model shape, without 
hampering the designer with the definition of too many parameter values. One could 
think of a parameterization approach (similar to the configuration opportunities 
offered by many software tools of daily use), where advanced use parameters can be 
accessed and adjusted only if required, while a limited number of parameters should 
be sufficient for the most common and less detailed model transformations.  
Eventually the width of the typicality range discussed in section 4.3, depends on the 
number and type of parameters used to define a primitive. Typically, the larger the 
amount of parameters, the more the possibilities to stretch, morph and adapt a HLP 
to match also less conventional shapes, hence the less amount of primitives required 
to model an entire aircraft configuration.  
Optimization studies of models defined using many parameters do not require any 
more computations than simple models defined with very few parameters, as far as 
the number of parameters used as optimization variables is the same. 

4.7 From the aircraft geometry model to the 
abstractions for multidisciplinary analysis. Role and 
definition of the Capability Modules  
So far the definition and the use of the HLPs to generate very different aircraft 
configurations and configurations’ variants have been described. It has been 
discussed how KBE technology can capture the generative process of a complex 
geometry product and speed up the transformation process of a conceptual idea into 
a geometry model. As mentioned in Section 4.2, apart from the use of recording and 
sharing, the availability of such a model is required to initiate the aircraft 
multidisciplinary analysis and verification phase. The challenges associated to the 
generation – as far as possible automated – of consistent and synchronized models 
for the discipline specialists’ analysis tools (both high and low fidelity; off the shelf 
and in house developed) have been addressed in Chapter 2. 

In this section, the special capabilities that have been implemented in the MMG 
to address those challenges will be described. Again, as in the case of the HLPs 
concept, the engineer has been taken as role model, and KBE technology has 
provided the means to capture some of his/her abilities in the rules of the product 
model. In particular, the conceptual development of methods to automate the 
generation of different abstractions of the master geometry model, for a range of 
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disciplines is discussed in this section, while some of the implementation details will 
be covered more extensively in Chapter 6. 

4.7.1 Capability Modules to capture procedural knowledge  

The mental process occurring in the head of designers, from the functional thinking 
to the conception of a product configuration, can only be intuited. Indeed, the 
development of the HLP concept is just an attempt to map part of that process into a 
software application. However, the way designers process the general purpose CAD 
model of an aircraft into a dedicated model that is suitable for Nastran, Fluent or 
some other analysis tool, is much more explicit and, relatively, easier to understand 
and formalize. By means of interviews, direct observation and other dedicated 
knowledge acquisition techniques (Milton, 2007; Rhem, 2006) it is generally possible 
to elicit the specialists’ working practice,  and the tips and tricks used to prepare 
models that are suitable for their analysis tools.  
Indeed, this preparation work to transform a general purpose CAD model into a set 
of model abstractions, either ready for the solver of a given analysis tool, or at least 
for its preprocessor (see Fig. 2.15, chapter 2), can be quite complex and laborious, in 
particular for high fidelity analysis tools. However, there is hope: 

• Quite independently from the aircraft configuration at hand, no matter if the 
traditional airliner or the blended wing body aircraft of Fig. 4.2, the same 
analysis tools and preprocessing methods are generally used by specialists.  

• A large part of above mentioned preprocessing activities are systematic and 
repetitive, require geometry manipulation and follow known rules 

On the base of these two observations, it looks like there are possibilities to 
generalize many of these preprocessing activities and KBE appears to be the right 
technology at hand.  
In fact, the ICAD programming language has been used to generate a number of so 
called Capability Modules (CMs), which are special classes with the peculiarity of 
encapsulating just procedural knowledge. Similarly to the HLPs, the CMs have been 
implemented using the defpart macros of ICAD (Chapter 3, section 3.6.1). However, 
on the contrary of the HLPs, the CMs cannot be instantiated into standalone 
geometric objects, but use the encapsulated procedural knowledge to operate on the 
HLPs. In other words, they process the geometry and relevant information of the 
HLPs’ instantiations into model abstractions required for the multidisciplinary analysis 
process.   
Fig. 4.13 shows some examples of the preprocessing activities that can be performed 
by different CMs on a given wing-part instantiation. From top-left, clockwise: 

• The outer surface of the wing-part is translated into a set of Cartesian 
coordinates points, which can be used as grid nodes for discretization (Qin et 
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al., 2002), or to support the re-splining of the surface into another proprietary 
modeling system (Laban et al., 2002). 

• The outer skin panels and inner structure components of the wing-part are all 
intersected with each other and transformed in sets of meshable surfaces for 
FE structural analysis.  

• The wing-part fuel tank volume is computed based on the position of the 
sealing rib and spars 

• A system  of axis and properly distributed points is generated to support the 
transformation of shell FE models of the wing part into a condensed mass  
models (Cerulli et al., 2006) 

• The geometry of the 3D wing-part is transformed into a set of 2D coplanar flat 
panels, e.g., to support simplified aerodynamic and aeroelastic analysis 
(Stettner and Voss, 2002 ).  

All the operations that a human specialist typically performs on a geometry model to 
generate the abstractions of Fig. 4.13, (including the logic rules to choose the 
specific type and the sequence of these operations), have been translated into 
software rules and algorithms, which constitute the body of several Capability 
Modules.  

Fig. 4.13: examples of preprocessing of a Wing-part instantiation to support 
multidisciplinary analysis. 
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For example, Surface-splitter is the CM responsible to transform the geometry of the 
HLPs in sets of meshable surfaces for FE analysis; Points-generator is another CM 
that transforms the outer surface of any HLPs instantiations into sets of points/panels 
to support the generation of aerodynamic models (see Chapter 6 for the specific 
details of these two CMs).  

When a Capability Module class is linked to a HLP class, the procedural 
knowledge encapsulated in the CM, becomes immediately available to that HLP. In 
other words the given HLP acquires the capability to transform itself - automatically - 
in meshable surfaces, clouds of points, etc. Hence, the name Capability Modules…  

4.7.2 Linking HLPs and CMs 

A HLP can acquire different capabilities via the links to different capability modules. 
Also, the same capability module can be linked to different HLPs (Fig. 4.14) 
The way these links have been realized is by the exploitation of the object oriented 
paradigm supported by the ICAD KBE system. As a matter of fact, two different 
HLP/CM link approaches have been used.  
 
Approach 1: CMs included in the mixin list of a given HLP defpart  
By using this approach, (refer to Fig. 4.15 for the UML class diagram and examples 
of HLP and CM defpart definitions) all the attributes and operations of the CM are 
directly inherited by the given HLP class, which means the operations defined inside 
the CM can be applied directly to the HLP’s attributes and children, as they were 
defined directly inside the HLP. As a consequence, the given HLP will be able to 
answer new messages, because of the operations defined in the CM. For example, 
“generate a cloud of points”, “compute  fuel tank volume”, or “compute the total-
surface”, as in the fictive case of 
Fig. 4.15. On the other hand, an 
isolated CM could not work as 
standalone because it would not 
have any knowledge about the 
surface to transform into a cloud of 
points, or about the fuel tank 
geometry whose volume must be 
computed. In the example of Fig. 
4.15, CM-2 does not have any 

internal knowledge of Child1  and 

Child2 , which are defined as 

components of the class HLP1. Fig. 4.14 : possible links between HLPs and CMs 

+produceGeometry()

«HLP»HLP-1

+produceGeometry()

«HLP»HLP2

+produceGeometry()

«HLP»HLPn

+preprocessGeometry()

«CapabilityModule»
CM-1

+performCalculations()

«CapabilityModule»
CM-2

+preprocessGeometry()
+performCalculations()

«CapabilityModule»
CM-n
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Approach 2: HLP’s children defined as specializations of a CM classes 
Being a HLP’s child a specialization of the CM class (refer to Fig. 4.16 for the UML 
class diagram and the examples of a HLP and CM defpart definitions), the former will 
be able to answer all the messages that the CM class can answer. In the example of 
Fig. 4.16, it will be possible to send a message to any instantiation of the Child-3  

class, whose internal operations are actually defined inside CM1. In order to perform 

those operations, CM1 will need to receive as input some data generated within 

HLP2. In this example CM1 receives via attribute-1 , the surface of HLP2’s 

Child-1 . Without providing this input values, it would not be possible to instantiate 

CM1 and use it as standalone.  
 
 

(Defpart HLP1 (CM2, ...)

:Inputs (...)

:Attributes (...)

:Parts (

(Child-1 : type ‘Box)

(Child-2 : type ‘cylinder)

(Child-n : ...)))

(Defpart CM2 (...)

:Attributes (

:total-surface (+ (the :Child-1 :surface)

(the :Child-2 :surface))

:attribute-xx)

:Parts (

(Child-x : ...)

(Child-y : ...)))

Fig. 4.15: CMs included in the mixin list of a given HLP defpart. Examples of 
HLP and CM defpart definition and UML class diagram 

Link HLP/CM: Approach 1 
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4.8 Automatic generation of aircraft model abstractions  
Because of the supported object oriented paradigm, once a HLP has acquired a 
certain capability (due to the link to some CM), also all the specializations of that 
primitive, automatically, inherit that capability. This has a relevant consequence at 
overall MMG capability. In fact, the automatic preprocessing capabilities developed at 
the single HLP level get automatically propagated to the overall aircraft model level. 
For example, being the Wing-part and the Connection-element HLPs linked to the 
Points-generator CM, the whole blended wing body aircraft of Fig. 4.2 (including the 
center part, all the wing sections, winglet, fins and all the connection fairings) can be 
automatically transformed into sets of points to support aerodynamic analysis.  
At the root level of the BWB product model, messages can be sent to all the various 
HLPs instantiations asking for the generation of clouds of points. Then all the “partial 
clouds” can be collected and merged into a “global cloud” and, finally, delivered as 
MMG output files. Special capability modules have been defined just for this purpose, 
as described in the following subsection. 

Fig. 4.16: HLP’s children defined as specializations of CM classes. Examples 
of HLP and CM defpart definitions and UML class diagram. 

Link HLP/CM: Approach 2 

(Defpart HLP2 (...)

:Inputs (...)

:Attributes (...)

:Parts (

(Child-1 : type ‘box...)

(Child-2 :...)

(Child-3 : type CM1

:attribute-1 (the :Child-1 :surface)

:attribute n)))

(Defpart CM1 (...)

:Inputs ( 

:attribute-1

:attributes-n)

:Attributes (...)

:Parts (

(Child-1 : ...)

(Child-n : ...)))

+produceGeometry()

«HLP»HLP-1

+produceGeometry()

Child

-surface

ChildN

+preprocessGeometry()

-surface

«CapabilityModule»
CM-1
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4.8.1 Scanners and Report Writers 

Some dedicated capability modules have been developed in the MMG, whose 
function is to send messages to the class instances in the aircraft product model, 
collect the results and output them in a given output file data format. These modules 
work as a kind of scanners, which parse the whole product tree (or specific branches 
of) searching for specific objects or objects’ attributes. 
For example, scanner modules have been defined to collect all the wet-surfaces in 
the product tree, or all the meshable surfaces generated by the Surface-splitter CM, 
or the values of the partial fuel tank volume computed for the various wing sections, 
or the lists of points coordinates generated by Points-Generator CM.  
Often a tagging system has been implemented to facilitate the tree scan. That is to 
say, a dedicated attribute is automatically assigned to the objects that need to be 
identified in the tree. For example, the attribute “I am a wetted surface” is 
automatically assigned to all the outer surfaces of the HLPs and the attribute “I am a 
meshable structure element” is automatically assigned to all the surface segments 
generated by Surface-splitter. The scanner just searches for all the objects in the 
product tree that have that identification attribute (i.e., that tag) and collect either 
the object or some object’s attribute, as needed.  
The functionality of the various product tree scanners kind of mimic the different 
engineering views that different discipline specialists have on the same product. The 
aerodynamic specialists look at the overall aircraft model, but are only interested in 
the aircraft wetted surfaces, the structure specialists “filter out” the aerodynamic 
features and focus on the configuration of the structural components, etc. The 
scanner-CMs, eventually, apply the same model abstraction process that is practiced 
by human specialists. 

Once the required objects and/or data have been collected, they can be 
organized and exported as MMG’s output files.  In ICAD parlance, these output files 
are called reports, because generated by special functions called report writers. A 
number of report writers are ready available in ICAD for the generation of IGES, 
STEP, and other standard format files. Furthermore, other customized report writers 
have been programmed in the MMG to write reports in diverse customer/tool specific 
formats (e.g., specifically formatted ASCII tables, or XML files, for which no standard 
report writer was available in ICAD). Eventually, this is a powerful feature that allows 
the MMG communicating with a very broad range of external tools, both in-house 
developed and commercial of-the-shelf. Fig. 4.17 provides a sketch of the scanning 
and collecting procedure acting on the product tree of the MOB blended wing body 
aircraft: the surfaces of the various structural components are collected,  and 
exported via sets of dedicated IGES files (La Rocca et al., 2002). 

In Chapter 6, some MMG study cases will be discussed, showing the use of the 
HLP and CM approach discussed so far, to model different aircraft configurations and 
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automate the preprocessing work of dedicate model abstractions for high and low 
fidelity analysis tools, both in-house developed and commercial of the shelf.   

4.9 The MMG architecture: flexibility through 
modularity  
The purpose of the large class diagram of Fig. 4.18 is to give evidence of the strong 
modularity of the MMG architecture (refer to Appendix A for a summary of the UML 
grammar).  The diagram is limited to the structure of the lifting surface aggregation 
to guarantee readability in this format. The diagram can be actually considered a 
close up of the one shown in Fig. 4.4. Further detailed views will be provided for 
discussion in Chapter 5.   

The diagram shows that a generic lifting surface can be modeled as an 
aggregation of Wing-part and Connection-element instances. Also Winglets and 
movables can be modeled using the Wing-part HLP. 

Fig. 4.17: A Scanner capability module parses the aircraft product tree, collects the 
geometry of the structural components and exports them as sets of IGES files. 
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Fig. 4.18 reveals that the HLPs themselves, described so far as kind of 
monolithic elements, are actually aggregations of separate modules (classes), such 
as the one responsible for modeling the external aerodynamic surface and the other 
for the inner structure. The structure-dedicated model itself is defined as an 
aggregation of more classes. For instance, Spar , Rib  and Skin  are components of 

WingTrunkStructure .  
The diagram shows also the links between some of the CMs introduced in 

Section 4.7.1 and the (components of) HLPs. For example, SurfaceSplitter 3, 
which is responsible of transforming the wing-part geometry into sets of meshable 
surfaces for FE analysis, is linked to Skin , Rib  and Spar . PointsGenerator, 

which is responsible to transform the aerodynamic surfaces of all wing-parts and 
connection-elements into clouds of points for aerodynamic analysis, is linked to 
WingTrunkSurface  and ConnectionSurface .  

The modular architecture of the MMG represents a key factor for the flexibility, 
maintainability and scalability of the overall system. New HLPs and CMs can be 
added and removed with relative ease, in order to tailor the MMG to the problem at 
hand. Indeed, the MMG can be used both for the design of a complete aircraft, as 
well as for the design of a single aircraft (sub)systems, e.g., a fin, a canard, or a 
complete tail configuration. The designer can decide to instantiate just a branch of 
the product model, without the need to build a new KBE application. Furthermore, 
when new disciplinary analysis tools will have to be plugged in the DEE system, new 
CMs can be developed to generate the new required abstractions of the same HLP-
based aircraft model. 
Also the single components of the very MMG building blocks, the HLPs, can be 
improved or rebuilt without affecting the code of the entire primitive. For example, 
an improved or alternative method to generate the external aerodynamic surface can 
be defined, without affecting the way the aircraft structure is modeled. Vice versa, 
new structure models can be developed, based on the same aerodynamic surface to 
be used as mould line. 
 

                                        
3 Similar to what discussed for HLPs, also for the capability modules, different fonts are used to 
distinguish a CM (the concept) from its software implementation as a class. (e.g. SurfaceSplitter  

is the class implementing the Surface-splitter CM) 
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Also in terms of code development management, the modular approach has 
advantages. In fact, the code responsible for structure modeling can be developed 
independently from the aerodynamic functionality, which means that different 
developers can work on the two aspects separately and not necessarily at the same 
time. If the structural model is still incomplete or has bugs, the use of the 
aerodynamic modeling features can still be fully exploited. Indeed the user is not 
even required to fill the MMG input files parts relative to the structure definition, if no 
structure related class needs to be instantiated.   
As far as the links to pass parameters values down the various hierarchies of the 
product model are properly maintained, new functional blocks can be modified, 
moved, added and bolted on each other, still maintaining a sustainable level of code 
“spaghetti-ness”. 

4.10 Dealing with CAD engine limitations: capturing 
workarounds for robust modeling 
It is acknowledged that the 
development of a robust parametric 
geometry model for MDO is sometime 
closer to art than science (Carty and 
Davies, 2004 ; Bowcutt, 2003; 
Vandenbrande et al., 2006; Staubach, 
2003). Indeed, the model will have to 
survive all the possible parameter 
variations imposed by the optimizer, 
which can possibly address also the 
topology of the given aircraft 
configuration (e.g., some extra rib in a wing, one spar less, a different tail 
configuration, etc.).  
As discussed previously in this chapter, a correct parameterization is the necessary 
starting point to build a robust model. 
Unfortunately it is not always sufficient: when dealing with geometry processing, 
errors can still occur because of missed or inaccurate intersections, failed operations, 
etc. One single failed operation might just stop the whole generative process or 
produce a wrong analysis model, which would very difficult to spot during an 
optimization process. 
Considering that preprocessing a complete aircraft geometry model into sets of 
meshable surfaces for FE analysis requires thousands of intersection operations 
between surfaces of relative complexity, it is clear that robustness is a major issue.  
CAD experts classify parametric assembly failures in three major categories 
(Staubach, 2003): 
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- Class I: errors due to over/under constrained geometry models.  
- Class II: intersection errors due to invalid parameters range (e.g., when 

attempting to cut a surface with a non intersecting plane) or missing 
relationships (e.g., when attempting to use the result of the failed intersection 
mentioned above to perform some other operation). See section 4.6.3 on 
invalid parameters range or missing relationships.  

- Class III: errors generated by native CAD kernel bugs, or inherent accuracy 
limitations (e.g., in the mathematical model to compute surface intersections). 

Guidelines to avoid Class I and II errors by means of proper parameters definition 
(possibly supplemented by rules) have been provided in Section 4.6.3. By the way, 
those guidelines apply to the generation of KBE models as well as to conventional 
CAD models. However, the greatest obstacle to robustness is represented by Class 
III failures, which are particularly nasty, because largely out of control of the CAD 
end-users. 
Fortunately, KBE can offer better guarantees in this respect, than conventional CAD.  
In fact, the possibility to encapsulate rules in the model is the key to robustness. The 
methods used by CAD specialists to deal with typical model errors, for example, by 
massaging the geometry and using smart workarounds, indeed, can be largely 
translated into rules and “taught” to the MMG components.   
As a matter of fact, in these years of extensive use of the ICAD system, the author 
came across a number of limitations of the internal geometry engine, which mainly 
concern with the surface intersection operations. Once understood the typical 
occurrence of these errors (see three relevant cases in Fig. 4.19, Fig. 4.20 and Fig. 
4.21) the KBE approach has been exploited again: this time to deal with the 
limitations of the KBE system itself… 
Two different approaches have been implemented in the MMG to automatically 
trigger workaround procedures and significantly enhance its level of robustness:  

1. The proactive approach: the problem is anticipated and avoided. Knowing a 
specific limitation, a series of alternative or additional operations is performed, 
avoiding the use of direct but known-to-be-unreliable operations. (See Case I 
and II in Fig. 4.19 and Fig. 4.20, respectively). 

2. The check&correction approach: knowing that a given operation might give 
inaccurate results, a check is performed on the output and, if the result differs 
from expectations, the operation is repeated using an alternative way. (See 
Case III in Fig. 4.21) 
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Fig. 4.19: Use of proactive approach to work around two ICAD Class III errors. 

Proactive solution:
1. Assume that intersection operations always deliver multiple results
2. Collect results in a list and create a continuous (composed) curve attaching all 

the collected fragments to each other
3. Use the new composed curve as result from the intersection operation

Surface contour

Surface to be intersected

Multiple 
intersection 
results

CASE I: Surface/plane intersection

Possible problem:
Intersection operation gives multiple results

CASE II: Surface/boundary planes intersection

Proactive solution:
1. Detect the boundary planes
2. Decompose the contour of the surface in its curve components
3. Find the closest contour component to the cutting plane
4. Use that contour component as result from the intersection operation (without 

actually performing any intersection!!)

Boundary plane

Surface to be intersectedSurface 
contour

Possible problems:
1. No intersection found (plane misses the surface)
2. Intersection curve is incorrect  (one point and …)
3. Intersection operation gives multiple results (See Case I) 
4. An error is generated and the program stops immediately

Fig. 4.20: Use of proactive approach to work around ICAD Class III errors. 
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4.10.1 Product, process and… implementation knowledge 

On the light of the previous discussion on HLPs and CMs and the last one on 
capturing workarounds, it can be concluded that the KBE approach can be used for 
the followings: 

1. to capture the knowledge required to model the geometry of products,  
2. to capture the knowledge to process such geometry and build dedicated 

abstractions for the analysis tools, 
3. to capture the knowledge required to guarantee the correct and robust 

exploitation of the knowledge captured at point 1 and 2, when using a certain 
KBE system. 

The first two types of knowledge are actually independent from any KBE system; 
thereby, they are always valid and reusable/transferable in/to any KBE system. On 
the contrary, the third type of knowledge is strictly dependent on the capabilities and 
limitations of the KBE system employed for the implementation of the first two types 
of captured knowledge. We address this one as implementation knowledge.  
Although key for the success of the KBE generative modeling, implementation 
knowledge is strictly system dependent and loses value when migrating to a different 
KBE system. The problem is that implementation knowledge is strictly intertwined 
with the product and process knowledge; as such, it might block the development of 

CASE III: Surface segmentation with a set of intersection curves

Intersection curves

Surface to be segmented

Check & Correct:
1. Count N_cutting_curves and N_of_surface_segments
2. If N_of_surface_segments ≠ (N_cutting_curves + 1) then EXTEND all cutting curves
3. Repeat surface segmentation with EXTENDED curves

Zoom  X 10

GAP

Possible problem:
Not all segments found because of some intersection curves not snapping to 
surface contour

Surface contour

Fig. 4.21: Use of check&correct approach to work around ICAD Class III errors. 
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any translator to transfer KBE applications from one KBE platform to another (similar 
to the way of transferring geometry files between different  CAD systems, using 
standard exchange data formats). See more about this issue in Chapter 7, Section 
7.7.  

4.11 Discussion 

4.11.1 Separation of declarative and procedural knowledge 

In Chapter 3, when discussing the major differences between traditional rule based 
systems and other object oriented systems like frame based and knowledge based 
engineering systems, one of the highlighted differences was the crisp separation 
between rules and inference mechanism typical of the former. On the other hand, 
the object oriented approach is based on the concept of the class, which is a 
structure where both declarative knowledge (the class’ attributes) and procedural 
knowledge (the class’ operations) are merged. With this respect, the definition of 
HLPs and CMs is an attempt to bring back some separation between the knowledge 
about the product (mostly contained in the HLPs) and the knowledge about what to 
do with the product (mostly contained in the CMS). Apart from the advantages of 
this modular approach in terms of system flexibility, as discussed in section 4.9, 
conceptual clarity and structure follow as well.  
To summarize the extensive description of the HLP and CM characteristics, the follow 
definitions are given below: 

A High Level Primitive (HLP) is a KBE artifact that contains both declarative 
and procedural knowledge, where the latter consists mostly of the specific 
operations to generate the geometry of the given HLP instantiations. The 
encapsulated knowledge is different and specific for each HLP and not 
shared/reusable by other primitives.  

A Capability Module (CM) is a KBE artifact that contains mainly procedural 
knowledge, which is not specific to any HLP, but is devised to provide methods to 
more HLPs. A CM cannot generally function as standalone object, is not able to 
autonomously generate any geometrical entity and cannot answer any message, 
unless linked to a HLP. 

4.11.2 Render unto designers the things which are designers’ 

The HLPs and CMs cannot in any way substitute the designer in his decision making 
activity. Despite their generative and operative capabilities, these software 
components do not have any knowledge to judge the quality and the pertinence of 
the data received as input by the designer (apart from eventually checking their 
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compliance with the expected data format). HLPs and CMs are means to create a 
flexible and robust modeling environment, which is supposed to be capable of 
delivering valid output, whatever is the received input. It is the designer’s 
responsibility to decide upon the configuration to be modeled and to judge the 
quality of the final design through his/her knowledge and with support of analysis 
tools. Though HLPs and CMs do not have any direct influence in steering the design 
toward certain directions, they definitely put the designer in a more favorable 
condition to explore the design space. 

4.11.3 Exploitation of KBE technology in the initial design phase 

Within large aircraft companies, like Boeing, Lockheed Martin and Airbus, KBE is 
already a mainstream technology since years. However, so far, its application has 
taken place mostly in the detail design phase of structural components and 
subsystems, as illustrated in Fig. 4.22 from (Mohaghegh, 2004). On the other hand, 
this research work proposes a possible use of KBE in the earlier conceptual and 
preliminary phases of the aircraft design process, where the configuration of the 
vehicle is not yet frozen and can still be influenced by all the disciplines. 
Various examples of KBE applications developed to support the design process of 
complex products (not only aircraft) have been found in literature, mainly addressing 
the detail design phase, where a full generative approach has been used to deliver 
completely engineered components (Cooper et al., 2001; Chapman and Pinfold, 
2001; Subel, 2002). In other cases (Rondeau et al., 1996; Zweber and Hartong, 
1998) demonstrator applications have been developed to support the analysis and 
optimization process of main aircraft components such as wings. Nothing has been 
found in literature concerning the use of the KBE approach to support conceptual 

Fig. 4.22: KBE progressive exploitation in Boeing aircraft programs. From structure 
detailed design to the integrated airplane of the future (Mohaghegh, 2004). 
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and preliminary design of complete aircraft, including non-conventional 
configurations and the definition of the internal structure, as it is presented in this 
work. 

4.11.4 A different KBE exploitation: parametric modeling vs. integral 
design approach 

In the early days of KBE technology, the development of super integrated design 
tools, able to cover the whole process from input requirements to the fully 
engineered product, was proposed (see also fig. 3.13 from (Cooper et al., 2001), in 
Chapter 3). On the contrary, this research work proposes the use of a KBE with a 
much more limited scope. Indeed, the MMG is not conceived as an integrated design 
tool, but as a functional component within a much broader loosely coupled design 
system (the DEE). In this case, KBE is exploited for the development of a parametric 
aircraft model able to support the link with external multidisciplinary analysis tools. 
Also the actual aircraft conceptual design knowledge has been kept outside for other 
dedicated tools, such as the DEE initiator.  
The development of a KBE generative model able to produce a fully engineered 
aircraft design would have been not only a tremendously complex task, but even 
unfeasible and, eventually undesirable in view of supporting a distributed MDO 
approach. As relevant past experiences have demonstrated (Staubach, 2003), the 
attempt to capture in the product model all the rules from all the involved disciplines  
(from aerodynamic to manufacturing), would reduce to zero the chances – of 
whatever sophisticated KBE application –  to successfully deliver an engineered 
solution.    

4.11.5 A different place for AI in the design process 

The use of Artificial Intelligence (in particular of rule-based reasoning) to support the 
aircraft design process is very promising and offers a great potential towards design 
automation as demonstrated by this work. However, the AI approach is worthwhile 
as far as it addresses capturing and automating the repetitive parts of the design 
process, without aiming at the replacement of the designer creative role.  
In our opinion the development of a computer system that is able to capture and 
replace the creative and sometimes revolutionary contributions of human designers, 
would represent not only an impossible objective, but even a bad investment. The 
return of investment of any whatever smart AI conceptual design tool would result 
rather limited, because it is not in the creative process of the design that most of the 
time and resources are drained. Designers are fast and effective in proposing 
potential solutions to fulfill requirements, but they need help in the verification phase 
of those ideas and all the related preprocessing work. Automation is needed to 
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provide quality data to designers as early and fast as possible, so they can make 
more informed decisions in the early stage of design (Raj, 1998). 
Furthermore, AI-supported design tools that are based on the use of performances 
analogy and search for best matching case (i.e. case-based reasoning (Rentema, 
Jansen and Torenbeek, 1998)) have the inherent limitation of not supporting the 
consideration of any novel design configuration. Aircraft configurations generated 
with case-based reasoning can only result in linear combinations of existing cases: a 
blended wing body aircraft will never come out as a weighted recombination of all 
the Airbus and Boeing passengers aircraft developed so far!  
In other words: KBE to support analysis and optimization of good ideas, not to 
generate good ideas! 

4.11.6 Classes, objects, suckling pigs and other animals that resemble flies 
at a distance  

In sections 4.3 and 4.7 of this Chapter, as well an in Chapter 3, the object oriented 
modeling paradigm has been presented as a pillar of the conceptual development 
and technical implementation of the MMG and its components. The appeal of such 
modeling approach has been claimed to be largely related to the way humans make 
mental models of the world. Apparently, the concept of objects classification is not 
universal, as claimed by psychologist Nisbett in his book “The Geography of 
Thoughts (Nisbett, 2005)” (see insert next page). Apparently people from different 
cultures get not just different beliefs about the world, but different ways of 
perceiving it and reasoning about it. Though the author does not fully agree with 
Nisbett’s too crisp categorization of Easterners and Westerner thinkers, neither with 
the direct legacies Greeks�Westerners, Chinese�Easterners, he concurs with the 
existence of different cognitive approaches. Eventually, he acknowledges the object-
oriented modeling approach to be a useful simplification of the world, that offers a 
reasonably working match between the way some people see the world and the way 
it can be modeled into a computerized system. 
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The Geography of Though – How Asian and Westerners think differently and 
why. Richard E. Nisbett  

Jorge Luis Borges, the Argentine Writer, tells us that there is an ancient Chinese 
encyclopedia entitled Celestial Emporium of Benevolent Knowledge in which the following 
classification of animals appears:”(a) those that belong to the emperor, (b) embalmed 
ones, (c) those that are trained, (d) suckling pigs, (e) mermaids, (f) fabulous ones, (g) 
stray dogs, (h) those that are included in this classification, (i) those that tremble as if 
they were mad, (k) those drawn with a very fine camel’s hair brush, (l) others, (m) those 
that have just broken a vase, (n) those that resemble flies at a distance”. 

