

Knowledge Based Engineering

Techniques to Support Aircraft

Design and Optimization

Gianfranco

La Rocca

Knowledge Based Engineering
Techniques to Support

Aircraft Design and Optimization

Gianfranco La Rocca

Considerate la vostra semenza:
fatti non foste a viver come bruti,

ma per seguir virtute e canoscenza

Dante Alighieri

Ulysses’ last journey, Inferno, Canto XXVI

iii

Knowledge Based Engineering
Techniques to Support

Aircraft Design and Optimization

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.Ch.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op vrijdag 1 april 2011 om 10.00 uur

door

Gianfranco LA ROCCA

Ingegnere Aerospaziale, Universita’ di Pisa
geboren te Messina, Italië

iv

Dit proefschrift is goedgekeurd door de promotor:

Prof.dr.ir. M.J.L. van Tooren

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof.dr.ir. M.J.L. van Tooren Technische Universiteit Delft, promotor
Prof.dr. A.J. Morris Cranfield University
Prof.dr. A. Frediani Universita’ di Pisa
Prof.ir. J.J. Hopman Technische Universiteit Delft
Prof.dr. T. Tomiyama Technische Universiteit Delft
Prof.dr.ir. E. Torenbeek Technische Universiteit Delft
Prof.dr. R. Curran Technische Universiteit Delft

ISBN/EAN: 978-90-9026069-3

Copyright © 2011 by Gianfranco La Rocca

All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form or by any means, electronic or mechanical,
including photocopying, recording, broadcasting, or by any information storage and
retrieval system, without prior written permission from the author G. La Rocca, Delft
University of Technology, Faculty of Aerospace Engineering, Kluyverweg 1, 2629HS,
Delft, the Netherlands.

Cover picture: Isola d’Elba from the sky.

Printed in the Netherlands.

v

Summary

Knowledge Based Engineering Techniques to Support
Aircraft Design and Optimization

Since the 1960s, the demand for air transportation has doubled every 15 years,
resilient to every oil crises and international events. However, the current capability
of the air transport management system, the demand of increasingly growing levels
of quality, comfort, safety and security, and, above all, an environmental sensitivity
as high as never before, seem to constrain any further growth. The Advisory Council
for Aeronautical Research in Europe (ACARE), similarly to NASA in the United States,
has indicated a set of challenging objectives and devised a roadmap to help the
aerospace industry stepping into a new age of sustainable growth.

However, major technological advances will not be possible without significant
improvements to the current design methodology. In this regard, the present
research work aims at the development of new design methods and tools that
are able to sustain the evolutionary improvement of current aircraft designs, as well
as to support the investigation of novel aircraft configurations. To be successful,
these design methods and tools must be able to facilitate the aircraft development
process as it is currently carried across large and distributed supply chains. Besides,
they must account for the increasing scarcity of intellectual resources and the
consequent need to increase engineers’ productivity and freeing time for innovation.

The Multidisciplinary Design Optimization (MDO) approach appears to be the
most promising design methodology in the field of aircraft design, both to improve
the performance of traditional aircraft configurations and to support the development
of novel concepts. However, a number of technical and non-technical barriers have
prevented full exploitation of the MDO approach and, so far, limited its industrial
application to detail design cases.

To this purpose, the concept of Design and Engineering Engine (DEE) has been
developed at the Faculty of Aerospace Engineering in Delft, which is a modular,
loosely integrated design system able to support distributed multidisciplinary analysis
optimization by automating as far as possible the repetitive and non creative
activities that hamper the design and analysis process. One of the DEE technology
enabler is the Multi Model Generator (MMG), which actually represents the main
outcome of this research work. The Multi-Model Generator (MMG) is a

vi

Knowledge Based Engineering (KBE) application developed with the twofold
intent of 1) providing designers with a parametric modeling environment to define
generative models of conventional and novel aircraft configurations and 2) feeding
various analysis tools with dedicated aircraft model abstractions, as required for the
verification of the generated design. To meet these objectives, two types of
functional blocks have been developed, which constitute the main ingredients of the
MMG: the High Level Primitives (HLPs) and the Capability Modules (CMs).

Four High Level Primitives have been defined, namely Wing-part, Fuselage-part,
Engine and Connection-element. These can be figured out as a suite of advanced
LEGO blocks that designers can manipulate to assemble the geometry (external
surfaces and structural layout) of the aircraft concept they have in mind. Each HLP
has been programmed as a class using the object-oriented programming
language of the employed KBE system. This has allowed capturing the design rules
that give the HLPs the capability to automatically adapt their own shape and
topology, or to trigger events as a reaction of input changes. By means of the
editable MMG input file, designers can assign different values to the attributes of
each HLP class and call for multiple HLPs instantiations. In this way, both
conventional and novel aircraft configurations can be automatically
generated and then stretched/morphed into an infinite amount of variants.

During the conceptual design phase, designers “see” the aircraft as an assembly of
basic solutions to fulfill functionalities, such as generate lift and accommodate
payload, rather than an assembly of points, curves, surfaces and solid features. The
capabilities to support the designer’ functional thinking and capture knowledge in
terms of design rules, have yielded the MMG primitives the “high level” connotation,
in contrast with the “low level” primitives of conventional CAD.

Once the model of the given aircraft is available, the preparation for the verification
phase starts, which requires the set up of the various discipline abstractions (or
views) that must be fed to the analysis tools. In the traditional design process, the
preparation of these disciplinary models is acknowledged to be lengthy and
repetitive, particularly when high fidelity analysis tools are involved. Up to 80% of
the overall design process can be wasted just for these preprocessing activities.
However, it has been observed that 1) independently from the aircraft configuration
at hand, the same analysis tools and preprocessing methods are generally used by
specialists; 2) large part of the preprocessing activities is rule-based and require a
large deal of geometry manipulation, which actually represent the strengths of KBE
technology. To support this phase of the design process, a set of Capability
Modules (CM) has been developed to capture the “model preprocessing knowledge”
of discipline experts and reuse it to automate the generation of models for a

vii

broad range of low and high fidelity analysis tools, both proprietary and commercial
off the shelf.

The implemented approach has enabled the use of high fidelity analysis tools,
such as FEM and CFD, already in the early stages of the design process, which
not only increases the level of confidence in the designed product, but provides
essential means for the study of innovative aircraft configurations, where semi-
empirical and statistics based methods fail and first principle analysis is the only way
to go.

Due to its ability to be accessed in remote, via web connections, and operated in
batch, the MMG also demonstrated to be a valuable asset to support MDO
processes across distributed design frameworks.

The capability of the MMG has been demonstrated by means of several example
applications and two relevant study cases addressed in this work. The first case
concerns with the European project MOB, on distributed multidisciplinary design
optimization of blended wing body aircraft configurations. The second deals with a
MDO system developed in collaboration with Airbus to redesign the vertical tail of an
existing passenger aircraft.

A side objective of this work was to improve the dissemination of KBE technology,
which is still a relatively young discipline that has not yet found the deserved level of
attention and understanding, both in the world of industry and academia. To this
scope, an extensive and original investigation on the Artificial Intelligence
roots of KBE is provided and its object oriented paradigm thoroughly discussed. A
best practice section to the development of KBE applications is included as well.

ix

Samenvatting

Knowledge Based Engineering technieken ter
ondersteuning van vliegtuigontwerp en optimalisatie

De vraag naar luchtvervoer is elke 15 jaar verdubbeld sinds de 60-er jaren, altijd
herstellend van elke olie crises en internationale evenementen. Echter, de huidige
capaciteit van het luchttransportmanagementsysteem, de vraag van de steeds
groeiende kwaliteit, comfort, veiligheid en beveiliging, en vooral een
milieubewustheid zo hoog als nooit tevoren, lijkt een beperking te zijn van elke
verdere groei. De Advisory Council for Aeronautical Research in Europe (ACARE),
vergelijkbaar met NASA in de Verenigde Staten, heeft een aantal uitdagende
doelstellingen aangegeven en heeft een routekaart opgezet om de
luchtvaartindustrie te helpen met de entree in de nieuwe era van duurzame groei.

Echter, grote technologische vooruitgang zal niet mogelijk zijn zonder aanzienlijke
verbeteringen aan de huidige ontwerp-methodologie. In dit verband richt het huidige
onderzoek zich op de ontwikkeling van nieuwe ontwerpmethoden en –tools
die in staat zijn evolutionaire verbetering van de huidige vliegtuigontewerpen kunnen
ondersteunen, maar ook ondersteuning kunnen leveren aan het onderzoek naar
nieuwe vliegtuigconfiguraties. Om succesvol te zijn, moeten deze ontwerpmethoden
en –tools het proces van de vliegtuigontwikkeling faciliteren, aangezien dit nu over
grote en verdeelde leveringsketens gaat. Bovendien moeten deze rekening houden
met de toenemende schaarste van intellectuele resources en de daaruit
voortvloeiende behoefte om de productiviteit van de ingenieurs te verhogen en tijd
vrij te maken voor innovatie.

De Multidisciplinaire Design Optimalisatie (MDO) benadering lijkt de meest
veelbelovende ontwerpmethode te zijn op het gebied van vliegtuigontwerp, zowel
voor het verbeteren van de prestaties van traditionele vliegtuigconfiguraties, alsmede
voor de ondersteuning van de ontwikkeling van innovatieve concepten. Echter, een
aantal technische (en niet-technische) belemmeringen hebben een volledige
toepassing van de MDO-aanpak verhinderd en hebben tot nu toe de industriële
toepassing gelimiteerd tot gedetailleerde ontwerptoepassingen.

Voor dit doel is het concept van Design en Engineering Engine (DEE) ontwikkeld
bij de faculteit van luchtvaart techniek in Delft, dat een modulair, losjes geïntegreerd
ontwerpsysteem is, dat in staat is om verdeelde multidisciplinaire analyse-

x

optimalisatie te ondersteunen, door de repetitieve en niet creatieve activiteiten die
het proces belemmeren zoveel mogelijk te automatiseren.

Eén van de DEE hoekstenen is de Multi Model Generator (MMG), welke het
voornaamste resultaat van dit onderzoekswerk is. De Multi-Model Generator
(MMG) is een Knowledge Based Engineering (KBE) applicatie ontwikkeld met
de tweeledige bedoeling om 1) designers te voorzien van een parametrische
modelleeromgeving waarin generatieve modellen van conventionele en innovatieve
vliegtuigconfiguraties kunnen worden gedefinieerd en 2) het voeden van
verschillende analysetools met specifieke abstracties van vliegtuigmodellen, zoals
vereist voor de verificatie van het gegenereerde ontwerp. Om deze doelstellingen te
verwezenlijken zijn twee soorten functioneel blokken ontwikkeld, welke de
voornaamste ingrediënten van de MMG vormen: de High Level Primitives (HLPs) en
de Capability Modules (CMs).

Vier High Level Primitives zijn gedefinieerd, namelijk Vleugel-deel, Rompdeel,
Motor en Verbinding-element. Deze kunnen worden ingeschat als een reeks
geavanceerde LEGO blokken die ontwerpers kunnen manipuleren om de geometrie
(externe oppervlakken en structurele lay-out) samen te stellen van het concept van
de vliegtuigen die ze in gedachten hebben. Elke HLP is geprogrammeerd als een
klasse met de object-georiënteerde programmeertaal van het gebruikte KBE
systeem. Dit heeft mogelijk gemaakt om de ontwerpregels vast te leggen, die de
HLPs het vermogen geven hun eigen vorm en topologie automatisch aan te passen,
of om te reageren met veranderingen van invoer. Door middel van het bewerkbare
MMG invoerbestand kunnen designers verschillende waarden aan de kenmerken van
elke HLP-klasse toewijzen en meerdere HLP instanties genereren. Op deze manier
kunnen zowel conventionele als innovatieve vliegtuigconfiguraties automatisch
worden gegenereerd en vervolgens worden uitgerekt in een oneindige hoeveelheid
varianten.

Tijdens de conceptuele ontwerpfase “zien” de ontwerpers het vliegtuig als een
samenstelling van fundamentele oplossingen van te vervullen functies zoals het
genereren van lift en het onderbrengen van lading, in plaats van een samenstelling
van punten, krommen en oppervlakken. De mogelijkheid om het functionele denken
van de designer te ondersteunen en kennis in termen van ontwerpregels te vangen,
hebben de MMG primitieven de "hoog niveau" bijbetekenis opgeleverd, in
tegenstelling tot de "laag niveau" van conventionele CAD primitieven.

Zodra het model van het gegeven vliegtuig beschikbaar is, start de voorbereiding
voor de verificatie fase welke de set-up vereist van de verschillende discipline-
abstracties (of weergaven) die aan de analyse-instrumenten moet worden gevoerd.
In het traditionele ontwerpproces is de voorbereiding van deze disciplinaire modellen
erkend als langdurig en repetitief, in het bijzonder wanneer er high-fidelity analyse

xi

tools betrokken zijn. Alleen al voor deze preprocessing activiteiten kan er tot 80%
van het totale ontwerpproces worden verspild. Echter, men heeft opgemerkt dat 1)
onafhankelijk van de betreffende vliegtuigconfiguratie, over het algemeen worden
dezelfde analysis tools en preprocessing methodieken gebruikt door de specialisten;
en 2) een groot deel van de preprocessing activiteiten volgen bepaalde regels en
vereisen een grote hoeveelheid geometrie manipulatie, die eigenlijk de sterke punten
van KBE technologie vertegenwoordigen. Ter ondersteuning van deze fase van het
ontwerpproces is een set van Capability Modules (CM) ontwikkeld om de "model
preprocessing kennis" te vangen van de discipline-deskundigen en dit te gebruiken
voor het automatiseren van het genereren van modellen voor een breed scala
van low- en high-fidelity analyse-instrumenten, zowel in-house developed als
commercial-off-the-shelf.

De geïmplementeerde aanpak heeft het gebruik van high-fidelity analyse tools,
zoals FEM en CFD, al in de vroege stadia van het ontwerpproces mogelijk gemaakt.
Deze verhogen niet alleen het niveau van vertrouwen in het ontworpen product,
maar levert een essentieel instrument voor de studie van innovatieve
vliegtuigconfiguraties waar semi-empirische en op statistieken gebaseerde methoden
mislukken en een first-principle analyse is de enige oplossing.

Vanwege de mogelijkheid om vanaf afstand toegankelijk te zijn, via web
verbindingen, en in batch te bedienen, heeft de MMG laten zien een waardevolle
aanwinst te zijn voor ondersteuning van MDO processen over verdeelde
design frameworks.

De bekwaamheid van de MMG is gedemonstreerd door diverse voorbeeld
toepassingen en twee relevante studie casussen waarnaar wordt verwezen in dit
werk. De eerste betreft met het Europese project MOB, over verdeelde
multidisciplinaire design optimalisatie van blended wing body vliegtuigconfiguraties.
De tweede gaat over een MDO systeem dat is ontwikkeld in samenwerking met
Airbus om het verticale staartvlak van een bestaand passagiersvliegtuig te
herontwerpen.

Een nevendoelstelling van dit werk was het verbeteren van de verspreiding van KBE
technologie, die nog steeds een relatief jonge discipline is welke de verdiende
aandacht en het niveau van begrip nog niet heeft gevonden, noch in de wereld van
de industrie, noch in de academisch wereld. Met dit doel wordt een uitgebreid en
origineel onderzoek naar de wortels van de kunstmatige intelligentie van
KBE geleverd en zijn object georiënteerde paradigma wordt uitvoerig besproken.
Een best practice sectie met betrekking tot de ontwikkeling van KBE toepassingen
is ook opgenomen.

xiii

Sommario

Tecniche Knowledge Based Engineering per sostenere la
progettazione e l’ottimizzazione di velivoli

A partire dagli anni sessanta, la domanda di trasporto aereo ha continuato a
raddoppiare ogni 15 anni, reagendo in maniera flessibile alle varie cirisi petrolifere e
situazioni di crisi internazionale. Tuttavia, i limiti dell'attuale capacità del sistema di
gestione del trasporto aereo, la crescente domanda di livelli di qualita’, comfort,
sicurezza e protezione sempre piu’ alti, e soprattutto, un livello di sensibilita’
ambientale mai cosi elevato sembrano vincolarne ogni ulteriore crescita. L’ACARE
(Advisory Council for Aeronautical Research in Europe), l’organo di avviso per la
ricerca aeronautica in Europa, e similmente la NASA negli Stati Uniti, hanno indicato
una serie di obiettivi molto ambiziosi e messo a punto una tabella di marcia per
portare l'industria aerospaziale verso una nuova era di crescita sostenibile.

Tuttavia, il raggiungimento di importanti avanzamenti tecnologici rimarra’ molto
difficile, fino a che le attuali metodologie di progettazione non verranno anch’esse
adattate e migliorate in maniera significativa. A questo proposito, il lavoro di ricerca
presentato in questo testo mira allo sviluppo di nuovi metodi e strumenti di
progettazione che siano in grado di sostenere sia il miglioramento degli attuali
velivoli da trasporto che lo sviluppo di configurazioni innovative e non convenzionali.
L’effettivo successo di ogni nuovo strumento di progettazione dipendera’ dalla sua
effettiva capacita’ di funzionare all’interno dei tipici processi produttivi, che
generalmente si sviluppano attraverso una supply chain vasta e geograficamente
distribuita. Inoltre, questi nuovi strumenti e metodi di progettazione dovranno tenere
conto della la crescente scarsità di risorse intellettuali e, quindi della la necessità di
aumentare la produttività dei progettisti e liberare il tempo necessario per
l’innovazione.

L'approccio di progettazione e ottimizzazione multidisciplinare (MDO,
Multidisciplinary Design Optimization) sembra essere la metodologia più
promettente nel campo della progettazione degli aeromobili, sia al fine di migliorare
le prestazioni delle configurazioni tradizionali, che per sostenere lo sviluppo di nuovi
concetti. Tuttavia, una serie di ostacoli tecnologici ha finora impedito il pieno
sfruttamento dell'approccio MDO e ne ha limitato l’applicazione in ambito industriale
a soli casi di disegno di dettaglio.

xiv

A questo scopo, presso la facoltà di ingegneria aerospaziale dell’Universita’ di Delft, e’
stato sviluppato il concetto di Design and Engineering Engine (DEE, motore di
progettazione e ingegnerizzazione). Il DEE è un sistema computerizzato modulare,
adattabile e scomponibile, in grado di facilitare processi distribuiti di progettazione e
ottimizzazione multidisciplinare, attraverso l’automatizzazione di tutte quelle attività
ripetitive e non creative che generalmente ne ostacolano e rallentano lo svolgimento.

Uno degli moduli chiave del DEE è rappresentato dal Multi Model Generator
(generatore di modelli) che di fatto costituisce il principale risultato di questo lavoro
di ricerca. Il Multi Model Generator (MMG) è un'applicazione Knowledge
Based Engineering (KBE) sviluppata con il duplice intento di 1) fornire ai
progettisti un ambiente avanzato di modellazione parametrica per la definizione di
modelli generativi di velivoli convenzionali e non; 2) fornire ai vari moduli di analisi
presenti nel DEE, gli specifici modelli (le varie astrazioni del velivolo) necessari per la
fase di verifica del velivolo. A tal scopo, sono stati sviluppati due tipi di blocchi
funzionali, che in effetti costituiscono gli ingredienti principali del MMG: le cosiddette
High Level Primitives (primitive di alto livello) e i Capability Modules (moduli di
capacità).

Le High Level Primitives (HLPs) definite finora sono quattro: un elemento d’ala
(Wing-part), un elemento di fusoliera (Fuselage-part), un motore (Engine) ed un
elemento di connessione (Connection-element). Queste possono essere immaginate
come un set di mattoncini LEGO speciali, che il progettista può manipolare e
ricombinare al fine di assemblare la geometria del velivolo che ha in mente (sia in
termini di superfici esterne che struttura interna). Utilizzando il linguaggio di
programmazione a oggetti disponibile all’interno della piattaforma KBE selezionata
per questo lavoro, ogni HLP è stata definita come classe. Questo ha permesso di
formalizzare all’interno di ogni primitiva le procedure (design rules) che permettono
loro di adattare automaticamente la propria forma e struttura, e reagire ad ogni
cambiamento degli input. L’utilizzatore del MMG puo’ modificare i valori dei vari
attributi di ogni (HLP) classe e decidere il numero di instanze necessarie,
semplicemente editando l’input file del MMG. In questo modo, e’ possibile definire
sia configurazioni di velivoli convenzionali che non, per poi modificarle e plasmarle in
un numero praticamente infinito di varianti parametriche.

Durante la fase di progettazione concettuale, il progettista “vede” l’aeromobile come
una combinazione di soluzioni per soddisfare funzionalità del tipo generare portanza
e ospitare il carico utile. In effetti, il velivolo non e’ visto come un semplice insieme di
punti, curve, superfici e solidi. E’ propio per questa loro capacita’ di supportare
l’approccio di progettazione funzionale che che le primitive sviluppate in questo
lavoro sono state definite di “alto livello”; in contrasto con le primitive di "basso
livello" (punti, curve, etc..) dei sistemi CAD convenzionali.

xv

Una volta disponibile la configurazione del velivolo, inizia la fase di preparazione (pre-
processing) per l’analisi. Questa richiede la generazione dei vari modelli, o “viste”,
disciplinari, cosi’ come richieste dagli strumenti di analisisi presenti nel DEE.
Specialmente nel caso di utilizzo di strumenti di analisisi molto accurati (High
Fidelity), la preparazione di questi modelli disciplinari puo’ essere molto lunga lunga e
ripetitiva e consumare fino al all'80% del tempo complessivo di progettazione.
Tuttavia, è stato osservato che 1) indipendentemente dalla configurazione del
velivolo, gli specialisti adoperano gli stessi metodi e strumenti per la preparazione dei
modelli da analizzare; 2) gran parte delle attività di preparazione dei modelli è basato
su procedure consolidate che richiedono intensive manipolazioni geometriche; di
fatto, i punti di forza della tecnologia KBE.
Al fine di aiutare il progettista in questa specifica fase di progetto, e’ stata sviluppata
una serie di moduli, detti Capability Modules (CM, Moduli di Capacita’) in grado di
formalizzare e automatizzare la preparazione di modelli per una vasta gamma di
strumenti di analisi, sia semplici che sofisticati, sia commerciali che sviluppati
privatamente.

In particolare, questo approccio ha permesso l'utilizzo di strumenti di analisi molto
accurati, come codici ad elementi finiti e fluidodinamici, già a partire dalle prime fasi
del processo di progettazione. Con il risultato che, non solo il livello di confidenza
circa i risultati ottenuti ne giova, ma diventa di fatto possibile l’utilizzo di strumenti
analitici essenziali per lo studio di velivoli innovativi, per i quali i tradizionali metodi
semiempirici basati su dati storici risultano del tutto inadatti.

Inoltre, le possibilita’ di accedere e utilizzare il MMG anche in remoto e senza il
bisogno di alcuna interfaccia grafica, usando connessioni web standard, fanno del
MMG una risorsa preziosa al fine di abilitare processi MDO distribuiti (dove i vari
moduli computazionali sono istallati su macchine che operano e comunicano da
diverse locazioni geografiche).

La capacità del MMG è stata dimostrata attraverso varie applicazioni, tra cui due casi
di rilievo descritti in questo lavoro. Il primo riguarda il progetto europeo MOB, sulla
progettazione e ottimizazione multidiscilinare di velivoli tipo blended wing body. Il
secondo riguarda lo sviluppo di un sistema MDO, definito in collaborazione con
Airbus, al fine di ridisegnare la coda verticale di un aereo passeggeri.

L’obiettivo secondario di questo lavoro consiste nel migliorare la diffusione della
tecnologia KBE, che di fatto è una disciplina relativamente giovane, che non ha
ancora trovato il meritato livello di attenzione e comprensione, sia nel mondo
dell'industria che nell’ambito accademico. A questo scopo, viene qui fornita una
trattazione ampia ed originale sui legami della tecnologia KBE con il mondo
dell’intelligenza artificiale ed il paradigma della modellazione a oggetti. A

xvi

benificio degli interessati, questa trattazione include anche una sezione di best
practice per lo sviluppo di applicazioni KBE.

xvii

List of Symbols and Acronyms

ACARE Advisory Council for Aeronautics Research in Europe

AI Artificial Intelligence

BWB Blended Wing Body

CAD Computer Aided Design

CAE Computer Aided Engineering

CFD Computational Fluid Dynamic

CFRP Carbon Fiber Reinforced Plastic

CL Common LISP

CM Capability Module

COTS Commercial Of The Shelf

DEE Design and Engineering Engine

ES Expert System

FBS Frame Based System

FE, FEM Finite Elements Method

FEA Finite Element Analysis

HLP High Level Primitive

GLARE GLAss REinforced

GUI Graphical User Interface

IGES Initial Graphical Exchange Standard

IT Information Technology

KA Knowledge Acquisition

KBE Knowledge Based Engineering

KB Knowledge Base

KBS Knowledge Based System

KE Knowledge Engineering

xviii

KM Knowledge Management

MDO Multidisciplinary Design Optimization

MMG Multi Model Generator

MML MOKA Modeling Language

MOB The European research project “A Computational Design Engine
Incorporating Multi-Disciplinary Design and Optimisation for Blended
Wing Body Configuration”

MOKA Methodology and Tools Oriented to Knowledge Based Engineering
Applications

OO Object Oriented

OOP Object Oriented Programming

PCL PATRAN Command Language

PDM Product Data Management

PLM Product Lifecycle Management

RBS Rule Based System

FBS Frame Based System

SRA Strategic Research Agenda

UML Unified Modeling Language

XML EXtended Markup Language

XSLT Extensible Stylesheet Language Transformations

xix

Table of Contents

CHAPTER 1 THE PARADIGM SHIFT FOR THE NEW ERA OF AVIATION 1

1.1 A VISION FOR THE FUTURE OF AVIATION 1

1.2 FAST REPLAY: ONE CENTURY OF TECHNOLOGY IN THE AIR TRANSPORT SYSTEM 4

1.3 …THE END OF THE SECOND S-CURVE 6

1.4 THE TWILIGHT OF THE KANSAS CITY AIRCRAFT? 7

1.5 IN PREPARATION FOR THE BREAKTHROUGHS 9

1.6 HIGH LEVEL GOALS AND STRUCTURE OF THIS RESEARCH WORK 16

CHAPTER 2 FROM THE TRADITIONAL AIRCRAFT DESIGN PROCESS TO THE MDO APPROACH.

PARADIGM OF THE DESIGN AND ENGINEERING ENGINE 19

2.1 INTRODUCTION 19

2.2 FROM THE TRADITIONAL AIRCRAFT DESIGN APPROACH TO THE PROMISE OF MDO 21

2.3 TOWARDS INNOVATIVE AIRCRAFT CONFIGURATIONS. ROLE OF MDO IN DESIGN INNOVATION 28

2.4 EVOLUTION AND CURRENT STATE OF MDO TECHNOLOGY IN AIRCRAFT DESIGN 32

2.5 TOWARDS SUITABLE DESIGN SYSTEMS TO SUPPORT MDO AND DESIGN SPACE EXPLORATION 34

2.6 THE DESIGN AND ENGINEERING ENGINE SOLUTION 40

2.7 THE KEYSTONE ROLE OF THE MODEL GENERATOR AND DEVELOPMENT CHALLENGES 46

2.8 DEVELOPMENT OF THE DEE MULTI MODEL GENERATOR: BEYOND THE CAPABILITIES OF CONVENTIONAL CAD 52

2.9 A BRIEF DISCUSSION ON NON-TECHNICAL BARRIERS TO MDO 53

CHAPTER 3 KNOWLEDGE BASED ENGINEERING. THE AI ROOTS AND THE OO PARADIGM 55

3.1 INTRODUCTION 55

3.2 WHAT IS KNOWLEDGE BASED ENGINEERING? 56

3.3 THE AI ROOTS OF KNOWLEDGE BASED ENGINEERING 57

3.4 KNOWLEDGE BASED SYSTEMS + ENGINEERING = KNOWLEDGE BASED ENGINEERING SYSTEMS 70

3.5 KBE SYSTEMS AND KBE APPLICATIONS. THE PROGRAMMING APPROACH 73

3.6 KBE LANGUAGES: A SURVEY OF MAIN CHARACTERISTICS 74

3.7 THE EXTRA GEAR OF KBE LANGUAGES: RUNTIME CACHING AND DEPENDENCY TRACKING 84

xx

3.8 THE RULES OF KNOWLEDGE BASED ENGINEERING 86

3.9 KBE PRODUCT MODELS TO CAPTURE THE WHAT, THE HOW…AND THE WHY OF DESIGN? 90

3.10 ON THE CONVENIENCE OF THE PROGRAMMING APPROACH 92

3.11 SUMMARY 1: HOW KBE SYSTEMS DIFFER FROM CONVENTIONAL KBSS 95

3.12 SUMMARY 2: HOW KBE DIFFERS FROM CAD 95

CHAPTER 4 CONCEPTUAL DEVELOPMENT OF THE MMG. HIGH LEVEL PRIMITIVES AND CAPABILITY

MODULES 99

4.1 INTRODUCTION 99

4.2 FROM DESIGNERS’ MIND TO CONCEPT VISUALIZATION… 100

4.3 …AND BACK! OBJECT ORIENTED MODELING AND FUNCTIONAL THINKING 101

4.4 HIGH LEVEL PRIMITIVES FOR THE MMG MODELING APPROACH 104

4.5 GEOMETRY MODELING CAPABILITIES OF THE MMG 108

4.6 HLPS DEFINITION: AN HEURISTIC APPROACH 116

4.7 FROM THE AIRCRAFT GEOMETRY MODEL TO THE ABSTRACTIONS FOR MULTIDISCIPLINARY ANALYSIS. ROLE AND

DEFINITION OF THE CAPABILITY MODULES 120

4.8 AUTOMATIC GENERATION OF AIRCRAFT MODEL ABSTRACTIONS 125

4.9 THE MMG ARCHITECTURE: FLEXIBILITY THROUGH MODULARITY 127

4.10 DEALING WITH CAD ENGINE LIMITATIONS: CAPTURING WORKAROUNDS FOR ROBUST MODELING 130

4.11 DISCUSSION 134

CHAPTER 5 IMPLEMENTATION OF THE HIGH LEVEL PRIMITIVE CONCEPT IN THE KBE SYSTEM 139

5.1 INTRODUCTION 139

5.2 FUNCTIONALITY AND IMPLEMENTATION OF THE WING-PART HIGH LEVEL PRIMITIVE. THE SURFACE GENERATION

MODULE 140

5.3 WING-PART STRUCTURE DEFINITION 163

5.4 SPARS DEFINITION 165

5.5 DEFINITION OF WING BOX, LEADING EDGE AND TRAILING EDGE AREAS 169

5.6 RIBS DEFINITION 171

5.7 IMPLEMENTATION OF THE CONNECTION-ELEMENT HIGH LEVEL PRIMITIVE 177

5.8 TOWARDS A UNIFIED CONNECTION-ELEMENT 182

5.9 FUSELAGE HIGH LEVEL PRIMITIVE IMPLEMENTATION 186

CHAPTER 6 IMPLEMENTATION OF THE CAPABILITY MODULES AND OPERATION OF THE MMG 195

6.1 INTRODUCTION 195

6.2 CAPABILITY MODULES FOR AERODYNAMIC ANALYSIS 196

6.3 CAPABILITY MODULES FOR FE STRUCTURAL ANALYSIS 206

6.4 MMG – FEA ENVIRONMENT INTEGRATION 215

6.5 OPERATING THE MMG 219

xxi

6.6 STUDY CASE 1: THE MOB PROJECT 221

6.7 STUDY CASE 2: VERTICAL TAIL REDESIGN STUDY 226

6.8 MULTI-LEVEL MODELLING TO MANAGE COMPLEXITY AND SUPPORT MULTI-LEVEL DESIGN 228

CHAPTER 7 KNOWLEDGE BASED ENGINEERING. OPPORTUNITIES AND METHODOLOGY 231

7.1 INTRODUCTION 231

7.2 IMPLEMENTATION OF KBE SYSTEMS. IDENTIFYING THE PROPER APPLICATION CASES 232

7.3 IMPLEMENTATION OF KBE IN THE NON-INTEGRATOR COMPANY AND SMES 236

7.4 ORGANIZATIONAL AND HUMAN ISSUES IN THE EXPLOITATION OF KBE 237

7.5 METHODOLOGICAL DEVELOPMENT OF KBE APPLICATIONS. THE LONG TERM VIEW 239

7.6 TRENDS AND EVOLUTION OF KBE TECHNOLOGY 248

7.7 RECOMMENDATIONS & EXPECTATIONS 250

CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS 255

8.1 CONCLUSIONS 255

8.2 RECOMMENDATIONS 260

8.3 A GLIMPSE OF THE NEXT-GENERATION MMG 262

REFERENCES 267

APPENDICES A-M 275

LIST OF PUBLICATIONS 309

ACKNOWLEDGEMENTS 311

ABOUT THE AUTHOR 313

Chapter 1 The knowledge paradigm shift for the new era of aviation

1

CHAPTER 1
The Paradigm Shift for the New Era
of Aviation

1. A vision for the future of aviation

2. Fast replay: one century of technology in the Air Transport System

3. …the end of the second S-curve

4. The twilight of the Kansas City Aircraft?

5. In preparation for the breakthroughs

6. High level goals and structure of this research work

1.1 A vision for the future of aviation
In 2020, the stressed-out passenger belongs to aviation past. There are no more
queues and interminable waiting for a delayed departure or arrival. From start to
finish, the entire flying experience is designed to ensure a contented traveler. At all
prices, an airline ticket buys choice, convenience and comfort.
There are more routes and more flights to and from most destinations. 99% of all
flights arrive and depart within 15 minutes of the
published timetable in all weather conditions.
Airports are no longer a test of the traveler’s
stamina and patience. It takes no more than 15
minutes in the airport before departure and after
arrival for short haul flights, 30 minutes for long
haul. The entire airline system is operating with
great efficiency. Aircraft cost less to own, operate
and maintain. All these savings are passed on to
paying passengers.

In 2020, the skies are safer than ever
because safety has remained the top priority of
the aircraft builders and operators and of air
traffic managers.
Aeronautics has made huge steps towards
eliminating accidents altogether by designs and

2

automatic systems that lighten the burdens on the crew and help them to make
correct decisions in any situation.

In 2020, aircraft are cleaner and quieter. Though hydrocarbon-based fuel is
still the main source of energy, improved engines allow a reduction of CO2 and NOx
emissions by 50% and 80%. With a reduction in perceived noise to one half of
current average levels, transport aviation has ceased to be a nuisance to people
living close to airports thanks to a concerted effort to develop quieter engines,
optimize operational procedures and improve land planning and use around airports.
The aeronautics sector’s contribution to a sustainable environment is widely
understood and appreciated.

In 2020, Europe has managed to create a seamless system of air traffic
management that copes with up to three times more aircraft movements than today
by using airspace and airports intensively and safely. The development of
sophisticated ground and satellite-based communication, navigation and surveillance
systems as well as free flight has made this possible.1

In 2050, the sky is populated by blended wing bodies, joint-wings (Fig. 1.1),
ultra-fast rotorcraft, tilt-rotors, multi-fuselage aircraft developed by European,
American, Russian, Brazilian, Chinese, Japanese and Indian manufacturers. They are
far quieter, more fuel efficient, safer, cleaner, faster and more comfortable than the
2020 aircraft they replace (Fig. 1.2 right).

1 “In 2020..” text from European Aeronautics: a Vision for 2020, prepared under initiative of the
European Commissioner for Research P. Busquin (Group of Personalities, 2001).

Fig. 1.1: Examples of advanced non conventional aircraft configurations for the
future: the blended wing body (left) and the joint-wing aircraft (right), also knows as
Prandtl-Plane (Frediani, 2004).

Chapter 1 The knowledge paradigm shift for the new era of aviation

3

In 2050, aircraft use alternative bio-fuels and new types of engines. They are
built with multifunctional, self healing bio composite material implementing nano-
technologies. They fly without control surfaces, morphing their surfaces as a bird
(Fig. 1.2 left) and making use of extensive active
flow control. They take off and land on very short
runways thanks to their full vectoring thrust
capability and extremely light weight structure.

In 2050, self landing and taking off aircraft,
one man controlled cockpit are normality.
Unmanned, remote controlled freighters transport
wares worldwide. Aircraft of any size fly in a
worldwide interconnected, uncongested, green
and safe airspace system.

In 2050, customers are able to fly from next
door facilities, directly to their final destination;
they can call an air-taxi or directly book an
aircraft at the closest drive-or-fly rental and fly it2.
What a bold vision! If it is true that in the 2020
vision, the whole air transportation system will
differ from today’s as much as the actual system
differs from that of 1930s, the scenario

2 “In 2050..” text elaborated by the author on the basis of the following reports: NASA Aeronautic
Blueprint: Towards a Bold New Era in Aviation (NASA, 2002), the ACARE documents Strategic
Research Agenda (release 1, 2 and addendum) (ACARE, 2002; 2004; 2008) and Aeronautics and Air
Transport: beyond 2020 (Towards 2050) (ACARE, 2010).

Fig. 1.3 The Jetsons, a popular
Hanna-Barbera cartoon series
from the 1960s

Fig. 1.2: artist rendering of the NASA Morphing Airplane (left) [www.dfrc.nasa.gov]. The
super efficient and silent Airbus concept plane presented at Farnborough 2010 (right)
[www.airbus.com]

4

envisioned for 2050 by NASA and ACARE (Advisory Council for Aeronautics Research
in Europe) seems closer to a Jetsons screenplay (Fig. 1.3) than a possible reality.
Indeed the aeronautic community will have to make serious advances to cope with a
demand that, since the 1960s, has doubled every 15 years, notwithstanding various
oil crises and the dark years following September 11 (Fig. 1.4). Furthermore, now as
never before the environmental sensitivity was so high. Adding to this the increasing
cost of fuel and the current state of the ATM system approaching its limits, it is
obvious that changes are just necessary to sustain any further air traffic growth.

1.2 Fast replay: one century of technology in the Air
Transport System
Following the publication of the Vision 2020 document (Group of Personalities,
2001), ACARE was formed and assigned the task to prepare a roadmap to bring the
European aeronautical industry to the 2020 targets. This effort has resulted in the
Strategic Research Agenda (updated several times since 2002), which opens with the
performance analysis of the first century air transportation3. The resulting plot (Fig.
1.6) shows two evident S-curves, one covering the so called Pioneering Age of
aviation, from the Wright brothers’ flyer to the 1950s, the other the so called

3 The source does not specify the metric used for transportation performance. A conventional
measure is based on the product of speed, range and payload divided by a measure for the operating
costs. However, a correct measure of performance should account for the percentage of customer
requirements satisfied. For instance, is the availability of showers on board increasing the
transportation performance of the A380?

Fig. 1.4: (resilience of the) global air traffic growth and forecast 2009-2028 (Airbus,
2009). (RPKs: Revenue Passenger Kilometers)

Chapter 1 The knowledge paradigm shift for the new era of aviation

5

Commercial Age of aviation, from the debut of the jet engine to date. These curves
reveal a progress of the performance based on breakthrough innovations and periods
of evolutionary improvements.
Indeed, the Wright’s flyer, at the beginning of the first S-curve, had barely any
impact on the world of transportation, but further advances in structures and
materials (metal riveted structures in place of wood, textiles and wires),
aerodynamics (single wing with elliptical planform and retractable gears), propulsion
(turbo-charged engines with
variable pitch propeller) and
navigation (inertial navigation)
brought air transport to the
extended practical use of the
1930s, when the human
perception of distance changed
forever. At that point the end of
the first S-curve was reached. By
the way, the Wright’s flyer itself
was the result of an evolutionary
process that brought the available
knowledge of aerodynamics and
internal combustion engines to an

Fig. 1.6: performance of civil air transport since the beginning of last century: the S-
curves. Based on (ACARE, 2002).

Metal riveted
structure

Swept wings

Axial compressor

Elliptical wings

Retractable gear

Pressurized cabin

Internal combustion engines

Jet engine

Radio

1900’s 1950’s

A
ir

 T
ra

n
sp

o
rt

 P
e

rf
o

rm
a

n
ce

Turbo charged engine

Variable
pitch props

Micro S-curve

Fig. 1.5: thread of micro S-curves contributing to
a macro S-curve.

6

adequate level of maturity. As a matter of fact, each S-curve appears to be the result
of a thread of micro S-curves, as shown in the close up of Fig. 1.5. As argued in
Shock of the Old (Edgerton, 2006), it is the progress and mutations of old stuff that
makes the gradual big difference.

Around the end of WW II, the jet engine entered the scene as the new
breakthrough. However, it neither affected the outcome of the war, nor had any
immediate benefit on commercial aviation: that was just the beginning of the second
S-curve. It was thanks to further progress in jet technology (axial compressor) and
advance in aerodynamics (swept wings) that in the 1960s commercial aviation
entered its rapid conversion to the jet age. Further developments in technology (fly-
by-wire, high by-pass ratio turbofan, supercritical airfoils) and new approaches in air
traffic control and management (deregulation, hubbing, no-frills airlines) have
brought the jet age to level of maturity and consolidation of these days and,
apparently, to …

1.3 …the end of the second S-curve
McMaster and Cummings (McMasters and Cummings, 2004) narrate that, at the
beginning at the 1980s, the Boeing 757 development team, as part of the
explanation to their management on the reason why their new aircraft, in spite of
the very large amount of money invested in research and development, the far larger
development team and 25 more years of technology and knowledge to leverage,
carried no more passengers, any farther and any faster than its predecessor from the
1950s, the Boeing 7074, came out with a plot, indeed very similar to the one in Fig.
1.6. In a performance vs. time plot similar to the one shown in Fig. 1.7, they showed
three curves. The first was a horizontal asymptotic line, representing the theoretical
upper bound established by the basic law of physics and economics. The second was
an oscillating curve, representing what could be accomplished having perfect
knowledge of the current technologies and no economic limits. The third line was
indicative of the actual achievement: the progress made in years of efforts, striving
to reach the asymptotic limits of the current technologies.
And there it was the point of the 757 team: when the gaps between the three curves
shrink, the opportunities of further gain in the traditional measures of performance,
such as range, speed, payload capacity, become increasingly difficult and expensive
to reach.
Even if engineers learn to make a better use of current technology, they must run
harder and harder to get smaller and smaller gains, because, on the other side,

4 Actually, the 757 was developed as successor of the Boeing 727, which was the direct heir of the
707. But this would not change the essence of the story.

Chapter 1 The knowledge paradigm shift for the new era of aviation

7

customers get more sophisticated and regulation authorities put harder and harder
constraints.
Without planning a new breakthrough it will not be possible to sustain the future
growth of air transport and, eventually, start a new curve in the plot: the 3rd curve of
Sustainable Growth!

1.4 The twilight of the Kansas City Aircraft?
In the musical Oklahoma!, cowboy Will Parker, back from an excursion to Kansas
City, sings like this:“‘Ev'rythin's up to date in Kansas City. They've gone about as fur
as they c'n go!”.
Apparently it is here that the nickname originated for the dominant airliner
configuration, i.e., the quasi cylindrical fuselage with cantilever (swept) wing and tail
empennages, and engines podded either under the wing or at the back of the
fuselage. Indeed the Kansas City airplane has gone almost as far as it can go,
particularly in terms of improved economic and environmental performance (Green,
2003). That is clearly acknowledged also by ACARE, which states: “The
environmental challenge has clearly identified the limits of current technology, which,
while it has more to offer and more that will be achieved over the next decade or so,
must be succeeded by completely fresh approaches that require an early start. The
(Vision 2020) objectives are not achievable without important breakthroughs, both in
technology and in concepts of operation (ACARE, 2002)”.

Fig. 1.7: why the Boeing 757 “did not get any better” than the old 707. Based on
(McMasters and Cummings, 2004)

8

This is echoed by the Greener by Design Science and Technology Sub-Group, an
initiative of the Royal Aeronautical Society, that points at the environmental impact
“as the most serious long-term threat to the continued growth of air travel (Greener
by Design, 2005)”

After more than 60 years of optimization, the Kansas City Aircraft has become
70% more fuel efficient and 20dB quieter than the first generation of jets airliner
(Green, 2003), still maintaining the “classical” configuration inherited by the Boeing
B-47 Statojet of 1947. Such a configuration, based on the early 1800 Caley’s concept
of functional separation (i.e., fuselage for payload, wings for lift, tail empennage for
control and stability, etc.), has definitely proven effective and dominated the entire
passenger aircraft development story to date (van Tooren, 2003). The whole aviation
infrastructure (airports, terminals, luggage handling systems, etc.) has evolved
around that configuration; manufacturers have refined their design methods and
developed their facilities to deal with that configuration. Also for passengers, flying is
just about sitting in a cylinder with some small windows at the side...
However, as in any optimization process, once close to the optimum any
improvement on the objective function get just smaller. Even more, as in any
optimization process, if the objective function and the constraints change, the design
space is going to change and the optimum is going to be somewhere else. The effect
of the new design objectives and constraints set for a sustainable growth of aviation
are likely to bring the search towards areas of the design space where the Kansas
City aircraft is not likely to be a winner any more.

The A380, the new 787 and the A350 (Fig. 1.8) appear to be the last
outstanding offspring of the Kansas City airplane. As suggested by ACARE, they will
keep offering improvements in the new decade or so, but it is now the time to start
preparing for a fresh new start.

Fig. 1.8: From left: Airbus A380 (first flight: April 2005); Airbus A350 rendering (first
flight scheduled in 2012); Boeing 787 (first flight: December 2009).

[www.airbus.com, www.boeing.com]

Chapter 1 The knowledge paradigm shift for the new era of aviation

9

1.5 In preparation for the breakthroughs
Breakthroughs and inventions need to be scheduled. It means efforts must be
invested on the development of the “technology components” (i.e., the micro S-
curves discussed in section 1.2), which can, together, lead to the realization of the
actual breakthrough.
What actually does not come too apparent from Fig. 1.6 and Fig. 1.5 is that a
technology component to the realization of a breakthrough does not have to be
necessary a new material, or a new electronic system, or a new engine, but can be
also a new design approach or a new method to exploit the available intellectual
resources.
Indeed, it will be very difficult to tackle the challenges indicated by ACARE without
first addressing the challenges associated to the very development of any new
technological advance.
To this purpose, the following sub-sections will address the organizational issues
faced by the big aircraft manufacturers, including the problems related to the
availability, productivity and management of the new intellectual resources. Finally,
the capability of the current design methodology will be discussed as an introduction
to the main focus of this research work.

1.5.1 The challenges of the global organization

The aeronautical industry is characterized by a very large body of knowledge and
skills that can only be improved and applied against very large and long term
investments. A lot of risks are taken while the margins of revenue are relatively small
and sensitive to the world socio economical events (financial crises, fluctuation in the
oil price and Euro/dollar exchange rate). Also in the case of the defense industry,
after the “wealthy excitement” of the Cold War, the recurrent mantra is performance
at affordable cost (McMasters and Cummings, 2004).
One of the most visible consequences of the adaptation process the aeronautical
industry has undergone in the last decades to survive the troubled seas of the global
economy, is possibly its consolidation. In just 7 years (from 1990 to 1997), the
scenario of the major American aerospace companies has passed through consortia
and acquisitions from 15 large companies to just 4 major groups, namely, Lockheed-
Martin, Boeing, Raytheon and Northrop-Grumman (Raj, 1998). A similar process has
happened in Europe, where the largest aeronautic industrial groups, both in the
sector of defense and commercial aviation, have joined in the trans-national
corporation EADS.

10

Consolidation operations actually go far beyond ‘one name, one goal, one budget’. A
less evident process, but of extreme significance, is the enterprise conversion to a
distributed organization that employs and coordinates professionals spread
worldwide. This disrupts the historical perceived image of the company, once
identifiable with its tangible asset, such as its plants and facilities, and now as one
virtual brain and many arms that operates 24 hours a day across all the planet time
zones.

The other approach more and more commonly adopted by big manufacturers
to make new development programs affordable and lower financial risk is to form
partnerships with groups of selected risk-sharing suppliers that are willing to invest
their own economical and intellectual resources in the development of major systems
and components.
This is the case of the Joint Strike Fighter (JSF) project coordinated by Lockheed
Martin, and, very recently, of the Boeing 787 development program. Here, for the
very first time Boeing decided to outsource (to Japan) also the development and
manufacturing of a major system like the wing. Fig. 1.9 gives the feeling of the large
number of international contributors to the project.
Also Airbus, started as a trans-national joint venture between English, German,

Fig. 1.9: worldwide contributions to the manufacturing of the Boeing 787 [www.boeing.com]

Chapter 1 The knowledge paradigm shift for the new era of aviation

11

French and Spanish aerospace groups, has since long extended its collaboration
outside the Airbus walls to many countries, including Russia, China, Australia,
Austria, Belgium, Canada, Finland, Italy, Japan, South Korea, Malaysia, Netherlands,
Sweden, Switzerland and the United States.

The flip side of the coin is represented by the new challenges of effectively
managing and synchronizing knowledge and resources, which are often rooted in
very different socio-cultural backgrounds.
At technical level, the exchange of data and models across scattered repositories and
systems, the interfaces between codes, the protection of knowledge both from the
side of the integrator and the suppliers, just to mention some, represent continuous
headaches.
It is also worth of consideration the effort to organize the logistics to gather parts
and components produced around the world into one final assembly location. Often
is not only matter of organization but also of development of new infrastructures to
move assemblies and parts around, via sky, water and ground (Fig. 1.10).
However, the logistic of wares, whatever the distance, the time schedule and the
size, is eventually a less complicated issue than the “logistic of brains”.
Communicating ideas, harmonizing practices, skills, know-how and aligning different
people toward one common objective remain possibly the hardest tasks in any
collaboration initiative.

1.5.2 The challenges of intellectual resources. Knowledge Management
issues

The situation concerning the intellectual resources is rather complex and can be
summarized with the following issues:

• They are less
• They are different
• They lack the knowledge strength of the “old type of experts”

Fig. 1.10: logistics efforts required by the transnational scale of the A380
manufacturing: components transportation via sky, water and ground [www.airbus.com].

12

Brains drain
From one side the western society is facing an increasing scarcity of new
aeronautical engineers (which, by the way, do not always remain in their field),
while, on the other, there is an accelerated pace of baby boomer retirements, which
is putting out of the companies the minds and the hands that built the story of
aeronautics since the 1960s.
In 2002, NASA reported that the
average age of those employed in the
American aerospace industry was
slightly above 47 years, with the
engineer and scientist community alone
approaching the average of 57 years
(NASA, 2002). NASA itself currently loses senior R&D expertise at twice the rate of
incoming new researchers. More than 20% of Boeing workforce in this moment is
eligible for retirement. Plenty of these data can be found in company magazines and
Knowledge Management publications, just searching for “brains drain” (Dunlop,
2010; Patton, 2006; Sopranos, 2005; DeLong, 2008).

A new breed of workers: the Knowledge Workers
The culture of work itself has changed in the last years and new professional figures
populate the company positions. Some thirty years ago, Peter Drucker coined the
term "knowledge worker" to address the evolved sort of high-profile professionals
described in the insert below (Drucker, 1999). New generation experts do not belong
anymore to the manual/clerical worker model inherited from the military culture of
100 years ago. They are much more entrepreneurs oriented, they have a strong self-
conscience and potentially superior capability to enrich the company knowledge, but
at the same time they are more complicated resources to manage. They are

From “Management Challenges of the 21st Century” by P. Drucker

 The knowledge worker
 “[…] fewer and fewer people are subordinates - even in fairly low-level jobs.
Increasingly they are knowledge workers. Knowledge workers cannot be managed as
subordinates; they are associates […] This difference is more than cosmetic. Once
beyond the apprentice stage, knowledge workers must know more about their job than
their boss does - or what good are they? The very definition of a knowledge worker is
one who knows more about his or her job than anyone else in the organization [...]”

“What motivates workers, especially knowledge workers, is what motivates volunteers.
Volunteers, we know, have to get more satisfaction from their work than paid employees
precisely because they do not get a pay check. They need, above all, challenge. They
need to know the organization's mission and to believe in it. They need continuous
training. They need to see results.”

WANTED: Retired Boeing scientists and

engineers who want to enjoy retirement to

its fullest, while having a flexible, paid

part-time career in their disciplines

[www.yourencore.com]

Chapter 1 The knowledge paradigm shift for the new era of aviation

13

continuously in search of professional challenges for which they often change
position inside the company, or move elsewhere.

Less and longer projects
Since the 1950s, there has been a continuous reduction in the amount of new
aircraft development programs, caused by their growing complexity and required
development time.
The evolution to the actual situation, relatively to military programs, is represented in
Fig. 1.11, although a similar trend is experienced by civil aviation. As pointed out in
(van Tooren, 2003), the consequence is that people who entered the aeronautic
business not long ago have matured their professional experience on a relatively low
number of aircraft development projects. Newcomers will possibly never get the
opportunity to be involved in any single complete project, during their entire career.
The recently booming interest in UAV and UCAV development might change this
trend, at least for this particular category of aircraft.

The direct consequences
The first obvious consequence of the brains drain is that the aerospace industry, at
least in the short/midterm period, will be forced to bear the development of more
complex systems, with a lower amount of intellectual resources (more with less).
When considering also the other two points mentioned above, then some other
knowledge management-related issues arise.
The first is that, while the risk of losing knowledge when an experienced employee

Experience: 5 programs

Experience : 3 programs

Experience : 2.5 programs

Experience : less than 2 programs

Experience : ? programs

1950s 1980s 1990s 2000s1970s1960s 2010s

48
 P

ro
je

ct
s

16
 P

ro
je

ct
s

13
 P

ro
je

ct
s

7
P

ro
je

ct
s

7
P

ro
je

ct
s

3
P

ro
je

ct
s

Professional
carrier of 40 years

Total amount of
started military
programs

Source: Lean Enterprise Value

Experience: 5 programs

Experience : 3 programs

Experience : 2.5 programs

Experience : less than 2 programs

Experience : ? programs

1950s 1980s 1990s 2000s1970s1960s 2010s

48
 P

ro
je

ct
s

16
 P

ro
je

ct
s

13
 P

ro
je

ct
s

7
P

ro
je

ct
s

7
P

ro
je

ct
s

3
P

ro
je

ct
s

Professional
carrier of 40 years

Total amount of
started military
programs

Source: Lean Enterprise Value

Fig. 1.11: the decreasing amount of professionals’ specific experience and the
diminishing number of aerospace military program during time (van Tooren, 2003).

14

leaves the company is rather evident, the risk associated to professionals’ mobility
(within the same company) are often underestimated, although similar. Indeed,
when a company moves one of its professionals to a new business area, often with
the intent to secure such intellectual resource, as well as to exploit his/her
knowledge in other areas, there is the threat of making inaccessible or unused part
of the knowledge that was developed and maintained by the employee during
his/her former assignment. In both situations gaps are created between the
knowledge the organization needs to do business and the knowledge the
organization has ready available to deploy (McBriar et al., 2003).

The second concerns with the “type of” knowledge on which the organization
will have to account. In this respect, McBrair propose a distinction between
knowledge depth and strength (McBriar et al., 2003). A deep type of knowledge is
typical for a well educated professional and allows mastering a specific discipline and
performing certain tasks. A strong type of knowledge is what distinguishes a
“veteran” from a novice and provides a broader problem solving competence, as well
as the capability to understand complex cause-effect systems. It gives the possibility
to see beyond the borders of the simple task and solve problems of higher
complexity (also in terms of strategy).
On the same line, Quinn proposes a classification of four professional intellect levels
(Quinn, 1998) and claims that for an organization to be successful all must be
available (see insert below). In this case, the system understanding level
corresponds to McBriar’s knowledge strength concept.

The cost for the company and required actions
The lack of knowledge sharing and retention plans comes always at a cost for the
company, generally far higher than the cost of any knowledge management

The four levels of a professional intellect. J.B. Quinn

Cognitive knowledge (know-what): the basic mastery of a discipline that
professionals achieve through extensive training and certification.

Advanced skills (know-how): translate “book learning” into effective execution. Ability
to apply the rules of the discipline to complex real-world problems.

System understanding (know-why): deep knowledge of the web of cause-and-effect
relationships underlying a discipline. It permits professionals to move beyond the
execution of simple tasks, to solve larger and more complex problems and create
extraordinary value.

Self-motivated creativity (care-why): will, motivation and adaptability for success.
Highly motivated and creative groups often outperform groups with greater physical or
financial resources.

Chapter 1 The knowledge paradigm shift for the new era of aviation

15

initiative. In the words of DeLong, the economic consequences can be summarized
as follows (DeLong, 2004):

1. Reduced capacity to innovate: fewer "prepared minds" to connect the dots
and create something new.

2. Ability to pursue growth strategies threatened: expanding the current business
requires people that understand both the business and the technologies.

3. More costly errors: fewer people around who have already made the mistake
the new guys are about to make.

4. Less efficiency: loss of the knowledge of how to get things done within the
organization.

Indeed, the competitiveness of a company on the market is strongly affected by its
capability to deliver the right product at the first time, and the lessons learnt in
previous projects can the best guide to avoid reiterating old mistakes. This might
sound obvious, but the accessibility to such knowledge in a large, transnational
company is far from reality (not only in aerospace companies!). It is a matter of fact
that many companies are continuously “re-inventing the wheel”. For example,
studies carried in the late 1990s at Rolls Royce revealed that 40% of problems
tackled within company projects appeared to have been already solved in past
assignments (Clarkson, 2000). Today Rolls Royce is a leading company in terms of
knowledge management initiatives.

Although it is not the author’s intention to further deepen into the pure
knowledge management issues of the aeronautic industry, it is clear that knowledge
has to be recognized as a business key asset. As such it needs to be managed and
engineered, aiming at the maximum return of investment.

1.5.3 The challenge of the design approach

In the early days, creative spirit and practical knowledge of few basic disciplines
were enough to allow a very small number of talented individuals to be in control of
the whole aircraft development process, from scratch to flight testing. After the
1930s the situation started to change towards the complex. Wind tunnel testing,
analysis of thin-walled structures, and the need for controllable and scalable
manufacturing processes called for an enlarged team of experts. Such a process of
specialization and discipline segregation actually never stopped.
For many years, the subdivision of a complex product design process into disciplinary
areas has appeared as the only suitable way to make it controllable, as well as
workable within the capability boundaries of available people, design tools and
computational systems. Although such an approach has produced satisfactory results
for a long period, it does not seem adequate to keep up with the continuously
increasing complexity of new development programs, organizations and

16

technologies. The day the experienced designers/systems engineers will leave
without breading a next generation, the system might just turn into loose sand.
While segregation started as a solution to a problem, eventually, it turned back into a
challenge!
The success of new aircraft development program depends upon quality and timing
of decisions throughout the entire design process, which again strongly depends
upon timely availability of knowledge. Since, by definition, design is a decision
making process within uncertainties, it is of extreme importance that designers can
get reliable and fast answers to all their what-ifs.
Unfortunately the reliability of analysis results is generally inversely proportional to
the time required for their generation. Time is a scarce and precious resource, which
in the current design approach is often wasted in repetitive activities and
organizational inefficiency, at expenses of creativity and innovation. Nonaka, one of
the Japanese fathers of knowledge management used to say that “companies need
plenty of slack to remain creative” (Nonaka and Takeuchi, 1998). Indeed, lack of
time leads to reapplying the same solution without giving new designs the chance to
be fairly traded-off against conventional ones.

Now, more than in the past, there is the opportunity to capitalize on the
convergence of a broad front of multidisciplinary advances in technology. In order to
make a step change in aviation, a paradigm shift in the design methodology will be
required. The availability of new integrated and lean design methods and tools that
are able to harness the available knowledge, investigate with agility the cause-effect
network of all the involved disciplines and exploit their optimal integration, will be the
key to enable and speed up the transition of new concepts and technologies into
operation.

1.6 High level goals and structure of this research work
The challenges discussed above constitute the motivations at the basis of this
research work. Indeed, the high level goal of this work consists of the development
of new design methods and tools that are able to sustain the evolutionary
improvement of current aircraft designs and lower the risk associated to the
development of novel aircraft configurations.
Such design methods and tools should facilitate the aircraft development process as
currently carried across a large and distributed supply chain. Besides, they should
largely increase the productivity of knowledge workers through a better exploitation
of their knowledge and the company know-how, thereby reducing the time wasted in
the repetitive and non-creative activities of the design process, and freeing the time
necessary for innovation.

Chapter 1 The knowledge paradigm shift for the new era of aviation

17

The description of the work carried in this research work has been structured as
follows:

Chapter 2
The need and the opportunities of a transition from the traditional design approach
to the one based on multidisciplinary design optimization (MDO) are addressed in
this chapter. To this purpose, a review on the current state of MDO is provided,
together with a description of the current implementation challenges.
Then, the concept of the Design and Engineering Engine (DEE) is introduced, which
is the advanced design system to support MDO currently under development within
the chair of Systems Engineering and Aircraft Design of the TU Delft faculty of
aerospace engineering. In particular, the role of the Multi Model Generator (MMG) is
highlighted, being this a core component of the DEE as well as the main outcome of
this doctoral research.
The MMG is a Knowledge Based Engineering (KBE) application with the twofold role
of providing the designer with a smart parametrical tool to model the geometry of
different aircraft configurations, and automatically extract from these models specific
abstractions (views) to support multidisciplinary analysis.

Chapter 3
Chapter 3 is fully dedicated to KBE technology. Its main characteristics as well as its
roots in the field of Artificial Intelligence are discussed in this chapter, with the intent
of shedding light on the similarities and the fundamental differences between a true
KBE system, a CAD system and a Knowledge Based Systems. Furthermore, the
chapter elaborates on the objected-oriented programming language and the
integrated CAD modeling capabilities featured by a KBE system, being the
combination of these two the key to effectively capture engineering rules and
automate geometry manipulation.

Chapter 4
In this chapter the development of the MMG concept introduced in chapter 2, is fully
elaborated. The architecture of the system is described together with the concepts of
High Level Primitives (HLP) and Capability Module (CM), which actually constitute the
two main functional components of the MMG. Few High Level Primitives can provide
the necessary building blocks for generating parametric models of different aircraft
configurations and variants, either with conventional or novel architectures. Several
CMs provide the mechanisms to automatically preprocess the generated geometry
and initiate the MDO process.

Chapter 5
In Chapter 5, the software implementation of the HLP by means of the selected KBE
system is described in detail. The goal of this chapter is to explain how the Object
Oriented programming language and the geometry manipulation rules addressed in

18

Chapter 3 can be used to achieve the modeling capabilities illustrated in Chapter 4.
In particular the modular architecture and the functionality of three HLPs are
described. The parametric modeling mechanisms to generate the aerodynamic
surface of wings, fuselages and their internal structure are illustrated and
commented.

Chapter 6
In this chapter, the software implementation of some Capability Modules is detailed.
In particular the functionalities of those CMs that have enabled the integration of the
MMG to external aerodynamic and structure analysis codes are thoroughly described.
How expert knowledge can be translated into KBE applications that effectively
increase designers’ productivity is explained here.
In order to demonstrate the capability of the MMG, two relevant study cases are
discussed in this chapter. The first concerns with the European project MOB, on
distributed multidisciplinary design optimization of blended wing body aircraft
configurations. The second deals with the role of the MMG in an MDO system
developed in collaboration with Airbus to redesign the vertical tail of an existing
passenger aircraft.

Chapter 7
On the light of the MMG capabilities explained and demonstrated in the previous
chapters, chapter 7 provides some considerations and guidelines for an appropriate
exploitation of KBE technology. Typical cases are described where KBE has the best
chances to make an impact, as well as cases where KBE might not be the best
solution. A methodological approach to the development of KBE applications is then
provided, based on the state of art in industry. To conclude, this chapter presents an
overview on the trends and evolution of KBE technology and a list of
recommendations and expectations for KBE systems of the next generation.

Chapter 8
In this chapter the main achievements of this research work are summarized and
some conclusions are drawn. The recommendations section includes a glimpse on
the current state of development of a new generation MMG system, still based on the
HLP and CM concepts introduced in this work, but implemented in a latest generation
KBE platform.

Chapter 2 From the traditional aircraft design process to the MDO approach. Paradigm of the DEE

19

CHAPTER 2
From the traditional aircraft design
process to the MDO approach.
Paradigm of the Design and
Engineering Engine

1. Introduction

2. From the traditional aircraft design approach to the promise of MDO

3. Towards innovative aircraft configurations. Role of MDO in design innovation

4. Evolution and current state of MDO technology in aircraft design

5. Towards suitable design systems to support MDO and design space exploration

6. The Design and Engineering Engine solution

7. The keystone role of the model generator and development challenges

8. Development of the DEE Multi Model Generator: beyond the capabilities of conventional CAD

9. A brief discussion on non-technical barriers to MDO

2.1 Introduction
In the design process of a complex product, such as an aircraft, a car, or a generic
mechanical component, a diverging and a converging phase can be generally
distinguished, as represented in Fig. 2.1 (van Tooren, 2003).
During the first conceptual phase, many potential solutions are synthesized to find
best compliance with the list of requirements provided by the market/customer. The
broader the amount of proposed solutions, the higher the chance to have enclosed
the most appropriate or the closest to the best. On the other hand, the broader the
amount of proposed solutions, the larger the design and analysis effort.
In fact, all these solutions, which can be either variants of one product concept, or
completely different configurations, must be analyzed (and possibly optimized) in
order to perform a fair trade-off. This will initiate the converging phase of the design
process, where the best solutions are selected for the next design level. This
diverging-converging process is actually strongly iterative and requires a continuous

20

adaptation and modification of each proposed configuration during the design loops.
Large amounts of data and information are continuously generated and exchanged
across various discipline experts with their multitude of dedicated design and analysis
tools. The generated output from one tool often needs to be re-processed in order to
be transformed in usable
inputs for others.
As a matter of fact, the
typical design process is
much more complex than
sketched in Fig. 2.1,
because many diverging-
converging blocks are
typically required to
address the product at
hand in all its major
systems, subsystems, and
components. Besides, the
results of a given
diverging/converging block
can actually demand the
iteration of some previous
blocks. For example, when
the overall configuration of
an aircraft has been
selected through the diverging/converging process described above, another
diverging/converging phase will start for the design of the wing structure, and again
another for the design of the manufacturing tooling, and so on.

Although the challenges of the engineering design process are generally well
acknowledged, the current/traditional approach still shows inherent limitations in
handling such complexity with efficiency and effectiveness. In this chapter the
specific issues of the aircraft design process will be addressed.

First the organization of the traditional aircraft design process in industry and
its actual effectiveness will be addressed. Having considered the current design
process limitations, the advantages, as well as the associated challenges, of the
Multidisciplinary Design and Optimization (MDO) approach will be illustrated.

The capabilities of current design systems and tools to implement the MDO
approach will be discussed and, based on evidence from literature and working
experience, a list of needs for future MDO tools development is compiled.

Then, the Design and Engineering Engine (DEE) will be presented, which is an
innovative design system concept, currently under development at the Design of
Aircraft and Rotorcraft group of TU Delft, to support aircraft MDO. In particular the

Fig. 2.1: the typical diverging/converging phases of
the design process

Chapter 2 From the traditional aircraft design process to the MDO approach. Paradigm of the DEE

21

role of the Multi Model Generator (MMG), a cornerstone module in the DEE
infrastructure, and its development challenges will be discussed. The conceptual
development and technical implementation of the MMG, which actually constitute the
main achievements of this research work, will be addressed later, in Chapter 4 and 5.

