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Time-Varying Biorthogonal Filter Banks:
A State-Space Approach
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Abstract—Using state-space representations of biorthogonal
time-varying filter banks, it is possible to come up with a theory
for the transitional behavior between two stationary filter banks.
The transition interval depends on the size of the common
subspace spanned by the controllability operators of the initial
and final filters on the decomposition sides, and the common
subspace spanned by the observability operators of the filters on
the reconstruction sides. When the respective operators span the
same spaces, we can derive conditions under which the transition
between the filter banks can be so controlled that both the
decomposition and the reconstruction functions gently embrace.
For such filters, the transition interval can be made arbitrarily
short. If it is zero, then the special case of instantaneous transition
is reached.

Index Terms—Biorthogonal filter bank, impulse response (vec-
tor), filter weight vector, controllability operator, observability
operator, state-space realization (map), stationary filter, transi-
tion filter.

I. INTRODUCTION

DUE TO THE fact that filter banks appear in various forms
and for various reasons in a wide range of applications,

they have become the center of attraction for many researchers.
People have started putting a considerable amount of work
into the time-varying aspects of filter banks. To facilitate their
investigations, most researchers concentrate on the study of
transitions between two stationary filter banks. The reason for
such considerations is partly that most filter banks tend to
operate for considerable durations compared to their lengths,
and can be considered stationary at the time of transition.

Generally, when transiting from one stationary filter bank to
another without violating biorthogonality, the transition may
be either: a) instantaneous or b) not instantaneous. The second
category is studied by a number of authors [1]–[4]. An equal
number of transition filters both on the decomposition and
reconstruction sides are considered in [1]–[3], whereas in [4],
unequal transition segments are studied. In [2], orthogonal
projectors are used to complete the basis for the sequences
generated by one side-bounded orthogonal filter bank and then,
the results are directly, but not minimally, extended to the case
of transition between filter banks.
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The first category—switching between two stationary filter
banks without any transition—is considered in [5], where
it is shown that if the filters under question are related
in a particular way, instantaneous transition both on the
decomposition and reconstruction sides is possible.

This paper is motivated by the absence of an underlying
theory that relates the above two categories. We show that
by using state-space representation it is possible to come up
with a comprehensive characterization of the transition filters.
Moreover, the state-space approach enables us to give a clear-
cut analysis of transition times and transition behavior. Unlike
in [2], we first consider the general case of minimal transition
between biorthogonal filter banks and then extend the idea to
the special cases of: a) starting up a filter and b) terminating
a running filter.

In Section II, we use state-space techniques to find the
transition filters that give optimal transition duration both
on the decomposition and reconstruction sides. Based on
the results, we give classification of transition behaviors. In
Section III, we discuss conditions under which the so-called
lapped and blocked transitions are generated. We also indicate
how we can refine the filter characteristics in the transition.
Section IV presents a special set of filter banks that allows
instantaneous transitions between filters which are reported in
[5]. In Section V, we extend these results by allowing two-
sided controlled transition with arbitrary transition segments.
Finally, in Section VI, we give illustrative examples.

A. Biorthogonal Filter Banks

A biorthogonal filter bank is a linear expansion
of a sequence or a signal. Thus, if ,1 then

, where and are the rows and
columns2 of bounded matrix operators and , respectively,
with , the identity operator, and an inner product
operator. We will assume throughout that and are
of finite lengths, and that is lower triangular (causal) and

upper triangular (anticausal). If the filter bank is stationary,
then and are (block) Toeplitz operators characterized by
their central row and central column, respectively. In this

1That is, u is a finite energy sequence or column vector withP (n)-
dimensional column vector entriesu(n), n 2 Z.

2More precisely,e(n) andr(n) are block rows and block columns, respec-
tively. We omit the adjective “block” throughout this paper for readability
purposes.
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case, we write instead of :

...

...

...

...

(1)

In the context of filter banks, the rows of are called
filter weight vectorsand the columns of are calledimpulse
response vectors. In the stationary case, they have the property
that with , the Fourier transform of , , and
are uniform spectral decompositions of the baseband.