Though Borges may have invented this classification for his own purpose, it is 
certainly the case that the ancient Chinese did not categorize the world in the same sorts 
of ways that the ancient Greeks did. For the Greeks things belonged in the same 
category if they were describable by the same attributes. But [...] for the Chinese, shared 
attributes did not establish shared class membership. […] They were simply not 
concerned about the relationship between a member of a class and the class as a whole. 
[…] Finding the features shared by objects and placing objects in a class on that basis 
would not have seemed a very useful activity. […] The Greeks belief in the importance of 
that relation was central to their faith in the possibility of accurate inductive inferences: 
learning that one object belonging to a category has a particular property means that 
one can assume that other objects belonging to the category also have the property. […]  

We might expect, based on the historical evidence for cognitive differences […] that 
contemporary Westerners would (a) have a greater tendency to categorize objects than 
Easterners; (b) find it easier to learn new categories by applying rules about properties 
to particular cases; and (c) make more inductive use of categories, that is, generalize 
from particular instances of a category to other instances or to the category as a whole.  
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CHAPTER 5                  
Implementation of the High Level 
Primitive concept in the KBE system 

1. Introduction 

2. Functionality and implementation of the Wing-part High Level Primitive. The surface generation 
module 

3. Wing-part Structure definition 

4. Spars definition 

5. Definition of Wing box, Leading Edge and Trailing edge areas 

6. Ribs definition 

7. Implementation of the Connection-Element High Level Primitive  

8. Towards a unified connection-element 

9. Fuselage High Level Primitive implementation 

5.1 Introduction 
The technical implementation of the High Level Primitive (HLP) concept in the ICAD 
KBE system is addressed in this chapter, whereas the implementation of some 
Capability Modules (CM) will be addressed in chapter 6. In particular, the definition 
and functionalities of the HLPs Wing-part, Connection-element and Fuselage are 
described here.  
For each HLP, the approach used to define the outer surface is addressed first, 
followed by the definition of the internal structure. This sequence reflects the 
associative relation between the HLPs’ surface and structure, hence the dependency 
of the structural model on the aerodynamic model, as it was anticipated in Chapter 
4.  
The definition of the main parameters used to define the HLPs is provided, to show 
how the designer can interact with the MMG to control the instantiation of the 
various aircraft systems (fuselage, wing, etc.).  Examples are given to illustrate the 
level of achieved modeling flexibility, as well as the current limitations. 
The Wing-part will be discussed in more detail than the other HLPs. This because of 
the higher level of maturity reached in the development of this primitive, but also 
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because of the similarity in methodology applicable to and implemented for the other 
primitives. 

The purpose of this chapter is not to provide a detailed technical report or a 
user manual for the MMG, but to demonstrate how the concepts discussed in the 
previous chapters can be implemented in a KBE application that is able to support 
aircraft design. Reference is provided to documents where more detailed technical 
information on the KBE application can be found.  

5.2 Functionality and implementation of the Wing-part 
High Level Primitive. The surface generation module 
As previously shown in the UML diagram of Fig.418, WingPart,  the class defined to 
implement the Wing-part HLP, is actually a composition of two main classes, namely 
WingTrunkSurface  and WingTrunkStructure. The former, responsible for the 
generation of the outer surface of any Wing-part instance, is described in this 
section. The latter, in charge of modeling the internal structure, will be addressed in 
Section 5.3.  
As a matter of fact, the modular definition of the Wing-part primitive goes even 
further: as illustrated in the class diagram of Fig. 5.1, WingTrunkSurface  is again 
an aggregation of several classes (including two capability modules), developed at 
the scope of providing the following three main functionalities: 

1. Generation of Wing-part instances with trapezoidal planform 
2. Generation of Wing-part instances with curved leading and trailing edges 
3. Generation of Wing-part instances (both with trapezoidal planform and curved 

LE/TE edges) with a deflected trailing edge movable (e.g., a rudder, an aileron 
or an elevator) 

Functionality 1 was the first one developed during the evolutionary growth of the 
MMG, and is mainly provided by the WingTrunkSurface  and WingSection  
classes of Fig. 5.1. The other classes and capability modules have been developed 
later to extend the basic modeling capability of the MMG. These will be addressed in 
Section 5.2.11 and 5.2.12. 

5.2.1 Generation of Wing-part instances with trapezoidal planform: 
modeling capabilities and limitations 

WingTrunkSurface  generates the surface of any given Wing-part instance by 
constructing (lofting in ICAD parlance) a smooth surface across a skeleton of wing 
sections (i.e., airfoils), which are generated by WingSection.  These wing sections 
are curves that interpolate through sets of points, whose coordinates are read from 
external datafiles. 
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WingTrunkSurface  needs a minimum of two airfoils, one at the root and one at 
the tip section of the wing-part. However, the amount of different airfoils that can be 
used is unlimited: see the 2..* multiplicity on the WingTrunkSurface-

WingSection association (refer to Appendix A for a definition of the UML 

multiplicity labels). Two instantiations of WingTrunkSurface  are shown in Fig. 5.2. 
One is generated using two airfoils, the other using three. In the first case the result 
of the lofting operation is a single-curvature surface, whilst in the second case, is a 
smooth double-curvature surface. Both surfaces are generated using the same ICAD 
primitive called lofted-surface (Knowledge Technologies International, 2001b). 
The list of parameters necessary to define a Wing-part surface instantiation (with 
trapezoidal planform and no movables) is provided in Table 5.1. When more Wing-
part instances are required to model, for example, a complex cranked wing, the 
parameter values indicated in the table will have to be assigned for each Wing-part 
instance. 
On the base on the adopted parameterization approach, the modeling capabilities 
and limitations of WingTrunkSurface can be summarized as follows: 

• The type (and number) of airfoil curves, specified by the attribute airfoil-
name-list, must be names of predefined (.dat) files, containing the airfoils’ 
definition data (see section 5.2.9 for details). All the airfoils datafiles are 
stored in a folder, which is here addressed as Airfoil-Library.  

• Within a given Wing-part instance, the airfoils can be positioned only parallel 
to each other. Their span wise position (offset) is defined via the parameter 
airfoil-offset-list. The offset values are expressed as percentages of the given 
Wing-part instance span (the values 0 and 1 are assigned for the root and tip 
airfoils respectively).  

Fig. 5.2: examples of two wing-part surface instantiations built with two (left) and 
three (right) different airfoils. The surface on the right has double curvature. 

Root airfoil 

Tip airfoil Tip airfoil 

Root airfoil 

Intermediate airfoil 
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Parameter 
Expected 
value 

Example Description 

Cr 
Positive real 
number 

200 
Root/Tip chord length of the Wing-part 
instance.  

Ct 
Positive real 
number 

120 

Span 
Positive real 
number 

250 

Span of the given Wing-part instance. 
N.B. In case of a dihedral angle different 
than zero, the span is different than the 
distance between the root and tip airfoil 
planes.  

Reference  Real number 

0 � reference line 
= Leading edge  

0.25 � reference 
line = Quarter-
chord line 

Indicate the reference line used to define 
the sweep and twist angles of the given 
Wing-part instance.   

Sweep-angle Real number (degrees 30)1 
Angle defined with respect to the Wing-
part reference line 

Twist-angle Real number (degrees 5)1 
The angle between the root and tip airfoil 
chords of the given Wing-part instance.  

Twist-angle-
root 

Real number (degrees 0)1 
The incidence angle of the given Wing-
part instance 

Dihedral-angle Real number (degree 3) 

Rigid rotation of the lofted surface. This 
parameter affects the length of the given 
Wing-part instance (which is equal to the 
ratio of span and the cosines of the 
dihedral angle) 

Airfoil-name-
list 

List of strings 
(list ‘MyAirfoil-1 
‘MyAirfoil-2)                        

A list of strings, corresponding to names 
of datafiles2 

Airfoil-offset-
list 

List of real in 
the range      
[0, 1] 

 (list 0.0 1.0) 
The spanwise position of each expressed 
as a span fraction of the given Wing-part 
instance2  

Airfoil-
thickness-list 

List of real  (list 1.0 0.5) 
A list of multiplication factors to modify  
the thickness ratio of the airfoils2 

 

1Without the keyword ”degree”, the angle is assumed in radians 

2These lists must contain the same amount of values (i.e., one per wing section) 

Table 5.1: list of the main parameters for the definition of a Wing-part instance. 
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• The parameter airfoil-thickness-list contains a list of multiplication factors to 
modify the thickness ratio of the airfoils indicated in airfoil-name-list, without 
the need to add extra airfoil datafiles to the library (more details in section 
5.2.9) 

• It is possible to define the length of the root and tip chord only. The chord 
length of all the eventual intermediate airfoils is automatically determined by 
linear interpolation (trapezoidal planform).  

• The twist-angle parameter defines the rotation angle of the tip airfoil with 
respect to the root airfoil. The rotation of all the eventual intermediate wing 
sections is evaluated by linear interpolation. 

• The sweep-angle value is constant within a given Wing-part instance and is 
applied by shifting the various wing sections in their planes (i.e., sweep by 
wing shearing. See section 5.2.5). The sweep angle is defined with respect to 
the same reference line (e.g., leading edge line, quarter chord line) as the 
twist angle.  

• The reference line can be selected by means of the reference parameter 
(more details in Section 5.2.3). This is a global parameter. In other words, all 
the Wing-part instances used to model a lifting surface share the same 
reference line definition. 

• The dihedral-angle value is constant within a given Wing-part instance and is 
applied by a rigid rotation of the Wing-part lofted surface (i.e., not by wing 
shearing). In this way, the dihedral does not affect the thickness of the given 
Wing-part instance (see discussion in section 4.6.2). 

• Since the Wing-part span is a user-defined parameter, the length of a given 
Wing-part instance (i.e., the distance between the root and tip airfoil planes) 
is affected by the dihedral angle as discussed in section 5.2.8  

5.2.2 Modeling process for trapezoidal planform Wing-part instances 

This section describes the implementation of the modeling process, whose 
capabilities and limitations have been addressed above.   
As shown in the diagram of Fig. 5.1, three classes are responsible for the generation 
of trapezoidal planform Wing-part instances, namely WingPart , 

WingTrunkSurface  and WingSection 1. The top level class LiftingSurface  is 
responsible of assembling the complete lifting surface by appropriate positioning of 
the various Wing-part instances.  

                                        
1 Note how the main operations and parameters manipulated by these classes have been indicated in 
the related fields of their UML representation. 
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The sequence of activities implemented by these classes can be split in the following 
main blocks (details about the various steps will be provided in the subsequent 
sections):  
 

1. Generation of the airfoil curves. All the operations in this block are 
performed by WingSection,  as many times as the number of wing sections 
specified for the given Wing-part instantiation (see section 5.2.9 for details) 
dictates. 

• Reading the airfoil normalized point coordinates from datafiles  
• Scaling of points according to chord length 
• Scaling of points by application of the thickness factor 
• Positioning of points inside the given Wing-part Local Reference System 

and generation of fitted curve 
2. Generation of the lofted surface(s). All the operations in this block are 

performed by WingTrunkSurface, as many times as the number of Wing-
part instances used to model the given lifting body. 

• Spanwise positioning of the airfoil curves in the Wing-part Local 
Reference System (See section 5.2.4) 

• Application of sweep angle by shifting the airfoil curves along their 
chord vector (See section 5.2.5) 

• Application of the incidence and twist angles by rotating the shifted 
airfoil curves around their reference point (See section 5.2.6) 

• Generation of the lofted surface through the set of wing sections (Fig. 
5.2) 

3. Positioning and orientation of the lofted surface(s) in the Lifting-surface 
Global Reference System. All the operations in this block are performed by 
WingPart,  as many times as the previous block of activities requires. 

• Application of the dihedral angle to each Wing-part instance by rigid 
rotation of the Wing-part Local Reference Systems in the Global 
Reference system (details on the reference systems in Section 5.2.3) 

• Positioning of each Wing-part instance in the Lifting-surface Global 
Reference System  

• Trimming of the lofted surface(s) as required for the instantiation(s) of 
the Connection-element HLP (see section 5.7) 

4. Build up of the complete lifting body surface. All the operations in this 
block are performed by LiftingSurface,  as many time as the number of 
lifting surfaces present in the given aircraft architecture. 

• Positioning of the Global Reference System in the Aircraft Reference 
System  
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• Computation and instantiation of the required number of connection 
elements, based on the number of dihedral angle discontinuities (more 
detail in section 5.7). 

• Positioning and instantiation of the Winglet  and/or EndCap classes 

• Mirroring of the complete Lifting-surface instance, if required (i.e., to 
model a  conventional aircraft configuration, the left wing half and the 
left horizontal tail empennage are generated first and then mirrored to 
generate the right half)  

It should be noted that, whilst the activities listed above are performed starting from 
the leaves of the product tree (i.e., first the wing sections are generated, than the 
lofted surfaces are built and finally the whole lifting surface is assembled), the flow 
of information required to run the process cascades from the root of the product tree 
down to the leaves. In fact: 

- The location of the surface instances positioned by WingPart  in the Global 

Reference System is computed by LiftingSurface .  

- The length of the lofted surfaces generated by WingTrunkSurface  is 

calculated by WingPart   

- The chord lengths required by WingSection  to scale the airfoil curves is 

computed by WingTrunkSurface   

5.2.3 Definition of Global and Local Reference Systems 

As anticipated in the previous section, the implemented modeling approach is based 
on the use of three reference systems, namely: the Aircraft Reference System, the 
Lifting-surface Global Reference System (GRS), and the Wing-part Local Reference 
Systems (LRS) (see Fig. 5.3). The last two are those relevant for the definition of any 
lifting surface and their relative positioning is shown with details in Fig. 5.4.  

Each Wing-part instance is built with respect to a local reference system 
(LRS), i.e., there are as many LRSs as the number of Wing-part instances.  
The length, the twist angle, the root-twist angle (i.e., the incidence angle) and the 
sweep angle of each Wing-part instance are defined in the LRS systems.  
On the other hand, the relative position of the various Wing-part instances and the 
values of their span and dihedral angle are defined in the Lifting-surface GRS. 

As shown in Fig. 5.4, the longitudinal axis of each Wing-part LRS is parallel to 
the longitudinal axis of the relative Lifting-surface GRS (which is in turn parallel to 
the longitudinal axis of the Aircraft Reference System).  
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Fig. 5.4: Global and Local Reference Systems to define and position the Wing-part 
instances in a Lifting-surface assembly. Example of the MOB BWB (La Rocca, 
Krakers and van Tooren, 2002) (connection elements not shown). 

Fig. 5.3: the three types of reference systems used in the implemented modeling 
approach.  
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Given a Lifting-surface assembly consisting of n Wing-part instances, the LRS-origin 
of Wing-part instance (i) is positioned in the GRS as follow: 
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5.2.4 Positioning of wing sections and role of the reference parameter 

Each airfoil generated by WingSection  is first positioned in the Wing-trunk LRS, 
with its chord parallel to the LRS longitudinal axis and at a lateral position equal to 
the Wing-part length2 percentage indicated by the input parameter airfoil-offset-list 
(Table 5.1). The longitudinal position of each airfoil is set according to the value of 
the parameter reference. As shown in the examples of Fig. 5.5, when reference is set 
to 0, the airfoil curves are shifted longitudinally such that all the leading edge points 
get positioned on the LRS lateral axis; when reference is set to 0.25, the airfoil 
curves are shifted such that the all the quarter chord points (longitudinal shift equals 
0.25 times the chord length) are placed on the LRS lateral axis.   
Any value is allowed for the reference parameter, although the values 0 and 0.25 are 
the most frequently used, being the leading edge and the quarter chord line the two 
most common reference lines used to define the sweep and the twist angle of a 
lifting surface. 

5.2.5 Application and definition of the sweep angle  

After the preliminary placement of the airfoil curves in the LRS, as described in the 
previous section, WingTrunkSurface  applies the user-defined sweep angle by 
shifting the wing sections further along the LRS longitudinal axis, as illustrated in Fig. 
5.6. The longitudinal shift of each airfoil curve is computed as follows: 
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As a consequence of this double longitudinal shift, the sweep angle results 
automatically applied with respect to the reference line selected by means of the 
reference parameter.  
 

                                        
2 Since the implemented method is able to model only straight wing parts, a certain percentage of the  
span or the length yields to the same lateral positioning of a given airfoil  



Chapter 5                             Implementation of the HLP concept in the KBE system 

149 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.5: Positioning of the root airfoil curve in the Local Reference System (LRS) of the 
given Wing-part instance. Effect of the parameter reference on the airfoil longitudinal 
positioning. 

Fig. 5.6: positioning of the wing sections in the Wing-part instance Local Reference 
System. The length (not the span) of the Wing-part instance determines the lateral 
position (offset) of the wing sections.  The sweep angle is applied by shifting the 
various wing sections along the LRS longitudinal axis. 
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Another result from this way of applying the sweep angle (actually not the only one 
possible, as discussed in the insert below) is that all the airfoil curves remain parallel 
to each other and normal to the LRS lateral axis, such that the span of the given 
Wing-part instance remains unaffected. 

 
Being applied and measured in the LRS, the sweep angle is independent from the 
dihedral angle, which is applied in a later step via a rotation of the Wing-part LRS in 
the Lifting-surface GRS. 
For positive value of the sweep angle, WingTrunkSurface  shifts the airfoil curves 
towards the positive direction of the LRS longitudinal axis. Given the orientation of 
the LRSs in the Aircraft Reference Systems, a positive sweep angle yields a backward 
swept wing (as by convention). 

A note on sweep angle definition. Shearing or pivoting? 

Two ways of applying sweep to a wing are generally found in literature: the first one is 
achieved by applying a rigid body rotation to the wing, as shown in the left case of the picture 
below. In this way the air, through the effective free stream speed component V┴, would 
always “see” the same airfoils. This is what actually happens for pivoting/swing (variable 
sweep) wings. In the second method – the one implemented in this work - the sweep is 
applied by shearing the wing, i.e., by shifting the airfoils in planes parallel to the free stream 
(right case in the picture below). This second method is industry practice. However, the 
designer should be aware that the effective flow component does not see the selected airfoil, 
but a generally different one with higher thickness ratio, as illustrated below. This reduces the 
positive effect of sweeping on the critical Mach number.  

 

(t/c)┴ > (t/c)═

Airfoil normal to LE

Airfoil parallel 
to freestream

V∞Sweep angle
V∞

Λ Λ

V∞

V═

V┴

V┴ = Veffective = V∞ cos Λ
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5.2.6 Definition of the twist and wing setting angle  

The twist angle is applied by a rigid rotation of the airfoil curves in planes normal to 
the LRS-lateral axis, with the rotation point set at the intersection of the given airfoil 
plane with the reference line (see Fig. 5.8). 
In this way, the application of the twist angle remains independent of the sweep 
angle definition and the sequence in which twist and sweep are applied is irrelevant. 
The twist angle is a user-defined Wing-part parameter and is defined as the angle 
between the chord of the root airfoil and tip airfoil. The rotation angle of the 
intermediate airfoil curves inside a Wing-part is computed automatically by scaling 
the twist angle linearly with the Wing-part instance span: 

�����
��(�
�%�
�(
)) = �������&%%	��(�
�%�
�(
)) ∙ twistAngle  

The twist-angle is positive when the nose is rotated upward, as by convention.  

The setting angle of each Wing-part instance, i.e., the angle between the root 
chord of the given Wing-part instance and the local longitudinal axis, is determined 
by the parameter twist-angle-root. This angle is simply superimposed to the rotation 
angle in the formula above.  

Whilst the user can define a different twist angle for each Wing-part instance, 
only one setting angle can be assigned by the user for the whole Lifting-surface 
instance1. This is the twist-angle-root  of the most inboard Wing-part instance and 
corresponds to what generally addressed in literature as wing setting angle. This is 
defined as the angle formed by the wing root chord with the fuselage longitudinal 
                                        
1With the exception of the Winglet twist-angle-root (commonly addressed as toe angle), whose value 
is another user-defined parameter in the MMG input file.  

Fig. 5.8: twist angle and twist-angle-root angle (i.e. Wing-part instance incidence angle) 
definition.  The angles definition is not affected by the sweep. (negative angles shown in 
picture). 
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axis. For a given alignment of the fuselage with the flight speed vector, the wing 
setting angle determines the actual angle of incidence (or attack) of the wing and its 
airfoils.  

The parameter twist-angle-root of each Wing-part instance (excluded the most 
inboard one), is automatically computed by the MMG as follow: 

��
	�)����1���!�
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���   

5.2.7 Definition of dihedral and winglet inclination angles  

As shown in Fig. 5.4, the dihedral angles of the various Wing-part instances 
composing a lifting surface are all defined in the Lifting-surface GRS. The dihedral 
angles are set by rotating the various Wing-part LRSs (hence, their content) around 
their local longitudinal axes.  
A definition of dihedral (and inclination) angle follows: 
The dihedral angle (and winglet/fin inclination-angle) is the angle between the 
lateral axes of the lifting surface global reference system and the wing-part local 
reference system, measured on the plane orthogonal to the global reference system 
longitudinal axis. 
The dihedral angle and the winglet-inclination angles are positive when the tip of the 
wing-part is moved upward with respect to the horizontal position. The winglet 
inclination angle is complementary to the so-called winglet cant angle (i.e., they add 
to 180 degrees). 
The dihedral angle is applied as a rigid rotation of the lofted surface generated by 
WingTrunkSurface, hence after the sweep and twist angles have been set.  

5.2.8 Definition of Wing-part span and length 

The wing-part span is defined as the distance between its root and tip airfoil planes – 
which is the Wing-part length – projected on the horizontal plane of the global 
reference system, and measured along the GRS-lateral axis (see Fig. 5.4). 
Being the span and the dihedral angle user-defined parameters for Wing-part, the 
Wing-part length is first computed by WingPart  and then fed to 

WingTrunkStructure  to start the generation of the lofted surface: 
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It follows that the length of a Wing-part instance increases with the dihedral angle, 
but does not depend on the sweep angle.  

In the case of winglets, the length and the span of the Wing-part instances 
coincide and their value is user-defined, hence independent from the winglet-
inclination-angle. 
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5.2.9 Generation of the airfoil curves  

As mentioned above, the MMG user can specify for each Wing-part instance a 
specific set of airfoils. The name of these airfoils is specified using the airfoils-name-
list parameter (see Table 5.1); each airfoil name must match the name of a 
corresponding airfoil data file, which must be available in a predefined “airfoil library” 
directory. These files are actually plain ASCII files, each containing a list of point 
coordinates (see example in Table 5.2). The user can expand the airfoil library, at 
any time, by adding files containing new airfoil definitions.  
An airfoil file obeys the following conventions (Fig. 5.9):  

- The coordinates of the points are specified in a 2D reference system  
- The coordinates are normalized with respect to the chord length (i.e., all the  

airfoils in the library have a chord length equal to one)  
- The points are provided in sequence: from the trailing edge (TE) point (1 ; 0), 

to the leading edge (LE) point (0 ; 0) and back to the trailing edge point.  
- The LE point and the TE point(s) coordinates must be included in list.  

The WingSection  class instance opens the given airfoil file, reads all coordinates, 
scales them according to the required chord length, and generates a curve using the 
ICAD fitted-curve primitive. 
In order to obtain correctly lofted surfaces, all the airfoil curves must have the same 
direction. That means the fitted curve must interpolate the points from trailing edge 
to trailing edge, first generating the upper part of the airfoil and then the lower (see 
Fig. 5.9). WingSection  is able to check and correct the airfoil curve direction 
automatically, so the user is free to provide the points coordinates either in clockwise 
or counter clockwise sequence. 

Fig. 5.9: Definition of an airfoil curve by fitting a set of points and scaling effect 
of thickness factor. 
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Open airfoils at the TE edge are also allowed (the 
coordinates of the two trailing edge points in the data 
file can be different). WingSection  is able to deal with 
open airfoils and if required, it can close them 
automatically (a setting parameter is provided) 

The amount and distribution (stretching) of points 
used to define a given airfoil are at the designer’s 
choice. It is up to the user to supply sufficient and 
adequately distributed points to have the fitted curve 
capturing the airfoil curvatures.  Different airfoil data 
files can contain a different number of points with 
different stretching; Wing-section is able to deal with 
that (La Rocca and van Tooren, 2002b).    
The parameter airfoil-thickness-list (see Table 5.1) 
allows users to modify the thickness of the selected 
airfoils for the wing-part, to avoid the need to populate 
the airfoil library with airfoils from the same family but 
with different thickness ratio (e.g., NACA0010 and 

NACA0020). The airfoil-thickness parameter works as a stretching factor, which 
directly applies to the z-coordinates of the airfoil points (the x-coordinates, are 
stretched by the chord length). For example, if the coordinates of the NACA0010 are 
available in the library, a NACA0020 can be generated setting the relative airfoil-
thickness value to 2. 

5.2.10 Airfoils definition to support optimization. Some considerations 

The implemented airfoil definition method is relatively simple and effectively 
supporting common practice in conceptual and preliminary design. The user can add 
new airfoil data files to the library without the need to modify any bit of the MMG 
code. Simple cut-and-paste operations can add any airfoil to the library. The airfoils 
can be taken from literature (University of Illinois Urbana-Champaign, last visited 
November 2009; Hepperle; Carmichael) or from one’s own design efforts.  
However, the point coordinates-based airfoil definition is not very well suited to 
support in aerodynamic shape optimization. The large number of points generally 
required to properly define an airfoil would lead to a very high number of design 
variables. In addition this definition cannot guarantee the generation of smooth 
curves when perturbing the position of single points, unless coordination mechanisms 
are put in place to link the perturbation of one point with those of the neighbours 
(Samareh, for example proposes to parameterize the perturbation rather than the 
geometry itself (Samareh, 2001a). This would already allow reducing the number of 
design variables by orders of magnitude (Straathof et al., 2008)). Of course it would 

1.000000   0.000000 
0.999846   0.000009 
0.999380   0.000036 
0.998603   0.000082 
………… 
0.000899   0.004203 
0.000300   0.002566 
0.000000   0.000000 
0.000300  -0.002563 
0.000898  -0.004201 
0.001796  -0.005829 
………… 
0.998603  -0.000082 
0.999380  -0.000036 
0.999846  -0.000009 
1.000000   0.000000 

Table 5.2 : example of 
an airfoil data file 
content. 
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be possible to use the airfoil name as discrete variable, while using the airfoil 
thickness as an associated continuous variable. In this case, however, the size of the 
design space would be very limited (and discontinuous!), even with a large database 
of “prefab” airfoils available. 

A better way to support optimization while maintaining the airfoil definition 
approach discussed above, would be that of extracting the B-spline control points 
and weights from the fitted curves generated by ICAD2  when interpolating through 
the set of point coordinates. These control points with relative weight could then be 
used as input data to re-generate the airfoils as B-splines (which are ICAD geometry 
primitives) (Knowledge Technologies International, 2001b). The advantage for the 
optimization is twofold: the B-spline control points and weights are much less than 
the original set of point coordinates; the variation of each control points can affect a 
large part of the airfoil curve, without creating unwanted wrinkles or waviness. The 
B-spline approach could be used not only with curves, but also for surfaces, as it has 
been actually tested for the definition of the Fuselage HLP surface (see Section 1.1). 

Other convenient approaches to support the optimization of airfoils and 
aerodynamic surfaces in general would require an analytical definition of airfoils and 
surfaces, such as the CST method proposed by Kulfan (Kulfan, 2008), based on 
Bernstein polynomials (and recently extended by Straathof to allow easy 
manipulation of both local and global shape variations (Straathof et al., 2008)); and 
the method proposed by Carpentieri (Carpentieri, 2008), based on Chebyshev 
polynomials. These authors have demonstrated the possibility to cover very large 
design spaces, using the (few) coefficients of the polynomials as design variables.  
Other parameterization methods for optimization can be founded in the surveys by 
Haftka and Grandhi (Haftka and Grandhi, 1986) and Ding (Ding, 1986) up to 1986, 
and by Mousavi (Mousavi, Castonguay and Nadarajah, 2007) up to 2007. Also 
Samareh (Samareh, 2001b) provides an extensive survey of parametric models for 
combined structural and aerodynamic optimization, up to the year 2001.   
 
Without entering in the specific merit of these methods, we acknowledge that the 
modular structure of the Wing-part HLP would allow substituting the actual 
WingSection  class with an alternative analytical airfoil generator module. This 
would not require any major modification to the rest of the HLP structure. Also the 
entire WingTrunkSurface  class could be replaced by a new class encapsulating 

analytical surface modeling methods. In fact, for WingTrunkStructure , the 
specific method used to generate the wing-part outer surface is irrelevant, as far as 

                                        
2 ICAD allows easy access to low level geometry information, such as control points and weights of 
generated B-splines. Besides, the B-spline-curve is an ICAD geometry primitive, which needs control 
points and weight factors as basic input.  
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an outer surface is eventually generated such that its structure modeling capabilities 
can be deployed.   
The MMG can also be expanded to include both the abovementioned airfoil/surface 
generation methods and let the user chose the one most suitable to the case at 
hand. The conceptual design process could be initiated selecting an airfoil off the 
shelf, and then “translated into a proper mathematical format” to support the 
optimization process in a later design stage.  

5.2.11 Definition of Wing-parts with curved leading and trailing edges 

The surface modeling approach described above is only able to support the design of 
trapezoidal wing parts. There are several cases where designers could benefit from a 
more “free-form” planform design approach. For example, in order to model other 
wing tips than simple cut-offs, designers need the possibility to create curved leading 
and trailing edges, still based on the reference trapezoidal wing shape.  

On this purpose, extra functionalities 
have been added to the basic Wing-
part architecture described in the 
previous sections, which allow, for 
example, the generation of rounded, 
sharp and aft-swept wing tips (Fig. 
5.10). Modeling of wing fairings or 
the center section of BWBs can 
benefit from the possibility to design 
curved LE/TE edges (Fig. 5.11).  

An extra set of dedicated parameters (refer to Table 5.3 for details) has been made 
available via the MMG input file, which the user can set to generate partially or 
completely curved leading and/or trailing edges. 