2.2 From the traditional aircraft design approach to the
promise of MDO

2.2.1 The traditional aircraft design approach

The current aircraft design process, as it is generally presented in the main reference
text books on aircraft design (Torenbeek, 1982; Raymer, 2006) is organized in three
main phases, namely the conceptual, the preliminary and the detail design phase
(see Fig. 2.2). This phases’ distinction is not just an academic argument. Aircraft
manufacturers present their product development programs actually organized in this
way, as confirmed by Fig. 2.3, which shows the various steps and milestones of an
Airbus aircraft development program1.
Discrimination between the three abovementioned design phases is related to the
differences in the different activities that take place, the differences in the tools that

1 In the Airbus process, the conceptual design phase ranges from the second to the fourth technical
milestone (M2 - M4). The preliminary phase starts, with some overlap, on M3, in correspondence of
the selection of the most appropriate aircraft concept. This second design phase ends at M5, when a
detailed and validated aircraft concept is delivered. If the market is favorable and finance for the
project is assured, the management can give the Instruction to Proceed (ITP). The ITP triggers the
detail design phase, which ends at M7, with the completion of the design of all aircraft components.

Fig. 2.2: Main phases and milestones in the traditional aircraft development process

Research and development - Market investigation

manufacturing

testing

Conceptual
design

Preliminary
design

Detail
design

Configuration
development

support

Configuration frozen

Authorization to proceed

certification

1st delivery

Main milestoneMain milestone Detail
design

Service
engineering

22

are used, the differences in the amounts of people and expertise that take part in the
process, the different time scale and, consequently, the different costs involved. See
Table 2.1 for a few details.
In the first, the conceptual, design phase, creativity plays an important role. It is
here that many different aircraft solutions are proposed and briefly investigated.
Here the design is so fluid that everything is allowed to change, including the very
topology of the aircraft. However, in order to keep such flexibility affordable, the
level of detail is kept very low, as well as the fidelity of the employed analysis tools.
As a matter of fact, the aircraft in the conceptual phase is quasi geometry-less, in the
sense that is mostly described by simple parameters and analyzed/sized (also
guesstimated!) by means of simple equations. Simple CAD models are generated to
visualize the final results of the conceptual design, rather than to facilitate the
conceptual design process.

Activity Time scale
People

involved

Conceptual design:
• Definition of the performance goals
• Generation of many possible concepts
• Evaluation of possible competing concepts
• Selection of a baseline design (3 views + data)

Weeks�months
1% of the

engineering
staff

Preliminary design:
• Refined sizing of the baseline design concept
• Parametric studies
• Global design frozen with the possibility to change

only a few details

Months�Months/years ≈9% “ “

Detail design:
• Detailed design of the whole aircraft down to each

single detail
• Accurate evaluation of performances
• Fine tuning of the design
• Release of production drawings

years ≈90% “ “

Table 2.1: summary of the main activities, duration and resources for the three main
design phases within an aircraft development program

Chapter 2 From the traditional aircraft design process to the MDO approach. Paradigm of the DEE

23

Fig. 2.3: Activities and milestones in the development program of an Airbus
aircraft (courtesy of Airbus).

O
bs

er
ve

B

us
in

es
s

A
na

ly
ze

M
ar

ke
t

S
itu

at
io

n

A
na

ly
ze

M
ar

ke
t

N
ee

ds

Id
en

tif
y

M
os

t
P

ro
m

is-
in

g
A

/C

C
on

ce
pt

O
pt

im
iz

e
C

on
ce

pt
O

n
A

/C
Le

ve
l

C
on

so
li-

da
te

 A
/C

C
on

fig
u-

ra
tio

n
B

as
el

in
e

F
in

al
iz

e
A

/C S
pe

ci
fi-

ca
tio

n
&

C

om
-

m
er

ci
al

P
ro

pe
r-

tie
s

D
es

ig
n

A
/C

C
om

po
-

ne
nt

s

In
iti

at
e

M
an

u-
F

ac
tu

re
O

f
P

ar
ts

Im
an

u-
F

ac
tu

re
P

ar
ts

A
ss

em
bl

e
&

 T
es

t
S

ec
tio

ns

C
on

du
ct

F
in

al
A

ss
em

bl
y

P
ro

ce
ss

P
er

fo
rm

G
ro

un
d

T
es

t &
P

re
pa

re
1s

t
F

lig
ht

A
ch

ie
ve

T
yp

e
C

er
t.

&
V

er
ify

C
om

p-
Li

an
ce

to
S

ta
nd

ar
d

S
pe

c.

A
ch

ie
ve

O
pe

ra
tio

n
R

ea
di

-
ne

ss

C
om

pl
et

e
B

as
ic

D
ev

el
op

-
m

en
t M

14
M

12
M

10
M

8
M

6
M

4
M

2
M

0

M
13

M
11

M
9

M
7

M
5

M
3

M
1 F
ea

si
b

ili
ty

P
h

as
e

C
o

n
ce

p
t

P
h

as
e

D
ef

in
it

io
n

P
h

as
e

D
ev

el
o

p
m

en
t

P
h

as
e

P
ro

du
ct

 Id
ea

E
st

ab
lis

he
d

S
ta

nd
ar

ds
 a

nd

R
eq

ui
re

m
ne

ts

E
st

ab
lis

he
d

A
/C

C
on

fig
ur

at
io

n
E

st
ab

lis
he

d

S
tr

uc
tu

re
 /

 S
ys

te
m

s
S

pe
ci

fic
at

io
n

C
om

pl
et

ed

M
aj

or
C

om
po

ne
nt

A
ss

em
bl

y
S

ta
rt

ed

P
ow

er
 o

n
T

yp
e

C
er

tif
ic

at
io

n
&

 V
al

id
at

io
n

P
ro

gr
am

T
ar

ge
t

R
ea

ch
ed

M
ar

ke
t

O
pp

or
tu

ni
tie

s
Id

en
tif

ie
d

A
/C

 C
on

ce
pt

S
el

ec
te

d

D
et

ai
le

d
A

/C
 C

on
ce

pt
V

al
id

at
ed

B
eg

in
 o

f
F

irs
t A

ss
em

bl
y

C
om

po
ne

nt
 L

ev
el

D
es

ig
n

C
om

pl
et

ed
F

irs
t F

lig
ht

E
nt

ry
 in

to
S

er
vi

ce

IT
P

A
T

O

L

La
un

ch

A
ut

ho
riz

at
io

n
to

 O
ffe

r

In
st

ru
ct

io
n

to
 P

ro
ce

ed

C
om

m
er

ci
al

M
ile

st
on

es

T
ec

hn
ic

al
M

ile
st

on
es

O
bs

er
ve

B

us
in

es
s

A
na

ly
ze

M
ar

ke
t

S
itu

at
io

n

A
na

ly
ze

M
ar

ke
t

N
ee

ds

Id
en

tif
y

M
os

t
P

ro
m

is-
in

g
A

/C

C
on

ce
pt

O
pt

im
iz

e
C

on
ce

pt
O

n
A

/C
Le

ve
l

C
on

so
li-

da
te

 A
/C

C
on

fig
u-

ra
tio

n
B

as
el

in
e

F
in

al
iz

e
A

/C S
pe

ci
fi-

ca
tio

n
&

C

om
-

m
er

ci
al

P
ro

pe
r-

tie
s

D
es

ig
n

A
/C

C
om

po
-

ne
nt

s

In
iti

at
e

M
an

u-
F

ac
tu

re
O

f
P

ar
ts

Im
an

u-
F

ac
tu

re
P

ar
ts

A
ss

em
bl

e
&

 T
es

t
S

ec
tio

ns

C
on

du
ct

F
in

al
A

ss
em

bl
y

P
ro

ce
ss

P
er

fo
rm

G
ro

un
d

T
es

t &
P

re
pa

re
1s

t
F

lig
ht

A
ch

ie
ve

T
yp

e
C

er
t.

&
V

er
ify

C
om

p-
Li

an
ce

to
S

ta
nd

ar
d

S
pe

c.

A
ch

ie
ve

O
pe

ra
tio

n
R

ea
di

-
ne

ss

C
om

pl
et

e
B

as
ic

D
ev

el
op

-
m

en
t M

14
M

12
M

10
M

8
M

6
M

4
M

2
M

0

M
13

M
11

M
9

M
7

M
5

M
3

M
1 F
ea

si
b

ili
ty

P
h

as
e

C
o

n
ce

p
t

P
h

as
e

D
ef

in
it

io
n

P
h

as
e

D
ev

el
o

p
m

en
t

P
h

as
e

P
ro

du
ct

 Id
ea

E
st

ab
lis

he
d

S
ta

nd
ar

ds
 a

nd

R
eq

ui
re

m
ne

ts

E
st

ab
lis

he
d

A
/C

C
on

fig
ur

at
io

n
S

pe
ci

fic
at

io
n

M
aj

or
C

om
po

ne
nt

T
yp

e
C

er
tif

ic
at

io
n

&
 V

al
id

at
io

n
P

ro
gr

am
T

ar
ge

t
R

ea
ch

ed

M
ar

ke
t

O
pp

or
tu

ni
tie

s
Id

en
tif

ie
d

A
/C

 C
on

ce
pt

S
el

ec
te

d

D
et

ai
le

d
A

/C
 C

on
ce

pt
V

al
id

at
ed

B
eg

in
 o

f
F

irs
t A

ss
em

bl
y

C
om

po
ne

nt
 L

ev
el

D
es

ig
n

C
om

pl
et

ed
F

irs
t F

lig
ht

E
nt

ry
 in

to
S

er
vi

ce

O
bs

er
ve

B

us
in

es
s

A
na

ly
ze

M
ar

ke
t

S
itu

at
io

n

A
na

ly
ze

M
ar

ke
t

N
ee

ds

Id
en

tif
y

M
os

t
P

ro
m

is-
in

g
A

/C

C
on

ce
pt

O
pt

im
iz

e
C

on
ce

pt
O

n
A

/C
Le

ve
l

C
on

so
li-

da
te

 A
/C

C
on

fig
u-

ra
tio

n
B

as
el

in
e

F
in

al
iz

e
A

/C S
pe

ci
fi-

ca
tio

n
&

C

om
-

m
er

ci
al

P
ro

pe
r-

tie
s

D
es

ig
n

A
/C

C
om

po
-

ne
nt

s

In
iti

at
e

M
an

u-
F

ac
tu

re
O

f
P

ar
ts

m
an

u
-

fa
ct

ur
e

P
ar

ts
A

ss
em

bl
e

&
 T

es
t

S
ec

tio
ns

C
on

du
ct

F
in

al
A

ss
em

bl
y

P
ro

ce
ss

P
er

fo
rm

G
ro

un
d

T
es

t &
P

re
pa

re
1s

t
F

lig
ht

A
ch

ie
ve

T
yp

e
C

er
t.

&
V

er
ify

C
om

p-
lia

nc
e

to
S

ta
nd

ar
d

S
pe

c.

A
ch

ie
ve

O
pe

ra
tio

n
R

ea
di

-
ne

ss

C
om

pl
et

e
B

as
ic

D
ev

el
op

-
m

en
t M

14
M

14
M

12
M

10
M

8
M

6
M

4
M

2
M

0

M
13

M
13

M
11

M
11

M
9

M
9

M
7

M
7

M
5

M
5

M
3

M
3

M
1

M
1 F
ea

si
b

ili
ty

P
h

as
e

C
o

n
ce

p
t

P
h

as
e

D
ef

in
it

io
n

P
h

as
e

D
ev

el
o

p
m

en
t

P
h

as
e

P
ro

du
ct

 Id
ea

E
st

ab
lis

he
d

S
ta

nd
ar

ds
 a

nd

R
eq

ui
re

m
ne

ts

E
st

ab
lis

he
d

A
/C

C
on

fig
ur

at
io

n
S

pe
ci

fic
at

io
n

M
aj

or
T

yp
e

C
er

tif
ic

at
io

n
&

 V
al

id
at

io
n

P
ro

gr
am

T
ar

ge
t

R
ea

ch
ed

M
ar

ke
t

O
pp

or
tu

ni
tie

s
Id

en
tif

ie
d

A
/C

 C
on

ce
pt

S
el

ec
te

d

D
et

ai
le

d
A

/C
 C

on
ce

pt
V

al
id

at
ed

B
eg

in
 o

f
F

irs
t A

ss
em

bl
y

C
om

po
ne

nt
 L

ev
el

D
es

ig
n

C
om

pl
et

ed
F

irs
t F

lig
ht

E
nt

ry
 in

to
S

er
vi

ce

IT
P

IT
P

A
T

O
A

T
O

LL

La
un

ch

A
ut

ho
riz

at
io

n
to

 O
ffe

r

In
st

ru
ct

io
n

to
 P

ro
ce

ed

C
om

m
er

ci
al

M
ile

st
on

es

T
ec

hn
ic

al
M

ile
st

on
es

24

The accuracy and the level of detail produced during the conceptual phase are
so low that it is impossible to decide about the quality of the design and make any
production commitment. That is why the preliminary design phase is necessary,
where the designs synthesized during the conceptual phase are investigated with the
highest level of accuracy. Here all the discipline specialists enter the design arena
with their sophisticated suite of tools, and testing is initiated (typically most of the
wind tunnel tests hours are logged in this phase). However, the amount of time and
resources required by this multidisciplinary analysis and testing is so high that it
would not be possible to assess a large number of aircraft configurations. That is
why from the conceptual design phase only one (or very few) baseline design(s) can
be accepted, whose configuration is not going to be varied that much. A canard
concept does not turn into a conventional design during preliminary design.

At the end of the preliminary phase so much should be known about the
technical and economic performances of the design, that management should have
the confidence to give the Instruction to Proceed (ITP). As from this moment, the
most expensive part of the whole aircraft development process starts: huge
resources must be committed to transform the design into a producible product and
initiate the manufacturing phase. One of the most evident characteristics of the
current design approach is the unbalanced involvement of the various disciplines
during the design phases. This is illustrated in Fig. 2.3, from (Schrage et al., 1991).

Fig. 2.4: Re-distribution of the disciplines across the main phases of the traditional
aircraft design process (Schrage et al., 1991).

Chapter 2 From the traditional aircraft design process to the MDO approach. Paradigm of the DEE

25

In the traditional approach, the synthesis and optimization of the overall aircraft
design concept is based on achieving compliance with the customer top level
requirements (such as payload, speed, range, etc.) through parametric variation of a
few critical design parameters, such as wing loading, thrust-over-weight ratio and
aspect ratio. Since aerodynamics and propulsion are generally the two most critical
disciplines to achieve the required vehicle performance, they take the largest
attention during the conceptual phase. As the baseline configuration is selected and
enters the preliminary design phase, structures discipline begins to play a more
dominant role. It is only during the detailed design phase that controls discipline gets
the same attention as structure. Eventually, also manufacturing plays a primary
attention role in this phase, in view of the preparation activity for production.

This design approach has proven satisfactory for many years, however, due to
the changes “at the boundary conditions” discussed in Chapter 1, it is showing
increasingly evident flaws and limitations, which are preventing any further
sustainable growth in the field of aircraft design. Indeed, aerospace vehicles are
engineering systems whose performance depends on the not always evident
interaction of many parameters. Very large sets of coupled and complex governing
equations would be required to model the behavior of such systems. In order to
manage complexity, engineers deal with these equations by partitioning them into
subsets corresponding to the major disciplines, such as aerodynamics, structures and
flight controls. Nevertheless, the couplings among the subsets would be too
burdensome to be accounted fully. Hence, during this process of pragmatic
partitioning, couplings are retained or neglected judgmentally, on the basis of what is
known - or just assumed - about their strength in a particular vehicle category
(Schrage et al., 1991).

It is evident that the traditional aircraft design process has developed as a
compromise between design freedom and complexity affordability, but how effective
is this compromise?
Already at the beginning of the 1990s, the aircraft design community has started
questioning the validity of the traditional design approach and highlighting the main
limitations:
• The conceptual design phase is far too short, especially on the light of the

enormous impact that any design decision taken in this phase has on the overall
success of the development program in terms of technical performance as well as
cost. Fig. 2.5 from (Schrage et al., 1991) shows that at least 70% of the lifecycle
costs are already committed during the conceptual design phase, while only 1% of
the total costs are incurred (see also (Staubach, 2003)).

• The quality of the baseline concept, which is generated during the conceptual
phase and often undergoes just some tweaking during the rest of the design
process (Vandenbrande et al., 2006), is mainly based on designers’ experience
and the results of simple analytical models. However, these often oversimplified

26

analytical models, typically address only a few disciplinary aspects of the aircraft,
as shown in Fig. 2.4. Hence simple conceptual design tools become just
inadequate, as soon as requirements are given on aspects like noise emission,
manufacturability costs, or some other of the various –ility requirements (e.g.,
maintainability, evolvability, supportability, observability) that are becoming
increasingly important both for civil and military applications.

• Considering the fact that new aircraft design programs are fewer and farther apart
in time, past experience is less available as the main guide in making design
decisions. Considering the increasing complexity of new aircraft and the fact that
the more advanced the vehicle, the more complex and relevant the coupling
between disciplines, the possibility to judge a priori which couplings can be
neglected or simplified, is fading.

• The current design approach is responsible for the so called knowledge paradox:
as the designer increases his knowledge about the design, at the same time he
loses the freedom to act on that knowledge (see the two curves in Fig. 2.4). It has
been demonstrated also mathematically that this approach may actually lead to
suboptimal design (Schrage et al., 1991).

2.2.2 The Aircraft multidisciplinary design and optimization approach

The need of a true, systematic, integrated Multidisciplinary Design and Optimization
(MDO) approach started becoming evident at the beginning of the 1990s, when the

Fig. 2.5: Leverage of design decisions in the developing process: life cycle-cost
committed versus incurred by life-cycle phase (Schrage et al., 1991).

Chapter 2 From the traditional aircraft design process to the MDO approach. Paradigm of the DEE

27

main design objective started shifting from pure vehicle performance to a balance
between performance and life cycle costs. The experience of the 1960s, particularly
with military aircraft, had shown that a design driven solely by performance (e.g.,
speed) becomes usually unattractive in terms of other characteristics, such as, for
example, manufacturability or operational costs. The lesson learnt was that the
overall system must be optimized, not just performance. The same lesson had been
learned earlier by the airlines when meticulous cost accounting had pointed towards
high potential cost savings linked to improved reliability and maintainability (Schrage
et al., 1991).

At date, the great interest in complex aircraft configurations and technologies
such as blended wing body aircraft, morphing wings and aeroelastic tailored
composite structures, just increases the urgency of a suitable design approach to
integrate more disciplines earlier in the design process and to account systematically
for their mutual interaction.

Multidisciplinary Design Optimization is then proposed as a design methodology
able to solve the abovementioned knowledge paradox and reduce design time, hence

Fig. 2.6: the dashed line projection from the "Knowledge about Design" reflects the
requirement that more knowledge will have to be brought forward to the conceptual and
preliminary design phases. The dashed line projection from the "Design Freedom" curve
reflects the need to retain more design freedom later into the process in order to act on
the new knowledge gained by analysis, experimentation, and human reasoning (Schrage
et al., 1991).

28

reducing the overall design process duration or allowing in the typical time lap the
evaluation and optimization of more design configurations.
As shown in Fig. 2.6, the MDO approach supports a longer conceptual design phase
and systematically anticipates the participation to this phase for many of the
disciplines that are traditionally confined to the last design stage. In the words of the
first AIAA Technical Committee on Multidisciplinary Design and Optimization, “MDO is
seen as a means to achieve the above compression by bringing more information
about the entire life cycle and the vehicle performance and cost aspects earlier into
the design process. This will enable engineers to make design decisions on a rational
basis that gives equal consideration to all the influences disciplines exert on the
system, directly, or indirectly through their complex interactions. Doing this early in
the process exploits the leverage of the uncommitted design variables. On the other
hand, it is equally important to extend the MDO-based approach to the later phases
of the design process in order to take advantage of the new information that
becomes available during that process through creative thinking, analysis,
experimentation, and exploration of alternatives. In order to do that, the design
variables that in the conventional design process are decided and set early, need to
be retained as free variables much longer into the process (Schrage et al., 1991)”.

2.3 Towards innovative aircraft configurations. Role of
MDO in design innovation
In three steps, Fig. 2.7 summarizes 50 years of “evolution” in the configuration
layout of passenger transport aircraft. As a matter of fact, the classical “cylindrical
fuselage - cantilever wing - aft tail” configuration seems to have no alternative in civil
transport aviation, even though proposed in the largest assortment of sizes. This is
even truer ever since the retirement of the Concorde. A study on 40 years evolution
of the figure of merit M×L/D (i.e., the product between Mach and the maximum lift-
to-drag ratio) seems to confirm also a substantial stagnation in the field of
aerodynamic design. See Fig. 2.8 from (Liebeck et al., 1998).

In the last decades, several new and “unorthodox” aircraft configurations, like
the blended wing body, oblique and joint wings aircraft, have been proposed by
visionary designers, not only for military applications. Several internal programs
(Boeing/Nasa BWB (Liebeck, 2004)), as well as a number of collaborative research
programs (Table 2.2), have been looking into these unconventional configurations.
However, the transition from a research study to the industrialization of a new, non-
conventional passenger aircraft is not yet at the horizon.
The fact today’s aircraft still look like those of 50 years ago, is too often given as
argument for the inherent superiority of the conventional design. As far as market
and customers’ requirements stay the same, this might be true, but considering the
changes in requirements already discussed in Section 2.3 of Chapter 2, it is very

Chapter 2 From the traditional aircraft design process to the MDO approach. Paradigm of the DEE

29

unlikely the “Kansas City” configuration still remains the best possible (Morris, 2002;
Greener-by-Design-group, 2005). Considered the large amount of specific knowledge
and experience matured so far by the major aircraft manufacturers, the actual
conservatism is understandable. The financial risk associated to the development of a
novel configuration of unproven advantages could be unacceptable.
In the end, everything boils down to the need of an adequate design approach to
mitigate that risk, by generating at least digital experience of some interesting novel
configurations and estimate their advantages using the most accurate and reliable
analytical model. However, the traditional design approach is too much dependent on
the legacy of previous programs and loses most of its validity as soon as the new
design starts deviating too much from reference designs.
Furthermore, new designs, as the abovementioned blended wing body, are supposed
to achieve a technical and economic quantum leap just by exploiting the synergistic
interaction between system components and functions. Conventional techniques

MOB: A computational design engine
for Multidisciplinary design and
Optimisation of Blended wing body
configuration (Morris, 2002)

EU FP5

VELA: Very Efficient Large Aircraft
(Greener by Design, 2005)

EU FP5

ROSAS: Research Of Silent Aircraft
concepts (Brodersen et al., 2005)

EU FP5

NACRE: New Aircraft Concepts
Research (Greener by Design, 2005)

EU FP6

SAI: Silent Aircraft Initiative
(Dowling and Hynes, 2006)

UK DTI (UK-
US
initiative)

The Prandtl Plane (Frediani, 2004)
Pisa and
other Italian
universities

Table 2.2: Innovative aircraft configurations investigated in recent European and
national research projects.

30

appear to be inadequate to deal
with such integrated
configurations.

Therefore, to bring the
aerospace community on the 3rd
S-curve, a truly MDO approach
is necessary, as well as the
development of new tools and
design systems able to support
such an approach (van Tooren,
2003; Morris, 2002; Bowcutt,
2003; Doherty and Dean, 2007).
As far as the only tool in use is a
hammer, everything will keep on
looking like a nail (Carty and
Davies, 2004).

On the contrary of the previous provoking statement, Fig. 2.8 is actually a proof
that MDO can improve the design quality of aircraft design. Indeed during the 30
years of design evolution considered in the plot, the fuel consumption of aircraft has
halved, not only because of better engines. Kroo argues the surprisingly constant
value of M×L/D is not a reflection of stagnation in aerodynamic design, but rather an
indication that the major aircraft companies do a good job of multidisciplinary design

Fig. 2.7: 50 years of evolution in the configuration layout of passenger transport aircraft

The European project MOB (Morris, 2002;
Morris et al., 2004; Laban et al., 2002) has
clearly demonstrated that designing a blended
wing body aircraft is an extremely complex
task just because of the highly integrated
nature of its configuration: aerodynamics,
control and stability, structures, propulsion,
payload layout, etc. are all strongly coupled.
Small changes to improve one aspect have
strong impact on the others. The development
of a computational system able to capture and
master the complex interaction between the
disciplines is a major necessity to address the
design of such an integrated configuration.

Chapter 2 From the traditional aircraft design process to the MDO approach. Paradigm of the DEE

31

(Kroo, 2004). Indeed, improvements in design methodology and understanding of
transonic flow phenomena could have produced gains in M×L/D of at least 15% to
20%. Instead, advances in cruise aerodynamics have been largely exploited in
parameters associated with other disciplines. For example, supercritical airfoils have
not been used to increase cruise Mach number, which is actually not beneficial with
the increased engine bypass ratios. In fact, the higher drag divergence Mach values
have been exploited to increase wing thickness and lower wing sweep, hence
reducing the wing structural weight and requiring simpler hence cheaper high lift
devices.

However, while the use of MDO on current mature design can yield
improvements in the order of 1-2%, Phantom Works Scientists (Bowcutt, 2003;
Vandenbrande et al., 2006) estimate 8-10% gains for new but evolving designs and
40-50% for radically new and undeveloped concepts, like blended wing body and
hypersonic vehicles! Eventually, MDO appears to be the most promising design
technology to deal with the very large design space associated to many strongly
coupled variables, where there is the chance to discover unique and non intuitive
design solutions.

Fig. 2.8: Evolution of M×L/D for long haul commercial transport from 1960 -1990
(Liebeck, Page and Rawdon, 1998) .

32

2.4 Evolution and current state of MDO technology in
aircraft design
In (Kroo, 1997) there is mention of a relevant AIAA Wright Brothers Lecture from
1982, entitled "On Making Things the Best—Aeronautical Uses of Optimization”
(Ashley, 1982), where the author surveyed more than 8000 (!!) papers dealing with
optimal control, aerodynamic and structural optimization, however, without any
single case where the formal MDO procedure discussed in the paper lead to a real
application in industry.
Also the outcome of the first 30 years of MDO application (1970–1997) in conceptual
and preliminary aircraft design was not impressive. The two possible main reasons:
• Too low fidelity level of the analysis methods usable in the MDO framework.

Obtained results were not credible, especially those concerning fundamental
aerodynamic figures such as drag and CLmax, which cannot be produced with low
fidelity analysis methods.

• Slow computer allowed handling MDO problems with 5-10 variables, hence
problems almost solvable by hand (at least one order of magnitude higher was
needed to make the formal MDO approach really interesting).

In 1998, less than ten years after the first TC-MDO white paper, a second one

was published in (Giesing and Barthelemy, 1998), entitled “A summary of Industry
MDO applications and needs” This paper provides a picture of the state of the art of
MDO utilization in industry and is based on a critical review of ten relevant industrial
applications of MDO (not only aerospace related). The results of the review were
summarized in Fig. 2.9. Though MDO had started getting the interest of industry,
there were strong limitations in setting up a true MDO system based on high level
fidelity analysis. Eventually, high fidelity tools could only be used for monodisciplinary
optimization or simple tradeoffs. Real multidisciplinary optimization could only be
achieved by using low fidelity analysis tools, which is in contrast with the idea of
bringing as much knowledge-about-the-design as possible to the early design stage
(Fig. 2.6). The paper highlights a broad set of open issues and needs, among which
the following two were indicated for outstanding criticality:
• The impossibility to automate the operation of high fidelity tools due to their lack

of robustness, as well as for the inherent complexity of generating high fidelity
models

• The long computational time required by high fidelity analysis tools

Chapter 2 From the traditional aircraft design process to the MDO approach. Paradigm of the DEE

33

In 2006, during the European-U.S. MDO colloquium, about 70 participants from
industry and academia presented and discussed their latest achievements and
current state of MDO. Some of the results were collected in (de Weck et al., 2007).
The conclusion was that the actual application of MDO methods and techniques in
industry had definitely started, though yet hampered by many of the issues
previously highlighted in the TC-MDO white papers. Indeed it was observed that the
use of genuine MDO methods within industry at large is still rather limited and, for
the most part, started at the detail design stage. Also, it was observed that the use
of high fidelity models is not yet achievable at preliminary design level, though there
is a clear trend of moving upstream. This is qualitatively illustrated in a slide
presented by Boeing (see Fig. 2.10), showing the continuous advances across
successive aircraft families, towards the target of a full MDO/True physics modeling
designed aircraft. It was explained that in the development of the 787, the MDO
approach was indeed used with success to improve the design of a few aircraft
subsystems. However, major advances are still required to apply MDO based on high
fidelity analysis tools to a complete aircraft configuration.

Fig. 2.9: Design process fidelity and level of MDO (Giesing and Barthelemy, 1998)

Trade studies: point designs generated and graded relative to each other
without formal optimization.

Limited Optimizations/Iterations: disciplinary sub-optimization or
optimization with limited disciplinary interaction.

Full MDO: vehicle level optimization with most critical disciplines involved.

34

At the end of 2008, presentations from TC-MDO members (Alonso, 2008;

Bathia, 2008; Gaudin, 2008) at the 12th AIAA MA&O Conference still address the
need to move towards the application of MDO in preliminary design founded on high
fidelity analysis tools. This, again, calls for higher tools robustness and an enhanced
level of design automation, by seamless integration of tools and the use of advanced
parameterized/associative models.

In conclusion, advances in research have not yet lead to a large scale
exploitation of MDO in the aerospace industry. Though a positive trend is manifest, a
number of technical and non technical barriers are still constraining the transition of
MDO from a high potential innovative design methodology to a consolidated practice.

2.5 Towards suitable design systems to support MDO
and design space exploration

2.5.1 A collection of needs

On the base of the above study of the state of art of MDO in aerospace and the
previous considerations on the traditional design approach (Chapter 5 Section 5.2), a
list of needs has been compiled by the author, for a design system able to support
the MDO design approach.

Fig. 2.10 Towards full aircraft MDO across successive Boeing aircraft
families (de Weck et al., 2007)

Chapter 2 From the traditional aircraft design process to the MDO approach. Paradigm of the DEE

35

The following collection of requirements has been structured in four main groups to
address the fundamental aspects of any MDO design system, namely overall
architecture, analysis capability, geometry modeling and optimization capability.

Overall system architecture

� The system should have a loosely coupled modular structure to adapt, i.e., allow
reconfiguration and scalability, to different design cases and to the specific needs
of the various design process phases

� The system should be able to support closely coupled analysis when needed to
fulfill high computation speed requirements

� The system should be able to integrate both of-the shelf and in house developed
design, analysis and optimization tools, as well as data sharing and
communication systems

� The system should guarantee the synchronization of the data/models used by the
various disciplinary analysis tools to guarantee a consistent design and
optimization process

� The data exchange among the various MDO system components should be based
on standard data representation formats

� The system should support automation of all the repetitive activities related to the
iterative nature of the MDO approach
� This should include pre-processing of data and models as required to feed

different design and analysis tools
� This should include post-processing of the data generated by the various

design and analysis tools
� This should include the transfer and storage of data between the various

design and analysis tools
� The system should make use of dedicated software frameworks for the

integration of the various analysis and design tools involved, i.e., to support
process coordination and communication among the various design, analysis and
optimization tools.
� The system’s framework should be able to control process execution across

the distributed networks of software tools
� The system’s framework should be robust and easy to set up
� The system should provide visibility of the overall, complex design process

workflow

Analysis capability
� The system should not have any limit on the number of disciplines that can be

integrated

36

� The system should allow the use of analysis tools with different levels of fidelity,
with the possibility to switch level (possibly automatically, based on the results of
some accuracy sensitivity analysis)

� The system should support the use of the highest fidelity analysis tools
� The system should account for the lack of robustness of current high fidelity

tools
� The system should account for the difficulty of automating the operation of

current high fidelity analysis tools
� The system should account for the large computation time normally required

by high fidelity analysis tools (e.g., support parallel, grid computing)

Geometry modeling
� The system should provide a sharable common vehicle description to facilitate

communication among all disciplines (and among companies, sites and design
team involved)

� The geometry model should support the use of both low and high fidelity analysis
tools

� The geometry modeling system should not constrain the user to conventional
aircraft configuration

� The geometry model should have parametric/associative characteristics to
maintain accuracy and consistency as design variables are changed

� The geometry model should support the level of automation and robustness
required for the use in a MDO framework

� The parameterized geometry description should be compatible with current CAD
systems and transferrable through standard data exchange formats

Optimization
� The system should be able to deal with the lack of robustness of many current

optimization packages
� Hybrid optimization schemes should be supported, able to deal with continuous

and discrete design variables
� The system should be able to support multilevel design decomposition and

optimization
� It should be possible to provide designers with visualizations of the design space

and not only with single optimum points, to facilitate them judging the robustness
and the sensitivity of the reached design point

Chapter 2 From the traditional aircraft design process to the MDO approach. Paradigm of the DEE

37

2.5.2 The different paradigms of current MDO systems: strengths and
limitations

Without entering in the details of any specific implementation, a generic MDO system
for aircraft design is built up of the following three functional components
(Vandenbrande et al., 2006) illustrated in Fig. 2.11:
1. A modeling and analysis component able to compute the multidisciplinary

behavior of multiple aircraft designs (indicated by the responses f1, f2, .., fn)
2. A design points generator to sample conveniently the design space and define

the aircraft variants - indicated by the variables vectors (x1, x2, .., xn) - to be
modeled and analyzed by the component above

3. An optimizer to spot the most promising area in the design space, based on the
feedback responses. Optimizers often perform both this function and the one
above

When compared with the traditional aircraft design approach where the designer is in
charge of judging which and to what extent the design variables should be changed
in order to improve the aircraft performance, an MDO system is based on a
systematic search approach, enabled by the modeling and analysis system.

Today, different implementations exist of the generic MDO system of Fig. 2.11. In
particular we can distinguish the following three kinds of implementation:
• The geometry-less implementation, typically used for conceptual aircraft design
• The grid-perturbation implementation, which makes use of a detailed-but-

discipline specific geometry representation of the aircraft, particularly suitable for
detail design.

• The geometry-in-the-loop implementation, which offers the possibility to feed the
various disciplinary analysis with geometry models that are updated by the
optimizer during each cycle

In Ref. (Vandenbrande et al., 2006), Boeing scientists provide a description of the
abovementioned systems, as well as reference to some examples in literature.

Fig. 2.11: generic architecture of an MDO system (Vandenbrande,
Grandine and Hogan, 2006)

38

Geometry-less implementation
In the geometry-less implementation, the aircraft is described by sets of coupled
equations including parameters/variables like weight fractions, lift coefficients, wing
loading values, etc., which are varied by the optimizer in order to minimize/maximize
a given objective function. The analytical tools used in this sort of implementation
can compute optimal values of geometric variables, such as wing span and sweep
angles, eventually used to generate simple drawings for the sole purpose of visual
inspection (see Fig. 2.12).
The geometry-less aircraft design approach is only possible and useful when the
designer has availability of semi-empirical and statistical models that are based and
validated for aircraft configurations similar to the one at hand.
However, the lack of any reference and statistical data makes the applicability of
these models extremely limited - if not useless - to novel aircraft configurations. In
this case, it is necessary to go back to “first principles” and make use of high fidelity
analysis tools that need appropriate geometric representations of the aircraft
configuration at hand.

Grid-perturbation implementation
The grid-perturbation implementation (see sketch Fig. 2.13) uses a detailed
geometry model of the baseline aircraft configuration for the generation of a
computational grid. During the optimization (part of) the grid is perturbed to
investigate the effect of shape modification on objective functions and constraints.
The optimizer perturbs either single grid points or groups of points, when special grid
parameterizations techniques are used. Only small perturbations are generally
allowed to prevent grid quality deterioration. Complex techniques are required to

Fig. 2.12: implementation of geometry-less MDO system. Geometry
generation, if present, is outside the loop (Vandenbrande et al., 2006)

Chapter 2 From the traditional aircraft design process to the MDO approach. Paradigm of the DEE

39

perturb the grid without creating undesired discontinuities that invalidate
computation loops. This MDO system implementation has proven its value especially
during detail design, when “sand-paper work” is required for improving a mature
aircraft configuration, rather than drastic shape changes or even topology variations
(Samareh, 2004; Zang and Samareh, 2001). Another limitation of this system is that
one grid is generated (and modified during the optimization process), which is
generally tailored to the need of the main analysis code in the system. Therefore, the
other analysis tools might have to deal with representations non optimal for their
specific needs.

Integrated Geometry Generation implementation
The third method brings the geometry right inside the loop, hence it does not
present the limitations of the two implementations discussed above: disciplinary
analysis can be performed using actual geometry representations, rather than
analytical approximations or extrapolations from statistics or previous designs. These
geometry representations can be updated during each optimization loop (if required)
and tailored to the needs of the various analysis tools. While in theory this kind of
MDO system has the right credentials to fulfill many of the needs listed in Section
2.5.1, it actually brings a huge burden on the geometry generator and turns it into
the key element of the whole approach.

Examples have been found in recent literature on advanced aircraft design
systems that belong to this third category of MDO implementation. In
(Vandenbrande et al., 2006), Vandenbrande, Grandine and Hogan discuss the
paradigm of the Boeing design system (Fig. 2.14) and illustrate the functionality of
the General Geometry Generator, the geometry generator tool developed on

Fig. 2.13: Implementation of an MDO system based on grid perturbation. One CAD
geometry is generated for gridding. The grid is used by the discipline analyses during
optimization (Vandenbrande et al., 2006)

40

purpose. In (Carty and Davies, 2004) , Carty illustrates the advantages of Rapid
Conceptual Design, the integrated multidisciplinary design system developed at
Lockheed Martin. In (Werner-Westphal, Heinze and Horst, 2007; 2008) the
Preliminary Aircraft Design and Optimization (PrADO) system developed during the
last 20 years at the Technical University of Braunschweig is addressed, where an
integrated geometry generator communicates with in house developed aerodynamic
and FE codes.

Since 2002, the Design of Aircraft and Rotorcraft group of the University of

Technology in Delft is also developing a loosely integrated design system to support
multidisciplinary design, analysis and optimization of aircraft, called Design and
Engineering Engine (DEE). The first development activities started within the
framework of the European Project MOB and they have kept evolving through other
national research projects and collaboration with industry.
The paradigm and functionalities of the DEE will be discussed in the next section.
The conceptual development and technical implementation of the DEE Multi Model
Generator (MMG) will cover most of this work, being the main contribution of this
doctoral research to the DEE development.

2.6 The Design and Engineering Engine solution
The DEE consists of a multidisciplinary collection of design and analysis tools, able to
automatically interface and exchange data and information, with the purpose of
supporting and accelerating MDO of complex products, through the automation of
the non-creative and repetitive design activities. In this thesis, focus will be on an
aircraft DEE.

Fig. 2.14: MDO design system with integrated geometry generation
capability (Vandenbrande et al., 2006)

Chapter 2 From the traditional aircraft design process to the MDO approach. Paradigm of the DEE

41

The paradigm of the Design and Engineering Engine is illustrated Fig. 2.15. Note that
is a simplified representation of the system; no details are shown of the components’
internal architecture and only the main communication lines are drawn. The DEE is
an integrated design system built up of loosely coupled modules, which can vary in
number and type according to the design case at hand. For example, different
analysis modules can be included or left out of a specific DEE implementation as
considered opportune. Indeed, what is shown in Fig. 2.15 should be considered the
generic template of a design system that can be customized to the user needs. For
example, the DEE can be used for mono and multidisciplinary what-if studies or for
mono and multidisciplinary optimization studies.

2.6.1 Architecture of the DEE

The main components of the DEE architecture and the way they interact during the
MDO process are described in the following subsections (refer to Fig. 2.15)

The Multi-Model Generator (MMG) is the software tool developed in this doctoral
research with the twofold intent of providing designers with a parametric modeling
environment to generate models of conventional and novel aircraft configurations
and automate the generation of input data and specific disciplinary models for
various disciplinary analysis tools. The MMG will be discussed later in full detail.

The Initiator module actually consists of a collection of sizing tools, able to provide
an initial set of values for the MMG parameters, i.e., the first of the variables vectors
(x1, x2, .., xn) mentioned in Section 2.5.2. In fact, the MMG offers the possibility to
instantiate an aircraft model based on a given set of parameters values, but does not
have any knowledge to select/calculate those values autonomously. Prototypes of
various parameters initiating tools have been developed, e.g., to define the fuselage
layout of a conventional aircraft given the payload requirements (Alagna, 2005), or
to compute a complete aircraft baseline configuration, starting from a limited set of
customer and regulations requirements and using simple conceptual design
handbook methods supported by optimization techniques (Langen, 2011). Also a
structure specific initiator tool has been developed to provide a rough estimation of
mass and stiffness distribution in lifting surfaces, based on a preliminary estimation
of the aerodynamic loads (Cerulli et al., 2006; Schut and van Tooren, 2007).
Eventually, the scope of the Initiator is to provide the MMG with a feasible initial
solution prior to start with the multidisciplinary analysis and optimization process
(see the “Feasilization” concept in (Schut and van Tooren, 2007)). Though not shown
in Fig. 2.15, the Initiator might also use a MMG (at least part of its capabilities) to
extract, for example, some geometry information required to perform the
feasilization process. Furthermore, the Initiator can also make use of optimization

42

techniques and employ a kind of Converger/Evaluator tool (see below). In other
words the Initiator can be a DEE by itself.

The disciplinary analysis tools can be both low and high fidelity analysis
computational systems (such as panel codes or CFD), either in-house developed or
Commercial of the Shelf (COTS) tools. As anticipated, the DEE does not “contain” a
fixed suite of analysis tools, but different tools can (have been) used according to
various project needs. Examples of COTS that have been integrated in various DEE
implementations are Fluent (Lisandrin, 2007), VSAero (Brouwers, 2007; Dircken,
2008), NASTRAN (Nawijn et al., 2006; Koopmans, 2004; van der Laan and van
Tooren, 2005) and Abaqus (Krakers, 2009) (more details in Chapter 6). Though Fig.
2.15 shows the disciplinary analysis tools as separate silos, direct data exchange
(i.e., not throughput via the MMG) can occur among them. For example, a structural
analysis tool can use the loads computed by an aerodynamic analysis module. In
case of highly coupled analysis tools a discipline silo should be regarded as a
multidisciplinary tool.

The Converger&Evaluator functionalities are generally provided by a single off-
the-shelf optimizer, whose tasks are checking if the various analysis tools have
reached convergence and if the performance/characteristics of the evaluated design
have met the objectives set by the designer. This module receives the results
generated by the various disciplines (typically post-processed in terms of significant
figures of merit, such as aerodynamic efficiency or weight) and generates a new
variables vector (x1, x2... xn) to feed the MMG, according to the implemented
optimization algorithm. The MMG will modify consequently the aircraft model and
produce updated data to support a new analysis loop. The generation of the
variables vectors (x1, x2... xn) can be performed either using a search algorithm
(e.g., a gradient based approach) or following a selected strategy to sample the
design space (e.g., Latin hypercube).
In case of the impossibility to fulfill the initial requirements, the Evaluator/Converger
will quit the interaction with the MMG and call again the Initiator, which will have to
synthesize a different aircraft configuration, feed it to the MMG, etc…

The communication framework, represented in Fig. 2.15 by the set of connectors
linking the various DEE components, takes care of the data and information flow
between the various design and analysis tools and manages the overall design
process sequence. An innovative agent-based architecture has been implemented to
provide the DEE with a very high level of flexibility (Berends and van Tooren, 2007)
(see next insert). The agents system allows fast set up and reconfiguration of the
overall MDO process, according to the specific design case at hand and the type and
location of the available design and analysis tools. The agents use the web to link

Chapter 2 From the traditional aircraft design process to the MDO approach. Paradigm of the DEE

43

sets of heterogeneous design and computational tools, which can be installed on
different servers and computers, possibly running different operating systems and
belonging to separate networks.

Fig. 2.15: Paradigm of the Design and Engineering Engine (arrows show execution
order).

44

Conceptual and technical development of the DEE agent based framework

The agent-based communication framework developed by Berends (Berends, van Tooren
and Schut, 2008; Berends and van Tooren, 2007) aims at mimicking the organizational
structure of a design build team (DBT), where the various human actors work and
interact in a flexible service oriented approach rather than in a rigidly predefined
procedural (throw-over-the-wall) scheme. The figure below shows how the previously

illustrated DEE paradigm (Fig. 2.15) is actually a formal and simplified representation of
a DBT. In this software implementation of the DTB structure, all DEE specialist’s tool
need to be wrapped by a software agent, which enables interfacing with other tools. Each
specialist’s tool can be replaced by a different one (or an upgraded version of the same
tool) if the interface is kept consistent, hence the agents facilitate a plug-and-play set up
of the DEE.

The framework uses a kind of peer-to-peer/server-client architecture, where one of
the DEE agent-wrapped tools is appointed server, while all the others are the clients.
Each agent-tool combination, in order to join the DEE, must register to the server, from
which it receives the updated list of all the other available registered clients (with relative
contact data such as host name and IP number and status of activity). The role of server
is played by the “most expert” agent (i.e., the longest active agent in the DEE), but in
case of necessity each agent in the DEE can equally function as server. If the formerly
appointed server agent disconnects from the network, the second eldest agents takes
over so that the integrity of the DEE structure and the continuity of the design process is
guaranteed (as in the human DBT model).

The agents based framework does not need a predefined description of the process
flow, as most currently available integration systems, but uses a demand driven (or
service oriented) approach to self-configure the process flow on the fly.
Each agent is able to initiate the design
process when the output of its
wrapped tool is requested, either by
another agent, or by the designer.
Since each agent is aware of the input
needed to start its internal tool, it
broadcasts the request for necessary
input to all the agents presently alive in
the DEE. Each agent is also aware of
the output that its wrapped tool is able
to generate. In case an agent is able to
satisfy the broadcasted request, it will
start a peer-to-peer connection with
the requesting agent. The required
input data will be generated and their
storage location will be communicated
to the requesting client for retrieval.

Chapter 2 From the traditional aircraft design process to the MDO approach. Paradigm of the DEE

45

2.6.2 Modular structure to support flexibility and distributed design

In order to participate in the DEE structure, each of the software components
addressed above must be able to operate (also) in batch mode and be accessible in
remote. That is to say, they must allow hands-off operation (without human
interaction) and be accessible and controllable from other computer systems than
the one where they are physically installed. This might be a stringent requirement for
tools which have been originally developed to operate via graphical user interfaces
and expect the user intervention (e.g., by means of selection menu) during
operation. However, it is a killer requirement for the automation of any process that
involves multiple computational modules or is based on an iterative approach.

The modular architecture is an enabling factor for the DEE flexibility.
Modularity comes with the price of interfaces development and, possibly, with a
penalty of overall process speed. However, unless extreme computing speed is
required, e.g., for real time calculations, a modular architecture is the key to system
scalability, adaptability and maintainability.

A modular architecture becomes a necessity for supporting collaborative and
distributed design, where different discipline specialists must be enabled to
participate to the design process with their own trusted tools (Morris et al., 2004;
Bartholomew, 1998). The wish to use trusted tools is typical for collaborative projects
that involve different companies, or different departments of the same company,
that want to collaborate and contribute with their best practice analysis tools.
Nevertheless, there are continuous attempts by industry and academia to develop
complex integrated design tools to cover the whole aircraft design cycle, from
drafting to high fidelity multidisciplinary analysis and optimization (Butler et al.,
1998). The exploitation of these systems within distributed, collaborative design
programs appears always very problematic: the eventual substitution of one of the
integrated analysis functionalities with an external analysis tool becomes easily an
overwhelming problem. Similarly, when only some of the “super integrated tool”
functionalities are needed, it might result impossible to disintegrate its monolithic
structure into separately usable bits. For this reason, soon after the beginning of the
MOB project (Morris, 2002), it was decided to pursue the development of the MMG
(thoroughly described in Chapter 4-6), rather than proceed with the Prado system

Large, monolithic MDO systems can be difficult to understand, manage and extend.
Many grandiose plans for completely integrated aircraft design systems have fallen by
the wayside because they quickly became unmanageable. I. Kroo – Stanford University
(Kroo, 1997)

Requirements instability hampers design, but it is here to stay so it is necessary that
design systems and methods are developed accounting for that and support agile
reconfigurations. W. Tam – Aerojet (Tam, 2004)

46

(Werner-Westphal et al., 2008) as planned. Although mature and sophisticated,
Prado did not have the required flexibility to integrate and support the exploitation of
the design and analysis tools provided by the consortium partners.

The presence of the initiator tool inside the DEE has the purpose to blend into
one system the systematic design space exploration capabilities offered by the MDO
approach with the exploitation of the best design knowledge available. The DEE
allows the possibility (via the Initiator) to use handbook methods to synthesize a
baseline configuration to feed to the “MDO machine”; or also use first principles, but
for a simplified problem (i.e., simplified design options, requirements and methods).
However, the DEE offers the designer also the possibility to use directly the MMG1
(as a standalone tool) to build the model of the aircraft configuration he previously
sketched “on the back of an envelope” and then proceed with the multidisciplinary
analysis and optimization process. In this sense, the DEE offers a possible solution to
what Lockheed Martin’s specialists indicate as the need to successfully leverage the
best design knowledge available, but push beyond results predestined by heritage
databases and empirical correlations (Carty and Davies, 2004).
It should be noted how this implementation of the MDO approach blurs some of the
distinctions between the conceptual and preliminary design (and even part of the
detail design) discussed before. Indeed, the DEE is an attempt to merge the large
design freedom of the conceptual design with the systematic multidisciplinary trades,
typical of the traditional preliminary design phase.

As a human designer can substitute the functionality of the Initiator, the same
is possible for other DEE software components. For example, the designer can also
decide which and in what extend to change the design variables, without having an
optimizer system in place. Also the expert’s judgment or guesstimation can be used
in place of a discipline analysis tool. Future developments of the DEE implementation
are envisioned, where the agent-based framework will directly contact and request
the knowledgeable services of a human expert in between the execution of an MDO
process.

2.7 The keystone role of the model generator and
development challenges
As discussed in Section 6.5, the development of the geometry model generator is of
paramount importance to the implementation of a design system like the DEE.

1 As it will be discussed later, the technology used to develop the MMG allows capturing and reusing
design knowledge directly within the parametric geometry modeler. Hence the initiator is not the only
occasion to seed some knowledge in the aircraft model, before starting the MDO process.

Chapter 2 From the traditional aircraft design process to the MDO approach. Paradigm of the DEE

47

Advocates of the geometry-in-the-loop approach indicate the geometry generation as
the keystone to succeed and often the greatest impediment to integrated design
(Bowcutt, 2003). The geometry modeler represents a key technological enabler, as
well as one of the most difficult and complex tasks (Samareh, 2004; Vandenbrande
et al., 2006). This is generally true for the design of most aeromechanical systems.
Other sort of systems, such as wire harnesses, still need a MMG, but pose less
demands in terms of geometry complexity (van der Elst and van Tooren, 2008).
A list of relevant needs concerning the geometry modeling aspects of an MDO
system was previously provided in Section 2.7. In the next subsections, the
associated challenges will be elaborated in more detail, to justify the MMG
development approach described in the next chapters.

2.7.1 Modeling flexibility and robustness

A suitable geometry modeler to support design exploration and MDO should not have
any representation related restriction on allowable geometry changes. That is to say
it should allow investigating any aircraft configuration, conventional and not, without
constraining the design process to the available descriptions of the product. This
goes beyond conventional parametric modeling and shape deformations and requires
the capability to deal with topology changes and product re-configurations.

The level of flexibility discussed above should be combined with adequate
modeling robustness to survive the harsh perturbations dictated by an optimizer.
This requires the capability to maintain spatial integration whatever the combination
of parameters values. In other words “any feasible combination of parameter and
variable values should deliver a healthy geometry model”. Ensuring spatial
integration can be a rather complicate task, though partly achievable using a smart
definition of the model parameters (also addressed in literature as hypercube
parameterization (Bowcutt, 2003). More in Chapter 4) and by embedding in the
modeler some knowledge to deal with the limitations of the employed CAD engine
(e.g., to trap errors generated by inaccuracy and missed intersections. More in
Section 4.10)

The modeler should offer the capability to embed also some engineering
knowledge, such as, for example, mathematical rules to generate particularly
engineered shapes (or to compute the number/position of certain geometry features.
The possibility to embed knowledge in the geometry modeler (e.g. by combining
parameters with rules) would also relieve the optimizer from the burden of too many
constraints and would simplify the set up of the optimization problem.

48

2.7.2 Models consistency and synchronization

To suit the needs of the DEE, the geometry generator must be able to provide the
different types of geometric representations required by the various disciplinary
analysis tools involved in the MDO process, both low and high fidelity, in-house
developed and COTS.
To avoid any inconsistency, the model generator should allow the definition of one
shareable common vehicle description (the master model), but at the same time
should be able to generate a number of model abstractions to suit the needs of the
various analysis tools. These abstractions reflect somehow the different views that
various discipline specialists have on the same aircraft Fig. 2.16. Different model
abstractions often include different vehicle components and non coincident surfaces.
Also they might feature a different dimensional representation of the same
component (e.g., the wing skin as a 2D surface or as a solid 3D plate with a given
thickness). The generation of these models would typically require some massaging
and adaptation of the original geometry, such as the suppression of some features,
modifications and additions of elements (e.g., control volume contours for CFD),
splitting or grouping of surfaces, etc.
The capability of the model generator could go as far as delivering completely
preprocessed models ready for the solver(s) (Fig. 2.17, case b), or directly analytical
results (Fig. 2.17, case d). In the latter case, the risk of too tight integration of
modeling and analysis functionalities is evident. The model generator should at least
take care of the geometry preparation for discretization and then submit a suitable
model abstraction to a grid generator, before running the analysis (Fig. 2.17, case a).

Fig. 2.16 the different views of discipline specialists on the same product

Chapter 2 From the traditional aircraft design process to the MDO approach. Paradigm of the DEE

49

In the traditional design approach followed by many organizations, drafting and
analysis are carried out by different specialists. Typically, geometric models delivered
by draftsmen need a lot of preprocessing to become suitable for analysis (Fig. 2.17,
case c), just because draftsmen are not always aware of the diverse and specific
needs and preferences of their customers, neither of the problems that may rise
during the export of their models to a different platform2. A single geometry

2 As matter of fact, most high fidelity analysis tools provide their own preprocessors to fix and
massage the model geometry from the CAD, prior to apply the mesh. For example, Fluent uses
Gambit, Nastran uses Patran.

Fig. 2.17: Generation of model abstractions to support multidisciplinary design and
optimization:

Case a: MG produces a model abstraction that needs further processing before analysis

Case b: MG produces a model abstraction which is ready for analysis

Case c: MG does not produce any abstraction. The transformation of the master model
geometry into a suitable model for analysis has to be performed by the analysis
preprocessor (and the specialists)

Case d: MG uses integrated analysis capabilities to generate results directly

50

generator can overcome this problem, but needs to be developed in collaboration
with the discipline specialists to make sure their requirements on the quality of the
output model abstractions are fulfilled.
A robust integration of the tools used for analysis with those used to develop the
design (under a geometric standpoint) is indicated by Lockheed Martin specialists as
a need to exploit MDO such that is possible to affect real world aircraft. With regard
to that, they comment on the peculiar fact that the worlds of Computer Aided
Analysis and CAD have developed independently3, whilst multidisciplinary analysis is
not possible without a practical design to start with, and CAD without analysis does
not have any scientific foundation (Carty and Davies, 2004).

The generation of input data and/or geometry abstractions for in-house
developed tools can present some challenges for the geometry generator. In-house
developed tools typically lack flexible and standard interfaces and require a very rigid
and specific input data format. This demands embedding some knowledge in the
model generator in order to enable the generation of tailored data files.

Whatever the level of fidelity and standardization of the analysis tools, the
geometry generator should be able to deal with the iterative nature of the MDO
approach. Any change in the aircraft shape or configuration (either required by the
optimizer, or due to changes in the top level requirements) must lead to the
automatic re-generation of updated data and geometry abstractions for all the
involved disciplines. It is the responsibility of the model generator to guarantee the
synchronization and harmonization of the analysis process, avoiding disciplines
working on obsolete or inconsistent definitions of the aircraft configuration.

2.7.3 Supported usage of High Fidelity analysis

The challenges discussed above just get amplified when the model generator must
support the use of high fidelity analysis tools. However the exploitation of High
fidelity analysis tools is of paramount importance to the development of novel aircraft
configurations and to the credibility of the MDO approach.
In general, the preparation of model for high fidelity analysis such as FE or CFD can
be more time consuming than just performing the analysis (since calculation time
can often be attacked with computational brute force). It has been estimated that
80% of a FEM analysis cost is spent just preparing the mesh (Chapman and Pinfold,
2001), provided the geometry of the model is free from native corruptions and
irresolvable inaccuracies.

3 Interesting developments: In 2005, Dassault Systemes, the company of the CAD system CATIA,
acquired Abaqus, the developer of the homonymous popular FE package. In 2003, UGS (since 2007
Siemens PLM Software), the developer of NX (one of the direct competitor of CATIA), purchased a
royalty-free license for the FEA software product MSC Nastran, since then evolved as NX Nastran.

Chapter 2 From the traditional aircraft design process to the MDO approach. Paradigm of the DEE

51

NASA specialists claim that grid generation for aerospace vehicles is a number one
issue and they challenge the grid generation community to develop tools suitable for
automated MDO (Zang and Samareh, 2001). However, though the capabilities of
commercial grid generators are increasing, especially with the developments in the
field of associative and unstructured grids, (as well as of meshless methods) a lot of
geometry manipulations are still required, just to have the aircraft model ready to be
meshed.
In order to have a model generator able to perform the preprocessing work and/or
the generation of grids, it is evident that knowledge will have to be embedded to
capture and automate some of the specialists’ best practice.
Besides, the level of robustness and flexibility of current high fidelity tools needs to
increase. Developers should consider offering more possibilities to interact with the
grid generator via a programmable interface, rather than the usual “click and select”
approach.

2.7.4 Process automation

Considered the strong unbalance (in the order of 20:80) between creative/skillful
work and routine/repetitive work (e.g. for preparing model for analysis) typical of the
current design approach, improving the level of automation should be a primary
goal; especially to support a design methodology such as MDO, which is so strongly
based on iterations.
Therefore, the model generator (as well as all the other components of the DEE)
should be able to work in batch mode. Hence it should be accessible in remote,
possibly using web connections, and should be able to operate completely hands off,
whereas the use of GUIs should be limited to set up the system or for “off line”
interactive work. It appears that the only way to achieve such capabilities is by
writing code, such that the required knowledge can be recorded directly inside the
model generator.
The automatic (re-)generation of the various model abstractions should be robust
enough to avoid checking the quality of all output during the iteration of an MDO
process (see spatial integration issue addressed above).
In general any kind of manual rework should be avoided. The model generator
should give designer the confidence that everything can be easily changed; each
design choice can be evaluated and eventually withdrawn. Designers should feel the
confidence that suitable models for analysis (especially those for high fidelity
analysis) can always be available at demand4.

4 The capability enabled by automation to perform more analyses in a shorter time can actually result
in a shift of the current MDO systems’ bottleneck from generating data to make proper use of these
data. J. Staubach, a Pratt & Whitney MDO specialist, speculates on a close future, where automated

52

CAD systems relate to the physical description of a concept; they are not suited for
transforming customer requirements to abstract functional descriptions and then to a
physical description. The process of concept creation that occurs in the earliest
conceptual design stage is quite often vague, and not well understood. How an engineer
generates good design concepts remains a mystery that researchers from engineering,
computer and cognitive sciences are working together to unravel.

P. Raj – Lockheed Martin Aeronautical Systems (Raj, 1998)

2.8 Development of the DEE Multi Model Generator:
beyond the capabilities of conventional CAD
In view of developing a Multi Model Generator tool able to function within the DEE
framework, as well as a standalone system, the designers’ needs and the foreseen
development challenges have been thoroughly discussed.
Looking at the available technologies, as soon as generation and manipulation of
geometry are involved, CAD systems appear to be the prime choice. Indeed, they are
excellent tools for detail design and offer a wealth of options for interactive
modeling.
However, the MMG must enable designers to model all the aircraft configurations of
interest in a fast and effective way, in order to proceed as swiftly as possible with the
analysis of their performance. During the conceptual and preliminary phases,
configurations can change so fast and so radically, that building models by means of
the low level primitives of a conventional CAD systems (points, lines, curves, solids
etc.) can be slow and cumbersome.
Besides, designers think in terms of functions, not of points, splines, etc. Especially
during the conceptual phase, designers are busy considering and rearranging
possible solutions to fulfill a number of basic functionalities, such as storing payload,
generating lift, provide control, etc. For this purpose, the availability of some kind of
high level design objects (rather than the low level CAD primitives) would accelerate
the transition of concepts and insights from the designer’s head to a (geometrical)
model to start the verification process. Ideally, such high level design objects should
be “smart enough” to guarantee spatial integration, while the designer is
experimenting with large parameters variations.

analysis and optimization capabilities, supported by the enormous available computational power, will
enable the concept of zero design time. Machines will keep computing continuously different solutions
in the whole design space, while engineers will just need to update the parametric CAD models and
the constraints limit of the physics models to account for eventual technological improvements (e.g.
availability of new materials). When the customer’s need and the company’s financial situation align,
the design will be ready and waiting to go (Staubach, 2003).

Chapter 2 From the traditional aircraft design process to the MDO approach. Paradigm of the DEE

53

To enable the automatic transformation of the aircraft model in the various
disciplinary abstractions, the Multi Model Generator would need some embedded
knowledge, as discussed in the previous section. Ideally, the abovementioned higher
level design objects should “know” how to transform themselves to facilitate the
multidisciplinary analysis and optimization process. Again, the low level primitives of
a conventional CAD system could not help because of their inadequate knowledge
recording capabilities.

In the light of these considerations, a new aircraft modeling methodology has
been developed during this research work, based on the object oriented modeling
approach. Then, Knowledge Based Engineering (KBE) has been selected as the most
suitable technology to implement such modeling approach in the development of the
Multi Model Generator.
In order to introduce the background technology and the modeling approach
implemented in the Multi Model Generator, Chapter 3 will cover the fundamental
characteristics of Knowledge Based Engineering and the basic elements of the Object
Oriented paradigm. Finally, Chapters 4-6 will cover the conceptual development of
the MMG and its implementation into software.

2.9 A brief discussion on non-technical barriers to MDO
The increasing amount of dedicated publications and international conferences, the
explicit interest on MDO-oriented proposals by the European Commission, the
growing trend within universities to incorporate MDO courses in their curricula, they
are all evidence of the great interest of the international community on this design
methodology and the efforts to create awareness and momentum.
Nevertheless it should be acknowledged that what is hampering the explosion of the
MDO approach are not only technology limitations, but also non-technical barriers.
These are rising from the culture and the working attitude of professionals, both at
technical and management level (Blouin, Summers and Fadel, 2004; Malone, 2002),
as well as from organizational structures intrinsically inadequate to the MDO needs.
Belie claims non-technical barriers must be addressed with the same systematic
approach, as used for the technical ones (Belie, 2002).

One of the problems is associated to the black box perception that engineers
might get of an MDO system, hence the fear to be not in control, or even obsoleted
by a software system. Ironically, current more manually oriented processes have
many of the same attributes as the big MDO black box, but in this case familiarity
has bred unfounded confidence (Belie, 2002). MDO will not replace the design team,
on the contrary, the team interaction with the process is absolutely necessary to
learn about the design, assess the ground rules, add/replace constraints, furnish
guidance in area not modeled and keep the optimization on track (Wakayama and
Kroo, 1998).

54

In addition, as Belie correctly points out, many disciplines have been constrained by
the tedious tasks associated with their expertise for so long that the automation of
“no brainers” (like meshing) seems somehow undesirable (Belie, 2002).

In the actual contingency of budget cuts and cost avoidance, management
may look at a MDO framework just as an irrelevant and large expense,
underestimating or completely ignoring the advantages in the mid/long term. This
reluctance needs to be addressed by providing management with an adequate metric
and tools to estimate and measure MDO costs and benefits. Also a change from a
product to process oriented culture seems necessary.

Important changes must happen at the organization level of the aircraft
company, which has evolved through the years towards an aggregation of discipline
focused groups. Typically, new approaches and tools like those for computational
advance are assimilated best if they automate traditional tasks and do not cross
organizational boundaries. “Unfortunately”, MDO is, by its very nature, cross
disciplinary and non-traditional (Giesing and Barthelemy, 1998).
Ensuring buy-in of the disciplinary experts to the MDO approach may be difficult
(Bennett et al., 1998), but it is necessary because the whole approach is based on
the collaboration and integration of the various discipline, which requires experts’
commitment to share and translate their knowledge in procedures and explicit rules
to be implemented in the MDO framework and modules. Eventually, setting up a
design framework as the DEE discussed in the previous sections, would not only
enable automation, but would contribute to a better process understanding, control
and standardization within the company.

In the current organization, MDO does not have a real home thus no ownership
(Hoenlinger, Krammer and Stettner, 1998). However, the set up of a dedicated group
would be already a wrong approach to integration. An organizational balance has to
be found in order to leave the disciplinary groups in charge of the excellence and the
continuous development of their tools, while, the current conceptual design group
could assume MDO responsibility and play an integrating function, rather than keep
on using and developing simple tools (just to avoid and limit the coordination with
the various disciplines)

Most organizations can’t afford to run a program inefficiently; however, they can’t
find the time to introduce efficiency techniques.

B. Malone - Phoenix Integration (Malone, 2002)

Chapter 3 Knowledge Based Engineering. The AI roots and the OO paradigm

55

CHAPTER 3
Knowledge Based Engineering. The
AI roots and the OO paradigm

1. Introduction

2. What is Knowledge Based Engineering?

3. The AI roots of Knowledge Based Engineering

4. Knowledge Based Systems + Engineering = Knowledge Based Engineering Systems

5. KBE systems and KBE applications. The programming approach

6. KBE languages: A survey of main characteristics

7. The extra gear of KBE languages: Runtime caching and dependency tracking

8. The rules of Knowledge Based Engineering

9. KBE product models to capture the What, the How…and the Why of design

10. On the convenience of the programming approach

11. Summary 1: How KBE systems differ from conventional KBSs

12. Summary 2: How KBE differs from CAD

3.1 Introduction
In the Chapter 2, the keystone role of the Multi Model Generator to support the MDO
approach has been discussed. A number of challenges has been highlighted that
traditional design tools, as conventional CAD systems, do not seem able to meet. The
need to substantially increase the level of automation in the design process calls for
the ability to embed more knowledge in the employed tools. In this case, the use of
Knowledge Based Engineering technology appears to be an appropriate choice.

KBE technology stands at the cross point of diverse fundamental disciplines,
such as Artificial Intelligence (AI), Computer Aided Design (CAD) and computer
programming. Though these single contributing disciplines are widely represented in
scientific literature, Knowledge Based Engineering is not at all. At date, not a single
book has been written on this topic! As a matter of fact, KBE has been for many
years restricted domain of a few and highly competitive industries (aerospace and
automotive in particular) and never turned into a subject of academic research. The
very limited amount of available information, mainly in form of pamphlets from KBE

56

vendors, has not stimulated the interest of the scientific community on KBE as a real
engineering discipline. On the contrary, it has contributed generating the mixture of
misunderstanding and skepticism that has marked the difficult story of KBE at date.

The main purpose of this chapter is to provide a clear understanding of this
technology (i.e., what Knowledge Based Engineering is) on the base of a few years
of hands-on experience, literature study and valuable conversations with KBE-
practitioners from the industry.
First a comprehensive definition of KBE is provided. Then, roots and background of
KBE are discussed in order to put it in the right context with respect to closely
related technologies such as Knowledge Based Systems and CAD, and the object
oriented modeling paradigm. Also we try to answer the recurrent question why
“knowledge based” engineering? Is there some other way on earth of doing
engineering that is not based on knowledge!
Then, the most relevant characteristics of a KBE system are identified and
elaborated. It is discussed how a KBE system works and how it is structured. In
particular, the use and the nature of KBE programming languages will be elaborated
on. The actual opportunity of using a programming language to capture design
knowledge will be discussed, as well as the required characteristics for this “wish-
language”. Though KBE technology inherits many features and characteristics both
from traditional CAD and Knowledge Based Systems, it clearly stands out as a
technology with its own identity. The chapter will conclude summarizing the main
differences between KBE and the abovementioned technologies.