In this paper, we find biorthogonal filter banks giving signal
expansions of the form

where , and and are all shifted versions
of and , respectively (and similarly for and ).
In other words, the behavior on the segments
and is stationary, whereas the segment
is the transition region on which and have doubly
indexed entries. Typically, the objective is to have a small
transition segment supporting a smooth transition between the
stationary segments.

B. State-Space Representation

Instead of using input–output maps and , the filter
bank can also be represented by state-space realizations. For
the decomposition part , the state-space realization at time-
instant maps presents input and present
state to present output and
next state . Thus, [denoting by ]
this map gives us

where the matrix3

is explicitly written as

(2)

This is shown in Fig. 1. Let represent the state sequence
, . Likewise, let and

. Then we can write

3For a maximally decimated system, we haveN(n + 1) + Q(n) =
N(n) + P (n), i.e.,m(n) is square.

Fig. 1. The state-space realization at time-instantn for the decomposition
part of aQ(n)-channel filter bank.

Fig. 2. The state-space realization at time-instantn for the reconstruction
part of aQ(n)-channel filter bank.

where is the unitary shift operator

...

...

(3)

and is a multiband matrix referred to as a state-space
realization operator [5]. For the reconstruction part, we have
mutatis mutandissimilar relations.4 In order to distinguish
from , we add an overbar to the symbols when related to:

. maps the next state and
the present input to the present output and the present state,
as shown in Fig. 2. The state-space realization operator on the
reconstruction side is then .

In the state realization domain, the “biorthogonality”
property transfers to or equivalently,

5, for all .
4Recall thatR is an anticausal map, so “next” becomes “previous” andZ

is to be replaced byZT .
5Where1 stands for the identity matrix of appropriate order.
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Let denote the strict past inputs, i.e., the inputs in the

interval and let denote the future outputs,
i.e., the outputs in the interval . The matrix then
defined by

(4)

maps the past inputs to the present state and the
matrix defined by

...

(5)

maps the present state to the future outputs .6 From
these definitions, we obtain the following relations [6] from

to :

(6)

where and are the th row and column of ,
respectively. Similar relations hold betweenand . From
here on, we will assume maximally decimated filter banks.

II. TRANSITION BETWEEN FILTER BANKS

Let and represent the
state-space realizations of the decomposition parts of the
stationary filter banks and ,
respectively. The aim is to design an intermediate realization

such that the transitional output functions both
on the decomposition and reconstruction sides are minimal.7

Fig. 3 schematically depicts the state-space model of the
transition process on the decomposition side. Let the time axis
be such that is a realization at , as shown in Fig. 3.,
i.e.,

Recall that the filter weight vector at time-instant is
given by . This means that if the filter
weight vectors for have to be equal to the stationary
values of the final filter, then the intermediate realization

should satisfy

(7)

where and represent the controllability operators on
the decomposition sides of the initial and the final stationary

filter banks, respectively, and stands for equality after
disregarding possible zero columns on the left-most sides of

6C(n) andO(n) are called the controllability and observability operators
at time-instantn, respectively.

7There is one output vector for each state-space realization. The transition
duration is measured by the dimensionQ of the output vector of the
intermediate realizationm.

Fig. 3. Time-varying system-representation transition between two filters.

the matrices. As the initial filter is assumed to have been
operating stationarily up to , the filter weight vectors
for are unaffected by the intermediate realization.
This means that the filter behaves the same way as the initial
stationary filter up to .

The reconstruction version of Fig. 3 can be obtained by
reversing the directions of signal flows in it. For this recon-
struction filter, the impulse response at time step, which is
the same as theth column of the reconstruction map, is
given by

(8)

where is the observability operator of . Clearly, on
the reconstruction side, for the impulse responses to agree with
the respective stationary values before and after the transition,
the intermediate realization must satisfy

(9)

where and are the observability operators on the recon-
struction sides of the initial and final stationary filter banks,
respectively, and stands for equality after disregarding
possible zero rows at the topmost positions of the matrices.