Rounded Sharp Cut-off Aft-swept 

Fig. 5.10: different types of wing tips 
(Raymer, 2006)  

Fig. 5.11: curved leading edges in the BWB center section and at the wing transition. 
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In order to model Wing-part instances with curved LE/TE edges, the user must still 
assign the input parameter required for the definition of a trapezoidal planform. In 
fact, the new introduced parameters work as kind of “correction factors” for the 
reference trapezoidal planform, as follows (refer to Table 5.3 and Fig. 5.13): 

- the LE(TE)-interval-list parameter specifies the spanwise portion(s) of the LE 
and TE edges to be curved and that (those) to be left unmodified. 

- the Delta-Cr-TE/LE and Delta-Ct-LE/TE parameters modify the length of the 
root and tip chords of the basic trapezoidal planform  

- the Alpha-Cr-TE/LE and Alpha-Ct-LE/TE parameters specify the direction of 
the tangency vectors of the curved LE and TE, at the root and tip, 
respectively. 

 
When the LE(TE)-interval-list parameter is not null, WingTrunkStructure  first 
generates a reference trapezoidal Wing-part instance, then, by means of the 
abovementioned parameters and the dedicated classes CurvedLeadingEdge  and 

CurvedTrailingEdge   (see Fig. 5.1), generates the new, curved LE/TE edges. 
From these new curves follows a (not linear) chord length distribution, which is used 

parameter example description 

*-interval-
list 

(list 0.3 0.6) 

Specification of the curved portion of the *. The numbers in the 
list are percentages of the Wing-part span.  
If this list is empty, no curved parts will be defined on the *.  
If equal to (0 x) only the part next to the root will be curved. 
If equal to (x 1) only the part next to the tip will be curved. 
If equal to (x y) both parts next to the tip and root will be curved. 
If equal to (0 1) no straight part is defined on *. 

Alpha-Cr-* (degrees 60)  
Local * sweep angle at the root section (values <0 are also allowed). 
This parameter is ignored in case *-interval-list is empty or equal to 
(list x 1) 

Alpha-Ct-* (degrees 90) 
Local * sweep angle at the tip section. This parameter is ignored in 
case *-interval-list is empty or equal to (list 0 x) 

Delta-Cr-* 0.3 
Extension (contraction if <0) of the * root chord length. This 
parameter is ignored in case *-interval-list is empty or equal to (list x 
1) 

Delta-Ct-* -0.35 
Extension (contraction if <0) of the * tip chord length. This 
parameter is ignored in case *-interval-list is empty or equal to (list 0 
x) 

* stands for either LE or TE  
X is a number in the range [0 1] 

Table 5.3: parameters for the definition of Wing-part instances with curved LE/TE. 
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to define a new set of wing sections3.   Finally, a new lofted surface is built through 
this new skeleton of wing sections. The example of an aft-swept wing tip, with 
relative parameters is shown in Fig. 5.12. 

5.2.12 Modeling of control surfaces  

In order to account for the effect of 
deflected control surfaces in the 
aerodynamic analysis of the aircraft, 
additional dedicated MMG modules have 
been developed. Deflected movable 
surfaces such as ailerons, rudders and 
elevators can be defined in any wing-part 
primitive, with some level of flexibility in 
their position and planform shape. The 
input parameters for the movable 

                                        
3 The trapezoidal Wing-part surface is actually intersected with at a set of planes orthogonal to the 
LRS-lateral axis and appropriately distributed along the span. Each resulting intersection curve is then 
scaled according to the new local chord value and “attached” to the new LE/TE curves in 
correspondence of its LE/TE points. 

Fig. 5.12: example of an aft-swept wing-
tip model with corresponding parameters 

Fig. 5.13: Definition of a curved leading edge Wing-part instance. 

Trapezoidal wing-part 

LRS-lateral 

LRS-longitudinal 
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definition are described in Table 5.4. 
The level of modeling detail is rather limited in the sense that the movables are not 
generated as entities separate from the wing-part: there are no gaps, laps and slots 
between movable and wing surface. No composite movables can be modeled (such 
as elevators with trimming tabs), neither movables that increase the wing-part 
surface (such as high lift devices with Fowler movement). 

 
 

Nonetheless, the achieved level of modeling accuracy has proven adequate both for 
the use of simple panel codes, as well as for higher fidelity aerodynamic tools, such 
as the NLR CFD simulation tool ENFLOW (van Houten et al., 2005; van den Branden, 
2004). In fact, when the goal is not computing the flow through the wing/movable 
gap or slot or around the cut off area of the movable, but obtaining a reasonable 
estimation of the overall pressure distribution, it is common practice to model lifting 
surfaces with deflected movables just as continuous surfaces.  

The Capability Module TEMovableSimulator  has been developed to give the 
Wing-Part HLP the extra capability to model movables (see the UML diagram of Fig. 
5.1). The implemented modeling approach is summarized below, with support of Fig. 
5.14.  

Table 5.4: input parameters for movable definition.   

parameter example description 

Hinge-position-
root 

0.7 Position of the movable hinge axis, indicated as fractions of the 
root and tip chord length of the trapezoidal wing-part 

Hinge-position-tip 0.7 

Movable-start-
direction (degrees 5), 

or, 
fd 

Orientation of the movable root and tip edges. 4 options: 
fd � side edge of the movable parallel to flight direction 
Hinge � side edge of the movable normal to hinge line 
TE � side edge of the movable normal to Trailing Edge line 
(degree x) � side edge of the movable rotated x degrees 
clockwise with respect to the flight direction 

Movable-end-
direction 

Rotation-angle (degrees 8) 
A positive angle to rotate the movable down. When equal to 0, 
the TE-deflection procedure is disabled, although the definition 
of the movable remains. 

Start-movable 0.2 

Position of the root and tip edges of the movable, indicated as 
fraction of the wing-part length. 
If equal to (0 x) the movable starts at the root of the wing-
part. Movable-start-direction ignored. 
If equal to (x 1) the movable stops at the tip of the wing-part. 
Movable-end-direction ignored. 
If equal to (x y) the movable starts at x·(wing-part length) and 
stops at y· (wing-part length).   
If equal to (0 1) the movable starts at the root and ends at the 
tip of the wing-part.  Movable-start/end-direction  ignored   

End-movable 0.7 
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1. The unperturbed Wing-part instance surface is created based on the curves 
generated by the WingSection  class (Fig. 5.14-a).  

2. The position and the orientation of the hinge line and the cut off planes that 
determine the movable planform shape are evaluated based on the user defined 
input values (Fig. 5.14-b) 

3. The MovableSupportSection  class intersects the unperturbed wing-part 
surface with planes delimiting the movable side edges (Fig. 5.14-c). Although 
only one cutting plane is shown in the figure, four very close parallel planes are 
used to intersect the Wing-part surface at each movable side edge: two inboard 
and two outboard of the given edge. These four intersection curves, are 
necessary to “support” the operation at point 5.  

4. All the unperturbed wing sections generated by WingSection  plus the new 

support curves are collected by the WingSectionForMovable  class, which 

submits them to the AirfoilDeflector  Capability Module. 

AirfoilDeflector  selects the curves that belong to the movable area and 
deflects their trailing edge as illustrated in Fig. 5.14-d: The selected curves are 
cut in correspondence of the hinge line and the TE curve segments rotated 
around the user defined hinge axis by the user defined rotation angle. The 
generated gaps and overlaps are automatically sealed, trimmed and filleted as 
shown in figure. 

5. The final Wing-part surface is generated by lofting across the new set of 
deflected and unperturbed wing sections. The four support curves generated at 
each movable edge (of which two are deflected and two not) help the lofting 
process to produce a smooth and regular surface, even in case of large 
deflection angles. See the close up in Fig. 5.14-e.  
 

The other three possible movable definition cases are shown in Fig. 5.14-f.  
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Fig. 5.14: Step-by-step modeling process for wing-part surfaces with TE control 
movable (a-e), with detail of the output geometry quality. Example of possible 
wing-parts with movable configurations (f). 

δ 

(a) 

(c) (d) 

(b) 

(e) 

(f) 
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Another two movable modeling approaches have been implemented during this 
research work. The second approach has been specifically developed to link the MMG 
to the VSAERO panel code. There is no actual wing-part surface deformation 
required by KBE system. A dedicated Matlab preprocessing module, called COALA, 
has been developed to deflect the movable panels, directly in the VSAERO 
preprocessing environment. To do that, COALA needs from the MMG a dedicated 
XML file containing the discretization of the whole aircraft geometry and information 
concerning the exact position, planform shape and deflection angle of the movables. 
Details can be found in (Grotenhuis, 2007; Brouwers, 2007; Dircken, 2008; van Dijk, 
2008). The approach developed to enable the MMG-COALA-VSAERO link will be 
further addressed in Chapter 6. 
 
 A third approach has been developed to account for the structural design and 
manufacturing aspects of control movables in the preliminary design phase. A 
separated KBE application, called PMM (Parametric Movable Model) has been 
developed by van der Laan (van der Laan, 2008), which is a kind of MMG1 dedicated 
to the design of aircraft movables. The MMG Capability Module 
TEMovableSimulator , on the base of movable definition input, cuts the 
undeflected wing-part surface around the movable boundaries (hinge line and side 
edges), then exports this trimmed surface, together with some other metadata and 
geometrical information to the PMM (van Houten et al., 2005). The latter is then 
responsible to generate a detailed model of the movable, whose shape is fully 
consistent with the master geometry produced and exported by the MMG. For the 
structural analysis of the movable, the aerodynamic loads can be extracted by the 
VSAERO model generated by the MMG/COALA system.  More information about the 
MMG-PMM collaboration can be found in Chapter 6. 

                                        
1 The PMM KBE application actually shares a number of HLPs and CMs with the MMG. 
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5.3 Wing-part Structure definition 
In this section the generative approach implemented to design the wing-part 
structure configuration is thoroughly described. The modeling system developed 
allows for the design of a conventional spars & ribs structural concept. All 
components are modeled using surfaces, no solids are used. The achieved level of 
modeling detail is adequate for the conceptual/preliminary design phase. Details as 
flanges, cleats, doublers, access holes etc. are beyond the scope of the current 
modeling capabilities. Nevertheless, the designer is provided with a lot of freedom 
and design flexibility, due to the full parametric definition of all the components. 
The UML use case shown in Fig. 5.15 illustrates the main functionalities, and their 
relations, required from the structural modeling system. Eventually, the main 
requirements can be summarized as follow:  

1. Provide the option to separate each wing-part in three main areas, i.e., the 
leading edge (LE), the wingbox (WB) and the trailing edge (TE) areas, to 
account for their different structural design requirements. 

2. Provide a single generic wing-part primitive that allows to model the 
abovementioned three areas as physically separated elements (including 
separations by gaps) and allows the inclusion of  movable components (e.g., 
ailerons, rudders, etc.). 

3. Provide optional generation of spars and ribs in each of the three 
abovementioned wing-part areas, with the freedom to position and orient 
each structural element individually. 

    The UML activity diagram in Fig. 5.16 shows how the structure generative process 
has been implemented.  

Fig. 5.15: the WingTrunkStructure system basic use case. 
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The specific MMG module responsible for the structure generation is the 
WingTrunkStructure  class: together with the WingTrunkSurface  class, one of 
the two main components of the Wing-part HLP.  
As shown in Fig. 4.18, WingTrunkStructure  depends on the wing-part surface 

generated by WingTrunkSurface . Indeed, the first activity in the whole structure 
generation process (Fig. 5.16) is “generate outer surface”, whose details have been 
addressed in the previous section.   
The activity diagram in Fig. 5.16 can be used also as a guide to the content of the 
next sections. As usual, the reader can refer to Appendix A for a summary of the 
basic UML notation. Appendix F provides the detailed class diagram of the whole 
WingTrunkStructure  aggregation.  

Fig. 5.16: UML diagram showing the main activities involved in the generation of 
the wing-part structure configuration. 
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5.4 Spars definition 
The spars definition use case of Fig. 5.17 (limited to the spar definition process 
within a Wing-part) extends and details the “generate spars” use case of Fig. 5.15. 
Note the two imposed constraints to the generation of spars: 
1. Spars must be planar (i.e. no warped spar webs allowed) 
2. The shape of the spars must be tailored to the outer wing-part surface (hence 

they should be adaptive to the eventual changes in the given aerodynamic 
shape) 

And the following requirements: 
• It should be possible to define spars in all the three LE/WB/TE areas 
• It should be possible to define spars using two different positioning methods, i.e. 

point-to-point and point-and-angle (see explanation below) 
• It should be possible to define special kinds of spars (e.g., virtual spars) and/or 

assign them special functionalities (e.g., delimit the volume of the wing fuel-
tanks)  

The definition of the spars is of great importance for the specification of other 
structural components in the wing-part. The physical division of the wing-part in the 
three LE/WB/TE areas depends on the actual location of the spars (details in section 
5.5) and spars are also used to provide a positioning reference for the ribs in the 
wing box and LE/TE areas (details in section 5.6).  

Fig. 5.17: WingTrunkStructure (SPARS) system use cases 
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5.4.1 Spars generative process 

All the LE/WB/TE spars are generated through the following sequence of activities: 
• Two points per spar, called spar-points, are identified on the root and tip chords 

of the given wing-part surface, by means of the user defined parameters spar-
offset-list-root and spar-offset-list-tip.  

• A straight line, called spar-line, is drawn through these points. 
• The spar-line is projected along the LRS-vertical axis, onto the upper and lower 

part of the wing-part surface.  
• Finally, the spar surface (actually the spar web surface) is generated by the linear 

interpolation of the two projection curves (i.e., upper-spar-curve and lower-spar-
curve). The ICAD geometry primitive ruled-surface is used for the scope. 

The spar generation procedure is illustrated in Fig. 5.18.  

In order to define the spar points on the root and tip chords of the wing-part, the 
user can choose between two methods, so-called “point-to-point” and “point-and-
angle’”.  
With the point-to-point method, the user indicates directly the positions of the root 
and tip spar-points as fractions of the root and tip chord length, respectively.  
With the point-and-angle method, the user indicates the position of one of the two 
spar-points as fraction of the relative chord length, and the angle that the given spar 
should form with the flight direction vector. In this case, the MMG will automatically 
derive the coordinates of the second spar-point and proceed with the same 
generative process as above.  
By using the point-to-point method, the orientation of the spars is always affected by 
changes in chord lengths and sweep angle. In case the orientation of the spars 
should not change with wing sweep and taper ratio, then the point-and-angle 
method should be used. See examples in Fig. 5.19 taken from the MOB study (La 
Rocca and van Tooren, 2002a). 

Fig. 5.18: Step-by-step generation process of spars geometry. 
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In both cases, chord fractions and/or angle values are assigned using the same input 
parameters: spar-offset-list-root and spar-offset-list-tip1. Table 5.5 reports the list of 
the parameters required to define spars in the TE/WB/LE areas of a given wing-part. 
Examples and notes for the user are included.  
A snippet of the MMG input file, with examples of spars definition is provided in 
Appendix G.  
The details (sub-activities) of the “generate spars” activity of Fig. 5.16, can be found 
in Appendix E. 
 
Parameter Example Description 

*-type-of-spar-XX (list ‘r … ‘v) 

• ‘r for real spar  
• ‘v for virtual spar 
• (list ‘r A B) for a spar that is real from the fraction 

A to the fraction B of the spar length 
• (list ‘v A B) for a spar that is virtual from the 

fraction A to the fraction B of the spar length 
• ‘f for a fuel tank spar. 

*-spar-offset-list-root-XX (list 0.2 … 0.6) 
A fraction of the chord length for point-to-point spar 
positioning (i.e., a number in the range [0,1]), or an 
angle value (expressed in degrees and > 1) for the 
point-and-angle positioning.  *-spar-offset-list-tip-XX (list 0.2 … 90) 

NOTES: 
* stands for the given lifting surface configuration, e.g. wing, fin, winglet, etc. 
XX stands for LE, WB or TE. 
A, B are numbers in the range [0 1] indicating a fraction of the given spar length 
RULES: 
The three lists must have same length.  
The values of *-spar-offset-list-root-XX and *-spar-offset-list-tip-XX defining a given spar cannot be 
simultaneously > 1 (i.e., both angles). 

 
 

5.4.2 The spars generative approach: rules, capability and limitations 

• Since the projected spar-lines used to define the spar surface are projection-
curves on the wing-part surface, the shape of the spars is always tailored to the 
surface generated by the WingTrunkSurface  class. 

                                        
1 As shown in Table 5.5, there is no additional switch/parameter to indicate whether the point-to-point 
or point-and-angle method should be used. When the user defines a spar-offset value larger than one, 
the system assumes automatically that the point-and-angle method is to be triggered. This “trick” 
simplifies (and limits the amount of parameters in) the input file, at “the cost” of excluding the 
possibility to position a spar at a null angle with respect to the LRS-longitudinal axis, hence parallel to 
the wing sections… 

Table 5.5: input parameters for spars definition. 
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• There is no limit to the maximum amount of spars that can be defined in each 
wing-part and each wing-part area (LE/WB/TE). The designer can add/remove 
spars in any given wing trunk, just adding/removing the relative values in the 
MMG input file lists. 

• A minimum of two spars is required in the WB area. 
• The MMG assigns an index number to each spar, which starts from zero for the 

first spar defined in the LE-spars-offset-list and increases till n for the last spar in 
the LE-spars-offset-list. Then the index goes from n+1 to m from the first to the 
last spar in WB-spars-offset-list. From m+1 till k from the first to the last spar in 
TE-spars-offset-list the same list and so on. See example in Appendix G. This 
index number is used to address the single spars, when used as reference for the 
ribs positioning and orientation procedure.  

• In the same wing-part, spars can be generated both with the ‘point-to-point’ and 
‘point-and-angle’ methods. 

• More spars can start/end in the same points, but are not allowed to cross each 
other. To define a spar running out onto another spar, the correct approach is 
defining two contiguous wing-parts and let the two spars just meet at the 
interface (see Fig. 5.20). 

• Spars must extend from the root to the tip section of one wing-part area (see Fig. 
5.20). 

• No curved spars can be generated  
• Spars are not warped even if generated inside twisted wing-parts, because the 

spar-lines are projected along the direction of the vertical axis of the Wing-part 
local reference system (defined in section 5.2.4). 
 

Fig. 5.19: Examples of the two spars positioning procedures: Point-to-point (left) and 
Point-and-Angle (right). 
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5.4.3 Definition of real, virtual, semi real/virtual spars 

Via the input file parameter type-of-spar, users can associate to each spar one of the 
specific properties/functionalities indicated in Table 5.5.  
Of particular interest are the so-called virtual spars.  They are defined in the same 
way as the real spars. Like real spars they can be used as positioning reference for 
ribs and they contribute to the wing-part segmentation process to support FE 
analysis, addressed in Section 4.7.1 and thoroughly described in Chapter 6. The 
difference is that they are not accounted as true structural elements; as such, they 
are excluded from any model generated for structural analysis support. 

Semi-virtual or semi-real spars (refer to Table 5.5) can be used to model wing-
part configurations where, for example, one spar out of three runs out at a certain 
span fraction. Without virtual spars the user would be forced to define two adjacent 
wing trunks, one with three spars and the other with two. However, this solution 
might create problems later, during the pre-processing phase for FE analysis (see 
more in Chapter 6). The definition of a virtual spar in the second wing-part, 
positioned as extension of the one running out, would solve the problem.  However, 
a more convenient solution, which would not even require the overhead of defining 
two wing-parts, is that of using a semi-real spar, hence a spar which is real only for a 
fraction of its own length. An example of a semi-real spar is shown in figure Fig. 
5.24.  

5.5 Definition of Wing box, Leading Edge and Trailing 
edge areas  
Once the spars have been defined, WingTrunkStructure  can start the process of 
surfaces intersection to segregate the wing-part surface generated by 

Fig. 5.20: Example of valid and wrong spars definitions. 
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WingTrunkSurface  according to the three leading edge, trailing edge and wing 
box areas. For each area an upper and a lower skin panel is obtained (Fig. 5.21).  
The procedure can be summarized as follow (refer to Appendix H for the detailed 
UML activity diagram):  
1) WingTrunkStructure  selects in the list of user-defined WB spars the two spars 

closest to the LE and TE lines of the wing-part. These two spars, no matter if real 
or virtual, will determine the wing-box area.  

2) Then WingTrunkStructure  checks the list of LE spars. If the list is empty:  
− No leading edge structure will be generated at all (similar procedure for the 

TE area).  
− Otherwise, the LE spar farthest from the leading edge curve will determine the 

extension of the LE area. In case this spar is not coincident with the first spar 
in the WB area, a physical gap between the LE and WB area will be generated 
(see examples in Fig. 5.22). When the last LE spar and the first WB spar 
coincide, one of the two can be defined as virtual spar (similar procedure for 
the TE spars).  

Fig. 5.22: examples of wing-parts with definition of LE/WB/TE areas  

GAP 

Wing-Part surface 

Fig. 5.21: Wing-part surface intersection in LE/TE/WB areas and upper/lower panels 
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This modelling approach allows the generation of centre wing sections (the part of 
the wing that crosses the fuselage), where no LE and TE areas are present.  
It also allows defining wing-part models for structural analysis that include a movable 
component. The gap allows the physical separation of fixed and movable wing parts, 
while simplified hinge brackets can be automatically generated in accordance with 
user-defined hinge-ribs (see next section).   

5.6 Ribs definition 
Similar to the modelling of the spars, the level of detail for the ribs is low but 
adequate for the evaluation of the global structural behaviour of wing-like systems, 
using FE analysis. All ribs are modelled as plain surfaces, without flanges and any 
kind of cut-out. Actually, what is modelled is just the web surface of each rib. 
The requirement analysis for the rib modeling system has been summarized below. 
Refer to Appendix J for the complete UML use case. 
 
User defined functionality: the designer should be allowed to perform the following 
operations: 
• Define any number of ribs in any wing-part, with the possibility to position and 

orient each rib independently, 
• Make use of any of the following items as references for the position and 

orientation of each rib: flight direction, LE and TE curves and any of the spars 
defined in the given wing-part. 

• Define special kinds of ribs (e.g., virtual/semi virtual ribs) and/or assign them 
special functionalities (e.g., define boundary wall for fuel-tank, support hinge 
brackets for attachment of movables (control surfaces)) 

 
User defined constraints for the rib generation: 
• The shape of the ribs must be tailored to the outer wing-part surface (hence they 

should dynamically adapt to any change in the surface generated by the 
WingTrunkSurface  class)  

• The ribs must lie on planar surfaces 
• The planes containing the ribs must be parallel to the vertical axis of the Wing-

part local reference system (defined in section 5.2.3) 
• The ribs defined in LE/TE areas should have a corresponding rib (no matter if real 

or virtual) defined in the WB area, to be used as positioning reference (this 
follows from the need of generating valid segmented models for FE analysis. 
More information in Chapter 6)  
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5.6.1 Ribs generative process 

All the ribs in the wing-box area (the WB-ribs) are generated through the following 
sequence of activities illustrated in Fig. 5.23 (point and vector definitions in next 
section): 
• A WB-rib-plane is defined, which requires: 

o the definition of a point (the WB-rib-point)  
o the definition of a vector (the WB-rib-vector).  

• The upper and lower wing-box skin panels are intersected by the WB-rib-plane to 
generate the WB-upper-rib-curve and the WB-lower-rib-curve  

• The actual WB-rib surface is generated by interpolation between the two 
intersection curves generated as described above. As in the case of spars, the 
ICAD geometry primitive ruled-surface is used. 

In order to generate LE and TE-ribs, the procedure is very similar to the one 
described above, with the only difference found in the definition of rib-point, which, 
in the case of LE/TE-ribs, is automatically calculated as the intersection of the 
corresponding WB-rib-plane, with the spar-line of the front WB-spar (back WB-spar 
for TE-ribs). The rib-vector of LE/TE-ribs is still assigned by the user as for WB-ribs. 

The positioning of the rib-point (only for WB-ribs) and the orientation of the rib-
vector can be determined by the user by means of four specific parameters in the 
MMG input file: 

1. rib-positioning-referred-to-spar (to be set only for only for WB-ribs) 
2. rib-positioning-offset-list (to be set only for WB-ribs) 
3. rib-orienting-referred-to-spar  
4. rib-orienting-angles-list 

Find in Table 5.6 for the detailed list and explanation of the rib definition parameters. 
A snippet of the MMG input file, with examples of rib definitions inside a multi wing-
part vertical tail, is provided in Appendix I. 

Fig. 5.23: Step-by-step generation process of a WB rib. 
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The way the four abovementioned parameters are used to define the rib-point and 
rib-plane for any rib can be summarized in the following four steps: 
1. (Only for WB-ribs). The spar-line of spar n is selected as reference curve to 

position the rib-plane-point. The spar number n is assigned via the input 
parameter rib-positioning-referred-to-spar. The LE/TE lines can also be selected 
in place of a spar. 

2. (Only for WB-ribs). The rib-point is found on spar n (or on LE/TE line), at a 
distance from the root (measured along the given spar or the TE/LE line) equal to 
a fraction of the length of spar n (or LE/TE), as indicated via the input parameter 
rib-positioning-offset-list 

3. Another (or the same) reference spar m (or the LE/TE line or the flight direction 
vector) is selected via the parameter rib-orienting-referred-to-spar. 

4. The spar line vector (pointing from root to tip point) of spar m (or the direction 
vector of LE/TE line) is then rotated around the vertical axis of the wing-part local 
reference system, by the angle (in degrees) defined by parameter rib-orienting-
angles-list. Hence, the rib-plane-vector results determined.  

 
Similar to the spar definition approach, a variant to the point-and-vector approach 
described above, the so-called point-to-point approach, has been developed, still 
based on the manipulation of the same four input parameters.  
Only step 4 of the sequence above is affected as follows: 
4. (point-to-point): in case a value < 1 is assigned to the parameter rib-orienting-

angles-list, this value is not interpreted as an angle, but as a fraction of the 
length of spar m (or LE/TE line). Hence a second point is generated on spar m 
(or LE/TE line), at the root offset distance indicated by rib-orienting-angle-list. 
This second point and the previously generated rib-plane-point are then used to 
define the actual rib-plane-vector2. 

 
This (apparently) complex procedure to define and generate ribs has been 
thoroughly documented with a series of UML activity and sub-activity diagrams, 
available in Appendix K.  

5.6.2 The ribs generative approach: rules, capability and limitations 

• The number of ribs that can be defined in a wing-part is unlimited. 
• There is no order in which ribs must be defined in the input file (e.g. from root to 

tip etc.) 

                                        
2 Similar to the spar case, this approach avoids complicating the input file with the addition of an 
extra switch/parameter. Similar to the spar case, the cost for the modeling flexibility is null: indeed, 
ribs oriented at angle smaller than 1 degree with respect to a spar are not realistic. 
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• Partial ribs can be generated, i.e., ribs that do not start and end in  
correspondence of a spar (or LE/TE line), but intersect the root and tip edge of 
the wing-part  

• Ribs should not cross each other, however partial ribs can run out on ribs that are 
positioned at the root and tip section of a wing-part. (i.e., partial ribs).  

• Similar to spars, virtual or semi-virtual/real ribs can be defined (refer to section 
5.4.3 for the scope of virtual elements). 

• A LE/TE-rib always needs a WB-rib in order to be generated (although the given 
WB-rib can be a virtual one) 

• Vice versa, for each WB-rib, a LE/TE rib must always be defined in the input file. 
However, if a given LE/TE-rib is not required, it can be defined as virtual, or 
suppressed by setting the corresponding input parameter type-of-LE/TE rib = ‘x. 
In this last case, the user must be aware that the rib will not affect the surface 
segmentation process to support FE analysis. 

• Hinge ribs can be defined setting type-of-LE/TE-rib = ‘h. A hinge rib triggers the 
generation of simple hinge brackets (La Rocca and van Tooren, 2002a) and 
affects the position of hinge slots in the movable models generated by the PMM 
(van der Laan, 2008; van Houten et al., 2005) 

• It is possible to define WB-ribs with corresponding, not coplanar LE/TE ribs. 
 
Fig. 5.24 shows some examples of modelled ribs with relative input parameter 
definition. 
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Fig. 5.24: example of the structure configuration of the fin of a commercial 
transport aircraft (with some ribs definitions). 
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Parameter Example Description 

*-type-of-rib-XX  (list ‘r  ‘x … ’v) 

• ‘r for real (normal) rib  
• ‘v for virtual rib 
• (list ‘r A B) for a rib real from 

A·rib-width to B·rib-width 
• (list ‘v A B) for a rib virtual from 

A·rib-width to B·rib-width 
• ‘f for a fuel tank end rib. 
• ‘h for a hinge rib 
• ‘x (only for LE/TE-ribs) to 

suppress the given LE/TE-rib 

*-rib-positioning-referred-to-spar (list 0 …  ‘LE ‘TE) 
• A spar identification number  
• ‘LE for the LE line 
• ‘TE to the TE line 

*-rib-positioning-offset-list (list 0.1 … 0.2) 
A fraction of the selected reference 
item (spar, LE or TE line) 

*-rib-XX-orienting-referred-to-spar (list 0  ‘LE ‘TE ‘FD) 

• A spar identification number  
• ‘LE for the LE line 
• ‘TE to the TE line  
• ‘FD for flight direction  

*-rib-XX-orienting-angles-list (list 0 90 … 0.2) 

A number ≥ 1 to indicate an angle 
(in degrees).  
(Point-and-vector  method) 

OR 
A number in the range [0 1] to 
indicate a length fraction of the 
element indicated by *-rib-XX-
orienting-referred-to-spar.  
(Point-to-point method) 

NOTES: 
− * stands for the given lifting surface configuration, e.g. wing, fin, winglet, etc. 
− XX stands for LE, TE or nothing for WB-ribs. 
− A, B are numbers in the range [0 1], hence represent fractions of the rib width. 
− *-rib-positioning-referred-to-spar and *-rib-positioning-offset-list are not defined for LE/TE-

ribs. 
− When *-rib-XX-orienting-referred-to-spar = ‘FD, the value of *-rib-positioning-referred-to-

spar is not relevant (but must be assigned anyway!) because all spars and LE/TE lines are 
straight.  

− When *-type-of-rib-LE or *-type-of-rib-TE = ‘x, the corresponding values of *-rib-XX-
orienting-referred-to-spar and *-rib-XX-orienting-angles-list are not relevant (but must be 
assigned anyway!). 