In the next chapters, it will be explained how Knowledge Based Engineering
and the underlying object oriented modeling approach have been used in this
research work for the conceptual development and technical implementation of the
Multi Model Generator tool.

3.2 What is Knowledge Based Engineering?
It is rather difficult to fit an exhaustive definition of KBE in one sentence. Various
definitions can be found in literature and typically reflect the different views on KBE
by different “KBE customers”. For example, a company manager sees KBE as a
technology to compress product development time and cut engineering costs,
whereas the user of a KBE system (a KBE developer) sees it as a particular kind of
software (programming) tool. Someone in MDO might see KBE as a solution to
support multidisciplinary design, someone into Knowledge Management as a solution
to capture company knowledge for effective reuse.
KBE is all of this and lead to our extended definition shown in the insert below. This
definition includes the most relevant aspects of KBE and reflects the various
constituents of this thesis work. It formalizes the link with the Knowledge
Management area addressed in Chapter 1. It emphasizes the capability to automate

Chapter 3 Knowledge Based Engineering. The AI roots and the OO paradigm

57

the repetitive activities typically encountered in the product development process,
hence to enhance engineers’ productivity as argued in chapter 2. Besides it
addresses the capability of supporting conceptual and multidisciplinary design. The
latter in particular is our extension, or specialization to the KBE definition of the “old
fathers” and it will be extensively discussed in the second part of this thesis work.

3.3 The AI roots of Knowledge Based Engineering
It would not be fair presenting KBE as a novel revolutionary product from the world
of computer science. The strong legacy from the 1970s technology of knowledge
based systems (KBSs) must be acknowledged. Undeniably, many characteristics of
current KBE systems, including much of the related terminology, are rooted in the
field of Artificial Intelligence (AI).
AI is the branch of computer science concerned with the use of machines to simulate
the intelligent behavior of human beings (i.e. the capability of learning and solving
problems) and KBSs are one of its most relevant outcomes.
Just as Artificial Neural Networks represent the main result in the simulation of the
humans’ learning process, knowledge based systems represent the most outstanding
AI achievement in the area of problem solving. Both the fundamentals and the added
value of KBE systems cannot be discussed without having addressed first the basics
of knowledge based systems.

3.3.1 Knowledge Based Systems. Functionality and structure

Knowledge based systems are computer applications that use stored knowledge for
solving problems in a specific domain (Negnevitsky, 2005; Engelmore and
Feigenbaum, 1993).
Similarly to a human expert, a KBS applies some kind of reasoning approach to
derive an answer to the posed problem, based on the knowledge existing in its
memory. Like a human expert, a KBS is able to justify its decisions and explain how it
did get to the solution or why it needs certain information to carry out the problem
solving process. Due to the intent of emulating the behavior of human experts, at

Knowledge based engineering (KBE) is a technology based on dedicated software
tools called KBE systems, that are able to capture and reuse product and process
engineering knowledge. The main objective of KBE is the reduction of time and
costs of product development by means of the following:
• Automation of repetitive, non creative, design tasks
• Support of multidisciplinary design optimization in all the phases of the design

process

58

the beginning of the 1970s, KBSs started to be addressed as Expert Systems (ESs).
Since then, the terms KBS and ES are used synonymously.
The typical structure of a KB system is represented in Fig. 3.1. At glance, five main
components can be distinguished, which are addressed below.

The knowledge base (KB) represents the dedicated storage container where the
domain expert knowledge to perform certain tasks is recorded. The content of the KB
is independent from the problem at hand. In other words, the same knowledge can
be used by the KBS to solve different specific problems. In a cognitive model of the
human expert, the KB would resemble his/her long term storage memory.
The knowledge stored in the knowledge base has a symbolic representation, which
makes it intelligible to humans as well as a computer. For example, knowledge can
be stored in the form of rules, such as IF Condition THEN Action. As will be discussed
in the coming two sections, different knowledge representations can be used, which
yield to different types of KBSs.

The work space, or work area, (also known as “blackboard”) represents the short
term memory of the KBS. Here the problem to be solved is stored, together with the
collected facts and data. These can either be the case specific, intermediate results
produced by the rules stored in the knowledgebase, or facts and data provided
directly by the user during the various steps of the problem solving process (typically
on request of the inference engine).

The inference (or reasoning) engine consists of one or more programmed
reasoning mechanisms, which allow the KBS to reason upon the stored knowledge
and solve a posed problem with the competence of a domain expert (Engelmore and
Feigenbaum, 1993). What the inference engine actually does is trying to match all
the rules stored in the knowledge base with the facts contained and continuously
added to the workspace, until a solution is found. Thereby, it uses the knowledge
base to alter the contents of the work space (Milton, 2008). The systematic approach
used for selecting and matching the various rules (i.e., the reasoning mechanism)
can follow different schemes, like the forward-chaining and/or the backward-chaining
mechanism discussed in next section.
The inference mechanism may not be able to derive a solution in case of missing
data or lacking knowledge. However, when a solution is found, it is always consistent
with the rules of KB and, as such, it can always be explained.

The Explanation subsystem is the KBS subsystem dedicated to provide the user
with the explanation of the found solution (or proposed advice). The explanation
subsystem traces all the rules fired during the problem solving session and provides
the user with the firing sequence, together with the facts used/obtained step by step
during the process. Hence a KBS can explain how a certain solution was derived and,
in case, why additional data were needed to arrive at a solution.

Chapter 3 Knowledge Based Engineering. The AI roots and the OO paradigm

59

The Users’ interfaces. As shown in Fig. 3.1, it is possible to distinguish three
different actors interacting with the KBS, namely the domain expert, the software
engineer and the end user. In certain cases, the same person can play different
roles. However, in general, three different interfaces are required to facilitate the
three actors carrying out their specific competences. The domain expert (or the
knowledge engineer) needs to update and maintain the KB. The software engineer is
responsible for programming and debugging the inference system. Eventually, the
end user employs the KBS as a commodity tool. In this case, a good User Interface
UI can make a critical difference in the perceived utility of the overall KB system,
regardless of the system’s performances (Engelmore and Feigenbaum, 1993).

One of the most relevant characteristics of KBS, which already emerges from
the structure described above, is the crisp separation between the knowledge and its
processing: This characteristic has favored the development and commercialization
of a number of of-the-shelf tools that facilitate the set up of a KB system. Some are
described in (Negnevitsky, 2005), pp. 391-406. These tools, called shells or
skeletons, provide the basic components of a KB system, such as a repository to
store and organize the knowledge and one (or more) inference mechanisms. As

Fig. 3.1: modular structure of a knowledge base system and definition of a shell.

Shell boundary

60

indicated by the dashed contour line in Fig. 3.1, a shell is actually a KBS with an
empty knowledge base, but provided with the required interfaces to fill the
knowledge base and operate the system. A shell reduces or completely eliminates
the need of any programming activities for building a KB system. However, shells do
not provide any support concerning the knowledge acquisition phase, which remains
one of the most critical activity in the whole development process of a KBS (Milton,
2007; Shreiber et al., 2000).

3.3.2 Rule based Expert Systems. Production rules and inference
mechanisms

In order to be stored in the KB and be accessible to the inference engine, knowledge
has to be structured and formalized by means of some symbolic representation. In
the field of knowledge based systems, rules and frames are the two most common
means for representing knowledge, the first being the well known IF-THEN construct,
and the second a description of a given entity (or object) by a list of attributes and
associated values.
Expert systems where the whole domain knowledge is codified in the form of IF-
THEN rules are called rule based expert systems, while those systems using only
frames are called frame based expert systems. The former represent the most
common typology of expert systems and are discussed below; the latter will be
addressed in the next section.
Rules are actually statements built up of at least two main components: an if-part
called antecedent (or premise) and a then-part, called consequent (or conclusion). In
general, both the antecedent and consequent can be composed of multiple facts (or
conditions) and actions (or conclusions), respectively, linked by logical operators
such as AND, OR. Each fact and action is built of a linguistic object and value, linked
by an operator. See the example in Fig. 3.2.
When the antecedent of the rule is true (when both Fact A and Fact B are true in our
example) the rule fires and produces – hence the name production rule – the results

Fig. 3.2: Structure of a production rule

Chapter 3 Knowledge Based Engineering. The AI roots and the OO paradigm

61

indicated in the consequent part (in the example, Action 1 and Action 2).
Note that, in order for this rule to fire, the antecedent (i.e., the facts t < 10 mm and
material = Steel) must be available in the KBS work space, either provided by the
user or generated by some other rule that fired first. The result of a rule firing will be
the generation of new facts that will be stored in the work space. When the rule of
our example fires, the two facts cost = 10$ and weight = 1 Kg will be added to the
work space.

Once the knowledge base has been populated with rules, the inference engine
can put them in use for solving a problem. There are two fundamental ways an
inference engine operates, namely by means of the forward-chaining or backward
chaining mechanisms (or a combination of the two). These two approaches, as it will
be discussed in the next two subsections, reflect two different approaches typically
used by human experts for solving problems.

Forward chaining inference technique
This inference technique is also called data driven or eager approach. On the basis of
the data initially available in the KBS work space, the inference engine will search
and fire all the fireable rules in the KB (hence all the rules whose antecedent match
with the available data in work space). When fired, these rules will either modify or
add new facts to the work space. The match and fire process proceeds in cycles,
where each cycle ends when all the rules in the knowledge base have been scanned
for a match with the current facts in the work space. The whole inference process
stops when no further rules can be fired. Two basic conditions apply:
1. During each cycle, the inference mechanism examines the rules sequentially,

starting from the topmost rule stored in the knowledge base
2. Each rule is fired only once during the whole problem solving process

Fig. 3.3 shows an example of forward-chaining inference, where A, B, C, D and E
are the facts initially available in the work area. At the end of the inference process,
the facts Z and L are discovered. In order to find Z, X and Y were also computed and
added to the work space. By using the forward chaining approach, all the fireable
rules fire, no matter if relevant to the problem at hand. If, for example, the goal of
using the system was the evaluation L, then the generation of fact X and all the
operations occurring in cycle 2 and 3 result in a waste of time and computational
resources. If we consider that a real rule based system generally contains thousands
of rules, then the use of the forward-chaining mechanism to infer only one particular
fact might result very inefficient.

62

 On the other hand, this approach is appropriate for expert systems that must
perform analysis and interpretation work, hence infer all possible facts based on the
available knowledge and a few initial facts. In fact this approach reflects the typical
behaviour of an expert who is requested to evaluate a complete scenario depending
on a given set of facts.

Backward chaining inference technique
In case only one specific solution must be evaluated, backward chaining is the most
appropriate mechanism. This inference technique is also called goal-driven (or lazy)
approach. In fact, the reasoning process starts by assuming a hypothetical solution
(the goal) and only the rules that are useful to prove the solution are used.
The inference process goes as follow. First, a rule is searched which contains the
hypothetical solution in its THEN-part. The data (facts) in the work space are used to
check if the IF-part of the selected rule is true (hence if the given rule can fire). In
case the data currently available in the work space are not sufficient for evaluating
the conditional part of that rule, the rule is stacked and the facts contained in its IF-
part become the new (sub-)goals. Hence, other rules are searched in the knowledge
base that can produce those sub-goals. In case no facts can be generated to prove
one of the sub-goals, the inference system asks the user directly to provide those
facts, which is a substantial difference with respect to the forward chaining approach
discussed before. In case also the user is not able to provide those facts, the
inference mechanism abandons the initially selected goal (the hypothetical solution)
and starts again searching the rule base for another rule with a possible solution for
the problem at hand contained in its THEN-part. In other words, a new goal is issued

Fig. 3.3: Example of forward chaining (or data driven) inference mechanism
(Negnevitsky, 2005).

Chapter 3 Knowledge Based Engineering. The AI roots and the OO paradigm

63

and the process is continued until the system either finds a solution that can be
demonstrated, or raises the white flag.
Fig. 3.4 shows a backward chaining process example. In this case Z is the first
hypothetical solution assumed by the inference engine, for which the conditions Y
and D must be true. While D is a known fact in the work space, Y is not; hence Y
becomes the new sub-goal, the first rule is stacked and another rule to produce Y is
searched in the KB. At Pass 4, the third rule in the list fires, allowing also the other
stacked rules to fire in the next passes. Eventually, all the facts have been generated
to prove Z. If fact A would have not been available in the work space, the inference
engine would have asked it directly to the user. In case of no answer, the initially
assumed solution Z would have been abandoned and a new goal selected.

Fig. 3.4: Example of backward chaining (or goal-driven) inference mechanism
(Negnevitsky, 2005)

64

Note how both the rule base and the initially available facts in this example are the
same as for the forward chaining example of Fig. 3.3. However, only three rules have
been used in this case, which were all indispensable to prove the hypothetical
solution Z. No resources were wasted to evaluate facts (like L) not needed to support
the direct line of reasoning.

The backward-chaining approach simulates the typical behaviour of a domain
expert who first thinks of a possible solution to the problem at hand and then finds
data that, either confirm his/her hypothesis, or suggest a different answer. Typically,
the backward chaining reasoning approach is implemented in diagnostic purpose
expert systems, where for example a disease or a system failure can be assessed on
the base of symptoms (and by consequence a cure or some other corrective actions
can be suggested).

3.3.3 Frame based Expert Systems. The object oriented paradigm applied
to knowledge based systems.

While rule-base expert systems require domain knowledge to be completely
expressed in terms of IF-THEN rules, frame-based expert systems provide a more
advanced representation of knowledge by means of frames. A frame is a simple but
effective solution, proposed in 1970 by Minsky, to store relevant knowledge relative
to a certain object, into a single data structure (Minsky, 1975).
In Fig. 3.5 an example of a frame relative to the Fokker 100 aircraft is shown. Each
frame has its own name (in this case, Fokker 100) and a list of attributes, also called
slots, which describe the given object (e.g., number of passengers and range). Each
slot can have a value associated to it (in this case, 107 and 2500 Km).

In the intention of Minsky, frames were
means for representing generic concepts and
stereotyped situations (Negnevitsky, 2005;
Auty, 1988; Lassila, 1990). By assigning
values to the frame slots, it is possible to
create specific instantiations of the generic
concept in the frame. For example, the
Fokker 100 frame of Fig. 3.5 can be
considered a specific case for a more generic
Aircraft frame. To distinguish between generic
and specific frames Minsky introduced the
terms of class-frame and instance-frame (in
short class and instance), where the latter is
an instantiation (a specification) of the former
generated by assigning specific values to the
frame slots. Any different set of values yields

Fig. 3.5: Example of frame, a
widely used mean of knowledge
representation.

Fokker 100

MTOW 43000 Kg

No of passengers 107

Wing span 28 m

Total length 35.5 m

Wing area 93.5 m2

Range 2500 Km

Chapter 3 Knowledge Based Engineering. The AI roots and the OO paradigm

65

a different instance frame of the same class frame.
For those familiar with the Object Oriented programming paradigm, the distinction
between the OO concepts of class and objects and those of class and instance-
frames proposed by Minsky might result extremely hazy. As a matter of fact, frame-
based systems are often seen as the application of Object-Oriented paradigm in the
field of expert systems (Negnevitsky, 2005; Auty, 1988; Lassila, 1990). For what
concerns the scope of this thesis, we will not make a distinction between the concept
of frames and classes1. Besides we will take advantage of this introduction on frame
based systems to discuss in the next subsections, two of the conceptual pillars of the
Object Oriented paradigm, namely abstraction and inheritance.

Abstraction
According to the object oriented approach to the representation (modeling) of
knowledge, every entity (or object) is a unique instantiation of a generic class.
Besides, every class can be a specialization of an even more generic class.
As exemplified in the UML diagram of Fig. 3.6, the objects Fokker100 and Fiat500 are
two possible instances of the Aircraft and Car classes, respectively. The process of
instantiation happens in the very moment that a set of values is assigned to all the
attributes contained in the classes’ slots. Also, the Aircraft and Car classes of the
example are both specializations of the more generic class called
MeansOfTransportation. This is said to be a superclass (hence a generalization) of
the more specific concepts of Car, Train and Aircraft.
When defining objects, classes and superclasses, what we are actually doing is
applying a process of abstraction, which helps us structuring given domain
knowledge in a way that is efficient and suitable to focus on the problem at hand.
When abstracting we are actually isolating those aspects that are relevant to the
problem under consideration and suppress unimportant aspects (Rumbaugh et al.,
1991). If we are looking at the concept of means of transportation, as in the example
of Fig. 3.6, we might not be interested in a more detailed definition of the aircraft
concept than the one provided there. But if we are interested in the very concept of
aircraft, a more refined description of such concept will be useful. Our level of
abstraction changes and some details ignored before, become relevant. For example,
it might be opportune to generate a hierarchy of Aircraft subclasses. Possibly the
Fokker 100 aircraft will become an instantiation of the SingleAisleAircraft superclass,

1 Discussions can be found in literature about differences between FBS and actual OO programming.
Most authors agree the main differences exist in the background and the scope of these systems
rather than in the technical aspects. FBSs have a cognitive/psychological background and are mainly
aimed at building knowledge representation systems, while the OO paradigm comes from the IT
programming field and it is mainly aimed at data processing.

66

which in turn will be a subclass of the JetEngineAircraft superclass, in turn a
specialization of the ConventionalPassengersAircraft superclass.
At a different level of abstraction, it might be appropriate to define the Fokker 100
aircraft as a class rather than an instance. For example, if we are looking at the
fleets operated by various airlines companies, the hypothetical Fokker 100 named
“City of Amsterdam”, owned by KLM-Cityhopper, will be a possible instance of the
Fokker 100 class.

Inheritance
Classes and objects are aware of their interrelationships. An object “knows” its class
as well as a class knows its superclass(es). This information is stored in what we can
call an implicit slot. The type of relationship between a superclass and its classes, like
superclass MeansOfTransportation and the classes Aircraft, Car and Train of the

Fig. 3.6: UML diagram representing classes, superclasses and classes instantiation
(objects) and relative inheritance relationships.

is a

Fokker 100
defined as object
(instantiation of
the class Aircraft)

Fokker 100
defined as class

Multiple inheritance

Chapter 3 Knowledge Based Engineering. The AI roots and the OO paradigm

67

example in Fig. 3.6, is called either specialization or generalization according to the
direction of the semantic. For example, Aircraft is a specialization of
MeansOfTransportation, which is a generalization of Aircraft. Note how in the UML
this link is represented by means of empty arrow connectors. The interesting
characteristic of this relationship is that each class inherits all the slots from the
relative superclass, including eventual default values. So all the attributes used to
define a superclass automatically cascade down the hierarchy of classes, without the
user having to specify them again and again. As showed in the example of Fig. 3.6,
since the slot number of passengers has been specified in the
MeansOfTransportation superclass, Aircraft, Train and Auto automatically inherit that
slot. So do their eventual subclasses. Typically, new slots are added at each subclass
level, as the level of specialization is supposed to increase down the hierarchy. In the
example above, the subclass aircraft has added the slot cruise altitude and the train
subclass the slot number of wagons. Furthermore, certain inherited slots can be
deleted and some inherited values redefined. An eventual UAV subclass of the
Aircraft superclass, would exclude the number of passengers slot.

Most of the frame based systems (and Object oriented programming
languages) support also the concept of multiple inheritance; hence a class can inherit
from more than one superclass. In the example of Fig. 3.6, the class FlyingCar
inherits from both the Aircraft and Car superclasses.

3.3.4 Aggregation and association links

Besides the specification/generalization link discussed above, which is the base for
specifying taxonomies, i.e., hierarchies of concepts based on the relationship is-a,
frame based systems allow also the representation of part-whole systems, i.e.
hierarchies of concepts based on the relationship has-part. A frame slot, apart from
attribute values, can actually contain pointers to other frames to specify their
belonging to an aggregation. For example, the class frame Aircraft could have a slot
called components, pointing at some other separately defined classes such as Wing,
Fuselage and Tail. This is the so called aggregation link, or has-part link, which is
indicated in the UML by means of diamond connectors (see diagram in Fig. 3.7)2.
Note that, for simplification, the slot with pointers to other frames is not shown in
Fig. 3.7, whereas connectors show the links.

2 A stronger version of the aggregation link exists, which is called composition link (indicated in the
UML by a filled diamond connector, whereas non-filled diamond are used for aggregation). The
components of an aggregation exist also outside the aggregation, while the components of a
composition exist only within that composition (e.g., a hole might be a component of a Flange class,
but, in general, it does not make sense as a standalone component). Eventually, the difference
between the two links depends on the level of abstraction used to represent the given domain
knowledge.

68

Apart from is-a and has-part links for specialization and aggregation, actually any
kind of semantic relationship between classes can be defined by means of slots. For
example, in case of the Fokker 100 aircraft, a hypothetical slot Operator can point at
a number of Airlines frames such as KLM-Cityhopper and Air Berlin, hence
representing the operated-by relationship. A slot route can point to a number of
flight route frames (e.g., Amsterdam-London), representing the relation fly-route.
Any semantic relationship between classes, which is not of the generalization or
aggregation type, falls automatically into the more generic association link category.
This is indicated in the UML by a simple connector with an explanation tag attached.

In conclusion, a frame based system (and more in general any system based
on the object oriented representation) results in a network of nodes and relations
that provides a structured and concise representation of the given domain
knowledge. This represents a major difference with respect to the rule based system
described in the previous section, where all the domain knowledge is translated in a
flat list of if-then statements.

3.3.5 Inference mechanism in frame based systems. Methods, demons and
production rules

The value of FBSs goes beyond the merit of an effective knowledge representation
system. FBSs provide also the mechanisms for manipulating and reasoning upon the
represented knowledge.
In the previous sections, it is mentioned that a slot can contain a value or a pointer
to some other frame. In fact, a slot can also specify the procedure to compute its
value. This procedure can either consist of a simple production rule (where the slot
value is computed according to the evaluation of some preconditions) or even a
sequence of commands and operations necessary to compute that value. Method is
the technical term used in OO parlance to indicate the procedure for computing a
slot value.

The capability to include into one structure, both elements of declarative and
procedural knowledge (by means of attributes and methods respectively) is
acknowledged to be one of the most relevant features of the object oriented
paradigm. It should be noted that methods offer a significant advantage with respect
to classic rule based systems, because simple production rules are generally not
effective at dealing with procedural knowledge (Negnevitsky, 2005).

Actually, two types of methods are used in FBS: the so called when-needed
and when-changed methods. The former are executed when the value of a given slot
is required and not directly available. The latter, often addressed in literature as
demons, work as dormant processes, which fire in the very moment that certain
monitored slot values change. For example, a demon can start a process whenever a
certain button is pushed by the user, or can issue a warning when a certain rule is

Chapter 3 Knowledge Based Engineering. The AI roots and the OO paradigm

69

violated. Fig. 3.7 shows a simple example of a possible implementation of the two
methods. Note that the execution of methods within one frame can also involve the
evaluation of attributes from other frames’ slots. In this case, the so-called reference
chain of the attributes must be provided, i.e. the name of the frame where the
required slot is contained. In the example, the Aircraft’s method MTOW adds the
fuselage weight from the frame Fuselage, the wing weight from the frame Wing, etc.

Contrarily to rule based systems, in KBS the inference system is not required
to perform exhaustive searches of the workspace and rule base, looking for matching
rules. When a slot value is set as a goal, the inference mechanism directly executes
the method associated to that slot and accesses the slots of other frames in the
system, according to a demand driven process. That is to say, the reference chain
attached to each attribute informs the inference engine about the specific frame to
be accessed for obtaining the needed slot value. The presence of both when-needed
and when-changed methods is such that the inference mechanism can work both
with forward and backward chaining.

Even if methods represent the most typical means of knowledge interaction
between frames, FBSs do not exclude the possibility of using the typical knowledge
representation and problem solving approach of rule base systems (previously

Fig. 3.7: Example of frames with when-needed and when-changed methods. (N.B. the
graphical representation of the methods and their syntax are just fabricated for the
purpose of exemplification).

70

described in section 3.3.2). In fact, lists of production rules can be stored in the
knowledge base, next to the collection of frames, and used by the inference system
to obtain the value of some frame slots. However, within frame based system, rules
always play an auxiliary role while frames remain the main knowledge carriers. The
inference mechanism will be informed by a special tag (called facet) applied to the
given slot when the value has to be computed by using the rule base, rather than
querying other frames. Typically, a backward inference mechanism is used here,
where the value of the given slot is set as goal for the reasoning process.

To conclude, FBSs add the knowledge structuring power and efficiency of the
OO paradigm to the relative simple mechanisms of rule based systems. However,
with great power comes great responsibility! Here the user is left with the overhead
of deciding both the most suitable way of structuring the knowledge at hand and the
mechanism(s) to manipulate that. What are the correct levels of abstractions? How
many frames will be required and what is their network of semantic relationships?
Are frames sufficient or a separate rule base is also necessary? When to use methods
or demons?
In this sense, frame based systems deny the main advantage of rule based systems:
a simple and straightforward approach to store and update knowledge. In FBSs is
not possible to simply add, modify or delete rules to make the system smarter. The
overall hierarchical structure of the knowledge has to be modified. It has to be
decided if new classes and attributes have to be added, and if those previously
defined need any modification. In case, it should also be considered whether the
relationships between classes must be adapted. Eventually, the crisp separation
between knowledge and inference engine typical of rule based system, starts to get
blurry. Indeed, methods are pieces of programs where knowledge and execution
control are closely intertwined.

3.4 Knowledge Based Systems + Engineering =
Knowledge Based Engineering Systems
Since the beginning of the 1970s, knowledge based systems started penetrating the
market of software applications, addressing problems of various complexity from
different knowledge domains. MYCIN (Shortliffe, 1976), DENDRAL (Feighenbaum,
Buchanan and Lederberg, 1971) and PROSPECTOR (Duda, Gaschnig and Hart, 1979)
are three examples of successful knowledge based systems developed for the
diagnosis of blood infections, analysis of chemicals and advice on mineral
exploration, respectively. These were outstanding systems in the success story of
KBS, but many others just entered the range of daily commodity tools, such as “help
on line” and planning/scheduling systems (Engelmore and Feigenbaum, 1993; Milton,
2008).

Chapter 3 Knowledge Based Engineering. The AI roots and the OO paradigm

71

However, KBSs did not really have an impact on the field of engineering
design, including here aerospace, automotive and all those areas generally
concerned with the development of complex hardware products. Apart from the
inherent challenge of translating design knowledge into formal rules, the main reason
for KBSs limited success is their inability to deal with two essential activities of the
engineering design process, i.e., geometry manipulation and data processing. As
discussed in the previous section, KBSs are tools developed to solve problems by
reasoning about facts and not really to perform computations to derive facts or some
other complex data processing task (apart from the limited data processing
capabilities discussed for FBSs). Besides, KBSs in general do not have any
competence in dealing with geometry and any related shape configuration activity.

Most of the engineering work requires and produces output that involves
geometry manipulation, deals with the generation and management of complex
products configurations, delivers data to various kinds of discipline analysis tools and
depends on the results of these analyses to advance the design process. An
aerodynamicist, for example, will need the results of an aerodynamic computation to
decide on the shape of the wing at hand. But, before that, he/she will need an
adequate geometric model of the wing to feed the selected aerodynamic analysis
tool. Indeed, the generation and manipulation of geometric models take a relevant
part of the engineering design process. As a matter of fact, specialized tools for
geometry manipulation, data processing and computation in general proliferate in the

engineering world.
Those are the well
known computer aided
design (CAD) systems
and computer aided
analysis (CAA) tools,
such as FEA and CFD
tools.

Therefore, the
question rises whether
specific systems exist
that can merge the
capabilities of CAD and
CAA systems with the
reasoning competence
and knowledge
capturing and
representation ability of
KBSs. To a certain

Fig. 3.8: KBE systems: computer programs containing
knowledge and reasoning mechanisms plus geometry
handling capabilities to provide engineering design
solutions.

72

extent the answer is positive: special kinds of KBSs exist, which either have the
capabilities of a CAD system built in, or are tightly integrated to an external CAD
system (also a combination of the two). These systems allow both implementing
analytical procedures (e.g. computational algorithms) and communicating with
external CAA tools. They are called Knowledge Based Engineering (KBE) systems!

KBE systems can be defined as an evolution of knowledge based systems
towards the specific needs of the engineering domain. Actually, the name Knowledge
Based Engineering originated just from the fusion of the two terms knowledge based
systems and engineering. Certainly not in contraposition of doing engineering, not
based on the use of knowledge!

In agreement with Lovett, Ingram and Bancroft, we can state that KBE
systems are likely to be the best tools at hand whenever a candidate application area
involves engineering domain knowledge and demand geometry manipulation and
product (re)configuration (Lovett, Ingram and Bancroft, 2000).

As illustrated in Fig. 3.8 and often stated in literature (Chapman and Pinfold,
1999), KBE systems can be considered as the merger of Artificial Intelligence and
Computer Aided Design technology. Not by chance, two of the founding fathers of
ICAD Inc., the company that in 1984 developed ICAD, the first KBE tool ever on the
market, were coming one from the AI laboratories of MIT and the other from the
CAD company Computervision, later Parametrics and nowadays PTC (Rosenfeld's
profile; Knudson; ICAD).

Whilst the entry of ICAD on the market can be considered as the very
beginning of KBE, it cannot be considered the start of AI in CAD (or AI and CAD). At
the beginning of the 1980s, a significant part of the international scientific
community was already involved with the development of experimental systems to
bring Knowledge Engineering capabilities into CAD (Tomiyama, 2007). As a matter of
fact, the term intelligent CAD3 was already coined in 1983 by Tomiyama (Tomiyama
and Yoshikawa, 1983; 1985) just to address this novel concept of CAD systems able
to store knowledge and reason on that to support geometry generation. The two
epoch-making conferences organized in 1984 and 1987 on Knowledge Engineering in
CAD and Expert Systems in CAD by the IFIP Working Group 5.24, were just a proof
of the great activity in the field (Gero, 1985; 1987). The scientific discussion on
Intelligent CAD, Expert CAD, Knowledge-based CAD, etc. has continued and evolved
during the years, however, the ICAD system and the other KBE platforms that have

3 According to the ICAD developers, the name ICAD was not the acronym of Intelligent CAD.

4 International Federation for Information Processing [http://www.ifip-wg51.org]. In 2006 Group 5.2
(on Computer Aided Design) has merged into Working Group 5.1 (on Information technology in the
Product Realization Process)

Chapter 3 Knowledge Based Engineering. The AI roots and the OO paradigm

73

followed, possibly represent, still at date, the most successful industrial
implementation of the whole “intelligent CAD” concept.

3.5 KBE systems and KBE applications. The
programming approach
In order to practice knowledge based engineering, specific software tools, called KBE
systems (or KBE platforms), are normally required. A KBE developer uses a KBE
system to build so called KBE applications: dedicated programs to solve specific
problems, generally (but not necessarily) related to the modeling and configuration
of hardware products (both in terms of geometry and metadata). ICAD, GDL,
Knowledge Fusion and AML are some examples of typical KBE systems. A list of
commercial KBE tools, with some related information has been compiled in Appendix
A. KBE tools market is very dynamic, refer to (Knowledge-based engineering) for up
to date information .

A KBE system, similar to an expert system shell, is a general purpose tool,
hence does not contain any knowledge about any specific domain (apart from the
knowledge required to generate some primitive geometric entities, like points, boxes,
cylinders, etc.). While a rule based shell allows the user to fill the knowledge base,
by putting in rules via a proper interface, a KBE system requires a programming
language to generate an adequate formalization of the given domain knowledge.
Hence, while in the development of a rule based system no programming is required
(if a shell is used), the development of a KBE application is just about writing code!
State-of-the-art KBE systems provide the user with an object oriented programming
language, which allows modeling the domain knowledge as a dynamic network of
classes, in a way similarly to what we discussed concerning frame based systems.
Once a KBE application has been finalized, it can be packaged and deployed as a
conventional Computer Aided Engineering (CAE) tool. In this case, designers,
engineers and others involved in the design and engineering process can just use it,
without being confronted with the syntax of the programming language running
under the hood. As a matter of fact, KBE vendors usually commercialize two types of
licenses: a development license, which enables the generation, modification and
debugging of KBE applications and a runtime license to allow the use of compiled
KBE applications just as normal executables (hence without any access to the source
code).

Different from RBSs, but similar to FBSs, a KBE application shows no crisp
separation between knowledge and inference mechanism. The domain knowledge
and the control structure to access and manipulate this knowledge are strongly
intertwined. Again, different from RBSs, but rather similar to FBSs, KBE systems
leave the burden of modeling the knowledge domain (i.e. the selection of the
adequate levels of abstraction and the definition of the proper networks of classes

74

and objects) to the developer. Expanding, updating and maintaining a KBE
application is not just adding or deleting rules from a list. Even though the OO
approach provides a sustainable way of writing spaghetti code (Graham, 2004), it is
up to KBE developers to enhance their programming skill to enable code scalability
and maintainability. On the other hand, the high level of flexibility and control
provided by the OO approach is exactly what is required to build applications fully
tailored to the users’ need and to the peculiarities of the given products to be
developed.

3.6 KBE languages: A survey of main characteristics
As discussed in the previous section, state-of-the-art KBE systems generally put at
developers’ disposal a programming language that supports the object oriented
paradigm. As a matter of fact, KBE languages are very often based on object
oriented dialects of the LISP programming language:

• IDL, the ICAD Design Language, is based on Common LISP, which is a dialect of
LISP, including the CLOS (Common LISP Object System) object-oriented facility.

• GDL, the Genworks’ General-purpose Declarative Language, is based on the ANSI
standard version of Common LISP.

• AML, the Adaptive Modeling Language of Technosoft, was originally written in
Common LISP, though, subsequently recoded in a proprietary–yet–LISP-similar
language.

• Intent!, the KBE proprietary language developed by Heide Corporation and now
integrated in the Unigraphics’ system Knowledge Fusion, belongs also to the
family of LISP-inspired languages.

Table 3.1: KBE-specific and LISP-inherited characteristics of KBE languages

Coding features KBE specific LISP inherited

Object oriented paradigm √ √

Declarative coding √

Dynamic typing √

Runtime value caching & dependency tracking √

Interpreted/compiled mode √

Automatic Memory management √

CAD capabilities √

Chapter 3 Knowledge Based Engineering. The AI roots and the OO paradigm

75

This non accidental occurrence of LISP in the KBE area is just another strong clue of
the AI roots of knowledge based engineering. As a matter of fact, the LISP language,
the second oldest programming language after FORTRAN, is still the favored
programming language for artificial intelligence research and implementation.
Though many high-level OO languages have been developed during LISP’s 50 years
lifetime, such as C++, JAVA, Perl, Python and Ruby, LISP is still an extremely
powerful and modern language (LISP itself has developed a lot). In the words of Paul
Graham, famous LISP hacker and essayist “If you look at these languages in order,
Java, Perl, Python, Ruby, you notice an interesting pattern. [...] Each one is
progressively more like LISP. Python copies even features that many LISP hackers
consider to be mistakes. And if you’d shown people Ruby in 1975 and described it as
a dialect of LISP with syntax, no one would have argued with you. Programming
languages have almost caught up with 1958. (Graham, 2004)”.
The name LISP stands from LISt Processing, being lists the language major data
structure. LISP source code is itself made up of lists. As a result, LISP programs can
manipulate source code as a data structure, giving rise to the macro systems that
allow programmers to create new syntax or even new "little languages" embedded in
LISP. From here follows Foderaro’s definition of LISP as a programmable
programming language (Foderaro, 1991). Though LISP is by itself a high-level
language, it is possible to use LISP to build even higher-level layers on top of itself.
The result is a so called superset of LISP, and KBE languages like ICAD IDL and GDL
are outstanding examples of supersets. To the user of these KBE languages, it
means the full LISP language (and eventual LISP libraries) is always available and,
on top of that, also special macros are available to provide the user with higher-level
and user-friendly language constructs. Indeed, the availability of these macros
represents the very added value of a KBE language with respect to raw LISP.
Table 3.1 shows a list with the main characteristics of a true KBE system (like ICAD
and GDL) and, indicated whether the given characteristic is either KBE specific or just
inherited from the LISP language.

3.6.1 KBE macros to define classes and objects hierarchies

The most outstanding example of a macro provided by various KBE systems (though
in different form/syntax) is the one used for defining classes and objects hierarchies.
Mastering the use of such macro is fundamental for developing any KBE application.
As a representative case, the ICAD-specific macro defpart is discussed in this section,
since ICAD is the KBE system used for this research. In fact, GDL and Knowledge
Fusion (KF) provide their own version of the same construct, though different names

76

and a slightly different syntax are used5. The simple (and very incomplete) mapping
Table 3.2 shows the structure of the GDL define-object and KF defclass macros,
which are the specific counterparts of the ICAD macro defpart.

The defpart macro (or the non ICAD equivalent) is the basic means to apply
the object oriented paradigm in KBE applications. It allows defining classes,
superclasses, objects and relationships of inheritance, aggregation and association,
as discussed in section 3.3. The defpart macro is basically structured as follow (see
also the code sample of Fig. 3.9):

5 The similarity of the three KBE tools mentioned above is not accidental. GDL is the youngest of the
bunch, but like ICAD is based on Common LISP and has been developed as the natural heir of ICAD
after the latter, in 2005, was acquired and put out of the market by Dassault Systemes. This similarity
is exploited by GDL, which features a dedicated module to convert large chunks of legacy ICAD
models directly into GDL, without any formal code translation required by the user.

Intent!, the KBE language at the base of UGS Knowledge Fusion, was licensed to Unigraphics by the
Heide Corporation company. Mr Heide was one of the main developers of the ICAD system.

ICAD GDL Knowledge Fusion (UGS)
defpart Define-object defclass
Inputs Input-slots1 Any data type2 followed by the behavioral

flag3 parameter (plus optional default value) Default-inputs Input-slot :settable (or
:defaulting)

attributes computed-slots Specification of several data types, plus an
optional behavioral flag (e.g., lookup,
uncached and parameter)

Modifiable-
attributes

computed-slot :settable A data type followed by the behavioral flag
modifiable

Descendant-
attributes

Trickle-down-objects all attributes descendant by default

Type Type Class

Parts Objects Child

Pseudo-parts4 Hidden-objects4 Class name starts with %4

1: the term slot recalls the terminology of frame based systems
2: differently than ICAD and GDL, KF does not support dynamic typing (see section3.6.2). Hence
the type of the attribute must always be specified, e.g., number, string and Boolean.
3: a behavioral flag might be used to specify the behaviour of an attribute. The flag parameter is
used to create a correspondent of the input or input-slot keyword.
4: these objects will not be visualized in the object tree. When % is used as the first character of an
attribute name, such attribute will not be visible from outside the object definition. That is how
information hiding is supported in KBE languages.

Table 3.2: equivalence table for the class definition keywords of ICAD, GDL and UGS
Knowledge Fusion.

Chapter 3 Knowledge Based Engineering. The AI roots and the OO paradigm

77

• Name of the class
• Mixin-list: list of superclasses or other classes from which the class here

specified will inherit all the characteristics (attributes and components). The
classes specified here can either be formal superclasses (of which the class
specified in the defpart is an actual specialization), or other classes with which
this class is to share attributes and parts (see next item).

• Input-attributes: list of parameters to be assigned in order to generate an
instantiation of the given class. This set of parameters represents the so called
class protocol. Default values can be specified outside the protocol.

• Attributes: these attributes are generally expressions which return a value when
computed (see also the concept of method described for the FBSs). These
expressions can either be production rules or any other mathematical, logic or
engineering rule (see section 3.8 for a detailed list of possible rules). To evaluate
these expressions, values of other attributes can be used or combined, such as
the input-attributes or the attributes inherited by the classes specified in the
mixin-list. It is also possible to use the attributes of the children (see next bullet)
defined in the given defpart, or the attributes of any descendant or ancestor
objects in the instantiated object tree: in this case the reference chain will have
to be specified, as already discussed in 3.3.5.

• Parts: this is the list of objects contained in the instance of the defpart. They are
also called children of the defpart instance. For each part, the following must be
specified:
o the object name
o the name of the relative class to be instantiated (by using the keyword type)
o values for the input-parameters of the class to be instantiated. This parameter

list must sufficiently match the protocol of the class to be instantiated (i.e. at
least its required input-attributes)

• Methods: these are similar to attributes, but they can accept arguments. Their
computed return-values are not cached as is done by default with the attributes
(see section 3.7 for caching)

Further details can be found in the relative documentation of the various KBE
systems.

Any KBE application basically consists of a number of defpart (in the case of
ICAD) definitions, properly interconnected as required to create structured models of
both products and processes. Therefore, the whole network of defparts definitions is
typically addressed as the product model, whereas the hierarchical structure of
objects obtained by instantiating the various classes is called the objects tree or
product tree.

Raw Common LISP already provides the capability to define classes and
objects; what is the value of a macro like defpart, then? The defpart macro provides

78

a much simpler, user friendly and intuitive way of creating complex hierarchies of
objects, without requiring engineers (the target users of KBE systems) to possess the
hacking capability of a LISP expert. The defpart macro provides a kind of high level
interface to the Common LISP object facility and maps any ICAD defined object to an
actual Common Lisp object. This explains the double check in the OO paradigm slot
of Table 3.1.

On top of that, the defpart macro brings in caching and dependency tracking
capabilities (addressed in detail in section 3.7), which are normally not available in
raw Common LISP. Indeed, behind the concise definition of a macro, there is
generally hidden a voluminous and opaque chunk of LISP code, which automatically
expands at compile time, (luckily) in a way that is fully transparent to the user. Some
macroexpansion examples are given in the appendix of (Cooper and La Rocca,
2007).

The ICAD defpart. An example
Fig. 3.9 illustrates a sample of ICAD code, where the defpart macro is used to define
the hypothetical class ConventionalAircraft. In Fig. 3.10, the UML class diagram and
objects tree relative to this KBE application sample are provided as well6. Note that
next to the specification of the class name, the mixin list appears, which is the list of
other classes (Aircraft and CostEstimationModule in our example) from which
ConventionalAircraft inherits. All the attributes and components of these two classes
are readily available to ConventionalAircraft.
The two attributes horizontalTailSpan and verticalTailSpan, used to define the Tail
part, are neither defined as inputs nor attributes of ConventionalAircraft; although
not shown in the example, it can be assumed they are inherited from the superclass
Aircraft.
The CostEstimationModule (rather than a real superclass) represents a hypothetical
class containing some kind of costs calculation procedure. By including it in the
ConventionalAircraft mixin list, any instantiation of ConventionalAircraft will inherit
the capability of computing costs.
ConventionalAircraft is actually an aggregation of the 4 classes (since 4 parts are
defined in the defpart) Fuselage, Tail, Wing and AircraftCog. It means any
instantiation of ConventionalAircraft will be composed of 4 objects, of which 3

6 Note how the name of classes, objects, attributes, etc. indicated in the diagrams respect the UML
standards, i.e., class names are indicated as single words with capital letter; objects and attributes as
single words in low case (in case of multi-words names, all the words are connected but opportunely
capitalized). On the other hand, the names of the corresponding classes and attributes used in the
ICAD code reflect the free style allowed by the programming environment. In the text above, for
clarity, we will refer to the various classes, objects, etc.. using the UML style.

Chapter 3 Knowledge Based Engineering. The AI roots and the OO paradigm

79

represent main aircraft subsystems, whereas the instantiation of AircraftCog is a non
geometrical object with the ability to compute the position of the aircraft’s center of
gravity. This means that both geometrical and non geometrical components can be
heterogeneously structured in the object tree.
As specified in Fig. 3.9 by means of the command “Type” and partly visualized in the
UML diagram of Fig. 3.10 (top), the classes Fuselage, Wing and AircraftCog are
specializations of the classes Cylinder, WingGenerator and CogEstimationModule,
respectively. On the other hand, the superclass of Tail is dynamically evaluated by
means of an IF-THEN rule. For instance, it can be a “null object” in case the attribute
typeOfTail is evaluated to “tailless”, or some other kind of tail, such as a the
conventional configuration assumed in the example of Fig. 3.10 (bottom).
Although not shown in the example, clearly, this KBE application must contain the
definitions of the defparts WingGenerator, Cylinder, CogEstimationModule and some
other classes to define different types of tail. While the class Cylinder is actually one
of the geometry classes predefined in ICAD (the so called ICAD geometry primitives),
the others will have to be defined by the user using some other defpart.

In order to create an instantiation of the ConventionalAircraft class, the ICAD
command “make-part” will be used. Then, the user will be prompted to provide
values to the list of input-parameters (unless the ConventionalAircraft class is
instantiated as part of some other class, in which case the parameter values will be
passed down by its parent). Default values for the input-parameters can be assigned,
which will be overwritten by fresh values provided by the user, or by the parent
when applicable. The attribute values specified for the various parts will be the input
values for their relative defparts; hence they will have to sufficiently match those
defparts’ protocol.

As shown in the UML representation of Fig. 3.10 (bottom), the object myTail
contains two instantiations of the classes HorizontalTail and VerticalTail (although not
shown in the example, both HorizontalTail and VerticalTail could be instantiations of
two specializations of the class WingGenerator, similar to myWing). Hence, myTail is
1) parent of the two children myHorizontalTail and myVerticalTail, 2) a child of
myAircraft, and 3) sibling of myWing and myFuselage.
The object tree shown at the bottom of Fig. 3.10 is the way a KBE system presents
the modeled product to the user (actually a simplified version of the UML graph in
the picture). Indeed, such has-part hierarchies are very familiar to engineers dealing
with complex product configurations consisting of assemblies, subassemblies,
components, subcomponents, parts and so on. The amount of hierarchical levels in
the object tree generated by a state-of-the-art KBE system is actually unlimited.

80

(defpart conventional -aircraft (aircraft, cost -estimation -module)

:inputs

(:fuselage-length

 :wing-span

 :tail-span)

:optional-inputs

(:type-of-tail “T-tail”)

:attributes

(:wing-positioning (half (the: fuselage-length))

 :total-weight (+ (the :fuselage :weight)

 (the :tail :weight)

 (the :wing :weight))

 :aircraft-cost (the :total-cost)

)

:parts

 ((fuselage :type ‘cylinder

 :length (the :fuselage-length)

 :diameter 10)

 (tail :type (IF (eql (the :type-of-tail) “tailless”) ‘null-part (the :type-of-tail))

 :h-span (the :horizontal-tail-span)

 :v-span (the :vertical-tail-span)

 :center (translate center :longitudinal (the :fuselage-length)))

 (wing :type ‘wing-generator

 :span (the :wing-span)

 :center (translate :center :longitudinal (the :wing-positioning)))

(aircraft-c.o.g :type ‘c.o.g.-estimation-module

 :components-list (flatten ((the :fuselage) (the :tail) (the :wing))))

))

Mixin-list: list of superclasses for
inheritance and/or classes for association

List of input parameters required to
instantiate the class (the class protocol)

List of computed attributes

Class name

Reference to attributes of objects from
the conventional-aircraft aggregation

Reference to an attribute from an external
object (defined by the cost-estimation-
module class indicated in the mixin list)

List of objects belonging to the conventional-aircraft object tree. That is to
say, the children (or parts) of the conventional-aircraft aggregation

Class instantiated by conventional-aircraft to
form an object tree (these classes belong to

the conventional-aircraft aggregation)

Dynamic specification
of the object class

Attributes inherited from
superclass aircraft

Fig. 3.9: example of ICAD code, showing a class definition by means of the macro
defpart.

Chapter 3 Knowledge Based Engineering. The AI roots and the OO paradigm

81

numberOfPassengers = 100
flightAltitude = 12000m
cruiseSpeed = M 0.8
fuselageLength
wingSpan
tailSpan
typeOfTail = conventional
totalWeight
wingPositioning
aircraftCost

myAircraft : ConventionalAircraft

horizontalTailSpan
verticalTailSpan
typeOfTail = conventional

myTail : Tail

length = 40m
diameter = 4m

myFuselage : Fuselage

length = 40m

myWing : Wing

has part

has part

has part myHorizontalTail

myVerticalTail

has part

has part

Fig. 3.10: (Top) UML Class diagram for the ConventionalAircraft class showing
inheritance and composition links. (Bottom) Object tree resulting from the
instantiation of the ConventionalAircraft class.

Tree’s root, parent of myWing,
myFuselage and myTail; ancestor
of myTail’s children

Children of myAircraft
(siblings to each other)

Parent of myHorizontalTail
and myVerticalTail

Tree’s leaves and
myTail’s children

82

3.6.2 Flexibility and control: dynamic typing, dynamic class instantiation
and objects quantification

One of the characteristics of KBE languages based on LISP, like ICAD and GDL (not
Knowledge fusion as indicated in table 4.1, which is written in a proprietary
language) is that values have types, but attributes not (at least not necessarily).
Hence, contrarily to many general programming languages, like FORTRAN, attributes
(variables) do not need to be declared ahead of time to be of a particular type. They
can simply be created and modified on the fly, e.g., an attribute can change at
runtime from a Boolean value like “NIL” to an integer number. Indeed, defining the
type of an attribute value or object directly at runtime offers a high level of flexibility
(Graham, 1995; Seibel, 2005). This programming style is known as dynamic typing.

Another relevant feature shown in the example of Fig. 3.9, is the possibility to
use logic expressions for determining the object type at runtime (see the type
definition of the part Tail and further examples later, in Fig. 3.12). Indeed the name
of the class to instantiate can be treated as a variable.
In addition, each part can be defined as a series of objects, where the number of
instances can also change at runtime, depending on the evaluation of specific rules.
Defining series of objects in a KBE system is different from just creating “carbon
copies” of the same part/feature as typical in many CAD systems. KBE systems allow
the instantiation of each single object of the series by using different parameter
values, as well as different parameters, since each object in the series can be the
instantiation of a different class (see some examples later in Fig. 3.12). It follows
that the topology of the product tree, i.e., the number of tree levels as well as the
kind of objects in the tree, is not fixed but reconfigurable at runtime. The whole KBE
model is dynamic by nature.

3.6.3 Communication between objects: the message passing mechanism

Objects interact by sending messages to each other. The input-attributes, attributes
and methods of an object are all considered messages the given object is able to
answer. In the code sample of Fig. 3.9, any instantiation of the ConventionalAircraft
class (e.g., the object myAircraft of Fig. 3.10) sends a request to the Fuselage
instance asking for its weight, which is needed to compute the totalWeight attribute.
This is accomplished by including the addendum (the :fuselage :weight) in the
specification of the attribute totalWeight. In object oriented parlance, any
instantiation of Fuselage is said to be able to answer to the weight message.
To compute the expression associated to the definition of given attribute, an object
might need to combine values of other attributes, which can be of its own, inherited
from the classes specified in the mixin-list, or attributes of other objects belonging to
the same aggregation (Cooper and La Rocca, 2007). In the example of Fig. 3.9, any
instantiation of the ConventionalAircraft class is able to answer the message

Chapter 3 Knowledge Based Engineering. The AI roots and the OO paradigm

83

totalWeight. In order to do that, it will send the message weight to the instances of
its children fuselage, tail and wing.
As could be noted in the examples above, the operation of sending messages is
performed by using the referencing macro <the>. This macro is used both to refer to
the value of messages within the current object (e.g. the :fuselage-length7), or,
through reference-chaining, to the values of messages in other descendant or
ancestor objects from the instantiated object tree (e.g., the :fuselage :weight or the
:tail :vertical-tail :span). The reference chain can be thought of as the complete
address of the object we are sending a message.

Talking of parent/children relationships and inheritance might easily generate
confusion. It should be clear that, in KBE parlance, children do not inherit from their
parent, but from the classes they are a type of. In the example of Fig. 3.9, the
children Fuselage and Tail inherit from the classes Cylinder and WingGenerator,
respectively. However, they get the parameter values length, diameter, span and
center passed down (or cascaded down) by the given ConventionalAircraft instance.
The process of passing down parameter values from parent to children is the main
mechanism to have information flowing down the object tree. On the other hand, the
attribute totalCost (N.B. not the attribute’s value) is inherited by ConventionalAircraft
from its superclass Aircraft. Indeed, classes inherit from other (super)classes

To conclude, by inheritance, parameters are transmitted across hierarchies of
classes (linked by is-a relationship); by passing down, parameter values flow down
part-whole hierarchies of objects (linked by has-part relationship).

3.6.4 Declarative coding style

When writing a piece of code using a KBE language, in general there is no “start” or
“end”. The order in which attributes are declared and objects defined is not relevant
at all. For example we can define attributes for the computation of the total weight
of an assembly, before specifying the attributes defining the weight of the
components of the assembly. The program interpreter/compiler will figure out at
runtime the right order to trigger attributes evaluation and object instantiation. This
coding style is opposed to the so called procedural style used, for example, in
FORTRAN, where any procedure has to be defined step-by-step using the right
temporal order of the events.
Common LISP is very special in this sense (and all the KBE languages based on CL),
because it can support both styles. In facts, it is defined a multi-paradigm language.
While the declarative code is extremely useful for writing dynamic software

7 Note the correct way of referring to the value of a message within the current object is <the :self
:message>, however the variable self is implicitly assumed when no other object is indicated in the
reference chain.

84

applications, a local switch to the procedural approach is useful for example in cases
like “IF Fact A is True THEN first Do this, then do that and subsequently do the
other”.

3.6.5 Polymorphism and encapsulation

The UML graphical representation for a class, as shown in Fig. 3.10, provides a slot
for attributes and a slot for operations. The way classes are defined in a KBE system,
for example by using the defpart macro, can make this distinction rather fictitious.
Operations, indeed, are often executed by evaluating attributes. An attribute does
not just contain a value but a method to compute it. As a consequence, when
sending a message to an object a method is used to answer that message. Different
objects can answer the same message but using different methods. In the example
discussed so far, myAircraft sends a message to all its children to compute their
weight. Each child will typically use a different, specific method to answer the
message (e.g. the procedure to compute the weight of the fuselage will be different
from the one to compute the wing weight). Hence, the operation computeWeight() is
said to be polymorphic.

When sending a message to an object, the recipient object might need to
start instantiating other objects and trigger the evaluation of several attributes in
order to answer. In the example above, the object tail will have to force the
instantiation of the two children horizontal-tail and vertical-tail in order to answer the
weight message. However all these internal procedures and the associated clutter
stay encapsulated inside the structure of the various objects and can be
accessed/used via the message passing mechanism. As long as the interface of the
given objects (i.e. the list of messages these objects are supposed to answer) to the
external world stays the same, the internal structure can be changed, modified,
updated without affecting the rest of the KBE application. This enabling feature for
modular code development is called encapsulation and is provided by any OOP
language. Indeed encapsulation (or information hiding), polymorphism, abstraction
and inheritance represent the four required characteristics for a language to be
considered object oriented (Rumbaugh et al., 1991).

3.7 The extra gear of KBE languages: Runtime caching
and dependency tracking
As anticipated in section 3.6.1, the defpart macro (or the equivalent in other KBE
languages than IDL) not only provides a high-level interface to the CL objects facility,
but brings in runtime caching and dependency tracking capabilities. These two
features, which are actually complementary to each other, are not present in raw CL
and represent one of the most outstanding characteristics of a real KBE language.

Chapter 3 Knowledge Based Engineering. The AI roots and the OO paradigm

85

Caching refers to the ability of the KBE system to memorize at runtime the results of
computed values (e.g., computed attributes and instantiated objects), such that they
can be reused when required, without the need to recompute them again and
again…unless necessary. And here the dependency tracking mechanism kicks in,
keeping track of the current validity of the cached values. As soon as these values
are no longer valid (stale), they are set to unbound and recomputed only in the very
moment their demanded again.

A dependency tracking mechanism is at the base of associative modeling, which
is of extreme interest as will be shown later in this work. For instance, the shape of a
wing rib can be defined accordingly to the shape of the wing aerodynamic surface. In
case the latter is modified, the dependency tracking mechanism will inform the
system that a regeneration of the rib shape is required because the previous
definition (e.g., the contour of the rib flanges) is no longer valid.

In conventional programming, these activities need to be explicitly coded by the
application developer, which is a non-trivial programming task. A KBE language does
it automatically and completely transparently to the user. While in the past, people
could argue about the large memory consumption due to the caching mechanism,
the evolution of commodity computers has actually neglected such issue. Besides,
every time a value or an object becomes stale, the LISP garbage collector takes care
of claiming back the relative space in memory. This happens completely
automatically and transparently to the user, who does not have to be involved at all
in any memory management activity.

3.7.1 The power of demand driven evaluation

In general a KBE system has two possible ways of operating, namely by eager or lazy
evaluation (or a combination of the two). We already discussed these two
approaches when dealing with rule based and frame based inference mechanisms
(sections 0.0.0 and 0.0.0). The KBE language compiler/interpreter in this case, either
“eagerly” computes all the chains of values when some attribute has changed (e.g.,
a modifiable attribute gets a new value)8, or “lazily” computes only those chains of
values whose last value is demanded. The latter modus operandi, also called
demand-driven approach is possibly the most interesting, hence typically set as
default mode, for at least three reasons:
• The system computes values when and only when they are demanded (Cooper

and La Rocca, 2007; Cooper, Fan and Li, 2001), hence there is no waste of
computational resources (in terms of computing time and used memory).

8 This is what actually happens in spreadsheet applications like Excel. As soon as a value in a cell
changes, the value of all the linked cells is automatically and immediately updated.

86

• A typical object tree can be structured in hundreds of branches, unlike the very
simple example of Fig. 3.10. The possibility to compute only those branches that
are actually demanded allows a very efficient use (as well as test and debugging)
of very large models.

• Application prototyping and maintenance is facilitated. The developer can focus
on a limited part of his/her KBE application, while the rest of it may be possibly
left incomplete or even incorrect. Since this latter part will not be evaluated
automatically at run time (unless explicitly demanded), it will not generate any
error, which would prevent the developer from testing just the branches of
interest.

3.8 The rules of Knowledge Based Engineering
In section 3.3.2 it was discussed how in rule based systems the whole domain
knowledge is represented in form of production rules. Frame based systems offer a
much more sophisticated way of modeling the knowledge domain. Not only
production rules are used, but also some simple data processing capabilities are
present, and the entire knowledge domain can be structured according to the object
oriented paradigm.
KBE systems, though commonly addressed as systems to perform rule based design,
are much more similar to FBSs than traditional RBSs. KBE does not force expressing
the whole domain knowledge in terms of production rules and, as discussed in
section 3.6.1, offers special programming language constructs to define dynamic
object hierarchies. In KBE parlance, all the possible expressions used to define
attributes, to specify the number and type of objects, to communicate with other
tools, etc. are all addressed with the generic term of rules (or engineering rules).
Within this large and heterogeneous group of rules, indeed we can distinguish a
number of rule typologies, whose proposed definition is provided in the following
subsections.

3.8.1 Logic rules (or conditional expressions)

Apart from the basic IF-THEN-ELSE rule, KBE languages like ICAD provide some
more sophisticated conditional expressions, like case and cond, which are directly
inherited from Common Lisp. From the ICAD manual:

case expression (test consequent) &optional otherwise otherwise-expression
Returns consequent if expression evaluates to test; if expression does not
evaluate to any test, this returns otherwise-expression (if supplied) or nil (if
otherwise-expression is not supplied).

Chapter 3 Knowledge Based Engineering. The AI roots and the OO paradigm

87

cond [(test consequent) ...]
Returns consequent if test evaluates to t; if no test evaluates to t, this returns
nil.

3.8.2 Math rules

Any kind of mathematical rule is included in this group, including trigonometric
functions and operators for matrices and vectors algebra. Basic mathematical
operators such as +, -, * are just Common LISP functions; many others are functions
and macros provided by the given KBE language.
The mathematical expression:

LCSVL ⋅⋅= 2

2

1 ρ maps into the attribute definition

(:L (* 0.5 (the :rho)(^2(the :V))(the :S)(the :CL)))

where “^2” is a macro. Note the use of the prefix notation and the absence of the
symbol “=”, which is a Common LISP function to check whether two numbers are
the same. These rules are commonly used for evaluating attribute values in a defpart
and compute inputs for the parts to be instantiated. Of course, mathematical rules
can be used both in the antecedent and consequent part of any production rules (IF-
THEN rule).

3.8.3 Geometry handling rules

In this category we can include both the rules for the generation and manipulation of
geometric entities and the parametric rules.
The first (see examples in Fig. 3.11) are actually KBE language constructs that allow
the generation of many different kinds of geometrical entities, ranging from basic
primitives (points, curves, cylinders, etc.) to very complex surfaces and solid bodies.
Rules exist also to perform operations with the defined geometric entities, e.g.,
curves projections, surfaces intersections, solids subtractions and many others. In
fact, these rules allow performing, via a programming language, many (all of the)
operations normally possible in a CAD system by using the mouse and selecting the
various menu/options provided by a graphical user interface. The big difference is
that a CAD drawing eventually is just the recording of the final result of a human
design process, while KBE rules can be applied to record directly the human design
process and not just one specific end result.
Normally, geometry handling rules remain outside the range of conventional rule
based and frame based systems. Unfortunately, these CAD-like capabilities often lead
to the misconception that KBE systems are just CAD systems – and of very
inconvenient species – where you are forced to write done in rules with syntax what
you could normally do with the fancy GUI of a true CAD system.

88

Also parametric rules belong to the category of geometry handling rules. They
allow expressing dimensions, position and orientation of a model element as function
of the dimensions, position and orientation of another model element or some other
constraint. These rules enable changes that are made to an individual element of the
model to be automatically reflected throughout the rest of the model.
For example (not in syntax):

Position_of_point_A = Position_of_point_B + Translation_vector

Diameter _Hole = Diameter _Pin + Clearance_value

Generally, this kind of rules do not generally exist in rule based or frame based
systems, because their evaluation requires the notions of space and relative
positioning of assembly/parts/features. Indeed, these rules are typically available in
conventional parametric CAD systems.
However, the possibility in KBE systems to combine these rules with logic rules and
configuration selection rules (see next subsection) adds another dimension to the
controllability of the model parameters. Spatial integration can be guaranteed also
during dynamic variations of the product configuration.

Fig. 3.11: Examples of rules for the generation and manipulation of geometric entities.

Definition of a class called container, which
is a box of dimensions 10X20X30

Definition of a class called wing, as a smooth
surface that interpolates (lofts) the two
previously defined curves airfoil1 and airfoil2

Definition of a class’ child called my-curve,
as the intersection curve between two
previously defined surfaces called first-
surface and second-surface

Definition of a class’ attribute called
distance-object, as the minimum
distance between the previously defined
surface my-surface and curve my-curve.

(Defpart container (box)
 :attributes
 (:length 10
 :width 20
 :height 30))

(Defpart wing (lofted-surface)
:attributes
 (:curves (list airfoil1 airfoil2)))

 (:parts
 (:my-curve
 :Type surface-intersection-curve
 :surface-1 (the: first-surface)
 :surface-1 (the: second-surface)))

:attributes
(:distance-object
 (the :my-surface
 (:minimum-distance-to-curve
 (the :my-curve))))

Chapter 3 Knowledge Based Engineering. The AI roots and the OO paradigm

89

3.8.4 Configuration selection rules (or topology rules)

These rules are actually a combination of mathematical and logic rules. However,
they have a different effect than just evaluating a single numerical or Boolean value;
hence they deserve a special label. They are used to change and control dynamically
the number and type of objects in an object tree. Hence they can affect the topology
of any product and process KBE model. Some examples are provided in Fig. 3.12.
Note how it is possible to define dynamic series of objects, where each instance in
the series can be individually specified in terms of attributes and type as well. As
already discussed in section 3.6.2, these rules are generally not available in
conventional CAD systems and represent an extremely powerful prerogative of KBE.
Without this sort of rules, no real generative design exists!

3.8.5 Communication rules

In this group all the specific rules that allow a KBE application to communicate
and/or interact with other software applications (not necessarily KBE) and data
repositories are included. Rules exist that allow accessing databases or various kinds
of files to parse and retrieve data and information to be processed within the KBE

parts
 (:my-beam
 :Type ‘Beam
 :Quantify : series (round (div (the :total_load) (the :allowable_beam_load)))
 :Beam-length (if (eql (the-child :index) 1) 10 8)))

: parts
 (:my-beam
 :Type ‘Beam
 :Quantify : series (IF (> (the :total_load) 100)) THEN 3 ELSE 2))

: parts
 (airfoil
 :Type (IF (> (the :mach-num 0,75) ‘supercritical-airfoil ‘NACA0014)

The number of beam instantiations is defined by a
mathematical expression. The attribute beam-length of
each series’ objects is evaluated, based on a logic rule.

The number of beams is computed based on the
evaluation of a production rule. A mathematical
expression is computed to evaluate the premises.

Fig. 3.12: Examples of configuration selection rules (topology rules)

The class of the object airfoil (i.e. the type)
is selected at runtime based on a logic rule.

90

application. Other rules exist to create files containing data and information
generated by the KBE application. For instance, it is possible for a KBE application to
generate as output standard geometry exchange data files like IGES and STEP, or
XML files or any sort of free format ASCII files. Rules also exist to start at runtime
external applications, wait for results, collect them and return to the main thread.

3.9 KBE product models to capture the What, the
How…and the Why of design?
As anticipated in section 3.6.1, a KBE application eventually consists of a structured
and dynamic network of classes and objects definitions, where both product and
process knowledge, geometry-related and non are modeled using a broad typology
of rules. This is the so-called KBE product model, and represents the core and
essence of any KBE application.
The product model is occasionally addressed in literature as rule base (and the KBE
approach as rule based design). This can be considered acceptable only if the
fundamental differences between the flat and static structure of the rule base in a
RBS and the dynamic, object oriented nature of the KBE product model are
acknowledged first.
A product model is a generic representation of the product type for which the KBE
application has been created. It is not made up of fixed geometric entities, with fixed
dimensions, in a fixed configuration. Instead, it can contain the engineering rules
that determine the design of the product (Cooper et al., 2001). The product model
can function as a knowledge carrier to collect both the information concerning the
physical definition of a given product (such as geometry, material and functional
constraints), and the process used to design, analyze and manufacture it.

In particular, the focus of KBE is capturing the knowledge about how to
design a product, rather than producing a static representation of the design process
outcome. For example, the detailed drawing of an aircraft wing, including structural
elements and systems, does not represent the design process and the knowledge
required to generate such a wing design, but it is just the final result obtained from a
specific instantiation of the knowledge owned by the team of wing design specialists.

A KBE product model is often claimed in literature to be the container of the
What, the How and the Why of the design (Cooper et al., 2001). The What refers to
the capability of capturing the physical definition of a product, with its shape,
components configurations and features. The How refers to the sequence of steps,
actions and transformations required to derive a product configuration, based on
input requirements.

The Why has a more subtle meaning: it refers to the fact that a KBE system,
similarly to rule based systems (see the RBSs’ explanation subsystem description in
section 3.3.1), is able to provide the user with the chain of reasoning/actions which

Chapter 3 Knowledge Based Engineering. The AI roots and the OO paradigm

91

has led to the final solution. The Why, in the sense of the true intent behind the
single rule, or the definition of the single procedure, or the justification of the levels
of abstraction used to define classes, actually represents tricky knowledge to capture
in the product model. Indeed, such knowledge is not even necessary for the KBE
system to operate. To a limited extent, this “type of why” can be captured by means
of comments and remarks to be inserted in the code, at discretion of the developer.

3.9.1 The generative capability

The functionality of the product model can be described by the simplified
representation of Fig. 3.13 from (Cooper et al., 2001): a set of input values is
assigned to the parameters used in the product model, the KBE system applies the
rules which process the input values and finally the engineered design is generated,
with little or no human intervention. This is typically addressed as generative design,
and, not by chance, the product model is
also known as generative model.