A. Solving for the Intermediate Realizationsand

Let and represent the lengths of and , respec-
tively. Also, let with
represent the first columns of such that

, where is a zero matrix of appropriate dimensions.
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Then, if (7) has to be satisfied, we must have

(10)

(11)

Similar conditions for and in (9) are

(12)

(13)

where is a pseudo-inverse operator. For a maximally
decimated biorthogonal filter bank, . With

and

this implies . Substituting the values of, , ,
and from (10)–(13), we get

(14)

If we replace the term in (14) with an identity matrix,
the left-side terms reduce to . However, for a maximally
decimated final filter, . This means (14) is true if
and only if

(15)

where is a projector8 to the column space
of and to the row space of . Note that if the
above equation is trivially satisfied with .9 We address
this in Section III. In the following, we present a proposition
that puts conditions on the initial and final filters under which
(15) is nontrivially satisfied.

Proposition II.1 Let and represent
the state-space maps of the transition system on the decompo-
sition and reconstruction sides, respectively. Then, (7) and (9)
are, respectively, satisfied by nonnull matricesand without
violating biorthogonality if and only if there exists a
such that the rows of are all in the space
spanned by the rows of and the columns of are
all in the space spanned by the columns of.

Proof: Biorthogonality is preserved if (14) is satisfied by
the intermediate realization. For , the relation is always
satisfied as long as the final filter is maximally decimated.
Nevertheless, means both and are null. Thus, if
these have to be nonnull matrices, then must be nonzero.
This means that the relation given in (7) is nontrivially satisfied
if we can find a such that .
Since the matrix is formed by the linear combinations of
the rows of , it always lies in the space spanned by the rows
of . This means that (7) is satisfied by a nonnull matrix,

8This can easily be verified by showingPr = P
2

r
.

9Where[ ] stands for a null matrix with arbitrary dimensions.

if the rows of , , are spanned by
the rows of . The reverse is also true. That is to say, if
there exists a such that the rows of
are in the space spanned by the rows of, we can always
express the former as linear combinations of the rows of the
latter. In other words, there exists a nonnull matrixfor which

. With the same argument, it can be
shown that (9) is satisfied by a nonnull matrixif and only
if the columns of are spanned by the columns of

.
Once are determined, we need to calculate the

rest of the parameters and to complete the design.
This can easily be done by generating equations from the
requirements (biorthogonality) and
(maximally decimation) as follows:

Note that given the solutions and ,
and are also solutions, provided

that . In Section III-D, we will use this property to refine
the behavior of the transition filters.

B. Minimality of the Intermediate Realization

We say the intermediate realization is minimal if its
output vector dimension is minimal. In the decomposition
map , this is equivalent to the number of transition filters.
For example, in (17), would be the number of rows in the
transition block .

Proposition II.2 Let , , , and be given as in (10)–(13).
The intermediate realizations and are then minimal if
and only if there exists no such that for which
(15) is satisfied, where , with and

as defined earlier.
Proof: From the definitions of and , we see that is

an matrix and is an matrix, where
and are the state dimensions of the initial and final

filters, respectively. For maximally decimated systems,is
square. This means that the dimensionof the output vector
must be . Here, all the quantities
except are fixed by the initial and the final filters. Thus, our
only free parameter is . This means that if there does not
exist a for which (15) is satisfied, then the number
of transitional output functions is minimal and, hence, is
minimal. In the same way, it is easy to show thatis also
minimal.

C. Classifying the Transitions

is a measure that indicates the sizes of the common
subspaces spanned by the controllability operators on the
decomposition sides and by the observability operators on the
reconstruction sides of the initial and final filters. Its value
characterizes the transition behavior. This is summarized in
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Fig. 4. Summary of the transition behaviors characterized byKu.

Fig. 4. Depending on the value of , the transition behavior
ranges from instantaneous to blocked.

III. B LOCKED AND LAPPED TRANSITIONS

The meaning of (or ) is that during
transition none of the states are transferred from the initial to
final stationary filters. In such a case, the resulting transition
is said to be a blocked (or a nonoverlapped) transition. This
is equivalent to first terminating the initial filter and then
starting the final one. Under this condition, the intermediate
realization can be split into two, as shown in Fig. 5.10

The corresponding decomposition map then has the
following structure:

...