RULES: 
− The length of all the lists must be equal.  
− With the point-to-point rib positioning method, the corresponding values of *-rib-positioning-

referred-to-spar and *-rib-XX-orienting-referred-to-spar must be different. 

 Table 5.6: input parameters for ribs definition 



Chapter 5                             Implementation of the HLP concept in the KBE system 

177 

 

5.7 Implementation of the Connection-Element High 
Level Primitive  
Complex wing configurations, like multi-kinked wings with discontinuities in sweep 
and/or dihedral angles can be defined using multiple wing parts.  
When two adjacent trunks, k and k+1, are used with the same dihedral angle, and 
the tip airfoil of wing-part k is the same as the root airfoil of wing-part k+1, the 
overall wing surface results “sealed” at the trunks’ interface automatically. The 
resulting surface might be discontinuous (a kink in the wing), but is still watertight3. 
However, when a dihedral angle change occurs across two adjacent wing-parts, the 
relative rotation of their local reference systems (Fig. 5.4) generates gap and overlap 
areas in the wing surface, which needs to be resolved to restore the watertight 
condition. Also the disrupted continuity of the spars needs to be resolved4. 

As shown in the class diagram of Fig. 5.25, it is the LiftingSurface  class 
that checks for variation of dihedral angle between adjacent wing-parts and 
automatically demands the necessary number of instantiations of the 
ConnectionElement  class. Similar to Wing-Part, the Connection-Element HLP is a 

                                        
3 In the field of computer graphics, these cases are said to be g0 continuous, but g1 discontinuous. 
G0 is the term used to indicate continuity of position, g1 continuity of tangency (and g2 continuity of 
curvature). 

4 The possibility of restoring the continuity of ribs that cross Wing-part instances with different 
dihedral has not be considered here. In case of dihedral discontinuity, the most common structural 
design solution is to place a rib along the discontinuity rather than crossing it. In the case of a rib 
crossing two adjacent Wing-part instances that are dihedral continuous, the user will have the 
possibility to define two partial ribs (one per wing part) and take care of their relative positioning. 

Fig. 5.25: UML class diagram showing relationships and architecture of the Connection-
element HLP 
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composition of two modules, namely the ConnectionSurface  and 

ConnectionStructure  classes, whose functionalities will be addressed in the 
following sections. 

5.7.1 Wing-parts connection surface definition 

The generative process to build a connection surface between two contiguous wing-
parts consists of two main phases: 

1. Trimming of the two contiguous wing-parts extremities (in order to cut away 
the “problem area”)  

2. Generation of a blend surface as actual instantiation of the 
ConnectionSurface  class. 

As shown in the UML diagram Fig. 5.25, LiftingSurface  class has the 

responsibility to evaluate the required number of ConnectionElement  
instantiations and to demand the subsequent trimming phase. The 
ConnectionSurface  class is responsible for the final generation of the connection 
surface, which takes place during the blending phase of the process. 
 
Trimming phase (Fig. 5.26-top) 
Given the two adjacent wing-parts (addressed in figure as WT-1 and WT-2), 
positioned with different dihedral angles: 

1. Trimming Curve-1 is determined by intersecting the WT-1 surface with a plane 
parallel to WT-1 tip-airfoil and tangent to WT-2 root airfoil.  

2. Trimming Curve-2 is determined by intersecting the WT-2 surface with a plane 
parallel to WT-2 root-airfoil and tangent to WT-1 tip airfoil. 

3. WT-1 and WT-2 surfaces are trimmed using Curve-1 and Curve-2, 
respectively. In this way the surface areas at the tip of WT-1 and at the root 
of WT-2 are removed, and so are the gap/overlap problems. 

 
Blending phase (Fig. 5.26-low) 
Once the gap/overlap area has been cleared, a surface connection element is 
generated to blend the two trimmed wing-parts and restore the watertight surface 
condition. ConnectionSurface  inherits its “blending capability” from the ICAD 
geometry primitive Edge-Blend-Surface (Knowledge Technologies International, 
2001b), for which the following inputs are required: 

1. The trimming curves Curve-1 and Curve-2 defined above. 
2. The WT-1 and WT-2 wing-parts surfaces (to provide the tangency condition of 

the blend) 
3. The two parameters ratio-1 and ratio-2, which are required to define the 

relative influence the WT-1 and WT-2 surfaces have on the blend shape.  
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The first two sets of inputs are automatically computed by ConnectionSurface . 
Whatever the shape of the two adjacent wing-parts and the change in dihedral 
angle, the trimming phase will trigger and prepare the surfaces for blending. The 
definition of the third set of inputs to adjust the fullness of the blend remains the 
responsibility of the user. The ratio parameters Ratio-1 and Ratio-2 are available via 
the MMG input file and can take a value between zero and one. Values close to one 
will enforce the blend surface to maintain as far as possible the shape of the 
corresponding wing-part surface, which might lead to wavy connection surfaces 
because of the too high gradients of curvature (Fig. 5.27 top-left, top-right). On the 
other hand, a null ratio value nullifies the influence of the relative surface; also the 
tangency condition is then no longer enforced (Fig. 5.27 low-left).  In general a value 
around 0.3 for both ratios, guarantees the best blend (Fig. 5.27 low-right). 
 

WT-2WT-1

Curve 1
Curve 2

Tangency points

Parallel 
planes

Parallel 
planes

Surface parts to 
be trimmed

WT-2WT-1

Curve 1
Curve 2

Tangency points

Parallel 
planes

Parallel 
planes

Surface parts to 
be trimmed

WT-2WT-1

Curve 1
Curve 2

Parallel 

planesParallel 
planes

The blend 
element

WT-2WT-1

Curve 1
Curve 2

Parallel 

planesParallel 
planes

The blend 
element

GAP 

OVERLAP 

Fig. 5.26: trimming and blending operations to build a connection element  
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5.7.2 Wing-parts connection structure definition 

The role of the ConnectionStructure  is to restore the physical continuity of the 
structural elements (i.e. skin panels and spar elements) across adjacent wing-parts, 
when this is lost because of the relative wing-parts rotation. The level of detail of the 
structural connection is basic, and the scope is to guarantee load path continuity, 
when performing a global structural analysis of a wing-like system. There is no intent 
to model and investigate the effect of different technical solution for the connection.  

The generative process for the structure connecting elements can be 
summarized in the following steps (refer to the illustrations in Fig. 5.28 for the 
terminology used below): 
1. The ConnectionStructure  class gets as inputs the tip edge-curves of wing-

part k and the root edge-curves of wing-part k+1. These edges-curves are 
computed by the WingTrunkStructure  module of the Wing-part HLP. 

2. The edge-curves are used to generate a series of blend-segments, with the same 
approach – and the same blend ratio values – as used for the generation of the 
connection-element surface5. The blend-segments recreate the continuity 
between the skin panels of the adjacent wing parts 

                                        
5 In the Wing-part HLP, the associativity between outer surface and inner structure is achieved by 
generating first the outer surface and then using it as “mold line” to define spars and ribs (see the 
spar-lines projection and rib-planes intersection methods described in 5.4.1 and 5.6.1). In the case of 
the Connection-element HLP, the inner structure is not built by intersecting/projecting on the outer 
connection surface. However, the associativity is still guaranteed by generating the blend-segments 

Fig. 5.27: Effect of blending ratios on the shape and tangency conditions of 
ConnectionSurface  
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3. The longitudinal boundary curves of the blend-segments (indicated as Curves 
up/low in figure) are then used to generate, by linear interpolation, the surface 
of the spar-connection-segments (again, the ICAD primitive Ruled-Surface is 
used). This recreates the continuity between the spars of the adjacent wing parts 

 
In Fig. 4.7 of Chapter 4, an example of restored spar continuity between wing and 
winglet is shown.  
 
The success and the quality of the process described above depend strongly on the 
correct definition of the spars in the adjacent wing-parts that have to be connected. 
Fig. 5.29 shows examples of valid and bad spar positioning for the MOB BWB. The 
figure shows that it not necessary that adjacent wing-part have the same amount of 

                                                                                                                  

with the same blend ratios, (part of) the same reference curves and (part of) the same reference 
surfaces, as used to generate the connection-element surface. In fact, stitching the various blend-
segments together would lead exactly to the same edge-blend surface of section 5.7.1.  

Fig. 5.28: generation of the connection elements between two contiguous wing-parts. 
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spars. It is important that the number of upper and lower edge-curves (Fig. 5.28) 
match properly.  
A control system has been implemented inside ConnectionStructure  to check 
the validity of the model configuration before triggering any connection generation. 
If the check signals an incorrect situation, the generation of the structure connection 
elements is skipped to avoid crashing the MMG session.   
Rules have been implemented such that a virtual spar-connection-segment is 
automatically generated if the connecting spars are virtual. 

5.8 Towards a unified connection-element 
Other types of connection elements are required to deal with different situations than 
adjacent wing-parts with dihedral angle discontinuity. Connections to link horizontal 
and vertical tail planes in cruciform, T-tail and H-tail configurations and connections 
to link wings, canards and tail empennages with the fuselage require the 
development of separate classes. Some of these have been developed (besides the 

Fig. 5.29: Example of valid and wrong structural modeling for the generation of 
structure connection elements between adjacent wing-parts. 



Chapter 5                             Implementation of the HLP concept in the KBE system 

183 

 

one detailed in 5.7.1) in this research work; mostly to enable the generation of 
accurate aerodynamic models for a range of different aircraft configurations. While 
we have progressed towards almost one generalized surface-connection element, the 
structure connectivity aspects have been typically solved with ad-hoc solutions 
(Meijer, 2003; Cerulli et al., 2006; Cerulli et al., 2005) and will not be addressed 
here. 
The generation of a connection surface, whatever the type of elements to be 
connected, always requires the following two main steps: 

1. Preprocessing of the parts to be connected 

2. Generation of the connecting surfaces 

The trimming and blending phases described in Section 5.7.1 are just a 
demonstration.  
The scope of the first phase is to deliver two proper curves, which can be used in the 
second phase to build an appropriate surface. 
The differences between the various connection-generation cases are found mainly 
in the preprocessing methods used to derive the two curves (which again depends 
on the relative position of the parts to be connected), and the sort of connecting 
surface that has to be generated.  
Table 5.7 provides a matrix with the most recurrent connection cases when 
assembling an aircraft with HLPs. For each case, a list of typical preprocessing 
activities and possible types of surface generation are indicated based on experience. 
The preprocessing operations are not listed in a logical or required order; neither are 

Fig. 5.30: example of Horizontal/Vertical tail connection generated by the MMG. 
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they all required in each case. Some operations can be seen as alternatives for each 
other. It can be noted that many operations are common to the three main 
connection cases, which is a prerequisite for the definition of a unified connection 
modeling approach. 
 
When an a connection-element instance is required, the system should be able to 
derive automatically the list of involved surfaces, irrespective of the type of parts to 
be linked, and select a combination of preprocessing and surface generation methods 
from the matrix, either a default (best-practice) combination, or the one specifically 
required by the user (for example via the MMG input file)6. More details can be found 
in reference (van Dijk, 2008). 
For example, to connect the horizontal and vertical tailplanes of a cruciform tail 
configuration, the connection-element class should know that the affected surfaces 
are the root wing-part surface of the horizontal-tail and any of the fin wing-part 
surfaces. Then the surface of the horizontal tail could be extended to intersect one or 
more vertical tail wing-parts. The intersection curve (or the curve composed of the 
various intersection curve elements across different fin wing-parts) can be adjusted if 
required (e.g., scaled) and used, together with the root airfoil curve of the 
horizontal-tail, to build a lofted surface, or a blend surface, etc. Fig. 5.30 shows an 
example of a horizontal/vertical tail connection, generated by the MMG (van Dijk, 
2008). 

There are cases of connections where no surfaces/curves preparation is 
required and the final connection surfaces can be directly generated. This is the case 
of blended winglets, where a blend surface can be generated directly from the tip 
section of the wing to the root section of the winglet. In this case, the challenge is to 
ensure a proper relative positioning of the two parts. Refer to (La Rocca and van 
Tooren, 2002b; Meijer, 2003; Brouwers, 2007) for details. 

There are cases where three parts must connect to each other at the same 
time, such as H-tail configurations or the Airbus-typical wingtip fences. Reference  
(Brouwers, 2007) shows how to handle those situations as combinations of the first 
two cases in Table 5.7. 

                                        
6 The way connection surfaces are defined can largely affect the pre-processing of the overall aircraft 
for aerodynamic analysis. In fact, the number and the shape of the surface patches can vary 
significantly. Certain types of connections can be used to facilitate the preprocessing for analysis, even 
if they differ from the real aircraft geometry. Of course, the difference should be acceptable to not 
invalidate the analysis result. Refer to (van Dijk, 2008; van den Branden, 2004) for more info on this 
issue.. 
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Table 5.7: recurrent cases requiring the generation of a connection element. Typical 
surface preprocessing operations and type of connection surfaces are indicated for each 
case 
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5.9 Fuselage High Level Primitive implementation 
In the following two sections the basic characteristics and functionalities of the 
Fuselage primitive are briefly illustrated. Details concerning the technical 
implementation in the ICAD system are not included here, but be found in the 
following references (Meijer, 2003; van den Branden, 2004; Koopmans, 2004; Cerulli 
et al., 2004; van Houten et al., 2005). The intent of this section is to illustrate the 
implemented parametric modeling approach and the achieved level of flexibility. 
Similar to the Wing-part, the Fuselage HLP has a modular architecture, where 
separate classes have been defined to model the outer surface and the internal 
structure (see class diagram in Fig. 5.31). Also in this case, the structural 
components are generated using the outer surface as a support, such that the 
fuselage structure is always tailored to the outer surface. 

5.9.1 The fuselage primitive surface generation  

The modeling approach implemented to generate the outer surface of the fuselage 
primitive is rather simple and aims at the generation of one, continuous aerodynamic 
surface extending from nose to tail.  

Fig. 5.31: class diagram of the Fuselage HLP. 
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The procedure consists of the following main steps: 
• Definition of a skeleton of support curves 
• Interpolation of a B-spline surface1 on top of this skeleton. 
• (optional step) Local modification (morphing) of the obtained surface adjusting 

the B-spline surface weights.  
The first step is fundamental to the quality and accuracy of the overall fuselage 
design. Again, two different possibilities are offered to the designer (a parameter in 
the MMG input file allows the selection) to define the skeleton of curves. The two 
options allow for two different levels of control on the final shape: 
1. Skeleton definition based on sets of longitudinal and circumferential curves 
2. Skeleton definition based on a set of circumferential curves only 
 
Option 1: 
This modeling approach is based on the definition of both longitudinal and 
circumferential curves (see Fig. 5.32).  
First, four longitudinal curves must be defined, namely the crown curve, the belly 
curve and two side curves (actually the definition of the left side curve is sufficient 
because of the fuselage lateral symmetry). These curves are built by the Fuselage 
HLP interpolating through sets of user-defined 3D points, stored as .dat files.  
Once the longitudinal curves are in place, they can be used to position an arbitrary 
amount of circumferential curves, of which the user can assign the longitudinal 
position. 

                                        
1 Details on the definition of B-spline surfaces can be found directly in the ICAD Surface Designer 
(Knowledge Technologies International, 2001b) user manual, or in the Farin textbook (Farin, 1988), 
which contains ICAD’s underlying mathematical representation. 

Fig. 5.32: definition of the curve sets used to model the fuselage primitive surface 
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The circumferential curves are actually defined by merging 4 curve segments: the 
upper-left curve, the lower-left curve and the two right counterparts. The left curves 
can be selected by the user among those stored in a pre-generated library (the 
upper/lower-right curves are automatically generated by symmetry). Similar to the 
Wing-part HLP airfoils, the circumferential curve components are built interpolating 
through sets of normalized point coordinates, stored in a dedicated library as .dat 
files Fig. 5.33-step a. Algorithms take care of stretching the four curve components 
until their extremities match the longitudinal curves (Fig. 5.33- step b), and merging 
them into single circumferential curves (Fig. 5.33- step c). 
Once the skeleton of longitudinal and circumferential curves is in place, a single B-
spline surface is generated on top to obtain the final fuselage surface.  

The separate definition of the upper and lower parts of the circumferential 
curves (as well as the possibility to affect the tangency condition at their merging 
points) yields quite some modeling flexibility, suitable also for non cylindrical 
fuselages.  

Fig. 5.33: Construction of circumferential curves (top). Only upper-left curve 
component shown in figure. Modification of B-spline curves using control points 
weights (bottom) 
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Besides, the designer has the possibility to modify locally the fuselage surface, 
without regenerating the curves skeleton, but simply adjusting the weight factors of 
the B-spline surface control points2 (Fig. 5.33- bottom). 
 
Option 2: 
This second method requires the user to provide for each circumferential curve the 
files containing the upper and lower curve segment definition, as well as the 3D 
coordinates of Point 1 till Point 4 (Fig. 5.33- step b). The latter will be used to scale 
the normalized curve segments appropriately.  
This second method has the inconvenience that a lot of circumferential curves need 
to be provided by the user to model properly areas with large curvature gradient, 
such as in correspondence of the cockpit area. This can require more efforts from 
the user, while properly defined longitudinal curves offer the possibility to 
automatically position more circumferential curves where the gradients are larger.  
Similar to Option 1, the obtained fuselage surface can be locally adjusted modifying 
the weights of the B-spline control points. 
 
In Fig. 5.34 two examples of aircraft models generated using the first modeling 
option are shown to give an idea of the achievable level of surface definition3. At the 
moment, no functionalities have been implemented to model complex fuselage-wing 
fairings.  
 

When the surface to be modeled has a simple quasi-cylindrical geometry, the 
circumferential definition curves can be defined with a very low number of points. On 
the other hand, if the given shape presents large gradients of curvature, the system 
does not have problems in handling very densely defined curves (hence provided 
with many points).  

                                        
2 As a matter of fact, all the circumferential curves are first generated using the ICAD primitive 
interpolated-curve, which results in a set of B-spline curves. The control points of these curves are 
subsequently extracted and finally used as input to build the actual fuselage surface (using the ICAD 
primitive B-spline-surface). The weight of this surface control points (initially all set to one) can be 
modified by the user as required to affect the fuselage shape. The convenience of this method stays 
in the number of surface control parameter (i.e., the weight coefficient), which is much lower than the 
amount of point coordinates stored initially in the fuselage curves .dat files.  

3 The surface of the engines nacelles is generated using a very similar approach to the fuselage. 
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In this latter case the problem is actually how to get such point collections for the 
library .dat files. Even when native CAD files containing the aircraft geometry are 
available, the general procedure of extracting curves and points for external use 
(e.g., to prepare input data for the MMG) can be very labour intensive. On this 
purpose, a simple “scanning” module has been developed to extract from a CAD 
model (imported into the ICAD system via IGES format) any number of 
circumferential curves, sample them with any amount of points and normalize them 
as required for the method discussed above (van den Branden, 2004). This module 
has revealed useful to populate the fuselage sections library with several .dat files 
ready for reuse. 

Fig. 5.34: Two examples of aircraft models created with by the MMG.  
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5.9.2 Fuselage Structure generation process and capabilities  

As shown in the class diagram of Fig. 5.31, the structural elements included in the 
Fuselage HLP structural aggregation are frames, stringers, bulkheads, skins and 
another aggregation of parts constituting a simple model of the wing center section, 
which includes the keel beam for low wing aircraft configurations (see sketch in Fig. 
5.35) 
The modeling process of the structural component starts with the position of the 
wing with respect to the fuselage. The wing center section is actually not modeled by 
the Fuselage HP, but by Wing-part and consists of an instance of 
WingTrunkStructure, where the LE/TE parts have been excluded.  
In correspondence of the wing center section front and back spars, two intersection 
planes are used to cut the fuselage outer surface: the resulting circumferential 
intersection curves are used to model the wing attachment bulkheads (Fig. 5.35). A 
similar approach is used to model bulkheads at the tail empennage/fuselage 
intersections. A third bulkhead is positioned (based on user-defined parameter) to 
close the landing gear bay.  
As shown in the example of fig.4.7 middle, a procedure has been implemented to 
deal with high-wing configurations too. 

Apart from these bulkheads, an arbitrary number of frames can be generated 
based on a user-defined list of longitudinal positions. Similarly to the bulkheads, all 
the frames are generated by intersecting the fuselage surface with planes. These 
intersection curves are then used as guides to sweep a frame profile selected via 
input file by the MMG user (see sketch in Fig. 5.36). Currently C, Z, U and C section 
frames can be generated. 

 first  
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Fig. 5.35: definition of wing-crossing and landing gear bay bulkheads and keel 
beams as modeled by the Fuselage HLP. 
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The user has also the possibility possible to specify two frames, which will be used 
for the definition of the front and back pressure bulkheads.  

In order to generate stringers, first a user–defined number of points is 
generated circumferentially on each frame. All the corresponding frame points are 
then used to interpolate a set of longitudinal curves, which are then projected on the 
fuselage surface to form the stringer guidelines (see sketch in Fig. 5.36). Similar to 
frames, user-defined profiles are then swept along these guidelines to model the 
actual stringers geometry. Currently it is not possible to define stringers with run-
outs. 

The user can also define a number of floors. Their vertical position is assigned 
by means of a user-defined offset with respect to the Aircraft Reference System. 
Partial floors can be defined that start and end at user-define longitudinal positions. 
The implemented modeling procedure first computes the intersection between the 
floor planes and all the fuselage frame lines (Fig. 5.37, top), then uses the 
intersection points to define floor beams and finally generate a set of floor panels 
(Fig. 5.37, bottom). The floor panels do not “touch” the fuselage skin but transfer 
their load directly on the frames. 
 
Although less mature than the Wing-part HLP, the Fuselage primitive allows a 
reasonable level of modeling flexibility, both concerning the outer surface and the 
internal structure arrangement. Refer to figure fig.4.7 for examples of fuselage 
structure models generated by the MMG. 
In reference (Meijer, 2003) apart from a detailed description of the Fuselage HLP 
architecture and implementation, the capability of the MMG to model the geometry 
of the entire family of Airbus passenger aircraft is demonstrated. 
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CHAPTER 6                 
Implementation of the Capability 
Modules and operation of the MMG 

1. Introduction 

2. Capability Modules for aerodynamic analysis 

3. Capability Modules for FE structural analysis 

4. MMG – FEA environment integration 

5. Operating the MMG 

6. Study case 1: The MOB project 

7. Study case 2: Vertical tail redesign study 

8. Multi-level modelling to manage complexity and support multi-level design 

6.1 Introduction 
In this chapter, the capability of the MMG to automate the generation of models to 
support multidisciplinary analysis of aircraft (and aircraft components) and their 
optimization is discussed and demonstrated.  
As any ICAD-developed KBE application, the MMG is natively able to export geometry 
models using standard exchange formats such as IGES, STEP, STL, as well as several 
proprietary CAD formats1 such as CATIA V4, UGII, AutoCAD, Pro-Engineer, etc. 
(Knowledge Technologies International, 2001a).  However, many analysis tools, 
especially in-house developed ones, do not always support any of those standards, 
and rely on custom formats, often based on some kind of ASCII table (e.g., 
containing point coordinates).  

                                        
1 A separate license is required to operate each one of the various translators. Furthermore, separate 
licenses are also required to export and import files in the various formats. 

The longevity of the standard format file translators, such as IGES and STEP, is of course superior to 
those of proprietary formats, which must account for the evolution of the related CAD systems. The 
ICAD system (together with the whole company KTI) was acquired by Dassault Systemes when the 
translator for the newcomer CATIA V5 was under development.  
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On the other hand, commercial analysis tools are often provided with proprietary 
geometry pre-processors and mesh generators, which, however, require plenty of 
manual operations and are difficult to script in a flexible way.   
To the scope of supporting automatic geometry pre-processing and achieve a 
seamless integration of the MMG with external analysis tools, both commercial of the 
shelf (COTS) and in-house developed, a number of capability modules (CMs) have 
been developed. In this chapter, the functionalities and the implementation of some 
of the CMs introduced in Chapter 4 are elaborated in more detail, in particular of 
those developed to support automatic generation of structural and aerodynamic 
analysis models. The achieved integration of the MMG with two commercial analysis 
codes for aerodynamic and structural analysis is subsequently discussed.  

In the second part of the chapter, two study cases will be presented that give 
evidence of the MMG ability to enable distributed multidisciplinary analysis and 
optimization of complex products. The first case concerns the conceptual/preliminary 
design of a blended wing body aircraft, carried within the framework of the European 
project MOB. The second deals with the redesign of the vertical tail for a large 
passenger aircraft and has been carried in collaboration with Airbus Germany. In the 
description of these study cases, the focus is on the role and functionality of the 
MMG, rather than the goals and finding of the two projects. For those, references are 
provided. 

To conclude, the strategy developed to deal with increasing complex KBE 
applications for multi-level design is discussed and examples on the current state of 
development are provided. 

6.2 Capability Modules for aerodynamic analysis 
The Points-generator CM has been developed to “translate” the surface of any HLP 
instantiation into a so-called cloud of points. Via the MMG input file, the user has the 
possibility to control the density of the cloud in terms of number of sections, number 
of points per section and point stretching (i.e., the point distribution on the various 
sections). The level of control on the cloud density is at the level that the user can 
demand a different amount of sections per Wing-part instance, or different amount 
of points and stretching for the wing, tail and fuselage surfaces.  
Once the points are generated, their Cartesian coordinates (defined in the Aircraft 
Reference System) are organized by the MMG as required by the recipient tool and 
finally transferred, either via plain ASCII file or more structured XML files.  
The cloud of point’s translation approach has been used successfully to define 
dedicated models for a heterogeneous range of aerodynamic analysis tools (Fig. 6.1). 
These models include simple flat panels discretization as those used for aeroelastic 
analysis (La Rocca et al., 2002; Stettner and Voss, 2002 ) with ZAERO (Zona 
Technology, 2009), as well as those for potential codes such as VSAERO (Analytical 
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Methods, 2009) and other in-house developed panel codes (Van Staveren, 2003; van 
den Branden, 2004). 
The cloud of points approach has been used also to support setting up models for 
high fidelity CFD analysis. In this case the generated points have not been used as 
grid points, but as control points to support the automatic re-splining of the aircraft 
surface into the pre-processing environments of MERLIN and ENFLOW, respectively, 
the in-house developed Reynolds-averaged Navier-Stokes tool of Cranfield University 
and the multipurpose Euler/RANS system in use at NLR (more details in (Qin et al., 
2002; Laban et al., 2002)). 
 
In order to operate, the Point-generator CM needs to have available well defined 
surface patches where to extract points coordinates. Whilst the generation of these 
patches is relatively straightforward for a configuration like the BWB of Fig. 6.1, 
which consists only of a series of adjacent Wing-part instances, it is definitely not in 
presence of intersections between lifting surfaces and fuselage, or between two 
lifting surfaces (e.g., in case of T-tail, H-tail or cruciform tail configurations). The 
actual challenge is about generating - automatically and for any type of aircraft 
configuration - sets of non intersecting patches, with properly matching edges, as 
shown in Fig. 6.2. 

Fig. 6.1: Translation of the aircraft surface to support automatic generation of models 
for both high and low fidelity analysis. Examples of a refined model for Euler/Navier-
Stokes CFD analysis and a simplified one with flat paneling (including TE movables) for 
aeroelastic analysis. 

 MMG 

 CFD 
 Panel Code 

     Cloud 
of 

points 
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Actually, in case of aircraft configurations with an “intersected fuselage”, the 
generation of aerodynamic views is accomplished by means of the abovementioned 
Point-generator, plus another CM called Surface-patcher. The functionalities of both 
are described in the following sections. 

6.2.1 Surface-patcher, a capability module for automatic patches 
generation 

Given a generic lifting body, such a wing, a canard or a tail empennage, the 
generation of surface patches is limited to splitting the surface of each Wing-part and 
Connection-element instance along the leading and trailing edge curves. The 
resulting upper and lower skin patches can then be directly processed by Point-
generator. 
On the other hand, Surface-patcher is needed to deal with fuselage surfaces 
intersected by wings, canards, tail empennages, engine pylons, etc. In this case, 
Surface-patcher performs the following activities (refer to (van Dijk, 2008) for 
details):  

- Detect the LE and TE points of all the connection curves (i.e., the curve 
resulting from the intersection of the fuselage surface with the “piercing” 
bodies). Fig. 6.3 (A) 

- Generate circumferential curves (not necessarily orthogonal to the fuselage 
axis) on the fuselage surface that pass through the above detected LE/TE 
points.  

Fig. 6.2: Generation of wrong (a) and correct surface patches (b). Patches must not 
intersect with each other and must share only one edge with those adjacent 
(patches indicated with tick blue boundary lines). 
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- Eliminate the circumferential curves that intersect a connection curve and 
combine more close curves in one when possible, to reduce the number of 
patches. Note the circumferential curves at the fuselage fin intersection in Fig. 
6.3 (B). 

- Connect the TE point of each connection curve with the LE point of the next 
one (starting from the fuselage nose going backwards) by means of 
longitudinal curves defined on the fuselage surface. 

Fig. 6.3: main steps performed by the Surface-patcher CM to split the 
surface of a fuselage in suitable patches for aerodynamic analysis. 

Connection curves 
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- Intersect the longitudinal and circumferential curves with each other and 
collect the curve segments that delimit each patch. Fig. 6.3 (C). 

The patching method described above can be used also in case of more lifting 
surfaces that intersect each other, such as the horizontal stabilizer and the fin in a T-
tail configuration. However, to limit the complexity of the patching problem and the 
amount of resulting patches (Fig. 6.4, a), it is convenient to define a connection 
element that extends from the LE to the TE curve of the pierced Wing-part instance 
(Fig. 6.4, b). In the T-tail example shown in the figure, the chord distribution of the 
horizontal tail is maintained unaltered, while the span of the connection element has 
be kept sufficiently small to be ignored by the aerodynamic solver (of course, the 
designer has still the possibility to modify the shape of the connection element if the 
intention is to model a real fairing). In this way, the fin surface is not pierced any 
more, but simply split in more spanwise patches, as shown in the example of Fig. 6.4 
(b). Note that using this modelling approach, also the fuselage patching results 
simplified, because unaffected by the presence of the horizontal tail piercing the fin. 