The example of Fig. 3.13 assumes
the product model to contain the
structured formalization of the multitude
of corporate and regulatory standards and
the handbook principles implemented by
some company to deliver an engineered
design. As a matter of fact, this example,
where a fully engineered product is
automatically generated starting from a
list of input parameters, represents the
use of KBE as envisioned by the first
practitioners and promoted by the early
(?) KBE vendors. Although success stories
of fully integrated KBE design tools are
reported in literature, in the author’s
opinion a different approach is necessary
when dealing with very complex products
and distributed design. As anticipated in
Chapter 2 and discussed later in Chapter
6, a broader, modular design system is
proposed, where KBE is used only for the
development of one of the system
components: namely an advanced
parametric model to feed external analysis
tools.

Fig. 3.13: the product (or generative)
model of a KBE application takes
input specifications, applies relevant
procedures and generates a product
design automatically.

Drawings, 3-D Models, 2-D Models,
Bills of Materials, Tool design…

Size, Materials, Positioning…

92

in any case, whatever the level of complexity and “knowledge richness” of a
product model, the way it enables generative design does not change substantially.
The user has to create an instance of the class which defines the root of the product
tree (in the example of Fig. 3.10 the root class was Aircraft). To do that he/she will
have to provide a set of values to the input attributes of that class. Then he/she can
ask the product model to forcibly compute all or specific branches of the product
tree. Hence the root object will force the instantiation of its children (passing down
the needed attribute values) and each child will do the same.

Otherwise, after having instantiated the root class, the user can ask the product
model to deliver some specific output (like the bill of materials of the example of Fig.
3.13). In this case the demand driven mechanism will force the computation of just
the branches and attributes of the product tree which are strictly required to deliver
the requested output.

The relation between the given set of input data fed into the product model and
the output design is univocal and totally unambiguous. Any time the product model is
instantiated with the same input values, the same rule will be evaluated, the same
objects will be generated, and the same results will be generated. The product
model, by its nature guarantees conformity to all the rules implemented and the
engineers can rely on the fact that all design derives from a documented and
deterministic approach. The definition of the product model provides the clear reason
for every dimension, design decision and configuration feature in the generated
output, which represents invaluable information, both for designers and for those
who review the design.

3.10 On the convenience of the programming approach
Knowledge based engineering is mostly about writing code. The use of a
programming language represents the most salient operational characteristic of any
true KBE system. The debate over the convenience of using a programming
language to support engineering design is open since the first availability of IT
systems and tools. The imposed use of a programming language, rather than the
convenience of it, has possibly been the item number one into the discredit
campaign of CAD vendors towards KBE technology. However, in the author’s opinion,
the advantages of a programming approach to support engineering design are
multiple and evident:
• Capture and communicate the design/model rationale. When asked to

show how “a thing” looks like, a person would probably start sketching something
on a paper. When asked to explain how to make “the thing”, very likely a person
would start telling a story. To capture and communicate a design process, rather
than its output, a language is required. To bake a cake, the picture of a baked
cake is not sufficient, it is necessary to read the recipe.

Chapter 3 Knowledge Based Engineering. The AI roots and the OO paradigm

93

• Flexibility and control. Designing by a sequential selection of commands
displayed via a graphical user interface (GUI), though user-friendly, intuitive and
often esthetically appealing, will inevitably limit the freedom of the designer9. Any
user of a GUI driven tool has faced the problem of missing the button/menu
choice to perform some specific operation. The availability of a programming
language would enable generating the “whish-button”. In general, a
programming language can provide the means to capture reasoning schemes and
control different series of events, without the need to go through often
unnecessary series of menu selections.

• Support automation and consistency. Having a programmed generative
model (as described in section 3.9.1) is like having a process recorded on some
kind of playable medium. Every time the generative model is “played”, there is
guarantee that the same process can be repeated consistently (the same rules
and reasoning mechanisms will be used) for different valid input values, whoever
the operator and however large the number of re-plays. There are many cases in
engineering design, such as design optimization, where the human interaction in
repetitive processes is only an obstacle to automation and a potential source of
errors.

• A step toward standardization. A request for proposal of a platform-
independent model for the exchange of knowledge has been placed by the Object
Management Group (Object Management Group, 2005). By using a programming
language to capture engineering rules and relations, various KBE vendors have
generated specific constructs, which, though syntactically different, are
semantically equivalent. As shown by the class definition mapping Table 3.2,
there are possibilities to create a standard to facilitate the transfer/exchange of
engineering knowledge from one system to another.

9 In order to provide more flexibility to the designers, without spoiling use simplicity, some advanced
CAD systems offer the possibility to write programmable macros or make use of function calls to
external routines (written in Fortran, C, C++, Visual Basic, etc.). However, hardcore programming at
API level is generally the only way to access and manipulate all the features of the CAD system. In
general, the results are not at the level of true KBE, where the programming approach is native. For
example, Visual Basic macros are typically orders of magnitude slower than true KBE applications,
because they are interpreted and not compiled. On the other hand, powerful languages such as C++
allow writing efficient code. However, the programming skills required to perform such CAD systems
hacks are often higher than those required to develop standard KBE applications, which cancels the
initial claim of use simplicity.

94

3.10.1 The characteristics of the ideal KBE-language

How should a programming language look like to be considered suitable for
Knowledge Based Engineering? In two words we could say that it must be engineer
oriented. More explicitly it should be:
• High-level. The programming language should be far more close to human

language than machine language. It should keep engineers thinking and
expressing themselves like engineers and not force engineers to think like
machines. All the memory management activities should be taken over by the
language, in a way completely transparent to the user

• Concise. While some languages need only a few lines of code to do something,
others need pages of code. A lean language is required to support engineers
working efficiently. A clear semantic and just a few axioms should be available
(Graham, 2004), with the possibility to build on top of those.

• Readable and comprehensible. The main purpose of a language is to allow
communication and knowledge transfer. If this is somehow prevented or limited
to the scope of providing instructions to a computer, then the language is not
adequate. Programs must be written for people to read and only incidentally for
machines to execute (Graham, 2004).

• Suitable to prototyping. A language should allow the user to “sketch code”
without forcing him to write optimally structured code at first hand. A language
should allow telling the computer what to do, without entering in the details of
how to do it. Dynamic typing and declarative style (see section 3.6.2 and 3.6.4)
are two features that totally support code prototyping.

• Efficient. In the sense that it should make the work of the programmer efficient,
rather than (or at least before) the work of the machine. Languages that take a
lot of memory or do not have top of the class speed (with due limits of course),
but allow designers to build working applications in a fast way are considered
efficient. As Graham provocatively states “Inefficient software isn’t gross, what’s
gross is a language that makes programmers do needless work. Wasting
programmers’ time is the real inefficiency, not wasting machine times…especially
when computers are just getting faster and faster (Graham, 2004)”.

• Support reusability. The concept of a language by itself is already about
reusability: a limited amount of words that can be reused to express any kind of
concept. However, some languages are more reusability supportive. The object
oriented paradigm and the use of macro as discussed in the previous section are
good examples. Reusability is at the base of code maintainability and scalability.

• Multifunctional. A language to support engineering design must encompass the
heterogeneous aspects of the engineering design process. That is to say, it
should support calculation and data processing, it should support the problem

Chapter 3 Knowledge Based Engineering. The AI roots and the OO paradigm

95

solving/reasoning activity, and, last but not least, it should support the
manipulation of geometry.

3.11 Summary 1: How KBE systems differ from
conventional KBSs
This chapter has discussed the common roots and genes of KBE systems and
traditional Knowledge Based Systems, like rule-based and frame-based systems.
Knowledge acquisition, knowledge representation, and implementation of reasoning
mechanisms are relevant aspects of commonality. However, in this chapter, also the
substantial differences have been highlighted, which can be summarized as follow:
• KBE systems have geometry manipulation capability, because of the internal CAD

engine or the capability to tightly integrate an external one.
• KBE systems have calculation and data processing capabilities, while conventional

KBSs do not, or only to a very limited extent.
• In rule based systems there is a crisp separation between the knowledge base

and the inference mechanism, whereas in KBE systems the functionalities of
storing rules and using them to solve problems are intertwined.

• In rule based systems the whole knowledge domain has to be translated in terms
of IF-THEN-like rules. In KBE systems there are far more possibilities.

• The programming approach used to define a KBE product model is such that
there is never the risk of conflicting rules, which on the other hand, is a typical
issue in rule based systems10.

The typicality of KBE systems is such that the author still prefers addressing them as
knowledge based engineering systems, rather than just knowledge engineering
systems, as often found in literature.

3.12 Summary 2: How KBE differs from CAD
As Cooper (Cooper and Smith, 2005) well indicates, the original KBE systems were
indeed created in response to a lack of capability in CAD systems and because of
this, their marketing and overall positioning tended to be CAD-oriented11. However,
as these systems quickly grew and became full general-purpose programming

10 In order to help the inference mechanism selecting the right rule to fire in case of more (and
conflicting) matching rules, extra metaknowledge needs to be added to the rule base. For example, a
priority score is assigned to each rule, or priority is given to rules which use the most recent data, or
priority is given to the rules with the longest list of matching conditions.

11 In some cases this was evidenced by the name itself, such as The ICAD System. Nevertheless the
company that developed the ICAD system has always denied it.

96

environments, clearly they fell into a category different from CAD systems. Anyway,
the association in the marketplace with “plain old” CAD systems has persisted for
many years and severely limited market penetration of KBE systems. It is only
recently, possibly since world PLM/CAD leaders Dassault Systemes and Unigraphics
UGS have entered the KBE services arena, that the awareness of KBE technology has
reached other industries than giants like Airbus, Boeing, GE, Rolls-Royce and GM.
Still, current systems like CATIA V and UGS Knowledge Fusion are CAD centric and
have more KBE-ish than true KBE capabilities (Milton and La Rocca, 2008; Cooper
and La Rocca, 2007). In the end, despite some points of contact, CAD and KBE
represent two different technologies, as discussed in this chapter and summarized
below:
• Developing a KBE application is 90% about writing code and 10% interacting with

the GUI; in CAD 99% is about interacting with the system GUI.
• CAD systems can only output models, which are human driven records of the

geometric results of a human centered design process. Whereas KBE systems are
there to record the design and modeling processes (e.g., procedures, reasoning
mechanism, best practices, computation and data processing) that lead to final
(geometric) results.

• CAD is the most suitable tool for drafting, sketching and detailing. In those
specific areas the interactive drawing capability of traditional CAD systems is
more appropriate and efficient than the KBE programming approach.

• While CAD focuses on handling and delivering geometry, KBE focus on rules and
knowledge capturing, with geometry being just one of the many types of output
that can be generated. There are estimates that less than 50% in a KBE
application is directly related to geometry (Chapman and Pinfold, 1999).

• The use of conditional and configuration rules (section 3.8) in the definition of a
KBE product model allows dynamic alterations of the final product configuration
which are far more drastic then the scaling/stretching and the variation of

Fig. 3.14: Examples of very different aircraft movable configurations (e.g., rudders,
airbrakes, elevators, ailerons), all generated as different instantiations of the same
product model (skin removed to show inner structure) (van der Laan and van Tooren,
2005)

Chapter 3 Knowledge Based Engineering. The AI roots and the OO paradigm

97

features’ patterns normally allowed by standard CAD systems. See the example in
Fig. 3.14 from (van der Laan and van Tooren, 2005).

• CAD systems generally link to other software applications or analysis tools via
standard data exchange format, such as IGES and STEP (or via specific interfaces
developed by vendors to ease integration with specific commercial packages).
KBE systems support standard data exchange format, but allow programming
writer/parser modules for any kind of custom data format.

Interaction and automation, heuristic and by-the-rules, geometry related or not, one-
off and repetitive are the typical coexistent and interrelated aspects of the design
process: CAD and KBE can both contribute to this process and complement each
other capabilities in a smart integrated approach.

Chapter 4 Conceptual development of the MMG. High Level Primitives and Capability Modules

99

CHAPTER 4
Conceptual development of the MMG.
High Level Primitives and Capability
Modules

1. Introduction

2. From designers’ mind to concept visualization…

3. …and back! Object oriented modeling and functional thinking

4. High Level Primitives for the MMG modeling approach

5. Geometry modeling capabilities of the MMG

6. HLPs definition: an heuristic approach

7. From the aircraft geometry model to the abstractions for multidisciplinary analysis. Role and
definition of the Capability Modules

8. Automatic generation of aircraft model abstractions

9. The MMG architecture: flexibility through modularity

10. Dealing with CAD engine limitations: capturing workarounds for robust modeling

11. Discussion

4.1 Introduction
Based on the discussion in Chapter 2, on the needs and challenges of developing a
design tool that is able to support design space exploration and distributed MDO, this
chapter will discuss the development of the DEE Multi Model Generator (MMG). It will
be discussed how the object oriented modeling approach and the KBE technology
presented in Chapter 3 have been exploited to achieve the following two main goals:
1. Provide an intuitive and effective modeling system for aircraft configurations and

their variants, including non-conventional concepts.
2. Support and accelerate the (multi)disciplinary analysis of aircraft concepts, by

automation of repetitive design activities, especially those required for analysis
processing.

Whereas this chapter focuses on the conceptual development and the main
functionalities of the MMG and its components, the KBE implementation details and

100

some application cases of the MMG will be presented in the Chapter 5 and 6,
respectively.

4.2 From designers’ mind to concept visualization…
As anticipated in Chapter 2, designers are, by nature, very good in translating
customer requirements into product functional requirements and synthesize an
adequate aircraft configuration. The way their creativity, engineering knowledge and
past experience are exploited is not really understood and still constitutes an
interesting topic for researchers in computer and cognitive science. What is
acknowledged is that designers can do this part well and fast and there is hardly any
need of computer aid. Actually, designers like so much this part of their job that they
would hardly surrender it, even if software would possibly allow them to do it faster
and better (Smith, 2007)
However, once the new concept is sparkling in the designer’s mind, it is necessary to
fix it on an adequate support (the mythical back of the envelope is not always the
most ideal one), at least for the following reasons:

• Designers need to have their mental concept visualized to reflect on it
• Designers must be able to communicate the concept (to customers,

specialists, etc.)
• Designers need to have suitable models to initiate the analysis and verification

phase. Although some of these models for analysis might not relate directly to
the physical shape of the aircraft, most of them contain geometry information,
because the performance of an aircraft strongly depends on the interaction of
its shape with the external world (i.e., passengers, fluids, ground, etc.)

The transformation of the designer’s mental concept into a displayable model might
definitely benefit from computer aid. Three practical approaches can be identified:

1. The use of a classical CAD system, where any possible geometry model can be
assembled via a process of selection and manipulation of geometric primitives,
such as points, curves, solids, etc. and, possibly, some other predefined CAD
features.

2. The use of a modeling system in which a large (infinite?) number of
predefined parametric aircraft configurations have been stored. The designer
could choose the (best) matching `prefab´ aircraft model and adjust it by
tuning the parameters values and/or switching on/off some of its features.

3. The use of a modeling system where a limited number of predefined
parametric modules (components) is available, which the designer can adjust
and combine to assemble large number of aircraft configurations and
configuration variants.

Chapter 4 Conceptual development of the MMG. High Level Primitives and Capability Modules

101

The first approach is the traditional one; it comes at the cost of efficiency: the
process has to be manually repeated any time a different aircraft configuration is
suggested. Besides, it provides limited support for the later verification phase within
a MDO framework (see Section 2.7 on the role and development challenges of the
MMG). Eventually, this approach does not comply with the way engineering
designers think, which is generally not in terms of geometry primitives like splines,
points, etc.

The second approach is much more suitable for automating the model
generation process. However, it is applicable only when the number of configurations
to be examined is limited and predictable. If none of the available aircraft
configurations fits, a new one has to be generated and added to the catalogue,
which typically requires the use of a CAD system, as discussed above. Elsewhere, the
risk is that designers are forced to adapt their idea to what is already available in the
models catalogue. Also this method is not fully in line with the methodological
approach of designers, which (mostly1) think in functions and not directly in
solutions. The creative generation of a solution follows the need to fulfill a given
functionality.
In this modeling approach, solutions are provided, which hopefully can fulfill the
needed functionalities. In this case, truly innovative design does not appear to be
properly supported.

The efficiency and effectiveness of the third approach, which is actually the one
pursued in this research work, depend on the definition of the parametric modules
that are provided to the user to play LEGO®... To understand how to define the
appropriate parametric modules, it was considered opportune to “go back into the
head of the designer” and try to capture his/her way of generating and visualizing
solutions.

4.3 …and back! Object oriented modeling and functional
thinking
The object oriented modeling paradigm, introduced in Chapter 2, has a very good
reason for its appeal: models built from objects allow a good mimic of the real world
(Phillips, 1997; Sully, 1993). At least, the concepts of classification, abstraction and
inheritance described in the previous sections seem to be very much in line with the
way our mind “perceives” the world.

1 Indeed, designers make use of their experience and in a certain extent “recycle” ideas that have
proven effective in previous design cases (also from different domains). Cognitive science is exploring
this problem solving method, known as case based reasoning.

102

The concept of objects is
richly used in the field of
cognitive psychology,
and the sub-
specialization concerned
with knowledge
representation. It has
been demonstrated that
people tend to represent
knowledge in term of
hierarchies, where the
lower parts in the
hierarchy are
specializations of more
general classes (sitting
at higher hierarchical
levels) and may have
characteristics that add
to or override some of

those inherited from the general classes.
E. Rosch, a psychologist working in the area of concept representation,
demonstrated that people record memory of objects in terms of a prototypical
schema, which incorporates all the key representative characteristics of the objects in
the form of a generalized abstract schema (Rosch, 1978). This prototypical schema
becomes then the root of a hierarchy that possesses specializations. The more an
item resembles “something”, the more it is categorized in that “something”
abstraction; hence it is included within an implicitly defined range of typicality. This
natural process of memory and knowledge representation provides us with an
efficient and economical way of arranging information and gives rise to the concept
of cognitive economy, i.e. storing of information with the least possible effort (Sully,
1993). An example of how this knowledge representation schema can apply to an
aircraft is shown in Fig. 4.1.

Some understanding of the prototypical schema structure and the way the
typicality range is set could offer the opportunity to define a more effective modeling
system, fine-tuned to the designer’s own mental schema.

Whether conventional or out-of-the-box, any aircraft concept a designer could
conceive, must fulfill a number of basic functionalities, such as accommodating
payload, generating lift, etc. As a matter of fact, fuselage and wing like elements
fulfill those functionalities mostly because of their characteristic shape (though some
other shape could exist that allow integrating more functionalities). Possibly, the
recurrent presence of such geometrical elements could determine the membership of

One of the appeals of the object oriented paradigm is
that it seems to be right in line with human nature.
Perhaps we categorize the objects around us because
it is easier for our brains to deal with a few categories
rather than with many instances. Recent research
points to brain areas involved in object categorization.
Psychologists Isabel Gauthier and Michael Tarr used
novel objects (greebles), purposely designed for this
research, in conjunction with imaging techniques that
show the brain in action.

They found that as people learned
to categorize these objects
(according to rules defined by the
experimenters), the fusiform gyrus,
a specific area in the cerebral
cortex, became increasingly active
(Shmuller, 2004b).

A greeble

Chapter 4 Conceptual development of the MMG. High Level Primitives and Capability Modules

103

a given concept to the aircraft typicality range. Some X-configuration that does not
feature any of these functional elements (i.e. a fuselage and/or a wing like element)
is likely to fall outside the aircraft typicality range, which does not give the certainty
the X-configuration cannot be a proper aircraft, but it is certainly a good hint.

Fig. 4.1: the object oriented model of the aircraft. Prototypical schema and typicality
range.

The object oriented model of the aircraft

At the top of the hierarchy there is the prototypical schema of the aircraft: this
aircraft abstraction features all the typical characteristics of a small tourism
aircraft plus those of a commercial jetliner plus those of a fighter aircraft. An
actual commercial airliner will be just a specialization of the prototypical aircraft
abstraction. In turn there will be further specializations of the commercial airliner
such as a high-wing turboprop, a T-tail version with fuselage mounted engines, a
freight configuration, etc. Each one of these specializations adds to and/or
overrides some of the characteristics inherited by the category abstraction it
belongs to. For example, the freight aircraft overrides the characteristic “has
passengers accommodations” of the commercial airliner abstraction, but inherits
some other characteristics, such as “has low wings”, etc.

104

4.4 High Level Primitives for the MMG modeling
approach
On the base of the considerations above, it was decided to define a number of
functional blocks able to capture elements of similarity among very different aircraft
configurations and use them as the parametrical modules for the third practical
modeling approach proposed in section 4.2. These modules have been given the
name of High Level Primitives (HLPs), mainly to address the fundamental distinction
with the low level primitives of conventional CAD systems. Their implementation is at
the base of the modeling capabilities of the Multi Model Generator.

With the definition of just four High Level Primitives, such as Wing-part,
Fuselage-part, Engine and Connection-element (Fig. 4.2), it is possible to assemble a
very large number of aircraft configurations, even with radically different topologies.
The functionality of the first three HLPs is obvious; the connection element is needed
to join the others into a continuous, watertight surface. Fig. 4.2 and Fig. 4.3
demonstrate the concept, by showing the (re)use of the High Level Primitives to
model a traditional airliner and a blended wing body aircraft.
The HLPs allow a much more efficient transition from mental concepts to displayable
models, than the low level geometry primitives of a traditional CAD system. Whilst a
new CAD model must be manually generated for every different aircraft

Fig. 4.2: multiple instantiation of the wing trunk HLP to model all lifting
generating aircraft components

Chapter 4 Conceptual development of the MMG. High Level Primitives and Capability Modules

105

configuration, the HLPs will take care of generating the required curves, surfaces,
etc., for the final geometry visualization of the aircraft configuration at hand. What
Fig. 4.2 and Fig. 4.3 show is that the HLPs can capture elements of the aircraft
prototypical schema, hence not instances but concepts and mental categories, which
can be adapted to record different specific models. Indeed, the same wing part
primitive, can be used to model wing parts, winglets, canard wings, tail empennages,
as well as movable components as rudders, ailerons, etc.
Again the object oriented paradigm suits the case. Indeed, the HLPs can be modeled
as classes that, once provided with a new set of attribute values, can be instantiated
in different objects1 . For example, the class WingPart can be instantiated in the
winglet of the Boeing 737-800, the fin of the Airbus 340-500, the canard of the Sonic
Cruiser, or the outer wing of the MOB blended wing body.

1 To distinguish between the HLPs and the classes defined for the software implementation of the
HLPs, the following notation will be used:

Wing-part (the HLP) � WingPart (the class used for the software implementation)

Fuselage-part � FuselagePart

Connection-element � ConnectionElement

Engine � Engine

Fig. 4.3: multiple instantiation of the connection element HLP to blend the other
HLPs instantiations in a continuous water-tight surface

106

Given its capability to fully embrace the object oriented paradigm and bring along the
geometry manipulation ability of parametric CAD, Knowledge Based Engineering
appears the right technology to implement the HLPs principles for the development
of the Multi Model Generator. Eventually, the selected KBE system employed for this
work is ICAD (see Chapter 3), which, at the time the MMG development started, was
the top-of-the-class system in the field.
The HLPs have been modeled using the defpart macro discussed in Chapter 3 and
integrated in the architecture of a more complex product model. In fact, the goal of
the MMG is to allow modeling of complete aircraft configurations, not just and only
single components. The UML diagram of Fig. 4.4 offers an interesting view on the
conceptual definition of the MMG, excluding the implementation details, which will be
addressed later in this chapter and in Chapter 5.
In this graph the MMG product model (here addressed as
GenericAircraftProductModel) is represented as an aggregation of the three

HLPs2 classes FuselagePart , Engine and ConnectionElement and a fourth

assembly called LiftingSurface . The LiftingSurface assembly can be used
to model a wing, or a tail empennage, or a movable, which, in fact, are all indicated
in the graph as specializations of LiftingSurface . LiftingSurface is actually

an assembly composed by an unlimited number of WingPart and

ConnectionElement HLP classes. Indeed, it is possible to use more Wing-part
primitives to model a lifting surface, as shown in the examples of Fig. 4.2 and Fig.
4.3, where four instantiations of the Wing-part HLP are used for the center section,
the inboard wing, the outboard wing and winglet of the blended wing body lifting
surface, respectively. The number of instantiations of the Connection-element HLP is
not predefined, but it is computed on the fly according to the need of enforcing
surfaces continuity at component fuselage-lifting surface intersections (e.g.,
wing/fuselage) or between the various WingPart instantiations in the same lifting
surface.

2 Note how, though the aircraft product model and the HLPs are actually classes, they have been
defined using the special stereotypes «MMG» and «HLP». This was done to highlight their role of
“special classes” and add more meaning to the graph. Stereotype customization is a possibility offered
by the UML (Shmuller, 2004a).

Chapter 4 Conceptual development of the MMG. High Level Primitives and Capability Modules

107

Fig. 4.4: UML class diagram representing the generic aircraft metamodel (the aircraft
of the mind) and a number of instances (i.e. the aircraft of the sky). Representation
of the High level primitives’ aggregation.

108

Eventually, the MMG of Fig. 4.4 can be considered an attempt to mimic the
functionality of the prototypical schema addressed in Section 4.3. In this case, the
HLPs enable the generation of different aircraft configurations, within a certain
typicality range. On top of the graph, there is a heterogeneous set of aircraft (the
aircraft of the sky), which, during this research work, have been generated as
instantiations of the aircraft product model (the aircraft of the mind). The class
diagram of the MOB blended wing body aircraft (La Rocca et al., 2002) is shown in
Appendix C, as an example of a specialization of the aircraft product model.

4.5 Geometry modeling capabilities of the MMG
The geometry modeling capabilities of the MMG mostly depend on the definition of
the various high level primitives. The HLPs can be considered as a kind of rubber
LEGO® blocks, which can be individually morphed due to their parametric definition
and assembled to build up a potentially infinite range of different aircraft
configurations and variants. Indeed, the parameters used to define the various HLPs
represent the actual degrees of freedom of the primitives and determine the
typicality-range of the specific instantiations that can be generated.
The ability of the Wing-part HLP, for example, to capture the resemblance of (a part

of) a wing, a canard, a fin, a
winglet, etc., depends on the fact
that parameters such as chord
lengths, span, sweep and twist
angle, as well as type and location
of the various airfoils can all be
defined and controlled by the
designer. In case a complex wing
configuration has to be modeled,
featuring a number of kinks and
different values of dihedral and
sweep at the various wing
sections, the designer can use
multiple instantiations of the
Wing-part primitive. In this case,
a set of parameter values must be
provided for each instantiation of
Wing-part.
Fig. 4.5 shows some examples of
aircraft models generated by the
MMG. The family of blended wing
bodies has been generated by

Genes and families
According to a sort of genetic engineering
interpretation of the HLPs concept, the rules
defined inside the HLPs classes (e.g., to fit
curves, generate surface) constitute the gene
print of the primitives, hence they represent the
commonality elements of the HLPs: they
encapsulate the knowledge to perform certain
tasks and, eventually, determine the typical
behavior of all the class instantiations.
On the other hand, the HLPs’ parameters (e.g.,
length, width, sweep angle) allow the
morphologic variation of the primitives, hence
they represent the individuality elements: a
different set of parameter values yield an HLP’s
instantiation with a different shape, which makes
it unique among all the other instantiations.
This approach based on the definition and
combination of commonality and individuality
elements to generate individual/specific models,
that anyway share common characteristics and
behavior, is addressed as family-thinking.

Chapter 4 Conceptual development of the MMG. High Level Primitives and Capability Modules

109

using the same HLPs aggregation, and modifying only the parameter values of some
primitive instantiation. The family of more conventional aircraft on the right has
required also modifications to the number of HLPs instantiations to change the
number of engines and the type of tail configuration.
Eventually, the procedures used by the HLPs to perform the various geometric
operations, such as the generation and positioning of curves with respect to
opportune reference frames, the interpolation and intersection of various surfaces
etc., are all stored in the form of rules inside the body of the relative defpart
definition. Not only geometry handling rules, but practically all the types of rules
described in Chapter 3, Section 3.8 have been used to define the MMG components.
For example the connection-element HLP, use topology rules to check whether the
generation of connection surfaces is necessary to blend adjacent wing-parts in case
of different dihedral angle. Geometry rules, then, enforce the generation of an
appropriate connection shape that guarantees overall surface continuity (i.e. based
on the local tangency vectors of the adjacent wing-part surfaces to be connected).
The technical details on the HLPs implementation can be found in Chapter 5.
Indeed, the KBE approach offers the possibility to encapsulate knowledge inside the
various HLPs (in this case the knowledge required to perform geometry
manipulation), which transforms them in smart and dynamic objects, by far superior
to the low level primitives of traditional CAD systems. See this concept illustrated in
Fig. 4.6.
Whenever a parameters value is changed and/or the number and type of HLPs used
to model a given aircraft configuration, the rules integrated in the aircraft product
model definition will enable the model to reconfigure and adjust itself, automatically

Fig. 4.5: Generation by the ICAD MMG of many aircraft configurations and
configurations variants, based on the use of High Level Primitives.

110

and without any burden for the designer. This is the power of the KBE generative
modeling!

4.5.1 MMG input file definition for batch modeling

In order to avoid the use of various pop-up menus and other forms of graphical user
interface, all the parameters values that are required to instantiate the complete
aircraft product model are exposed and assigned via a dedicated input file (see
examples of the MMG input file in Appendix D, related to the discussion of Chapter
5). This file is easy to edit either by hand or, automatically, by other software tools
(e.g., by an optimizer). Indeed, this represents an important feature, because it
allows using the MMG also in batch mode, as required by the operation of the Design
and Engineering engine (see previous discussion in chapter 2). The input file is
“mixed in” at the root defpart of the aircraft product model, which takes care of
passing the parameters values down the product tree’s hierarchy levels (sections
3.6.1.1 and 3.6.3 discuss the use of mixins and the attribute values cascading
mechanism, respectively).

Fig. 4.6: Generation of aircraft models - the KBE High Level Primitives vs. the low
level primitives modeling approach of traditional CAD systems.

Chapter 4 Conceptual development of the MMG. High Level Primitives and Capability Modules

111

Fig. 4.7: Examples of structural models generated by the MMG. Top left: spars, ribs
and riblets of a lifting surface. Top right: connection elements between wing and
winglet spars. Middle: floor beams, frames and stringers in the center section of low
and high wing transport aircraft. Bottom left: floor panels, pressure bulkhead and
center section structure in a passengers aircraft. Bottom right: detail of center wing
structure and keel beam in a low wing aircraft.

112

4.5.2 Definition of the HLPs’ internal structure

The definition of the wing-part, fuselage-part and connection-element HLPs is not
limited to the parametric description of the aerodynamic surfaces (La Rocca and van
Tooren, 2002b), but includes also the internal structure. So far, the MMG offers the
possibility to define the typical spar/ribs and frames/stringers/floors structure
solutions for wing and fuselage-like elements, respectively (La Rocca and van
Tooren, 2002a).
Van der Laan has extended the range of possible structure solutions to include the
use of sandwich, though the implementation is so far limited to a movables
dedicated model generator (a kind of MMG KBE tool, for aircraft movables such as
rudders, elevators, ailerons etc.), based on the use of the same MMG wing-part HLP
(van der Laan and van Tooren, 2005).

By adjusting the values of a dedicated set of input parameters in the MMG input
file (examples are provided in Appendix G, I), the designer can modify the position
and orientation of each single structural element (e.g., ribs and spars), as well as the
overall structure topology (i.e., modify the number of spars, ribs, floors, etc.). The
challenge here was to give designers the maximum freedom for positioning the

single structural
components inside
each HLP, while
limiting the number
of required
parameters, as well
as the possibility of
spatial integration
errors. Similarly to
the definition of the
outer surfaces, also
here the possibility
to capture rules
inside the HLPs
definitions was the
enabling factor to
the generative
design. Rules are
necessary to
determine the
amount of
connection elements
(if required) to

Fig. 4.8 The internal structure definition is associated with
the external surface of the aircraft and adapts to its
modification.

Chapter 4 Conceptual development of the MMG. High Level Primitives and Capability Modules

113

guarantee spars continuity across adjacent wing-parts. Rules are required for
interpreting the values of the input parameters and accordingly use different
positioning algorithm for ribs and spars. Fig. 4.7 shows various examples of
structural configurations generated with the MMG, and give an idea of the achieved
level of modeling flexibility. Note some of the details in the top left wing element:
there are both continuous and running out spars. The ribs defined in the wing box
and in the leading/ trailing edge sections are all individually oriented, and do not
have to run necessarily from front to back spar. It is acknowledged that the level of
modeling detail of each structural element is rather low, yet sufficient for conceptual
and preliminary study (also by means of Finite Elements analysis) of complete
aircraft configurations. Indeed, ribs, spars, skins, etc. are represented as simple
surfaces, without any cutout or details such as flanges, caps, etc. As a matter of fact,
what we address here as a spar model is actually the model of a spar web!
Nevertheless, this modeling approach represents a very good compromise of
complexity and fidelity.
The actual definition of the modeling approach for the various structural elements,
the use of the relative input parameters and the implementation details in the KBE
system are all covered in Chapter 5.

One of the most relevant characteristics of the structure definition is its
associative link with the HLP outer surface. That is to say the geometry of the
various structural elements is defined using the outer HLP surface as boundary,
hence when the latter is modified the shape of the structural elements will
automatically adapt. Fig. 4.8 shows examples of radical modifications enforced to the
design of a blended wing body aircraft: in the bottom-left case, the outer wing is
significantly deflected downward, but the shape of the spars geometry adapts
without generating discontinuities at the connection elements; in the bottom-right
case, the center body has been “inflated” by the implementation of ultra thick
airfoils, still the geometry of the internal walls structure adapts automatically.
In the word of Carty, MDO systems specialist at Lockheed Martin, “the benefits of
having associative geometry models are almost something that has to be
experienced to be appreciated” (Carty and Davies, 2004). Indeed, the possibility to
investigate even large design modifications, with the possibility to weight
systematically any aerodynamic improvement against the consequences on the
structure design, is a fundamental enabler of the MDO approach.

4.5.3 Definition of main systems and other non structural masses (the
MOB prototype)

During the MOB project framework, the prototype of a modeling system for non
structural masses (NSMs) has been implemented in the MMG (La Rocca and van
Tooren, 2002a). This model includes the definition of typical aircraft systems such as

114

movables’ actuators, landing
gears, environmental control,
electrics and hydraulics, etc. For
the purpose of
conceptual/preliminary design
they have all been represented as
lumped mass collocated in the
assumed center of gravity of the
system itself (see Fig. 4.9).
The actual mass of the various
non structural items was
determined by an external
module to the MMG (which
worked as kind of initiator tool),
based on handbook methods and
engineering judgment. Since all

the masses were estimated by the initiator only once for the reference aircraft
configuration, rules were implemented in MMG to scale the masses of items such as
de-icing systems and movables’ actuators with the actual size of the movables and
the length of the various lifting surfaces leading edge. In fact, during the aircraft
optimization the number and size of the movables, as well as the wing span and
sweep angle were varied, hence updated values of the abovementioned masses were
required.
The distribution of the various NSMs was required not only by the weight&balance
discipline, but also for an accurate structural analysis. Therefore, apart from some
simple parametrical rules to define the position of the various NSMs with respect to
the overall aircraft configuration (or the position of certain aircraft components) (La
Rocca and van Tooren, 2002a; La Rocca et al., 2002), other more complex rules
have been defined to establish the NSMs/structure connectivity, i.e., what NSM item
is attached to which aircraft structural components. The former rules allow the MMG
to generate a formatted table (see example in Table 4.1) containing mass value and
c.g.’s coordinates of each NSM item, whereas the latter allow the generation of the
NSMs connectivity information, required for the preparation of FE models. This
information is stored inside a dedicated attribute of the various aircraft structural
elements. In other words, each structure element “is informed” about the specific
NSMs items it has to support. During the project, a system was implemented to
harvest this information from the product model and to use it to automate the
generation of connection elements (RBE) linking all the NSM with their supporting
structure elements, directly inside the FEA environment (La Rocca and van Tooren,
2002c; Pearson, 2001). Fig. 4.10 shows an example of connectivity between the

Fig. 4.9: Aircraft systems represented as lumped
masses, parametrically positioned with respect to
the aircraft structure elements (aircraft upper skin
and structure removed) (Laban et al., 2002)

Chapter 4 Conceptual development of the MMG. High Level Primitives and Capability Modules

115

wing back spar elements and the actuation system of the various trailing edge
movables.
Eventually, the positioning and connectivity rules mentioned above guarantee an
associative link between the NSMs model and the main structural model. Any
change, either in the shape of the aircraft or in the number and positioning of the
structure components, would yield an updated table of masses and c.g.s’ positions,
as well as a new consistent connectivity definition. Indeed, in the case a spar or a rib
is removed, the connectivity rules will enforce other contiguous structural elements
to take over the NSMs supporting role.

NSM item Mass_(kg) X_cg Y_cg Z_cg

GROUP_FUSELAGE_(left_half)
TED_1_CTRL 153.9 4199 2.3 -1505.9 1320.2
TED_2_CTRL 248.4 4199 2.3 -5515.3 1712.2
TED_3_CTRL 225.5 4199 2.3 -10399.1 2189.8
DE-ICE_(fus) 59.0 1916 9.6 -9570.2 736.4
FUS_FUEL_SYS 124.4 2990 0.0 -3263.2 -1551.5
COCKPIT_ITEMS 929.6 175 0.0 -553.8 -415.5
ELEC 586.0 2785 1.6 -5615.9 1171.8
APU 250.0 4199 2.3 0.0 1173.0
CARGO_HAND 3900.0 2640 2.8 -5615.9 1171.8
AIRCO 250.0 3360 0.0 -7501.0 0.0
HYDR_PNEU 387.0 3398 4.0 -5746.0 146.8

GROUP_WING_(left_half)
TED_4_CTRL 308.8 4115 3.7 -15152.8 2445.1
TED_5_CTRL 293.1 4100 6.5 -20403.2 2592.4
TED_6_CTRL 286.1 4418 6.5 -27226.0 3143.8
TED_7_CTRL 159.9 4846 7.8 -34037.2 3901.6
DE-ICE_(iw-ins) 61.6 2804 0.9 -15277.8 1235.7
DE-ICE_(iw-out) 82.8 3261 7.9 -20487.7 1774.6
DE-ICE_(ow) 209.3 4190 7.8 -31062.2 3067.5
WING_FUEL_SYS 420.5 3613 5.0 -17438.1 2064.3
WING_TRAP_FUEL 200.0 3387 0.1 -12984.1 1697.4
WING_INST_ELEC_HYDR 322.0 3944 7.5 -23433.2 2493.1

GROUP_WINGLET_(left_half)
TED_8_CTRL 208.0 5165 9.2 -39518.4 7510.3
DE-ICE_(wl) 40.0 5047 2.0 -39641.2 7488.6

GROUP_PROPULSION_(left_half)
MID_ENG 4655.7 4375 8.0 0.0 4142.9
MID_ENG_STR 470.0 4375 8.0 0.0 2185.7
SIDE_ENG 9311.3 3975 0.0 -7501.0 5411.0
SIDE_ENG_STR 940.0 3975 0.0 -7501.0 3453.7

GROUP_LANDING_GEARS_RETRACTED_(left_half)

Table 4.1: mass values and c.g.’s position of non-structural items of the MOB
BWB (La Rocca and van Tooren, 2002a).

116

4.6 HLPs definition: an heuristic approach
As elaborated in Sections 4.3 and 4.4, the definition of a High Level Primitive is the
end result of an abstraction process. Every modeling activity is actually the result of
an abstraction process, during which the modeler decides what to include and what
to leave out from the model; what are the relevant object’s properties and operations
to be captured and which are not interesting for the use at hand.
Quite a deal of subjectivity is involved in this process, so that there is not a single,
correct way to define a high level primitive such as the wing-part or the fuselage-part
addressed before. In the end, the use of different rules and parameterization
approaches can yield similar levels of modeling flexibility and capability. As general
guideline, the development process of HLPs-like elements and the overall MMG
system must be always user oriented. A model cannot be judged good in an absolute
sense, but it is good if it can fulfill the designers’ needs during the design and
analysis approach at hand; i.e., if it can fulfill the defined use case. Although this
might sound obvious, many are the software tools that have been developed upon a
wrong use case (or without any use case study at all).
In the next subsections, some other guidelines are given, which should provide the
minimum common denominator to any possible parameterization approach.

4.6.1 Parameters and variables

Before discussing about the parameterization approach of the MMG, a clarification is
due: whilst in optimization there is a clear distinction between parameters and

Rear spar elements
TEDs’ front spar Wing ribs

TEDs’ control system CG

Fig. 4.10: Example of the non structural masses modeling approach. The control
systems of the wing trailing edge devices (TEDs) are represented by lumped masses,
located in the systems’ centers of gravity. Information is generated concerning the
connectivity between the lumped masses and relative support structure elements.

Chapter 4 Conceptual development of the MMG. High Level Primitives and Capability Modules

117

variables, in the development
of a parametrical model such
as the MMG, this distinction is
not applicable. Each attribute
that designers can explicitly
change to affect shape,
configuration or some other
information related to the
product model is addressed
here as parameter. Only
during the set up of an
optimization process, it will
be decided which of these
parameters will be selected
as variable for the optimizer,
and which will be kept as
parameter for the traditional
parametric studies. It follows
that the use of a large
number of parameters can
improve the flexibility of the
model, without necessarily
making the model unsuitable
for optimization.

4.6.2 Ambiguous parameter definition

All parameters should be defined in a way to avoid any ambiguity, which could lead
to over/under constraining of the geometry. For example, if the airfoil thickness (i.e.
the wing depth) and the dihedral angle are both selected as parameters to define the
wing-part geometry, the variation of the dihedral angle value should not affect the
value assigned to the airfoils’ thickness. Fig. 4.11 shows the consequences of
enforcing the dihedral by shearing the wing sections rather than applying a rigid
rotation to the whole wing: the wing depth is affected (decreased), even though the
airfoil thickness is not explicitly varied by the user.

4.6.3 Parameter definition for spatial integration and robustness

Parameters should be defined in order to guarantee spatial integration and
robustness. A bad choice of parameters, possibly not supplemented by appropriate
constraining rules, cannot prevent an optimizer generating unfeasible aircraft
geometries (Vandenbrande et al., 2006) such as the wing planform shown in Fig.

Fig. 4.11: Different approaches to apply the dihedral
angle to a wing element. Bottom-left) correct approach:
wing thickness and dihedral angle uncoupled. Bottom-
right) incorrect approach: increasing dihedral angle
values lower the wing thickness.

118

4.12-bottom, or configurations
with disconnected or self
penetrating components, as
illustrated in Fig. 4.12-top. This
might lead either to parametric
models that break and generate
errors (hence making the model
generator crash) or to a waste of
computational resources when
unfeasible configurations get
analyzed anyhow.
It should be considered that,
during optimization studies, it is
not always possible (neither
convenient in terms of efficiency)
to visually inspect the models
generated at each cycle. Hence
precautions must be taken to
guarantee the quality of all the
generated models. A sound
parameterization can improve the
robustness of the model and
guarantee spatial integration, as
well as simplify the set up of the
optimization problem. For
example, the longitudinal position
of wing and tail empennages can
be better indicated as a
percentage of the total fuselage
length, rather than as an absolute
coordinate value. The position of a rib can be better indicated relatively to the length
of a reference spar or to the wing/empennage span. For example, a parameter value
ranging from 0 to 1 can be used for rib positioning, where the zero value indicate a
root placement and 1 a tip placement. Whatever the length of the given wing, a
feasible placing of the rib is guaranteed for all the possible values of the rib
positioning parameter.
In alternative, rules could be added to the HLPs definition, which skip the generation
of badly defined components (hence preventing the generation of intersection
errors), or overrule some user defined parameter values with valid default values.
For instance, some rules could be implemented (Chapter 3, section 3.8.3) to
measure the minimum distance between the surfaces of the engine nacelle and

CR

ΛLE

CT

Correct wing planform
parameterization

CR

ΛLE

ΛTE

WRONG wing planform
parameterization

Fig. 4.12: wrong parameterization might cause
problem of spatial integration. Top) the parameter
determining the engine lateral position is not
constrained with respect to the fin position, hence
fin/nacelle penetration can occur during engine
installation study. Bottom-right) unfeasible wing
planform generation allowed by bad parameters
selection (and uncontrolled variation)

Chapter 4 Conceptual development of the MMG. High Level Primitives and Capability Modules

119

vertical tail surface (Fig. 4.12), and automatically overrule a badly defined engine
positioning with a predefined minimum clearance value.
If the robustness of the model is not guaranteed at modeling level, then extra
constrains and special bounds must be added to the formulation of the optimization
problem, which is generally neither trivial nor efficient.

4.6.4 Modeling aspects decoupling

Unnecessary coupling between different modeling aspects of the primitives should be
avoided (unless really necessary). For example, a design rule that defines the winglet
surface positioning at a certain distance from the wing spars’ edges would force the
product model to generate first the wing surface, then the wing structure and, once
the position of the wing spars is known, then the winglet surface generation could
finally take place. This approach triggers a chain of avoidable computations (i.e.,
those related to the wing structure instantiation) and prevents the possible
instantiation of the complete aerodynamic surface model until also the structure
model is fully developed. Indeed, it should be possible to evaluate the aerodynamic
functionality of a winglet without the need to have predefined any wing structural
model. Eventually, this unnecessary coupling has effect on the robustness and
efficiency of the parametric model, as well as on the flexibility and maintainability of
the overall modeling system.

4.6.5 A sense of familiarity…

Parameters should have a clear meaning to the different users/customers of the
model (aerodynamicists, structure designers etc.). The HLPs should result familiar
objects to the user, hence they should capture the “natural view” of the user on the
product at hand. For instance, aerodynamicists rather manipulate airfoils than clouds
of points to interpolate a wing surface; they define the wing sweep angle between a
certain wing axis and the lateral aircraft axis, not the longitudinal. Eventually,
compliance with designers’ conventions has also implications on parameters naming.
For example, the designer might not be familiar with a parameter defined as “wing-
edge-curves-distance” but he is familiar with the concept of wing span; “edge curves
relative rotation” does not sound as familiar as wing twist angle, etc.

4.6.6 Parameters = degrees of freedom of the model

The parameters somehow represent the degrees of freedom of the model. On their
selection it depends how far and to what detail the user can affect the geometry of
the model. In case the designer is simply interested in the manipulation of a wing
planform, a parametric model based on very few parameters (span, chord lengths
and sweep) will do the job. However, this model will never be able to deliver other

120

than trapezoidal shapes. It will be inadequate for more advanced aerodynamic
studies, where the designer wants to investigate the effect of different airfoils, twist
distribution, curved and cranked edges, etc. A different and richer parameterization
will be required to improve the model flexibility, i.e., extend its degrees of modeling
freedom. The challenge is to allow detailed control of the model shape, without
hampering the designer with the definition of too many parameter values. One could
think of a parameterization approach (similar to the configuration opportunities
offered by many software tools of daily use), where advanced use parameters can be
accessed and adjusted only if required, while a limited number of parameters should
be sufficient for the most common and less detailed model transformations.
Eventually the width of the typicality range discussed in section 4.3, depends on the
number and type of parameters used to define a primitive. Typically, the larger the
amount of parameters, the more the possibilities to stretch, morph and adapt a HLP
to match also less conventional shapes, hence the less amount of primitives required
to model an entire aircraft configuration.
Optimization studies of models defined using many parameters do not require any
more computations than simple models defined with very few parameters, as far as
the number of parameters used as optimization variables is the same.

4.7 From the aircraft geometry model to the
abstractions for multidisciplinary analysis. Role and
definition of the Capability Modules
So far the definition and the use of the HLPs to generate very different aircraft
configurations and configurations’ variants have been described. It has been
discussed how KBE technology can capture the generative process of a complex
geometry product and speed up the transformation process of a conceptual idea into
a geometry model. As mentioned in Section 4.2, apart from the use of recording and
sharing, the availability of such a model is required to initiate the aircraft
multidisciplinary analysis and verification phase. The challenges associated to the
generation – as far as possible automated – of consistent and synchronized models
for the discipline specialists’ analysis tools (both high and low fidelity; off the shelf
and in house developed) have been addressed in Chapter 2.

In this section, the special capabilities that have been implemented in the MMG
to address those challenges will be described. Again, as in the case of the HLPs
concept, the engineer has been taken as role model, and KBE technology has
provided the means to capture some of his/her abilities in the rules of the product
model. In particular, the conceptual development of methods to automate the
generation of different abstractions of the master geometry model, for a range of

Chapter 4 Conceptual development of the MMG. High Level Primitives and Capability Modules

121

disciplines is discussed in this section, while some of the implementation details will
be covered more extensively in Chapter 6.

4.7.1 Capability Modules to capture procedural knowledge

The mental process occurring in the head of designers, from the functional thinking
to the conception of a product configuration, can only be intuited. Indeed, the
development of the HLP concept is just an attempt to map part of that process into a
software application. However, the way designers process the general purpose CAD
model of an aircraft into a dedicated model that is suitable for Nastran, Fluent or
some other analysis tool, is much more explicit and, relatively, easier to understand
and formalize. By means of interviews, direct observation and other dedicated
knowledge acquisition techniques (Milton, 2007; Rhem, 2006) it is generally possible
to elicit the specialists’ working practice, and the tips and tricks used to prepare
models that are suitable for their analysis tools.
Indeed, this preparation work to transform a general purpose CAD model into a set
of model abstractions, either ready for the solver of a given analysis tool, or at least
for its preprocessor (see Fig. 2.15, chapter 2), can be quite complex and laborious, in
particular for high fidelity analysis tools. However, there is hope:

• Quite independently from the aircraft configuration at hand, no matter if the
traditional airliner or the blended wing body aircraft of Fig. 4.2, the same
analysis tools and preprocessing methods are generally used by specialists.

• A large part of above mentioned preprocessing activities are systematic and
repetitive, require geometry manipulation and follow known rules

On the base of these two observations, it looks like there are possibilities to
generalize many of these preprocessing activities and KBE appears to be the right
technology at hand.
In fact, the ICAD programming language has been used to generate a number of so
called Capability Modules (CMs), which are special classes with the peculiarity of
encapsulating just procedural knowledge. Similarly to the HLPs, the CMs have been
implemented using the defpart macros of ICAD (Chapter 3, section 3.6.1). However,
on the contrary of the HLPs, the CMs cannot be instantiated into standalone
geometric objects, but use the encapsulated procedural knowledge to operate on the
HLPs. In other words, they process the geometry and relevant information of the
HLPs’ instantiations into model abstractions required for the multidisciplinary analysis
process.
Fig. 4.13 shows some examples of the preprocessing activities that can be performed
by different CMs on a given wing-part instantiation. From top-left, clockwise:

• The outer surface of the wing-part is translated into a set of Cartesian
coordinates points, which can be used as grid nodes for discretization (Qin et

122

al., 2002), or to support the re-splining of the surface into another proprietary
modeling system (Laban et al., 2002).

• The outer skin panels and inner structure components of the wing-part are all
intersected with each other and transformed in sets of meshable surfaces for
FE structural analysis.

• The wing-part fuel tank volume is computed based on the position of the
sealing rib and spars

• A system of axis and properly distributed points is generated to support the
transformation of shell FE models of the wing part into a condensed mass
models (Cerulli et al., 2006)

• The geometry of the 3D wing-part is transformed into a set of 2D coplanar flat
panels, e.g., to support simplified aerodynamic and aeroelastic analysis
(Stettner and Voss, 2002).

All the operations that a human specialist typically performs on a geometry model to
generate the abstractions of Fig. 4.13, (including the logic rules to choose the
specific type and the sequence of these operations), have been translated into
software rules and algorithms, which constitute the body of several Capability
Modules.

Fig. 4.13: examples of preprocessing of a Wing-part instantiation to support
multidisciplinary analysis.

Chapter 4 Conceptual development of the MMG. High Level Primitives and Capability Modules

123

For example, Surface-splitter is the CM responsible to transform the geometry of the
HLPs in sets of meshable surfaces for FE analysis; Points-generator is another CM
that transforms the outer surface of any HLPs instantiations into sets of points/panels
to support the generation of aerodynamic models (see Chapter 6 for the specific
details of these two CMs).

When a Capability Module class is linked to a HLP class, the procedural
knowledge encapsulated in the CM, becomes immediately available to that HLP. In
other words the given HLP acquires the capability to transform itself - automatically -
in meshable surfaces, clouds of points, etc. Hence, the name Capability Modules…

4.7.2 Linking HLPs and CMs

A HLP can acquire different capabilities via the links to different capability modules.
Also, the same capability module can be linked to different HLPs (Fig. 4.14)
The way these links have been realized is by the exploitation of the object oriented
paradigm supported by the ICAD KBE system. As a matter of fact, two different
HLP/CM link approaches have been used.

Approach 1: CMs included in the mixin list of a given HLP defpart
By using this approach, (refer to Fig. 4.15 for the UML class diagram and examples
of HLP and CM defpart definitions) all the attributes and operations of the CM are
directly inherited by the given HLP class, which means the operations defined inside
the CM can be applied directly to the HLP’s attributes and children, as they were
defined directly inside the HLP. As a consequence, the given HLP will be able to
answer new messages, because of the operations defined in the CM. For example,
“generate a cloud of points”, “compute fuel tank volume”, or “compute the total-
surface”, as in the fictive case of
Fig. 4.15. On the other hand, an
isolated CM could not work as
standalone because it would not
have any knowledge about the
surface to transform into a cloud of
points, or about the fuel tank
geometry whose volume must be
computed. In the example of Fig.
4.15, CM-2 does not have any

internal knowledge of Child1 and

Child2 , which are defined as

components of the class HLP1. Fig. 4.14 : possible links between HLPs and CMs

+produceGeometry()

«HLP»HLP-1

+produceGeometry()

«HLP»HLP2

+produceGeometry()

«HLP»HLPn

+preprocessGeometry()

«CapabilityModule»
CM-1

+performCalculations()

«CapabilityModule»
CM-2

+preprocessGeometry()
+performCalculations()

«CapabilityModule»
CM-n

124

Approach 2: HLP’s children defined as specializations of a CM classes
Being a HLP’s child a specialization of the CM class (refer to Fig. 4.16 for the UML
class diagram and the examples of a HLP and CM defpart definitions), the former will
be able to answer all the messages that the CM class can answer. In the example of
Fig. 4.16, it will be possible to send a message to any instantiation of the Child-3

class, whose internal operations are actually defined inside CM1. In order to perform

those operations, CM1 will need to receive as input some data generated within

HLP2. In this example CM1 receives via attribute-1 , the surface of HLP2’s

Child-1 . Without providing this input values, it would not be possible to instantiate

CM1 and use it as standalone.

(Defpart HLP1 (CM2, ...)

:Inputs (...)

:Attributes (...)

:Parts (

(Child-1 : type ‘Box)

(Child-2 : type ‘cylinder)

(Child-n : ...)))

(Defpart CM2 (...)

:Attributes (

:total-surface (+ (the :Child-1 :surface)

(the :Child-2 :surface))

:attribute-xx)

:Parts (

(Child-x : ...)

(Child-y : ...)))

Fig. 4.15: CMs included in the mixin list of a given HLP defpart. Examples of
HLP and CM defpart definition and UML class diagram

Link HLP/CM: Approach 1

Chapter 4 Conceptual development of the MMG. High Level Primitives and Capability Modules

125

4.8 Automatic generation of aircraft model abstractions
Because of the supported object oriented paradigm, once a HLP has acquired a
certain capability (due to the link to some CM), also all the specializations of that
primitive, automatically, inherit that capability. This has a relevant consequence at
overall MMG capability. In fact, the automatic preprocessing capabilities developed at
the single HLP level get automatically propagated to the overall aircraft model level.
For example, being the Wing-part and the Connection-element HLPs linked to the
Points-generator CM, the whole blended wing body aircraft of Fig. 4.2 (including the
center part, all the wing sections, winglet, fins and all the connection fairings) can be
automatically transformed into sets of points to support aerodynamic analysis.
At the root level of the BWB product model, messages can be sent to all the various
HLPs instantiations asking for the generation of clouds of points. Then all the “partial
clouds” can be collected and merged into a “global cloud” and, finally, delivered as
MMG output files. Special capability modules have been defined just for this purpose,
as described in the following subsection.

Fig. 4.16: HLP’s children defined as specializations of CM classes. Examples
of HLP and CM defpart definitions and UML class diagram.

Link HLP/CM: Approach 2

(Defpart HLP2 (...)

:Inputs (...)

:Attributes (...)

:Parts (

(Child-1 : type ‘box...)

(Child-2 :...)

(Child-3 : type CM1

:attribute-1 (the :Child-1 :surface)

:attribute n)))

(Defpart CM1 (...)

:Inputs (

:attribute-1

:attributes-n)

:Attributes (...)

:Parts (

(Child-1 : ...)

(Child-n : ...)))

+produceGeometry()

«HLP»HLP-1

+produceGeometry()

Child

-surface

ChildN

+preprocessGeometry()

-surface

«CapabilityModule»
CM-1

126

4.8.1 Scanners and Report Writers

Some dedicated capability modules have been developed in the MMG, whose
function is to send messages to the class instances in the aircraft product model,
collect the results and output them in a given output file data format. These modules
work as a kind of scanners, which parse the whole product tree (or specific branches
of) searching for specific objects or objects’ attributes.
For example, scanner modules have been defined to collect all the wet-surfaces in
the product tree, or all the meshable surfaces generated by the Surface-splitter CM,
or the values of the partial fuel tank volume computed for the various wing sections,
or the lists of points coordinates generated by Points-Generator CM.
Often a tagging system has been implemented to facilitate the tree scan. That is to
say, a dedicated attribute is automatically assigned to the objects that need to be
identified in the tree. For example, the attribute “I am a wetted surface” is
automatically assigned to all the outer surfaces of the HLPs and the attribute “I am a
meshable structure element” is automatically assigned to all the surface segments
generated by Surface-splitter. The scanner just searches for all the objects in the
product tree that have that identification attribute (i.e., that tag) and collect either
the object or some object’s attribute, as needed.
The functionality of the various product tree scanners kind of mimic the different
engineering views that different discipline specialists have on the same product. The
aerodynamic specialists look at the overall aircraft model, but are only interested in
the aircraft wetted surfaces, the structure specialists “filter out” the aerodynamic
features and focus on the configuration of the structural components, etc. The
scanner-CMs, eventually, apply the same model abstraction process that is practiced
by human specialists.

Once the required objects and/or data have been collected, they can be
organized and exported as MMG’s output files. In ICAD parlance, these output files
are called reports, because generated by special functions called report writers. A
number of report writers are ready available in ICAD for the generation of IGES,
STEP, and other standard format files. Furthermore, other customized report writers
have been programmed in the MMG to write reports in diverse customer/tool specific
formats (e.g., specifically formatted ASCII tables, or XML files, for which no standard
report writer was available in ICAD). Eventually, this is a powerful feature that allows
the MMG communicating with a very broad range of external tools, both in-house
developed and commercial of-the-shelf. Fig. 4.17 provides a sketch of the scanning
and collecting procedure acting on the product tree of the MOB blended wing body
aircraft: the surfaces of the various structural components are collected, and
exported via sets of dedicated IGES files (La Rocca et al., 2002).

In Chapter 6, some MMG study cases will be discussed, showing the use of the
HLP and CM approach discussed so far, to model different aircraft configurations and

Chapter 4 Conceptual development of the MMG. High Level Primitives and Capability Modules

127

automate the preprocessing work of dedicate model abstractions for high and low
fidelity analysis tools, both in-house developed and commercial of the shelf.

4.9 The MMG architecture: flexibility through
modularity
The purpose of the large class diagram of Fig. 4.18 is to give evidence of the strong
modularity of the MMG architecture (refer to Appendix A for a summary of the UML
grammar). The diagram is limited to the structure of the lifting surface aggregation
to guarantee readability in this format. The diagram can be actually considered a
close up of the one shown in Fig. 4.4. Further detailed views will be provided for
discussion in Chapter 5.

The diagram shows that a generic lifting surface can be modeled as an
aggregation of Wing-part and Connection-element instances. Also Winglets and
movables can be modeled using the Wing-part HLP.

Fig. 4.17: A Scanner capability module parses the aircraft product tree, collects the
geometry of the structural components and exports them as sets of IGES files.

128

Fig. 4.18 reveals that the HLPs themselves, described so far as kind of
monolithic elements, are actually aggregations of separate modules (classes), such
as the one responsible for modeling the external aerodynamic surface and the other
for the inner structure. The structure-dedicated model itself is defined as an
aggregation of more classes. For instance, Spar , Rib and Skin are components of

WingTrunkStructure .
The diagram shows also the links between some of the CMs introduced in

Section 4.7.1 and the (components of) HLPs. For example, SurfaceSplitter 3,
which is responsible of transforming the wing-part geometry into sets of meshable
surfaces for FE analysis, is linked to Skin , Rib and Spar . PointsGenerator,

which is responsible to transform the aerodynamic surfaces of all wing-parts and
connection-elements into clouds of points for aerodynamic analysis, is linked to
WingTrunkSurface and ConnectionSurface .

The modular architecture of the MMG represents a key factor for the flexibility,
maintainability and scalability of the overall system. New HLPs and CMs can be
added and removed with relative ease, in order to tailor the MMG to the problem at
hand. Indeed, the MMG can be used both for the design of a complete aircraft, as
well as for the design of a single aircraft (sub)systems, e.g., a fin, a canard, or a
complete tail configuration. The designer can decide to instantiate just a branch of
the product model, without the need to build a new KBE application. Furthermore,
when new disciplinary analysis tools will have to be plugged in the DEE system, new
CMs can be developed to generate the new required abstractions of the same HLP-
based aircraft model.
Also the single components of the very MMG building blocks, the HLPs, can be
improved or rebuilt without affecting the code of the entire primitive. For example,
an improved or alternative method to generate the external aerodynamic surface can
be defined, without affecting the way the aircraft structure is modeled. Vice versa,
new structure models can be developed, based on the same aerodynamic surface to
be used as mould line.

3 Similar to what discussed for HLPs, also for the capability modules, different fonts are used to
distinguish a CM (the concept) from its software implementation as a class. (e.g. SurfaceSplitter

is the class implementing the Surface-splitter CM)

Chapter 4 Conceptual development of the MMG. High Level Primitives and Capability Modules

129

F
ig

.
4

.1
8

:
U

M
L

 c
la

ss
 d

ia
g

ra
m

 s
h

o
w

in
g

 t
h

e
 m

o
d

u
la

r
st

ru
ct

u
re

 o
f

th
e

 M
M

G
:

d
e

ta
il

 o
f

th
e

 W
in

g
-p

a
rt

 a
n

d
 C

o
n

n
e

ct
io

n
-E

le
m

e
n

t
H

L
P

s
a

rc
h

it
e

ct
u

re
 a

n
d

 l
in

k
s

w
it

h
 t

h
e

 C
a

p
a

b
il

it
y
 M

o
d

u
le

s.

ge
ne

ra
te

O
ut

er
S

ur
fa

ce
()

pr
ov

id
eB

ou
nd

ar
yF

or
S

tr
uc

tu
re

()

W
in
g
T
ru
n
k
S
u
rf
a
c
e

ai
rf

oi
lC

ur
ve

s

ge
ne

ra
te

In
te

rn
al

S
tr

uc
tu

re
()

W
in
g
T
ru
n
k
S
tr
u
c
tu
re

no
O

fR
ib

s
no

O
fS

pa
rs

ou
te

rS
ur

fa
ce

1.
.*

0.
.1

1

bl
en

dC
on

tig
uo

us
W

in
gT

ru
nk

sS
ur

fa
ce

s(
)

lin
kC

on
tig

uo
us

W
in

gT
ru

nk
S

tr
uc

tu
re

()

«H
LP

»
C
o
n
n
e
c
ti
o
n
E
le
m
e
n
t

0.
.*

ge
ne

ra
te

B
le

nd
S

ur
fa

ce
()

...
()C
o
n
n
e
c
ti
o
n
S
u
rf
a
c
e

bl
en

dR
at

io
-1

bl
en

dR
at

io
-2

bo
un

da
ry

S
ur

fa
ce

s
bo

un
da

ry
C

ur
ve

s
...

ge
ne

ra
te

S
pa

rC
on

ne
ct

io
nE

le
m

en
t(

)
ge

ne
ra

te
S

ki
nC

on
ne

ct
io

nE
le

m
en

t(
)

C
o
n
n
e
c
ti
o
n
S
tr
u
c
tu
re

0.
.1

1

se
lfP

os
iti

on
A

tW
in

gT
ip

()

W
in
g
le
t

in
cl

in
at

io
nA

ng
le

to
eA

ng
le

le
ng

th
tw

is
tA

ng
le

sw
ee

pA
ng

le

cl
os

eW
in

gT
ru

nk
S

ur
fa

ce
()

E
n
d
C
a
p

0.
.11

{O
R

}

M
o
v
a
b
le
S
u
rf
a
c
e

10.
.1

1.
.*

ge
ne

ra
te

M
es

ha
bl

eS
ur

fa
ce

s(
)

ge
ne

ra
te

C
on

ne
ct

iv
ity

In
fo

()
as

si
gn

D
E

S
V

nu
m

b(
)

«C
ap

ab
ili

ty
M

od
ul

e»
S
u
rf
a
c
e
S
p
li
tt
e
r

su
rf

ac
eT

oS
pl

it
lis

tO
fC

ut
tin

gP
la

ne
s

es
tim

at
eT

an
kV

ol
um

e(
)

«C
ap

ab
ili

ty
M

od
ul

e»
W
in
g
F
u
e
lT
a
n
k

se
al

ed
S

pa
rN

um
be

r
se

al
ed

R
ib

N
um

be
r

de
fin

eT
E

dg
eM

ov
ab

le
()

«C
ap

ab
ili

ty
M

od
ul

e»
T
E
M
o
v
a
b
le
S
im
u
la
to
r

an
gl

eO
fD

ef
le

ct
io

n
m

ov
ab

le
S

pa
n

hi
ng

eL
in

eP
os

iti
on

cr
ea

te
C

lo
ud

O
fP

oi
nt

s(
)

«C
ap

ab
ili

ty
M

od
ul

e»
P
o
in
ts
G
e
n
e
ra
to
r

no
O

fP
oi

nt
s

no
O

fP
la

ne
s

st
re

tc
hi

ng
V

al
ue

s
su

rf
ac

eT
oT

ra
ns

la
te

po
si

tio
nC

on
de

ns
ed

M
as

se
s(

)
po

si
tio

nC
on

tr
ol

P
oi

nt
s(

)
ge

ne
ra

te
C

on
ne

ct
iv

ity
In

fo
()

«C
ap

ab
ili

ty
M

od
ul

e»
C
o
n
d
e
n
s
e
d
M
a
s
s
e
s
G
e
n
e
ra
to
r

co
nd

en
sa

tio
nA

xi
sd

ef
in

iti
on

lis
tO

fR
ib

s

R
ib

S
k
in

S
p
a
r

*
*

*

1

ca
lc

ul
at

eP
os

iti
on

W
in

gP
ar

ts
()

ev
al

ua
te

N
um

be
rO

fC
on

ne
ct

io
ns

()
po

si
tio

nW
in

gP
ar

ts
In

A
/C

R
ef

S
ys

()
...

()

nu
m

be
rO

fW
in

gP
ar

ts
ha

sW
in

gl
et

 :
bo

ol
di

he
dr

al
A

ng
le

s
sw

ee
pA

ng
le

s
sp

an
V

al
ue

s
tw

is
tA

ng
le

s
...

«a
ss

em
bl

y»
L
if
ti
n
g
S
u
rf
a
c
e

ca
lc

ul
at

eL
en

gt
hW

in
gT

ru
nk

S
ur

fa
ce

s(
)

ap
pl

yD
ih

ed
ra

l()
po

si
tio

nW
in

gT
ru

nk
S

ur
fa

ce
In

G
R

S
()

tr
im

S
ur

fa
ce

F
or

C
on

ne
ct

io
n(

)
...