0

0

...

(16)

From the structure, we see that the initial and final filter
banks are independently bounded from the bottom and top,
respectively. Thus, we would like to do two things: firstly,
we would like to terminate the initial filter with a minimum
number of boundary filters and, secondly, we would like to
start the final filter minimally.

A. Terminating the Initial Filter

We start off by assuming that there exists a null final
filter. With this assumption, we can directly use the results
of Section II-A. For the null final filter, we take and

. The dimensions of , , , and are then ,
10This case is considered in [2] for two-channel orthogonal filter banks.

Fig. 5. Details of the intermediate state-space realization on the decompo-
sition side for the casea = 0.

, and , respectively. This means that
all the parameters exceptare null, and we can write .
Obviously, if the biorthogonality has to be preserved,must be
an invertible matrix. Notice that the number of the boundary
filters so determined are minimal because we cannot find a

which satisfies (15) (Proposition II.2).

B. Starting up the Final Filter

In this case, we assume that there exists a null initial filter
and we take and . This means that the
dimensions of are , , ,
and , respectively. The only nonnull matrices
are, therefore, and , giving . Note that is fixed
by the relation given in (11), and with it becomes

. must be chosen in such a way that biorthogonality
is preserved. Clearly, the boundary filters so determined are
minimal because is the maximum value for which
(15) is satisfied.

C. Lapped Transition

When (or ), some of the states are
transferred to the final filter and the resulting transition is said
to be a lapped transition. This is because if we construct the
rows of the decomposition map of the time-varying system
using (6), we get overlaps of the filter weight vectors at the
transition as shown below:

...

...

(17)

The same can be said forand the impulse responses of.
If and , then is an

invertible matrix with . Such pairs of filter
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banks form a special class characterized by

and (18)

for some invertible matrices and such that .
Filter banks under this category are considered in Sections IV
and V.

D. Controlling the Behavior of the Transition
and/or the Boundary Filters

In real applications, in addition to perfect reconstruction,
good filtering behavior is required. Therefore, we would like
to know if we can alter the behavior of the transition functions
as desired without violating biorthogonality. Fortunately, we
have some degree of freedom to do so.

Consider the state-space realization of the intermediate
system shown in the middle part of Fig. 3. Cascading this
system with an invertible constant matrix does not
affect biorthogonality. This is actually equivalent to replacing
the and parameters of the decomposition part of the
intermediate realization with and , respectively. If, in
addition, is optimized to give good desired impulse response
transitions in while maintaining smooth filter weight vector
transition in , we can improve the behavior of the transition
filters without destroying biorthogonality. Note that due to
the mixing of the filter coefficients of the upper and lower
boundary filters by the cascaded operator, we get a sort of
“overlapped” transition for the case as well [see
(16)]. The matrix could be determined using a wide range of
optimization procedures. In all cases, we are simply exploiting
the extra freedom we have in the parametersand on
the decomposition side and the parametersand on the
reconstruction side (see Section II-A). For further reading on
optimization methods, the reader is advised to consult [2] and
[7].

In the remaining part of this paper, we will show that if the
two filters under question are such that (18) is satisfied, the
transition between the filters can be made arbitrarily small.
In the limiting case, we can instantaneously switch from
the initial filter to the final one without any transition. For
this subclass of filters, we first summarize (in the following
section) results for the instantaneous transition case, which
were presented in [5]. In Section V, we extend these results
by introducing an interpolation method which allows a smooth
transition between filter weight vectors in the decomposition
part of the bank, and at the same time a smooth transition
between impulse response vectors in the reconstruction part
of the bank.

IV. I NSTANTANEOUS TRANSITION

Let be a stationary biorthogonal filter bank.
Put and where is the part
of above the central row and is the part of to
the left of the central column.