6.2.2 Point-generator, a capability modules for point generations on 
surface patches 

In order to operate, the Point-generator capability module needs the following input: 
- The native surface on which the patch is defined 
- The four curves delimiting the patch: Curve-u1, Curve-u2, Curve-v1 and Curve-v2 

(Fig. 6.5) 
- The number of points to be placed on the u-curves2 (no-of-u-points) 
                                        
2 As u-curve is intended any curve in between and “aligned” with Curve-u1 and Curve-u2 

Fig. 6.4: complex patching in case of self intersecting Wing-part instances (a). 
Simplified case by the implementation of a connection element spanning from the LE 
to the TE edge of the fin (b).  

Complex patching case Simplified patching case 

 

      (a)       (b) 
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- The number of points to be placed on the v-curves (no-of-v-points) 
- The parameters defining the stretching3 of the points on the u-curves 
- The parameters defining the stretching of the points on the v-curves 
- The MMG takes care of sending consistent input values for each patch in the 

aircraft. The order in which the patch boundary curves are provided to Point-
generator, as well as the amount of points to be generated along each u and v-
curve must be such to guarantee a proper panelling of the complete aircraft 
surface.  Similar to the patches, also the panels are (generally) allowed to share 
only one edge with the neighbours, regardless the patch they belong to.  

 
As a matter of fact, two versions of the Point-generator CM have been developed, to 
be selected depending on the type of patch data provided as input:  

Point-generator Version 1: In case of alignment of the patch boundary curves 
with the iso-lines of the native surface (Fig. 6.5-a), a fast and straightforward point 
generation process can be implemented:  
A number of points equal to no-of-u-points are generated along curve-u1, according 
to the required stretching.  
In correspondence of each point generated on Curve-u1, the corresponding iso-v 
line4 is selected, along which the amount of points indicated for v-curves (no-of-v-
points) is generated, according to the required stretching (of course the points are 
generated along the portion of iso-v lines delimited by curve-u1 and curve-u2).  
Once points have been generated along all the selected iso-v lines, their Cartesian 
coordinates are collected and stored together with the point from the other patches. 
Indeed, this method exploits the possibility of accessing the iso-lines of the native 
surface, which are conveniently aligned with the boundary curves of the patch. 
However, also in case of misalignment (Fig. 6.5-b), there is a possibility to rebuild 
the patch using a fresh new surface5, as shown in the example of Fig. 6.5-c. In this 
way the same version of Point-generator can be used, as far as the surface of the 
rebuilt patch is given as input, in place of the native surface.   
However, the operation to rebuild the patch surface does not always guarantee a 
good result: the new patch might deviate too much from the underling surface, 
                                        
3 A sinusoidal stretching function has been defined to allow tuning the point density at the leading 
and/or trailing edge of the airfoil curves. Details in ref. (La Rocca and van Tooren, 2002c) 

4 A v-constant iso-curve means that the v parameter is held constant and the u parameter varies (the 
iso-curve is in the u-going direction). A u-constant iso-curve means that the u parameter is held 
constant and the v parameter varies (the iso-curve is in the v-going direction).  

5 The ICAD primitive quad-blend is used at the scope, which generates a new surface based on four 
input curves and the surface on which these curves lie. The resulting blend is C1 continuous with the 
surfaces at the boundary (Knowledge Technologies International, 2001b). 
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especially in case of large, double curvature patches, with skewed or irregular 
boundary curves. For these cases, the second version of the CM must be used. 

Point-generator Version 2: This version encompasses a more complex approach 
based on the generation of a grid of “pseudo iso-lines”, on which the required points 
can be generated. It works as follows (Fig. 6.6): 
Points are generated on curve-u1 and curve-u2 (in the amount and according to the 
stretching indicated via input) 

Fig. 6.5: Examples of patches with boundary curves aligned (case a) and crossing 
(case b) the iso-lines of the underling surface. Case c: a patch surface rebuilt copying 
the underlying surface. 

      (a) 

      (b) 

      (c) 
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Support curves are generated linking couples of corresponding points on curve-u1 
and curve-u2 (although the support curves are enforced to lie on the native surface, 
some cannot be generated in case of large irregularity of the patch boundary curves) 
A number of support points (equal no-of-v-points) is generated on each remaining 
support curve, with the stretching required for the v-curves. 
A set of pseudo iso-u curves is generated fitting the support points. All these curves 
lie nicely on the native surface. 
An amount of points equal to no-of-u-points is generated on each pseudo iso-u 
curve, with the stretching required for the u-curves. These points are finally added to 
those initially generated on curve-u1 and curve-u2. 
 
Point-generator Version 1 is generally used to operate on Wing-part instances, where 
patches often coincide with the underling native surface, or a part of it trimmed 

Support curves Support points

Pseudo iso-u curves

Missed support curves

Curve-u1

Curve-u2

Curve-v1

Curve-v2

Fig. 6.6: The Point-generator CM (Version 2) in action on a trimmed and curved 
surface. From top-left, clockwise:  

Step 1: Generation of points on curve-u1 and u2 and fitting of support curves  
Step 2: Generation of support points along valid support curves 
Step 3: Fitting of pseudo iso-u lines through the support points 
Step 4: Generation of the user required points along the pseudo iso-u lines  
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along some iso-curve. Version 2 is generally required to operate on fuselage patches.  
Although Version 2 alone would be sufficient for all cases, both versions are kept in 
use, just because of the higher speed of the first.  

6.2.3 MMG – VSAERO connection 

The pre-processing capabilities described so far (together with COALA (Brouwers, 
2007; Grotenhuis, 2007; van Dijk, 2008; Dircken, 2008), the MATLAB application 
mentioned in Chapter 4) have enabled a seamless integration of the MMG with the 
commercial panel code VSAERO. The main steps occurring during the preparation 
and execution of an analysis cycle are summarized in Fig. 6.7: 
• The outer surface of the complete aircraft model is generated by instantiation of 

various HLPs 
• All the aircraft surfaces are automatically cut in patches by Surface-patcher 
• Each patch is processed by Points-generator, which translates the surface into a 

set of 3D points, distributed as required by the user. 
• The coordinates of all the points are automatically formatted into an XML file. 

Tags are used to identify the points’ membership to the various patches and 
aircraft surfaces. Information concerning movables surfaces definition and 
deflection angles are encoded as well. 

• COALA reads the XML file and translates the cloud of points into a fully pre-
processed VSAERO model. 

• A solid angle test is performed to assess the quality of the model (e.g., the 
presence of undesired gaps/overlaps between panels) 

• Analysis is performed. COALA allows the execution in series of multiple user-
defined test cases (when test cases concerns the analysis for different movable 
deflections, COALA takes care of deflecting the relative movables panels, without 
the need to go back to the MMG).  

• Analysis results are automatically post-processed. Aerodynamic and control 
derivatives  and stored by COALA as aero data sets for FMM (Voskuijl, La Rocca 
and Dircken, 2008), a in-house developed flight mechanics package for the 
assessment of aircraft performances and handling qualities. 

In the current state, engines and nacelles are not included. Configurations with multi 
element high-lift devices or devices that modify the wing planform area have not 
been tested because of the current MMG modelling limitations in this regard. 
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6.2.4 Integration with other systems for aerodynamic analysis 

In the framework of a collaboration project with Airbus Germany, the MMG has been 
provided also with the capability to generate dedicated models for the Doublet 
Lattice Method (DLM) in MSC.Nastran (for for linear unsteady aerodynamics) and for 
an Airbus-proprietary Vortex Lattice Method (VLM), for non-linear steady 
aerodynamics.  This has required transforming the whole aircraft into flat plates, as 
well as extracting wing curvature information from the 3D geometry to include twist 
and camber effects in the DLM and VLM analysis. Furthermore, modules were added 
to the MMG for generating a structural beam model of the aircraft, as required to 
carry out the unsteady aerodynamic analysis in MSC.Nastran. Report writers have 
been developed to export all the information directly in the format required by 
MSC.Nastran (i.e., CAERO cards). Structural and aerodynamic views of the aircraft in 
Fig. 6.9, technical details in (Koopmans, 2004; Cerulli et al., 2005) 

patches 

XML file 

Fig. 6.7: schematic representation of the MMG-VSAERO integration approach. 

MMG VSAERO 

patches 
patches 

COALA 

Solid angle check 
file 
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Within the national project PARMOD (van Houten et al., 2005), other capability 
modules have been developed, to extract from the MMG surface grid models6 for the 
NLR multipurpose Euler/RANS system ENFLOW. A dedicate CM was required to 
perform the surface patching as required by ENFLOW, which is not compatible with 
the one used by VSAERO and similar panel codes. The generated aircraft models and 
its dedicated ENFLOW view are shown in Fig. 6.8 (note the deflected stabilizer 
surfaces). Technical details in (van den Branden, 2004). 

6.3 Capability Modules for FE structural analysis  
In order to set up a FE model starting from the CAD model produced by the design 
department, the FE specialist will have to perform a lot of manual work just to 

                                        
6 N.B.: complete surface grid models, not just the points for surface re-splining mentioned in section 
6.2! However this came at the cost of modeling flexibility, in fact the system functionality was just 
restricted to aircraft configurations similar to the Fokker 100, the aircraft considered in PARMOD.   

Fig. 6.9: 3D model and relative analysis views generated by the MMG: the structural beam 
model (middle) used by the DLM model for linear unsteady aerodynamics (right). 

  

Fig. 6.8: MMG generated Fokker 100 model, and the patching scheme (middle) 
implemented for the generation of the ENFLOW dedicated aerodynamic view. 
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prepare the model for meshing. The surfaces of 
all the structural components (e.g., skins, spars, 
ribs, frames, etc.) must be trimmed along their 
intersections in order to produce sets of 
meshable surfaces. That is to say, surface 
segments with no more than four edges, sharing 
maximum one edge with the neighbouring 
segments. Fig. 6.10 shows examples of a 
correct and wrong segmentation of a wing box 
(Nawijn et al., 2006). The surface segmentation 
process can be very time expensive and often 
not trivial. Besides, every time a change occurs 
in the model topology, the segmentation 
process has to be performed again. 
Unfortunately, the automatic meshing 
functionalities provided by most of the FE 
preprocessors can be used only after all model 
surfaces have been properly segmented.  
The segmentation process is lengthy, repetitive 
and plenty of rule-based geometry 
manipulations. As such, it is a good candidate 

for a KBE application. As anticipated in Chapter 4, a dedicated Capability Module, 
called Surface-splitter, has been developed to capture the process applied by a FE 
specialist when manually performing the segmentation process. Given a generic 
aircraft model built with any number of HLPs instantiations, the Surface-splitter is 
able to process, one by one, all the various HLP instantiations (Fig. 6.11), and finally 
deliver a set of surfaces that are suitable to be meshed, whatever the topology of the 
generic aircraft and its internal structure. 
Fig. 6.12, shows the Surface-splitter use case and includes a number of 
constraints/indications provided by FE specialists (see text in curly brackets). 
According to this use-case, Surface-splitter has been developed such that the 
“number of meshable surface segments is kept to a minimum” (as discussed in the 
next section, the generation of meshable surfaces might require cutting the 
structural elements into more and smaller segments than those obtained just by 
trimming them along their reciprocal intersections). When necessary, Surface-splitter 
generates triangular surfaces, although “in the least amount possible” and “with the 
least possible sharp angles” in order to limit the generation of “unhealthy” finite 
elements with too high aspect ratio. Even if the CM purpose is to automate as much 
as possible the segmentation process, the designer is allowed to “insert virtual 
elements by hand to support the model segmentation”. 
 

Fig. 6.10: Model with surface 
segmentation errors (a). 
Properly segmented model (b). 
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Fig. 6.12: UML use case for the KBE system to perform the automatic surface 
segmentation of a generic geometric model 

Insert virtual elements
"by hand" to  support

segmentation

Detect critical areas where
a proper segmentation
cannot be performed

Insert automatically
extra elements to support

segmentation

Cut structure elements
surfaces along their

intersections

Perform extra
cutting of surfaces

Detect generated
surfaces that are not

meshable

Account for CAD kernel
limitations and  known

bugs

«include»

«include»

«extend»

«extend»

«include»

«include»

Extra elements should not 
affect the segmentation of 
contiguous HLPs 

Limit the amount of 
triangular surfaces

Create triangles with the 
least sharp angles possible

create 4 edge
surfaces

Create 3 edge
surfaces

«include»

«extend»

«include»

Limit the number 
of extra generated 
surfaces

Surface segments can be 
considered meshable when 
they have not more than 4 
edges, each edge matching 
one-to-one with the edges 
of neighbour segments

Perform automatic structure
segmentation into sets of

meshable surfaces

«extend»

Fig. 6.11: The Surface-splitter CM processes the outer skin and the internal structure 
of each HLP instance that is used to define an aircraft, into sets of meshable surfaces.  
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The activity diagrams that document the detailed implementation of the automated 
segmentation process can be found in Appendix L. The example of a surface 
segmentation process is described in the next subsection, to show how the Surface-
splitter Capability Module actually works.  

6.3.1 Surface-splitter, a Capability Module for automatic generation of 
meshable surfaces. 

A generic instantiation of a wing-trunk HLP is shown in Fig. 6.13 (top). Whether such 
instantiation belongs to a BWB aircraft component, a conventional wing, a tail 
empennage, or a control surface, is not relevant. The Surface-splitter Capability-
module operates on any HLP instance, independently from the instantiation purpose.  
The Wing-part instance considered in this example has four spar elements, defining 
and confined to the wing-box (WB) area, and a number of ribs and riblets crossing 
the wing-box and/or the leading (LE) and trailing (TE) edge areas. Note that some of 
these rib elements start and end at either a spar or the LE/TE line, whilst others start 
or end at the root or tip section of the given wing element (i.e., LE riblet 4, Ribs 1, 3, 
4, 5 and TE Riblets 1 and 2). The latter are likely to cause troubles during the 
segmentation process.  
 
The segmentation process takes place through the following steps: 

Step 0  
The first operation performed by Surface-splitter is the intersection of the wing-part 
skins with all the spars and all the ribs. Also, each rib is intersected with all the spars 
and all other ribs and, finally, all the spars are intersected with all the ribs and all 
other spars.  
Some of these intersection operations might produce no result, but this is handled by 
the CM without causing any runtime error.  
This intersection process delivers sets of spar, rib and skin segments, which are 
subsequently scanned for non-meshable surfaces. As highlighted in Fig. 6.13 (mid), 
five non-meshable skin elements (i.e., elements with more than four edges) are 
detected. As anticipated, they are caused by those ribs and riblets that either start or 
end at the root or tip section of the wing-part.  
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Step 1 
As a FE specialist would, Surface-splitter finds out that, within the skin panel 
delimited by Spar 0 and Spar 1, it is possible to fix at least one non-meshable surface 

Fig. 6.13: Knowledge based segmentation process of a generic wing like component. 

Step 0: skins, spar and ribs are intersected with each other and non-meshable surfaces 
are detected. 

Step 1: a first extra segmentation process resolves some non-meshable surfaces, by 
automating the generation of some virtual spars.  

Root section 

Tip section 

STEP  0 

STEP  1 
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by forcing the generation of a virtual spar7. As shown in Fig. 6.13 (bottom), the 
position of the extra virtual spar is automatically defined by the points where Rib 1 
and Rib 4 intersect the root and tip section of the wing trunk.  
It is evident that the generation of one virtual spar was not sufficient to fix all the 
non-meshable surfaces, however, in this specific case, only Rib 1 and Rib 4 could be 
used to define the extra cutting element (i.e. the virtual spar).  

Step 2 
Indeed, the generation of any other virtual spar to fix the remaining non-meshable 
surfaces could affect the segmentation of possible Wing-part instances adjacent to 
the wing-part under consideration. This is not desirable, because it would increase 
the complexity of the overall segmentation process, as well as the total number of 
surface segments. Therefore, as a FE specialist would do, Surface-splitter checks the 
situation at the root and tip border of the given wing-part and allows the generation 
of extra virtual spars, only if not affecting an adjacent Wing-part instance. The 
following four cases illustrated in Fig. 6.14 exists (check the left side icons): 
Surface-splitter realizes that the wing part to be segmented has a “tip neighbour”. 
Therefore, spar points are automatically generated on the “free” edge (at the root) 
and used to generate extra virtual spars. As result of this second segmentation step, 
other two non-meshable surfaces get fixed.  
Surface-splitter verifies that it is possible to generate support points for extra virtual 
spars only at the tip section. Also in this case, other two non-meshable surfaces get 
fixed.   
The presence of adjacent wing trunks, both at the root and tip side, makes this 
second segmentation step useless.  
In the case of an isolated Wing-part instance, this segmentation step is sufficient to 
obtain all meshable surfaces.  

Step 3 
In this step, each of the remaining non-meshable surfaces is cut, individually, in two 
segments, using a cutting line passing through two non-contiguous vertices of the 
given non-meshable surface. As illustrated in Fig. 6.15, all the remaining non-
meshable surfaces from the previous steps get finally fixed and without affecting any 
adjacent wing parts.  
 

                                        
7 As introduced in Chapter 5, virtual spars are not real structural elements that access the FE analysis, 
but, as the real spars, they can be used to position other structural elements and do affect the surface 
segmentation. 

The automatic generation of virtual spars to tackle segmentation issues can be switched off via the 
MMG input file. In this case, the designer is responsible for the definition of the required virtual spars. 
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Fig. 6.14: Knowledge based segmentation process of a generic wing like component.  

Step 2: Some non-meshable surfaces can be fixed by generating extra virtual spars 
(only when the extra segmentation is not perturbing eventual adjacent wing-trunks). 
In case of isolated wing trunks (d), the process is completed successfully. In case of 
adjacent wing parts both at the root and tip sections (c), Step 2 is ineffective. 

a) 

b) 

c) 

d) 
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As a FE expert would do, Surface-splitter uses this segmentation approach only as 
last resource, because it is likely to generate triangular surfaces, which are not “as 
good as” quadrangles for FE analysis.  
In facts, there are more ways to split a pentagonal or hexagonal surface (surface 
with even more edges are not likely to occur) in two meshable surfaces. As 
demanded in the use case of Fig. 6.12 , Surface-splitter selects the combination of 
segments with the least sharp internal angles. The detailed process to select the best 
cutting approach is illustrated in the activity diagram of Fig. 6.16.  
 
Finally, in case a non-meshable surface problem cannot be solved, due, for example, 
to an untrapped error of the CAD geometry manipulations, the MMG will 
automatically label the given surface with a special “non-meshable” tag and highlight 
it in red in the MMG graphical browser. 

Fig. 6.15: Knowledge based segmentation process of a generic wing like component.  

Step 3: All the remaining non-meshable surfaces are fixed by splitting them in two 
opportune segments, without affecting the segmentation of adjacent wing parts. 

a) 

b) 

c) 
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Fig. 6.16: activity diagram detailing the extra-cutting process (Step 3) to deal with 
surfaces segments that have more than four edges. 
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6.4 MMG – FEA environment integration 
In this section, the approach developed for a seamless link between the MMG and 
the PATRAN/NASTRAN finite elements environment (FEA) is described. 
Indeed, the automatic surface segmentation process described in the previous 
section is just one of the steps towards the automated generation of FE models.  

6.4.1 Extraction of geometry and metadata from the product tree 

Every time a surface segment is generated, an identification tag is automatically 
attached to it to record its membership (i.e., the HLP instance and the kind of 
structural element from which the segments has been derived). Once the 
segmentation process has been completed, the tags enable a dedicated scanner 

Fig. 6.17: geometry and metadata transfer from the MMG to the FEA environment. 
IGES files are used to transfer the geometry of the segmented surfaces; look-up tables 
(FEM-Tables) are used to transfer the information related to each surface segment and 
required to set up the FE model. 
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module (see Section 4.8.1) to parse the product tree, collect all the segments and 
sort them in groups. Finally, these groups of surface segments are exported to the 
FE environment by means of IGES files (see Fig. 6.17, geometry link).  
Since the IGES format can transfer only geometry information, a complementary link 
is created to export also the relevant non-geometric information required to set up 
the FE model. For this purpose, the MMG automatically generates one look-up table 
for each surface segment that is exported via IGES (see Fig. 6.17, metadata link). 
The look-up tables, addressed in this work as FEM-tables, contain information such 
as thickness, material, membership identification, ‘meshability’, list of non-structural 
mass items to be attached, design variable group, Cartesian coordinates of the 
corner points, and others attributes of all the surface segments generated by 
Surface-splitter.  
Similar to the collection mechanism for the surface segments, the FEM tables are 
generated by means of a scanner module that parses the whole product tree and 
extract from each segment the attributes required to compile the related FEM-table. 
A report writer has been developed to encode all the FEM tables into one XML file. 

6.4.2 Automated FE model generation 

The actual KBE-FEA environment interface is enabled by an in-house developed 
Python application, called PYCOCO (Nawijn et al., 2006). Via a client-server 
mechanism, PYCOCO generates on the fly instructions for MSC PATRAN1 and guides 
it in the process of building up a NASTRAN model.  
The main steps are the followings: 

• PYCOCO forces PATRAN to open an empty database and import all the 
surfaces segments delivered via IGES files.  

• PYCOCO reads the FEM-tables and compare the Cartesian coordinates of the 
corner points of each surface segment with those of the surfaces in the 
PATRAN database. Indeed, the coordinates of the corner points represent the 
one-to-one link between the geometry entities generated by the MMG and 
their corresponding representation in PATRAN (see sketch in Fig. 6.18). 

• As soon as a match is found, all the relevant information (material, thickness, 
etc.) stored in the given FEM-table is automatically mapped on the 
corresponding representation of the surface segment in PATRAN.  

• The meshability information contained in the FEM table is used by PYCOCO to 
instruct PATRAN on the mesher to employ. Quad elements are meshed first, 
using Isomesh. Triangular elements are meshed later using Paver (for 

                                        
1 These instructions are actually given as PCL commands. PCL, which stands for PATRAN Command 
Language, is the scripting language provided by MSC to operate PATRAN from the command line, or 
via session files. 
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unstructured mesh). The size of the mesh elements can be calculated by 
PYCOCO, based on the size of the structural elements (Pearson, 2001). 

• PYCOCO reads the non-structural masses (NSMs) table produced by the MMG 
(see example in Table 4.3) and forces PATRAN to generate, next to the 
aircraft model, a set of lumped masses (position and mass value as indicated 
in the table). 

• Based on the list of NSMs indicated in each FEM table, PYCOCO forces 
PATRAN to build a set of connection elements (RBEs) linking the relative 
lumped mass(es) to the corner points of the given surface segment (see 
sketch in Fig. 4.10). 

• Loads and boundary conditions are applied. 
• In case the FE model must be used also for structural optimization (e.g., by 

means of the NASTRAN optimization solver Sol 200), each surface segment is 
collocated in a certain design variable group, according to the dedicated 
variable group identification code, contained in the FEM table. Refer to 
Appendix M and (La Rocca and van Tooren, 2002a; La Rocca et al., 2002) for 
further details. 

• Finally, the FE analysis (and/or optimization) is performed using NASTRAN. 

Fig. 6.18: The mapping process of the FEM-Table content is based on the match of the 
Cartesian coordinates of the corner points of the surfaces stored in the PATRAN database, 
with the Cartesian coordinates reported in the FEM-tables. 
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6.4.3 On the convenience of the selected integration approach 

The implemented approach to link the MMG with the FEA environment has delivered 
a powerful and seamless modeling and analysis system. The designer is free to 
evaluate many different design configurations, without worrying about rebuilding a 
new FE model each time a variation is enforced in the shape or topology of the 
aircraft configuration.  
Since the whole process works fully hands-off, it enables the set up of multi level 
optimization studies: an optimizer can vary the top level parameters of the aircraft 
(shape, structure layout, etc.) via the MMG input file, while at each analysis cycle a 
FE–based optimization process can be performed, for example, to size the given 
structure components for minimum weight (section 6.6. 
The approach to the automation of the FE model preparation process using PYCOCO, 
follows the paradigm of Knowledge Based Engineering. In this case, however, the 
object oriented programming and rule base are not combined with a parametric CAD 
engine, as in a true KBE system, but with a FE pre-processor and solver. Here, 
Python provides the object-oriented and rule based design features, while the 
PATRAN/NASTRAN combination represents the functional engine.  
 An alternative approach to the one implemented in this work would be the 
direct generation of the complete NASTRAN model by the MMG. A relevant example 
of FE model generation using the ICAD system can be found in (Rondeau et al., 
1996; Rondeau and Soumilas, 1999). Indeed, this approach would not require the 
critical process of extracting data and information from the MMG product tree and 
put it back together in the context of the FEA system. Whilst attributes and 
relationships of any product tree entity are immediately accessible within the MMG, 
rebuilding such information, especially the relationships between entities, in another 
system is a challenging task.  
However, once achieved, it comes with relevant advantages:  

• The meshing capability of PATRAN is fully exploited, without the need of “re-
inventing” a mesh generator in ICAD 

• Once PATRAN has completed the model pre-processing, it can generate the 
input deck for all the supported solvers, “for free”. Hence, not only NASTRAN, 
but also ABAQUS, ANSYS, LS-DYNA and other FE packages become 
immediately available. 

• A different MMG, able to deliver the same output files (i.e., meshable surfaces 
plus FEM-tables), would be directly endowed with FE analysis capabilities. 
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• Two teams of experts (KBE developers and FEA specialists) can collaborate on 
the development of a system like the one discussed in this work, each one 
working in parallel with its most familiar and trusted software tool2  

• In collaborative projects involving the participation of different disciplinary 
teams from various companies, as well as the use of licensed software, this 
approach can be very convenient.   

6.5 Operating the MMG 
The architecture of the MMG operational environment is sketched in Fig. 6.19. 
Indeed, it does not differ from the typical product model architecture shown in Fig. 
3.13.  
Operating the MMG requires just three steps: preparation (edit) of the input deck, 
launch of the MMG in batch mode (or interactive operation of the MMG via the ICAD 
user interface), retrieval of the generated results (reports) 
The first step consists of the preparation of 4 input files: 

1. The main input file. Here, organized in sections, all the parameters required 
to instantiate the aircraft metamodel are contained (snippets of this file are 
provided in Appendix D, G, I) 

2. The design variable groups definition file. Here are the parameters 
available to the user to sort the aircraft structural segments into separate 
groups for structural optimization (all the surface segments contained in a 
group will get the same thickness value from the sizing process). See 
Appendix M for more detail. 

3. The non-structural masses definition file. Here the value of each non-
structural mass must be provided. The MMG will use these values to produce 
the NSMs table (after having scaled those values according to the length or 
the area of some instantiated aircraft components. See section 4.5.3) 

4. The reports list. This is the list of all the output files the MMG is capable to 
produce (see section 4.8.1 on report writers). This file is required only when 
operating the MMG in batch mode (i.e., hands off)). In this case, the user has 
to select (switch on/off) from the complete list the ones for which it is 
required to launch the MMG. 

 
On the sole basis of these four files (which can be edited as plain text files, either by 
a designer or another software tool), the MMG can be instantiated and requested to 
produce any of the output models described so far.  

                                        
2 The same consideration applies for the method described in section 6.2.3, where COALA enables the 
integration of the MMG with VSAERO  
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This can be done either interactively (sitting behind the system where ICAD and the 
MMG are installed and using the standard ICAD user interface) or in batch mode, 
hence running the MMG with a single command and waiting for the demanded 
results (from the reports list file), without any single user intervention.  
Batch operations can be easily performed also in remote, hence accessing the MMG 
via a web connection from another system, where ICAD does not need to be 
installed at all. 
The possibilities to operate the MMG in batch mode as well as in remote represent 
indeed a great asset (as well as the biggest development challenge). Many non-
geographically collocated users can use the same MMG, submit their customized 
version of the input file and ask for required output reports; in fact using the MMG as 
Software as a Service (SaaS), according to cloud computing terminology. All the 
results generated using the same version of the MMG and its input files are 
guaranteed to be consistent and repeatable.  

Fig. 6.19: operation of the MMG and its input/output architecture. 
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As such, the MMG stands as a real enabler for distributed multidisciplinary design 
optimization. As demonstration, two relevant cases are described in the next 
sections, where the MMG capabilities have been exploited to support the design and 
optimization of a novel aircraft configuration and a main component of a 
conventional passenger aircraft. 

6.6 Study case 1: The MOB project  
A successful validation case of the Multi Model Generator concept presented in this 
work is provided by the Fifth Framework European project MOB,  on multidisciplinary 
design and optimization of blended wing body (BWB) aircraft configurations (Morris 
et al., 2004; Morris, 2002). The primary objective of the project was the 
development of a computational framework (the so called Computational Design 
Engine, CDE; a prototype of the DEE concept addressed in Chapter 2) for distributed 
design and optimization. The secondary purpose was to demonstrate the CDE by 
application to a problem of intrinsic interest, namely a BWB aircraft; a potential 
competitor to the Airbus superjumbo A380 and with some relevance to military 
aircraft design. The BWB configuration was ideally suited to function as driving 
scenario due to its inherent strong couplings between disciplines. Besides, the lack of 
reference data and experience made the use of design handbook methods 
impractical and increased the need of data from physics-based analytical models.   

The baseline design was provided by Cranfield University and Saab Aerospace 
(geometry model and main specifications in Fig. 6.20).   

6.6.1 Set up of the MOB multidisciplinary design optimization system 

A multi-level, multi-fidelity, distributed MDO system was put in place to optimize the 
baseline aircraft for maximum range, while maintaining payload capacity and 

• Span: 80m 
• Maximum Take Off Weight: 300t 
• Payload capacity: 113t (174 LD3 

containers over a double deck cargo 
hold) 

• Cruise speed: Mach=0.85, at 35000 ft 
• Range at max payload: 11000Km 
• Approach speed: 140 knots 

Fig. 6.20: Model of the MOB reference BWB and list of main specifications 
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maximum take off weight3, and guarantying inherent stability and controllability. 
Indeed, the baseline aircraft configuration appeared not controllable longitudinally 
and directionally unstable.  
The main disciplines involved in the optimization exercise were aerodynamics, 
structures, flight mechanics and aeroelasticity. For the aerodynamic analysis, a range 
of tools have been employed, including simple panel codes, Euler codes, and, in 
limited extent, full Navier-Stokes methods to predict the maximum aerodynamic 
efficiency, the aircraft maximum lift coefficient and the stall angle (Laban et al., 
2002; Qin et al., 2002).  
Concerning the structure analysis, simple bending beam theory has been used for 
preliminary weight estimation, whereas full blown FEM-based optimization 
techniques, including aeroelastic constraints, have been used for a more detailed 
sizing of the various structural components. For the flight mechanics, basic stability 
and control analysis methods have been used to assess stability and control. A 
system of trim tanks with fuel transfer scheduler has been developed on purpose. 
Handling qualities in closed loop have been addressed as well, including pilot 
response at the simulator (Stettner and Voss, 2002 ).  

