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Time-Varying Biorthogonal Filter Banks:
A State-Space Approach

Aweke Negash Lemma and E. F. Deprettefellow, IEEE

~ Abstract—Using state-space representations of biorthogonal  The first category—switching between two stationary filter
time-varying filter banks, it is possible to come up with a theory panks without any transition—is considered in [5], where
for the transitional behavior between two stationary filter banks. it is shown that if the filters under question are related

The transition interval depends on the size of the common . ticul instant t it both th
subspace spanned by the controllability operators of the initial In-a particular way, Instantaneous transition both on the

and final filters on the decomposition sides, and the common decomposition and reconstruction sides is possible.
subspace spanned by the observability operators of the filters on ~ This paper is motivated by the absence of an underlying
the reconstruction sides. When the respective operators span the theory that relates the above two categories. We show that
same spaces, we can derive conditions under which the transition ; _ ; T ;
between the filter banks can be so controlled that both the b)./ using state spa(.:e representgtlon itis possible .t(.) cqme up
decomposition and the reconstruction functions gently embrace. with a comprehensive characterization of the transmpn filters.
For such filters, the transition interval can be made arbitrarily ~Moreover, the state-space approach enables us to give a clear-
short. If it is zero, then the special case of instantaneous transition cut analysis of transition times and transition behavior. Unlike
is reached. in [2], we first consider the general case of minimal transition
Index TermS_Biorthogona| filter bank, impu|se response (Vec_ betWeen b|0rthogona| f|lter bankS and then eXtend the |dea to
tor), filter weight vector, controllability operator, observability — the special cases of: a) starting up a filter and b) terminating
operator, state-space realization (map), stationary filter, transi- g running filter.
tion filter. In Section Il, we use state-space techniques to find the
transition filters that give optimal transition duration both
|. INTRODUCTION on the decomposition and reconstruction sides. Based on

the results, we give classification of transition behaviors. In

UE TO THEfact that f||ter_ banks_, appearin various fo.rmgection Ill, we discuss conditions under which the so-called
and for various reasons in a wide range of appllcatlonls,

. apped and blocked transitions are generated. We also indicate
they have become the center of attraction for many research%r ; ) ! N o
. : W we can refine the filter characteristics in the transition.

People have started putting a considerable amount of w . . !
. . . . - ection IV presents a special set of filter banks that allows
into the time-varying aspects of filter banks. To facilitate their . . X )
. L Instantaneous transitions between filters which are reported in
investigations, most researchers concentrate on the study : )

. X . . In Section V, we extend these results by allowing two-
transitions between two stationary filter banks. The reason

such considerations is partly that most filter banks tend E)ded controlled transition with arbitrary transition segments.

operate for considerable durations compared to their lengt |Snally, in Section V1, we give illustrative examples.

and can be considered stationary at the time of transition.
General!y, wher_l transiting from one :'stationary fiIt(_a_r bank tﬂ. Biorthogonal Filter Banks
another without violating biorthogonality, the transition may
be either: a) instantaneous or b) not instantaneous. The seconfy biorthogonal filter bank(E, i) is a linear expansion
category is studied by a number of authors [1]-[4]. An equef a sequence or a signal. Thus, uf € 15 (2)} then
number of transition filters both on the decomposition and= > _(u,e(n))r(n), wheree(n) andr(n) are the rows and
reconstruction sides are considered in [1]-[3], whereas in [4plumn$ of bounded matrix operatots and R, respectively,
unequal transition segments are studied. In [2], orthogorwith RE = I, the identity operator, angl, .) an inner product
projectors are used to complete the basis for the sequeneperator. We will assume throughout thét) andr(n) are
generated by one side-bounded orthogonal filter bank and thehfinite lengths, and thak is lower triangular (causal) and
the results are directly, but not minimally, extended to the cageupper triangular (anticausal). If the filter bank is stationary,
of transition between filter banks. then £ and R are (block) Toeplitz operators characterized by
their central rowe and central columm, respectively. In this
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case, we writd E(e), R(r)) instead of(E, R): x(n)
| l 2l N
c
B | L 1| goo 1
o v W | - B
. 2 i \ c(n) 2
] ufn) . - |L7777(2071;7> . y(n)
In the context of filter banks, the rows df are called . bin) ™~ Vafn) .
filter weight vectorsand the columns of? are calledimpulse RaloN ' | Q)
response vectorsn the stationary case, they have the property
that with £'(x), the Fourier transform of, F(e), and F'(r) 1l 2l R lN(nH)
are uniform spectral decompositions of the baseband.
In this paper, we find biorthogonal filter banks giving signal
expansions of the form x(n+1)
no—1 ny—1 Fig. 1. The state-space realization at time-instarfor the decomposition
f -channel filter bank.
w— Z <U,,61(7’L)>7’1(7’L) n Z (u,e(n)>7(n) part of aQ)(n)-channel filter ban