()

di
he

dr
al

A
ng

le
sp

an
...

«H
LP

»W
in
g
P
a
rt

130

Also in terms of code development management, the modular approach has
advantages. In fact, the code responsible for structure modeling can be developed
independently from the aerodynamic functionality, which means that different
developers can work on the two aspects separately and not necessarily at the same
time. If the structural model is still incomplete or has bugs, the use of the
aerodynamic modeling features can still be fully exploited. Indeed the user is not
even required to fill the MMG input files parts relative to the structure definition, if no
structure related class needs to be instantiated.
As far as the links to pass parameters values down the various hierarchies of the
product model are properly maintained, new functional blocks can be modified,
moved, added and bolted on each other, still maintaining a sustainable level of code
“spaghetti-ness”.

4.10 Dealing with CAD engine limitations: capturing
workarounds for robust modeling
It is acknowledged that the
development of a robust parametric
geometry model for MDO is sometime
closer to art than science (Carty and
Davies, 2004 ; Bowcutt, 2003;
Vandenbrande et al., 2006; Staubach,
2003). Indeed, the model will have to
survive all the possible parameter
variations imposed by the optimizer,
which can possibly address also the
topology of the given aircraft
configuration (e.g., some extra rib in a wing, one spar less, a different tail
configuration, etc.).
As discussed previously in this chapter, a correct parameterization is the necessary
starting point to build a robust model.
Unfortunately it is not always sufficient: when dealing with geometry processing,
errors can still occur because of missed or inaccurate intersections, failed operations,
etc. One single failed operation might just stop the whole generative process or
produce a wrong analysis model, which would very difficult to spot during an
optimization process.
Considering that preprocessing a complete aircraft geometry model into sets of
meshable surfaces for FE analysis requires thousands of intersection operations
between surfaces of relative complexity, it is clear that robustness is a major issue.
CAD experts classify parametric assembly failures in three major categories
(Staubach, 2003):

Chapter 4 Conceptual development of the MMG. High Level Primitives and Capability Modules

131

- Class I: errors due to over/under constrained geometry models.
- Class II: intersection errors due to invalid parameters range (e.g., when

attempting to cut a surface with a non intersecting plane) or missing
relationships (e.g., when attempting to use the result of the failed intersection
mentioned above to perform some other operation). See section 4.6.3 on
invalid parameters range or missing relationships.

- Class III: errors generated by native CAD kernel bugs, or inherent accuracy
limitations (e.g., in the mathematical model to compute surface intersections).

Guidelines to avoid Class I and II errors by means of proper parameters definition
(possibly supplemented by rules) have been provided in Section 4.6.3. By the way,
those guidelines apply to the generation of KBE models as well as to conventional
CAD models. However, the greatest obstacle to robustness is represented by Class
III failures, which are particularly nasty, because largely out of control of the CAD
end-users.
Fortunately, KBE can offer better guarantees in this respect, than conventional CAD.
In fact, the possibility to encapsulate rules in the model is the key to robustness. The
methods used by CAD specialists to deal with typical model errors, for example, by
massaging the geometry and using smart workarounds, indeed, can be largely
translated into rules and “taught” to the MMG components.
As a matter of fact, in these years of extensive use of the ICAD system, the author
came across a number of limitations of the internal geometry engine, which mainly
concern with the surface intersection operations. Once understood the typical
occurrence of these errors (see three relevant cases in Fig. 4.19, Fig. 4.20 and Fig.
4.21) the KBE approach has been exploited again: this time to deal with the
limitations of the KBE system itself…
Two different approaches have been implemented in the MMG to automatically
trigger workaround procedures and significantly enhance its level of robustness:

1. The proactive approach: the problem is anticipated and avoided. Knowing a
specific limitation, a series of alternative or additional operations is performed,
avoiding the use of direct but known-to-be-unreliable operations. (See Case I
and II in Fig. 4.19 and Fig. 4.20, respectively).

2. The check&correction approach: knowing that a given operation might give
inaccurate results, a check is performed on the output and, if the result differs
from expectations, the operation is repeated using an alternative way. (See
Case III in Fig. 4.21)

132

Fig. 4.19: Use of proactive approach to work around two ICAD Class III errors.

Proactive solution:
1. Assume that intersection operations always deliver multiple results
2. Collect results in a list and create a continuous (composed) curve attaching all

the collected fragments to each other
3. Use the new composed curve as result from the intersection operation

Surface contour

Surface to be intersected

Multiple
intersection
results

CASE I: Surface/plane intersection

Possible problem:
Intersection operation gives multiple results

CASE II: Surface/boundary planes intersection

Proactive solution:
1. Detect the boundary planes
2. Decompose the contour of the surface in its curve components
3. Find the closest contour component to the cutting plane
4. Use that contour component as result from the intersection operation (without

actually performing any intersection!!)

Boundary plane

Surface to be intersectedSurface
contour

Possible problems:
1. No intersection found (plane misses the surface)
2. Intersection curve is incorrect (one point and …)
3. Intersection operation gives multiple results (See Case I)
4. An error is generated and the program stops immediately

Fig. 4.20: Use of proactive approach to work around ICAD Class III errors.

Chapter 4 Conceptual development of the MMG. High Level Primitives and Capability Modules

133

4.10.1 Product, process and… implementation knowledge

On the light of the previous discussion on HLPs and CMs and the last one on
capturing workarounds, it can be concluded that the KBE approach can be used for
the followings:

1. to capture the knowledge required to model the geometry of products,
2. to capture the knowledge to process such geometry and build dedicated

abstractions for the analysis tools,
3. to capture the knowledge required to guarantee the correct and robust

exploitation of the knowledge captured at point 1 and 2, when using a certain
KBE system.

The first two types of knowledge are actually independent from any KBE system;
thereby, they are always valid and reusable/transferable in/to any KBE system. On
the contrary, the third type of knowledge is strictly dependent on the capabilities and
limitations of the KBE system employed for the implementation of the first two types
of captured knowledge. We address this one as implementation knowledge.
Although key for the success of the KBE generative modeling, implementation
knowledge is strictly system dependent and loses value when migrating to a different
KBE system. The problem is that implementation knowledge is strictly intertwined
with the product and process knowledge; as such, it might block the development of

CASE III: Surface segmentation with a set of intersection curves

Intersection curves

Surface to be segmented

Check & Correct:
1. Count N_cutting_curves and N_of_surface_segments
2. If N_of_surface_segments ≠ (N_cutting_curves + 1) then EXTEND all cutting curves
3. Repeat surface segmentation with EXTENDED curves

Zoom X 10

GAP

Possible problem:
Not all segments found because of some intersection curves not snapping to
surface contour

Surface contour

Fig. 4.21: Use of check&correct approach to work around ICAD Class III errors.

134

any translator to transfer KBE applications from one KBE platform to another (similar
to the way of transferring geometry files between different CAD systems, using
standard exchange data formats). See more about this issue in Chapter 7, Section
7.7.

4.11 Discussion

4.11.1 Separation of declarative and procedural knowledge

In Chapter 3, when discussing the major differences between traditional rule based
systems and other object oriented systems like frame based and knowledge based
engineering systems, one of the highlighted differences was the crisp separation
between rules and inference mechanism typical of the former. On the other hand,
the object oriented approach is based on the concept of the class, which is a
structure where both declarative knowledge (the class’ attributes) and procedural
knowledge (the class’ operations) are merged. With this respect, the definition of
HLPs and CMs is an attempt to bring back some separation between the knowledge
about the product (mostly contained in the HLPs) and the knowledge about what to
do with the product (mostly contained in the CMS). Apart from the advantages of
this modular approach in terms of system flexibility, as discussed in section 4.9,
conceptual clarity and structure follow as well.
To summarize the extensive description of the HLP and CM characteristics, the follow
definitions are given below:

A High Level Primitive (HLP) is a KBE artifact that contains both declarative
and procedural knowledge, where the latter consists mostly of the specific
operations to generate the geometry of the given HLP instantiations. The
encapsulated knowledge is different and specific for each HLP and not
shared/reusable by other primitives.

A Capability Module (CM) is a KBE artifact that contains mainly procedural
knowledge, which is not specific to any HLP, but is devised to provide methods to
more HLPs. A CM cannot generally function as standalone object, is not able to
autonomously generate any geometrical entity and cannot answer any message,
unless linked to a HLP.

4.11.2 Render unto designers the things which are designers’

The HLPs and CMs cannot in any way substitute the designer in his decision making
activity. Despite their generative and operative capabilities, these software
components do not have any knowledge to judge the quality and the pertinence of
the data received as input by the designer (apart from eventually checking their

Chapter 4 Conceptual development of the MMG. High Level Primitives and Capability Modules

135

compliance with the expected data format). HLPs and CMs are means to create a
flexible and robust modeling environment, which is supposed to be capable of
delivering valid output, whatever is the received input. It is the designer’s
responsibility to decide upon the configuration to be modeled and to judge the
quality of the final design through his/her knowledge and with support of analysis
tools. Though HLPs and CMs do not have any direct influence in steering the design
toward certain directions, they definitely put the designer in a more favorable
condition to explore the design space.

4.11.3 Exploitation of KBE technology in the initial design phase

Within large aircraft companies, like Boeing, Lockheed Martin and Airbus, KBE is
already a mainstream technology since years. However, so far, its application has
taken place mostly in the detail design phase of structural components and
subsystems, as illustrated in Fig. 4.22 from (Mohaghegh, 2004). On the other hand,
this research work proposes a possible use of KBE in the earlier conceptual and
preliminary phases of the aircraft design process, where the configuration of the
vehicle is not yet frozen and can still be influenced by all the disciplines.
Various examples of KBE applications developed to support the design process of
complex products (not only aircraft) have been found in literature, mainly addressing
the detail design phase, where a full generative approach has been used to deliver
completely engineered components (Cooper et al., 2001; Chapman and Pinfold,
2001; Subel, 2002). In other cases (Rondeau et al., 1996; Zweber and Hartong,
1998) demonstrator applications have been developed to support the analysis and
optimization process of main aircraft components such as wings. Nothing has been
found in literature concerning the use of the KBE approach to support conceptual

Fig. 4.22: KBE progressive exploitation in Boeing aircraft programs. From structure
detailed design to the integrated airplane of the future (Mohaghegh, 2004).

136

and preliminary design of complete aircraft, including non-conventional
configurations and the definition of the internal structure, as it is presented in this
work.

4.11.4 A different KBE exploitation: parametric modeling vs. integral
design approach

In the early days of KBE technology, the development of super integrated design
tools, able to cover the whole process from input requirements to the fully
engineered product, was proposed (see also fig. 3.13 from (Cooper et al., 2001), in
Chapter 3). On the contrary, this research work proposes the use of a KBE with a
much more limited scope. Indeed, the MMG is not conceived as an integrated design
tool, but as a functional component within a much broader loosely coupled design
system (the DEE). In this case, KBE is exploited for the development of a parametric
aircraft model able to support the link with external multidisciplinary analysis tools.
Also the actual aircraft conceptual design knowledge has been kept outside for other
dedicated tools, such as the DEE initiator.
The development of a KBE generative model able to produce a fully engineered
aircraft design would have been not only a tremendously complex task, but even
unfeasible and, eventually undesirable in view of supporting a distributed MDO
approach. As relevant past experiences have demonstrated (Staubach, 2003), the
attempt to capture in the product model all the rules from all the involved disciplines
(from aerodynamic to manufacturing), would reduce to zero the chances – of
whatever sophisticated KBE application – to successfully deliver an engineered
solution.

4.11.5 A different place for AI in the design process

The use of Artificial Intelligence (in particular of rule-based reasoning) to support the
aircraft design process is very promising and offers a great potential towards design
automation as demonstrated by this work. However, the AI approach is worthwhile
as far as it addresses capturing and automating the repetitive parts of the design
process, without aiming at the replacement of the designer creative role.
In our opinion the development of a computer system that is able to capture and
replace the creative and sometimes revolutionary contributions of human designers,
would represent not only an impossible objective, but even a bad investment. The
return of investment of any whatever smart AI conceptual design tool would result
rather limited, because it is not in the creative process of the design that most of the
time and resources are drained. Designers are fast and effective in proposing
potential solutions to fulfill requirements, but they need help in the verification phase
of those ideas and all the related preprocessing work. Automation is needed to

Chapter 4 Conceptual development of the MMG. High Level Primitives and Capability Modules

137

provide quality data to designers as early and fast as possible, so they can make
more informed decisions in the early stage of design (Raj, 1998).
Furthermore, AI-supported design tools that are based on the use of performances
analogy and search for best matching case (i.e. case-based reasoning (Rentema,
Jansen and Torenbeek, 1998)) have the inherent limitation of not supporting the
consideration of any novel design configuration. Aircraft configurations generated
with case-based reasoning can only result in linear combinations of existing cases: a
blended wing body aircraft will never come out as a weighted recombination of all
the Airbus and Boeing passengers aircraft developed so far!
In other words: KBE to support analysis and optimization of good ideas, not to
generate good ideas!

4.11.6 Classes, objects, suckling pigs and other animals that resemble flies
at a distance

In sections 4.3 and 4.7 of this Chapter, as well an in Chapter 3, the object oriented
modeling paradigm has been presented as a pillar of the conceptual development
and technical implementation of the MMG and its components. The appeal of such
modeling approach has been claimed to be largely related to the way humans make
mental models of the world. Apparently, the concept of objects classification is not
universal, as claimed by psychologist Nisbett in his book “The Geography of
Thoughts (Nisbett, 2005)” (see insert next page). Apparently people from different
cultures get not just different beliefs about the world, but different ways of
perceiving it and reasoning about it. Though the author does not fully agree with
Nisbett’s too crisp categorization of Easterners and Westerner thinkers, neither with
the direct legacies Greeks�Westerners, Chinese�Easterners, he concurs with the
existence of different cognitive approaches. Eventually, he acknowledges the object-
oriented modeling approach to be a useful simplification of the world, that offers a
reasonably working match between the way some people see the world and the way
it can be modeled into a computerized system.

138

The Geography of Though – How Asian and Westerners think differently and
why. Richard E. Nisbett

Jorge Luis Borges, the Argentine Writer, tells us that there is an ancient Chinese
encyclopedia entitled Celestial Emporium of Benevolent Knowledge in which the following
classification of animals appears:”(a) those that belong to the emperor, (b) embalmed
ones, (c) those that are trained, (d) suckling pigs, (e) mermaids, (f) fabulous ones, (g)
stray dogs, (h) those that are included in this classification, (i) those that tremble as if
they were mad, (k) those drawn with a very fine camel’s hair brush, (l) others, (m) those
that have just broken a vase, (n) those that resemble flies at a distance”.

Though Borges may have invented this classification for his own purpose, it is
certainly the case that the ancient Chinese did not categorize the world in the same sorts
of ways that the ancient Greeks did. For the Greeks things belonged in the same
category if they were describable by the same attributes. But [...] for the Chinese, shared
attributes did not establish shared class membership. […] They were simply not
concerned about the relationship between a member of a class and the class as a whole.
[…] Finding the features shared by objects and placing objects in a class on that basis
would not have seemed a very useful activity. […] The Greeks belief in the importance of
that relation was central to their faith in the possibility of accurate inductive inferences:
learning that one object belonging to a category has a particular property means that
one can assume that other objects belonging to the category also have the property. […]

We might expect, based on the historical evidence for cognitive differences […] that
contemporary Westerners would (a) have a greater tendency to categorize objects than
Easterners; (b) find it easier to learn new categories by applying rules about properties
to particular cases; and (c) make more inductive use of categories, that is, generalize
from particular instances of a category to other instances or to the category as a whole.

Chapter 5 Implementation of the HLP concept in the KBE system

139

CHAPTER 5
Implementation of the High Level
Primitive concept in the KBE system

1. Introduction

2. Functionality and implementation of the Wing-part High Level Primitive. The surface generation
module

3. Wing-part Structure definition

4. Spars definition

5. Definition of Wing box, Leading Edge and Trailing edge areas

6. Ribs definition

7. Implementation of the Connection-Element High Level Primitive

8. Towards a unified connection-element

9. Fuselage High Level Primitive implementation

5.1 Introduction
The technical implementation of the High Level Primitive (HLP) concept in the ICAD
KBE system is addressed in this chapter, whereas the implementation of some
Capability Modules (CM) will be addressed in chapter 6. In particular, the definition
and functionalities of the HLPs Wing-part, Connection-element and Fuselage are
described here.
For each HLP, the approach used to define the outer surface is addressed first,
followed by the definition of the internal structure. This sequence reflects the
associative relation between the HLPs’ surface and structure, hence the dependency
of the structural model on the aerodynamic model, as it was anticipated in Chapter
4.
The definition of the main parameters used to define the HLPs is provided, to show
how the designer can interact with the MMG to control the instantiation of the
various aircraft systems (fuselage, wing, etc.). Examples are given to illustrate the
level of achieved modeling flexibility, as well as the current limitations.
The Wing-part will be discussed in more detail than the other HLPs. This because of
the higher level of maturity reached in the development of this primitive, but also

140

because of the similarity in methodology applicable to and implemented for the other
primitives.

The purpose of this chapter is not to provide a detailed technical report or a
user manual for the MMG, but to demonstrate how the concepts discussed in the
previous chapters can be implemented in a KBE application that is able to support
aircraft design. Reference is provided to documents where more detailed technical
information on the KBE application can be found.

5.2 Functionality and implementation of the Wing-part
High Level Primitive. The surface generation module
As previously shown in the UML diagram of Fig.418, WingPart, the class defined to
implement the Wing-part HLP, is actually a composition of two main classes, namely
WingTrunkSurface and WingTrunkStructure. The former, responsible for the
generation of the outer surface of any Wing-part instance, is described in this
section. The latter, in charge of modeling the internal structure, will be addressed in
Section 5.3.
As a matter of fact, the modular definition of the Wing-part primitive goes even
further: as illustrated in the class diagram of Fig. 5.1, WingTrunkSurface is again
an aggregation of several classes (including two capability modules), developed at
the scope of providing the following three main functionalities:

1. Generation of Wing-part instances with trapezoidal planform
2. Generation of Wing-part instances with curved leading and trailing edges
3. Generation of Wing-part instances (both with trapezoidal planform and curved

LE/TE edges) with a deflected trailing edge movable (e.g., a rudder, an aileron
or an elevator)

Functionality 1 was the first one developed during the evolutionary growth of the
MMG, and is mainly provided by the WingTrunkSurface and WingSection
classes of Fig. 5.1. The other classes and capability modules have been developed
later to extend the basic modeling capability of the MMG. These will be addressed in
Section 5.2.11 and 5.2.12.

5.2.1 Generation of Wing-part instances with trapezoidal planform:
modeling capabilities and limitations

WingTrunkSurface generates the surface of any given Wing-part instance by
constructing (lofting in ICAD parlance) a smooth surface across a skeleton of wing
sections (i.e., airfoils), which are generated by WingSection. These wing sections
are curves that interpolate through sets of points, whose coordinates are read from
external datafiles.

Chapter 5 Implementation of the HLP concept in the KBE system

141

F
ig

.
5

.1
:

C
la

ss
 d

ia
g

ra
m

 o
f

th
e

 W
in

g
-P

a
rt

 H
L
P

,
w

it
h

 d
e

ta
il

s
o

f
th

e
 o

u
te

r
su

rf
a

ce
 g

e
n

e
ra

ti
o

n
 c

o
m

p
o

n
e

n
ts

M
od

ul
es

 fo
r

cu
rv

ed

LE
/T

E
 e

dg
es

 m
od

el
in

g

M
od

ul
es

 fo
r

T
E

m

ov
ab

le
s

m
od

el
in

g

142

WingTrunkSurface needs a minimum of two airfoils, one at the root and one at
the tip section of the wing-part. However, the amount of different airfoils that can be
used is unlimited: see the 2..* multiplicity on the WingTrunkSurface-

WingSection association (refer to Appendix A for a definition of the UML

multiplicity labels). Two instantiations of WingTrunkSurface are shown in Fig. 5.2.
One is generated using two airfoils, the other using three. In the first case the result
of the lofting operation is a single-curvature surface, whilst in the second case, is a
smooth double-curvature surface. Both surfaces are generated using the same ICAD
primitive called lofted-surface (Knowledge Technologies International, 2001b).
The list of parameters necessary to define a Wing-part surface instantiation (with
trapezoidal planform and no movables) is provided in Table 5.1. When more Wing-
part instances are required to model, for example, a complex cranked wing, the
parameter values indicated in the table will have to be assigned for each Wing-part
instance.
On the base on the adopted parameterization approach, the modeling capabilities
and limitations of WingTrunkSurface can be summarized as follows:

• The type (and number) of airfoil curves, specified by the attribute airfoil-
name-list, must be names of predefined (.dat) files, containing the airfoils’
definition data (see section 5.2.9 for details). All the airfoils datafiles are
stored in a folder, which is here addressed as Airfoil-Library.

• Within a given Wing-part instance, the airfoils can be positioned only parallel
to each other. Their span wise position (offset) is defined via the parameter
airfoil-offset-list. The offset values are expressed as percentages of the given
Wing-part instance span (the values 0 and 1 are assigned for the root and tip
airfoils respectively).

Fig. 5.2: examples of two wing-part surface instantiations built with two (left) and
three (right) different airfoils. The surface on the right has double curvature.

Root airfoil

Tip airfoil Tip airfoil

Root airfoil

Intermediate airfoil

Chapter 5 Implementation of the HLP concept in the KBE system

143

Parameter
Expected
value

Example Description

Cr
Positive real
number

200
Root/Tip chord length of the Wing-part
instance.

Ct
Positive real
number

120

Span
Positive real
number

250

Span of the given Wing-part instance.
N.B. In case of a dihedral angle different
than zero, the span is different than the
distance between the root and tip airfoil
planes.

Reference Real number

0 � reference line
= Leading edge

0.25 � reference
line = Quarter-
chord line

Indicate the reference line used to define
the sweep and twist angles of the given
Wing-part instance.

Sweep-angle Real number (degrees 30)1
Angle defined with respect to the Wing-
part reference line

Twist-angle Real number (degrees 5)1
The angle between the root and tip airfoil
chords of the given Wing-part instance.

Twist-angle-
root

Real number (degrees 0)1
The incidence angle of the given Wing-
part instance

Dihedral-angle Real number (degree 3)

Rigid rotation of the lofted surface. This
parameter affects the length of the given
Wing-part instance (which is equal to the
ratio of span and the cosines of the
dihedral angle)

Airfoil-name-
list

List of strings
(list ‘MyAirfoil-1
‘MyAirfoil-2)

A list of strings, corresponding to names
of datafiles2

Airfoil-offset-
list

List of real in
the range
[0, 1]

 (list 0.0 1.0)
The spanwise position of each expressed
as a span fraction of the given Wing-part
instance2

Airfoil-
thickness-list

List of real (list 1.0 0.5)
A list of multiplication factors to modify
the thickness ratio of the airfoils2

1Without the keyword ”degree”, the angle is assumed in radians

2These lists must contain the same amount of values (i.e., one per wing section)

Table 5.1: list of the main parameters for the definition of a Wing-part instance.

144

• The parameter airfoil-thickness-list contains a list of multiplication factors to
modify the thickness ratio of the airfoils indicated in airfoil-name-list, without
the need to add extra airfoil datafiles to the library (more details in section
5.2.9)

• It is possible to define the length of the root and tip chord only. The chord
length of all the eventual intermediate airfoils is automatically determined by
linear interpolation (trapezoidal planform).

• The twist-angle parameter defines the rotation angle of the tip airfoil with
respect to the root airfoil. The rotation of all the eventual intermediate wing
sections is evaluated by linear interpolation.

• The sweep-angle value is constant within a given Wing-part instance and is
applied by shifting the various wing sections in their planes (i.e., sweep by
wing shearing. See section 5.2.5). The sweep angle is defined with respect to
the same reference line (e.g., leading edge line, quarter chord line) as the
twist angle.

• The reference line can be selected by means of the reference parameter
(more details in Section 5.2.3). This is a global parameter. In other words, all
the Wing-part instances used to model a lifting surface share the same
reference line definition.

• The dihedral-angle value is constant within a given Wing-part instance and is
applied by a rigid rotation of the Wing-part lofted surface (i.e., not by wing
shearing). In this way, the dihedral does not affect the thickness of the given
Wing-part instance (see discussion in section 4.6.2).

• Since the Wing-part span is a user-defined parameter, the length of a given
Wing-part instance (i.e., the distance between the root and tip airfoil planes)
is affected by the dihedral angle as discussed in section 5.2.8

5.2.2 Modeling process for trapezoidal planform Wing-part instances

This section describes the implementation of the modeling process, whose
capabilities and limitations have been addressed above.
As shown in the diagram of Fig. 5.1, three classes are responsible for the generation
of trapezoidal planform Wing-part instances, namely WingPart ,

WingTrunkSurface and WingSection 1. The top level class LiftingSurface is
responsible of assembling the complete lifting surface by appropriate positioning of
the various Wing-part instances.

1 Note how the main operations and parameters manipulated by these classes have been indicated in
the related fields of their UML representation.

Chapter 5 Implementation of the HLP concept in the KBE system

145

The sequence of activities implemented by these classes can be split in the following
main blocks (details about the various steps will be provided in the subsequent
sections):

1. Generation of the airfoil curves. All the operations in this block are
performed by WingSection, as many times as the number of wing sections
specified for the given Wing-part instantiation (see section 5.2.9 for details)
dictates.

• Reading the airfoil normalized point coordinates from datafiles
• Scaling of points according to chord length
• Scaling of points by application of the thickness factor
• Positioning of points inside the given Wing-part Local Reference System

and generation of fitted curve
2. Generation of the lofted surface(s). All the operations in this block are

performed by WingTrunkSurface, as many times as the number of Wing-
part instances used to model the given lifting body.

• Spanwise positioning of the airfoil curves in the Wing-part Local
Reference System (See section 5.2.4)

• Application of sweep angle by shifting the airfoil curves along their
chord vector (See section 5.2.5)

• Application of the incidence and twist angles by rotating the shifted
airfoil curves around their reference point (See section 5.2.6)

• Generation of the lofted surface through the set of wing sections (Fig.
5.2)

3. Positioning and orientation of the lofted surface(s) in the Lifting-surface
Global Reference System. All the operations in this block are performed by
WingPart, as many times as the previous block of activities requires.

• Application of the dihedral angle to each Wing-part instance by rigid
rotation of the Wing-part Local Reference Systems in the Global
Reference system (details on the reference systems in Section 5.2.3)

• Positioning of each Wing-part instance in the Lifting-surface Global
Reference System

• Trimming of the lofted surface(s) as required for the instantiation(s) of
the Connection-element HLP (see section 5.7)

4. Build up of the complete lifting body surface. All the operations in this
block are performed by LiftingSurface, as many time as the number of
lifting surfaces present in the given aircraft architecture.

• Positioning of the Global Reference System in the Aircraft Reference
System

146

• Computation and instantiation of the required number of connection
elements, based on the number of dihedral angle discontinuities (more
detail in section 5.7).

• Positioning and instantiation of the Winglet and/or EndCap classes

• Mirroring of the complete Lifting-surface instance, if required (i.e., to
model a conventional aircraft configuration, the left wing half and the
left horizontal tail empennage are generated first and then mirrored to
generate the right half)

It should be noted that, whilst the activities listed above are performed starting from
the leaves of the product tree (i.e., first the wing sections are generated, than the
lofted surfaces are built and finally the whole lifting surface is assembled), the flow
of information required to run the process cascades from the root of the product tree
down to the leaves. In fact:

- The location of the surface instances positioned by WingPart in the Global

Reference System is computed by LiftingSurface .

- The length of the lofted surfaces generated by WingTrunkSurface is

calculated by WingPart

- The chord lengths required by WingSection to scale the airfoil curves is

computed by WingTrunkSurface

5.2.3 Definition of Global and Local Reference Systems

As anticipated in the previous section, the implemented modeling approach is based
on the use of three reference systems, namely: the Aircraft Reference System, the
Lifting-surface Global Reference System (GRS), and the Wing-part Local Reference
Systems (LRS) (see Fig. 5.3). The last two are those relevant for the definition of any
lifting surface and their relative positioning is shown with details in Fig. 5.4.

Each Wing-part instance is built with respect to a local reference system
(LRS), i.e., there are as many LRSs as the number of Wing-part instances.
The length, the twist angle, the root-twist angle (i.e., the incidence angle) and the
sweep angle of each Wing-part instance are defined in the LRS systems.
On the other hand, the relative position of the various Wing-part instances and the
values of their span and dihedral angle are defined in the Lifting-surface GRS.

As shown in Fig. 5.4, the longitudinal axis of each Wing-part LRS is parallel to
the longitudinal axis of the relative Lifting-surface GRS (which is in turn parallel to
the longitudinal axis of the Aircraft Reference System).

Chapter 5 Implementation of the HLP concept in the KBE system

147

Fig. 5.4: Global and Local Reference Systems to define and position the Wing-part
instances in a Lifting-surface assembly. Example of the MOB BWB (La Rocca,
Krakers and van Tooren, 2002) (connection elements not shown).

Fig. 5.3: the three types of reference systems used in the implemented modeling
approach.

148

Given a Lifting-surface assembly consisting of n Wing-part instances, the LRS-origin
of Wing-part instance (i) is positioned in the GRS as follow:

���������	
�
�� = ∑ 	���(�
������(�))���
���

����
���
�����	
�
�� = ∑ 	���(�
������(�)) ∗ tan(����(�
������(�))���
���

����
 ����	
�
�� = ∑ 	���!�
������(�)" ∗ tan(�
ℎ�����(�
������(�)))���
���

5.2.4 Positioning of wing sections and role of the reference parameter

Each airfoil generated by WingSection is first positioned in the Wing-trunk LRS,
with its chord parallel to the LRS longitudinal axis and at a lateral position equal to
the Wing-part length2 percentage indicated by the input parameter airfoil-offset-list
(Table 5.1). The longitudinal position of each airfoil is set according to the value of
the parameter reference. As shown in the examples of Fig. 5.5, when reference is set
to 0, the airfoil curves are shifted longitudinally such that all the leading edge points
get positioned on the LRS lateral axis; when reference is set to 0.25, the airfoil
curves are shifted such that the all the quarter chord points (longitudinal shift equals
0.25 times the chord length) are placed on the LRS lateral axis.
Any value is allowed for the reference parameter, although the values 0 and 0.25 are
the most frequently used, being the leading edge and the quarter chord line the two
most common reference lines used to define the sweep and the twist angle of a
lifting surface.

5.2.5 Application and definition of the sweep angle

After the preliminary placement of the airfoil curves in the LRS, as described in the
previous section, WingTrunkSurface applies the user-defined sweep angle by
shifting the wing sections further along the LRS longitudinal axis, as illustrated in Fig.
5.6. The longitudinal shift of each airfoil curve is computed as follows:

����
���
���$ℎ
%�(�
�%�
�(
)) = �������&%%	��(�
�%�
�(
)) ∙ tan	(����)����)

As a consequence of this double longitudinal shift, the sweep angle results
automatically applied with respect to the reference line selected by means of the
reference parameter.

2 Since the implemented method is able to model only straight wing parts, a certain percentage of the
span or the length yields to the same lateral positioning of a given airfoil

Chapter 5 Implementation of the HLP concept in the KBE system

149

Fig. 5.5: Positioning of the root airfoil curve in the Local Reference System (LRS) of the
given Wing-part instance. Effect of the parameter reference on the airfoil longitudinal
positioning.

Fig. 5.6: positioning of the wing sections in the Wing-part instance Local Reference
System. The length (not the span) of the Wing-part instance determines the lateral
position (offset) of the wing sections. The sweep angle is applied by shifting the
various wing sections along the LRS longitudinal axis.

150

Another result from this way of applying the sweep angle (actually not the only one
possible, as discussed in the insert below) is that all the airfoil curves remain parallel
to each other and normal to the LRS lateral axis, such that the span of the given
Wing-part instance remains unaffected.

Being applied and measured in the LRS, the sweep angle is independent from the
dihedral angle, which is applied in a later step via a rotation of the Wing-part LRS in
the Lifting-surface GRS.
For positive value of the sweep angle, WingTrunkSurface shifts the airfoil curves
towards the positive direction of the LRS longitudinal axis. Given the orientation of
the LRSs in the Aircraft Reference Systems, a positive sweep angle yields a backward
swept wing (as by convention).

A note on sweep angle definition. Shearing or pivoting?

Two ways of applying sweep to a wing are generally found in literature: the first one is
achieved by applying a rigid body rotation to the wing, as shown in the left case of the picture
below. In this way the air, through the effective free stream speed component V┴, would
always “see” the same airfoils. This is what actually happens for pivoting/swing (variable
sweep) wings. In the second method – the one implemented in this work - the sweep is
applied by shearing the wing, i.e., by shifting the airfoils in planes parallel to the free stream
(right case in the picture below). This second method is industry practice. However, the
designer should be aware that the effective flow component does not see the selected airfoil,
but a generally different one with higher thickness ratio, as illustrated below. This reduces the
positive effect of sweeping on the critical Mach number.

(t/c)┴ > (t/c)═

Airfoil normal to LE

Airfoil parallel
to freestream

V∞Sweep angle
V∞

Λ Λ

V∞

V═

V┴

V┴ = Veffective = V∞ cos Λ

Chapter 5 Implementation of the HLP concept in the KBE system

151

5.2.6 Definition of the twist and wing setting angle

The twist angle is applied by a rigid rotation of the airfoil curves in planes normal to
the LRS-lateral axis, with the rotation point set at the intersection of the given airfoil
plane with the reference line (see Fig. 5.8).
In this way, the application of the twist angle remains independent of the sweep
angle definition and the sequence in which twist and sweep are applied is irrelevant.
The twist angle is a user-defined Wing-part parameter and is defined as the angle
between the chord of the root airfoil and tip airfoil. The rotation angle of the
intermediate airfoil curves inside a Wing-part is computed automatically by scaling
the twist angle linearly with the Wing-part instance span:

�����
��(�
�%�
�(
)) = �������&%%	��(�
�%�
�(
)) ∙ twistAngle

The twist-angle is positive when the nose is rotated upward, as by convention.

The setting angle of each Wing-part instance, i.e., the angle between the root
chord of the given Wing-part instance and the local longitudinal axis, is determined
by the parameter twist-angle-root. This angle is simply superimposed to the rotation
angle in the formula above.

Whilst the user can define a different twist angle for each Wing-part instance,
only one setting angle can be assigned by the user for the whole Lifting-surface
instance1. This is the twist-angle-root of the most inboard Wing-part instance and
corresponds to what generally addressed in literature as wing setting angle. This is
defined as the angle formed by the wing root chord with the fuselage longitudinal

1With the exception of the Winglet twist-angle-root (commonly addressed as toe angle), whose value
is another user-defined parameter in the MMG input file.

Fig. 5.8: twist angle and twist-angle-root angle (i.e. Wing-part instance incidence angle)
definition. The angles definition is not affected by the sweep. (negative angles shown in
picture).

152

axis. For a given alignment of the fuselage with the flight speed vector, the wing
setting angle determines the actual angle of incidence (or attack) of the wing and its
airfoils.

The parameter twist-angle-root of each Wing-part instance (excluded the most
inboard one), is automatically computed by the MMG as follow:

��
	�)����1���!�
�%�
�(
)" = ��
	�)����1��� +	∑ ��
	�(�
������(�))���
���

5.2.7 Definition of dihedral and winglet inclination angles

As shown in Fig. 5.4, the dihedral angles of the various Wing-part instances
composing a lifting surface are all defined in the Lifting-surface GRS. The dihedral
angles are set by rotating the various Wing-part LRSs (hence, their content) around
their local longitudinal axes.
A definition of dihedral (and inclination) angle follows:
The dihedral angle (and winglet/fin inclination-angle) is the angle between the
lateral axes of the lifting surface global reference system and the wing-part local
reference system, measured on the plane orthogonal to the global reference system
longitudinal axis.
The dihedral angle and the winglet-inclination angles are positive when the tip of the
wing-part is moved upward with respect to the horizontal position. The winglet
inclination angle is complementary to the so-called winglet cant angle (i.e., they add
to 180 degrees).
The dihedral angle is applied as a rigid rotation of the lofted surface generated by
WingTrunkSurface, hence after the sweep and twist angles have been set.

5.2.8 Definition of Wing-part span and length

The wing-part span is defined as the distance between its root and tip airfoil planes –
which is the Wing-part length – projected on the horizontal plane of the global
reference system, and measured along the GRS-lateral axis (see Fig. 5.4).
Being the span and the dihedral angle user-defined parameters for Wing-part, the
Wing-part length is first computed by WingPart and then fed to

WingTrunkStructure to start the generation of the lofted surface:

 �����ℎ!�
������(
)" = 	���!�
������(
)"/ cos(�
ℎ�����!�
������(
)")

It follows that the length of a Wing-part instance increases with the dihedral angle,
but does not depend on the sweep angle.

In the case of winglets, the length and the span of the Wing-part instances
coincide and their value is user-defined, hence independent from the winglet-
inclination-angle.

Chapter 5 Implementation of the HLP concept in the KBE system

153

5.2.9 Generation of the airfoil curves

As mentioned above, the MMG user can specify for each Wing-part instance a
specific set of airfoils. The name of these airfoils is specified using the airfoils-name-
list parameter (see Table 5.1); each airfoil name must match the name of a
corresponding airfoil data file, which must be available in a predefined “airfoil library”
directory. These files are actually plain ASCII files, each containing a list of point
coordinates (see example in Table 5.2). The user can expand the airfoil library, at
any time, by adding files containing new airfoil definitions.
An airfoil file obeys the following conventions (Fig. 5.9):

- The coordinates of the points are specified in a 2D reference system
- The coordinates are normalized with respect to the chord length (i.e., all the

airfoils in the library have a chord length equal to one)
- The points are provided in sequence: from the trailing edge (TE) point (1 ; 0),

to the leading edge (LE) point (0 ; 0) and back to the trailing edge point.
- The LE point and the TE point(s) coordinates must be included in list.

The WingSection class instance opens the given airfoil file, reads all coordinates,
scales them according to the required chord length, and generates a curve using the
ICAD fitted-curve primitive.
In order to obtain correctly lofted surfaces, all the airfoil curves must have the same
direction. That means the fitted curve must interpolate the points from trailing edge
to trailing edge, first generating the upper part of the airfoil and then the lower (see
Fig. 5.9). WingSection is able to check and correct the airfoil curve direction
automatically, so the user is free to provide the points coordinates either in clockwise
or counter clockwise sequence.

Fig. 5.9: Definition of an airfoil curve by fitting a set of points and scaling effect
of thickness factor.

154

Open airfoils at the TE edge are also allowed (the
coordinates of the two trailing edge points in the data
file can be different). WingSection is able to deal with
open airfoils and if required, it can close them
automatically (a setting parameter is provided)

The amount and distribution (stretching) of points
used to define a given airfoil are at the designer’s
choice. It is up to the user to supply sufficient and
adequately distributed points to have the fitted curve
capturing the airfoil curvatures. Different airfoil data
files can contain a different number of points with
different stretching; Wing-section is able to deal with
that (La Rocca and van Tooren, 2002b).
The parameter airfoil-thickness-list (see Table 5.1)
allows users to modify the thickness of the selected
airfoils for the wing-part, to avoid the need to populate
the airfoil library with airfoils from the same family but
with different thickness ratio (e.g., NACA0010 and

NACA0020). The airfoil-thickness parameter works as a stretching factor, which
directly applies to the z-coordinates of the airfoil points (the x-coordinates, are
stretched by the chord length). For example, if the coordinates of the NACA0010 are
available in the library, a NACA0020 can be generated setting the relative airfoil-
thickness value to 2.

5.2.10 Airfoils definition to support optimization. Some considerations

The implemented airfoil definition method is relatively simple and effectively
supporting common practice in conceptual and preliminary design. The user can add
new airfoil data files to the library without the need to modify any bit of the MMG
code. Simple cut-and-paste operations can add any airfoil to the library. The airfoils
can be taken from literature (University of Illinois Urbana-Champaign, last visited
November 2009; Hepperle; Carmichael) or from one’s own design efforts.
However, the point coordinates-based airfoil definition is not very well suited to
support in aerodynamic shape optimization. The large number of points generally
required to properly define an airfoil would lead to a very high number of design
variables. In addition this definition cannot guarantee the generation of smooth
curves when perturbing the position of single points, unless coordination mechanisms
are put in place to link the perturbation of one point with those of the neighbours
(Samareh, for example proposes to parameterize the perturbation rather than the
geometry itself (Samareh, 2001a). This would already allow reducing the number of
design variables by orders of magnitude (Straathof et al., 2008)). Of course it would

1.000000 0.000000
0.999846 0.000009
0.999380 0.000036
0.998603 0.000082
…………
0.000899 0.004203
0.000300 0.002566
0.000000 0.000000
0.000300 -0.002563
0.000898 -0.004201
0.001796 -0.005829
…………
0.998603 -0.000082
0.999380 -0.000036
0.999846 -0.000009
1.000000 0.000000

Table 5.2 : example of
an airfoil data file
content.

Chapter 5 Implementation of the HLP concept in the KBE system

155

be possible to use the airfoil name as discrete variable, while using the airfoil
thickness as an associated continuous variable. In this case, however, the size of the
design space would be very limited (and discontinuous!), even with a large database
of “prefab” airfoils available.

A better way to support optimization while maintaining the airfoil definition
approach discussed above, would be that of extracting the B-spline control points
and weights from the fitted curves generated by ICAD2 when interpolating through
the set of point coordinates. These control points with relative weight could then be
used as input data to re-generate the airfoils as B-splines (which are ICAD geometry
primitives) (Knowledge Technologies International, 2001b). The advantage for the
optimization is twofold: the B-spline control points and weights are much less than
the original set of point coordinates; the variation of each control points can affect a
large part of the airfoil curve, without creating unwanted wrinkles or waviness. The
B-spline approach could be used not only with curves, but also for surfaces, as it has
been actually tested for the definition of the Fuselage HLP surface (see Section 1.1).

Other convenient approaches to support the optimization of airfoils and
aerodynamic surfaces in general would require an analytical definition of airfoils and
surfaces, such as the CST method proposed by Kulfan (Kulfan, 2008), based on
Bernstein polynomials (and recently extended by Straathof to allow easy
manipulation of both local and global shape variations (Straathof et al., 2008)); and
the method proposed by Carpentieri (Carpentieri, 2008), based on Chebyshev
polynomials. These authors have demonstrated the possibility to cover very large
design spaces, using the (few) coefficients of the polynomials as design variables.
Other parameterization methods for optimization can be founded in the surveys by
Haftka and Grandhi (Haftka and Grandhi, 1986) and Ding (Ding, 1986) up to 1986,
and by Mousavi (Mousavi, Castonguay and Nadarajah, 2007) up to 2007. Also
Samareh (Samareh, 2001b) provides an extensive survey of parametric models for
combined structural and aerodynamic optimization, up to the year 2001.

Without entering in the specific merit of these methods, we acknowledge that the
modular structure of the Wing-part HLP would allow substituting the actual
WingSection class with an alternative analytical airfoil generator module. This
would not require any major modification to the rest of the HLP structure. Also the
entire WingTrunkSurface class could be replaced by a new class encapsulating

analytical surface modeling methods. In fact, for WingTrunkStructure , the
specific method used to generate the wing-part outer surface is irrelevant, as far as

2 ICAD allows easy access to low level geometry information, such as control points and weights of
generated B-splines. Besides, the B-spline-curve is an ICAD geometry primitive, which needs control
points and weight factors as basic input.

156

an outer surface is eventually generated such that its structure modeling capabilities
can be deployed.
The MMG can also be expanded to include both the abovementioned airfoil/surface
generation methods and let the user chose the one most suitable to the case at
hand. The conceptual design process could be initiated selecting an airfoil off the
shelf, and then “translated into a proper mathematical format” to support the
optimization process in a later design stage.

5.2.11 Definition of Wing-parts with curved leading and trailing edges

The surface modeling approach described above is only able to support the design of
trapezoidal wing parts. There are several cases where designers could benefit from a
more “free-form” planform design approach. For example, in order to model other
wing tips than simple cut-offs, designers need the possibility to create curved leading
and trailing edges, still based on the reference trapezoidal wing shape.

On this purpose, extra functionalities
have been added to the basic Wing-
part architecture described in the
previous sections, which allow, for
example, the generation of rounded,
sharp and aft-swept wing tips (Fig.
5.10). Modeling of wing fairings or
the center section of BWBs can
benefit from the possibility to design
curved LE/TE edges (Fig. 5.11).

An extra set of dedicated parameters (refer to Table 5.3 for details) has been made
available via the MMG input file, which the user can set to generate partially or
completely curved leading and/or trailing edges.

Rounded Sharp Cut-off Aft-swept

Fig. 5.10: different types of wing tips
(Raymer, 2006)

Fig. 5.11: curved leading edges in the BWB center section and at the wing transition.

Chapter 5 Implementation of the HLP concept in the KBE system

157

In order to model Wing-part instances with curved LE/TE edges, the user must still
assign the input parameter required for the definition of a trapezoidal planform. In
fact, the new introduced parameters work as kind of “correction factors” for the
reference trapezoidal planform, as follows (refer to Table 5.3 and Fig. 5.13):

- the LE(TE)-interval-list parameter specifies the spanwise portion(s) of the LE
and TE edges to be curved and that (those) to be left unmodified.

- the Delta-Cr-TE/LE and Delta-Ct-LE/TE parameters modify the length of the
root and tip chords of the basic trapezoidal planform

- the Alpha-Cr-TE/LE and Alpha-Ct-LE/TE parameters specify the direction of
the tangency vectors of the curved LE and TE, at the root and tip,
respectively.

When the LE(TE)-interval-list parameter is not null, WingTrunkStructure first
generates a reference trapezoidal Wing-part instance, then, by means of the
abovementioned parameters and the dedicated classes CurvedLeadingEdge and

CurvedTrailingEdge (see Fig. 5.1), generates the new, curved LE/TE edges.
From these new curves follows a (not linear) chord length distribution, which is used

parameter example description

*-interval-
list

(list 0.3 0.6)

Specification of the curved portion of the *. The numbers in the
list are percentages of the Wing-part span.
If this list is empty, no curved parts will be defined on the *.
If equal to (0 x) only the part next to the root will be curved.
If equal to (x 1) only the part next to the tip will be curved.
If equal to (x y) both parts next to the tip and root will be curved.
If equal to (0 1) no straight part is defined on *.

Alpha-Cr-* (degrees 60)
Local * sweep angle at the root section (values <0 are also allowed).
This parameter is ignored in case *-interval-list is empty or equal to
(list x 1)

Alpha-Ct-* (degrees 90)
Local * sweep angle at the tip section. This parameter is ignored in
case *-interval-list is empty or equal to (list 0 x)

Delta-Cr-* 0.3
Extension (contraction if <0) of the * root chord length. This
parameter is ignored in case *-interval-list is empty or equal to (list x
1)

Delta-Ct-* -0.35
Extension (contraction if <0) of the * tip chord length. This
parameter is ignored in case *-interval-list is empty or equal to (list 0
x)

* stands for either LE or TE
X is a number in the range [0 1]

Table 5.3: parameters for the definition of Wing-part instances with curved LE/TE.

158

to define a new set of wing sections3. Finally, a new lofted surface is built through
this new skeleton of wing sections. The example of an aft-swept wing tip, with
relative parameters is shown in Fig. 5.12.

5.2.12 Modeling of control surfaces

In order to account for the effect of
deflected control surfaces in the
aerodynamic analysis of the aircraft,
additional dedicated MMG modules have
been developed. Deflected movable
surfaces such as ailerons, rudders and
elevators can be defined in any wing-part
primitive, with some level of flexibility in
their position and planform shape. The
input parameters for the movable

3 The trapezoidal Wing-part surface is actually intersected with at a set of planes orthogonal to the
LRS-lateral axis and appropriately distributed along the span. Each resulting intersection curve is then
scaled according to the new local chord value and “attached” to the new LE/TE curves in
correspondence of its LE/TE points.

Fig. 5.12: example of an aft-swept wing-
tip model with corresponding parameters

Fig. 5.13: Definition of a curved leading edge Wing-part instance.

Trapezoidal wing-part

LRS-lateral

LRS-longitudinal

Chapter 5 Implementation of the HLP concept in the KBE system

159

definition are described in Table 5.4.
The level of modeling detail is rather limited in the sense that the movables are not
generated as entities separate from the wing-part: there are no gaps, laps and slots
between movable and wing surface. No composite movables can be modeled (such
as elevators with trimming tabs), neither movables that increase the wing-part
surface (such as high lift devices with Fowler movement).

Nonetheless, the achieved level of modeling accuracy has proven adequate both for
the use of simple panel codes, as well as for higher fidelity aerodynamic tools, such
as the NLR CFD simulation tool ENFLOW (van Houten et al., 2005; van den Branden,
2004). In fact, when the goal is not computing the flow through the wing/movable
gap or slot or around the cut off area of the movable, but obtaining a reasonable
estimation of the overall pressure distribution, it is common practice to model lifting
surfaces with deflected movables just as continuous surfaces.

The Capability Module TEMovableSimulator has been developed to give the
Wing-Part HLP the extra capability to model movables (see the UML diagram of Fig.
5.1). The implemented modeling approach is summarized below, with support of Fig.
5.14.

Table 5.4: input parameters for movable definition.

parameter example description

Hinge-position-
root

0.7 Position of the movable hinge axis, indicated as fractions of the
root and tip chord length of the trapezoidal wing-part

Hinge-position-tip 0.7

Movable-start-
direction (degrees 5),

or,
fd

Orientation of the movable root and tip edges. 4 options:
fd � side edge of the movable parallel to flight direction
Hinge � side edge of the movable normal to hinge line
TE � side edge of the movable normal to Trailing Edge line
(degree x) � side edge of the movable rotated x degrees
clockwise with respect to the flight direction

Movable-end-
direction

Rotation-angle (degrees 8)
A positive angle to rotate the movable down. When equal to 0,
the TE-deflection procedure is disabled, although the definition
of the movable remains.

Start-movable 0.2

Position of the root and tip edges of the movable, indicated as
fraction of the wing-part length.
If equal to (0 x) the movable starts at the root of the wing-
part. Movable-start-direction ignored.
If equal to (x 1) the movable stops at the tip of the wing-part.
Movable-end-direction ignored.
If equal to (x y) the movable starts at x·(wing-part length) and
stops at y· (wing-part length).
If equal to (0 1) the movable starts at the root and ends at the
tip of the wing-part. Movable-start/end-direction ignored

End-movable 0.7

160

1. The unperturbed Wing-part instance surface is created based on the curves
generated by the WingSection class (Fig. 5.14-a).

2. The position and the orientation of the hinge line and the cut off planes that
determine the movable planform shape are evaluated based on the user defined
input values (Fig. 5.14-b)

3. The MovableSupportSection class intersects the unperturbed wing-part
surface with planes delimiting the movable side edges (Fig. 5.14-c). Although
only one cutting plane is shown in the figure, four very close parallel planes are
used to intersect the Wing-part surface at each movable side edge: two inboard
and two outboard of the given edge. These four intersection curves, are
necessary to “support” the operation at point 5.

4. All the unperturbed wing sections generated by WingSection plus the new

support curves are collected by the WingSectionForMovable class, which

submits them to the AirfoilDeflector Capability Module.

AirfoilDeflector selects the curves that belong to the movable area and
deflects their trailing edge as illustrated in Fig. 5.14-d: The selected curves are
cut in correspondence of the hinge line and the TE curve segments rotated
around the user defined hinge axis by the user defined rotation angle. The
generated gaps and overlaps are automatically sealed, trimmed and filleted as
shown in figure.

5. The final Wing-part surface is generated by lofting across the new set of
deflected and unperturbed wing sections. The four support curves generated at
each movable edge (of which two are deflected and two not) help the lofting
process to produce a smooth and regular surface, even in case of large
deflection angles. See the close up in Fig. 5.14-e.

The other three possible movable definition cases are shown in Fig. 5.14-f.

Chapter 5 Implementation of the HLP concept in the KBE system

161

Fig. 5.14: Step-by-step modeling process for wing-part surfaces with TE control
movable (a-e), with detail of the output geometry quality. Example of possible
wing-parts with movable configurations (f).

δ

(a)

(c) (d)

(b)

(e)

(f)

162

Another two movable modeling approaches have been implemented during this
research work. The second approach has been specifically developed to link the MMG
to the VSAERO panel code. There is no actual wing-part surface deformation
required by KBE system. A dedicated Matlab preprocessing module, called COALA,
has been developed to deflect the movable panels, directly in the VSAERO
preprocessing environment. To do that, COALA needs from the MMG a dedicated
XML file containing the discretization of the whole aircraft geometry and information
concerning the exact position, planform shape and deflection angle of the movables.
Details can be found in (Grotenhuis, 2007; Brouwers, 2007; Dircken, 2008; van Dijk,
2008). The approach developed to enable the MMG-COALA-VSAERO link will be
further addressed in Chapter 6.

 A third approach has been developed to account for the structural design and
manufacturing aspects of control movables in the preliminary design phase. A
separated KBE application, called PMM (Parametric Movable Model) has been
developed by van der Laan (van der Laan, 2008), which is a kind of MMG1 dedicated
to the design of aircraft movables. The MMG Capability Module
TEMovableSimulator , on the base of movable definition input, cuts the
undeflected wing-part surface around the movable boundaries (hinge line and side
edges), then exports this trimmed surface, together with some other metadata and
geometrical information to the PMM (van Houten et al., 2005). The latter is then
responsible to generate a detailed model of the movable, whose shape is fully
consistent with the master geometry produced and exported by the MMG. For the
structural analysis of the movable, the aerodynamic loads can be extracted by the
VSAERO model generated by the MMG/COALA system. More information about the
MMG-PMM collaboration can be found in Chapter 6.

1 The PMM KBE application actually shares a number of HLPs and CMs with the MMG.

Chapter 5 Implementation of the HLP concept in the KBE system

163

5.3 Wing-part Structure definition
In this section the generative approach implemented to design the wing-part
structure configuration is thoroughly described. The modeling system developed
allows for the design of a conventional spars & ribs structural concept. All
components are modeled using surfaces, no solids are used. The achieved level of
modeling detail is adequate for the conceptual/preliminary design phase. Details as
flanges, cleats, doublers, access holes etc. are beyond the scope of the current
modeling capabilities. Nevertheless, the designer is provided with a lot of freedom
and design flexibility, due to the full parametric definition of all the components.
The UML use case shown in Fig. 5.15 illustrates the main functionalities, and their
relations, required from the structural modeling system. Eventually, the main
requirements can be summarized as follow:

1. Provide the option to separate each wing-part in three main areas, i.e., the
leading edge (LE), the wingbox (WB) and the trailing edge (TE) areas, to
account for their different structural design requirements.

2. Provide a single generic wing-part primitive that allows to model the
abovementioned three areas as physically separated elements (including
separations by gaps) and allows the inclusion of movable components (e.g.,
ailerons, rudders, etc.).

3. Provide optional generation of spars and ribs in each of the three
abovementioned wing-part areas, with the freedom to position and orient
each structural element individually.

 The UML activity diagram in Fig. 5.16 shows how the structure generative process
has been implemented.

Fig. 5.15: the WingTrunkStructure system basic use case.

Generate ribs

Have gaps between
LE/WB/TE areas

Define structure
only in LE/WB areas

Define structrure
only in TE/WB areas

«extend»

Define structure in
LE/WB/TE areas

Define Structure

«include»

or

Generate spars

«include»

Generate WB spars

Generate LE spars

Generate TE spars

Generate WB ribsGenerate LE/TE ribs

«include»

«include»

«include»

Structure designer

WingTrunkStructure

164

The specific MMG module responsible for the structure generation is the
WingTrunkStructure class: together with the WingTrunkSurface class, one of
the two main components of the Wing-part HLP.
As shown in Fig. 4.18, WingTrunkStructure depends on the wing-part surface

generated by WingTrunkSurface . Indeed, the first activity in the whole structure
generation process (Fig. 5.16) is “generate outer surface”, whose details have been
addressed in the previous section.
The activity diagram in Fig. 5.16 can be used also as a guide to the content of the
next sections. As usual, the reader can refer to Appendix A for a summary of the
basic UML notation. Appendix F provides the detailed class diagram of the whole
WingTrunkStructure aggregation.

Fig. 5.16: UML diagram showing the main activities involved in the generation of
the wing-part structure configuration.

See section 5.2

See section 5.4

See section 5.5

See section 5.6

generate outer surface

generate spars

split outer surface in LE, WB and TE upper/lower surfaces

generate ribs

Define WB-ribs

Define LE-ribs Define TE-ribs

See subactivity diagram
relative to the generation
of LE, WB and TE areas

See subactivity
diagrams relative
to spar definition
and generation

See subactivity diagram
relative to rib definition
and generation

Each LE and TE rib
is defined with
respect to a
corresponding WB rib

Chapter 5 Implementation of the HLP concept in the KBE system

165

5.4 Spars definition
The spars definition use case of Fig. 5.17 (limited to the spar definition process
within a Wing-part) extends and details the “generate spars” use case of Fig. 5.15.
Note the two imposed constraints to the generation of spars:
1. Spars must be planar (i.e. no warped spar webs allowed)
2. The shape of the spars must be tailored to the outer wing-part surface (hence

they should be adaptive to the eventual changes in the given aerodynamic
shape)

And the following requirements:
• It should be possible to define spars in all the three LE/WB/TE areas
• It should be possible to define spars using two different positioning methods, i.e.

point-to-point and point-and-angle (see explanation below)
• It should be possible to define special kinds of spars (e.g., virtual spars) and/or

assign them special functionalities (e.g., delimit the volume of the wing fuel-
tanks)

The definition of the spars is of great importance for the specification of other
structural components in the wing-part. The physical division of the wing-part in the
three LE/WB/TE areas depends on the actual location of the spars (details in section
5.5) and spars are also used to provide a positioning reference for the ribs in the
wing box and LE/TE areas (details in section 5.6).

Fig. 5.17: WingTrunkStructure (SPARS) system use cases

166

5.4.1 Spars generative process

All the LE/WB/TE spars are generated through the following sequence of activities:
• Two points per spar, called spar-points, are identified on the root and tip chords

of the given wing-part surface, by means of the user defined parameters spar-
offset-list-root and spar-offset-list-tip.

• A straight line, called spar-line, is drawn through these points.
• The spar-line is projected along the LRS-vertical axis, onto the upper and lower

part of the wing-part surface.
• Finally, the spar surface (actually the spar web surface) is generated by the linear

interpolation of the two projection curves (i.e., upper-spar-curve and lower-spar-
curve). The ICAD geometry primitive ruled-surface is used for the scope.

The spar generation procedure is illustrated in Fig. 5.18.

In order to define the spar points on the root and tip chords of the wing-part, the
user can choose between two methods, so-called “point-to-point” and “point-and-
angle’”.
With the point-to-point method, the user indicates directly the positions of the root
and tip spar-points as fractions of the root and tip chord length, respectively.
With the point-and-angle method, the user indicates the position of one of the two
spar-points as fraction of the relative chord length, and the angle that the given spar
should form with the flight direction vector. In this case, the MMG will automatically
derive the coordinates of the second spar-point and proceed with the same
generative process as above.
By using the point-to-point method, the orientation of the spars is always affected by
changes in chord lengths and sweep angle. In case the orientation of the spars
should not change with wing sweep and taper ratio, then the point-and-angle
method should be used. See examples in Fig. 5.19 taken from the MOB study (La
Rocca and van Tooren, 2002a).

Fig. 5.18: Step-by-step generation process of spars geometry.

Chapter 5 Implementation of the HLP concept in the KBE system

167

In both cases, chord fractions and/or angle values are assigned using the same input
parameters: spar-offset-list-root and spar-offset-list-tip1. Table 5.5 reports the list of
the parameters required to define spars in the TE/WB/LE areas of a given wing-part.
Examples and notes for the user are included.
A snippet of the MMG input file, with examples of spars definition is provided in
Appendix G.
The details (sub-activities) of the “generate spars” activity of Fig. 5.16, can be found
in Appendix E.

Parameter Example Description

*-type-of-spar-XX (list ‘r … ‘v)

• ‘r for real spar
• ‘v for virtual spar
• (list ‘r A B) for a spar that is real from the fraction

A to the fraction B of the spar length
• (list ‘v A B) for a spar that is virtual from the

fraction A to the fraction B of the spar length
• ‘f for a fuel tank spar.

*-spar-offset-list-root-XX (list 0.2 … 0.6)
A fraction of the chord length for point-to-point spar
positioning (i.e., a number in the range [0,1]), or an
angle value (expressed in degrees and > 1) for the
point-and-angle positioning. *-spar-offset-list-tip-XX (list 0.2 … 90)

NOTES:
* stands for the given lifting surface configuration, e.g. wing, fin, winglet, etc.
XX stands for LE, WB or TE.
A, B are numbers in the range [0 1] indicating a fraction of the given spar length
RULES:
The three lists must have same length.
The values of *-spar-offset-list-root-XX and *-spar-offset-list-tip-XX defining a given spar cannot be
simultaneously > 1 (i.e., both angles).

5.4.2 The spars generative approach: rules, capability and limitations

• Since the projected spar-lines used to define the spar surface are projection-
curves on the wing-part surface, the shape of the spars is always tailored to the
surface generated by the WingTrunkSurface class.

1 As shown in Table 5.5, there is no additional switch/parameter to indicate whether the point-to-point
or point-and-angle method should be used. When the user defines a spar-offset value larger than one,
the system assumes automatically that the point-and-angle method is to be triggered. This “trick”
simplifies (and limits the amount of parameters in) the input file, at “the cost” of excluding the
possibility to position a spar at a null angle with respect to the LRS-longitudinal axis, hence parallel to
the wing sections…

Table 5.5: input parameters for spars definition.

168

• There is no limit to the maximum amount of spars that can be defined in each
wing-part and each wing-part area (LE/WB/TE). The designer can add/remove
spars in any given wing trunk, just adding/removing the relative values in the
MMG input file lists.

• A minimum of two spars is required in the WB area.
• The MMG assigns an index number to each spar, which starts from zero for the

first spar defined in the LE-spars-offset-list and increases till n for the last spar in
the LE-spars-offset-list. Then the index goes from n+1 to m from the first to the
last spar in WB-spars-offset-list. From m+1 till k from the first to the last spar in
TE-spars-offset-list the same list and so on. See example in Appendix G. This
index number is used to address the single spars, when used as reference for the
ribs positioning and orientation procedure.

• In the same wing-part, spars can be generated both with the ‘point-to-point’ and
‘point-and-angle’ methods.

• More spars can start/end in the same points, but are not allowed to cross each
other. To define a spar running out onto another spar, the correct approach is
defining two contiguous wing-parts and let the two spars just meet at the
interface (see Fig. 5.20).

• Spars must extend from the root to the tip section of one wing-part area (see Fig.
5.20).

• No curved spars can be generated
• Spars are not warped even if generated inside twisted wing-parts, because the

spar-lines are projected along the direction of the vertical axis of the Wing-part
local reference system (defined in section 5.2.4).

Fig. 5.19: Examples of the two spars positioning procedures: Point-to-point (left) and
Point-and-Angle (right).

0.7 Ctip

0.15 Ctip

90 90

:fs-spar-offset-list-root (list 90 90)
:fs-spar-offset-list-tip (list '0.15 '0.70)

:ow-spar-offset-list-root (list '0.15 '0.70)
:ow-spar-offset-list-tip (list '0.15 '0.70)

0.7 Croot

0.15 Croot

0.7 Ctip

0.15 Ctip

INPUT
FILE

INPUT
FILE

FLIGHT direction

Stretched/elongated fuselage

0.7 Ctip

0.15 Ctip

90 90

:fs-spar-offset-list-root (list 90 90)
:fs-spar-offset-list-tip (list '0.15 '0.70)

:ow-spar-offset-list-root (list '0.15 '0.70)
:ow-spar-offset-list-tip (list '0.15 '0.70)

0.7 Croot

0.15 Croot

0.7 Ctip

0.15 Ctip

INPUT
FILE

INPUT
FILE

INPUT
FILE

INPUT
FILE

FLIGHT direction

Stretched/elongated fuselage

Chapter 5 Implementation of the HLP concept in the KBE system

169

5.4.3 Definition of real, virtual, semi real/virtual spars

Via the input file parameter type-of-spar, users can associate to each spar one of the
specific properties/functionalities indicated in Table 5.5.
Of particular interest are the so-called virtual spars. They are defined in the same
way as the real spars. Like real spars they can be used as positioning reference for
ribs and they contribute to the wing-part segmentation process to support FE
analysis, addressed in Section 4.7.1 and thoroughly described in Chapter 6. The
difference is that they are not accounted as true structural elements; as such, they
are excluded from any model generated for structural analysis support.

Semi-virtual or semi-real spars (refer to Table 5.5) can be used to model wing-
part configurations where, for example, one spar out of three runs out at a certain
span fraction. Without virtual spars the user would be forced to define two adjacent
wing trunks, one with three spars and the other with two. However, this solution
might create problems later, during the pre-processing phase for FE analysis (see
more in Chapter 6). The definition of a virtual spar in the second wing-part,
positioned as extension of the one running out, would solve the problem. However,
a more convenient solution, which would not even require the overhead of defining
two wing-parts, is that of using a semi-real spar, hence a spar which is real only for a
fraction of its own length. An example of a semi-real spar is shown in figure Fig.
5.24.

5.5 Definition of Wing box, Leading Edge and Trailing
edge areas
Once the spars have been defined, WingTrunkStructure can start the process of
surfaces intersection to segregate the wing-part surface generated by

Fig. 5.20: Example of valid and wrong spars definitions.

Spars crossing
each other

Spar not going from
root to tip section

More spars starting or
ending at the same point

Not correct!

Correct!

Spars crossing
each other

Spar not going from
root to tip section

More spars starting or
ending at the same point

Not correct!

Correct!

170

WingTrunkSurface according to the three leading edge, trailing edge and wing
box areas. For each area an upper and a lower skin panel is obtained (Fig. 5.21).
The procedure can be summarized as follow (refer to Appendix H for the detailed
UML activity diagram):
1) WingTrunkStructure selects in the list of user-defined WB spars the two spars

closest to the LE and TE lines of the wing-part. These two spars, no matter if real
or virtual, will determine the wing-box area.

2) Then WingTrunkStructure checks the list of LE spars. If the list is empty:
− No leading edge structure will be generated at all (similar procedure for the

TE area).
− Otherwise, the LE spar farthest from the leading edge curve will determine the

extension of the LE area. In case this spar is not coincident with the first spar
in the WB area, a physical gap between the LE and WB area will be generated
(see examples in Fig. 5.22). When the last LE spar and the first WB spar
coincide, one of the two can be defined as virtual spar (similar procedure for
the TE spars).

Fig. 5.22: examples of wing-parts with definition of LE/WB/TE areas

GAP

Wing-Part surface

Fig. 5.21: Wing-part surface intersection in LE/TE/WB areas and upper/lower panels

Chapter 5 Implementation of the HLP concept in the KBE system

171

This modelling approach allows the generation of centre wing sections (the part of
the wing that crosses the fuselage), where no LE and TE areas are present.
It also allows defining wing-part models for structural analysis that include a movable
component. The gap allows the physical separation of fixed and movable wing parts,
while simplified hinge brackets can be automatically generated in accordance with
user-defined hinge-ribs (see next section).

5.6 Ribs definition
Similar to the modelling of the spars, the level of detail for the ribs is low but
adequate for the evaluation of the global structural behaviour of wing-like systems,
using FE analysis. All ribs are modelled as plain surfaces, without flanges and any
kind of cut-out. Actually, what is modelled is just the web surface of each rib.
The requirement analysis for the rib modeling system has been summarized below.
Refer to Appendix J for the complete UML use case.