Concerning the optimization strategy, a multi-level optimization process was set 
up, based on a global level loop, where only few design parameters (wing thickness, 
twist and sweep, fuselage length and camber) were used to affect all the disciplines, 
and a local level loop for the aircraft structural design, where several hundred groups 
of FE elements thicknesses were used as design variables.  
For the global level, a response surfaces strategy was preferred over gradient based 
optimisation schemes, mainly because of the unavailability of sensitivity information 
from many of the analysis modules. Anyhow, response surfaces are an excellent 
means to visualise trade-offs, at least when the number of variables is limited as in 
this case. For the local optimization level, on the other hand, it was decided to make 
use of gradient based techniques, considered the availability of sensitivity 
information as well as the large number of variables (Laban et al., 2002). 

6.6.2 Role and operation of the MMG in the MOB computational framework 

The role of the MMG was pivotal in the set up of the complex and distributed MOB 
computational framework. The MMG was able to model a large number of variants of 
the reference BWB in batch, surviving all the geometry variations imposed by a 
remotely located optimizer. For each variant it was able to extract, in full automation, 

                                        
3 This was a simplifying decision to avoid performing expensive calculations at each structural weight 
variation. Indeed, the weight of engines, landing gears, etc. varies with the MTOW, hence each 
structural weight variation would require another structural weight estimation. Here it was decided to 
“invest” every saved structural weight kilogram into fuel. 
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sets of different, yet coherent sub-models, tailored to the broad range of analysis 
tools, both COTS and in-house developed, provided by partners from industry and 
academia (Fig. 6.21).  

The MMG delivered models for both low and high fidelity aerodynamics 
(PANAIR, MERLIN, ENFLOW), 2-D planform models for aeroelastic analysis 
(NASTRAN and ZAERO), structural models for FEA (PATRAN/NASTRAN), including the 
definition of the design variable groups for structural optimization (Fig. 6.22-left and 
Appendix M), and the c.o.g. distribution of the fuel tanks and the non-structural 
masses (with weight scaling of de-icing systems, and trailing edge movables 
actuators). The MMG could also extract the geometry of a door cut-out, to support a 
further level of detail in the structural optimization loop (more detail in (Engels, 
Becker and Morris, 2004) and Section 6.8).  

A software communication framework was in charge to feed the MMG with the 
set of edited input files and to extract and distribute the generated models, always 
via web connections (Vankan and Laban, 2002). 

Fig. 6.21. Role of the MMG within the MOB distributed MDO framework.  The MMG 
provides dedicated models to a large set of distributed analysis tools, both low and high 
fidelity, in-house developed and commercial of the shelf. 
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6.6.3 Results 

Once the MOB computational framework was in place, more than 50 aircraft variants 
have been evaluated, by means of both low and high fidelity tools, totally hands off, 
running on a number of computers distributed across the multi-national consortium. 
All the computations have been performed in the time frame of just a couple of days, 
whereas it would have taken months without the use of such a design and 
optimization framework. 
The intermediate results of the top level optimization process were presented to the 
design team as response surfaces, providing the designers important insights about 
the effect of certain design parameters on the objective and constraints function, 
hence guiding the next steps in the optimization. For example, it was observed that 
all the selected variables (wing thickness, twist and sweep, fuselage length and 
camber) affected controllability, but no one was individually able to bring it to an 
acceptable value. Eventually it was found that a combination of more negative wing 
twist, shorter fuselage length with increased aft-camber was necessary to restore 
controllability. However, with a negative impact on the range, which was reduced to 
9900 Km (Fig. 6.23). Furthermore, it was found that a fuel drain scheduling system 
plus two trim tanks in the BWB center section were necessary, as well as a full 
leading edge slat for low speed operation.  
Eventually, the aircraft remained directionally unstable, such that, in a later stage of 
the project, a BWB variant with vertical fins (Fig. 6.22-right) was considered, 
however, with further consequences on the initially predicted aerodynamic efficiency.  

Among other things, the project showed that traditional handbook methods, 
when applied to a novel aircraft configuration such as a BWB, might not be able to 
deliver a feasible baseline design, while they tend to predicted too optimistic 
performances. Besides, the strong disciplines coupling typical of BWB aircraft is such 

Fig. 6.22: (Left) Visualization of the more than 200 thickness variables defined for the FE-
based structural optimization (Laban et al., 2002). (Right) The BWB variant with vertical 
fins, developed to improve the directional stability of the reference aircraft. 
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that non intuitive combinations of parameters are necessary to obtain a feasible 
design.  

More details on the MOB optimization process can be found in ref. (Laban et al., 
2002; Morris et al., 2004). A more recent study on the controllability of a blended 
wing body aircraft, still involving the use of the MMG, is reported in (Voskuijl et al., 
2008; Dircken, 2008). 

Fig. 6.23. Results of the analysis and optimization process of the MOB BWB, visualized 
by means of response surfaces. Effect of the most effective combination of design 
variables on the controllability constraint (top) and on the range objective (bottom). 
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6.7 Study case 2: Vertical tail redesign study 
A Design and Engineering Engine to support the redesign of the vertical tail of a 
passenger aircraft has been developed in collaboration with the Loads and 
Aeroelastics group at Airbus Germany. Scope of the project was the development of 
a computational system to facilitate a fast assessment of different tail design options, 
such as material and planform shape (Cerulli et al., 2006).  The challenge was the 
rapid generation of aeroelastic and structural models of adequate fidelity, which are 
usually not available in the parametric way required to perform what-if studies in the 
preliminary design phase, neither cannot be built in a sufficiently short time.  
The implemented design process is sketched in Fig. 6.24 and can be summarized as 
follows. First, the MMG is used to model the configuration of the original vertical tail 
and to generate automatically the relative sets of segmented surfaces and FEM 
tables. These are subsequently exported to the PATRAN/NASTRAN environment by 
means of an extended version of PYCOCO, which request NASTRAN to generate a 
reduced model of the tail (Cerulli, van Keulen and Rixen, 2007), by condensing the 
structural and non-structural fin masses on a set of dedicated (condensation) points. 
For any vertical tail instance, the condensation points are automatically generated by 
the MMG capability module Condensed-Masses-Generator (already mentioned in 
section 4.7.1).  
At this point, the reduced model of the new tail is connected to the previously 
generated reduced model of the original aircraft (less the vertical tail). The 
connection points are also exported by the MMG together with the condensation 
points. 
The obtained reduced model of the complete aircraft model is then fed to VarLoads 
(Hofstee et al., 2003), a load analysis tool developed at Airbus, where a dynamic 
yawing maneuver simulation must be performed to predict the load distribution on 
the fin. On this purpose, VarLoads makes use of proprietary Vortex Lattice Method, 
which needs a flat panels representation of the tail. Also in this case the model is 
provided by the MMG, directly in the required NASTRAN CAERO cards format (see 
section 6.2.4).  
The estimated tail loads, are subsequently taken by the DEE initiator/sizing tool 
(Schut and van Tooren, 2007)  and mapped from the condensed mass model to 
another simplified tail model, which is used to size the tail structural components and 
produce a weight estimation. The geometry model used by the initiator is a flat 
plates model, based on the corner points coordinates of the tail surface segments, 
generated by the MMG and exported via FEM-table.  
The condensation and sizing process is then iterated until weight convergence, which 
is generally achieved within 5-7 loops of 45 minutes each.  
The overall process is then repeated for all the tail variants to be studied (e.g., with 
different span and/or sweep angle value). Hence, a new consistent set of segmented 
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surfaces, FEM-tables, condensation points and CAERO cards is generated by the 
MMG, while the DEE framework takes care of the automatic, coordinated execution 
of the entire process. No action is required by the user, who can, however, monitor 
the process while it proceeds across the network of Linux and Windows machines, 
where the various modules are installed. 
 

Fig. 6.24: schematic process of a vertical tail parametric study: the MMG feeds the 
tools for condensation, analysis and sizing with different but coherent models.  

Finless aircraft 
reduced model 

Tail loads 

Fin condensed model 

Aircraft reduced 
model (with new fin) 

Results of the vertical tail 
parametric study 

CAERO 
CARD 
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6.8 Multi-level modelling to manage complexity and 
support multi-level design 
In the MOB project, the FE-based mass estimations of the BWB structure were 
corrected by a factor 1.5 (based on literature studies) to account for the lack of 
details, such as door and window cut-outs, in the FE model. 
To increase the reliability of the weight estimation, as well as to promote a multi-
level design approach (with preliminary and detail design phases accounted by one 
design system), a strategy was investigated to account for the effect of a door cut-
out in the structural analysis process of the entire aircraft. 
The challenge was to include in the computational design framework a module for 
the design and optimization of cut-outs (frames and doublers), without increasing 
complexity in the geometry preprocessing phase and in the set up of the (already) 
multi-level optimization problem. 
The following approach was implemented concerning the surface segmentation:  

• The Surface-splitter capability module performed the usual surface 
segmentation (section 6.3.1) on a BWB without door cut-out 

• A scanning routine was applied to search and collect all the surface segments 
“perturbed” by the presence of the door cut out (i.e., those surface segments 
with a not null intersection with the boundary curves of the cut-out) 

• A “disturbed by door-cut out” tag was added in the FEM tables  
• The reduced set of perturbed surface segments was further processed, by 

trimming them as illustrated in Fig. 6.25 
• The trimmed surface segments were exported in a separate group via IGES. 

Fig. 6.25: extraction of the surface segments perturbed by the door cut out for detailed 
design and optimization of door frame and doublers. 
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The following approach was implemented concerning the FE-analysis loop: 

• The whole BWB, without any cut-out, was meshed by PYCOCO using the usual 
coarse mesh and submitted to a first FE-analysis loop 

• PYCOCO read the mesh points and the calculated displacements on the 
boundary of the surface segments perturbed by the door cut-out (detected via 
the FEM tables tag) 

• The trimmed perturbed surfaces generated by the MMG and the boundary 
mesh points with relative displacements were fed to a NASTRAN-based 
application specifically developed to size and optimize the cut-out design 
(Engels et al., 2004). 

• The cut-out design and optimization module produced an optimal cut-out 
structure and delivered it as a NASTRAN super element to be inserted in the 
global FE-model, in place of the perturbed surface segments 

 
The results:   

• The cutting and trimming process applied to the surfaces disturbed by the 
given detail did not affect the surface segmentation of the global aircraft 
model  

• The shape of the disturbed elements (used to build the optimal cut-out) was 
consistent with the shape of the global model.  

• The structural characteristics of the optimally designed detail could be fed 
back in the overall FE-analysis model 

 
The idea of building separated-but-associative models, what we call here multi-level 
modelling, to support multi-level design was further developed in this research work 
to satisfy the request of using the MMG concept (and KBE technology in general) to 
address the design of the overall aircraft and its components, simultaneously.  
Indeed, the generation of a single “can-do-everything” MMG was considered a too 
big challenge. Apart from the intrinsic difficulty of developing - and maintaining - a 
KBE application that is flexible and generic but, at the same time, able to address 
very specific design solutions, there are actual software limits that impose a 
maximum size for a KBE application.   
The first application of the multi-level modelling approach has been implemented to 
support the design of wing and tail with movables. A dedicated report writer has 
been developed in the MMG to extract from the surface model of wings and tail 
empennages, a patch of the size of the movable (planform shape and location of the 
movable specified in the MMG input file).  This patch is then used as outer mould line 
(OML) by another “slave” KBE application. In this case, PMM, the Parametric Movable 
Model developed by van der Laan (van der Laan, 2008) for the generation of detailed 
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movable models for structure and manufacturing analysis. Any time an updated OML 
is sent to the PMM, the geometry of the movable model adapts automatically, 
because of the associative definition with the OML. Together with the OML file, the 
MMG delivers the location of the hinges, compatible with the position of hinge ribs 
located in the wing or tail structure. Besides, it provides the aerodynamic models of 
the complete aircraft configuration (with deflected movables as described in section 
5.2.12) to compute the aero loads required for the movable sizing (Nawijn et al., 
2006; van Houten et al., 2005). 
Van der Laan has further exploited the multi-level modelling approach, by developing 
also a slave KBE application for detailed modelling of movable ribs, and another one 
for the automatic generation of production moulds for thermoplastics ribs (van der 
Laan, 2008).  

In the same line, Krakers has developed a KBE application for the detailed 
design and thermo-acoustic analysis of fuselage barrels (Krakers, 2009). This makes 
use of specifically developed HLPs and CMs, and requires as modelling basis the 
fuselage surface instantiated by the MMG.  
 
The development of “master-slave” KBE model generators appears to be an effective 
strategy for managing modelling complexity.  It brings the benefits of KBE 
technology across various scale levels (aircraft � component � subcomponent), and 
support a true multi-fidelity analysis approach, both in an affordable way. The 
associative relationships allow top level decisions to cascade down the model 
hierarchy and provide designers with early feedback. As such, more informed 
decisions can be made early in the design process thanks to data and information 
generally available only at a later stage of the design process.  
Last but not least, different KBE developers can be in charge of maintaining and 
developing different KBE applications in parallel, thereby shortening the development 
cycle and lowering management risks.  
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CHAPTER 7                              
Knowledge Based Engineering. 
Opportunities and Methodology 

1. Introduction 

2. Implementation of KBE systems. Identifying the proper application cases 

3. Implementation of KBE in the non-integrator company and SMEs 

4. Organizational and human issues in the exploitation of KBE 

5. Methodological development of KBE applications. The long term view 

6. Trends and evolution of KBE technology 

7. Recommendations & Expectations  

7.1 Introduction 
In the previous chapters, mainly the technical aspects of knowledge based 
engineering have been addressed. Chapter 3 has discussed the origins of this 
technology and the peculiarities of KBE systems (i.e., the what of KBE). Chapters 4-6 
have demonstrated why KBE 
is worth the attention of the 
designers’ community. The 
expected benefits can be 
summarized as follows: 
• Enhancement of the 

productivity level: more 
product variants can be 
designed/analyzed in a 
shorter time because of 
enhanced level of design 
automation 

• Improvement of products 
quality level: better and 
more mature design 
because of the enabled 

Fig. 7.1: the estimated impact of KBE on the design 
cycle time. From 80:20 repetitive/creative work time 
ratio to 20:80, plus net time saving. 
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multidisciplinary analysis and optimization approach.  
• Improved confidence in generated designs, which is beneficial for making proper 

proposals to customers.  
• Improved level of workers’ satisfaction and more space to innovation: less 

repetitive work, more time for real creative design (Fig. 7.1).  
• Capability to capture, retain and re-use company corporate knowledge 
  
This chapter is meant to complement the discussion by further elaborating on KBE 
tools development opportunities and methodology, which we can address as the 
When, the Who and the How of KBE. 
 
When KBE: However, KBE is not the silver bullet for all kind of engineering design 
cases. Considered the significant economic and human investments required to 
implement KBE inside a company, the ability to recognize the projects that are most 
suitable to a KBE approach is extremely important. Also for those companies 
interested in testing KBE, the selection of an appropriate pilot project is of outmost 
importance to avoid an unfair assessment of this new technology.  Therefore, a list 
of typical situations is presented in this chapter, where KBE initiatives are likely to 
have the highest chance of success.  
Who KBE: Though KBE had its start as an expensive technology typically oriented 
towards OEMs, Section 5.4 elaborates on the possible advantages non-integrator 
companies and SMEs  can get from the implementation of KBE. 
How KBE: Section 5.6 discusses the importance of a methodological approach to 
KBE application developments. The need to secure the investment made with the 
development of KBE application calls for a systematic development approach, which 
can guarantee the continued functioning and maintenance of the application. The 
roadmap for the development of a KBE application will be discussed and needs and 
characteristics of the various phases of the KBE lifecycle are illustrated.  
..and then, what’s next in KBE: The chapter concludes with a discussion of the 
evolution and trends of KBE technology and a list of recommendations and 
expectation for the new generation of KBE systems. 

7.2 Implementation of KBE systems. Identifying the 
proper application cases 
The development of a KBE application typically represents quite an important 
investment that organizations commit to. The costs of software licenses and training 
of those appointed as the future knowledge engineers and KBE developers in the 
company, need to be regained. It is of fundamental importance that the proper 
application is selected in order to make the KBE investment a success. The failure of 
a pilot project might represent not only a waste of money, but could also stop for 
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good any further KBE initiative and inhibit future profits from other KBE-appropriate 
business cases. 
The question rises immediately: what kinds of projects are suitable for a winning 
implementation of knowledge based engineering? What are the indicators that 
identify the proper case for KBE application?  
Although it is not possible to measure the level of KBE potential of a given design 
case, there are indeed a number of typical features, which strongly hint KBE 
opportunities.  
  
The design case is highly rule-driven  
Due to its rule-based nature, KBE fits well those applications that are highly rule-
driven. On the contrary, applications that require high sketching freedom, style 
exercises, or deal with very fuzzy attributes and constraints are generally not good 
cases. The rational and structured approach at the base of any KBE product model 
development is just inadequate to support emotional design. However, KBE can play 
a role from the moment that the initial phase of esthetic focused design (where 
direct interaction through free-form techniques is the best option) is concluded and 
the design has to be engineered. For example, after the geometries sketched by the 
style department of an automotive company have been completed and the concept 
needs to be assessed in terms of aerodynamic performance and 
manufacturability/formability, then KBE can play a role.  
 
The design process is well understood and consolidated.  
In this case the design rules are evident, easy to codify or already codified, and 
possibly stable. The whole KBE technology relies on the fact that rules are known or 
available somewhere, such that they can be implemented in the product model. As 
thoroughly discussed in Chapter 3, knowledge is not always available in the explicit 
format of a rule. Sometime, significant efforts can be required to elicit knowledge 
from the head of experts and give it an explicit structure, such that “it can be written 
down” using a programming language. The success of a KBE application, or even the 
kick-off of its development process, strongly depends on the work of knowledge 
engineers and their knowledge acquisition ability (Shreiber et al., 2000; Stokes, 
2001). Indeed, part of the knowledge used in practice is often related to designer’s 
intuition, past experiences and heuristics, and generally difficult to be translated in 
rigorous rules. However, the KBE approach offers the possibility to make use of 
rules-of-thumb, which represent a very useful means to tolerate a certain extent of 
fuzziness, yet building effective KBE applications. 
    A relative stability of the rules is also favorable to the development and longevity 
of a KBE application. As discussed in Chapter 4, changing or updating rules in a KBE 
application is not the same as in conventional rule-based systems. In case of a KBE 
application, it might require changes in the main structure of the product model, 
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hence expensive re-writing of many lines of code. Of course, the Object Oriented 
paradigm at the base of the KBE language, together with an adequate programming 
style (i.e., modular, generic) can largely mitigate such risk and offer the opportunity 
to adapt and reconfigure the structure of the product model. 
 
The design case is multidisciplinary.  
As previously discussed in Chapter 3, the generative design capability of KBE can 
provide an enormous support to multidisciplinary analysis. Different discipline-specific 
views from the same product can be generated fully automatically and fed to a range 
of in house and COTS analysis and design tools. The mix of geometry handling and 
problem solving characteristics required in the preprocessing activity of analysis 
models are generally a good target for KBE. More evidence will be provided in the 
next chapters.  
 
The design process is highly repetitive. 
Design processes where the same rules are continuously re-applied and evaluated 
are typically very well suitable to KBE solutions. For example the generation of the 
geometry model of large quantities of parts/products, which are all different, but in 
the end just small variations of the same thing (e.g. ribs in a wing structure 
(Rondeau et al., 1996)).  

In this case the number of 
iterations is determining 
whenever KBE is a better 
solution than CAD. In fact, the 
generation of a product model 
might take more time than 
required to generate one or a 
few CAD models. However, 
once the product model is in 
place, all the variants are 
generated automatically “for 
free”, while the CAD operator 
takes almost the same amount 
of time for every iteration50. 
Fig. 7.2 from (Knowledge 

                                        
50 Indeed the estimation of the break-even point is the most relevant information for the business 
case. Unfortunately, a methodology to estimate the time required for the development of a KBE 
application does not exist in literature. KBE-user companies have their own legacy information, which 
is based on the performance of past KBE development cases. 

Fig. 7.2: Qualitative benchmark of KBE and CAD, 
indicating the convenience of KBE for applications 
requiring the generation of many design variants. 
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Technologies International) shows a qualitative benchmark of KBE and CAD 
technologies.  
Though the automatic generation of technical drawings has been one of the first and 
most successful applications of KBE, repetitiveness can be found also somewhere 
else in the design process, earlier than in the detail phase. For example, in the field 
of optimization, variants of the same product have to be generated at each loop. 
MDO, where the features of repetitive/iterative design and multidisciplinary design 
come together, is definitely another good candidate for KBE solutions. It is not by 
chance that the latest large European projects on MDO have all included, though in 
different extent, the use of KBE (Allwright, 1996; Morris et al., 2004; de Weck et al., 
2007). In the next chapters, large evidence will be provided of a possible use of KBE 
to exploit repetitiveness as from the conceptual phase of design. 
 
The design process features a mix of problem solving, geometry 
manipulation and data processing 
As far as some of the hints addressed above are present (i.e., rule-driven, repetitive 
design, etc.), the coincident occurrence of geometry manipulation, data processing 
and problem solving features is a sign that KBE is probably the most suitable 
technology at hand, not just a good candidate. In this case, the use of KBE can 
provide a competitive margin with respect to any other design approach based on 
CAD, conventional knowledge based systems, or the use of some general purpose 
programming language. 

7.2.1 Backfield or first line? A note on the strategic deployment of KBE 

The occurrence of one or more of the features described in the previous section 
gives information about the eligibility of KBE for the design case at hand. However, 
how can a company decide about the strategic deployment of KBE? Should KBE be 
used in the backfield to consolidate and record the design knowledge of the 
company, or should it be used in the first line to address urgent and critical design 
cases? Should KBE be used as mainstream technology or just deployed for some 
design emergency? Again there is not one straight answer, as expected, these 
choices being a matter of company specific strategy.  
Considering the risk associated to a new technology, that requires highly educated 
people, licenses and training expenses and possibly some organizational change (see 
later in Section 7.5.4), some companies might opt for a KBE deployment in offline 
activities first. However, rising awareness of such technology across the whole 
company is very slow and the payback of the investment in training people and 
buying licenses is lengthened. Problems of justifying the investment might rise as 
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well. Another philosophy used by the KBE department at Airbus UK51 is to select the 
program within the company with the biggest troubles to deliver in time and just go 
for it. This will give immediate visibility of the benefit of KBE. Cooper in ref (Cooper 
and Smith, 2005), confirms that, so far, in the industry world, KBE seems to be 
accepted just and only when it solves difficult technical problems or gets a 
desperately needed answer fast: KBE as the ultimate weapon for the first line. 
However, for different companies than large integrators like Airbus, a different 
strategy can be implemented with success, as discussed in section below. 

7.3 Implementation of KBE in the non-integrator 
company and SMEs 
There are situations that allow also for a profitable offline KBE development; they 
especially arise in those companies, like suppliers and sub-contractors, whose 
products present a large degree of commonality. They have the possibility to analyze 
their different-but-similar products, investigate for a unified design knowledge 
assessment and build up the KBE application that captures and automates it. This 
concept, imported from the management world, is addressed as family thinking. 
For instance an aircraft components supplier, with years of experience in designing 
and manufacturing for different customers parts such as tail sections, fins, rudders 
and movables surfaces in general, should be in the condition to develop a KBE 
application that captures in one generic product model all the many peculiarities of 
the components and parts produced in the previous years, for the different 
customers. The design results of the past assignments will automatically supply the 
validation of the KBE tool; at the same time such application would provide the 
company with a powerful and effective tool to generate and discuss clear-cut 
proposals for customers, with the confidence of knowing in advance the design 
factors that will affect weight, price and delivery time. The company’s knowledge 
gained to develop a product for previous customers will be available to propose 
products to new ones. 

It should be considered that such kind of company (the product family supplier) 
will benefit of the KBE approach maybe more than an integrator company. Suppliers 
are often put in competition with others by integrator companies to deliver a 
competitive proposal within a very tight time frame. The amount of data they receive 
from the integrator to set up the proposal is generally rather limited, and even after 
the work has been commissioned, the information flow remains slow. The use of 
some pre-developed KBE application could put suppliers in condition to generate 
autonomously, in-house the amount of data and information sufficient to prepare a 

                                        
51 A conversation with S. Allwright and A. Murton from the KBE group at Airbus UK, Filton. 
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competitive proposal. Once the work has been commissioned, the KBE application 
used to generate the data for the proposal, could be tuned with the more detailed 
information provided by the customer. Possible, design decisions and constraints may 
be changed and re-assessed by the contractor without affecting the final delivery 
time, because the dynamic definition of the KBE product and its generative capability 
can allow large reconfiguration and assessment of the design at any moment. 
    In reference (Lovett et al., 2000) the issue of implementing KBE technology in 
small and medium enterprises (SME) is discussed. The volume of work within this 
kind of companies might seem not big enough to justify the large investments to 
acquire KBE platform licenses and/or employ or train people to develop KBE 
applications. Often there is a lack of people with IT experience and the budgets for 
R&D are in general limited, if available at all, in which case it might be convenient to 
rely on external consultants to develop and set up KBE applications. It should be 
considered that, in comparison to a large OEM, a reduced external workforce would 
be required, in proportion with the smaller size of the application an SME might 
need. On the other hand, the usefulness of a KBE application to keep and secure 
SME’s knowledge might be even higher than for large companies. In fact, in hard 
times, the reduction of personnel for SME is more risky than for bigger companies, 
because the knowledge is concentrated in less people.   

7.4 Organizational and human issues in the exploitation 
of KBE 
Being KBE a new technology to many companies and requiring quite a different 
vision to business, it might have hard times getting acceptance. A technically good 
developed KBE application will anyhow require high level and on-going support to 
promote its use. The success of KBE, apart from the selection of the right 
application, will depend on a number of organizational and human issues that any 
company will have to take into consideration. Some are just discussed below. 

The cost of a continuous investment 
The development of a KBE application requires high-educated people, with vision, 
and analytical and abstraction capability. They need training and technical support to 
integrate their applications within the IT environment of the company and of course 
time to get proficient with the KBE platform in use. This of course represents a big 
investment for the company: training cost, software licenses and dedicated people to 
develop applications. The training costs represent a continuous investment: since 
people move within the organization, they will not be always in charge of maintaining 
and further develop their application. New trained people will be required to keep the 
activity running with continuity. On the other hand, it should be considered that the 
effectiveness of KBE applications will generally require less people in a project. 
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Education for confidence 
Companies, which have deployed KBE systems successfully, have recognized the 
need to have a workforce educated on the topics of knowledge management and 
KBE and their potential benefits. Without such an education, a negative or suspicious 
attitude towards such technology can arise: employees may feel that "giving away" 
their knowledge will make them vulnerable to redundancy, or alternatively they may 
resent a perceived role of "being told what to do" by the KBE system (Sainter et al., 
2000b). Some might have a black-art perception of KBE applications (Object 
Management Group, 2005 ) and use them with limited trust, not knowing “what is 
inside that box”.  

In-house vs. outsourced KBE development 
There is often a debate whether to employ people external to the company to 
develop KBE applications, e.g., consultants from the KBE system vendor. In some 
cases, this might turn into a short term solution to eliminate the training costs 
required to form internal developers, and to shorten the time required to get an 
application operative. However, the ideal KBE developer is the one who is both 
proficient with KBE technology and familiar with the particular application field: the 
engineering expert and the KBE developer in one person. The latter situation would 
be extremely beneficial in terms of giving confidence to the company end-users 
about the effectiveness and real value of the given KBE application, which is not seen 
as a “black box” developed by externals (“…who don’t know how things actually 
work…”) and superimposed by management. Possibly, the combination of internal 
dedicated personnel and external KBE developers might give the best results.  
Sounder KBE applications can be generated faster and, at the same time, in-house 
KBE expertise is increased (Lovett et al., 2000).  

Food for knowledge workers 
Developing KBE applications generally requires a multidisciplinary vision on the 
design problem. At the same time, it is proven that developing KBE applications just 
augment such vision in developers. The required ability to synchronize knowledge 
from different disciplines and to make explicit in rules what in ref. (Whitney et al., 
1999) is called the interaction knowledge (i.e., how the different involved resources 
and generated results interconnect and logically link to each other to complete a 
design assignment) is such that the KBE developer, in the end learns much more 
than the application end-user. The “down side” is that good KBE developers are 
often promoted to higher, more managerial positions, hence creating the need to 
train someone else to take over his/her KBE development tasks. 

Mental pigeonholing 
Once technical and non-technical barriers to KBE have finally been demolished and a 
good KBE application has been developed and operative, a side effect of mental 
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pigeonholing might arise. As Cooper, Fan and LI comment in ref. (Cooper et al., 
2001), people have the tendency to think KBE is just good for that very application 
where the KBE effectiveness was proven. Depending on the various localized KBE 
experiences, people can claim that “…KBE is just good for structural optimisation…”, 
or “…KBE works for system configuration…” etc. Time and multiple applications are 
required to consolidate a wider confidence. 

7.5 Methodological development of KBE applications. 
The long term view 
KBE applications should not be written ad hoc. Ad hoc solutions generally restrict the 
success of KBE applications to the very short term, while hazarding the potential 
long-term benefit (Sainter et al., 2000b). It is very inefficient to use an expensive 
and complex KBE system to write an application that is only able to address one very 
specific instance of a problem, and contains rules that applies only in one very 
specific case. The first consequence of such a faulty approach is the very limited 
flexibility and durability of the KBE application. As soon as similar but not identical 
design cases come at hand, that KBE application will result inadequate or very limited 
in use.  
Some other time, KBE applications might disorderly grow under consecutive layers of 
advancement, brought by separate developers, with different scopes. At a certain 
point, they might have become so unwieldy and complicated, that new developers 
will not be able to understand their structure and further develop/maintain them.  
In the one case or the other, it will result in the extensive re-coding of the 
application, or an extra production of patches and fixes, which will make the 
application even more inflexible, difficult to use and also very inefficient.  
Eventually, there is an evident risk to lose knowledge or hamper its reuse, which 
paradoxically were the two reasons to implement KBE technology! Therefore, the 
definition of a methodology to guide, structure and support the development 
activities of KBE applications becomes an important factor for a long term success. 