Now, let , , and
, .

and . The problem we want to ad-
dress in this section is that given the above two filter banks

Fig. 6. A two-channel ladder filter bank.

and , does there exist a
filter bank with

and

such that .
The answer is partly contained in the following proposition,

a proof of which can be found in [5].
Proposition IV.1 Let , , and ,

be two stationary biorthogonal filter banks with
realization matrix pairs

and

respectively. If11 , , ,
, , , , ,

and

then is a biorthogonal filter bank with
instantaneous filter weight vector transition in the decomposi-
tion part and instantaneous impulse response transition in the
reconstruction part.

In the above proposition we have tacitly assumed that the
two banks and have the
same number of channels. However, this is not a restriction.
Indeed, if is the realization matrix of, say, a
-channel filter, then a number of such realizations (say,) in

(time) succession can be merged (by eliminating intermediate
states) to obtain a realization matrix of an

channel filter. The realization matrix
in the proposition will then also characterize an filter
bank. See the example in Section VI.

Corollary IV.2 If two filter banks characterized by ,
and , are related according to (18),

then they satisfyProposition IV.1.
Proof: This can easily be shown by constructing,

, , and from the state-space parameters given in
Proposition IV.1.

11Up to similarity transformations.
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V. INTERPOLATED TRANSITION

The matrix equation in the previous section expresses
biorthogonality. The additional property is that the system
is state stationary over all time, including the time instant
of instantaneous transition. The transition is instantaneous
because the transformation matricesand are constant. If,
on the other hand, we let these matrices be time varying,
then the transition will follow a certain trajectory, which we
will have to control in the case when we want to enforce
meaning on the trajectories of the filter weight vectors in the
operator as well as the impulse response vectors in the
operator . One can envisage several strategies to control
the transition behavior, but we shall be confined to one of
them—spiral interpolation—which has proven to be simple
and satisfactory.

Thus, let be the sequence of real trans-
formation matrices on the transition interval , where

and ( being, for example, the matrix
in Proposition IV.1.) Associated with this sequence is the

sequence of inverse matrices , . Now let
and be the eigenvalue decomposi-

tions of and . The eigenvalues are either real or appear
in conjugate pairs .

Proposition V.1 Let for , and
, and be real and monotonically increas-

ing functions from 0 at to 1 at . Put
. is real.

If , then is monotonically

increasing from 0 at to 1 at ,
is real, and .

Moreover, the transition filters are such that the overall system
remains biorthogonal.

Proof: The first part of the proposition is the result of
complex algebra: given a complex vector and two
complex numbers , the sum is real if
and only if , where stands for complex-
conjugate operator. In our case, if the interpolation is made on
the eigenvalues in such a way that conjugate pairs remain that
way throughout the transition while keeping the eigenvectors
unchanged, all the intermediate will
be real valued. Biorthogonality is preserved because of the fact
that we keep throughout the transition.

VI. I LLUSTRATIVE EXAMPLES

A. Overlaped Transition

In this example, the transition behavior between two two-
channel filter banks of lengths 18 and 10 are considered.
The intermediate state-space realization has the property that
corresponds to (see Section III). The structures of
both filters are as shown in Fig. 6. For the initial filter

and

(a)

(b)

Fig. 7. Transition behaviors. (a) Spectra of the transition filters on the
decomposition side. (b) Transitions in impulse responses of the second channel
on the reconstruction side. The other channel transit in a likewise gentle way.

and the final filter has

and

The intermediate state-space realization is constructed, as
discussed in Section II-A (for these filters, it can be shown
that and ). The resulting transitional behavior
is summarized in Fig. 7. From the plots, one can clearly see
the smooth transition in the spectra of the decomposition
filters and the gentle takeover in impulse responses on the
reconstruction side.

B. Instantaneous Transition

Here, we demonstrateProposition IV.1 by considering a
transition from a two-channel filter bank to a four-channel filter
bank. The decomposition parts of the two banks are shown in
Fig. 8, in stationary state. In the figure,
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Fig. 8. A two-channel and four-channel decomposition part of two perfect
reconstruction filter banks.

and

(19)

The Fourier transforms of the filter weight vectors of the two
decomposition parts are shown in Fig. 9.