User defined functionality: the designer should be allowed to perform the following
operations:
• Define any number of ribs in any wing-part, with the possibility to position and

orient each rib independently,
• Make use of any of the following items as references for the position and

orientation of each rib: flight direction, LE and TE curves and any of the spars
defined in the given wing-part.

• Define special kinds of ribs (e.g., virtual/semi virtual ribs) and/or assign them
special functionalities (e.g., define boundary wall for fuel-tank, support hinge
brackets for attachment of movables (control surfaces))

User defined constraints for the rib generation:
• The shape of the ribs must be tailored to the outer wing-part surface (hence they

should dynamically adapt to any change in the surface generated by the
WingTrunkSurface class)

• The ribs must lie on planar surfaces
• The planes containing the ribs must be parallel to the vertical axis of the Wing-

part local reference system (defined in section 5.2.3)
• The ribs defined in LE/TE areas should have a corresponding rib (no matter if real

or virtual) defined in the WB area, to be used as positioning reference (this
follows from the need of generating valid segmented models for FE analysis.
More information in Chapter 6)

172

5.6.1 Ribs generative process

All the ribs in the wing-box area (the WB-ribs) are generated through the following
sequence of activities illustrated in Fig. 5.23 (point and vector definitions in next
section):
• A WB-rib-plane is defined, which requires:

o the definition of a point (the WB-rib-point)
o the definition of a vector (the WB-rib-vector).

• The upper and lower wing-box skin panels are intersected by the WB-rib-plane to
generate the WB-upper-rib-curve and the WB-lower-rib-curve

• The actual WB-rib surface is generated by interpolation between the two
intersection curves generated as described above. As in the case of spars, the
ICAD geometry primitive ruled-surface is used.

In order to generate LE and TE-ribs, the procedure is very similar to the one
described above, with the only difference found in the definition of rib-point, which,
in the case of LE/TE-ribs, is automatically calculated as the intersection of the
corresponding WB-rib-plane, with the spar-line of the front WB-spar (back WB-spar
for TE-ribs). The rib-vector of LE/TE-ribs is still assigned by the user as for WB-ribs.

The positioning of the rib-point (only for WB-ribs) and the orientation of the rib-
vector can be determined by the user by means of four specific parameters in the
MMG input file:

1. rib-positioning-referred-to-spar (to be set only for only for WB-ribs)
2. rib-positioning-offset-list (to be set only for WB-ribs)
3. rib-orienting-referred-to-spar
4. rib-orienting-angles-list

Find in Table 5.6 for the detailed list and explanation of the rib definition parameters.
A snippet of the MMG input file, with examples of rib definitions inside a multi wing-
part vertical tail, is provided in Appendix I.

Fig. 5.23: Step-by-step generation process of a WB rib.

Chapter 5 Implementation of the HLP concept in the KBE system

173

The way the four abovementioned parameters are used to define the rib-point and
rib-plane for any rib can be summarized in the following four steps:
1. (Only for WB-ribs). The spar-line of spar n is selected as reference curve to

position the rib-plane-point. The spar number n is assigned via the input
parameter rib-positioning-referred-to-spar. The LE/TE lines can also be selected
in place of a spar.

2. (Only for WB-ribs). The rib-point is found on spar n (or on LE/TE line), at a
distance from the root (measured along the given spar or the TE/LE line) equal to
a fraction of the length of spar n (or LE/TE), as indicated via the input parameter
rib-positioning-offset-list

3. Another (or the same) reference spar m (or the LE/TE line or the flight direction
vector) is selected via the parameter rib-orienting-referred-to-spar.

4. The spar line vector (pointing from root to tip point) of spar m (or the direction
vector of LE/TE line) is then rotated around the vertical axis of the wing-part local
reference system, by the angle (in degrees) defined by parameter rib-orienting-
angles-list. Hence, the rib-plane-vector results determined.

Similar to the spar definition approach, a variant to the point-and-vector approach
described above, the so-called point-to-point approach, has been developed, still
based on the manipulation of the same four input parameters.
Only step 4 of the sequence above is affected as follows:
4. (point-to-point): in case a value < 1 is assigned to the parameter rib-orienting-

angles-list, this value is not interpreted as an angle, but as a fraction of the
length of spar m (or LE/TE line). Hence a second point is generated on spar m
(or LE/TE line), at the root offset distance indicated by rib-orienting-angle-list.
This second point and the previously generated rib-plane-point are then used to
define the actual rib-plane-vector2.

This (apparently) complex procedure to define and generate ribs has been
thoroughly documented with a series of UML activity and sub-activity diagrams,
available in Appendix K.

5.6.2 The ribs generative approach: rules, capability and limitations

• The number of ribs that can be defined in a wing-part is unlimited.
• There is no order in which ribs must be defined in the input file (e.g. from root to

tip etc.)

2 Similar to the spar case, this approach avoids complicating the input file with the addition of an
extra switch/parameter. Similar to the spar case, the cost for the modeling flexibility is null: indeed,
ribs oriented at angle smaller than 1 degree with respect to a spar are not realistic.

174

• Partial ribs can be generated, i.e., ribs that do not start and end in
correspondence of a spar (or LE/TE line), but intersect the root and tip edge of
the wing-part

• Ribs should not cross each other, however partial ribs can run out on ribs that are
positioned at the root and tip section of a wing-part. (i.e., partial ribs).

• Similar to spars, virtual or semi-virtual/real ribs can be defined (refer to section
5.4.3 for the scope of virtual elements).

• A LE/TE-rib always needs a WB-rib in order to be generated (although the given
WB-rib can be a virtual one)

• Vice versa, for each WB-rib, a LE/TE rib must always be defined in the input file.
However, if a given LE/TE-rib is not required, it can be defined as virtual, or
suppressed by setting the corresponding input parameter type-of-LE/TE rib = ‘x.
In this last case, the user must be aware that the rib will not affect the surface
segmentation process to support FE analysis.

• Hinge ribs can be defined setting type-of-LE/TE-rib = ‘h. A hinge rib triggers the
generation of simple hinge brackets (La Rocca and van Tooren, 2002a) and
affects the position of hinge slots in the movable models generated by the PMM
(van der Laan, 2008; van Houten et al., 2005)

• It is possible to define WB-ribs with corresponding, not coplanar LE/TE ribs.

Fig. 5.24 shows some examples of modelled ribs with relative input parameter
definition.

Chapter 5 Implementation of the HLP concept in the KBE system

175

Fig. 5.24: example of the structure configuration of the fin of a commercial
transport aircraft (with some ribs definitions).

176

Parameter Example Description

*-type-of-rib-XX (list ‘r ‘x … ’v)

• ‘r for real (normal) rib
• ‘v for virtual rib
• (list ‘r A B) for a rib real from

A·rib-width to B·rib-width
• (list ‘v A B) for a rib virtual from

A·rib-width to B·rib-width
• ‘f for a fuel tank end rib.
• ‘h for a hinge rib
• ‘x (only for LE/TE-ribs) to

suppress the given LE/TE-rib

*-rib-positioning-referred-to-spar (list 0 … ‘LE ‘TE)
• A spar identification number
• ‘LE for the LE line
• ‘TE to the TE line

*-rib-positioning-offset-list (list 0.1 … 0.2)
A fraction of the selected reference
item (spar, LE or TE line)

*-rib-XX-orienting-referred-to-spar (list 0 ‘LE ‘TE ‘FD)

• A spar identification number
• ‘LE for the LE line
• ‘TE to the TE line
• ‘FD for flight direction

*-rib-XX-orienting-angles-list (list 0 90 … 0.2)

A number ≥ 1 to indicate an angle
(in degrees).
(Point-and-vector method)

OR
A number in the range [0 1] to
indicate a length fraction of the
element indicated by *-rib-XX-
orienting-referred-to-spar.
(Point-to-point method)

NOTES:
− * stands for the given lifting surface configuration, e.g. wing, fin, winglet, etc.
− XX stands for LE, TE or nothing for WB-ribs.
− A, B are numbers in the range [0 1], hence represent fractions of the rib width.
− *-rib-positioning-referred-to-spar and *-rib-positioning-offset-list are not defined for LE/TE-

ribs.
− When *-rib-XX-orienting-referred-to-spar = ‘FD, the value of *-rib-positioning-referred-to-

spar is not relevant (but must be assigned anyway!) because all spars and LE/TE lines are
straight.

− When *-type-of-rib-LE or *-type-of-rib-TE = ‘x, the corresponding values of *-rib-XX-
orienting-referred-to-spar and *-rib-XX-orienting-angles-list are not relevant (but must be
assigned anyway!).

RULES:
− The length of all the lists must be equal.
− With the point-to-point rib positioning method, the corresponding values of *-rib-positioning-

referred-to-spar and *-rib-XX-orienting-referred-to-spar must be different.

 Table 5.6: input parameters for ribs definition

Chapter 5 Implementation of the HLP concept in the KBE system

177

5.7 Implementation of the Connection-Element High
Level Primitive
Complex wing configurations, like multi-kinked wings with discontinuities in sweep
and/or dihedral angles can be defined using multiple wing parts.
When two adjacent trunks, k and k+1, are used with the same dihedral angle, and
the tip airfoil of wing-part k is the same as the root airfoil of wing-part k+1, the
overall wing surface results “sealed” at the trunks’ interface automatically. The
resulting surface might be discontinuous (a kink in the wing), but is still watertight3.
However, when a dihedral angle change occurs across two adjacent wing-parts, the
relative rotation of their local reference systems (Fig. 5.4) generates gap and overlap
areas in the wing surface, which needs to be resolved to restore the watertight
condition. Also the disrupted continuity of the spars needs to be resolved4.

As shown in the class diagram of Fig. 5.25, it is the LiftingSurface class
that checks for variation of dihedral angle between adjacent wing-parts and
automatically demands the necessary number of instantiations of the
ConnectionElement class. Similar to Wing-Part, the Connection-Element HLP is a

3 In the field of computer graphics, these cases are said to be g0 continuous, but g1 discontinuous.
G0 is the term used to indicate continuity of position, g1 continuity of tangency (and g2 continuity of
curvature).

4 The possibility of restoring the continuity of ribs that cross Wing-part instances with different
dihedral has not be considered here. In case of dihedral discontinuity, the most common structural
design solution is to place a rib along the discontinuity rather than crossing it. In the case of a rib
crossing two adjacent Wing-part instances that are dihedral continuous, the user will have the
possibility to define two partial ribs (one per wing part) and take care of their relative positioning.

Fig. 5.25: UML class diagram showing relationships and architecture of the Connection-
element HLP

178

composition of two modules, namely the ConnectionSurface and

ConnectionStructure classes, whose functionalities will be addressed in the
following sections.

5.7.1 Wing-parts connection surface definition

The generative process to build a connection surface between two contiguous wing-
parts consists of two main phases:

1. Trimming of the two contiguous wing-parts extremities (in order to cut away
the “problem area”)

2. Generation of a blend surface as actual instantiation of the
ConnectionSurface class.

As shown in the UML diagram Fig. 5.25, LiftingSurface class has the

responsibility to evaluate the required number of ConnectionElement
instantiations and to demand the subsequent trimming phase. The
ConnectionSurface class is responsible for the final generation of the connection
surface, which takes place during the blending phase of the process.

Trimming phase (Fig. 5.26-top)
Given the two adjacent wing-parts (addressed in figure as WT-1 and WT-2),
positioned with different dihedral angles:

1. Trimming Curve-1 is determined by intersecting the WT-1 surface with a plane
parallel to WT-1 tip-airfoil and tangent to WT-2 root airfoil.

2. Trimming Curve-2 is determined by intersecting the WT-2 surface with a plane
parallel to WT-2 root-airfoil and tangent to WT-1 tip airfoil.

3. WT-1 and WT-2 surfaces are trimmed using Curve-1 and Curve-2,
respectively. In this way the surface areas at the tip of WT-1 and at the root
of WT-2 are removed, and so are the gap/overlap problems.

Blending phase (Fig. 5.26-low)
Once the gap/overlap area has been cleared, a surface connection element is
generated to blend the two trimmed wing-parts and restore the watertight surface
condition. ConnectionSurface inherits its “blending capability” from the ICAD
geometry primitive Edge-Blend-Surface (Knowledge Technologies International,
2001b), for which the following inputs are required:

1. The trimming curves Curve-1 and Curve-2 defined above.
2. The WT-1 and WT-2 wing-parts surfaces (to provide the tangency condition of

the blend)
3. The two parameters ratio-1 and ratio-2, which are required to define the

relative influence the WT-1 and WT-2 surfaces have on the blend shape.

Chapter 5 Implementation of the HLP concept in the KBE system

179

The first two sets of inputs are automatically computed by ConnectionSurface .
Whatever the shape of the two adjacent wing-parts and the change in dihedral
angle, the trimming phase will trigger and prepare the surfaces for blending. The
definition of the third set of inputs to adjust the fullness of the blend remains the
responsibility of the user. The ratio parameters Ratio-1 and Ratio-2 are available via
the MMG input file and can take a value between zero and one. Values close to one
will enforce the blend surface to maintain as far as possible the shape of the
corresponding wing-part surface, which might lead to wavy connection surfaces
because of the too high gradients of curvature (Fig. 5.27 top-left, top-right). On the
other hand, a null ratio value nullifies the influence of the relative surface; also the
tangency condition is then no longer enforced (Fig. 5.27 low-left). In general a value
around 0.3 for both ratios, guarantees the best blend (Fig. 5.27 low-right).

WT-2WT-1

Curve 1
Curve 2

Tangency points

Parallel
planes

Parallel
planes

Surface parts to
be trimmed

WT-2WT-1

Curve 1
Curve 2

Tangency points

Parallel
planes

Parallel
planes

Surface parts to
be trimmed

WT-2WT-1

Curve 1
Curve 2

Parallel

planesParallel
planes

The blend
element

WT-2WT-1

Curve 1
Curve 2

Parallel

planesParallel
planes

The blend
element

GAP

OVERLAP

Fig. 5.26: trimming and blending operations to build a connection element

180

5.7.2 Wing-parts connection structure definition

The role of the ConnectionStructure is to restore the physical continuity of the
structural elements (i.e. skin panels and spar elements) across adjacent wing-parts,
when this is lost because of the relative wing-parts rotation. The level of detail of the
structural connection is basic, and the scope is to guarantee load path continuity,
when performing a global structural analysis of a wing-like system. There is no intent
to model and investigate the effect of different technical solution for the connection.

The generative process for the structure connecting elements can be
summarized in the following steps (refer to the illustrations in Fig. 5.28 for the
terminology used below):
1. The ConnectionStructure class gets as inputs the tip edge-curves of wing-

part k and the root edge-curves of wing-part k+1. These edges-curves are
computed by the WingTrunkStructure module of the Wing-part HLP.

2. The edge-curves are used to generate a series of blend-segments, with the same
approach – and the same blend ratio values – as used for the generation of the
connection-element surface5. The blend-segments recreate the continuity
between the skin panels of the adjacent wing parts

5 In the Wing-part HLP, the associativity between outer surface and inner structure is achieved by
generating first the outer surface and then using it as “mold line” to define spars and ribs (see the
spar-lines projection and rib-planes intersection methods described in 5.4.1 and 5.6.1). In the case of
the Connection-element HLP, the inner structure is not built by intersecting/projecting on the outer
connection surface. However, the associativity is still guaranteed by generating the blend-segments

Fig. 5.27: Effect of blending ratios on the shape and tangency conditions of
ConnectionSurface

Chapter 5 Implementation of the HLP concept in the KBE system

181

3. The longitudinal boundary curves of the blend-segments (indicated as Curves
up/low in figure) are then used to generate, by linear interpolation, the surface
of the spar-connection-segments (again, the ICAD primitive Ruled-Surface is
used). This recreates the continuity between the spars of the adjacent wing parts

In Fig. 4.7 of Chapter 4, an example of restored spar continuity between wing and
winglet is shown.

The success and the quality of the process described above depend strongly on the
correct definition of the spars in the adjacent wing-parts that have to be connected.
Fig. 5.29 shows examples of valid and bad spar positioning for the MOB BWB. The
figure shows that it not necessary that adjacent wing-part have the same amount of

with the same blend ratios, (part of) the same reference curves and (part of) the same reference
surfaces, as used to generate the connection-element surface. In fact, stitching the various blend-
segments together would lead exactly to the same edge-blend surface of section 5.7.1.

Fig. 5.28: generation of the connection elements between two contiguous wing-parts.

Edge-curves
Edge-curves Wing-part K

Wing-part K+1

Blend Segments

Spar connection segments

Curves up

Curves Low

182

spars. It is important that the number of upper and lower edge-curves (Fig. 5.28)
match properly.
A control system has been implemented inside ConnectionStructure to check
the validity of the model configuration before triggering any connection generation.
If the check signals an incorrect situation, the generation of the structure connection
elements is skipped to avoid crashing the MMG session.
Rules have been implemented such that a virtual spar-connection-segment is
automatically generated if the connecting spars are virtual.

5.8 Towards a unified connection-element
Other types of connection elements are required to deal with different situations than
adjacent wing-parts with dihedral angle discontinuity. Connections to link horizontal
and vertical tail planes in cruciform, T-tail and H-tail configurations and connections
to link wings, canards and tail empennages with the fuselage require the
development of separate classes. Some of these have been developed (besides the

Fig. 5.29: Example of valid and wrong structural modeling for the generation of
structure connection elements between adjacent wing-parts.

Chapter 5 Implementation of the HLP concept in the KBE system

183

one detailed in 5.7.1) in this research work; mostly to enable the generation of
accurate aerodynamic models for a range of different aircraft configurations. While
we have progressed towards almost one generalized surface-connection element, the
structure connectivity aspects have been typically solved with ad-hoc solutions
(Meijer, 2003; Cerulli et al., 2006; Cerulli et al., 2005) and will not be addressed
here.
The generation of a connection surface, whatever the type of elements to be
connected, always requires the following two main steps:

1. Preprocessing of the parts to be connected

2. Generation of the connecting surfaces

The trimming and blending phases described in Section 5.7.1 are just a
demonstration.
The scope of the first phase is to deliver two proper curves, which can be used in the
second phase to build an appropriate surface.
The differences between the various connection-generation cases are found mainly
in the preprocessing methods used to derive the two curves (which again depends
on the relative position of the parts to be connected), and the sort of connecting
surface that has to be generated.
Table 5.7 provides a matrix with the most recurrent connection cases when
assembling an aircraft with HLPs. For each case, a list of typical preprocessing
activities and possible types of surface generation are indicated based on experience.
The preprocessing operations are not listed in a logical or required order; neither are

Fig. 5.30: example of Horizontal/Vertical tail connection generated by the MMG.

184

they all required in each case. Some operations can be seen as alternatives for each
other. It can be noted that many operations are common to the three main
connection cases, which is a prerequisite for the definition of a unified connection
modeling approach.

When an a connection-element instance is required, the system should be able to
derive automatically the list of involved surfaces, irrespective of the type of parts to
be linked, and select a combination of preprocessing and surface generation methods
from the matrix, either a default (best-practice) combination, or the one specifically
required by the user (for example via the MMG input file)6. More details can be found
in reference (van Dijk, 2008).
For example, to connect the horizontal and vertical tailplanes of a cruciform tail
configuration, the connection-element class should know that the affected surfaces
are the root wing-part surface of the horizontal-tail and any of the fin wing-part
surfaces. Then the surface of the horizontal tail could be extended to intersect one or
more vertical tail wing-parts. The intersection curve (or the curve composed of the
various intersection curve elements across different fin wing-parts) can be adjusted if
required (e.g., scaled) and used, together with the root airfoil curve of the
horizontal-tail, to build a lofted surface, or a blend surface, etc. Fig. 5.30 shows an
example of a horizontal/vertical tail connection, generated by the MMG (van Dijk,
2008).

There are cases of connections where no surfaces/curves preparation is
required and the final connection surfaces can be directly generated. This is the case
of blended winglets, where a blend surface can be generated directly from the tip
section of the wing to the root section of the winglet. In this case, the challenge is to
ensure a proper relative positioning of the two parts. Refer to (La Rocca and van
Tooren, 2002b; Meijer, 2003; Brouwers, 2007) for details.

There are cases where three parts must connect to each other at the same
time, such as H-tail configurations or the Airbus-typical wingtip fences. Reference
(Brouwers, 2007) shows how to handle those situations as combinations of the first
two cases in Table 5.7.

6 The way connection surfaces are defined can largely affect the pre-processing of the overall aircraft
for aerodynamic analysis. In fact, the number and the shape of the surface patches can vary
significantly. Certain types of connections can be used to facilitate the preprocessing for analysis, even
if they differ from the real aircraft geometry. Of course, the difference should be acceptable to not
invalidate the analysis result. Refer to (van Dijk, 2008; van den Branden, 2004) for more info on this
issue..

Chapter 5 Implementation of the HLP concept in the KBE system

185

 Adjacent wing-parts Transversal wing-parts Wing-part/fuselage

P
re

p
ro

ce
ss

in
g

• Surface trimming
• Insert of extra control

curve(s)
• (re)positioning of the

surfaces

• Surface trimming
• Insert of extra control

curve(s)
• Surface extension
• Surfaces Intersection
• Consolidation of multi

segment
intersection/projection
curve(s)

• Curve Projection
• Scaling of

intersection/projection
curve(s)

• Repositioning of
intersection/projection
curve(s)

• Surface trimming
• Insert of extra control

curve(s)
• Curve projection
• Wing-part surface extension
• Surfaces Intersection
• Scaling of

intersection/projection
curve(s)

• Repositioning of
intersection/projection
curve(s)

S
u

rf
a

ce

g
e

n
e

ra
ti

o
n

• Lofted-surface with
single set of curves

• Lofted-surface with two
set of intersecting
curves

• Ruled-surface
• Edge-blend-surface

• Lofted-surface with single
set of curves

• Lofted-surface with two set
of intersecting curves

• Ruled-surface
• Dual-blend-surface

• Lofted-surface with single
set of curves

• Lofted-surface with two set
of intersecting curves

• Ruled-surface
• Dual-blend-surface
• Filleted-surface

Table 5.7: recurrent cases requiring the generation of a connection element. Typical
surface preprocessing operations and type of connection surfaces are indicated for each
case

186

5.9 Fuselage High Level Primitive implementation
In the following two sections the basic characteristics and functionalities of the
Fuselage primitive are briefly illustrated. Details concerning the technical
implementation in the ICAD system are not included here, but be found in the
following references (Meijer, 2003; van den Branden, 2004; Koopmans, 2004; Cerulli
et al., 2004; van Houten et al., 2005). The intent of this section is to illustrate the
implemented parametric modeling approach and the achieved level of flexibility.
Similar to the Wing-part, the Fuselage HLP has a modular architecture, where
separate classes have been defined to model the outer surface and the internal
structure (see class diagram in Fig. 5.31). Also in this case, the structural
components are generated using the outer surface as a support, such that the
fuselage structure is always tailored to the outer surface.

5.9.1 The fuselage primitive surface generation

The modeling approach implemented to generate the outer surface of the fuselage
primitive is rather simple and aims at the generation of one, continuous aerodynamic
surface extending from nose to tail.

Fig. 5.31: class diagram of the Fuselage HLP.

Chapter 6 Implementation of the CMs and operation of the MMG

187

The procedure consists of the following main steps:
• Definition of a skeleton of support curves
• Interpolation of a B-spline surface1 on top of this skeleton.
• (optional step) Local modification (morphing) of the obtained surface adjusting

the B-spline surface weights.
The first step is fundamental to the quality and accuracy of the overall fuselage
design. Again, two different possibilities are offered to the designer (a parameter in
the MMG input file allows the selection) to define the skeleton of curves. The two
options allow for two different levels of control on the final shape:
1. Skeleton definition based on sets of longitudinal and circumferential curves
2. Skeleton definition based on a set of circumferential curves only

Option 1:
This modeling approach is based on the definition of both longitudinal and
circumferential curves (see Fig. 5.32).
First, four longitudinal curves must be defined, namely the crown curve, the belly
curve and two side curves (actually the definition of the left side curve is sufficient
because of the fuselage lateral symmetry). These curves are built by the Fuselage
HLP interpolating through sets of user-defined 3D points, stored as .dat files.
Once the longitudinal curves are in place, they can be used to position an arbitrary
amount of circumferential curves, of which the user can assign the longitudinal
position.

1 Details on the definition of B-spline surfaces can be found directly in the ICAD Surface Designer
(Knowledge Technologies International, 2001b) user manual, or in the Farin textbook (Farin, 1988),
which contains ICAD’s underlying mathematical representation.

Fig. 5.32: definition of the curve sets used to model the fuselage primitive surface

188

The circumferential curves are actually defined by merging 4 curve segments: the
upper-left curve, the lower-left curve and the two right counterparts. The left curves
can be selected by the user among those stored in a pre-generated library (the
upper/lower-right curves are automatically generated by symmetry). Similar to the
Wing-part HLP airfoils, the circumferential curve components are built interpolating
through sets of normalized point coordinates, stored in a dedicated library as .dat
files Fig. 5.33-step a. Algorithms take care of stretching the four curve components
until their extremities match the longitudinal curves (Fig. 5.33- step b), and merging
them into single circumferential curves (Fig. 5.33- step c).
Once the skeleton of longitudinal and circumferential curves is in place, a single B-
spline surface is generated on top to obtain the final fuselage surface.

The separate definition of the upper and lower parts of the circumferential
curves (as well as the possibility to affect the tangency condition at their merging
points) yields quite some modeling flexibility, suitable also for non cylindrical
fuselages.

Fig. 5.33: Construction of circumferential curves (top). Only upper-left curve
component shown in figure. Modification of B-spline curves using control points
weights (bottom)

Chapter 6 Implementation of the CMs and operation of the MMG

189

Besides, the designer has the possibility to modify locally the fuselage surface,
without regenerating the curves skeleton, but simply adjusting the weight factors of
the B-spline surface control points2 (Fig. 5.33- bottom).

Option 2:
This second method requires the user to provide for each circumferential curve the
files containing the upper and lower curve segment definition, as well as the 3D
coordinates of Point 1 till Point 4 (Fig. 5.33- step b). The latter will be used to scale
the normalized curve segments appropriately.
This second method has the inconvenience that a lot of circumferential curves need
to be provided by the user to model properly areas with large curvature gradient,
such as in correspondence of the cockpit area. This can require more efforts from
the user, while properly defined longitudinal curves offer the possibility to
automatically position more circumferential curves where the gradients are larger.
Similar to Option 1, the obtained fuselage surface can be locally adjusted modifying
the weights of the B-spline control points.

In Fig. 5.34 two examples of aircraft models generated using the first modeling
option are shown to give an idea of the achievable level of surface definition3. At the
moment, no functionalities have been implemented to model complex fuselage-wing
fairings.

When the surface to be modeled has a simple quasi-cylindrical geometry, the
circumferential definition curves can be defined with a very low number of points. On
the other hand, if the given shape presents large gradients of curvature, the system
does not have problems in handling very densely defined curves (hence provided
with many points).

2 As a matter of fact, all the circumferential curves are first generated using the ICAD primitive
interpolated-curve, which results in a set of B-spline curves. The control points of these curves are
subsequently extracted and finally used as input to build the actual fuselage surface (using the ICAD
primitive B-spline-surface). The weight of this surface control points (initially all set to one) can be
modified by the user as required to affect the fuselage shape. The convenience of this method stays
in the number of surface control parameter (i.e., the weight coefficient), which is much lower than the
amount of point coordinates stored initially in the fuselage curves .dat files.

3 The surface of the engines nacelles is generated using a very similar approach to the fuselage.

190

In this latter case the problem is actually how to get such point collections for the
library .dat files. Even when native CAD files containing the aircraft geometry are
available, the general procedure of extracting curves and points for external use
(e.g., to prepare input data for the MMG) can be very labour intensive. On this
purpose, a simple “scanning” module has been developed to extract from a CAD
model (imported into the ICAD system via IGES format) any number of
circumferential curves, sample them with any amount of points and normalize them
as required for the method discussed above (van den Branden, 2004). This module
has revealed useful to populate the fuselage sections library with several .dat files
ready for reuse.

Fig. 5.34: Two examples of aircraft models created with by the MMG.

Chapter 6 Implementation of the CMs and operation of the MMG

191

5.9.2 Fuselage Structure generation process and capabilities

As shown in the class diagram of Fig. 5.31, the structural elements included in the
Fuselage HLP structural aggregation are frames, stringers, bulkheads, skins and
another aggregation of parts constituting a simple model of the wing center section,
which includes the keel beam for low wing aircraft configurations (see sketch in Fig.
5.35)
The modeling process of the structural component starts with the position of the
wing with respect to the fuselage. The wing center section is actually not modeled by
the Fuselage HP, but by Wing-part and consists of an instance of
WingTrunkStructure, where the LE/TE parts have been excluded.
In correspondence of the wing center section front and back spars, two intersection
planes are used to cut the fuselage outer surface: the resulting circumferential
intersection curves are used to model the wing attachment bulkheads (Fig. 5.35). A
similar approach is used to model bulkheads at the tail empennage/fuselage
intersections. A third bulkhead is positioned (based on user-defined parameter) to
close the landing gear bay.
As shown in the example of fig.4.7 middle, a procedure has been implemented to
deal with high-wing configurations too.

Apart from these bulkheads, an arbitrary number of frames can be generated
based on a user-defined list of longitudinal positions. Similarly to the bulkheads, all
the frames are generated by intersecting the fuselage surface with planes. These
intersection curves are then used as guides to sweep a frame profile selected via
input file by the MMG user (see sketch in Fig. 5.36). Currently C, Z, U and C section
frames can be generated.

 first
 bulkhead

third
 bulkhead

second
 bulkhead lower

front
webs

aft
webs

upper
front
webs

keel
beam

X

Y

Z

Fig. 5.35: definition of wing-crossing and landing gear bay bulkheads and keel
beams as modeled by the Fuselage HLP.

192

The user has also the possibility possible to specify two frames, which will be used
for the definition of the front and back pressure bulkheads.

In order to generate stringers, first a user–defined number of points is
generated circumferentially on each frame. All the corresponding frame points are
then used to interpolate a set of longitudinal curves, which are then projected on the
fuselage surface to form the stringer guidelines (see sketch in Fig. 5.36). Similar to
frames, user-defined profiles are then swept along these guidelines to model the
actual stringers geometry. Currently it is not possible to define stringers with run-
outs.

The user can also define a number of floors. Their vertical position is assigned
by means of a user-defined offset with respect to the Aircraft Reference System.
Partial floors can be defined that start and end at user-define longitudinal positions.
The implemented modeling procedure first computes the intersection between the
floor planes and all the fuselage frame lines (Fig. 5.37, top), then uses the
intersection points to define floor beams and finally generate a set of floor panels
(Fig. 5.37, bottom). The floor panels do not “touch” the fuselage skin but transfer
their load directly on the frames.

Although less mature than the Wing-part HLP, the Fuselage primitive allows a
reasonable level of modeling flexibility, both concerning the outer surface and the
internal structure arrangement. Refer to figure fig.4.7 for examples of fuselage
structure models generated by the MMG.
In reference (Meijer, 2003) apart from a detailed description of the Fuselage HLP
architecture and implementation, the capability of the MMG to model the geometry
of the entire family of Airbus passenger aircraft is demonstrated.

Z

Y

X

Frame cut-plane

frame-line

Long. position frame

Point 0

Point 1

Point 2

Point n

stringer-line

Fuselage surface

Stringer positioning points

Point 2

Fig. 5.36: frame and stringer lines definition method

Chapter 6 Implementation of the CMs and operation of the MMG

193

Z

Y

X

frames outside floor limits

frames to use

start X floor

end X floor

floor boundary and bars in Y-direction

specified Z-position

Z = 0 in this example

floor boundary

floor bars

floor skin panel

X

Y

Fig. 5.37: definition of floor boundaries (top) and floor beams and panels (bottom).

Chapter 6 Implementation of the CMs and operation of the MMG

195

CHAPTER 6
Implementation of the Capability
Modules and operation of the MMG

1. Introduction

2. Capability Modules for aerodynamic analysis

3. Capability Modules for FE structural analysis

4. MMG – FEA environment integration

5. Operating the MMG

6. Study case 1: The MOB project

7. Study case 2: Vertical tail redesign study

8. Multi-level modelling to manage complexity and support multi-level design

6.1 Introduction
In this chapter, the capability of the MMG to automate the generation of models to
support multidisciplinary analysis of aircraft (and aircraft components) and their
optimization is discussed and demonstrated.
As any ICAD-developed KBE application, the MMG is natively able to export geometry
models using standard exchange formats such as IGES, STEP, STL, as well as several
proprietary CAD formats1 such as CATIA V4, UGII, AutoCAD, Pro-Engineer, etc.
(Knowledge Technologies International, 2001a). However, many analysis tools,
especially in-house developed ones, do not always support any of those standards,
and rely on custom formats, often based on some kind of ASCII table (e.g.,
containing point coordinates).

1 A separate license is required to operate each one of the various translators. Furthermore, separate
licenses are also required to export and import files in the various formats.

The longevity of the standard format file translators, such as IGES and STEP, is of course superior to
those of proprietary formats, which must account for the evolution of the related CAD systems. The
ICAD system (together with the whole company KTI) was acquired by Dassault Systemes when the
translator for the newcomer CATIA V5 was under development.

196

On the other hand, commercial analysis tools are often provided with proprietary
geometry pre-processors and mesh generators, which, however, require plenty of
manual operations and are difficult to script in a flexible way.
To the scope of supporting automatic geometry pre-processing and achieve a
seamless integration of the MMG with external analysis tools, both commercial of the
shelf (COTS) and in-house developed, a number of capability modules (CMs) have
been developed. In this chapter, the functionalities and the implementation of some
of the CMs introduced in Chapter 4 are elaborated in more detail, in particular of
those developed to support automatic generation of structural and aerodynamic
analysis models. The achieved integration of the MMG with two commercial analysis
codes for aerodynamic and structural analysis is subsequently discussed.

In the second part of the chapter, two study cases will be presented that give
evidence of the MMG ability to enable distributed multidisciplinary analysis and
optimization of complex products. The first case concerns the conceptual/preliminary
design of a blended wing body aircraft, carried within the framework of the European
project MOB. The second deals with the redesign of the vertical tail for a large
passenger aircraft and has been carried in collaboration with Airbus Germany. In the
description of these study cases, the focus is on the role and functionality of the
MMG, rather than the goals and finding of the two projects. For those, references are
provided.

To conclude, the strategy developed to deal with increasing complex KBE
applications for multi-level design is discussed and examples on the current state of
development are provided.

6.2 Capability Modules for aerodynamic analysis
The Points-generator CM has been developed to “translate” the surface of any HLP
instantiation into a so-called cloud of points. Via the MMG input file, the user has the
possibility to control the density of the cloud in terms of number of sections, number
of points per section and point stretching (i.e., the point distribution on the various
sections). The level of control on the cloud density is at the level that the user can
demand a different amount of sections per Wing-part instance, or different amount
of points and stretching for the wing, tail and fuselage surfaces.
Once the points are generated, their Cartesian coordinates (defined in the Aircraft
Reference System) are organized by the MMG as required by the recipient tool and
finally transferred, either via plain ASCII file or more structured XML files.
The cloud of point’s translation approach has been used successfully to define
dedicated models for a heterogeneous range of aerodynamic analysis tools (Fig. 6.1).
These models include simple flat panels discretization as those used for aeroelastic
analysis (La Rocca et al., 2002; Stettner and Voss, 2002) with ZAERO (Zona
Technology, 2009), as well as those for potential codes such as VSAERO (Analytical

Chapter 6 Implementation of the CMs and operation of the MMG

197

Methods, 2009) and other in-house developed panel codes (Van Staveren, 2003; van
den Branden, 2004).
The cloud of points approach has been used also to support setting up models for
high fidelity CFD analysis. In this case the generated points have not been used as
grid points, but as control points to support the automatic re-splining of the aircraft
surface into the pre-processing environments of MERLIN and ENFLOW, respectively,
the in-house developed Reynolds-averaged Navier-Stokes tool of Cranfield University
and the multipurpose Euler/RANS system in use at NLR (more details in (Qin et al.,
2002; Laban et al., 2002)).

In order to operate, the Point-generator CM needs to have available well defined
surface patches where to extract points coordinates. Whilst the generation of these
patches is relatively straightforward for a configuration like the BWB of Fig. 6.1,
which consists only of a series of adjacent Wing-part instances, it is definitely not in
presence of intersections between lifting surfaces and fuselage, or between two
lifting surfaces (e.g., in case of T-tail, H-tail or cruciform tail configurations). The
actual challenge is about generating - automatically and for any type of aircraft
configuration - sets of non intersecting patches, with properly matching edges, as
shown in Fig. 6.2.

Fig. 6.1: Translation of the aircraft surface to support automatic generation of models
for both high and low fidelity analysis. Examples of a refined model for Euler/Navier-
Stokes CFD analysis and a simplified one with flat paneling (including TE movables) for
aeroelastic analysis.

 MMG

 CFD
 Panel Code

 Cloud
of

points

198

Actually, in case of aircraft configurations with an “intersected fuselage”, the
generation of aerodynamic views is accomplished by means of the abovementioned
Point-generator, plus another CM called Surface-patcher. The functionalities of both
are described in the following sections.

6.2.1 Surface-patcher, a capability module for automatic patches
generation

Given a generic lifting body, such a wing, a canard or a tail empennage, the
generation of surface patches is limited to splitting the surface of each Wing-part and
Connection-element instance along the leading and trailing edge curves. The
resulting upper and lower skin patches can then be directly processed by Point-
generator.
On the other hand, Surface-patcher is needed to deal with fuselage surfaces
intersected by wings, canards, tail empennages, engine pylons, etc. In this case,
Surface-patcher performs the following activities (refer to (van Dijk, 2008) for
details):

- Detect the LE and TE points of all the connection curves (i.e., the curve
resulting from the intersection of the fuselage surface with the “piercing”
bodies). Fig. 6.3 (A)

- Generate circumferential curves (not necessarily orthogonal to the fuselage
axis) on the fuselage surface that pass through the above detected LE/TE
points.

Fig. 6.2: Generation of wrong (a) and correct surface patches (b). Patches must not
intersect with each other and must share only one edge with those adjacent
(patches indicated with tick blue boundary lines).

Chapter 6 Implementation of the CMs and operation of the MMG

199

- Eliminate the circumferential curves that intersect a connection curve and
combine more close curves in one when possible, to reduce the number of
patches. Note the circumferential curves at the fuselage fin intersection in Fig.
6.3 (B).

- Connect the TE point of each connection curve with the LE point of the next
one (starting from the fuselage nose going backwards) by means of
longitudinal curves defined on the fuselage surface.

Fig. 6.3: main steps performed by the Surface-patcher CM to split the
surface of a fuselage in suitable patches for aerodynamic analysis.

Connection curves

200

- Intersect the longitudinal and circumferential curves with each other and
collect the curve segments that delimit each patch. Fig. 6.3 (C).

The patching method described above can be used also in case of more lifting
surfaces that intersect each other, such as the horizontal stabilizer and the fin in a T-
tail configuration. However, to limit the complexity of the patching problem and the
amount of resulting patches (Fig. 6.4, a), it is convenient to define a connection
element that extends from the LE to the TE curve of the pierced Wing-part instance
(Fig. 6.4, b). In the T-tail example shown in the figure, the chord distribution of the
horizontal tail is maintained unaltered, while the span of the connection element has
be kept sufficiently small to be ignored by the aerodynamic solver (of course, the
designer has still the possibility to modify the shape of the connection element if the
intention is to model a real fairing). In this way, the fin surface is not pierced any
more, but simply split in more spanwise patches, as shown in the example of Fig. 6.4
(b). Note that using this modelling approach, also the fuselage patching results
simplified, because unaffected by the presence of the horizontal tail piercing the fin.

6.2.2 Point-generator, a capability modules for point generations on
surface patches

In order to operate, the Point-generator capability module needs the following input:
- The native surface on which the patch is defined
- The four curves delimiting the patch: Curve-u1, Curve-u2, Curve-v1 and Curve-v2

(Fig. 6.5)
- The number of points to be placed on the u-curves2 (no-of-u-points)

2 As u-curve is intended any curve in between and “aligned” with Curve-u1 and Curve-u2

Fig. 6.4: complex patching in case of self intersecting Wing-part instances (a).
Simplified case by the implementation of a connection element spanning from the LE
to the TE edge of the fin (b).

Complex patching case Simplified patching case

 (a) (b)

Chapter 6 Implementation of the CMs and operation of the MMG

201

- The number of points to be placed on the v-curves (no-of-v-points)
- The parameters defining the stretching3 of the points on the u-curves
- The parameters defining the stretching of the points on the v-curves
- The MMG takes care of sending consistent input values for each patch in the

aircraft. The order in which the patch boundary curves are provided to Point-
generator, as well as the amount of points to be generated along each u and v-
curve must be such to guarantee a proper panelling of the complete aircraft
surface. Similar to the patches, also the panels are (generally) allowed to share
only one edge with the neighbours, regardless the patch they belong to.

As a matter of fact, two versions of the Point-generator CM have been developed, to
be selected depending on the type of patch data provided as input:

Point-generator Version 1: In case of alignment of the patch boundary curves
with the iso-lines of the native surface (Fig. 6.5-a), a fast and straightforward point
generation process can be implemented:
A number of points equal to no-of-u-points are generated along curve-u1, according
to the required stretching.
In correspondence of each point generated on Curve-u1, the corresponding iso-v
line4 is selected, along which the amount of points indicated for v-curves (no-of-v-
points) is generated, according to the required stretching (of course the points are
generated along the portion of iso-v lines delimited by curve-u1 and curve-u2).
Once points have been generated along all the selected iso-v lines, their Cartesian
coordinates are collected and stored together with the point from the other patches.
Indeed, this method exploits the possibility of accessing the iso-lines of the native
surface, which are conveniently aligned with the boundary curves of the patch.
However, also in case of misalignment (Fig. 6.5-b), there is a possibility to rebuild
the patch using a fresh new surface5, as shown in the example of Fig. 6.5-c. In this
way the same version of Point-generator can be used, as far as the surface of the
rebuilt patch is given as input, in place of the native surface.
However, the operation to rebuild the patch surface does not always guarantee a
good result: the new patch might deviate too much from the underling surface,

3 A sinusoidal stretching function has been defined to allow tuning the point density at the leading
and/or trailing edge of the airfoil curves. Details in ref. (La Rocca and van Tooren, 2002c)

4 A v-constant iso-curve means that the v parameter is held constant and the u parameter varies (the
iso-curve is in the u-going direction). A u-constant iso-curve means that the u parameter is held
constant and the v parameter varies (the iso-curve is in the v-going direction).

5 The ICAD primitive quad-blend is used at the scope, which generates a new surface based on four
input curves and the surface on which these curves lie. The resulting blend is C1 continuous with the
surfaces at the boundary (Knowledge Technologies International, 2001b).

202

especially in case of large, double curvature patches, with skewed or irregular
boundary curves. For these cases, the second version of the CM must be used.

Point-generator Version 2: This version encompasses a more complex approach
based on the generation of a grid of “pseudo iso-lines”, on which the required points
can be generated. It works as follows (Fig. 6.6):
Points are generated on curve-u1 and curve-u2 (in the amount and according to the
stretching indicated via input)

Fig. 6.5: Examples of patches with boundary curves aligned (case a) and crossing
(case b) the iso-lines of the underling surface. Case c: a patch surface rebuilt copying
the underlying surface.

 (a)

 (b)

 (c)

Chapter 6 Implementation of the CMs and operation of the MMG

203

Support curves are generated linking couples of corresponding points on curve-u1
and curve-u2 (although the support curves are enforced to lie on the native surface,
some cannot be generated in case of large irregularity of the patch boundary curves)
A number of support points (equal no-of-v-points) is generated on each remaining
support curve, with the stretching required for the v-curves.
A set of pseudo iso-u curves is generated fitting the support points. All these curves
lie nicely on the native surface.
An amount of points equal to no-of-u-points is generated on each pseudo iso-u
curve, with the stretching required for the u-curves. These points are finally added to
those initially generated on curve-u1 and curve-u2.

Point-generator Version 1 is generally used to operate on Wing-part instances, where
patches often coincide with the underling native surface, or a part of it trimmed

Support curves Support points

Pseudo iso-u curves

Missed support curves

Curve-u1

Curve-u2

Curve-v1

Curve-v2

Fig. 6.6: The Point-generator CM (Version 2) in action on a trimmed and curved
surface. From top-left, clockwise:

Step 1: Generation of points on curve-u1 and u2 and fitting of support curves
Step 2: Generation of support points along valid support curves
Step 3: Fitting of pseudo iso-u lines through the support points
Step 4: Generation of the user required points along the pseudo iso-u lines

204

along some iso-curve. Version 2 is generally required to operate on fuselage patches.
Although Version 2 alone would be sufficient for all cases, both versions are kept in
use, just because of the higher speed of the first.

6.2.3 MMG – VSAERO connection

The pre-processing capabilities described so far (together with COALA (Brouwers,
2007; Grotenhuis, 2007; van Dijk, 2008; Dircken, 2008), the MATLAB application
mentioned in Chapter 4) have enabled a seamless integration of the MMG with the
commercial panel code VSAERO. The main steps occurring during the preparation
and execution of an analysis cycle are summarized in Fig. 6.7:
• The outer surface of the complete aircraft model is generated by instantiation of

various HLPs
• All the aircraft surfaces are automatically cut in patches by Surface-patcher
• Each patch is processed by Points-generator, which translates the surface into a

set of 3D points, distributed as required by the user.
• The coordinates of all the points are automatically formatted into an XML file.

Tags are used to identify the points’ membership to the various patches and
aircraft surfaces. Information concerning movables surfaces definition and
deflection angles are encoded as well.

• COALA reads the XML file and translates the cloud of points into a fully pre-
processed VSAERO model.

• A solid angle test is performed to assess the quality of the model (e.g., the
presence of undesired gaps/overlaps between panels)

• Analysis is performed. COALA allows the execution in series of multiple user-
defined test cases (when test cases concerns the analysis for different movable
deflections, COALA takes care of deflecting the relative movables panels, without
the need to go back to the MMG).

• Analysis results are automatically post-processed. Aerodynamic and control
derivatives and stored by COALA as aero data sets for FMM (Voskuijl, La Rocca
and Dircken, 2008), a in-house developed flight mechanics package for the
assessment of aircraft performances and handling qualities.

In the current state, engines and nacelles are not included. Configurations with multi
element high-lift devices or devices that modify the wing planform area have not
been tested because of the current MMG modelling limitations in this regard.

Chapter 6 Implementation of the CMs and operation of the MMG

205

6.2.4 Integration with other systems for aerodynamic analysis

In the framework of a collaboration project with Airbus Germany, the MMG has been
provided also with the capability to generate dedicated models for the Doublet
Lattice Method (DLM) in MSC.Nastran (for for linear unsteady aerodynamics) and for
an Airbus-proprietary Vortex Lattice Method (VLM), for non-linear steady
aerodynamics. This has required transforming the whole aircraft into flat plates, as
well as extracting wing curvature information from the 3D geometry to include twist
and camber effects in the DLM and VLM analysis. Furthermore, modules were added
to the MMG for generating a structural beam model of the aircraft, as required to
carry out the unsteady aerodynamic analysis in MSC.Nastran. Report writers have
been developed to export all the information directly in the format required by
MSC.Nastran (i.e., CAERO cards). Structural and aerodynamic views of the aircraft in
Fig. 6.9, technical details in (Koopmans, 2004; Cerulli et al., 2005)

patches

XML file

Fig. 6.7: schematic representation of the MMG-VSAERO integration approach.

MMG VSAERO

patches
patches

COALA

Solid angle check
file

206

Within the national project PARMOD (van Houten et al., 2005), other capability
modules have been developed, to extract from the MMG surface grid models6 for the
NLR multipurpose Euler/RANS system ENFLOW. A dedicate CM was required to
perform the surface patching as required by ENFLOW, which is not compatible with
the one used by VSAERO and similar panel codes. The generated aircraft models and
its dedicated ENFLOW view are shown in Fig. 6.8 (note the deflected stabilizer
surfaces). Technical details in (van den Branden, 2004).

6.3 Capability Modules for FE structural analysis
In order to set up a FE model starting from the CAD model produced by the design
department, the FE specialist will have to perform a lot of manual work just to

6 N.B.: complete surface grid models, not just the points for surface re-splining mentioned in section
6.2! However this came at the cost of modeling flexibility, in fact the system functionality was just
restricted to aircraft configurations similar to the Fokker 100, the aircraft considered in PARMOD.

Fig. 6.9: 3D model and relative analysis views generated by the MMG: the structural beam
model (middle) used by the DLM model for linear unsteady aerodynamics (right).

Fig. 6.8: MMG generated Fokker 100 model, and the patching scheme (middle)
implemented for the generation of the ENFLOW dedicated aerodynamic view.

Chapter 6 Implementation of the CMs and operation of the MMG

207

prepare the model for meshing. The surfaces of
all the structural components (e.g., skins, spars,
ribs, frames, etc.) must be trimmed along their
intersections in order to produce sets of
meshable surfaces. That is to say, surface
segments with no more than four edges, sharing
maximum one edge with the neighbouring
segments. Fig. 6.10 shows examples of a
correct and wrong segmentation of a wing box
(Nawijn et al., 2006). The surface segmentation
process can be very time expensive and often
not trivial. Besides, every time a change occurs
in the model topology, the segmentation
process has to be performed again.
Unfortunately, the automatic meshing
functionalities provided by most of the FE
preprocessors can be used only after all model
surfaces have been properly segmented.
The segmentation process is lengthy, repetitive
and plenty of rule-based geometry
manipulations. As such, it is a good candidate

for a KBE application. As anticipated in Chapter 4, a dedicated Capability Module,
called Surface-splitter, has been developed to capture the process applied by a FE
specialist when manually performing the segmentation process. Given a generic
aircraft model built with any number of HLPs instantiations, the Surface-splitter is
able to process, one by one, all the various HLP instantiations (Fig. 6.11), and finally
deliver a set of surfaces that are suitable to be meshed, whatever the topology of the
generic aircraft and its internal structure.
Fig. 6.12, shows the Surface-splitter use case and includes a number of
constraints/indications provided by FE specialists (see text in curly brackets).
According to this use-case, Surface-splitter has been developed such that the
“number of meshable surface segments is kept to a minimum” (as discussed in the
next section, the generation of meshable surfaces might require cutting the
structural elements into more and smaller segments than those obtained just by
trimming them along their reciprocal intersections). When necessary, Surface-splitter
generates triangular surfaces, although “in the least amount possible” and “with the
least possible sharp angles” in order to limit the generation of “unhealthy” finite
elements with too high aspect ratio. Even if the CM purpose is to automate as much
as possible the segmentation process, the designer is allowed to “insert virtual
elements by hand to support the model segmentation”.

Fig. 6.10: Model with surface
segmentation errors (a).
Properly segmented model (b).

208

Fig. 6.12: UML use case for the KBE system to perform the automatic surface
segmentation of a generic geometric model

Insert virtual elements
"by hand" to support

segmentation

Detect critical areas where
a proper segmentation
cannot be performed

Insert automatically
extra elements to support

segmentation

Cut structure elements
surfaces along their

intersections

Perform extra
cutting of surfaces

Detect generated
surfaces that are not

meshable

Account for CAD kernel
limitations and known

bugs

«include»

«include»

«extend»

«extend»

«include»

«include»

Extra elements should not
affect the segmentation of
contiguous HLPs

Limit the amount of
triangular surfaces

Create triangles with the
least sharp angles possible

create 4 edge
surfaces

Create 3 edge
surfaces

«include»

«extend»

«include»

Limit the number
of extra generated
surfaces

Surface segments can be
considered meshable when
they have not more than 4
edges, each edge matching
one-to-one with the edges
of neighbour segments

Perform automatic structure
segmentation into sets of

meshable surfaces

«extend»

Fig. 6.11: The Surface-splitter CM processes the outer skin and the internal structure
of each HLP instance that is used to define an aircraft, into sets of meshable surfaces.

Chapter 6 Implementation of the CMs and operation of the MMG

209

The activity diagrams that document the detailed implementation of the automated
segmentation process can be found in Appendix L. The example of a surface
segmentation process is described in the next subsection, to show how the Surface-
splitter Capability Module actually works.

6.3.1 Surface-splitter, a Capability Module for automatic generation of
meshable surfaces.

A generic instantiation of a wing-trunk HLP is shown in Fig. 6.13 (top). Whether such
instantiation belongs to a BWB aircraft component, a conventional wing, a tail
empennage, or a control surface, is not relevant. The Surface-splitter Capability-
module operates on any HLP instance, independently from the instantiation purpose.
The Wing-part instance considered in this example has four spar elements, defining
and confined to the wing-box (WB) area, and a number of ribs and riblets crossing
the wing-box and/or the leading (LE) and trailing (TE) edge areas. Note that some of
these rib elements start and end at either a spar or the LE/TE line, whilst others start
or end at the root or tip section of the given wing element (i.e., LE riblet 4, Ribs 1, 3,
4, 5 and TE Riblets 1 and 2). The latter are likely to cause troubles during the
segmentation process.

The segmentation process takes place through the following steps:

Step 0
The first operation performed by Surface-splitter is the intersection of the wing-part
skins with all the spars and all the ribs. Also, each rib is intersected with all the spars
and all other ribs and, finally, all the spars are intersected with all the ribs and all
other spars.
Some of these intersection operations might produce no result, but this is handled by
the CM without causing any runtime error.
This intersection process delivers sets of spar, rib and skin segments, which are
subsequently scanned for non-meshable surfaces. As highlighted in Fig. 6.13 (mid),
five non-meshable skin elements (i.e., elements with more than four edges) are
detected. As anticipated, they are caused by those ribs and riblets that either start or
end at the root or tip section of the wing-part.

210

Step 1
As a FE specialist would, Surface-splitter finds out that, within the skin panel
delimited by Spar 0 and Spar 1, it is possible to fix at least one non-meshable surface

Fig. 6.13: Knowledge based segmentation process of a generic wing like component.

Step 0: skins, spar and ribs are intersected with each other and non-meshable surfaces
are detected.

Step 1: a first extra segmentation process resolves some non-meshable surfaces, by
automating the generation of some virtual spars.

Root section

Tip section

STEP 0

STEP 1

Chapter 6 Implementation of the CMs and operation of the MMG

211

by forcing the generation of a virtual spar7. As shown in Fig. 6.13 (bottom), the
position of the extra virtual spar is automatically defined by the points where Rib 1
and Rib 4 intersect the root and tip section of the wing trunk.
It is evident that the generation of one virtual spar was not sufficient to fix all the
non-meshable surfaces, however, in this specific case, only Rib 1 and Rib 4 could be
used to define the extra cutting element (i.e. the virtual spar).

Step 2
Indeed, the generation of any other virtual spar to fix the remaining non-meshable
surfaces could affect the segmentation of possible Wing-part instances adjacent to
the wing-part under consideration. This is not desirable, because it would increase
the complexity of the overall segmentation process, as well as the total number of
surface segments. Therefore, as a FE specialist would do, Surface-splitter checks the
situation at the root and tip border of the given wing-part and allows the generation
of extra virtual spars, only if not affecting an adjacent Wing-part instance. The
following four cases illustrated in Fig. 6.14 exists (check the left side icons):
Surface-splitter realizes that the wing part to be segmented has a “tip neighbour”.
Therefore, spar points are automatically generated on the “free” edge (at the root)
and used to generate extra virtual spars. As result of this second segmentation step,
other two non-meshable surfaces get fixed.
Surface-splitter verifies that it is possible to generate support points for extra virtual
spars only at the tip section. Also in this case, other two non-meshable surfaces get
fixed.
The presence of adjacent wing trunks, both at the root and tip side, makes this
second segmentation step useless.
In the case of an isolated Wing-part instance, this segmentation step is sufficient to
obtain all meshable surfaces.

Step 3
In this step, each of the remaining non-meshable surfaces is cut, individually, in two
segments, using a cutting line passing through two non-contiguous vertices of the
given non-meshable surface. As illustrated in Fig. 6.15, all the remaining non-
meshable surfaces from the previous steps get finally fixed and without affecting any
adjacent wing parts.

7 As introduced in Chapter 5, virtual spars are not real structural elements that access the FE analysis,
but, as the real spars, they can be used to position other structural elements and do affect the surface
segmentation.

The automatic generation of virtual spars to tackle segmentation issues can be switched off via the
MMG input file. In this case, the designer is responsible for the definition of the required virtual spars.

212

Fig. 6.14: Knowledge based segmentation process of a generic wing like component.

Step 2: Some non-meshable surfaces can be fixed by generating extra virtual spars
(only when the extra segmentation is not perturbing eventual adjacent wing-trunks).
In case of isolated wing trunks (d), the process is completed successfully. In case of
adjacent wing parts both at the root and tip sections (c), Step 2 is ineffective.

a)

b)

c)

d)

Chapter 6 Implementation of the CMs and operation of the MMG

213

As a FE expert would do, Surface-splitter uses this segmentation approach only as
last resource, because it is likely to generate triangular surfaces, which are not “as
good as” quadrangles for FE analysis.
In facts, there are more ways to split a pentagonal or hexagonal surface (surface
with even more edges are not likely to occur) in two meshable surfaces. As
demanded in the use case of Fig. 6.12 , Surface-splitter selects the combination of
segments with the least sharp internal angles. The detailed process to select the best
cutting approach is illustrated in the activity diagram of Fig. 6.16.

Finally, in case a non-meshable surface problem cannot be solved, due, for example,
to an untrapped error of the CAD geometry manipulations, the MMG will
automatically label the given surface with a special “non-meshable” tag and highlight
it in red in the MMG graphical browser.

Fig. 6.15: Knowledge based segmentation process of a generic wing like component.

Step 3: All the remaining non-meshable surfaces are fixed by splitting them in two
opportune segments, without affecting the segmentation of adjacent wing parts.

a)

b)

c)

214

Fig. 6.16: activity diagram detailing the extra-cutting process (Step 3) to deal with
surfaces segments that have more than four edges.

Chapter 6 Implementation of the CMs and operation of the MMG

215

6.4 MMG – FEA environment integration
In this section, the approach developed for a seamless link between the MMG and
the PATRAN/NASTRAN finite elements environment (FEA) is described.
Indeed, the automatic surface segmentation process described in the previous
section is just one of the steps towards the automated generation of FE models.

6.4.1 Extraction of geometry and metadata from the product tree

Every time a surface segment is generated, an identification tag is automatically
attached to it to record its membership (i.e., the HLP instance and the kind of
structural element from which the segments has been derived). Once the
segmentation process has been completed, the tags enable a dedicated scanner

Fig. 6.17: geometry and metadata transfer from the MMG to the FEA environment.
IGES files are used to transfer the geometry of the segmented surfaces; look-up tables
(FEM-Tables) are used to transfer the information related to each surface segment and
required to set up the FE model.

216

module (see Section 4.8.1) to parse the product tree, collect all the segments and
sort them in groups. Finally, these groups of surface segments are exported to the
FE environment by means of IGES files (see Fig. 6.17, geometry link).
Since the IGES format can transfer only geometry information, a complementary link
is created to export also the relevant non-geometric information required to set up
the FE model. For this purpose, the MMG automatically generates one look-up table
for each surface segment that is exported via IGES (see Fig. 6.17, metadata link).
The look-up tables, addressed in this work as FEM-tables, contain information such
as thickness, material, membership identification, ‘meshability’, list of non-structural
mass items to be attached, design variable group, Cartesian coordinates of the
corner points, and others attributes of all the surface segments generated by
Surface-splitter.
Similar to the collection mechanism for the surface segments, the FEM tables are
generated by means of a scanner module that parses the whole product tree and
extract from each segment the attributes required to compile the related FEM-table.
A report writer has been developed to encode all the FEM tables into one XML file.

6.4.2 Automated FE model generation

The actual KBE-FEA environment interface is enabled by an in-house developed
Python application, called PYCOCO (Nawijn et al., 2006). Via a client-server
mechanism, PYCOCO generates on the fly instructions for MSC PATRAN1 and guides
it in the process of building up a NASTRAN model.
The main steps are the followings:

• PYCOCO forces PATRAN to open an empty database and import all the
surfaces segments delivered via IGES files.

• PYCOCO reads the FEM-tables and compare the Cartesian coordinates of the
corner points of each surface segment with those of the surfaces in the
PATRAN database. Indeed, the coordinates of the corner points represent the
one-to-one link between the geometry entities generated by the MMG and
their corresponding representation in PATRAN (see sketch in Fig. 6.18).

• As soon as a match is found, all the relevant information (material, thickness,
etc.) stored in the given FEM-table is automatically mapped on the
corresponding representation of the surface segment in PATRAN.

• The meshability information contained in the FEM table is used by PYCOCO to
instruct PATRAN on the mesher to employ. Quad elements are meshed first,
using Isomesh. Triangular elements are meshed later using Paver (for

1 These instructions are actually given as PCL commands. PCL, which stands for PATRAN Command
Language, is the scripting language provided by MSC to operate PATRAN from the command line, or
via session files.

Chapter 6 Implementation of the CMs and operation of the MMG

217

unstructured mesh). The size of the mesh elements can be calculated by
PYCOCO, based on the size of the structural elements (Pearson, 2001).

• PYCOCO reads the non-structural masses (NSMs) table produced by the MMG
(see example in Table 4.3) and forces PATRAN to generate, next to the
aircraft model, a set of lumped masses (position and mass value as indicated
in the table).

• Based on the list of NSMs indicated in each FEM table, PYCOCO forces
PATRAN to build a set of connection elements (RBEs) linking the relative
lumped mass(es) to the corner points of the given surface segment (see
sketch in Fig. 4.10).

• Loads and boundary conditions are applied.
• In case the FE model must be used also for structural optimization (e.g., by

means of the NASTRAN optimization solver Sol 200), each surface segment is
collocated in a certain design variable group, according to the dedicated
variable group identification code, contained in the FEM table. Refer to
Appendix M and (La Rocca and van Tooren, 2002a; La Rocca et al., 2002) for
further details.

• Finally, the FE analysis (and/or optimization) is performed using NASTRAN.

Fig. 6.18: The mapping process of the FEM-Table content is based on the match of the
Cartesian coordinates of the corner points of the surfaces stored in the PATRAN database,
with the Cartesian coordinates reported in the FEM-tables.

ICAD element ID : x
node: m (co-ordinates x, y, z)
node: m + 1 (“ x, y, z)
node: m + 2 (“ x, y, z)
node: m + 3 (“ x, y, z)
element knowledge

PATRAN element ID : z2
node: w (co-ordinates x, y, z)
node: w + 1 (“ x, y, z)
node: w + 2 (“ x, y, z)
node: w + 3 (“ x, y, z)
element knowledge

Geometry info in the IGES file

x

y

a
b

w

k

a1

s

Geometry info in PATRAN

s1

z1
z2

s2 s3

z3
z4

s4

s5

Knowledge link (FEM-TABLES)

Geometry link (IGES FILES)

Surface Mapping link
(NODES COORDINATES)ICAD ICAD envenv.. PATRAN PATRAN envenv..

ICAD element ID : x
node: m (co-ordinates x, y, z)
node: m + 1 (“ x, y, z)
node: m + 2 (“ x, y, z)
node: m + 3 (“ x, y, z)
element knowledge

PATRAN element ID : z2
node: w (co-ordinates x, y, z)
node: w + 1 (“ x, y, z)
node: w + 2 (“ x, y, z)
node: w + 3 (“ x, y, z)
element knowledge

Geometry info in the IGES file

x

y

a
b

w

k

a1

s

Geometry info in the IGES file

x

y

a
b

w

k

a1

s

Geometry info in PATRAN

s1

z1
z2

s2 s3

z3
z4

s4

s5

Geometry info in PATRAN

s1

z1
z2

s2 s3

z3
z4

s4

s5

Knowledge link (FEM-TABLES)

Geometry link (IGES FILES)

Surface Mapping link
(NODES COORDINATES)ICAD ICAD envenv.. PATRAN PATRAN envenv..

218

6.4.3 On the convenience of the selected integration approach

The implemented approach to link the MMG with the FEA environment has delivered
a powerful and seamless modeling and analysis system. The designer is free to
evaluate many different design configurations, without worrying about rebuilding a
new FE model each time a variation is enforced in the shape or topology of the
aircraft configuration.
Since the whole process works fully hands-off, it enables the set up of multi level
optimization studies: an optimizer can vary the top level parameters of the aircraft
(shape, structure layout, etc.) via the MMG input file, while at each analysis cycle a
FE–based optimization process can be performed, for example, to size the given
structure components for minimum weight (section 6.6.
The approach to the automation of the FE model preparation process using PYCOCO,
follows the paradigm of Knowledge Based Engineering. In this case, however, the
object oriented programming and rule base are not combined with a parametric CAD
engine, as in a true KBE system, but with a FE pre-processor and solver. Here,
Python provides the object-oriented and rule based design features, while the
PATRAN/NASTRAN combination represents the functional engine.
 An alternative approach to the one implemented in this work would be the
direct generation of the complete NASTRAN model by the MMG. A relevant example
of FE model generation using the ICAD system can be found in (Rondeau et al.,
1996; Rondeau and Soumilas, 1999). Indeed, this approach would not require the
critical process of extracting data and information from the MMG product tree and
put it back together in the context of the FEA system. Whilst attributes and
relationships of any product tree entity are immediately accessible within the MMG,
rebuilding such information, especially the relationships between entities, in another
system is a challenging task.
However, once achieved, it comes with relevant advantages:

• The meshing capability of PATRAN is fully exploited, without the need of “re-
inventing” a mesh generator in ICAD

• Once PATRAN has completed the model pre-processing, it can generate the
input deck for all the supported solvers, “for free”. Hence, not only NASTRAN,
but also ABAQUS, ANSYS, LS-DYNA and other FE packages become
immediately available.

• A different MMG, able to deliver the same output files (i.e., meshable surfaces
plus FEM-tables), would be directly endowed with FE analysis capabilities.

Chapter 6 Implementation of the CMs and operation of the MMG

219

• Two teams of experts (KBE developers and FEA specialists) can collaborate on
the development of a system like the one discussed in this work, each one
working in parallel with its most familiar and trusted software tool2

• In collaborative projects involving the participation of different disciplinary
teams from various companies, as well as the use of licensed software, this
approach can be very convenient.

6.5 Operating the MMG
The architecture of the MMG operational environment is sketched in Fig. 6.19.
Indeed, it does not differ from the typical product model architecture shown in Fig.
3.13.
Operating the MMG requires just three steps: preparation (edit) of the input deck,
launch of the MMG in batch mode (or interactive operation of the MMG via the ICAD
user interface), retrieval of the generated results (reports)
The first step consists of the preparation of 4 input files:

1. The main input file. Here, organized in sections, all the parameters required
to instantiate the aircraft metamodel are contained (snippets of this file are
provided in Appendix D, G, I)

2. The design variable groups definition file. Here are the parameters
available to the user to sort the aircraft structural segments into separate
groups for structural optimization (all the surface segments contained in a
group will get the same thickness value from the sizing process). See
Appendix M for more detail.

3. The non-structural masses definition file. Here the value of each non-
structural mass must be provided. The MMG will use these values to produce
the NSMs table (after having scaled those values according to the length or
the area of some instantiated aircraft components. See section 4.5.3)

4. The reports list. This is the list of all the output files the MMG is capable to
produce (see section 4.8.1 on report writers). This file is required only when
operating the MMG in batch mode (i.e., hands off)). In this case, the user has
to select (switch on/off) from the complete list the ones for which it is
required to launch the MMG.

On the sole basis of these four files (which can be edited as plain text files, either by
a designer or another software tool), the MMG can be instantiated and requested to
produce any of the output models described so far.