7.5.1 The need for a methodology. The MOKA project contribution  

A KBE dedicated methodology consists of the definition of guidelines, standard 
procedures and techniques to help KBE developers generating effective applications, 
which are also reusable and maintainable.  
There is a tendency to think that the time required to (define and) apply a 
methodology might be better invested to speed up the development of the 
application at hand (Sainter, Oldham and Larkin, 2000a). However, it has 
demonstrated that the adoption of a proper methodology is not just beneficial for the 
mid-long term, but it yields also a development time reduction of 20-25% (Oldham 
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et al., 1998). Indeed prototyping has an unquestionable value and should not be 
hampered. However, it is difficult to imagine that a sound KBE application created to 
last and evolve can start by switching on the editor and beginning with free-flow 
coding.  

Though some general methodologies, such as CommonKADS (Shreiber et al., 
2000), KIF and DEKLARE (Stokes, 2001) have been developed with the scope of 
supporting the development of knowledge based systems (see Chapter 4), the MOKA 
methodology (Methodology and tools Oriented to Knowledge-based engineering 
Applications, 1998-2000) (Stokes, 2001; Brimble and Sellini, 2000) is the only 
methodology available at date, which specifically addresses the development of 
knowledge based engineering applications.  The main results of the MOKA project 
can be summarized as follow:  
• A consistent way of capturing and representing product and process knowledge 

(see insert next page), supported by a graphical modeling language called MML 
(MOKA Modeling Language), based on the UML. 

• A software tool to assist in the capture, representation and maintenance of this 
knowledge.  

• Identification of a typical KBE life cycle. The main phases in this life cycle are 
analyzed and related needs specified. 

• Preliminary investigation on the possibility to automatically generate KBE code 
from this software tool.  

 
The first point is possibly the most valuable contribution of MOKA. The relevance of 
knowledge modeling and of visual modeling techniques in particular is further 
elaborated in Section 7.5.2 (see also insert next page). 
Concerning the development of the software tool to assist in the capture, 
representation and maintenance of knowledge MOKA produced a prototype system, 
never made available to the public. However, the PCPACK tool marketed by 
Epistemics (Epistemics) can be actually used as a kind of MOKA tool52 (Milton, 2008).  
The identification of the KBE life cycle was also a relevant contribution of MOKA and 
can still be used as a kind of roadmap for the implementation of any KBE initiative in 
a company.  This is elaborated in Section 7.5.3. 
Concerning the ability to automate the generation of KBE code, actually, only some 
prototype concept was elaborated in MOKA. The XML language was used to map the 
MML product model into the backbone of an ICAD application. The automatic 
mapping from a knowledge representation tool to a KBE system is still an open issue 
of high interest. More in Section 7.7.6. 
                                        
52 PCPACK is not the MOKA tool, but it can be used to satisfy the requirements for a supporting 
software tool for the MOKA methodology. It supports the capture, analysis, modeling and publishing 
of design knowledge using a MOKA framework (ontology) 
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Engineering knowledge representation in MOKA  

The second level of modeling supports the transition of the raw knowledge from the ICARE 
forms to a more formal representation, based on the Object-Oriented modeling paradigm. 
A dedicated visual modeling language called MML (MOKA Modeling Language) has been 

The MOKA methodology (Stokes, 
2001) provides a two-level modeling 
approach to capture and formalize 
declarative and procedural 
engineering knowledge, which 
consists of the so-called informal 
and the formal model. 

 
The informal model makes use of 
the five ICARE templates (one for 
each of the 5 knowledge objects: 
Illustrations, Constraints, Activities, 
Rules and Entities) to capture the 
expert’s knowledge and give it a 
first structured representation, in a 
way that is very familiar to the 
experts’ (to ease validation by the 
experts themselves). See figure on 
the left side. 

developed, which is actually 
an extension (yet 
extendible) of the industry 
standard UML (Unified 
Modelling Language). 
Knowledge modeled in the 
MML is well understandable 
by software developers and 
largely reduces the gap 
between the experts’ 
informal language and 
computer programming 
languages like Common 
LISP, for example.  See the 
MML representation of a 
product model in the figure 
on the right. 
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7.5.2 The importance of knowledge representation and visual modeling 
techniques 

Any suitable methodology to support the development of KBE applications has to 
address the Knowledge Engineering and Knowledge Management aspects related to 
KBE. Hence it has to provide a valid knowledge representation/modeling system. The 
use of a standard knowledge representation eases the level of understanding 
between domain experts and KBE developers, as well as between different 
developers. It facilitates the validation of the knowledge by the experts, so that KBE 
developers can proceed coding it in the KBE application. It also reduces the 
difficulties and the time needed to recall the design rational of a given KBE 
application, which can be easily lost among thousands lines of code. A reduction in 
the lead-time is the first consequence, but knowledge re-use in general may also 
increase, because well-structured knowledge is easier to be managed and shared, 
both at human and computer systems level.  

The use of visual modeling techniques represents a main element in the 
knowledge representation methodology. Visual models, graphs and diagrams are 
known to be an extremely efficient and effective means of communication. Indeed 
they represent a high-level language, where the combination of simple shapes can 
be used to carry extremely large amounts of information.   
Visual modeling languages such as the UML (Shmuller, 2004a) and the MML (MOKA 
Modelling Language Core Definition, 2000), developed in the MOKA project as an 
extension of the UML, are specific for engineering knowledge representation and 
their use can be extremely beneficial not only to communicate, but also to preserve 
knowledge from loss. Several examples of UML diagrams have already been shown 
in the previous chapters and many more are used in the coming chapters to describe 
the details of a developed KBE application. Practically, these diagrams can be 
considered as a kind of back-up, or blueprint of the given KBE application. We might 
regard them as neutral representations of the engineering knowledge, independent 
from any specific KBE environment. Whenever the commercialization of KBE platform 
ceases or is no longer available within the organization, the loss of knowledge stays 
limited.  
Commercial software tools, such as the abovementioned PCPACK, support KBE 
developers in the application of a methodology, providing a smart software 
environment to build multiple-but-interconnected representations of knowledge, and 
generate UML(-like) diagrammatic models.  See an example of MML diagram in the 
previous page insert.  

7.5.3 The KBE lifecycle  

One of the outstanding results of the MOKA project was the definition of the so-
called KBE lifecycle, which is the detailed roadmap to the development of a KBE 
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application, from the identification of an opportunity for KBE development to the final 
deployment of the application in the company (Oldham et al., 1998). As shown in 
Fig. 7.3 four main phases can be identified, namely:  
• Problem/Opportunity Identification,  
• Knowledge capture and formalization 
• Packaging  
• Deployment.  
The feedback and consequences from the deployment of the KBE application might 
identify new development opportunities or call for the maintenance of the existing 
KBE system, hence triggering a new cycle. 
As illustrated in the more detailed process flow of Fig. 7.4, each of the 4 main 
lifecycle phases can be further detailed in more specific activities. Different actors, 
tools and needs characterize the four phases as elaborated in the next subsections.   
 
Problem or Opportunity identification: In this preliminary phase, the 
opportunities to develop a new KBE application or to modify an existing one are 
identified. Consequently, all the required resources to pursue the initiative are 
identified to build the actual project plan. These include: the possible knowledge 
sources (e.g., domain experts, data-bases and manuals), the appropriate knowledge 
acquisition tools and techniques, and the suitable analysis tools and techniques for 
knowledge representation. If the expected benefit and technical feasibility of the 
new/modified KBE application can justify the development case, then management 
can give approval to proceed with the next lifecycle phase.  
 
Knowledge capture and formalization:  Two main activities can be distinguished 
in this phase, namely capture and formalize. In the first activity the relevant 
knowledge is elicited from the experts and other sources (See (Milton, 2007; 
Shreiber et al., 2000) for detailed information concerning knowledge acquisition 
techniques) and then structured 
through informal diagrammatic 
representation. The informality of 
this representation is required to 
allow the domain experts to read 
back and validate the knowledge 
that has been captured (i.e. to make 
sure that no misunderstanding 
occurred during the elicitation phase 
and prevent incompleteness). The 
knowledge capture activity includes 
the removal of the typical vagueness Fig. 7.3: the main phases of the KBE lifecycle. 
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of the spoken language, to prepare the knowledge to be formalized (i.e. to be 
translated in rules). The formalize activity analyses the informally structured 
knowledge, as obtained from the capture activity, and represents it in a consistent, 
formal, neutral format, to enable it to be assessed for correctness and suitability for 
(re-)use. This activity might eventually require other iterations of the capture activity 
until all the inconsistencies are solved. The integration of the capture and formalize 
activity reduces the gap from the raw knowledge, as elicited form the expert, to the 
formality level typical of a programming language. Still no coding on the KBE 
platform has actually started in this phase. The contribution of MOKA mainly 
addresses this lifecycle phase. See in the previous insert the two-level modeling 
approach to capture and formalize knowledge, consisting of the so-called informal 
and the formal models. The use of visual modeling tools and languages like PCPACK 
and the UML (or the MOKA’s UML extension MML) find in this phase their main 
application field. 
 
Packaging: In this phase the knowledge assessed and formally structured in the 
previous phase is finally coded into the selected KBE environment (e.g. ICAD, GDL, 
etc). This is the real programming phase in the KBE lifecycle. The skills of the KBE 
developer, as well as the capability of the selected KBE system and its programming 
language are the most important factors. The coding should proceed under the 
supervision and approval of the expert/end-user, which should help in testing and 
validating the efficiency, effectiveness and robustness of the different modules as 
they are developed. The packaging phase actually sets the important transition from 
the neutral, KBE system-independent knowledge representation, to the specific 
format dictated by the language of the selected KBE system. This knowledge 
transition is generally carried out by hand, with evident limits in time efficiency and 
“translation accuracy”. Indeed the generation of dedicated translators to automate 
the code generation on the basis of a neutral knowledge representation, represents a 
very interesting topic. MOKA demonstrated the feasibility of automatic generation of 
the backbone of an ICAD application directly from the MML formal model (See (KBE 
coupling illustration, 2000) and Chapter 14 of the MOKA book (Stokes, 2001)). 
However, the test case was of very limited extent (no process knowledge included) 
and indeed the “non generic” aspect of the whole methodology stops exactly when 
the specificity of the selected KBE system comes in. 
 
Deploy: in this phase the application is distributed to all the potential users in the 
organization who could benefit from it. The KBE tool is installed, documentation is 
provided and, eventually, end-users are trained. In this phase of the KBE lifecycle, 
the support of IT is essential for providing a proper infrastructure to store the KBE 
application and make it available to the users (Sainter et al., 2000a). This might 
consist of a network of computers connected to a central repository where the KBE 
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application is stored. An adequate management policy of the different versions and 
updates of KBE applications is indeed required (including for example the 
implementation of a files revision control system) to allow the development and 
debugging of the application, while a working version is still available to end-users. 
These kinds of IT organizational issues, in the mid-long term, always reward the 
efforts. 
After the KBE application has been deployed to support the relevant engineering 
activity, new opportunities to improve or extend the application might become 
evident. In this case, a whole new cycle of activities can start. 

7.5.4 The KBE development team 

The development of KBE systems is first of all about the people involved in the 
process and their specific roles and relationships. The picture presented in Fig. 7.5 
shows the main actors involved in the process and the way they interact with each 
other. It should be acknowledged that such a schema is based on the simpler version 
provided by the CommonKADS methodology (Shreiber et al., 2000) to illustrate the 
team and the organizational aspects related to the development of a generic 
knowledge based system (not specifically a KBE system). It is clear how, from the 
organizational point of view, the development of KBE and KB systems does not 
present substantial difference.  This is the KBE development team: 
• The domain expert(s): he/she owns and provides the discipline knowledge. 

He/she must validate the knowledge implemented in the KBE system to be sure it 
is complete, consistent and correct such that it can be exploited by the KBE 
application end-user. 

• The knowledge engineer(s): he/she elicits the knowledge from the expert and the 
requirements from the KBE application end-user. The knowledge engineer also 
structures the captured knowledge and delivers the proper representation models 
to the KBE application developer. 

• The KBE developer(s): he/she is the expert in working with the given KBE 
platform and writes the code of the KBE application, based on the knowledge 
models provided by the Knowledge engineer.  

• The project manager: he/she is responsible for the management of the 
knowledge engineers and system developers.  

• The software supplier(s): they deliver the KBE platforms used by the developers 
and the knowledge management tools used by the knowledge engineers. Though 
external to the actual KBE team, they are often involved as consultants and 
(hopefully) collect users’ feedback to improve the tools they market. 
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Fig. 7.4: Detailed model of the KBE lifecycle. Based on (Oldham et al., 1998). 
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Depending on the size of the organization and KBE application to be developed, the 
level of expertise and capability to write code, the same person can actually “wear 
more than one cap”. It is not uncommon for the discipline expert to code the KBE 
application him/herself. Eventually he/she can be also the end-user or the person 
that mainly benefits from the developed KBE application.  
The stimulus and the continuous support to the KBE initiative should come from a 
rooted knowledge management culture in the organization. The Knowledge manager 
is the responsible appointed to define a global knowledge strategy, initiate and 
develop knowledge related projects and facilitate the knowledge distribution within 
the organization. 

 
 

Fig. 7.5: The KBE development team: actors, roles and relationships 
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7.6 Trends and evolution of KBE technology  
The first commercial KBE system arrived on the market in the 1980s, however only 
the last 10-15 years KBE technology has started to be used seriously. 
Notwithstanding its huge potential, KBE has not penetrated the market like CAD 
systems have done in their first 15 years. The reason for this limited success can be 
attributed to a combination of causes: 
• High costs of software licenses and needed hardware. It should be considered 

that the cost of a full development license of one of the first generation KBE 
systems was around 100000$ per year. The same amount of money was in the 
beginning required to acquire adequate machines to run such systems (Lisp 
Machines). It is only since the early/mid 1990s that Unix workstations came on 
the market for a cost one order of magnitude lower (still not negligible!) Only the 
costs have been the main reason to limit the range of possible KBE customers to 
the largest companies from the aerospace and automotive sectors.  

• Arguable marketing approach by KBE vendors. As Cooper elaborates in (Cooper 
and Smith, 2005), the business model of the first KBE-vendors was an 
impediment to the diffusion of just their own technologies. Due to the large 
commitment required to customers to adopt such complex and expensive 
technology, the KBE vendors felt the need to play multiple roles. They were at the 
same time KBE systems suppliers, consultancy providers (to help company to 
implement and operate effectively the KBE system they just sold them), as well 
as sellers of KBE end-user applications. As result, a third party company who 
wanted to use the KBE tool to offer consultancy service to some large KBE user, 
was becoming at the same time customer and competitor of the KBE system 
vendor.  Moreover, the vendor was in many cases even in competition with its 
own end-user customer.  

• General lack of literature, study cases and metric. Indeed, the scarce amount of 
KBE dedicated literature, the difficulty to find useful information about KBE 
success stories, as well as the lack of a good metric to estimate and judge the 
possible advantages of using KBE compared to traditional methods have all 
played a role in limiting the market penetration of KBE. Since the success or even 
the launch of a KBE initiative depends on the level of confidence and commitment 
of management, these issues absolutely cannot be disregarded. Disinformation 
and little understanding of the subject have often generated large 
misunderstandings on the actual capability and possible roles of KBE in the 
development process of products. The long endurance dispute KBE vs CAD is just 
an example.  

If we add to the list also the issues related to human acceptance of KBE (already 
discussed in section 7.4) we might end up looking at the past successful 
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implementations of KBE just as “lucky” exploits by some elite broadminded 
organizations. 

During the years, a number of technical developments and strategy changes have 
created the situation for a sustainable growth of KBE in the world of industry and 
research. First of all the cost of hardware has decreased dramatically: what 
yesterday required an extremely expensive Lisp Machine and then a workstation, 
today runs on any laptop, at a speed tenfold higher53. Many KBE vendors have 
actually adapted their system to the most widespread operating systems and 
computer architecture, i.e., simple desktop computers running Windows. However, 
only few current KBE systems can work with Linux and Mac.  

During the years, the growing complexity of the products to be engineered has 
nurtured the development of continuously more complex computer aided engineering 
tools. This trend has somehow played in favor of KBE, because the relative 
complexity gap with KBE tools has automatically decreased. 
    Another important change which is going to strongly affect the future of KBE is 
the fact that leader companies in the development of PLM solutions have finally 
recognized the value of the KBE approach and finally endowed their top-end CAD 
products with KBE capabilities:  
• In 1999, PTC introduced the Behavioral Modelling toolkit for Pro/ENGINEER 

2000i, which allows methods to capture rules to steer the CAD engine  
• In 2001, UGS acquired the KBE language Intent! from Heide Corporation and 

embedded it into Unigraphics to form Knowledge Fusion (In 2007 UGS has been 
bought by Siemens PLM software)  

• In 2002, Dassault Systemes acquired KTI and their product ICAD. DS sinks ICAD 
and exploits KTI expertise to develop KnowledgeWare, the KBE add-on of CATIA 
V 

• In 2005 Autodesk acquired Engineering Intent Corporation and integrated their 
KBE system with Autodesk Inventor, to form AutodeskIntent (now Inventor 
Automation Professional) 

• In 2007, Bentley acquires the company Design Power and integrates their KBE 
system Design++ with Microstation 

 
Without entering into the details of the different approaches pursued by these 
companies or questioning the real KBE effectiveness of their systems, some 
consequences of this trend are unquestionably positive:   

                                        
53 The development of the MMG, the KBE application described in Chapter 6-8, started on a 8000 Euro 
SUN workstation and 2 years later continued on a much faster, 800 Euro desktop. Unfortunately the 
licenses cost did not follow the same trend.  
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• KBE is entering into the mainstream of the other traditional product development 
software tools (though the “KBE side” of the abovementioned CAD systems still 
represent quite an exoteric and unfamiliar aspect for most of the typical CAD 
users). 

• Finally there is the availability of a huge force in terms of technical knowledge, 
organizational, support and marketing capabilities, which can surely help 
disseminating the KBE technology to an unexpected large amount of customers of 
all size, from large integrators to SMEs.  

• Inevitably, the entry cost of KBE, including hardware, licenses and training will 
decrease at a level that any company will have the possibility to evaluate the 
impact KBE can have on their business.  

• Eventually, freelance consultants and independent professionals will have the 
possibility to own and operate a single license on their laptop. 

At the beginning of the 1980s, KBE came out as a reaction to the limitations of 
current CAD systems. After a period of glory for exclusive customers, followed by few 
years of impasse, eventually CAD and KBE get along again… or is this a too positive 
claim? 

7.7 Recommendations & Expectations 
It is of extreme importance that the development of new KBE tools is based on the 
lessons learnt and experience gained by the pioneers and experienced practioners of 
this technology. The actual level of capability and maturity of available KBE systems 
is such that the concept does not need to be reinvented, but rather consolidated 
and, possibly, enriched with new capabilities to lower the accessibility level and to 
help programming better KBE applications in less time. 

7.7.1 Consolidating the fundamental technical strengths 

KBE platforms providers should keep their focus on two fundamental technical goals: 

1. The enhancement of the level of robustness of geometry manipulation and 
interfacing with CAD kernel(s) 

2. The enhancement of the computational capability and system stability  

As a matter of fact, the integration of rule-based design, geometry manipulation and 
computation capability represents the real added value of KBE with respect to 
conventional CAD and Expert Systems, as well as to other general purpose 
programming languages. The future of KBE passes here. Compared to the two 
targets above, any other technical improvement is only a “nice to have”. 
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7.7.2 Lowering the accessibility level 

The use of a programming language to “instruct” a KBE system must be preserved 
and consolidated, being the programming approach the most powerful and 
comprehensive way to control and access all the functionalities of a KBE system. The 
almost unlimited flexibility offered by a high level, object oriented programming 
language offers designers an extremely valuable means for capturing engineering 
knowledge and making it reusable with consistency. On the other hand, the 
accessibility level to KBE technology has to be lowered. The role of KBE developer 
should be easily undertaken by engineers and not only by programming gurus. As 
discussed in Chapter 3, Section 3.10.1, programming languages can have a 
fundamental role here: they should resemble the “everyday engineering language” 
and also relieve the KBE developer from any burden related to memory management 
and similar low level details.  

7.7.3 Supporting interactive geometry manipulation 

Furthermore the time required to write KBE applications must be drastically reduced. 
On one hand the full programming approach gives total control to developers, on the 
other it might make certain operations very cumbersome, especially concerning 
geometry manipulation. Though more than 70% of a product’s definition is often 
non-geometric, more than 70% of coding/debugging time is spent in geometry 
manipulation. Therefore, the capability to have some automatic code generation, 
while “manually” performing geometry manipulation in a more advanced graphical 
interface than current KBE systems, would be of great advantage. Besides, the 
graphical interface of typical KBE systems, like ICAD and GDL, allows just the 
visualization of the geometry produced by the product model, but does not allow (or 
only in a very limited extent) the interaction with that geometry, e.g., the mouse-
selection of a part to query and modify its attributes. 

7.7.4 Supporting web collaborative solutions and open source initiatives 

When the first KBE system came into the market, the World Wide Web did not exist 
yet, neither the concept of open source software. It is natural to expect new KBE 
systems (on the contrary of the first generation systems) to be web-friendly, hence 
geared toward their use and deployment via the web (Cooper and La Rocca, 2007). 
To be noted that this option would free users from any demands on the kind of 
computer system required using the given KBE application; a web browser would 
suffice. The possibility to free the way to open source solutions, from one side, would 
relieve the end-user to return so often (with cash) to the “KBE vendor shop” and buy 
dedicated plug-ins (e.g., for VRML and X3D graphic generation and visualization, or 
for the generation of PDF and XML files etc). From the other side it would relieve the 
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KBE vendor from the in house development of typically short life and buggy 
applications. Indeed, an open source application is likely to have fewer bugs, since a 
large number of peers had the possibility to look at it and bring improvements. 

7.7.5 The value of dynamic code ����   documentation generation 

In order to allow developers accessing and understanding applications written by 
others, code documentation is extremely important; unfortunately producing and 
keeping updated quality documentation is as much useful as time-consuming. A KBE 
system able to autonomously produce descriptive documentation of its own 
application (possibly implementing standard visual modeling languages such as the 
UML54), would be more than welcome to any developer who, at least once, has 
struggled to debug or rework others’ code…and often also his/her own!  

The automatic link code-documentation should actually work dynamically in both 
directions. Engineers should have the possibility to agilely and interactively generate 
diagrams representing the structure and the design process of their products, having 
an interpreter active in the background that is able to generate at least the main 
structure of the KBE application code. This would allow passing from the formal 
knowledge representation provided by knowledge engineers (e.g., the MOKA formal 
model), directly to the programmed application (or at least its main structure). 
Furthermore, it should be possible to visualize the structure of a given application 
and modify its code just by modifying its diagrammatic representation55. In this case, 
the barrier of the programming interface would be completely abated, eventually 
allowing engineers to play the role of engineers rather than software developers…  

7.7.6 Automatic KBE code generation. Issues and Opportunities 

As discussed in section 7.5.1, MOKA already addressed the issue of dynamic code 
generation mapping from the MML formal model. Indeed, the fact that tools like 
PCPACK use an internal XML representation of the knowledge models interactively 

                                        
54 Indeed, KBE systems like ICAD and GDL offer a so called Documentation Tool, which allows the 
automatic generation of reference documentation from a set of KBE code files. However useful, it is 
not the kind of visual representation offered for example by the UML. 

55 It should be acknowledged that in May 2002, during the International ICAD User Group in Boston, 
KTI announced and presented ICAD Release 9, which was including a so called IDE (Integrated 
Development Environment) to help engineers developing ICAD applications by means of dragging and 
dropping predefined and user-defined classes on a canvas, to be connected and adjusted as needed. 
Release 9 included also a graphical user interface to allow interactive geometry picking. In November 
2002, KTI was acquired by Dassault Systemes, the ICAD development and soon after its support 
stopped, Release 9 never came to the market. 
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generated by knowledge engineers, offers the possibility to use XSLT56 to translate 
those knowledge models into KBE code (see sketch in Fig. 7.6). 

  Two issues can be foreseen. First different translators should be developed to pass 
from the possibly different XML knowledge representation provided by different 
PCPACK-like tools to the different syntaxes of various KBE systems. Second, and this 
is a more subtle issue, a KBE product model actually consists of a mix of the “pure” 
domain knowledge (as elicited from the expert and stored in the formal knowledge 
model), and the so called implementation-specific knowledge. The latter consists of 
the KBE system-specific method to implement the domain knowledge. For example, 
the formal model can specify that a certain surface has to be segmented in parts 
along the intersection with some other surfaces. However, the way to achieve this 
segmentation can largely vary from one KBE system to another. The KBE developer 
will have to deal with the practices of the given KBE system and the possibilities 
offered by its programming language. Experts report cases when using a certain 

                                        
56 Extensible Stylesheet Language Transformations (XSLT) is an XML-based language developed by 
the World Wide Web Consortium (www.wc3.org), used for the transformation of XML documents into 
other XML, HTML or some other "human-readable" documents. 

Fig. 7.6: principle of automatic generation of KBE code from a formal knowledge 
representation, by means of XLST. 
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language, a given function could be programmed in 2 lines against over 100 required 
by another language! (Knudson; Graham, 2004)  
Eventually, according to the problem at hand, a KBE product model can consists of 
equal amounts of domain knowledge and specific implementation knowledge. There 
cannot be automatic generation of KBE applications, without dealing with the latter.  

Recently the OMG has issued a request for proposal (Object Management Group, 
2005 ) soliciting a standardization of KBE services in order to facilitate sharing the 
information that generates engineering data. In other words, a platform independent 
model for the exchange of knowledge in terms of the currently available constructs in 
KBE, such as engineering rules and relations. 
As discussed in Chapter 3, a way to relieve the problem could be the use of standard 
programming languages, rather than proprietary. However, the competitive 
advantage of certain KBE systems exists in some of their very non standard and 
unique functionalities! 
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CHAPTER 8                              
Conclusions and Recommendations 

1. Conclusions 

2. Recommendations 

3. A glimpse of the next-generation MMG 

8.1 Conclusions 
The vision and the crude reality 
In 2002, following the publication of the Vision 2020 document, the Advisory Council 
for Aeronautical Research in Europe defined the roadmap to drive the European 
aeronautical industry towards a set of very challenging sustainable growth targets. 
The target concerning the environmental impact is seen as the most difficult to 
achieve, practically impossible without important breakthroughs, both in technology 
and in concepts of operation.  
Since then, the Airbus A380 has entered into service; the Boeing 787, 
notwithstanding an already accumulated delay of 3 years, is on its way, while the 
unconventional design of the Sonic Cruiser seems doomed to dust on the shelves of 
some Boeing archive. Airbus is expecting to deliver the first A350 in 2013, while the 
A30X, the replacement for A320 successful single aisle family, cannot be expected 
earlier than 15 years from now.  
None of these aircraft feature the technology to meet the awaited ACARE targets. 
Since these are the aircraft that will operate in the next 40 years, the bankruptcy of 
Vision 2020 can be already declared. Radical innovation is indeed a too risky 
business. 

So now what? 
The search for possible solutions must begin from a careful observation of the actual 
context: 

• The modern aerospace company is transnational. It operates in the global 
market across a large, complex and distributed supply chain. 
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• New aircraft development programs are increasing complex and have a much 
longer duration. The amount of time spent for the conceptual design of a 
modern aircraft is more than the time spent in the 1940s for a complete 
aircraft development, including production. 

• The brains drain phenomenon is taking away a large part of the already 
scarce knowledge resources that are indispensable to deal with the 
abovementioned challenges. At the same time, the modern knowledge worker 
needs to be managed differently. 

• The Kansas City aircraft design is the result of more than 60 years of 
evolutionary optimization. However, the recent changes in the top level 
requirements (i.e., the new and more stringent environmental impact 
constraints) are modifying the morphology of the design space. Most likely the 
new optimum can be found somewhere else.  

To be able to step into the new age of sustainable growth, it will be necessary to 
realize that  

• Knowledge is a key business asset, strategically more important than other 
classical more tangible resources. As such, it must be properly managed and 
engineered. 

• Changes are required in the very design approach. New tools and methods 
are indeed required to 
− Support the design process across large distributed teams 
− Increase the productivity of the scarce intellectual resources 
− Better support the decision making process 
− Free time for innovation and exploitation of engineering skills  
− Lower the risk associated with the development of novel aircraft 

configurations 

The MDO promise and challenges 
The MDO approach appears to be the most promising design methodology in the 
field of aircraft design, both to improve the performance of traditional aircraft 
configurations, and to support the development of novel concepts. Actually, non 
conventional configurations such as blended wing bodies and Prandtl planes, due to 
their intrinsic level of integration, are expected to benefit the most from the 
multidisciplinary design optimization approach.  
The opportunity to bring more knowledge upfront in the design process, while 
extending the designer’s freedom to make late changes; the ability to account and 
exploit any discipline interaction; the prospected capability to thoroughly explore the 
design space and find new non trivial solutions are the dreams of any designer.  

However, a number of technical (and non technical) barriers have prevented a 
full exploitation of the MDO approach so far, and limited its industrial application 
mostly to detail design cases. The lack of adequate generative modeling systems 
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able to hook up to distributed and heterogeneous sets of analysis tools and the 
frustration from the lengthy and repetitive preparation work demanded by the 
iterative multidisciplinary analysis process have been indicated as some of the most 
critical issues for the implementation of MDO systems, especially in the conceptual 
design phase. The integration of high fidelity analysis tools, due to their lack of 
robustness and flexibility, has demonstrated particularly challenging, thereby 
reducing the impact of the MDO approach as a whole. 