If in the second filter in Fig. 8 the matrix is replaced
by the identity, then the resulting flow graph is essentially
twice the first filter. Thus, if is taken away from the second
filter, then it represents two time steps of the two-channel
decomposition filter. This filter can be run for a while and then,
say at , can be cascaded to the two two-channel filters
and start running as a single four-channel decomposition filter.
The takeover is instantaneous, i.e., the spectral characteristics
switch instantly at , from the top spectra in Fig. 9 to
the bottom spectra. Moreover, the impulse responses of the
reconstruction filters also have an instantaneous transition at

, as shown in Fig. 10, for the fourth channel of the
two reconstruction filters.12

C. Interpolated Transition

Instead of instantly appending the constant matrixgiven
in (19), we now “spiral” along the matrix trajectory , as
explained inProposition V.1. takes off at and
is constant from on. Similarly, for the
reconstruction filter: the input matrix starts off from
and spirals to end at constant at time-instant

12The reconstruction filters are not shown, as they are easily obtained by
reversing the direction of signal flow from output to input in the filters from
Fig. 8.

(a)

(b)

Fig. 9. Fourier transforms of filter weight vectors of two- and four-channel
filters.

Fig. 10. Instantaneous switching in the impulse response corresponding to
the fourth channel.

. In this example, the transition duration is arbitrarily
chosen to be .
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(a)

(b)

Fig. 11. Smooth transitions in the frequency and impulse responses corre-
sponding to the fourth channel.

The smooth transitions of both the spectral characteristics
at the decomposition side and the impulse responses at the
reconstruction side are clearly seen in the plots shown in
Fig. 11 for the fourth channel. The other channels transit in
a likewise gentle way. As a final plot, the trajectories of the
eigenvalues of and are shown in Fig. 12.

VII. CONCLUSION

Using the state-space representation of filter banks, we are
able to come up with a comprehensive characterization of
transitions between two stationary filter banks. The transition
behavior is completely described by the common subspaces
spanned by the controllability operators on the decomposition
sides and by the observability operators on the reconstruction
sides of the respective filters. Depending on the sizes of
the common subspaces, the transition behavior ranges from
instantaneous to blocked. Instantaneous transition is obtainable
when the controllability/observability operators of the two
filters span the same space. On the other hand, when the
operators span disjoint spaces, the resulting transition is a

Fig. 12. Eigenvalue trajectories on the transition support. Initial values are
all 1. End values are outside the unit circle for the decomposition filter and
inside the unit circle for the reconstruction filter.

blocked one. All other transition behaviors are in between the
above two categories.

We are also able to show that under specific conditions the
transition interval can be arbitrarily varied. For this class of
filters, the transition filters are controlled in such a way that
both the filter weight vectors and the impulse responses gently
embrace.

Our approach makes use of two sets of equations generated
from two major assumption: biorthogonality and maximally
decimation. Further generalization can be obtained by con-
sidering oversampled filter banks. Finally, it is relevant to
mention that these results can readily be applied to multi-
dimensional filters by appropriately defining the state-space
representations [8].

REFERENCES

[1] R. A. Gopinath and C. S. Burrus, “Factorization approach to uni-
tary time-varying filter bank trees and wavelets,”IEEE Trans. Signal
Processing, vol. 43, pp. 666–680, Mar. 1995.

[2] C. Herley and M. Vetterli, “Orthogonal time-varying filter banks and
wavelet packets,”IEEE Trans. Acoust., Speech, Signal Processing, vol.
42, pp. 2650–2663, Oct. 1994.

[3] R. L. de Queiroz and K. R. Rao, “Time-varying lapped transforms
and wavelet packets,”IEEE Trans. Signal Processing, vol. 41, pp.
3293–3305, Dec. 1993.

[4] K. N. I. Sodagar and T. P. Barnwell, “Time-varying filter banks and
wavelets,”IEEE Trans. Signal Processing, vol. 42, pp. 2983–2996, Nov.
1994.

[5] H. G. J. Theunis and E. F. Deprettere, “Piecewise stationary perfect
reconstruction filter banks,”Arch. Elektron.Übertragung., Sept. 1995.
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