2 The same consideration applies for the method described in section 6.2.3, where COALA enables the
integration of the MMG with VSAERO

220

This can be done either interactively (sitting behind the system where ICAD and the
MMG are installed and using the standard ICAD user interface) or in batch mode,
hence running the MMG with a single command and waiting for the demanded
results (from the reports list file), without any single user intervention.
Batch operations can be easily performed also in remote, hence accessing the MMG
via a web connection from another system, where ICAD does not need to be
installed at all.
The possibilities to operate the MMG in batch mode as well as in remote represent
indeed a great asset (as well as the biggest development challenge). Many non-
geographically collocated users can use the same MMG, submit their customized
version of the input file and ask for required output reports; in fact using the MMG as
Software as a Service (SaaS), according to cloud computing terminology. All the
results generated using the same version of the MMG and its input files are
guaranteed to be consistent and repeatable.

Fig. 6.19: operation of the MMG and its input/output architecture.

Chapter 6 Implementation of the CMs and operation of the MMG

221

As such, the MMG stands as a real enabler for distributed multidisciplinary design
optimization. As demonstration, two relevant cases are described in the next
sections, where the MMG capabilities have been exploited to support the design and
optimization of a novel aircraft configuration and a main component of a
conventional passenger aircraft.

6.6 Study case 1: The MOB project
A successful validation case of the Multi Model Generator concept presented in this
work is provided by the Fifth Framework European project MOB, on multidisciplinary
design and optimization of blended wing body (BWB) aircraft configurations (Morris
et al., 2004; Morris, 2002). The primary objective of the project was the
development of a computational framework (the so called Computational Design
Engine, CDE; a prototype of the DEE concept addressed in Chapter 2) for distributed
design and optimization. The secondary purpose was to demonstrate the CDE by
application to a problem of intrinsic interest, namely a BWB aircraft; a potential
competitor to the Airbus superjumbo A380 and with some relevance to military
aircraft design. The BWB configuration was ideally suited to function as driving
scenario due to its inherent strong couplings between disciplines. Besides, the lack of
reference data and experience made the use of design handbook methods
impractical and increased the need of data from physics-based analytical models.

The baseline design was provided by Cranfield University and Saab Aerospace
(geometry model and main specifications in Fig. 6.20).

6.6.1 Set up of the MOB multidisciplinary design optimization system

A multi-level, multi-fidelity, distributed MDO system was put in place to optimize the
baseline aircraft for maximum range, while maintaining payload capacity and

• Span: 80m
• Maximum Take Off Weight: 300t
• Payload capacity: 113t (174 LD3

containers over a double deck cargo
hold)

• Cruise speed: Mach=0.85, at 35000 ft
• Range at max payload: 11000Km
• Approach speed: 140 knots

Fig. 6.20: Model of the MOB reference BWB and list of main specifications

222

maximum take off weight3, and guarantying inherent stability and controllability.
Indeed, the baseline aircraft configuration appeared not controllable longitudinally
and directionally unstable.
The main disciplines involved in the optimization exercise were aerodynamics,
structures, flight mechanics and aeroelasticity. For the aerodynamic analysis, a range
of tools have been employed, including simple panel codes, Euler codes, and, in
limited extent, full Navier-Stokes methods to predict the maximum aerodynamic
efficiency, the aircraft maximum lift coefficient and the stall angle (Laban et al.,
2002; Qin et al., 2002).
Concerning the structure analysis, simple bending beam theory has been used for
preliminary weight estimation, whereas full blown FEM-based optimization
techniques, including aeroelastic constraints, have been used for a more detailed
sizing of the various structural components. For the flight mechanics, basic stability
and control analysis methods have been used to assess stability and control. A
system of trim tanks with fuel transfer scheduler has been developed on purpose.
Handling qualities in closed loop have been addressed as well, including pilot
response at the simulator (Stettner and Voss, 2002).

Concerning the optimization strategy, a multi-level optimization process was set
up, based on a global level loop, where only few design parameters (wing thickness,
twist and sweep, fuselage length and camber) were used to affect all the disciplines,
and a local level loop for the aircraft structural design, where several hundred groups
of FE elements thicknesses were used as design variables.
For the global level, a response surfaces strategy was preferred over gradient based
optimisation schemes, mainly because of the unavailability of sensitivity information
from many of the analysis modules. Anyhow, response surfaces are an excellent
means to visualise trade-offs, at least when the number of variables is limited as in
this case. For the local optimization level, on the other hand, it was decided to make
use of gradient based techniques, considered the availability of sensitivity
information as well as the large number of variables (Laban et al., 2002).

6.6.2 Role and operation of the MMG in the MOB computational framework

The role of the MMG was pivotal in the set up of the complex and distributed MOB
computational framework. The MMG was able to model a large number of variants of
the reference BWB in batch, surviving all the geometry variations imposed by a
remotely located optimizer. For each variant it was able to extract, in full automation,

3 This was a simplifying decision to avoid performing expensive calculations at each structural weight
variation. Indeed, the weight of engines, landing gears, etc. varies with the MTOW, hence each
structural weight variation would require another structural weight estimation. Here it was decided to
“invest” every saved structural weight kilogram into fuel.

Chapter 6 Implementation of the CMs and operation of the MMG

223

sets of different, yet coherent sub-models, tailored to the broad range of analysis
tools, both COTS and in-house developed, provided by partners from industry and
academia (Fig. 6.21).

The MMG delivered models for both low and high fidelity aerodynamics
(PANAIR, MERLIN, ENFLOW), 2-D planform models for aeroelastic analysis
(NASTRAN and ZAERO), structural models for FEA (PATRAN/NASTRAN), including the
definition of the design variable groups for structural optimization (Fig. 6.22-left and
Appendix M), and the c.o.g. distribution of the fuel tanks and the non-structural
masses (with weight scaling of de-icing systems, and trailing edge movables
actuators). The MMG could also extract the geometry of a door cut-out, to support a
further level of detail in the structural optimization loop (more detail in (Engels,
Becker and Morris, 2004) and Section 6.8).

A software communication framework was in charge to feed the MMG with the
set of edited input files and to extract and distribute the generated models, always
via web connections (Vankan and Laban, 2002).

Fig. 6.21. Role of the MMG within the MOB distributed MDO framework. The MMG
provides dedicated models to a large set of distributed analysis tools, both low and high
fidelity, in-house developed and commercial of the shelf.

224

6.6.3 Results

Once the MOB computational framework was in place, more than 50 aircraft variants
have been evaluated, by means of both low and high fidelity tools, totally hands off,
running on a number of computers distributed across the multi-national consortium.
All the computations have been performed in the time frame of just a couple of days,
whereas it would have taken months without the use of such a design and
optimization framework.
The intermediate results of the top level optimization process were presented to the
design team as response surfaces, providing the designers important insights about
the effect of certain design parameters on the objective and constraints function,
hence guiding the next steps in the optimization. For example, it was observed that
all the selected variables (wing thickness, twist and sweep, fuselage length and
camber) affected controllability, but no one was individually able to bring it to an
acceptable value. Eventually it was found that a combination of more negative wing
twist, shorter fuselage length with increased aft-camber was necessary to restore
controllability. However, with a negative impact on the range, which was reduced to
9900 Km (Fig. 6.23). Furthermore, it was found that a fuel drain scheduling system
plus two trim tanks in the BWB center section were necessary, as well as a full
leading edge slat for low speed operation.
Eventually, the aircraft remained directionally unstable, such that, in a later stage of
the project, a BWB variant with vertical fins (Fig. 6.22-right) was considered,
however, with further consequences on the initially predicted aerodynamic efficiency.

Among other things, the project showed that traditional handbook methods,
when applied to a novel aircraft configuration such as a BWB, might not be able to
deliver a feasible baseline design, while they tend to predicted too optimistic
performances. Besides, the strong disciplines coupling typical of BWB aircraft is such

Fig. 6.22: (Left) Visualization of the more than 200 thickness variables defined for the FE-
based structural optimization (Laban et al., 2002). (Right) The BWB variant with vertical
fins, developed to improve the directional stability of the reference aircraft.

Chapter 6 Implementation of the CMs and operation of the MMG

225

that non intuitive combinations of parameters are necessary to obtain a feasible
design.

More details on the MOB optimization process can be found in ref. (Laban et al.,
2002; Morris et al., 2004). A more recent study on the controllability of a blended
wing body aircraft, still involving the use of the MMG, is reported in (Voskuijl et al.,
2008; Dircken, 2008).

Fig. 6.23. Results of the analysis and optimization process of the MOB BWB, visualized
by means of response surfaces. Effect of the most effective combination of design
variables on the controllability constraint (top) and on the range objective (bottom).

226

6.7 Study case 2: Vertical tail redesign study
A Design and Engineering Engine to support the redesign of the vertical tail of a
passenger aircraft has been developed in collaboration with the Loads and
Aeroelastics group at Airbus Germany. Scope of the project was the development of
a computational system to facilitate a fast assessment of different tail design options,
such as material and planform shape (Cerulli et al., 2006). The challenge was the
rapid generation of aeroelastic and structural models of adequate fidelity, which are
usually not available in the parametric way required to perform what-if studies in the
preliminary design phase, neither cannot be built in a sufficiently short time.
The implemented design process is sketched in Fig. 6.24 and can be summarized as
follows. First, the MMG is used to model the configuration of the original vertical tail
and to generate automatically the relative sets of segmented surfaces and FEM
tables. These are subsequently exported to the PATRAN/NASTRAN environment by
means of an extended version of PYCOCO, which request NASTRAN to generate a
reduced model of the tail (Cerulli, van Keulen and Rixen, 2007), by condensing the
structural and non-structural fin masses on a set of dedicated (condensation) points.
For any vertical tail instance, the condensation points are automatically generated by
the MMG capability module Condensed-Masses-Generator (already mentioned in
section 4.7.1).
At this point, the reduced model of the new tail is connected to the previously
generated reduced model of the original aircraft (less the vertical tail). The
connection points are also exported by the MMG together with the condensation
points.
The obtained reduced model of the complete aircraft model is then fed to VarLoads
(Hofstee et al., 2003), a load analysis tool developed at Airbus, where a dynamic
yawing maneuver simulation must be performed to predict the load distribution on
the fin. On this purpose, VarLoads makes use of proprietary Vortex Lattice Method,
which needs a flat panels representation of the tail. Also in this case the model is
provided by the MMG, directly in the required NASTRAN CAERO cards format (see
section 6.2.4).
The estimated tail loads, are subsequently taken by the DEE initiator/sizing tool
(Schut and van Tooren, 2007) and mapped from the condensed mass model to
another simplified tail model, which is used to size the tail structural components and
produce a weight estimation. The geometry model used by the initiator is a flat
plates model, based on the corner points coordinates of the tail surface segments,
generated by the MMG and exported via FEM-table.
The condensation and sizing process is then iterated until weight convergence, which
is generally achieved within 5-7 loops of 45 minutes each.
The overall process is then repeated for all the tail variants to be studied (e.g., with
different span and/or sweep angle value). Hence, a new consistent set of segmented

Chapter 6 Implementation of the CMs and operation of the MMG

227

surfaces, FEM-tables, condensation points and CAERO cards is generated by the
MMG, while the DEE framework takes care of the automatic, coordinated execution
of the entire process. No action is required by the user, who can, however, monitor
the process while it proceeds across the network of Linux and Windows machines,
where the various modules are installed.

Fig. 6.24: schematic process of a vertical tail parametric study: the MMG feeds the
tools for condensation, analysis and sizing with different but coherent models.

Finless aircraft
reduced model

Tail loads

Fin condensed model

Aircraft reduced
model (with new fin)

Results of the vertical tail
parametric study

CAERO
CARD

228

6.8 Multi-level modelling to manage complexity and
support multi-level design
In the MOB project, the FE-based mass estimations of the BWB structure were
corrected by a factor 1.5 (based on literature studies) to account for the lack of
details, such as door and window cut-outs, in the FE model.
To increase the reliability of the weight estimation, as well as to promote a multi-
level design approach (with preliminary and detail design phases accounted by one
design system), a strategy was investigated to account for the effect of a door cut-
out in the structural analysis process of the entire aircraft.
The challenge was to include in the computational design framework a module for
the design and optimization of cut-outs (frames and doublers), without increasing
complexity in the geometry preprocessing phase and in the set up of the (already)
multi-level optimization problem.
The following approach was implemented concerning the surface segmentation:

• The Surface-splitter capability module performed the usual surface
segmentation (section 6.3.1) on a BWB without door cut-out

• A scanning routine was applied to search and collect all the surface segments
“perturbed” by the presence of the door cut out (i.e., those surface segments
with a not null intersection with the boundary curves of the cut-out)

• A “disturbed by door-cut out” tag was added in the FEM tables
• The reduced set of perturbed surface segments was further processed, by

trimming them as illustrated in Fig. 6.25
• The trimmed surface segments were exported in a separate group via IGES.

Fig. 6.25: extraction of the surface segments perturbed by the door cut out for detailed
design and optimization of door frame and doublers.

Chapter 6 Implementation of the CMs and operation of the MMG

229

The following approach was implemented concerning the FE-analysis loop:

• The whole BWB, without any cut-out, was meshed by PYCOCO using the usual
coarse mesh and submitted to a first FE-analysis loop

• PYCOCO read the mesh points and the calculated displacements on the
boundary of the surface segments perturbed by the door cut-out (detected via
the FEM tables tag)

• The trimmed perturbed surfaces generated by the MMG and the boundary
mesh points with relative displacements were fed to a NASTRAN-based
application specifically developed to size and optimize the cut-out design
(Engels et al., 2004).

• The cut-out design and optimization module produced an optimal cut-out
structure and delivered it as a NASTRAN super element to be inserted in the
global FE-model, in place of the perturbed surface segments

The results:

• The cutting and trimming process applied to the surfaces disturbed by the
given detail did not affect the surface segmentation of the global aircraft
model

• The shape of the disturbed elements (used to build the optimal cut-out) was
consistent with the shape of the global model.

• The structural characteristics of the optimally designed detail could be fed
back in the overall FE-analysis model

The idea of building separated-but-associative models, what we call here multi-level
modelling, to support multi-level design was further developed in this research work
to satisfy the request of using the MMG concept (and KBE technology in general) to
address the design of the overall aircraft and its components, simultaneously.
Indeed, the generation of a single “can-do-everything” MMG was considered a too
big challenge. Apart from the intrinsic difficulty of developing - and maintaining - a
KBE application that is flexible and generic but, at the same time, able to address
very specific design solutions, there are actual software limits that impose a
maximum size for a KBE application.
The first application of the multi-level modelling approach has been implemented to
support the design of wing and tail with movables. A dedicated report writer has
been developed in the MMG to extract from the surface model of wings and tail
empennages, a patch of the size of the movable (planform shape and location of the
movable specified in the MMG input file). This patch is then used as outer mould line
(OML) by another “slave” KBE application. In this case, PMM, the Parametric Movable
Model developed by van der Laan (van der Laan, 2008) for the generation of detailed

230

movable models for structure and manufacturing analysis. Any time an updated OML
is sent to the PMM, the geometry of the movable model adapts automatically,
because of the associative definition with the OML. Together with the OML file, the
MMG delivers the location of the hinges, compatible with the position of hinge ribs
located in the wing or tail structure. Besides, it provides the aerodynamic models of
the complete aircraft configuration (with deflected movables as described in section
5.2.12) to compute the aero loads required for the movable sizing (Nawijn et al.,
2006; van Houten et al., 2005).
Van der Laan has further exploited the multi-level modelling approach, by developing
also a slave KBE application for detailed modelling of movable ribs, and another one
for the automatic generation of production moulds for thermoplastics ribs (van der
Laan, 2008).

In the same line, Krakers has developed a KBE application for the detailed
design and thermo-acoustic analysis of fuselage barrels (Krakers, 2009). This makes
use of specifically developed HLPs and CMs, and requires as modelling basis the
fuselage surface instantiated by the MMG.

The development of “master-slave” KBE model generators appears to be an effective
strategy for managing modelling complexity. It brings the benefits of KBE
technology across various scale levels (aircraft � component � subcomponent), and
support a true multi-fidelity analysis approach, both in an affordable way. The
associative relationships allow top level decisions to cascade down the model
hierarchy and provide designers with early feedback. As such, more informed
decisions can be made early in the design process thanks to data and information
generally available only at a later stage of the design process.
Last but not least, different KBE developers can be in charge of maintaining and
developing different KBE applications in parallel, thereby shortening the development
cycle and lowering management risks.

CHAPTER 8 Conclusions and Recommendations

231

CHAPTER 7
Knowledge Based Engineering.
Opportunities and Methodology

1. Introduction

2. Implementation of KBE systems. Identifying the proper application cases

3. Implementation of KBE in the non-integrator company and SMEs

4. Organizational and human issues in the exploitation of KBE

5. Methodological development of KBE applications. The long term view

6. Trends and evolution of KBE technology

7. Recommendations & Expectations

7.1 Introduction
In the previous chapters, mainly the technical aspects of knowledge based
engineering have been addressed. Chapter 3 has discussed the origins of this
technology and the peculiarities of KBE systems (i.e., the what of KBE). Chapters 4-6
have demonstrated why KBE
is worth the attention of the
designers’ community. The
expected benefits can be
summarized as follows:
• Enhancement of the

productivity level: more
product variants can be
designed/analyzed in a
shorter time because of
enhanced level of design
automation

• Improvement of products
quality level: better and
more mature design
because of the enabled

Fig. 7.1: the estimated impact of KBE on the design
cycle time. From 80:20 repetitive/creative work time
ratio to 20:80, plus net time saving.

232

multidisciplinary analysis and optimization approach.
• Improved confidence in generated designs, which is beneficial for making proper

proposals to customers.
• Improved level of workers’ satisfaction and more space to innovation: less

repetitive work, more time for real creative design (Fig. 7.1).
• Capability to capture, retain and re-use company corporate knowledge

This chapter is meant to complement the discussion by further elaborating on KBE
tools development opportunities and methodology, which we can address as the
When, the Who and the How of KBE.

When KBE: However, KBE is not the silver bullet for all kind of engineering design
cases. Considered the significant economic and human investments required to
implement KBE inside a company, the ability to recognize the projects that are most
suitable to a KBE approach is extremely important. Also for those companies
interested in testing KBE, the selection of an appropriate pilot project is of outmost
importance to avoid an unfair assessment of this new technology. Therefore, a list
of typical situations is presented in this chapter, where KBE initiatives are likely to
have the highest chance of success.
Who KBE: Though KBE had its start as an expensive technology typically oriented
towards OEMs, Section 5.4 elaborates on the possible advantages non-integrator
companies and SMEs can get from the implementation of KBE.
How KBE: Section 5.6 discusses the importance of a methodological approach to
KBE application developments. The need to secure the investment made with the
development of KBE application calls for a systematic development approach, which
can guarantee the continued functioning and maintenance of the application. The
roadmap for the development of a KBE application will be discussed and needs and
characteristics of the various phases of the KBE lifecycle are illustrated.
..and then, what’s next in KBE: The chapter concludes with a discussion of the
evolution and trends of KBE technology and a list of recommendations and
expectation for the new generation of KBE systems.

7.2 Implementation of KBE systems. Identifying the
proper application cases
The development of a KBE application typically represents quite an important
investment that organizations commit to. The costs of software licenses and training
of those appointed as the future knowledge engineers and KBE developers in the
company, need to be regained. It is of fundamental importance that the proper
application is selected in order to make the KBE investment a success. The failure of
a pilot project might represent not only a waste of money, but could also stop for

CHAPTER 7 Knowledge Based Engineering. Opportunities and methodology

233

good any further KBE initiative and inhibit future profits from other KBE-appropriate
business cases.
The question rises immediately: what kinds of projects are suitable for a winning
implementation of knowledge based engineering? What are the indicators that
identify the proper case for KBE application?
Although it is not possible to measure the level of KBE potential of a given design
case, there are indeed a number of typical features, which strongly hint KBE
opportunities.

The design case is highly rule-driven
Due to its rule-based nature, KBE fits well those applications that are highly rule-
driven. On the contrary, applications that require high sketching freedom, style
exercises, or deal with very fuzzy attributes and constraints are generally not good
cases. The rational and structured approach at the base of any KBE product model
development is just inadequate to support emotional design. However, KBE can play
a role from the moment that the initial phase of esthetic focused design (where
direct interaction through free-form techniques is the best option) is concluded and
the design has to be engineered. For example, after the geometries sketched by the
style department of an automotive company have been completed and the concept
needs to be assessed in terms of aerodynamic performance and
manufacturability/formability, then KBE can play a role.

The design process is well understood and consolidated.
In this case the design rules are evident, easy to codify or already codified, and
possibly stable. The whole KBE technology relies on the fact that rules are known or
available somewhere, such that they can be implemented in the product model. As
thoroughly discussed in Chapter 3, knowledge is not always available in the explicit
format of a rule. Sometime, significant efforts can be required to elicit knowledge
from the head of experts and give it an explicit structure, such that “it can be written
down” using a programming language. The success of a KBE application, or even the
kick-off of its development process, strongly depends on the work of knowledge
engineers and their knowledge acquisition ability (Shreiber et al., 2000; Stokes,
2001). Indeed, part of the knowledge used in practice is often related to designer’s
intuition, past experiences and heuristics, and generally difficult to be translated in
rigorous rules. However, the KBE approach offers the possibility to make use of
rules-of-thumb, which represent a very useful means to tolerate a certain extent of
fuzziness, yet building effective KBE applications.
 A relative stability of the rules is also favorable to the development and longevity
of a KBE application. As discussed in Chapter 4, changing or updating rules in a KBE
application is not the same as in conventional rule-based systems. In case of a KBE
application, it might require changes in the main structure of the product model,

234

hence expensive re-writing of many lines of code. Of course, the Object Oriented
paradigm at the base of the KBE language, together with an adequate programming
style (i.e., modular, generic) can largely mitigate such risk and offer the opportunity
to adapt and reconfigure the structure of the product model.

The design case is multidisciplinary.
As previously discussed in Chapter 3, the generative design capability of KBE can
provide an enormous support to multidisciplinary analysis. Different discipline-specific
views from the same product can be generated fully automatically and fed to a range
of in house and COTS analysis and design tools. The mix of geometry handling and
problem solving characteristics required in the preprocessing activity of analysis
models are generally a good target for KBE. More evidence will be provided in the
next chapters.

The design process is highly repetitive.
Design processes where the same rules are continuously re-applied and evaluated
are typically very well suitable to KBE solutions. For example the generation of the
geometry model of large quantities of parts/products, which are all different, but in
the end just small variations of the same thing (e.g. ribs in a wing structure
(Rondeau et al., 1996)).

In this case the number of
iterations is determining
whenever KBE is a better
solution than CAD. In fact, the
generation of a product model
might take more time than
required to generate one or a
few CAD models. However,
once the product model is in
place, all the variants are
generated automatically “for
free”, while the CAD operator
takes almost the same amount
of time for every iteration50.
Fig. 7.2 from (Knowledge

50 Indeed the estimation of the break-even point is the most relevant information for the business
case. Unfortunately, a methodology to estimate the time required for the development of a KBE
application does not exist in literature. KBE-user companies have their own legacy information, which
is based on the performance of past KBE development cases.

Fig. 7.2: Qualitative benchmark of KBE and CAD,
indicating the convenience of KBE for applications
requiring the generation of many design variants.

CHAPTER 7 Knowledge Based Engineering. Opportunities and methodology

235

Technologies International) shows a qualitative benchmark of KBE and CAD
technologies.
Though the automatic generation of technical drawings has been one of the first and
most successful applications of KBE, repetitiveness can be found also somewhere
else in the design process, earlier than in the detail phase. For example, in the field
of optimization, variants of the same product have to be generated at each loop.
MDO, where the features of repetitive/iterative design and multidisciplinary design
come together, is definitely another good candidate for KBE solutions. It is not by
chance that the latest large European projects on MDO have all included, though in
different extent, the use of KBE (Allwright, 1996; Morris et al., 2004; de Weck et al.,
2007). In the next chapters, large evidence will be provided of a possible use of KBE
to exploit repetitiveness as from the conceptual phase of design.

The design process features a mix of problem solving, geometry
manipulation and data processing
As far as some of the hints addressed above are present (i.e., rule-driven, repetitive
design, etc.), the coincident occurrence of geometry manipulation, data processing
and problem solving features is a sign that KBE is probably the most suitable
technology at hand, not just a good candidate. In this case, the use of KBE can
provide a competitive margin with respect to any other design approach based on
CAD, conventional knowledge based systems, or the use of some general purpose
programming language.

7.2.1 Backfield or first line? A note on the strategic deployment of KBE

The occurrence of one or more of the features described in the previous section
gives information about the eligibility of KBE for the design case at hand. However,
how can a company decide about the strategic deployment of KBE? Should KBE be
used in the backfield to consolidate and record the design knowledge of the
company, or should it be used in the first line to address urgent and critical design
cases? Should KBE be used as mainstream technology or just deployed for some
design emergency? Again there is not one straight answer, as expected, these
choices being a matter of company specific strategy.
Considering the risk associated to a new technology, that requires highly educated
people, licenses and training expenses and possibly some organizational change (see
later in Section 7.5.4), some companies might opt for a KBE deployment in offline
activities first. However, rising awareness of such technology across the whole
company is very slow and the payback of the investment in training people and
buying licenses is lengthened. Problems of justifying the investment might rise as

236

well. Another philosophy used by the KBE department at Airbus UK51 is to select the
program within the company with the biggest troubles to deliver in time and just go
for it. This will give immediate visibility of the benefit of KBE. Cooper in ref (Cooper
and Smith, 2005), confirms that, so far, in the industry world, KBE seems to be
accepted just and only when it solves difficult technical problems or gets a
desperately needed answer fast: KBE as the ultimate weapon for the first line.
However, for different companies than large integrators like Airbus, a different
strategy can be implemented with success, as discussed in section below.

7.3 Implementation of KBE in the non-integrator
company and SMEs
There are situations that allow also for a profitable offline KBE development; they
especially arise in those companies, like suppliers and sub-contractors, whose
products present a large degree of commonality. They have the possibility to analyze
their different-but-similar products, investigate for a unified design knowledge
assessment and build up the KBE application that captures and automates it. This
concept, imported from the management world, is addressed as family thinking.
For instance an aircraft components supplier, with years of experience in designing
and manufacturing for different customers parts such as tail sections, fins, rudders
and movables surfaces in general, should be in the condition to develop a KBE
application that captures in one generic product model all the many peculiarities of
the components and parts produced in the previous years, for the different
customers. The design results of the past assignments will automatically supply the
validation of the KBE tool; at the same time such application would provide the
company with a powerful and effective tool to generate and discuss clear-cut
proposals for customers, with the confidence of knowing in advance the design
factors that will affect weight, price and delivery time. The company’s knowledge
gained to develop a product for previous customers will be available to propose
products to new ones.

It should be considered that such kind of company (the product family supplier)
will benefit of the KBE approach maybe more than an integrator company. Suppliers
are often put in competition with others by integrator companies to deliver a
competitive proposal within a very tight time frame. The amount of data they receive
from the integrator to set up the proposal is generally rather limited, and even after
the work has been commissioned, the information flow remains slow. The use of
some pre-developed KBE application could put suppliers in condition to generate
autonomously, in-house the amount of data and information sufficient to prepare a

51 A conversation with S. Allwright and A. Murton from the KBE group at Airbus UK, Filton.

CHAPTER 7 Knowledge Based Engineering. Opportunities and methodology

237

competitive proposal. Once the work has been commissioned, the KBE application
used to generate the data for the proposal, could be tuned with the more detailed
information provided by the customer. Possible, design decisions and constraints may
be changed and re-assessed by the contractor without affecting the final delivery
time, because the dynamic definition of the KBE product and its generative capability
can allow large reconfiguration and assessment of the design at any moment.
 In reference (Lovett et al., 2000) the issue of implementing KBE technology in
small and medium enterprises (SME) is discussed. The volume of work within this
kind of companies might seem not big enough to justify the large investments to
acquire KBE platform licenses and/or employ or train people to develop KBE
applications. Often there is a lack of people with IT experience and the budgets for
R&D are in general limited, if available at all, in which case it might be convenient to
rely on external consultants to develop and set up KBE applications. It should be
considered that, in comparison to a large OEM, a reduced external workforce would
be required, in proportion with the smaller size of the application an SME might
need. On the other hand, the usefulness of a KBE application to keep and secure
SME’s knowledge might be even higher than for large companies. In fact, in hard
times, the reduction of personnel for SME is more risky than for bigger companies,
because the knowledge is concentrated in less people.

7.4 Organizational and human issues in the exploitation
of KBE
Being KBE a new technology to many companies and requiring quite a different
vision to business, it might have hard times getting acceptance. A technically good
developed KBE application will anyhow require high level and on-going support to
promote its use. The success of KBE, apart from the selection of the right
application, will depend on a number of organizational and human issues that any
company will have to take into consideration. Some are just discussed below.

The cost of a continuous investment
The development of a KBE application requires high-educated people, with vision,
and analytical and abstraction capability. They need training and technical support to
integrate their applications within the IT environment of the company and of course
time to get proficient with the KBE platform in use. This of course represents a big
investment for the company: training cost, software licenses and dedicated people to
develop applications. The training costs represent a continuous investment: since
people move within the organization, they will not be always in charge of maintaining
and further develop their application. New trained people will be required to keep the
activity running with continuity. On the other hand, it should be considered that the
effectiveness of KBE applications will generally require less people in a project.

238

Education for confidence
Companies, which have deployed KBE systems successfully, have recognized the
need to have a workforce educated on the topics of knowledge management and
KBE and their potential benefits. Without such an education, a negative or suspicious
attitude towards such technology can arise: employees may feel that "giving away"
their knowledge will make them vulnerable to redundancy, or alternatively they may
resent a perceived role of "being told what to do" by the KBE system (Sainter et al.,
2000b). Some might have a black-art perception of KBE applications (Object
Management Group, 2005) and use them with limited trust, not knowing “what is
inside that box”.

In-house vs. outsourced KBE development
There is often a debate whether to employ people external to the company to
develop KBE applications, e.g., consultants from the KBE system vendor. In some
cases, this might turn into a short term solution to eliminate the training costs
required to form internal developers, and to shorten the time required to get an
application operative. However, the ideal KBE developer is the one who is both
proficient with KBE technology and familiar with the particular application field: the
engineering expert and the KBE developer in one person. The latter situation would
be extremely beneficial in terms of giving confidence to the company end-users
about the effectiveness and real value of the given KBE application, which is not seen
as a “black box” developed by externals (“…who don’t know how things actually
work…”) and superimposed by management. Possibly, the combination of internal
dedicated personnel and external KBE developers might give the best results.
Sounder KBE applications can be generated faster and, at the same time, in-house
KBE expertise is increased (Lovett et al., 2000).

Food for knowledge workers
Developing KBE applications generally requires a multidisciplinary vision on the
design problem. At the same time, it is proven that developing KBE applications just
augment such vision in developers. The required ability to synchronize knowledge
from different disciplines and to make explicit in rules what in ref. (Whitney et al.,
1999) is called the interaction knowledge (i.e., how the different involved resources
and generated results interconnect and logically link to each other to complete a
design assignment) is such that the KBE developer, in the end learns much more
than the application end-user. The “down side” is that good KBE developers are
often promoted to higher, more managerial positions, hence creating the need to
train someone else to take over his/her KBE development tasks.

Mental pigeonholing
Once technical and non-technical barriers to KBE have finally been demolished and a
good KBE application has been developed and operative, a side effect of mental

CHAPTER 7 Knowledge Based Engineering. Opportunities and methodology

239

pigeonholing might arise. As Cooper, Fan and LI comment in ref. (Cooper et al.,
2001), people have the tendency to think KBE is just good for that very application
where the KBE effectiveness was proven. Depending on the various localized KBE
experiences, people can claim that “…KBE is just good for structural optimisation…”,
or “…KBE works for system configuration…” etc. Time and multiple applications are
required to consolidate a wider confidence.

7.5 Methodological development of KBE applications.
The long term view
KBE applications should not be written ad hoc. Ad hoc solutions generally restrict the
success of KBE applications to the very short term, while hazarding the potential
long-term benefit (Sainter et al., 2000b). It is very inefficient to use an expensive
and complex KBE system to write an application that is only able to address one very
specific instance of a problem, and contains rules that applies only in one very
specific case. The first consequence of such a faulty approach is the very limited
flexibility and durability of the KBE application. As soon as similar but not identical
design cases come at hand, that KBE application will result inadequate or very limited
in use.
Some other time, KBE applications might disorderly grow under consecutive layers of
advancement, brought by separate developers, with different scopes. At a certain
point, they might have become so unwieldy and complicated, that new developers
will not be able to understand their structure and further develop/maintain them.
In the one case or the other, it will result in the extensive re-coding of the
application, or an extra production of patches and fixes, which will make the
application even more inflexible, difficult to use and also very inefficient.
Eventually, there is an evident risk to lose knowledge or hamper its reuse, which
paradoxically were the two reasons to implement KBE technology! Therefore, the
definition of a methodology to guide, structure and support the development
activities of KBE applications becomes an important factor for a long term success.

7.5.1 The need for a methodology. The MOKA project contribution

A KBE dedicated methodology consists of the definition of guidelines, standard
procedures and techniques to help KBE developers generating effective applications,
which are also reusable and maintainable.
There is a tendency to think that the time required to (define and) apply a
methodology might be better invested to speed up the development of the
application at hand (Sainter, Oldham and Larkin, 2000a). However, it has
demonstrated that the adoption of a proper methodology is not just beneficial for the
mid-long term, but it yields also a development time reduction of 20-25% (Oldham

240

et al., 1998). Indeed prototyping has an unquestionable value and should not be
hampered. However, it is difficult to imagine that a sound KBE application created to
last and evolve can start by switching on the editor and beginning with free-flow
coding.

Though some general methodologies, such as CommonKADS (Shreiber et al.,
2000), KIF and DEKLARE (Stokes, 2001) have been developed with the scope of
supporting the development of knowledge based systems (see Chapter 4), the MOKA
methodology (Methodology and tools Oriented to Knowledge-based engineering
Applications, 1998-2000) (Stokes, 2001; Brimble and Sellini, 2000) is the only
methodology available at date, which specifically addresses the development of
knowledge based engineering applications. The main results of the MOKA project
can be summarized as follow:
• A consistent way of capturing and representing product and process knowledge

(see insert next page), supported by a graphical modeling language called MML
(MOKA Modeling Language), based on the UML.

• A software tool to assist in the capture, representation and maintenance of this
knowledge.

• Identification of a typical KBE life cycle. The main phases in this life cycle are
analyzed and related needs specified.

• Preliminary investigation on the possibility to automatically generate KBE code
from this software tool.

The first point is possibly the most valuable contribution of MOKA. The relevance of
knowledge modeling and of visual modeling techniques in particular is further
elaborated in Section 7.5.2 (see also insert next page).
Concerning the development of the software tool to assist in the capture,
representation and maintenance of knowledge MOKA produced a prototype system,
never made available to the public. However, the PCPACK tool marketed by
Epistemics (Epistemics) can be actually used as a kind of MOKA tool52 (Milton, 2008).
The identification of the KBE life cycle was also a relevant contribution of MOKA and
can still be used as a kind of roadmap for the implementation of any KBE initiative in
a company. This is elaborated in Section 7.5.3.
Concerning the ability to automate the generation of KBE code, actually, only some
prototype concept was elaborated in MOKA. The XML language was used to map the
MML product model into the backbone of an ICAD application. The automatic
mapping from a knowledge representation tool to a KBE system is still an open issue
of high interest. More in Section 7.7.6.

52 PCPACK is not the MOKA tool, but it can be used to satisfy the requirements for a supporting
software tool for the MOKA methodology. It supports the capture, analysis, modeling and publishing
of design knowledge using a MOKA framework (ontology)

CHAPTER 7 Knowledge Based Engineering. Opportunities and methodology

241

Engineering knowledge representation in MOKA

The second level of modeling supports the transition of the raw knowledge from the ICARE
forms to a more formal representation, based on the Object-Oriented modeling paradigm.
A dedicated visual modeling language called MML (MOKA Modeling Language) has been

The MOKA methodology (Stokes,
2001) provides a two-level modeling
approach to capture and formalize
declarative and procedural
engineering knowledge, which
consists of the so-called informal
and the formal model.

The informal model makes use of
the five ICARE templates (one for
each of the 5 knowledge objects:
Illustrations, Constraints, Activities,
Rules and Entities) to capture the
expert’s knowledge and give it a
first structured representation, in a
way that is very familiar to the
experts’ (to ease validation by the
experts themselves). See figure on
the left side.

developed, which is actually
an extension (yet
extendible) of the industry
standard UML (Unified
Modelling Language).
Knowledge modeled in the
MML is well understandable
by software developers and
largely reduces the gap
between the experts’
informal language and
computer programming
languages like Common
LISP, for example. See the
MML representation of a
product model in the figure
on the right.

242

7.5.2 The importance of knowledge representation and visual modeling
techniques

Any suitable methodology to support the development of KBE applications has to
address the Knowledge Engineering and Knowledge Management aspects related to
KBE. Hence it has to provide a valid knowledge representation/modeling system. The
use of a standard knowledge representation eases the level of understanding
between domain experts and KBE developers, as well as between different
developers. It facilitates the validation of the knowledge by the experts, so that KBE
developers can proceed coding it in the KBE application. It also reduces the
difficulties and the time needed to recall the design rational of a given KBE
application, which can be easily lost among thousands lines of code. A reduction in
the lead-time is the first consequence, but knowledge re-use in general may also
increase, because well-structured knowledge is easier to be managed and shared,
both at human and computer systems level.

The use of visual modeling techniques represents a main element in the
knowledge representation methodology. Visual models, graphs and diagrams are
known to be an extremely efficient and effective means of communication. Indeed
they represent a high-level language, where the combination of simple shapes can
be used to carry extremely large amounts of information.
Visual modeling languages such as the UML (Shmuller, 2004a) and the MML (MOKA
Modelling Language Core Definition, 2000), developed in the MOKA project as an
extension of the UML, are specific for engineering knowledge representation and
their use can be extremely beneficial not only to communicate, but also to preserve
knowledge from loss. Several examples of UML diagrams have already been shown
in the previous chapters and many more are used in the coming chapters to describe
the details of a developed KBE application. Practically, these diagrams can be
considered as a kind of back-up, or blueprint of the given KBE application. We might
regard them as neutral representations of the engineering knowledge, independent
from any specific KBE environment. Whenever the commercialization of KBE platform
ceases or is no longer available within the organization, the loss of knowledge stays
limited.
Commercial software tools, such as the abovementioned PCPACK, support KBE
developers in the application of a methodology, providing a smart software
environment to build multiple-but-interconnected representations of knowledge, and
generate UML(-like) diagrammatic models. See an example of MML diagram in the
previous page insert.

7.5.3 The KBE lifecycle

One of the outstanding results of the MOKA project was the definition of the so-
called KBE lifecycle, which is the detailed roadmap to the development of a KBE

CHAPTER 7 Knowledge Based Engineering. Opportunities and methodology

243

application, from the identification of an opportunity for KBE development to the final
deployment of the application in the company (Oldham et al., 1998). As shown in
Fig. 7.3 four main phases can be identified, namely:
• Problem/Opportunity Identification,
• Knowledge capture and formalization
• Packaging
• Deployment.
The feedback and consequences from the deployment of the KBE application might
identify new development opportunities or call for the maintenance of the existing
KBE system, hence triggering a new cycle.
As illustrated in the more detailed process flow of Fig. 7.4, each of the 4 main
lifecycle phases can be further detailed in more specific activities. Different actors,
tools and needs characterize the four phases as elaborated in the next subsections.

Problem or Opportunity identification: In this preliminary phase, the
opportunities to develop a new KBE application or to modify an existing one are
identified. Consequently, all the required resources to pursue the initiative are
identified to build the actual project plan. These include: the possible knowledge
sources (e.g., domain experts, data-bases and manuals), the appropriate knowledge
acquisition tools and techniques, and the suitable analysis tools and techniques for
knowledge representation. If the expected benefit and technical feasibility of the
new/modified KBE application can justify the development case, then management
can give approval to proceed with the next lifecycle phase.

Knowledge capture and formalization: Two main activities can be distinguished
in this phase, namely capture and formalize. In the first activity the relevant
knowledge is elicited from the experts and other sources (See (Milton, 2007;
Shreiber et al., 2000) for detailed information concerning knowledge acquisition
techniques) and then structured
through informal diagrammatic
representation. The informality of
this representation is required to
allow the domain experts to read
back and validate the knowledge
that has been captured (i.e. to make
sure that no misunderstanding
occurred during the elicitation phase
and prevent incompleteness). The
knowledge capture activity includes
the removal of the typical vagueness Fig. 7.3: the main phases of the KBE lifecycle.

PROBLEM or
OPPORTUNITY

IDENTIFICATION

KNOWLEDGE
CAPTURE &

FORMALIZATION

PACKAGING

DEPLOYMENT

244

of the spoken language, to prepare the knowledge to be formalized (i.e. to be
translated in rules). The formalize activity analyses the informally structured
knowledge, as obtained from the capture activity, and represents it in a consistent,
formal, neutral format, to enable it to be assessed for correctness and suitability for
(re-)use. This activity might eventually require other iterations of the capture activity
until all the inconsistencies are solved. The integration of the capture and formalize
activity reduces the gap from the raw knowledge, as elicited form the expert, to the
formality level typical of a programming language. Still no coding on the KBE
platform has actually started in this phase. The contribution of MOKA mainly
addresses this lifecycle phase. See in the previous insert the two-level modeling
approach to capture and formalize knowledge, consisting of the so-called informal
and the formal models. The use of visual modeling tools and languages like PCPACK
and the UML (or the MOKA’s UML extension MML) find in this phase their main
application field.

Packaging: In this phase the knowledge assessed and formally structured in the
previous phase is finally coded into the selected KBE environment (e.g. ICAD, GDL,
etc). This is the real programming phase in the KBE lifecycle. The skills of the KBE
developer, as well as the capability of the selected KBE system and its programming
language are the most important factors. The coding should proceed under the
supervision and approval of the expert/end-user, which should help in testing and
validating the efficiency, effectiveness and robustness of the different modules as
they are developed. The packaging phase actually sets the important transition from
the neutral, KBE system-independent knowledge representation, to the specific
format dictated by the language of the selected KBE system. This knowledge
transition is generally carried out by hand, with evident limits in time efficiency and
“translation accuracy”. Indeed the generation of dedicated translators to automate
the code generation on the basis of a neutral knowledge representation, represents a
very interesting topic. MOKA demonstrated the feasibility of automatic generation of
the backbone of an ICAD application directly from the MML formal model (See (KBE
coupling illustration, 2000) and Chapter 14 of the MOKA book (Stokes, 2001)).
However, the test case was of very limited extent (no process knowledge included)
and indeed the “non generic” aspect of the whole methodology stops exactly when
the specificity of the selected KBE system comes in.

Deploy: in this phase the application is distributed to all the potential users in the
organization who could benefit from it. The KBE tool is installed, documentation is
provided and, eventually, end-users are trained. In this phase of the KBE lifecycle,
the support of IT is essential for providing a proper infrastructure to store the KBE
application and make it available to the users (Sainter et al., 2000a). This might
consist of a network of computers connected to a central repository where the KBE

CHAPTER 7 Knowledge Based Engineering. Opportunities and methodology

245

application is stored. An adequate management policy of the different versions and
updates of KBE applications is indeed required (including for example the
implementation of a files revision control system) to allow the development and
debugging of the application, while a working version is still available to end-users.
These kinds of IT organizational issues, in the mid-long term, always reward the
efforts.
After the KBE application has been deployed to support the relevant engineering
activity, new opportunities to improve or extend the application might become
evident. In this case, a whole new cycle of activities can start.

7.5.4 The KBE development team

The development of KBE systems is first of all about the people involved in the
process and their specific roles and relationships. The picture presented in Fig. 7.5
shows the main actors involved in the process and the way they interact with each
other. It should be acknowledged that such a schema is based on the simpler version
provided by the CommonKADS methodology (Shreiber et al., 2000) to illustrate the
team and the organizational aspects related to the development of a generic
knowledge based system (not specifically a KBE system). It is clear how, from the
organizational point of view, the development of KBE and KB systems does not
present substantial difference. This is the KBE development team:
• The domain expert(s): he/she owns and provides the discipline knowledge.

He/she must validate the knowledge implemented in the KBE system to be sure it
is complete, consistent and correct such that it can be exploited by the KBE
application end-user.

• The knowledge engineer(s): he/she elicits the knowledge from the expert and the
requirements from the KBE application end-user. The knowledge engineer also
structures the captured knowledge and delivers the proper representation models
to the KBE application developer.

• The KBE developer(s): he/she is the expert in working with the given KBE
platform and writes the code of the KBE application, based on the knowledge
models provided by the Knowledge engineer.

• The project manager: he/she is responsible for the management of the
knowledge engineers and system developers.

• The software supplier(s): they deliver the KBE platforms used by the developers
and the knowledge management tools used by the knowledge engineers. Though
external to the actual KBE team, they are often involved as consultants and
(hopefully) collect users’ feedback to improve the tools they market.

246

Fig. 7.4: Detailed model of the KBE lifecycle. Based on (Oldham et al., 1998).

Problem or
Opportunity
Identification

Knowledge
capture and
formalization

Packaging

Deployment

Stimulus

Identify
what is involved

Justify

Development of new
KBE system

Maintenance of
existing KBE system

Start

Business
need

New
Knowledge

Provides a

to
In order to

either or

Capture
and validation of the required knowledge

Stop

Formalise
and incorporate it into the (corporate) knowledge
repository to ensure consistency and completeness

before the knowledge engineer can

Package
it in the KBE system

prior to extracting the appropriate
knowledge in order to

No longer
justified

Ready to

Distribute
the KBE system to intended users

Introduce
it to and train the intended users

and then

requiring

Use
the system to gain benefits, possibly resulting in new system or process

knowledge or new requirements representing changes in the business needs

so that they can

..
w

h
ic

h
 m

a
y
 t

ri
g

g
e

r
a

 c
y
cl

e
 o

f
m

a
in

te
n

a
n

ce

CHAPTER 7 Knowledge Based Engineering. Opportunities and methodology

247

Depending on the size of the organization and KBE application to be developed, the
level of expertise and capability to write code, the same person can actually “wear
more than one cap”. It is not uncommon for the discipline expert to code the KBE
application him/herself. Eventually he/she can be also the end-user or the person
that mainly benefits from the developed KBE application.
The stimulus and the continuous support to the KBE initiative should come from a
rooted knowledge management culture in the organization. The Knowledge manager
is the responsible appointed to define a global knowledge strategy, initiate and
develop knowledge related projects and facilitate the knowledge distribution within
the organization.

Fig. 7.5: The KBE development team: actors, roles and relationships

Knowledge engineer

Knowledge
manager

KBE developer

Knowledge
provider
(expert)

Knowledge
provider
(expert)

Knowledge
user
Knowledge
user KBE

application

elicits knowledge from

elicits
requirements

from

uses
designs and
implements

manages

manages

Project
manager
Project
manager

Knowledge
repository

validates

retrieves
knowledge

models

Software
supplier

delivers
software
systems

g
iv

e
s

co
n

su
lt

a
n

cydelivers knowledge
models to

defines knowledge strategy, initiates
knowledge development projects and
facilitates knowledge distribution

248

7.6 Trends and evolution of KBE technology
The first commercial KBE system arrived on the market in the 1980s, however only
the last 10-15 years KBE technology has started to be used seriously.
Notwithstanding its huge potential, KBE has not penetrated the market like CAD
systems have done in their first 15 years. The reason for this limited success can be
attributed to a combination of causes:
• High costs of software licenses and needed hardware. It should be considered

that the cost of a full development license of one of the first generation KBE
systems was around 100000$ per year. The same amount of money was in the
beginning required to acquire adequate machines to run such systems (Lisp
Machines). It is only since the early/mid 1990s that Unix workstations came on
the market for a cost one order of magnitude lower (still not negligible!) Only the
costs have been the main reason to limit the range of possible KBE customers to
the largest companies from the aerospace and automotive sectors.

• Arguable marketing approach by KBE vendors. As Cooper elaborates in (Cooper
and Smith, 2005), the business model of the first KBE-vendors was an
impediment to the diffusion of just their own technologies. Due to the large
commitment required to customers to adopt such complex and expensive
technology, the KBE vendors felt the need to play multiple roles. They were at the
same time KBE systems suppliers, consultancy providers (to help company to
implement and operate effectively the KBE system they just sold them), as well
as sellers of KBE end-user applications. As result, a third party company who
wanted to use the KBE tool to offer consultancy service to some large KBE user,
was becoming at the same time customer and competitor of the KBE system
vendor. Moreover, the vendor was in many cases even in competition with its
own end-user customer.

• General lack of literature, study cases and metric. Indeed, the scarce amount of
KBE dedicated literature, the difficulty to find useful information about KBE
success stories, as well as the lack of a good metric to estimate and judge the
possible advantages of using KBE compared to traditional methods have all
played a role in limiting the market penetration of KBE. Since the success or even
the launch of a KBE initiative depends on the level of confidence and commitment
of management, these issues absolutely cannot be disregarded. Disinformation
and little understanding of the subject have often generated large
misunderstandings on the actual capability and possible roles of KBE in the
development process of products. The long endurance dispute KBE vs CAD is just
an example.

If we add to the list also the issues related to human acceptance of KBE (already
discussed in section 7.4) we might end up looking at the past successful

CHAPTER 7 Knowledge Based Engineering. Opportunities and methodology

249

implementations of KBE just as “lucky” exploits by some elite broadminded
organizations.

During the years, a number of technical developments and strategy changes have
created the situation for a sustainable growth of KBE in the world of industry and
research. First of all the cost of hardware has decreased dramatically: what
yesterday required an extremely expensive Lisp Machine and then a workstation,
today runs on any laptop, at a speed tenfold higher53. Many KBE vendors have
actually adapted their system to the most widespread operating systems and
computer architecture, i.e., simple desktop computers running Windows. However,
only few current KBE systems can work with Linux and Mac.

During the years, the growing complexity of the products to be engineered has
nurtured the development of continuously more complex computer aided engineering
tools. This trend has somehow played in favor of KBE, because the relative
complexity gap with KBE tools has automatically decreased.
 Another important change which is going to strongly affect the future of KBE is
the fact that leader companies in the development of PLM solutions have finally
recognized the value of the KBE approach and finally endowed their top-end CAD
products with KBE capabilities:
• In 1999, PTC introduced the Behavioral Modelling toolkit for Pro/ENGINEER

2000i, which allows methods to capture rules to steer the CAD engine
• In 2001, UGS acquired the KBE language Intent! from Heide Corporation and

embedded it into Unigraphics to form Knowledge Fusion (In 2007 UGS has been
bought by Siemens PLM software)

• In 2002, Dassault Systemes acquired KTI and their product ICAD. DS sinks ICAD
and exploits KTI expertise to develop KnowledgeWare, the KBE add-on of CATIA
V

• In 2005 Autodesk acquired Engineering Intent Corporation and integrated their
KBE system with Autodesk Inventor, to form AutodeskIntent (now Inventor
Automation Professional)

• In 2007, Bentley acquires the company Design Power and integrates their KBE
system Design++ with Microstation

Without entering into the details of the different approaches pursued by these
companies or questioning the real KBE effectiveness of their systems, some
consequences of this trend are unquestionably positive:

53 The development of the MMG, the KBE application described in Chapter 6-8, started on a 8000 Euro
SUN workstation and 2 years later continued on a much faster, 800 Euro desktop. Unfortunately the
licenses cost did not follow the same trend.

250

• KBE is entering into the mainstream of the other traditional product development
software tools (though the “KBE side” of the abovementioned CAD systems still
represent quite an exoteric and unfamiliar aspect for most of the typical CAD
users).

• Finally there is the availability of a huge force in terms of technical knowledge,
organizational, support and marketing capabilities, which can surely help
disseminating the KBE technology to an unexpected large amount of customers of
all size, from large integrators to SMEs.

• Inevitably, the entry cost of KBE, including hardware, licenses and training will
decrease at a level that any company will have the possibility to evaluate the
impact KBE can have on their business.

• Eventually, freelance consultants and independent professionals will have the
possibility to own and operate a single license on their laptop.

At the beginning of the 1980s, KBE came out as a reaction to the limitations of
current CAD systems. After a period of glory for exclusive customers, followed by few
years of impasse, eventually CAD and KBE get along again… or is this a too positive
claim?

7.7 Recommendations & Expectations
It is of extreme importance that the development of new KBE tools is based on the
lessons learnt and experience gained by the pioneers and experienced practioners of
this technology. The actual level of capability and maturity of available KBE systems
is such that the concept does not need to be reinvented, but rather consolidated
and, possibly, enriched with new capabilities to lower the accessibility level and to
help programming better KBE applications in less time.

7.7.1 Consolidating the fundamental technical strengths

KBE platforms providers should keep their focus on two fundamental technical goals:

1. The enhancement of the level of robustness of geometry manipulation and
interfacing with CAD kernel(s)

2. The enhancement of the computational capability and system stability

As a matter of fact, the integration of rule-based design, geometry manipulation and
computation capability represents the real added value of KBE with respect to
conventional CAD and Expert Systems, as well as to other general purpose
programming languages. The future of KBE passes here. Compared to the two
targets above, any other technical improvement is only a “nice to have”.

CHAPTER 7 Knowledge Based Engineering. Opportunities and methodology

251

7.7.2 Lowering the accessibility level

The use of a programming language to “instruct” a KBE system must be preserved
and consolidated, being the programming approach the most powerful and
comprehensive way to control and access all the functionalities of a KBE system. The
almost unlimited flexibility offered by a high level, object oriented programming
language offers designers an extremely valuable means for capturing engineering
knowledge and making it reusable with consistency. On the other hand, the
accessibility level to KBE technology has to be lowered. The role of KBE developer
should be easily undertaken by engineers and not only by programming gurus. As
discussed in Chapter 3, Section 3.10.1, programming languages can have a
fundamental role here: they should resemble the “everyday engineering language”
and also relieve the KBE developer from any burden related to memory management
and similar low level details.

7.7.3 Supporting interactive geometry manipulation

Furthermore the time required to write KBE applications must be drastically reduced.
On one hand the full programming approach gives total control to developers, on the
other it might make certain operations very cumbersome, especially concerning
geometry manipulation. Though more than 70% of a product’s definition is often
non-geometric, more than 70% of coding/debugging time is spent in geometry
manipulation. Therefore, the capability to have some automatic code generation,
while “manually” performing geometry manipulation in a more advanced graphical
interface than current KBE systems, would be of great advantage. Besides, the
graphical interface of typical KBE systems, like ICAD and GDL, allows just the
visualization of the geometry produced by the product model, but does not allow (or
only in a very limited extent) the interaction with that geometry, e.g., the mouse-
selection of a part to query and modify its attributes.

7.7.4 Supporting web collaborative solutions and open source initiatives

When the first KBE system came into the market, the World Wide Web did not exist
yet, neither the concept of open source software. It is natural to expect new KBE
systems (on the contrary of the first generation systems) to be web-friendly, hence
geared toward their use and deployment via the web (Cooper and La Rocca, 2007).
To be noted that this option would free users from any demands on the kind of
computer system required using the given KBE application; a web browser would
suffice. The possibility to free the way to open source solutions, from one side, would
relieve the end-user to return so often (with cash) to the “KBE vendor shop” and buy
dedicated plug-ins (e.g., for VRML and X3D graphic generation and visualization, or
for the generation of PDF and XML files etc). From the other side it would relieve the

252

KBE vendor from the in house development of typically short life and buggy
applications. Indeed, an open source application is likely to have fewer bugs, since a
large number of peers had the possibility to look at it and bring improvements.

7.7.5 The value of dynamic code ���� documentation generation

In order to allow developers accessing and understanding applications written by
others, code documentation is extremely important; unfortunately producing and
keeping updated quality documentation is as much useful as time-consuming. A KBE
system able to autonomously produce descriptive documentation of its own
application (possibly implementing standard visual modeling languages such as the
UML54), would be more than welcome to any developer who, at least once, has
struggled to debug or rework others’ code…and often also his/her own!

The automatic link code-documentation should actually work dynamically in both
directions. Engineers should have the possibility to agilely and interactively generate
diagrams representing the structure and the design process of their products, having
an interpreter active in the background that is able to generate at least the main
structure of the KBE application code. This would allow passing from the formal
knowledge representation provided by knowledge engineers (e.g., the MOKA formal
model), directly to the programmed application (or at least its main structure).
Furthermore, it should be possible to visualize the structure of a given application
and modify its code just by modifying its diagrammatic representation55. In this case,
the barrier of the programming interface would be completely abated, eventually
allowing engineers to play the role of engineers rather than software developers…

7.7.6 Automatic KBE code generation. Issues and Opportunities

As discussed in section 7.5.1, MOKA already addressed the issue of dynamic code
generation mapping from the MML formal model. Indeed, the fact that tools like
PCPACK use an internal XML representation of the knowledge models interactively

54 Indeed, KBE systems like ICAD and GDL offer a so called Documentation Tool, which allows the
automatic generation of reference documentation from a set of KBE code files. However useful, it is
not the kind of visual representation offered for example by the UML.

55 It should be acknowledged that in May 2002, during the International ICAD User Group in Boston,
KTI announced and presented ICAD Release 9, which was including a so called IDE (Integrated
Development Environment) to help engineers developing ICAD applications by means of dragging and
dropping predefined and user-defined classes on a canvas, to be connected and adjusted as needed.
Release 9 included also a graphical user interface to allow interactive geometry picking. In November
2002, KTI was acquired by Dassault Systemes, the ICAD development and soon after its support
stopped, Release 9 never came to the market.

CHAPTER 7 Knowledge Based Engineering. Opportunities and methodology

253

generated by knowledge engineers, offers the possibility to use XSLT56 to translate
those knowledge models into KBE code (see sketch in Fig. 7.6).

 Two issues can be foreseen. First different translators should be developed to pass
from the possibly different XML knowledge representation provided by different
PCPACK-like tools to the different syntaxes of various KBE systems. Second, and this
is a more subtle issue, a KBE product model actually consists of a mix of the “pure”
domain knowledge (as elicited from the expert and stored in the formal knowledge
model), and the so called implementation-specific knowledge. The latter consists of
the KBE system-specific method to implement the domain knowledge. For example,
the formal model can specify that a certain surface has to be segmented in parts
along the intersection with some other surfaces. However, the way to achieve this
segmentation can largely vary from one KBE system to another. The KBE developer
will have to deal with the practices of the given KBE system and the possibilities
offered by its programming language. Experts report cases when using a certain

56 Extensible Stylesheet Language Transformations (XSLT) is an XML-based language developed by
the World Wide Web Consortium (www.wc3.org), used for the transformation of XML documents into
other XML, HTML or some other "human-readable" documents.

Fig. 7.6: principle of automatic generation of KBE code from a formal knowledge
representation, by means of XLST.

254

language, a given function could be programmed in 2 lines against over 100 required
by another language! (Knudson; Graham, 2004)
Eventually, according to the problem at hand, a KBE product model can consists of
equal amounts of domain knowledge and specific implementation knowledge. There
cannot be automatic generation of KBE applications, without dealing with the latter.

Recently the OMG has issued a request for proposal (Object Management Group,
2005) soliciting a standardization of KBE services in order to facilitate sharing the
information that generates engineering data. In other words, a platform independent
model for the exchange of knowledge in terms of the currently available constructs in
KBE, such as engineering rules and relations.
As discussed in Chapter 3, a way to relieve the problem could be the use of standard
programming languages, rather than proprietary. However, the competitive
advantage of certain KBE systems exists in some of their very non standard and
unique functionalities!

CHAPTER 8 Conclusions and Recommendations

255

CHAPTER 8
Conclusions and Recommendations

1. Conclusions

2. Recommendations

3. A glimpse of the next-generation MMG

8.1 Conclusions
The vision and the crude reality
In 2002, following the publication of the Vision 2020 document, the Advisory Council
for Aeronautical Research in Europe defined the roadmap to drive the European
aeronautical industry towards a set of very challenging sustainable growth targets.
The target concerning the environmental impact is seen as the most difficult to
achieve, practically impossible without important breakthroughs, both in technology
and in concepts of operation.
Since then, the Airbus A380 has entered into service; the Boeing 787,
notwithstanding an already accumulated delay of 3 years, is on its way, while the
unconventional design of the Sonic Cruiser seems doomed to dust on the shelves of
some Boeing archive. Airbus is expecting to deliver the first A350 in 2013, while the
A30X, the replacement for A320 successful single aisle family, cannot be expected
earlier than 15 years from now.
None of these aircraft feature the technology to meet the awaited ACARE targets.
Since these are the aircraft that will operate in the next 40 years, the bankruptcy of
Vision 2020 can be already declared. Radical innovation is indeed a too risky
business.

So now what?
The search for possible solutions must begin from a careful observation of the actual
context:

• The modern aerospace company is transnational. It operates in the global
market across a large, complex and distributed supply chain.

256

• New aircraft development programs are increasing complex and have a much
longer duration. The amount of time spent for the conceptual design of a
modern aircraft is more than the time spent in the 1940s for a complete
aircraft development, including production.

• The brains drain phenomenon is taking away a large part of the already
scarce knowledge resources that are indispensable to deal with the
abovementioned challenges. At the same time, the modern knowledge worker
needs to be managed differently.

• The Kansas City aircraft design is the result of more than 60 years of
evolutionary optimization. However, the recent changes in the top level
requirements (i.e., the new and more stringent environmental impact
constraints) are modifying the morphology of the design space. Most likely the
new optimum can be found somewhere else.

To be able to step into the new age of sustainable growth, it will be necessary to
realize that

• Knowledge is a key business asset, strategically more important than other
classical more tangible resources. As such, it must be properly managed and
engineered.

• Changes are required in the very design approach. New tools and methods
are indeed required to
− Support the design process across large distributed teams
− Increase the productivity of the scarce intellectual resources
− Better support the decision making process
− Free time for innovation and exploitation of engineering skills
− Lower the risk associated with the development of novel aircraft

configurations

The MDO promise and challenges
The MDO approach appears to be the most promising design methodology in the
field of aircraft design, both to improve the performance of traditional aircraft
configurations, and to support the development of novel concepts. Actually, non
conventional configurations such as blended wing bodies and Prandtl planes, due to
their intrinsic level of integration, are expected to benefit the most from the
multidisciplinary design optimization approach.
The opportunity to bring more knowledge upfront in the design process, while
extending the designer’s freedom to make late changes; the ability to account and
exploit any discipline interaction; the prospected capability to thoroughly explore the
design space and find new non trivial solutions are the dreams of any designer.

However, a number of technical (and non technical) barriers have prevented a
full exploitation of the MDO approach so far, and limited its industrial application
mostly to detail design cases. The lack of adequate generative modeling systems

CHAPTER 8 Conclusions and Recommendations

257

able to hook up to distributed and heterogeneous sets of analysis tools and the
frustration from the lengthy and repetitive preparation work demanded by the
iterative multidisciplinary analysis process have been indicated as some of the most
critical issues for the implementation of MDO systems, especially in the conceptual
design phase. The integration of high fidelity analysis tools, due to their lack of
robustness and flexibility, has demonstrated particularly challenging, thereby
reducing the impact of the MDO approach as a whole.

The DEE concept and the development of the MMG
To this purpose, the concept of Design and Engineering Engine has been developed,
which is a modular, loosely integrated design system able to support the
multidisciplinary analysis and optimization process by automating all the repetitive
and non creative activities. One of the core components of the DEE is the Multi Model
Generator, which is actually the technological enabler of the DEE CAD-centric
architecture and represents the main outcome of this research work.
Due to their current limitations in supporting the functional thinking approach of
designers and, in particular, to their lack of knowledge recording and reuse
capabilities, conventional CAD systems are not able to provide the level of design
automation and flexibility necessary to support MDO.
On the contrary, the inherent capability of KBE to integrate object-oriented rule-
based design with the geometry manipulation skills of a top-class parametric CAD
system, can offer the required generative modeling capability.
For this reason, the Multi Model Generator has been developed using a commercial
KBE platform, where the KBE ability to define and manipulate geometry and other
engineering knowledge via an object oriented programming language has been
exploited to define the two main types of MMG components, namely the High Level
Primitives and the Capability Modules.

The High Level primitives
The HLPs, with their modular and parametric structure, can be considered as smart
LEGO blocks, which enable designers to build up a large number of aircraft
configurations and configurations variants, including novel concepts.
The HLPs can support designers better than the conventional CAD primitives,
because of two main reasons:

1. They are functional blocks, hence they can better match the way of thinking
of a designers, which derive shapes based on functionalities to be achieved
(e.g., generate lift, accommodate payload, etc.).

2. They are able to record knowledge and reuse it to adapt their own shape and
topology, or trigger some event, as a reaction of some input change.

Indeed, whenever a HLP parameter value and/or the number and type of HLPs used
to model a given aircraft configuration is changed (e.g., by an optimizer), the rules

258

integrated in the product model enable the aircraft to reconfigure and adjust itself,
automatically, without any burden for the designer.

The Capability Modules
On the basis of the following observations:

1. Quite independently from the aircraft configuration at hand, the same analysis
tools and preprocessing methods are generally used by specialists

2. A large part of the preprocessing activities required to transform a geometrical
model into a dedicated abstraction for disciplinary analysis are systematic,
repetitive and follow known rules

A number of so called Capability Modules has been developed to capture discipline
expert knowledge and reuse it to automate the generation of dedicated models (also
called discipline abstractions or views) for a broad range of analysis tools, including
in-house developed and commercial off the shelf, low fidelity and high fidelity tools.
In particular, it has been demonstrated how one of the biggest MDO challenges can
be met by means of KBE, i.e., the automatic generation and modification of FE
models, both for a complete aircraft model or a component, independently of the
vehicle configuration and its internal structure layout.

High fidelity analysis in the conceptual design process
The enabled use of high fidelity analysis tools in the early stages of the design
process can largely increase the level of confidence in the performance prediction of
the design under consideration. While this is a significant achievement in general, it
actually represents a fundamental step towards the development of novel aircraft
configurations.
In this respect, the EC sponsored project MOB, has demonstrated the effectiveness
of the MMG tool to support the design of a blended wing body configuration, where
the inherent strong disciplines couplings and the lack of reference data make the use
of traditional design methods less effective and stem for a full MDO approach, based
on first principle analysis.
It can be noted that the early use of high fidelity analysis systems enabled by the
KBE approach tends to blur the boundaries between conceptual and preliminary
design. Indeed the availability of one modeling system able to serve both low and
high analysis tools can improve the transition between the two design phases and
avoid discontinuities in the models supply process.

The joy and scope of design automation
The application of the MMG (within the DEE) for the design of a complete aircraft or
some of its major components has shown that is possible to reduce the length of the
analysis process from months to days, from weeks to minutes.

CHAPTER 8 Conclusions and Recommendations

259

As a result, more cases can be evaluated during the time normally required by a
single manual iteration. More what-if scenarios can be investigated. More time can
be dedicated to creative design.
Since discipline experts do not have to assemble manually new analysis models when
changes occur in the product configuration, their level of frustration decreases, as
well as the occurrence of human errors, while design rules and best practices are
systematically applied.
Knowledge Based Engineering, with its set of tools from the world of Artificial
Intelligence, has proven a valuable technology to bring more automation in design,
but, with the very limited scope to repetitive and non creative activities. In other
words, KBE can support the analysis and optimization of good ideas, but cannot
generate ideas. For that, the designer is always in charge.

Enabling distributed design
The capabilities to be accessed in remote via a web connection and work in batch
mode allow the MMG to operate inside a real distributed design and optimization
environment. Actually, the MMG itself becomes an enabler for distributed design. A
large range of non-geographically collocated tools and experts can be supplied any
time with dedicated models that are guaranteed to be consistent because extracted,
on the fly, from the same product definition.