The DEE concept and the development of the MMG 
To this purpose, the concept of Design and Engineering Engine has been developed, 
which is a modular, loosely integrated design system able to support the 
multidisciplinary analysis and optimization process by automating all the repetitive 
and non creative activities. One of the core components of the DEE is the Multi Model 
Generator, which is actually the technological enabler of the DEE CAD-centric 
architecture and represents the main outcome of this research work. 
Due to their current limitations in supporting the functional thinking approach of 
designers and, in particular, to their lack of knowledge recording and reuse 
capabilities, conventional CAD systems are not able to provide the level of design 
automation and flexibility necessary to support MDO.  
On the contrary, the inherent capability of KBE to integrate object-oriented rule-
based design with the geometry manipulation skills of a top-class parametric CAD 
system, can offer the required generative modeling capability.  
For this reason, the Multi Model Generator has been developed using a commercial 
KBE platform, where the KBE ability to define and manipulate geometry and other 
engineering knowledge via an object oriented programming language has been 
exploited to define the two main types of MMG components, namely the High Level 
Primitives and the Capability Modules. 

The High Level primitives 
The HLPs, with their modular and parametric structure, can be considered as smart 
LEGO blocks, which enable designers to build up a large number of aircraft 
configurations and configurations variants, including novel concepts.  
The HLPs can support designers better than the conventional CAD primitives, 
because of two main reasons: 

1. They are functional blocks, hence they can better match the way of thinking 
of a designers, which derive shapes based on functionalities to be achieved 
(e.g., generate lift, accommodate payload, etc.). 

2. They are able to record knowledge and reuse it to adapt their own shape and 
topology, or trigger some event, as a reaction of some input change.   

Indeed, whenever a HLP parameter value and/or the number and type of HLPs used 
to model a given aircraft configuration is changed (e.g., by an optimizer), the rules 
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integrated in the product model enable the aircraft to reconfigure and adjust itself, 
automatically, without any burden for the designer.  

The Capability Modules 
On the basis of the following observations: 

1. Quite independently from the aircraft configuration at hand, the same analysis 
tools and preprocessing methods are generally used by specialists  

2. A large part of the preprocessing activities required to transform a geometrical 
model into a dedicated abstraction for disciplinary analysis are systematic, 
repetitive and follow known rules 

A number of so called Capability Modules has been developed to capture discipline 
expert knowledge and reuse it to automate the generation of dedicated models (also 
called discipline abstractions or views) for a broad range of analysis tools, including 
in-house developed and commercial off the shelf, low fidelity and high fidelity tools.  
In particular, it has been demonstrated how one of the biggest MDO challenges can 
be met by means of KBE, i.e., the automatic generation and modification of FE 
models, both for a complete aircraft model or a component, independently of the 
vehicle configuration and its internal structure layout.   

High fidelity analysis in the conceptual design process 
The enabled use of high fidelity analysis tools in the early stages of the design 
process can largely increase the level of confidence in the performance prediction of 
the design under consideration. While this is a significant achievement in general, it 
actually represents a fundamental step towards the development of novel aircraft 
configurations. 
In this respect, the EC sponsored project MOB, has demonstrated the effectiveness 
of the MMG tool to support the design of a blended wing body configuration, where 
the inherent strong disciplines couplings and the lack of reference data make the use 
of traditional design methods less effective and stem for a full MDO approach, based 
on first principle analysis. 
It can be noted that the early use of high fidelity analysis systems enabled by the 
KBE approach tends to blur the boundaries between conceptual and preliminary 
design. Indeed the availability of one modeling system able to serve both low and 
high analysis tools can improve the transition between the two design phases and 
avoid discontinuities in the models supply process. 

The joy and scope of design automation 
The application of the MMG (within the DEE) for the design of a complete aircraft or 
some of its major components has shown that is possible to reduce the length of the 
analysis process from months to days, from weeks to minutes.  
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As a result, more cases can be evaluated during the time normally required by a 
single manual iteration. More what-if scenarios can be investigated. More time can 
be dedicated to creative design.  
Since discipline experts do not have to assemble manually new analysis models when 
changes occur in the product configuration, their level of frustration decreases, as 
well as the occurrence of human errors, while design rules and best practices are 
systematically applied. 
Knowledge Based Engineering, with its set of tools from the world of Artificial 
Intelligence, has proven a valuable technology to bring more automation in design, 
but, with the very limited scope to repetitive and non creative activities. In other 
words, KBE can support the analysis and optimization of good ideas, but cannot 
generate ideas. For that, the designer is always in charge.  

Enabling distributed design 
The capabilities to be accessed in remote via a web connection and work in batch 
mode allow the MMG to operate inside a real distributed design and optimization 
environment. Actually, the MMG itself becomes an enabler for distributed design. A 
large range of non-geographically collocated tools and experts can be supplied any 
time with dedicated models that are guaranteed to be consistent because extracted, 
on the fly, from the same product definition.  

Modularity to grow, adapt and survive 
The modular structure of the DEE system, as well as of the MMG and its components 
provides optimal conditions for maintenance, debugging and incremental 
development. 
Furthermore, this modular structure allows a prompt integration of new and different 
analysis capabilities and facilitates the reconfiguration/adaptation of the system to 
different design cases, or the reuse of single modules in different DEEs or just as 
stand alone.  
To cite a founding work of the modern age: “It is not the strongest of the species 
that survives, nor the most intelligent that survives. It is the one that is the most 
adaptable to change” (C. Darwin, The Origin of Species). 

The thread of micro S-curves for the MDO macro S-curve 
As discussed in Chapter 1 (Section 1.2, Fig. 1.5), jet engines would not have brought 
to a step change in aviation performance without the enabling contributions of metal 
structure, axial compressors, swept wings, retractable landing gears, etc.  
Similarly, the impact of MDO will depend on the various advances in the fields of 
optimization techniques, fast computing, communication & integration frameworks, 
high fidelity analysis tools and, last but not least, smart modeling systems. It is right 
here that this research work is intended to contribute.     
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There is (KBE) life outside planet Aerospace Engineering 
The methodology described in this research work to support aircraft design and 
optimization finds a lot of application also outside the aerospace field. The design of 
any complex craft that requires the involvement of many discipline stakeholders and 
whose optimum performance depends on non intuitive combinations of physical and 
process parameters can strongly benefit from the technologies discussed in this 
work. As a matter of fact, dedicated DEEs and MMGs have been developed and 
demonstrated in other two EC projects.  
The first one, called UPWIND (www.upwind.eu), is a 5th framework project 
investigating the development of new extra large scale wind turbines, where a MMG 
is required to feed a range of distributed analysis and simulation tools (Chiciudean, 
La Rocca and Van Tooren, 2008; Cooper and La Rocca, 2007).  
The second one, called PEGASUS (www.pegasus-eu.net), is a 6th framework project 
that aims at improving the development process of plastic car components, by 
means of a better and more pro active integration of knowledge and tools from OEM 
and suppliers. In this case a DEE is being developed to optimize the design of 
injection molding tooling for minimum cost, environmental impact, and 
manufacturing process time (van Dijk et al., 2011). 

8.2 Recommendations 
A KBE application as the one illustrated in this research work has the tendency to 
become one of these systems whose development never stops! Every success in 
automating a part of the design work, every achieved link with another analysis tool, 
will bring the happy user (actually the increased number of happy users) back to you 
with a new wish.  

Basic lessons from the IT world 
However, the modular incremental development approach alone will not suffice to 
sustain such a continuous growth, neither will it facilitate code reuse and sharing, if 
not complemented with some software development best practice. These practices 
are not always familiar or properly implemented by the common aerospace engineer, 
until too late... 
These include the following guidelines: 

• Make use of understandable naming for attributes, functions, classes, etc. 
• Never hardcode parameters inside the code, including explicit paths to 

external files and disks 
• Keep program code as clean and structured as possible (in a way, any code 

file must be a comfortable place to work in)  
• Always document the code, both inserting explanations in between the code 

lines, and by means of external documentation. What seems to be a trivial 
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function definition to you today, it will not to another developer or to yourself 
in a few months (this would be an inconvenient degradation of knowledge 
back into data) 

• Organize the various pieces of source code according to some agreed filing 
structure (ontology). For example different folders/subfolders for generic 
classes and functions, HLPs, CMs, libraries, input and output areas, etc. 

• Make use of a control revision system and a properly backed-up file repository 
to store and share the code. Do not commit code into the repository that has 
not been tested, unless you are and you will remain the only user of that 
code. 

• Develop and keep up to date a code testing system. Before committing any 
new version of the code or just some new module, all tests must be passed 
(e.g., it should be possible to generate all the possible output files for a 
number of significant aircraft configurations), to verify that all the previous 
functionalities are still intact.  

• When a stable version of the KBE application is available, it is convenient to 
compile it into an executable file, which is the most robust and convenient  
form to distribute the application (no local installation of the KBE system will 
be required on the machine where the executable has to run) 

Lean to be lean 
Developing a quality KBE application is not trivial and can be very time intensive. 
Code (re)structuring, testing and documentation generation can take a significant 
amount of the overall development time. Cutting time by saving on these activities is 
not uncommon, especially within a research environment where the proof of concept 
is generally the goal, rather than a finalized tool ready for professional deployment.  
However, within an industrial environment this is generally not an option. Different 
strategies are required to compress the development time of a KBE application, such 
to increase its return of investment or justify its development (pressure can be high 
when the development costs must be covered by a single project). 
As KBE is used to achieve a lean approach in design, methods are needed to achieve 
a lean KBE application development. 
New PhD research programs are currently on going at the TU Delft faculty of 
Aerospace Engineering, with the scope of developing a suite of tools and methods to 
increase the productivity of KBE developers. Among others the following items need 
to be investigated (see also Section 7.7): 

• Automated code documenting systems 
• Automated code generation/manipulation from KBE platform independent 

knowledge models 
• Improved debugging and testing systems 
• Ontology development to facilitate structuring and reuse of KBE modules 
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• Extension and revision of the MOKA ontology to support the development of 
DEEs (and similar MDO frameworks) and not only of pure KBE applications. 

A new look at the MMG 
Although, the modeling capabilities of the MMG described in this work have proven 
capable of generating very different aircraft configurations and variants, it is 
recommended to consider the following improvements: 

• Allow for a non linear distribution of chord lengths, dihedral and twist  
• Allow for a free placement and orientation of airfoils all over the span, 

including the possibility to have canted root and tip wing sections 
• Ease the approach to define curve leading and trailing edges (also to reflect 

the more curvy shapes allowed by manufacturing with composite material) 
• Allow the possibility to model complex (cranked) planform by means of a 

single wing-part primitive to limit the amount of required wing part instances 
and relative connections 

• Increase the flexibility of the structural element definition and placement to 
avoid, for example, redefining spars for each wing-part instances inside a 
cranked wing, even when the spars extend continuously from the wing root to 
the tip 

• Allow the definition of multi element wings with movables that are free to be 
deflected and extracted 

• Similar improvements in term of modeling flexibility should be considered also 
for the Fuselage and the Engine primitives. The integration of new types of 
engines on new aircraft configurations is going to become a very interesting 
aspect, where the DEE can offer a lot.  

• Although the MMG has been developed to operate in batch, driven by a user 
defined input file, it would be convenient to develop a graphical user interface 
to facilitate both the generation/modification of the input file and the 
interactive operation of the MMG.  

• Expand the scope of the MMG (and the overall DEE) to other “hot design 
areas”, such as systems integration and wires/piping routing. The recent 
problems on the A380 wire harnesses routing and their impact on the overall 
delivery schedule are sufficient to justify the relevance of this research area. 
The complexity of these systems has grown so drastically that it is no more 
convenient neither possible to address them as late as during the detail design 
phase. 

8.3 A glimpse of the next-generation MMG 
Whilst recommendations are a nice academic way of stating “I did my part! Someone 
else will take care of cleaning my mess and solving the problems I was not able to 
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solve”, the author had the privilege to initiate the development of a new generation 
MMG and already take care of some of the recommendations listed above.  
After the ICAD exit from the market, GDL, the new KBE platform by Genworks 
International, has been adopted at our chair to start the development of the next-
generation MMG. The activities to recode (an improved version of) the HLPs and CMs 
are already ongoing and Fig. 8.1, Fig. 8.2 and Fig. 8.3 offer a peek on the most 
recent developments. 
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Step 1 a) Step 1 b) 

Step 1 c) Step 2 

Step 1 Construct rails Step 2 Place airfoils Step 2 Construct Surface 

Fig. 8.1: Definition of the new Wing-Part HLP. Two curvilinear and not necessary 
continuous rails are defined and used to “hinge” airfoils at any angle. Twist, dihedral and 
sweep angles distributions are not necessarily linear (Koning, 2010).  
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Fig. 8.3: The GDL surface tessellation capability is used to generate suitable grids for 
FE structural analysis directly within the MMG. A new Capability Module generates the 
NASTRAN bulk data deck (.bdf) file without the need of Pycoco and PATRAN. This can 
simplify the MMG-NASTRAN integration approach discussed in Section 6.4 (van Hoek, 
2010).  

Fig. 8.2: Examples of MMG generated multi-element wings (slat and triple slotted 
flaps). Direct links both to CFD simulations (MSES) and semiempirical methods (ESDU) 
for the derivation of the flapped wing lift curves are in place (van den Berg, 2009). 
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Appendix A Summary of basic UML notation 

Class and Object diagrams 

Class name: By convention, a single capitalized word (in 
case of multiple words names, all the words are joined 

together and capitalized) 

Attributes: By convention, all attributes are indicated 
with a single low case word (in case of multiple words 

names, all the words are joined together and capitalized 
starting from the second word) 

Operations: By convention, all operations are indicated with a single low 
case word followed by “()”. In case of multiple words names, all the 

words are joined together and capitalized starting from the second word) 

Ellipsis: three dots (…) are used in the attribute and/or operation fields to 
indicate that only some of the attributes or operations have been indicated. 

An elided class representation is one where 
one or both the attribute and operation fields 

are not shown for simplification. 

operation1()
...()

attribute1
attribute2

Class1

Generalization/Specialization link: Class4 and 
Class3 are two specializations of Class2 (they inherit 

attributes and operation from Class2). Class2 is a 
generalization of both Class4 and Class3. 

Class2

Class3Class4

Dependency link: Class9 depends on Class8. 
E.g., Class9 needs something from Class8 for 
the evaluation of its attributes, or to perform 

some of its operations. 

Association link: Class10 and 11 are associated: 
they are linked by a relationship different than 

generalization, aggregation, dependency, etc.  A 
tag and an arrow can be used to specify the type 

and direction of the association 
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Composition link: Class6 and Class7 are 
components of Class5.  

Multiplicity label: Class 5 is a composition 
including from 0 to an infinite number [0..*] of 
Class6 components; and 1 to 3 [1..3] Class7 
components. Both Class6 and Class7 belong to 
only 1 Class5 composition [1]. 

Aggregation link: Class6 and Class7 are 
members of the aggregation Class5.  

A composition is a stronger relation than aggregation: all the members of an 
aggregation can live autonomously without the need of the aggregation class. On 
the contrary, if a composition is eliminated, all the members are also eliminated. 

Objects: myObject1 is an instance of Class1.  

Generally two fields are used to represent objects. The 
class name is always indicated next to the object’s 
name in the top field. Hence, it is not always necessary 
to show the class-object link using a connector. 

The bottom field is reserved to list of attributes and 
their values 

operation1()
...()

attribute1
attribute2

Class1

attribute1 = 10
attribute2 = "red"

myObject1 : Class1

By convention, object names are indicated with a single low case word. In case 
of multiple words names, all the words are joined together and capitalized starting 
from the second word. 

Object links: relationships between objects are 
indicated by connectors. Connector labels can be 
used to specify the type of link.  

In this example, the link is of type “has part”: 
MyObject2 is part of myObject1 
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Activity diagrams 

 

Swimlane2Swimlane1

Activity1

[condition-true?] 

Activity2

Activity4

[ condition-false?] 

Activity3

Activity5 Activity6

comment

input1

Output1Output2

Start point of the 
sequence of activities 

End point of the 
sequence of activities 

Synchronization bars: the 
following activities cannot start 
until all the previous activities 
have been completed 

Decision Point:  one 
branch is selected according 
to the evaluation of some 
conditional statement 

Explanatory note 

Swimlanes separate the activities performed by different actors 

Activity10 is followed by Activity20 

ActivityX requires Input1 and 
generates Output1 

Zoom-in fork: another 
activity diagram is 
provided, to show the 
details of Activity3  



 

280 

 

Use case diagrams 

 

 
 

System

Actor1 Actor2Actor3

UseCase1UseCase2

UseCase3

<<extend>>

<<include>>

<<include>>

UseCase4

UseCase5

UseCase6

{OR}

Constraint 1

Explanatory
note/comment

System boundary 

System name 

Constraint applying 
to UseCase1 

Exlanatory note 
for UseCase4 

UseCase5 and UseCase6 are specializations of USeCase3 (hence they both 
inherit from UseCase3) 

UseCase1 either includes UseCase2 or UseCase3. In other words, UseCase1 
includes in its definition the steps of either UseCase2 or UseCase3. UseCase4 adds 
some steps to the existing UseCase1. That is to say, UseCase4 extends 
UseCase1.  

Inclusion and extension links are indicated using dependency links (i.e., dashed 
arrows with appropriate tag) 

A system can provide several use cases. Different actors can initiate/receive from 
different use cases. 

Actor1 initiates and/or receives 
something from UseCase1. 

Actor1 is a generalization of Actor2 
and Actor3 

Actors are always collocated 
outside the boundary of a system 
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Appendix B Commercial KBE Tools 

A non exhaustive list of commercial KBE tools, including some related information 
and web links, is provided in the table below. Considering the fast dynamic of the 
KBE tools market, the reader is advised to refer to the KBE page on Wikipedia 
(http://en.wikipedia.org/wiki/Knowledge-Based_Engineering), which is regularly 
updated by KBE developers and vendors. 

 

ICAD 

By Knowledge 
Technology 
International (KTI). 
Since 2002 part of 
Dassault Systemes 

http://en.wikipedia.org/wiki/ICAD 

http://www.3ds.com  

(http://www.ktiworld.com ) Former website 

ICAD came out in the early 1980's and was the first KBE system on the market. 
ICAD uses a programming language called IDL (ICAD Design Language), which is 
an object-oriented, declarative language based on LISP. ICAD provides a proprietary 
CAD engine for surface modeling, and relies on the Parasolid system to handle 
solids. After KTI was bought by Dassault Systemes, ICAD has ceased to be 
supported, though many ICAD applications are still used by companies like Airbus 
and Boeing 

AML By Technosoft http://www.technosoft.com/aml.php  

AML is an object-oriented, knowledge-based engineering modeling framework. AML 
enables multidisciplinary modeling and integration of the entire product and process 
development cycle. According to Technosoft, no other commercial framework or 
development environment provides the full range of capabilities that AML includes 
out of the box. 

INTENT! By Intent! (since 
2005 in Autodesk) 

http://www.autodesk.com  

INTENT! Used to be a stand alone KBE language, quite similar to ICAD (indeed it 
was developed by people who worked on the development of ICAD). It used to be 
LISP based, though it turned out into a proprietary language. At the beginning, 
INTENT! used AutoCAD as its geometry engine. In 2005 INTENT! has been acquired 
by Autodesk and it is now integrated in the Inventor Automation Professional 
package (the design and configuration rules system for Autodesk Inventor) 
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GDL By Genworks 
International 

http://www.genworks.com  

GDL is a new generation KBE system that combines the power and flexibility of the 
older ICAD system with new web technology. It is available for many different 
platforms such as Windows, Linux and Mac. Its programming language is based on 
the standard ANSI Common LISP. It allows the manipulation of very simple 
geometry primitives, and optionally provides full integration to the NURBs Surfaces 
and Solids modeling kernel from Solid Modeling Solutions Inc. 

CATIA V 
Knowledgeware 

By Dassault 
Systemes 

http://plmus.3ds.com/V5/knowledge.cfm  

Knowledgeware is a set of applications available to extend the native functionalities 
of the CATIA V5 CAD system in terms of design automation and rules capturing. 
Knowledgeware offers the possibility to define product templates so that automated 
parametric design is facilitated. Other tools are provided to organize and manipulate 
parameters, create flexible rules and specification checks. Apart from 
Knowledgeware, CATIA V5 also offers designers the possibility to write pieces of 
Visual Basic to further extend the design automation capability. 

Knowledge 
Fusion 

By UGS (since 
2007 Siemens PLM 
software) 

http://www.plm.automation.siemens.com/  

Knowledge Fusion is an integrated KBE tool that permits knowledge-based 
extension of the CAD system NX. Knowledge Fusion is the result of a tight 
integration of the KBE language INTENT! from Intent Engineering Corporation (now 
part of Autodesk) with the proprietary CAD engine Parasolid. Designers and 
application developers can work with Knowledge Fusion directly within the NX user 
environment to create rules that capture design intent. These rules can be used to 
drive product design, ensuring that engineering and design requirements are fully 
understood and fully met.   
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Appendix C UML class diagram of the MOB Blended 
Wing Body product model 
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Appendix D MMG input file. Definition of the outer 
surface of a wing-like element 

In the insert below a snippet of the MMG input file is provided to show an example of 
wing surface definition. 
In this case, the wing is composed of three wing-parts, as can be seen by the three 
values contained in the lists. For each wing-part only two airfoils have been selected, 
one for the root and one for the tip section. 
The wing is not twisted, is swept and features a winglet. 

;;;;------------------ input-data for the MAIN WING  ------------------ 
 
:span-wing-list        (list 2000 792 2398) 
:chord-root-wing-list  (list 10569 2982 1500) 
:chord-tip-wing        (list 800) 
:sweep-wing-list       (list (degree 7) (degree 29)  (degree 29)) 
:dihedral-wing-list    (list (degree 1) (degree 3) (degree 0)) 
:twist-wing-list       (list (degree 0) (degree 0) (degree 0)) 
:twist-angle-wing-root (degree 0) 
:winglet? t 
:wing-airfoil-list (list (list  "NACA0012"   "NACA0 012") 
                     (list  "NACA0012"   "NACA0010" ) 
                     (list  "NACA0010"   "NACA0009" )) 
:wing-airfoil-thickness-list (list  (list 0.90 0.90 ) 
           (list 0.90 0.80)     
                          (list 0.80 0.90)) 
:wing-offset-list (list (list 0.0 1.0) 
              (list 0.0 1.0) 
              (list 0.0 1.0)) 
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Appendix E Spars generation process activity diagrams 

Activity diagram for the spars generation process. 
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Sub-activity diagrams for the generation of spar-points on root chord. 
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Appendix F Wing-Part Structure class diagram 

(see next page) 
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Class diagram 
of the wing-
part structure 
system 



  Appendices 

 

291 

 

Appendix G MMG input file. Spars definition 

A snippet of the MMG input file relative to the vertical tail of a transport aircraft is 
reported in the insert below, to show examples of spar definitions.  
Each parameter is defined as a list of lists, being these lists as many as the wing-
parts used to build up the vertical tail. In this case two wing-parts have been used.  
No real spars are present in the LE/TE area (just virtual spars to make sure the LE 
and TE areas structure is generated).  
Three spars are defined in both the wing-parts of the Wing Box area. Note the 
definition of the semi-real spar in the Wing Box area of the second wing-part. 
The index number of each spar (which is assigned automatically by the MMG) has 
been indicated in the insert below, but only for the first wing-part.  
 

;;;------------- spars LEADING-EDGE AREA ---------- -------------- 
:fin-type-of-spar-le (list (list 'v)  

   (list 'v))      
:fin-spar-offset-list-root-le (list (list 0.1652)  

(list 0.1652))     
:fin-spar-offset-list-tip-le  (list (list 0.1652)     
                                    (list 0.1652))    
 
;;;------------- spars WING-BOX AREA -------------- --------------    
:fin-type-of-spar-wb (list (list 'r 'r  'r)   
                           (list 'r (list 'r 0. 0.2 5) 'r))      
:fin-spar-offset-list-root-wb (list (list 0.1652 0. 3655  0.5708)     
                                    (list 0.1652 0. 3655  0.5708))     
:fin-spar-offset-list-tip-wb  (list (list 0.1652 0. 3655  0.5708)    
                                    (list 0.1652 0. 3655  0.5708)) 
 
;;;------------- spars TRAILING-EDGE AREA --------- -------------- 
:fin-type-of-spar-te (list (list 'v)          
                           (list 'v))      
:fin-spar-offset-list-root-te (list (list 0.5708)     
                                    (list 0.5708))     
:fin-spar-offset-list-tip-te  (list (list 0.5708)     

                                 (list 0.5708)) 

Spar 1 

Spar 2 

Spar 3 

Spar 0 

Spar 4 
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Appendix H Activity diagram of the LE/WB/TE areas 
identification process
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Appendix I MMG input file. Ribs definition 

The insert below contains a snippet of the MMG input file containing the definition of 
the LE/TE/WB ribs in the vertical tail of a transport aircraft. As usual, each parameter 
is defined as a list of lists, being these lists as many as the wing-parts used to define 
the vertical tail. In this case two wing-parts have been used.  
Seven and four ribs have been defined in the first and second wing-part respectively. 
All ribs have been oriented in flight direction; hence the values of the tail-rib-
positioning-referred-to-spar parameter are ignored. 

;;;----------------- ribs LEADING-EDGE AREA ------- -------------------- 
:tail-type-of-rib-le (list (list  'r  'r  'r  'r  ' r  'r  'r)  

   (list  'r  'r  'r  'r)) 
:tail-rib-le-orienting-referred-to-spar  

(list (list  'fd  'fd  'fd  'fd  'fd  'fd  'fd)  
(list  'fd  'fd  'fd  'fd) ) 

:tail-rib-le-orienting-angles-list (list (list  0  0  0  0  0  0  0) 
     (list  0  0  0  0) ) 

 
;;------------------------ ribs WING-BOX AREA ----- ---------------- 
:tail-type-of-rib (list (list  'l  'l  'l  'l  'l  'l  'l)  

(list  'l  'l  'l  'l) ) 
:tail-rib-positioning-referred-to-spar (list (list  0  0  0  0  0  0  0) 

   (list  0  0  0  0) ) 
:tail-rib-orienting-referred-to-spar  

(list (list  'fd  'fd  'fd  'fd  'fd  'fd  'fd)  
(list  'fd  'fd  'fd  'fd) ) 

:tail-rib-positioning-offset-list  
(list (list 0.07  0.216  0.35  0.50  0.64  0.78  0. 92) 

         (list 0.12  0.37  0.62  0.87)) 
:tail-rib-orienting-angles-list (list (list  0  0  0  0  0  0  0)  

  (list  0  0  0  0) ) 
    
;;;--------------------- ribs TRAILING-EDGE AREA -- ---------------- 
:tail-type-of-rib-te (list (list  'r  'r  'r  'r  ' r  'r  'r) 

   (list  'r  'r  'r  'r)) 
:tail-rib-te-orienting-referred-to-spar  

(list (list  'fd  'fd  'fd  'fd  'fd  'fd  'fd) 
                              (list  'fd  'fd  'fd  'fd) ) 
:tail-rib-te-orienting-angles-list (list (list  0  0  0  0  0  0  0) 
                 (list  0  0  0  0) ) 
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Appendix J UML Use case relative to ribs definition  
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Appendix K Ribs generation process activity diagrams 

Activity diagram for 
the ribs generation 
process. 
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Sub-activity diagram for the generation of Rib-reference-point 
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Sub-activity diagram for the generation of Rib-reference-plane 
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Appendix L  Wing-part segmentation process 

Activity diagram for the surface segmentation of Wing-
part instances 
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Sub-activity diagram “generate extra cutting elements” 
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Sub-activity diagram “perform cutting of all structure elements 
along their intersection”. Skin panel segmentation. 
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Sub-activity diagram “perform cutting 
of all structure elements along their 
intersection”. Spars segmentation. 

Sub-activity diagram “perform cutting 
of all structure elements along their 
intersection”. Ribs segmentation. 
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Appendix M  Definition of design variable areas for 
structural FE-based optimization 

A method has been developed to assign all the structural surface segments 
generated by the Capability Module Surface-splitter to a number of so called design 
areas. The thickness of all the segments belonging to a certain same area 
corresponds to one design variable in the structural optimization process. That is to 
say, all the segments belonging to the same design area will end up with the same 
thickness value.  
The grouping method is based on the automatic generation of design area 
identification codes, which are attached to each surface segment and then stored in 
their respective FEM-table. Via a limited amount of settable parameters in the input 
file, the user has the possibility, to define the amount and the extension of the 
design areas, hence, to affect the total amount of design variables for the 
optimization process. 
 
In the MMG developed for the MOB project, the design variable code is calculated by 
adding 4 different sub-code numbers (see next page for an example)): 
1. Wing-part instance code: from 1·106 to n·106 (from root to tip in the given lifting 

surface) 
2. Chord-wise code: from 1·104 to 99·104 (1·104 and  2·104 reserved for the LE and 

TE zone respectively, the other zones are comprised from spar to spar) 
3. Span-wise code: from 1·102 to 99·102 (from root to tip in the given wing part, 

number of zones defined by the user via input file)  
4. Element code: from 0 till 99. Each code is reserved to a type of element: 

• 1 for ribs and riblets segments 
• 2 for (real) spars segments 
• 3 for upper-skin segments 
• 4 for the lower-skin segments 
• n for other segments, with n ≤ 99  

 
Parameters are also available in the input file to reduce the amount of design 
variables: forcing al the ribs in a chordwise area to get the same variable; forcing all 
the upper skin panels in the same spanwise area to get the same variable; idem for 
the lower skin panels. To increase the amount of design variable areas, the user can 
define extra virtual spar or ribs.  
The design variable areas identification approach described here, and initially 
developed for the MOB BWB, has been subsequently extended to conventional 
aircraft configurations as well. 
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Coding scheme for design variable areas identification and examples 

Wing-part instance code        Chord-wise code 

       Element code        Span-wise code 

2nd Wing-part instance 
Number of spanwise area = 2

2000000 +
40000 + 

100 +
3 =--------------

2040103

2000000 +
10000 + 

200 +
3 =--------------

2010203

2000000 +
70000 + 

100 +
2 =--------------

2070102

Spanwise area 1

Spanwise area 2
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E quindi uscimmo a riveder le stelle 

Dante Alighieri 

Finally we could see the stars again. Inferno, Canto XXXIV 