Modularity to grow, adapt and survive
The modular structure of the DEE system, as well as of the MMG and its components
provides optimal conditions for maintenance, debugging and incremental
development.
Furthermore, this modular structure allows a prompt integration of new and different
analysis capabilities and facilitates the reconfiguration/adaptation of the system to
different design cases, or the reuse of single modules in different DEEs or just as
stand alone.
To cite a founding work of the modern age: “It is not the strongest of the species
that survives, nor the most intelligent that survives. It is the one that is the most
adaptable to change” (C. Darwin, The Origin of Species).

The thread of micro S-curves for the MDO macro S-curve
As discussed in Chapter 1 (Section 1.2, Fig. 1.5), jet engines would not have brought
to a step change in aviation performance without the enabling contributions of metal
structure, axial compressors, swept wings, retractable landing gears, etc.
Similarly, the impact of MDO will depend on the various advances in the fields of
optimization techniques, fast computing, communication & integration frameworks,
high fidelity analysis tools and, last but not least, smart modeling systems. It is right
here that this research work is intended to contribute.

260

There is (KBE) life outside planet Aerospace Engineering
The methodology described in this research work to support aircraft design and
optimization finds a lot of application also outside the aerospace field. The design of
any complex craft that requires the involvement of many discipline stakeholders and
whose optimum performance depends on non intuitive combinations of physical and
process parameters can strongly benefit from the technologies discussed in this
work. As a matter of fact, dedicated DEEs and MMGs have been developed and
demonstrated in other two EC projects.
The first one, called UPWIND (www.upwind.eu), is a 5th framework project
investigating the development of new extra large scale wind turbines, where a MMG
is required to feed a range of distributed analysis and simulation tools (Chiciudean,
La Rocca and Van Tooren, 2008; Cooper and La Rocca, 2007).
The second one, called PEGASUS (www.pegasus-eu.net), is a 6th framework project
that aims at improving the development process of plastic car components, by
means of a better and more pro active integration of knowledge and tools from OEM
and suppliers. In this case a DEE is being developed to optimize the design of
injection molding tooling for minimum cost, environmental impact, and
manufacturing process time (van Dijk et al., 2011).

8.2 Recommendations
A KBE application as the one illustrated in this research work has the tendency to
become one of these systems whose development never stops! Every success in
automating a part of the design work, every achieved link with another analysis tool,
will bring the happy user (actually the increased number of happy users) back to you
with a new wish.

Basic lessons from the IT world
However, the modular incremental development approach alone will not suffice to
sustain such a continuous growth, neither will it facilitate code reuse and sharing, if
not complemented with some software development best practice. These practices
are not always familiar or properly implemented by the common aerospace engineer,
until too late...
These include the following guidelines:

• Make use of understandable naming for attributes, functions, classes, etc.
• Never hardcode parameters inside the code, including explicit paths to

external files and disks
• Keep program code as clean and structured as possible (in a way, any code

file must be a comfortable place to work in)
• Always document the code, both inserting explanations in between the code

lines, and by means of external documentation. What seems to be a trivial

CHAPTER 8 Conclusions and Recommendations

261

function definition to you today, it will not to another developer or to yourself
in a few months (this would be an inconvenient degradation of knowledge
back into data)

• Organize the various pieces of source code according to some agreed filing
structure (ontology). For example different folders/subfolders for generic
classes and functions, HLPs, CMs, libraries, input and output areas, etc.

• Make use of a control revision system and a properly backed-up file repository
to store and share the code. Do not commit code into the repository that has
not been tested, unless you are and you will remain the only user of that
code.

• Develop and keep up to date a code testing system. Before committing any
new version of the code or just some new module, all tests must be passed
(e.g., it should be possible to generate all the possible output files for a
number of significant aircraft configurations), to verify that all the previous
functionalities are still intact.

• When a stable version of the KBE application is available, it is convenient to
compile it into an executable file, which is the most robust and convenient
form to distribute the application (no local installation of the KBE system will
be required on the machine where the executable has to run)

Lean to be lean
Developing a quality KBE application is not trivial and can be very time intensive.
Code (re)structuring, testing and documentation generation can take a significant
amount of the overall development time. Cutting time by saving on these activities is
not uncommon, especially within a research environment where the proof of concept
is generally the goal, rather than a finalized tool ready for professional deployment.
However, within an industrial environment this is generally not an option. Different
strategies are required to compress the development time of a KBE application, such
to increase its return of investment or justify its development (pressure can be high
when the development costs must be covered by a single project).
As KBE is used to achieve a lean approach in design, methods are needed to achieve
a lean KBE application development.
New PhD research programs are currently on going at the TU Delft faculty of
Aerospace Engineering, with the scope of developing a suite of tools and methods to
increase the productivity of KBE developers. Among others the following items need
to be investigated (see also Section 7.7):

• Automated code documenting systems
• Automated code generation/manipulation from KBE platform independent

knowledge models
• Improved debugging and testing systems
• Ontology development to facilitate structuring and reuse of KBE modules

262

• Extension and revision of the MOKA ontology to support the development of
DEEs (and similar MDO frameworks) and not only of pure KBE applications.

A new look at the MMG
Although, the modeling capabilities of the MMG described in this work have proven
capable of generating very different aircraft configurations and variants, it is
recommended to consider the following improvements:

• Allow for a non linear distribution of chord lengths, dihedral and twist
• Allow for a free placement and orientation of airfoils all over the span,

including the possibility to have canted root and tip wing sections
• Ease the approach to define curve leading and trailing edges (also to reflect

the more curvy shapes allowed by manufacturing with composite material)
• Allow the possibility to model complex (cranked) planform by means of a

single wing-part primitive to limit the amount of required wing part instances
and relative connections

• Increase the flexibility of the structural element definition and placement to
avoid, for example, redefining spars for each wing-part instances inside a
cranked wing, even when the spars extend continuously from the wing root to
the tip

• Allow the definition of multi element wings with movables that are free to be
deflected and extracted

• Similar improvements in term of modeling flexibility should be considered also
for the Fuselage and the Engine primitives. The integration of new types of
engines on new aircraft configurations is going to become a very interesting
aspect, where the DEE can offer a lot.

• Although the MMG has been developed to operate in batch, driven by a user
defined input file, it would be convenient to develop a graphical user interface
to facilitate both the generation/modification of the input file and the
interactive operation of the MMG.

• Expand the scope of the MMG (and the overall DEE) to other “hot design
areas”, such as systems integration and wires/piping routing. The recent
problems on the A380 wire harnesses routing and their impact on the overall
delivery schedule are sufficient to justify the relevance of this research area.
The complexity of these systems has grown so drastically that it is no more
convenient neither possible to address them as late as during the detail design
phase.

8.3 A glimpse of the next-generation MMG
Whilst recommendations are a nice academic way of stating “I did my part! Someone
else will take care of cleaning my mess and solving the problems I was not able to

CHAPTER 8 Conclusions and Recommendations

263

solve”, the author had the privilege to initiate the development of a new generation
MMG and already take care of some of the recommendations listed above.
After the ICAD exit from the market, GDL, the new KBE platform by Genworks
International, has been adopted at our chair to start the development of the next-
generation MMG. The activities to recode (an improved version of) the HLPs and CMs
are already ongoing and Fig. 8.1, Fig. 8.2 and Fig. 8.3 offer a peek on the most
recent developments.

264

Step 1 a) Step 1 b)

Step 1 c) Step 2

Step 1 Construct rails Step 2 Place airfoils Step 2 Construct Surface

Fig. 8.1: Definition of the new Wing-Part HLP. Two curvilinear and not necessary
continuous rails are defined and used to “hinge” airfoils at any angle. Twist, dihedral and
sweep angles distributions are not necessarily linear (Koning, 2010).

CHAPTER 8 Conclusions and Recommendations

265

Fig. 8.3: The GDL surface tessellation capability is used to generate suitable grids for
FE structural analysis directly within the MMG. A new Capability Module generates the
NASTRAN bulk data deck (.bdf) file without the need of Pycoco and PATRAN. This can
simplify the MMG-NASTRAN integration approach discussed in Section 6.4 (van Hoek,
2010).

Fig. 8.2: Examples of MMG generated multi-element wings (slat and triple slotted
flaps). Direct links both to CFD simulations (MSES) and semiempirical methods (ESDU)
for the derivation of the flapped wing lift curves are in place (van den Berg, 2009).

 References

267

References

ACARE. 2002. Strategic Research Agenda 1 - Executive Summary & Volume 1-2. 1-2. Available:

http://www.acare4europe.com.
ACARE. 2004. Strategic Research Agenda 2 - Executive Summary & Volume 1-2. 1-2. Available:

http://www.acare4europe.com.
ACARE. 2008. 2008 Addendum to the Strategic Research Agenda. Available: www.acare4europe.com.
ACARE. 2010. Aeronautics and Air Transport: Beyond Vision 2020 (Towards 2050) - background

document. Available: www.acare4europe.com.
AIRBUS. 2009. Flying Smart, Thinking Big. Global Market Forecast 2009-2028. Available:

www.airbus.com.
ALAGNA, A. 2005. Development of a Cabin Layout and Fuselage Design Tool. MSc Thesis, TU Delft.
ALLWRIGHT, S. 1996. Technical Data Management for Collaborative Multidiscipline

Optimisation. AIAA Conference on Multidiscipline Optimisation. Seattle.
ALONSO, J. J. 2008. Requirements for MA&O in the NASA Fundamental Aeronautics Program. In:

AIAA (ed.) 12th AIAA/ISSMO MA&O Conference. Victoria, BC, Canada.
ANALYTICAL METHODS, INC., 2009. VSAERO - Integral methods for potential and boundary layer

flows. Redmond, WA.
ASHLEY, H. 1982. On Making Things the Best—Aeronautical Uses of Optimization. Journal of Aircraft.

AIAA.
AUTY, D. 1988. Object Oriented Programming Systems and Frame Representations, an Investigation

of Programming Paradigms. In: NASA (ed.) Technical Report 186084. NASA.
BARTHOLOMEW, P. 1998. The Role of MDO within Aerospace Design and Progress towards an MDO

Capability through European Collaboration. 7th AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization. St. Louis, MO: AIAA.

BATHIA, K. G. 2008. A perspective on Optimization. 12th AIAA/ISSMO MA&O Conference. Victoria, BC,
CANADA: AIAA.

BELIE, R. 2002. Non-technical barriers to multidisciplinary optimisation in the aerospace industry. 9th
AIAA/ISSMO Symposium of Multidisciplinary Analysis and Optimisation. Atlanta, Georgia:
AIAA.

BENNETT, J., FENYES, P., HAERING, W. & NEAL, M. 1998. Issues in Industrial Multidisciplinary
Optimization. In: AIAA (ed.) 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization. St. Louis, MO: AIAA.

BERENDS, J., VAN TOOREN, M. J. L. & SCHUT, J. E. 2008. Design and Implementation of a New
Generation Multi-Agent Task Environment Framework. In: AIAA (ed.) 49th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.
Schaumburg, IL: AIAA.

BERENDS, J. P. T. J. & VAN TOOREN, M. J. L. 2007 Design of a Multi-Agent Task Environment
Framework to support Multidisciplinary Design and Optimisation. 45th AIAA Aerospace
Sciences Meeting and Exhibit. Reno, NV: AIAA.

BLOUIN, V. Y., SUMMERS, J. D. & FADEL, G. M. 2004. Intrinsic Analysis of Decomposition and
Coordination Strategies for Complex Design Problems. In: AIAA (ed.) 10th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference. Albany, New York: AIAA.

BOWCUTT, K. 2003. A perspective on the future of aerospace vehicle design. 12th AIAA International
Space Planes and Hypersonic Systems and Technologies. Norfolk, Virginia: AIAA.

BRIMBLE, R. & SELLINI, F. 2000. The MOKA Modelling Language. Knowledge Engineering and
Knowledge Management Methods, Models, and Tools. Berlin/Heidelberg: Springer

BRODERSEN, O., TAUPIN, K., MAURY, E., SPIEWEG, R., LIESER, J., LABAN, M., GODARD, J. L.,
VITAGLIANO, P. L. & BIGOT, P. 2005. Aerodynamics Investigations in the European Project

268

ROSAS (Research on Silent Aircraft Concepts). 35th AIAA Fluid Dynamics Conference and
Exhibit. Toronto.

BROUWERS, J. J. J. 2007. Parametric Modelling of Aircraft Tail Configurations to Support Aerodynamic
Analysis. MSc, TU Delft.

BUTLER, R., LILLICO, M., HANSSON, E. & VAN DALEN, F. 1998. Comparison of MDO codes for use in
conceptual and preliminary aircraft wing design. 7th AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization. St. Louis, MO: AIAA.

CARMICHAEL, R. Tables from Theory of Airfoil Sections www.pdas.com [Online]. Santa Cruz, CA
[Accessed November 2009].

CARPENTIERI, G. 2008. An adjoint-based shape-optimization method for aerodynamic design. PhD
Dissertation, Delft University of Technology.

CARTY, A. & DAVIES, C. 2004 Fusion of Aircraft Synthesis and Computer Aided Design 10th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Albany, New York: AIAA.

CERULLI, C., BERENDS, J. P. T. J., VAN TOOREN, M. J. L. & HOFSTEE, J. W. 2005. Parametric
Modeling for Structural Dynamics Investigations in Preliminary Design. 2005 CEAS/AIAA/DGLR
International Forum on Aeroelasticity and Structural Dynamics. Munich, Germany: AIAA.

CERULLI, C., MEIJER, P. B., VAN TOOREN, M. J. L. & HOFSTEE, J. 2004. Parametric Modeling of
Aircraft Families for Load Calculation Support 45th AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics and Materials Conference. Palm Springs, California: AIAA.

CERULLI, C., SCHUT, E. J., BERENDS, J. P. T. J. & VAN TOOREN, M. J. L. 2006. Tail Optimization and
Redesign in a Multi Agent Task Environment. 47th AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference. Newport, RI, USA: AIAA.

CERULLI, C., VAN KEULEN, F. & RIXEN, D. J. 2007. Dynamic Reanalysis and Component Mode
Synthesis to Improve Aircraft Modeling for Loads Calculation. 48th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference. Honolulu, Hawaii: AIAA.

CHAPMAN, C. B. & PINFOLD, M. 1999. Design Engineering – A Need to Rethink the Solution Using
Knowledge Based Engineering Knowledge-Based Systems, 12, 257-267.

CHAPMAN, C. B. & PINFOLD, M. 2001. The application of a knowledge based engineering approach to
the rapid design and analysis of an automotive structure. Advances in Engineering Software,
32 pp. 903-912.

CHICIUDEAN, T., LA ROCCA, G. & VAN TOOREN, M. J. L. 2008. A Knowledge based engineering
approach to support automatic design of wind turbine blades. Design Synthesis, CIRP Design
Conference. University of Twente, NL.

CLARKSON, P. J. 2000. ‘Signposting’ for risk reduced innovation in aerospace design. Knowledge
Based Organisation conference. Paris.

COOPER, D. J. & LA ROCCA, G. 2007. Knowledge-based techniques for developing engineering
applications in the 21st century. 7th AIAA Aviation Technology, Integration and Operations
Conference. Belfast, Northern Ireland: AIAA.

COOPER, D. J. & SMITH, D. F. 2005. A Timely Knowledge-Based Engineering Platform for
Collaborative Engineering and Multidisciplinary Optimization of Robust Affordable Systems.
International Lisp Conference 2005. Stanford University: Stanford.

COOPER, S., FAN, I. & LI, G. 2001. Achieving Competitive Advantage Through Knowledge Based
Engineering - A Best Practice Guide. Department of Trade and Industry.

DE WECK, O., AGTE, J., SOBIESZCZANSKI-SOBIESKI, J., ARENDSEN, P., MORRIS, A. & SPIECK, M.
2007. State-of-the-Art and Future Trends in Multidisciplinary Design Optimization. 48th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.
Honolulu, Hawaii: AIAA.

DELONG, D. 2004. Lost Knowledge: Confronting the Threat of an Aging Workforce, New York, Oxford
Univeristy Press.

DELONG, D. 2008. Knowledge loss prevention. Five keys to decisions vis-à-vis an ageing workforce.
InsideKnowledge.

DING, Y. 1986. Shape Optimization of Structures: A Literature Survey. Computers and Structures, 24-
6, 985-1004.

DIRCKEN, F. W. M. 2008. Flight Mechanics Modelling within a Design Framework. MSc, TU Delft.

 References

269

DOHERTY, J. J. & DEAN, S. R. H. 2007. MDO-based concept optimisation and the impact of
technology and systems choices. In: AIAA (ed.) 7th AIAA Aviation Technology, Integration
and Operations Conference. Belfast, Northern Ireland: AIAA.

DOWLING, A. P. & HYNES, T. 2006. Towards a silent aircraft. Aeronautical Journal, 110-1110, 487-
494

DRUCKER, P. F. 1999. Management Challenges of the 21st Century, New York, Harper Business.
DUDA, R., GASCHNIG, J. & HART, P. 1979. Model Design in the PROSPECTOR Consultant System for

Mineral Exploration. Expert Systems in the Microelectronic Age, pp. 153-167.
DUNLOP, M. 2010. Brain Drain Among Boeing's biggest challenges. Herald Net. Everett, WA.
EDGERTON, D. 2006. Shock Of The Old: Technology and Global History since 1900: Technology in

Global History Since 1900, London, Profile Books LTD.
ENGELMORE, R. S. & FEIGENBAUM, E. 1993. Expert Systems and Artificial Intelligence. Loyola/WTEC

Study Report [Online]. Available: http://www.wtec.org/loyola/kb/c1_s1.htm.
ENGELS, H., BECKER, W. & MORRIS, A. J. 2004. Implementation of a multi-level optimisation

methodology within the e-design of a blended wing body. Aerospace Science and Technology,
8-2, 145-153.

EPISTEMICS. UK. Available: www.epistemics.co.uk [Accessed October 2009].
FARIN, G. 1988. Curves and surfaces for computer aided geometric design: a practical guide, San

Diego, CA, USA Academic Press Professional, Inc.
FEIGHENBAUM, E. A., BUCHANAN, B. G. & LEDERBERG, J. 1971. On Generality of Problem Solving: a

Case Study Using the DENDRAL Program. Machine Intelligence, Vol. 6, pp 165-190.
FODERARO, J. 1991. LISP: Introduction. Communications of the ACM, 34-9, 27.
FREDIANI, A. 2004. The PrandtlPlane. ICCES04. Madeira, Portugal: Tech Science Press.
GAUDIN, J. 2008. Structure Analysis Contribution to multi-disciplinary optimization. 12th AIAA/ISSMO

MA&O Conference. Victoria, BC, Canada: AIAA.
GERO, J. S. 1985. Knowledge Engineering in Computer-Aided Design, Amsterdam.
GERO, J. S. 1987. Expert Systems in Computer-Aided Design, Amsterdam.
GIESING, J. P. & BARTHELEMY, J. M. 1998. A Summary of Industry MDO Applications and Needs. 7th

AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. St. Louis,
MO: AIAA.

GRAHAM, P. 1995. ANSI Common Lisp, Englewood Cliffs, New Jersey, Prentice Hall.
GRAHAM, P. 2004. Hackers & Painters. Big ideas from the computer age, Sebastopol, CA, O'Reilly.
GREEN, J. E. 2003. Civil aviation and the environmental challenge. The Aeronautical Journal, 107-

1072, 281-299.
GREENER-BY-DESIGN-GROUP 2005. Air Travel - Greener by Design. In: SOCIETY, R. A. (ed.). London.
GREENER BY DESIGN, SCIENCE AND TECHNOLOGY SUB-GROUP, 2005. Air Travel - Greener by

Design. Mitigating the Environmental Impact of Aviation: Opportunities and Priorities. In:
SOCIETY, R. A. (ed.). London.

GROTENHUIS, J. 2007. Development of a conceptual controllability analysis tool. MSc, TU Delft.
GROUP OF PERSONALITIES. 2001. European Aeronautics: a Vision for 2020. Available:

www.acare4europe.com.
HAFTKA, R. T. & GRANDHI, R. V. 1986. Structural Shape Optimization - A Survey. Computer Methods

in Applied Mechanics and Engineering, 57-1, 91-106.
HEPPERLE, M. Airfoil database and tools [Online]. Braunschweig, Germany. Available: www.MH-

Aerotools.de [Accessed October 2009].
HOENLINGER, H., KRAMMER, I. & STETTNER, M. 1998. MDO Technology Needs in Aeroservoelastic

Structural Design. In: AIAA (ed.) 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization. St. Louis, MO: AIAA.

HOFSTEE, J., KIER, T., CERULLI, C. & LOOYE, G. 2003. A Variable, Fully Flexible Dynamic Response
Tool for Special Investigation (VarLoads). CEAS/AIAA/NVvL International Forum on
Aeroelasticity and Structural Dynamics. Amsterdam, The Netherlands: AIAA.

ICAD [Online]. Available: http://en.wikipedia.org/wiki/ICAD [Accessed December 2010].
KBE coupling illustration. 2000. MOKA Technical Report Deliverable D.3.5.

270

Knowledge-based engineering [Online]. Available: http://en.wikipedia.org/wiki/Knowledge-
Based_Engineering [Accessed December 2010].

KNOWLEDGE TECHNOLOGIES INTERNATIONAL White paper - Knowledge Based Engineering and the
ICAD system. Burlinghton, MA.

KNOWLEDGE TECHNOLOGIES INTERNATIONAL 2001a. The ICAD System Output Interface User’s
Manual (The KBO environment documentation). 2.0 ed.

KNOWLEDGE TECHNOLOGIES INTERNATIONAL 2001b. The ICAD System Surface Designer User's
manual (The KBO environment documentation). Release 2.0 ed.

KNUDSON, S. KBE history [Online]. Available: http://www.stanleyknutson.com/kbe-history.html
[Accessed October 2009].

KONING, J., H. 2010. Development of a KBE Application to Support Aerodynamic Design and Analysis.
Towards a next-generation Multi-Model Generator. MSc Thesis, TU Delft.

KOOPMANS, W. 2004. Parametric Modeling of Unsteady Aerodynamics for Loads Estimation in the
Pre-design Phase. MSc Thesis, TU Delft.

KRAKERS, L. A. 2009. Parametric fuselage design - Integration of mechanics and acoustic & thermal
insulation. PhD Dissertation, TU Delft.

KROO, I. 1997. Multidisciplinary Optimization Application in Preliminary Design – Status and
Directions. 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference and Exhibit and Adaptive Structures Forum. Kissimmee, FL: AIAA.

KROO, I. 2004. Innovations in Aeronautics. In: AIAA (ed.) 42nd AIAA Aerospace Sciences Meeting and
Exhibit. Reno, Nevada: AIAA.

KULFAN, B. 2008. Universal Parametric Geometry Representation Method Journal of Aircraft, 45-1,
142-158.

LA ROCCA, G., KRAKERS, L. & VAN TOOREN, M. J. L. 2002. Development of an ICAD Generative
Model for Blended Wing Body Aircraft Design. 9th AIAA/ISSMO Symposium on
Multidisciplinary Analysis and Optimisation. Atlanta, GA.

LA ROCCA, G. & VAN TOOREN, M. J. L. 2002a. Description of the ICAD BWB Structure Generator Code
(issue 2). MOB Technical Reports. Delft: TU Delft.

LA ROCCA, G. & VAN TOOREN, M. J. L. 2002b. Description of the ICAD BWB Surface Generator Code
(issue 3). MOB Technical Reports. Delft: TU Delft.

LA ROCCA, G. & VAN TOOREN, M. J. L. 2002c. Description of the ICAD Multi-Model Generator High
Integration Tools. MOB Technical Reports. Delft: TU Delft.

LABAN, M., ARENDSEN, P., ROUWHORST, W. F. J. A. & VANKAN, W. J. 2002. A Computational Design
Engine for Multidisciplinary Optimisation with Application to a Blended Wing Body
Configuration. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimisation.
Atlanta, GA: AIAA.

LANGEN, T. H. M. 2011. Development of a Conceptual Design Tool for Conventional and Boxwing
Aircraft. MSc Thesis, TU Delft.

LASSILA, O. 1990. Frames or Objects, or Both? In: AAAI (ed.) 8th AAAI National Conference on
Artificial Intelligence. Object-Oriented Programming in AI. Boston, MA.

LIEBECK, R. H. 2004. Design of the Blended Wing Body Subsonic Transport. Journal of Aircraft, 41-1.
LIEBECK, R. H., PAGE, M. A. & RAWDON, B. K. 1998. Blended-Wing-Body Subsonic Commercial

Transport. 36th Aerospace Sciences Meeting and Exhibit. Reno, Nevada: AIAA.
LISANDRIN, P. 2007. Elements of Automated Aeroelastic Analysis in Aircraft Preliminary Design. PhD

Dissertation, TU Delft.
LOVETT, J., INGRAM, A. & BANCROFT, C. N. 2000. Knowledge Based Engineering for SMEs - a

methodology. Journal of Materials Processing Technology, 107 384-389.
MALONE, B. 2002. On the financial impact of MDO on the corporation. 9th AIAA/ISSMO Symposium

on Multidisciplinary Analysis and Optimisation. Atlanta, GA: AIAA.
MCBRIAR, I., SMITH, C., BAIN, G., UNSWORTH, P., MAGRAW, S. & GORDON, J. L. 2003. Risk, gap

and strength: key concepts in knowledge management. Knowledge-Base Systems, 16-1, 29-
36.

MCMASTERS, J. H. & CUMMINGS, R. M. 2004. From Farther, Faster, Higher to Leaner, Meaner,
Greener: Further Directions in Aeronautics. Journal of Aircraft, 41-1.

 References

271

MEIJER, P. B. 2003. Parametric modelling of an Airbus aircraft family for dynamic response
simulations. MSc, TU Delft.

MILTON, N. 2007. Knowledge Acquisition in Practice: A Step-by-step Guide, London, Springer.
MILTON, N. 2008. Knowledge Technologies, Monza, IT, Polimetrica.
MILTON, N. & LA ROCCA, G. 2008. KBE Systems. In: SICA (ed.) Knowledge Technologies. Monza, IT:

Polimetrica.
MINSKY, M. 1975. The Psychology of Computer Vision, McGraw-Hill.
MOHAGHEGH, M. 2004. Evolution of Structures Design Philosophy and Criteria. 45th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Palm
Springs, California: AIAA.

MOKA Modelling Language Core Definition. 2000. MOKA Technical Report Deliverable D.1.3.
MORRIS, A. J. 2002. MOB, A European Distributed Multi-Disciplinary Design and Optimisation Project.

9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimisation. Atlanta, Georgia:
AIAA.

MORRIS, A. J., LA ROCCA, G., ARENDSEN, P., LABAN, M., VOSS, R. & HÖNLINGER, H. 2004. MOB - A
European Project on Multidisciplinary Design Optimisation. 24th ICAS Congress. Yokohama,
Japan: ICAS.

MOUSAVI, A., CASTONGUAY, P. & NADARAJAH, S. K. 2007. Survey of shape parameterization
techniques and its effect on three dimensional aerodynamic shape optimization. 18th AIAA
Computational Fluid Dynamics Conference. Miami, F: AIAA.

NASA 2002. NASA Aeronautic Blueprint: towards a bold new era in aviation. Washington, D.C.
NAWIJN, M., VAN TOOREN, M. J. L., ARENDSEN, P. & BERENDS, J. P. T. J. 2006. Automated Finite

Element Analysis in a Knowledge Based Engineering Environment. 44th AIAA Aerospace
Sciences Meeting and Exhibit. Reno, Nevada: AIAA.

NEGNEVITSKY, M. 2005. Artificial Intelligence - A Guide to Intelligent System, Harlow, England,
Addison-Wesley.

NISBETT, R. E. 2005. The Geography of Thought. How Asian and Westerners think differently - and
why, London, UK, Nicholas Brealey Publishing.

NONAKA, I. & TAKEUCHI, H. 1998. The Knowledge-Creating Company. Harvard Business Review on
Knowledge Management. Boston, MA: Harvard Business School Press.

OBJECT MANAGEMENT GROUP. 2005. Request For Proposal: KBE Services for PLM. Available:
http://www.omg.org/docs/dtc/05-09-11.pdf.

OBJECT MANAGEMENT GROUP. 2005 KBE services for PLM. Report dtc/2005-09-11. Available:
http://www.omg.org/.

OLDHAM, K., KNEEBONE, S., CALLOT, M., MURTON, A. & BRIMBLE, R. Moka - A methodology and
tools Oriented to Knowledge-based engineering applications. Conference on Integration in
Manufacturing, 1998 Göteborg, Sweden.

PATTON, S. 2006. Beating the Boomer Brain Drain Blues. CIO Magazine.
PEARSON, D. 2001. MOB Structural Model Generation by PATRAN Session file. MOB Technical

Reports. Warton, Preston, UK: BAe System.
PHILLIPS, R. E. 1997. Dynamic Objects for Engineering Automation. Coomunication of the ACM, 40-5.
QIN, N., VAVALLE, A., LE MOIGNE, A., LABAN, M., HACKETT, K. & WEINERFELT, P. 2002.

Aerodynamic Studies for Blended Wing Body Aircraft. 9th AIAA/ISSMO Symposium on
Multidisciplinary Analysis and Optimisation. Atlanta, GA: AIAA.

QUINN, J. B. 1998. Managing professional intellect: making the most of the best. Harvard Business
Review on Knowledge Management. Boston, MA: Harvard Business School Press.

RAJ, P. 1998. Aircraft design in the 21st century: implications for design methods. 29th AIAA Fluid
Dynamics Conference. Albuquerque: AIAA.

RAYMER, D. P. 2006. Aircraft Design: A Conceptual Approach, Washington D.C.
RENTEMA, D. W. E., JANSEN, F. W. & TORENBEEK, E. 1998. The application of AI and geometric

modelling techniques in conceptual aircraft design. In: AIAA (ed.) 7th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. St. Louis,
MO: AIAA.

272

RHEM, A. J. 2006. UML for Developing Knowledge Management Systems, Boca Raton, FL, Auerbach
Publications.

RONDEAU, D. L., PECK, E. A., WILLIAMS, A. F., ALLWRIGHT, S. E. & SHIELDS, L. D. 1996. Generative
design and optimisation of the primary structure for a commercial transport aircraft wing. 6th
NASA and ISSMO Symposium on Multidisciplinary Analysis and Optimization. Bellevue, WA:
AIAA.

RONDEAU, D. L. & SOUMILAS, K. The Primary Structure of Commercial Transport Aircraft Wings:
Rapid Generation of Finite Element Models Using Knowledge-Based Methods. In: MSC, ed.
proceedings of the 1999 Aerospace Users’ Conference, 1999. MacNeal-Schwendler
Corporation.

ROSCH, E. 1978. Principles of Categorization. In: EDS, B. (ed.) Cognition and Categorization. Hillsdale,
New Jersey.

Rosenfeld's profile [Online]. Available: http://www.glengaryllc.com/all-team-profiles/Larry-
Rosenfeld.aspx [Accessed February 2011].

RUMBAUGH, J., BLAHA, M., PREMERLANI, W., EDDY, F. & LORENSEN, W. 1991. Object-Oriented
modeling and design, Englewood Cliff, New Jersey, Prentice-Hall,.

SAINTER, P., OLDHAM, K. & LARKIN, A. 2000a. Achieving benefits from Knowledge-Based Engineering
systems in the longer term as well as in the short term. International Conference on
Concurrent enterprising. Toulouse.

SAINTER, P., OLDHAM, K., LARKIN, A., MURTON, A. & BRIMBLE, R. 2000b. Product knowledge
management within knowledge-based engineering systems. ASME Design Engineering
Technical Conference. Baltimore.

SAMAREH, J., A. 2004. Aerodynamic shape optimization based on free-form deformation. 10th
AIAA/ISSMO Multidisciplinary Analysis and Optimization conference. Albany, New York: AIAA.

SAMAREH, J. A. 2001a. Novel Multidisciplinary Shape Parameterization Approach. AIAA Journal, 38-6.
SAMAREH, J. A. 2001b. Survey of Shape Parameterization Techniques for High-Fidelity

Multidisciplinary Shape Optimization. AIAA Journal, 39-5.
SCHRAGE, D., BELTRACCHI, T., BERKE, L., DODD, A., NIEDLING, L. & SOBIESKI, J. 1991. AIAA

Technical Committee on Multidisciplinary Design Optimization - White Paper on Current State
of the Art Available:
http://endo.sandia.gov/AIAA_MDOTC/sponsored/aiaa_paper.html#appendixI.

SCHUT, J. E. & VAN TOOREN, M. J. L. 2007. Design “Feasilization” Using Knowledge-Based
Engineering and Optimization Techniques. Journal of Aircraft, 44-6.

SEIBEL, P. 2005. Practical Common Lisp, Apress.
SHMULLER, J. 2004a. UML, Indianapolis, Indiana, US, SAMS.
SHMULLER, J. 2004b. Understanding Object Orientation. UML. 3rd Edition ed. Indianapolis, Indiana,

US: SAMS
SHORTLIFFE, E. H. 1976. MYCIN: Computer-based Medical Consultations, New York, Elsevier Press.
SHREIBER, G., AKKERMANS, H., ANJEWIERDEN, A., DE HOOG, R., SHADBOLT, N., VAN DE VELDE, W.

& WIELINGA, B. 2000. Knowledge Engineering and Management: The CommonKADS
Methodology, Cambridge, MA, MIT Press.

SMITH, I. F. C. 2007. Engineering design support challenges. AI EDAM: Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, 21-1.

SOPRANOS, K. 2005. The age of experience.Boeing is curbing brain drain in a new experiment,
recruiting retired engineers for urgent and complex technical projects. Boeing Frontiers on
Line.

STAUBACH, J. B. 2003. Multidisciplinary Design Optimisation, MDO, the Next Frontier of CAD/CAE in
the Design of Aircraft Propulsion Systems. AIAA/ICAS International Air and Space Symposium
and Exposition. Dayton, OH: AIAA.

STETTNER, M. & VOSS, R. 2002 Aeroelastic, Flight Mechanic, and Handling Qualities of the MOB BWB
Configuration. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization.
Atlanta, Georgia: AIAA.

 References

273

STOKES, M. 2001. Managing Engineering Knowledge - MOKA: Methodology for Knowledge Based
Engineering Applications, London and Bury St Edmunds, UK, Professional Engineering
Publishing.

STRAATHOF, M. H., TOOREN, M. J. L. V., VOSKUIJL, M. & KOREN, B. 2008. Aerodynamic shape
parameterisation and optimisation of novel configurations. The Aerodynamics of Novel
Configurations Conference. London (UK): Royal Aeronautical Society.

SUBEL, C. 2002. A New Modeling Technique for Numerical Analysis and Multidisciplinary Optimization.
In: AIAA (ed.) 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization.
Atlanta, Georgia: AIAA.

SULLY, P. 1993. Modelling the world with objects, Englewood Cliff, New Jersey, Prentice-Hall.
TAM, W. F. 2004. Improvement Opportunities for Aerospace Design Process. In: AIAA (ed.) Space

2004 Conference and Exhibit. San Diego, CA: AIAA.
TOMIYAMA, T. 2007. Intelligent computer-aided design systems: Past 20 years and future 20 years.

AI EDAM: Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 21-1.
TOMIYAMA, T. & YOSHIKAWA, H. Knowledge Engineering and CAD - An approach to intelligent CAD

for machine design. Proceedings of the Graphics and CAD symposium, 1983 Japan.
Information Processing Society of Japan, 223-230.

TOMIYAMA, T. & YOSHIKAWA, H. 1985. Knowledge Engineering and CAD. FGCS Future Generation
Computer System, 1-4.

TORENBEEK, E. 1982. Synthesis of subsonic airplane design, Delft, Springer.
UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN. last visited November 2009. UIUC Airfoil Database

[Online]. Urbana, IL. Available: http://www.ae.illinois.edu/m-selig/ads/coord_database.html.
VAN DEN BERG, T. 2009. Parametric Modeling and Aerodynamic Analysis of Multi-Element Wing

Configurations. MSc thesis, TU Delft.
VAN DEN BRANDEN, M. 2004. Development of a design and engineering engine for wing preliminary

design optimization. MSc, TU Delft.
VAN DER ELST, S. & VAN TOOREN, M. J. L. 2008. Domain Specific Modeling Languages to Support

Model-Driven Engineering of Aircraft Systems In: AIAA (ed.) The 26th Congress of ICAS and
8th AIAA ATIO. Anchorage, Alaska: AIAA.

VAN DER LAAN, A. 2008. Knowledge Based Engineering Support for Aircraft Component Design. PhD
Dissertation, TU Delft.

VAN DER LAAN, A. & VAN TOOREN, M. J. L. 2005. Parametric Modeling of Movables for Structural
Analysis. Journal of Aircraft, 42-6, 1605-1613.

VAN DIJK, R. E. C. 2008. A Knowledge Based Engineering Approach to Aircraft Movable Design. MSc,
TU Delft.

VAN DIJK, R. E. C., D'IPPOLITO, R., TOSI, G. & LA ROCCA, G. 2011. Multidisciplinary Design and
Optimization of a Plastic Injection Mold Using an Integrated Design and Engineering
Environment. NAFEMS World Congress. Boston.

VAN HOEK, M. 2010. Structural Design, Analysis and Optimization of a Lifting Surface in a Knowledge
Based Engineering Environment. MSc, TU Delft.

VAN HOUTEN, M. H., LA ROCCA, G., VAN DER LAAN, A., ARENDSEN, P., LABAN, M., VAN TOOREN, M.
J. L. & NAWIJN, M. 2005. PARMOD - Parametric Modeling. In: NLR (ed.) Technical Report.
Amsterdam: NLR-TUD.

VAN STAVEREN, W. H. J. J. 2003. Analyses of Aircraft Responses to Atmospheric Turbulence, Delft
University of Technology - PhD Dissertation.

VAN TOOREN, M. J. L. 2003. Sustainable Knowledge Growth. TU Delft Inaugural Speech Faculty of
Aerospace Engineering ed. Delft: Faculty of Aerospace Engineering.

VANDENBRANDE, J., H., GRANDINE, T., A. & HOGAN, T. 2006. The search of the perfect body: Shape
control for multidisciplinary design optimization. 44th AIAA Aerospace Science Meeting and
Exhibit. Reno, Nevada: AIAA.

VANKAN, W. J. & LABAN, M. 2002. A SPINEWARE Based Computational Design Engine for Integrated
Multidisciplinary Aircraft Design. In: AIAA (ed.) 9th AIAA/ISSMO Symposium on
Multidisciplinary Analysis and Optimisation. Atlanta, Georgia.

274

VOSKUIJL, M., LA ROCCA, G. & DIRCKEN, F. 2008. Controllability of blended wing body aircraft. ICAS
2008. Anchorage, Alaska.

WAKAYAMA, S. & KROO, I. 1998. The Challenge and Promise of Blended-Wing-Body Optimization. In:
AIAA (ed.) 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization. St. Louis, MO: AIAA.

WERNER-WESTPHAL, C., HEINZE, W. & HORST, P. 2007. Multidisciplinary Integrated Preliminary
Design Applied to Future Green Aircraft Configuration. In: AIAA (ed.) 45th AIAA Aerospace
Sciences Meeting and Exhibit. Reno, Nevada: AIAA.

WERNER-WESTPHAL, C., HEINZE, W. & HORST, P. 2008. Multidisciplinary Integrated Preliminary
Design Applied to Unconventional Aircraft Configurations. Journal of Aircraft, 45-2.

WHITNEY, D. E., DONG, Q., JUDSON, J. & MASCOLI, G. 1999. Introducing Knowledge-based
engineering into an interconnected product development process. ASME Design Engineering
Technical conference. Las Vegas, Nevada.

ZANG, T. A. & SAMAREH, J. A. 2001. The Role of geometry in the multidisciplinary design of
aerospace vehicles. In: SIAM (ed.) SIAM Conference on Geometric Design. Sacramento, CA:
SIAM.

ZONA TECHNOLOGY, I. 2009. ZAERO. Scottsdale, AZ
ZWEBER, J. & HARTONG, A. 1998. Structural and control surface design for wings using the adaptive

modeling language In: AIAA (ed.) 7th AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization. St. Louis, MO: AIAA.

 Appendices

275

APPENDICES A-M

 Appendices

277

Appendix A Summary of basic UML notation

Class and Object diagrams

Class name: By convention, a single capitalized word (in
case of multiple words names, all the words are joined

together and capitalized)

Attributes: By convention, all attributes are indicated
with a single low case word (in case of multiple words

names, all the words are joined together and capitalized
starting from the second word)

Operations: By convention, all operations are indicated with a single low
case word followed by “()”. In case of multiple words names, all the

words are joined together and capitalized starting from the second word)

Ellipsis: three dots (…) are used in the attribute and/or operation fields to
indicate that only some of the attributes or operations have been indicated.

An elided class representation is one where
one or both the attribute and operation fields

are not shown for simplification.

operation1()
...()

attribute1
attribute2

Class1

Generalization/Specialization link: Class4 and
Class3 are two specializations of Class2 (they inherit

attributes and operation from Class2). Class2 is a
generalization of both Class4 and Class3.

Class2

Class3Class4

Dependency link: Class9 depends on Class8.
E.g., Class9 needs something from Class8 for
the evaluation of its attributes, or to perform

some of its operations.

Association link: Class10 and 11 are associated:
they are linked by a relationship different than

generalization, aggregation, dependency, etc. A
tag and an arrow can be used to specify the type

and direction of the association

278

Composition link: Class6 and Class7 are
components of Class5.

Multiplicity label: Class 5 is a composition
including from 0 to an infinite number [0..*] of
Class6 components; and 1 to 3 [1..3] Class7
components. Both Class6 and Class7 belong to
only 1 Class5 composition [1].

Aggregation link: Class6 and Class7 are
members of the aggregation Class5.

A composition is a stronger relation than aggregation: all the members of an
aggregation can live autonomously without the need of the aggregation class. On
the contrary, if a composition is eliminated, all the members are also eliminated.

Objects: myObject1 is an instance of Class1.

Generally two fields are used to represent objects. The
class name is always indicated next to the object’s
name in the top field. Hence, it is not always necessary
to show the class-object link using a connector.

The bottom field is reserved to list of attributes and
their values

operation1()
...()

attribute1
attribute2

Class1

attribute1 = 10
attribute2 = "red"

myObject1 : Class1

By convention, object names are indicated with a single low case word. In case
of multiple words names, all the words are joined together and capitalized starting
from the second word.

Object links: relationships between objects are
indicated by connectors. Connector labels can be
used to specify the type of link.

In this example, the link is of type “has part”:
MyObject2 is part of myObject1

 Appendices

279

Activity diagrams

Swimlane2Swimlane1

Activity1

[condition-true?]

Activity2

Activity4

[condition-false?]

Activity3

Activity5 Activity6

comment

input1

Output1Output2

Start point of the
sequence of activities

End point of the
sequence of activities

Synchronization bars: the
following activities cannot start
until all the previous activities
have been completed

Decision Point: one
branch is selected according
to the evaluation of some
conditional statement

Explanatory note

Swimlanes separate the activities performed by different actors

Activity10 is followed by Activity20

ActivityX requires Input1 and
generates Output1

Zoom-in fork: another
activity diagram is
provided, to show the
details of Activity3

280

Use case diagrams

System

Actor1 Actor2Actor3

UseCase1UseCase2

UseCase3

<<extend>>

<<include>>

<<include>>

UseCase4

UseCase5

UseCase6

{OR}

Constraint 1

Explanatory
note/comment

System boundary

System name

Constraint applying
to UseCase1

Exlanatory note
for UseCase4

UseCase5 and UseCase6 are specializations of USeCase3 (hence they both
inherit from UseCase3)

UseCase1 either includes UseCase2 or UseCase3. In other words, UseCase1
includes in its definition the steps of either UseCase2 or UseCase3. UseCase4 adds
some steps to the existing UseCase1. That is to say, UseCase4 extends
UseCase1.

Inclusion and extension links are indicated using dependency links (i.e., dashed
arrows with appropriate tag)

A system can provide several use cases. Different actors can initiate/receive from
different use cases.

Actor1 initiates and/or receives
something from UseCase1.

Actor1 is a generalization of Actor2
and Actor3

Actors are always collocated
outside the boundary of a system

 Appendices

281

Appendix B Commercial KBE Tools

A non exhaustive list of commercial KBE tools, including some related information
and web links, is provided in the table below. Considering the fast dynamic of the
KBE tools market, the reader is advised to refer to the KBE page on Wikipedia
(http://en.wikipedia.org/wiki/Knowledge-Based_Engineering), which is regularly
updated by KBE developers and vendors.

ICAD

By Knowledge
Technology
International (KTI).
Since 2002 part of
Dassault Systemes

http://en.wikipedia.org/wiki/ICAD

http://www.3ds.com

(http://www.ktiworld.com) Former website

ICAD came out in the early 1980's and was the first KBE system on the market.
ICAD uses a programming language called IDL (ICAD Design Language), which is
an object-oriented, declarative language based on LISP. ICAD provides a proprietary
CAD engine for surface modeling, and relies on the Parasolid system to handle
solids. After KTI was bought by Dassault Systemes, ICAD has ceased to be
supported, though many ICAD applications are still used by companies like Airbus
and Boeing

AML By Technosoft http://www.technosoft.com/aml.php

AML is an object-oriented, knowledge-based engineering modeling framework. AML
enables multidisciplinary modeling and integration of the entire product and process
development cycle. According to Technosoft, no other commercial framework or
development environment provides the full range of capabilities that AML includes
out of the box.

INTENT! By Intent! (since
2005 in Autodesk)

http://www.autodesk.com

INTENT! Used to be a stand alone KBE language, quite similar to ICAD (indeed it
was developed by people who worked on the development of ICAD). It used to be
LISP based, though it turned out into a proprietary language. At the beginning,
INTENT! used AutoCAD as its geometry engine. In 2005 INTENT! has been acquired
by Autodesk and it is now integrated in the Inventor Automation Professional
package (the design and configuration rules system for Autodesk Inventor)

282

GDL By Genworks
International

http://www.genworks.com

GDL is a new generation KBE system that combines the power and flexibility of the
older ICAD system with new web technology. It is available for many different
platforms such as Windows, Linux and Mac. Its programming language is based on
the standard ANSI Common LISP. It allows the manipulation of very simple
geometry primitives, and optionally provides full integration to the NURBs Surfaces
and Solids modeling kernel from Solid Modeling Solutions Inc.

CATIA V
Knowledgeware

By Dassault
Systemes

http://plmus.3ds.com/V5/knowledge.cfm

Knowledgeware is a set of applications available to extend the native functionalities
of the CATIA V5 CAD system in terms of design automation and rules capturing.
Knowledgeware offers the possibility to define product templates so that automated
parametric design is facilitated. Other tools are provided to organize and manipulate
parameters, create flexible rules and specification checks. Apart from
Knowledgeware, CATIA V5 also offers designers the possibility to write pieces of
Visual Basic to further extend the design automation capability.

Knowledge
Fusion

By UGS (since
2007 Siemens PLM
software)

http://www.plm.automation.siemens.com/

Knowledge Fusion is an integrated KBE tool that permits knowledge-based
extension of the CAD system NX. Knowledge Fusion is the result of a tight
integration of the KBE language INTENT! from Intent Engineering Corporation (now
part of Autodesk) with the proprietary CAD engine Parasolid. Designers and
application developers can work with Knowledge Fusion directly within the NX user
environment to create rules that capture design intent. These rules can be used to
drive product design, ensuring that engineering and design requirements are fully
understood and fully met.

 Appendices

283

Appendix C UML class diagram of the MOB Blended
Wing Body product model

 Appendices

285

Appendix D MMG input file. Definition of the outer
surface of a wing-like element

In the insert below a snippet of the MMG input file is provided to show an example of
wing surface definition.
In this case, the wing is composed of three wing-parts, as can be seen by the three
values contained in the lists. For each wing-part only two airfoils have been selected,
one for the root and one for the tip section.
The wing is not twisted, is swept and features a winglet.

;;;;------------------ input-data for the MAIN WING ------------------

:span-wing-list (list 2000 792 2398)
:chord-root-wing-list (list 10569 2982 1500)
:chord-tip-wing (list 800)
:sweep-wing-list (list (degree 7) (degree 29) (degree 29))
:dihedral-wing-list (list (degree 1) (degree 3) (degree 0))
:twist-wing-list (list (degree 0) (degree 0) (degree 0))
:twist-angle-wing-root (degree 0)
:winglet? t
:wing-airfoil-list (list (list "NACA0012" "NACA0 012")
 (list "NACA0012" "NACA0010")
 (list "NACA0010" "NACA0009"))
:wing-airfoil-thickness-list (list (list 0.90 0.90)
 (list 0.90 0.80)
 (list 0.80 0.90))
:wing-offset-list (list (list 0.0 1.0)
 (list 0.0 1.0)
 (list 0.0 1.0))

 Appendices

287

Appendix E Spars generation process activity diagrams

Activity diagram for the spars generation process.

288

Sub-activity diagrams for the generation of spar-points on root chord.

 Appendices

289

Appendix F Wing-Part Structure class diagram

(see next page)

290

Class diagram
of the wing-
part structure
system

 Appendices

291

Appendix G MMG input file. Spars definition

A snippet of the MMG input file relative to the vertical tail of a transport aircraft is
reported in the insert below, to show examples of spar definitions.
Each parameter is defined as a list of lists, being these lists as many as the wing-
parts used to build up the vertical tail. In this case two wing-parts have been used.
No real spars are present in the LE/TE area (just virtual spars to make sure the LE
and TE areas structure is generated).
Three spars are defined in both the wing-parts of the Wing Box area. Note the
definition of the semi-real spar in the Wing Box area of the second wing-part.
The index number of each spar (which is assigned automatically by the MMG) has
been indicated in the insert below, but only for the first wing-part.

;;;------------- spars LEADING-EDGE AREA ---------- --------------
:fin-type-of-spar-le (list (list 'v)

 (list 'v))
:fin-spar-offset-list-root-le (list (list 0.1652)

(list 0.1652))
:fin-spar-offset-list-tip-le (list (list 0.1652)
 (list 0.1652))

;;;------------- spars WING-BOX AREA -------------- --------------
:fin-type-of-spar-wb (list (list 'r 'r 'r)
 (list 'r (list 'r 0. 0.2 5) 'r))
:fin-spar-offset-list-root-wb (list (list 0.1652 0. 3655 0.5708)
 (list 0.1652 0. 3655 0.5708))
:fin-spar-offset-list-tip-wb (list (list 0.1652 0. 3655 0.5708)
 (list 0.1652 0. 3655 0.5708))

;;;------------- spars TRAILING-EDGE AREA --------- --------------
:fin-type-of-spar-te (list (list 'v)
 (list 'v))
:fin-spar-offset-list-root-te (list (list 0.5708)
 (list 0.5708))
:fin-spar-offset-list-tip-te (list (list 0.5708)

 (list 0.5708))

Spar 1

Spar 2

Spar 3

Spar 0

Spar 4

 Appendices

293

Appendix H Activity diagram of the LE/WB/TE areas
identification process

 Appendices

295

Appendix I MMG input file. Ribs definition

The insert below contains a snippet of the MMG input file containing the definition of
the LE/TE/WB ribs in the vertical tail of a transport aircraft. As usual, each parameter
is defined as a list of lists, being these lists as many as the wing-parts used to define
the vertical tail. In this case two wing-parts have been used.
Seven and four ribs have been defined in the first and second wing-part respectively.
All ribs have been oriented in flight direction; hence the values of the tail-rib-
positioning-referred-to-spar parameter are ignored.

;;;----------------- ribs LEADING-EDGE AREA ------- --------------------
:tail-type-of-rib-le (list (list 'r 'r 'r 'r ' r 'r 'r)

 (list 'r 'r 'r 'r))
:tail-rib-le-orienting-referred-to-spar

(list (list 'fd 'fd 'fd 'fd 'fd 'fd 'fd)
(list 'fd 'fd 'fd 'fd))

:tail-rib-le-orienting-angles-list (list (list 0 0 0 0 0 0 0)
 (list 0 0 0 0))

;;------------------------ ribs WING-BOX AREA ----- ----------------
:tail-type-of-rib (list (list 'l 'l 'l 'l 'l 'l 'l)

(list 'l 'l 'l 'l))
:tail-rib-positioning-referred-to-spar (list (list 0 0 0 0 0 0 0)

 (list 0 0 0 0))
:tail-rib-orienting-referred-to-spar

(list (list 'fd 'fd 'fd 'fd 'fd 'fd 'fd)
(list 'fd 'fd 'fd 'fd))

:tail-rib-positioning-offset-list
(list (list 0.07 0.216 0.35 0.50 0.64 0.78 0. 92)

 (list 0.12 0.37 0.62 0.87))
:tail-rib-orienting-angles-list (list (list 0 0 0 0 0 0 0)

 (list 0 0 0 0))

;;;--------------------- ribs TRAILING-EDGE AREA -- ----------------
:tail-type-of-rib-te (list (list 'r 'r 'r 'r ' r 'r 'r)

 (list 'r 'r 'r 'r))
:tail-rib-te-orienting-referred-to-spar

(list (list 'fd 'fd 'fd 'fd 'fd 'fd 'fd)
 (list 'fd 'fd 'fd 'fd))
:tail-rib-te-orienting-angles-list (list (list 0 0 0 0 0 0 0)
 (list 0 0 0 0))

 Appendices

297

Appendix J UML Use case relative to ribs definition

 Appendices

299

Appendix K Ribs generation process activity diagrams

Activity diagram for
the ribs generation
process.

300

Sub-activity diagram for the generation of Rib-reference-point

 Appendices

301

Sub-activity diagram for the generation of Rib-reference-plane

 Appendices

303

Appendix L Wing-part segmentation process

Activity diagram for the surface segmentation of Wing-
part instances

304

Sub-activity diagram “generate extra cutting elements”

 Appendices

305

Sub-activity diagram “perform cutting of all structure elements
along their intersection”. Skin panel segmentation.

306

Sub-activity diagram “perform cutting
of all structure elements along their
intersection”. Spars segmentation.

Sub-activity diagram “perform cutting
of all structure elements along their
intersection”. Ribs segmentation.

 Appendices

307

Appendix M Definition of design variable areas for
structural FE-based optimization

A method has been developed to assign all the structural surface segments
generated by the Capability Module Surface-splitter to a number of so called design
areas. The thickness of all the segments belonging to a certain same area
corresponds to one design variable in the structural optimization process. That is to
say, all the segments belonging to the same design area will end up with the same
thickness value.
The grouping method is based on the automatic generation of design area
identification codes, which are attached to each surface segment and then stored in
their respective FEM-table. Via a limited amount of settable parameters in the input
file, the user has the possibility, to define the amount and the extension of the
design areas, hence, to affect the total amount of design variables for the
optimization process.

In the MMG developed for the MOB project, the design variable code is calculated by
adding 4 different sub-code numbers (see next page for an example)):
1. Wing-part instance code: from 1·106 to n·106 (from root to tip in the given lifting

surface)
2. Chord-wise code: from 1·104 to 99·104 (1·104 and 2·104 reserved for the LE and

TE zone respectively, the other zones are comprised from spar to spar)
3. Span-wise code: from 1·102 to 99·102 (from root to tip in the given wing part,

number of zones defined by the user via input file)
4. Element code: from 0 till 99. Each code is reserved to a type of element:

• 1 for ribs and riblets segments
• 2 for (real) spars segments
• 3 for upper-skin segments
• 4 for the lower-skin segments
• n for other segments, with n ≤ 99

Parameters are also available in the input file to reduce the amount of design
variables: forcing al the ribs in a chordwise area to get the same variable; forcing all
the upper skin panels in the same spanwise area to get the same variable; idem for
the lower skin panels. To increase the amount of design variable areas, the user can
define extra virtual spar or ribs.
The design variable areas identification approach described here, and initially
developed for the MOB BWB, has been subsequently extended to conventional
aircraft configurations as well.

308

Coding scheme for design variable areas identification and examples

Wing-part instance code Chord-wise code

 Element code Span-wise code

2nd Wing-part instance
Number of spanwise area = 2

2000000 +
40000 +

100 +
3 =--------------

2040103

2000000 +
10000 +

200 +
3 =--------------

2010203

2000000 +
70000 +

100 +
2 =--------------

2070102

Spanwise area 1

Spanwise area 2

309

List of Publications

Journal Papers

1. La Rocca, G. and M.J.L. van Tooren, Knowledge-based engineering to support aircraft
multidisciplinary design and optimization. Proceedings of the Institution of Mechanical Engineering,
Part G: Journal of Aerospace Engineering, 2010.

2. La Rocca, G. and M.J.L. van Tooren, Knowledge-Based Engineering Approach to Support Aircraft
Multidisciplinary Design and Optimization. Journal of Aircraft, 2009.

3. La Rocca, G. and M.J.L. van Tooren, Enabling distributed multi-disciplinary design of complex
products: a knowledge based engineering approach. Journal of Design Research, 2007.

4. Vlot, A., E. Kroon, and G. La Rocca, Impact Response of Fiber Metal Laminates. Key Engineering

Materials, 1998.

Book Sections

1. La Rocca, G., Seaplanes and Amphibians, in Encyclopedia of Aerospace Engineering 2010, John
Wiley & Sons, Ltd.

2. La Rocca, G., and Nick Milton, KBE Systems, in Knowledge Technologies, Sica, Editor 2008,
Polimetrica, Monza, IT

3. Torenbeek, E. and G. La Rocca, Civil Transport Aircraft, in Encyclopedia of Aerospace Engineering
2010, John Wiley & Sons, Ltd.

4. Van Tooren, M.J.L. and G. La Rocca, Design Criteria: Resources, Constraints, and Objectives, in
Encyclopedia of Aerospace Engineering 2010, John Wiley & Sons, Ltd.

5. Van Tooren, M.J.L., G. La Rocca, and T. Chiciudean, Further steps towards quantitative
conceptual aircraft design, in Variational Analysis and Aerospace Engineering, G. Buttazzo and A.
Frediani Editors, 2009, Springer.

6. Van Tooren, M.J.L. and G. La Rocca, Systems Engineering and Multi-disciplinary Design
Optimization, in Collaborative product and service life cycle management for a sustainable world,
R. Curran, S.Y. Chou, and A. Trappey Editors, 2008, Springer, London.

Conference Papers

1. La Rocca, G., L. Krakers, and M.J.L. van Tooren, Development of an ICAD Generative Model for
Blended Wing Body Aircraft Design, in 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis
and Optimisation, 2002, Atlanta, GA.

2. La Rocca, G., L.A. Krakers, and M.J.L. Van Tooren, Development of an ICAD Generative Model for
Aircraft Design, Analysis and Optimisation, in 13th International ICAD User Group IIUG, 2002,
Boston, MA.

3. La Rocca, G. and M.J.L. Van Tooren, Development of Design and Engineering Engines to Support
Multidisciplinary Design and Analysis of Aircraft, in Design Research in the Netherlands, 2005,
Eindhoven.

310

4. La Rocca, G. and M.J.L. van Tooren, A modular reconfigurable software tool to support
distributed multidisciplinary design and optimisation of complex products, in 16th CIRP
International Design Seminar, 2006, Kananaskis, AB, Canada.

5. La Rocca, G. and M.J.L. van Tooren, A Knowledge Based Engineering Approach to Support
Automatic Generation of FE Models in Aircraft Design, in 45th AIAA Aerospace Sciences Meeting
and Exhibit, 2007, Reno, NV.

6. La Rocca, G., A. Vlot, and A. Frediani, Residual strength evaluation of impacted carbon/epoxy
sandwich panels with Glare protection, in 13th ICCM Conference, 2001, Beijing.

7. La Rocca, G., A. Vlot, and A. Frediani, Development of a hibrid material for aerospace
application, made of C/E sandwich panels with Glare protection; an experimental evaluation of
impact behaviour, in 13th ICCM Conference, 2001, Beijing.

8. van Tooren, M.J.L., G. La Rocca, L.A. Krakers, and A. Beukers, Design and technology in
aerospace. Parametric modeling of complex structure systems including active components, in
13th International Conference on Composite Materials, 2003, S.Diego, CA.

9. Morris, A.J., G. La Rocca, P. Arendsen, M. Laban, R. Vos, and Honlinger, MOB - A European
Project on Multidisciplinary Design Optimisation, in 24th ICAS Congress, 2004, Yokohama, Japan.

10. Cooper, D.J. and G. La Rocca, Knowledge-based techniques for developing engineering
applications in the 21st century, in 7th AIAA Aviation Technology, Integration and Operations
Conference, 2007, Belfast, Northern Ireland.

11. Voskuijl, M., G. La Rocca, and F. Dircken, Controllability of blended wing body aircraft, in ICAS
2008, Anchorage, Alaska.

12. Chiciudean, T., G. La Rocca, and M.J.L. Van Tooren, A Knowledge based engineering approach
to support automatic design of wind turbine blades, in Design Synthesis, CIRP Design
Conference, 2008, University of Twente, NL.

13. van Dijk, R.E.C., R. d’Ippolito, G. Tosi, and G. La Rocca, Multidisciplinary Design and
Optimization of a Plastic Injection Mold Using an Integrated Design and Engineering

Environment, in NAFEMS World Congress, 2011, Boston.

311

Acknowledgements
Financial support for this research has been partially provided by the European
Commission under the GROWTH Programme for the research project MOB - A
Computational Design Engine Incorporating Multi-Disciplinary Design and
Optimisation for Blended Wing Body Configuration (Contract Number G4RD-CT1999-
0172) and by the Dutch Technology Foundation STW for the research project
Parametric Modelling and Meshless Discretisation Methods for Knowledge-based
Engineering Applications (Contract Number DLR.6054).

A PhD research work needs much more than bare financial support! Indeed, I am
greatly indebted to many people that, in a way or another, helped me to finalize this
work and become a better scientist, a better teacher, a better man.

First of all, I have to thank Michel for offering me this great opportunity. I still
remember the day I asked whether you had some work for me, given all the free
time I had during my fatigue testing in the lab. You came out with something about
“an engine” to be developed within a just started European project…An engine? Was
propulsion something for me? Well, it took me a couple of days before realizing it
was about the computational design engine of the MOB project….
Thanks again for all your energy, inspiration, support and the trust you always had in
me during all these years. It was never boring working with you, it was never doing
research for the sake of doing research.

Thanks to Lars K., my very first companion in the ICAD and MMG adventure and to
Paolo L. and Ton v.d.L., the other major victims of the MMG disease. You know the
pain and the satisfaction of making the ICAD thing working! Thanks to Valeria A. and
Marco B., my very first personal FEM and CFD experts. The Capability Modules of my
MMG still contain some of your genes.

Thanks to all the MOB project mates, in particular to Prof Morris, Armando V., Helen
C. and Prof. Ning from Cranfield University, Dave P. from BAE System, Martin S. from
EADS, Marco N. and Martin L. from NLR, who supported and encouraged my work
with enthusiasm and appreciation. It was a lot of fun working with you and, let’s be
honest, we did really some good stuff there! I am still waiting for the next MOB to
come…

Thanks to all the user committee members of the STW project: S. Allwright from
Airbus, T. Ros from Dassault Systemes, F. van Dalen and J. Baan from Fokker, P.
Arendsen from NLR, E. Kappel from Thales, B. Knops from MSC Software, A. Konter

312

from NIMR and L. Goossens from UGS. Your critical comments and suggestions
helped me, Marco, Ton and Giampietro to better understand and aim at the real
needs of industry.

Steve A., extra thanks for your continuous encouragement since my first IIUG
participation and the opportunity you gave me to follow the ICAD and KA courses at
Airbus UK.

Thanks to Chiara C., Jochem B. and Joost S., my good TAILORmates and fellow PhD
candidates. You were the kind of users that any developer would love to have for
testing, verifying and improving his tools.

Thanks to D. Cooper from Genworks International for all the interesting discussions
and sharing on the noble art of KBE. Thanks to N. Milton from Epistemics for making
me co-author of the KBE systems chapter in your Knowledge Technologies book.

Thanks to all the SIA/DAR/SEAD students who have helped me during the years to
develop, extend, test and disseminate the ICAD MMG: Mathieu v.R., Remko S., Peter
M., Wietse K., Martijn, v.d.B, Jasper B., Joris G., Frank D. and Reinier v.D. This
extends to Durk S., Justin K., Tobie v.d.B. and Maarten v.H., the new generation of
GDyeLlers/DARwing-ers. With you guys around, there is big hope for KBE.

Thanks to all my colleagues and friends at SIA/DAR/SEAD (yes, you included!) for
keeping our group a pleasant and exciting place to work for all these years, even
during the recent turbulent times. In the end, doing a PhD is not just blood and
tears… Eating freshly caught salmon in a Alaskan fishing hut, night skiing in Reno,
strolling along the Freedom Trail in Boston, walking the Chinese Great Wall, peeking
in the final assembly line of the Eurofighter, drinking beer at the Coyote Ugly in
Atlanta, admiring the A380 “aerobatics” at Le Bourget, enjoying the Battle of Britain
commemoration under the wing of an Avro Vulcan, driving the Icefields Parkway on
the way to Jasper, for instance, can be very pleasant side effects!

Special thanks go to my brave paranymphs Meo and Chiacchiera who came all the
way to make this day even more special.

Last but not least, my greatest gratitude go to my parents and to Mariska for always
being there, always (always?) sure that one day I would have made it!

Well, I made it!

313

About the Author

Gianfranco La Rocca was born on the 26th December 1970, in Messina, Italy. Until
1989 he attended the Liceo Scientifico Foresi in Portoferraio, Isola d’Elba, where he
graduated with a score of 60/60. Afterward, he moved to Pisa where he started his
studies in Aerospace Engineering. In 1997, he visited the TU Delft as Erasmus
student, and worked on a thesis assignment defined by the universities of Pisa and
Delft and Augusta Helicopters. The result was the development of a new hybrid
material for aerospace applications and the assessment of its impact behaviour and
residual strength. After that he returned to Italy where he first served the Italian
Army for his conscript military service and then finalized his Master Degree in
Aerospace Engineering with a final grade of 107/110.

In 1999, he returned to the TU Delft, as researcher in the GLARE Research
Group. There he worked for two years on the investigation of the hole-to-hole
assembly principle, a project commissioned by Fokker Aerostructures, related to the
Joint Strike Fighter Demonstrator program.

At the end of 2001, he joined the System Integration Aircraft group with the
position of lead researcher for the 5th Framework EC project MOB, on
Multidisciplinary Design and Optimisation of Blended Wing Body Aircraft
Configurations. There he started working on Knowledge Based Engineering and
developed the Blended Wing Body Multi Model Generator, for which, in 2002, he
received the 14th KBE Innovation Award. His KBE application contributed also to the
success of the MOB project, which, in 2003, was selected finalist for the 4th edition
of the Descartes Prize, for Outstanding Scientific and Technological Achievements
Resulting from European Collaborative Research.

In 2003, he officially became a TU Delft PhD student under the supervision of
Prof.dr.ir. van Tooren, and continued his work on the development of KBE
applications to support aircraft multidisciplinary design optimization, sponsored by
the Dutch Technology Foundation STW.

Since July 2005 he is Assistant Professor at the TU Delft Faculty of Aerospace
Engineering, where he teaches Aircraft Design and Advanced Design Methods and
pursues research in the field of Knowledge Engineering. In 2008, together with 4
colleagues he became co-founder of KE-Works, a company that offers customers
Knowledge Engineering solutions to improve their engineering process.

Gianfranco lives in The Hague with his girlfriend Mariska and Joey the cat.

315

E quindi uscimmo a riveder le stelle

Dante Alighieri

Finally we could see the stars again. Inferno, Canto XXXIV