;(n)

+oo
+ ) (u,e2(n))r2(n)

TLZTLf
1 2l - - - N

wheren; > n,, andel(n) ande2(n) are all shifted versions 1 y |

of 1 ande2, respectively (and similarly forl(n) andr2(n)). A B ¥ / f;(n) ~ —

In other words, the behavior on the segmefitsx, n, — 1] ~ 2 T ) |2 -
and[n s, +o0) is stationary, whereas the segmént, ny — 1] wm . PP y(n)
is the transition region on whick(n) andr(n) have doubly L)

. . . Lo Ofn) i P(n)
indexed entries. Typically, the objective is to have a small B !

transition segment supporting a smooth transition between the

stationary segments. IT ZT TN(HH)

B. State-Space Representation >
Instead of using input-output map8 and R, the filter \l)
bank can also be represented by state-space realizations.ﬁfﬁ
the decomposition patk, the state-space realization at time-
instantn maps presents inpui(n) € 15(")(Z) and present . . _
statez(n) € ZQY(")(Z) to present outpug(n) € ZQQ(")(Z) and Where Z is the unitary shift operator

next statex(n + 1) € lé\‘r("J’l)(Z). Thus, [denoting byn(n)]

I2. The state-space realization at time-instarfor the reconstruction
of a@(n)-channel filter bank.

this map gives us (1) 1
Z = 00 1 3)
Jem)] _ e+ 1)
m(n)[u(n)} [ y(n) } 0 00 1

where the(N(n+1) +Q(n)) x (N(n)+ P(n)) matrix® m(n)

X - . and M is a multiband matrix referred to as a state-space
is explicitly written as

realization operator [5]. For the reconstruction partwe have
mutatis mutandisimilar relations' In order to distinguishi
} (2) from E, we add an overbar to the symbols when relate&1o

m(n),a(n),b(n),&n),d(n). m(n) maps the next state and

This is shown in Fig. 1. Let: represent the state sequencﬁhe present input to the present output and the present state,
{z(n)}, n € (—o0,00). Likewise, lety = {y(n)} and @S ShowninFig. 2. The state-space realization operator on the

w = {u(n)}. Then we can write reconstruction side is thefd.
In the state realization domain, the “biorthogonality”
Zx T property RE = I transfers toMM = I or equivalently,
=M - _ 15
y u m(n)m(n) = 1°, for all n.

4Recall thatR is an anticausal map, so “next” becomes “previous” &d

3For a maximally decimated system, we had&n + 1) + Q(n) = s to be replaced by ™.
N(n)+ P(n), i.e.,m(n) is square. SWhere1 stands for the identity matrix of appropriate order.



282 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 3, MARCH 1998

—

Let u(n) denote the strict past inputs, i.e., the inputs in the

interval (—oo,n — 1] and lety(n) denote the future outputs, ; 5 N
i.e., the outputs in the intervéh, o). The matrixC(n) then l l !
defined by ! !
C(n) = [---a(n — Da(n — 2)b(n — 3) u-ng g " o Y1)
aln —1)b(n —2) bln—1)] 4)
_ o2 N,
maps the past inputs(n) to the present state(n) and the ] 7
matrix O(n) defined by 5 7] 5 ”
c(n) i :
c(n+ Da(n) U(0) : m : L V(0)
O(n) = | ¢(n + 2)aln + 1)a(n) ()
: P 0
- Il 2 ... N,
maps the present statgn) to the future outputg(n).6 From J J
these definitions, we obtain the following relations [6] from ] .
M to E: wn< n, o Y
il S— 2
d(n)
e(n) = [e(n)Cn) dm)] h(m)= | oy | o ©) ERE

where e¢(n) and h(n) are thenth row and column ofFE,
respectively. Similar relations hold betweéhand M. From
here on, we will assume maximally decimated filter banks. Fig. 3. Time-varying system-representation transition between two filters.

Il. TRANSITION BETWEEN FILTER BANKS the matrices. As the initial filter is assumed to have been
Let my (a1, by, c1,d1) and mo(ag, by, c2,d2) represent the operating stationarily up ta = —1, the filter weight vectors

state-space realizations of the decomposition parts of fie n < 0 are unaffected by the intermediate realizatian
stationary filter bank§E; (e1), Ri(r1)) and(Es(es), Ra(r)), This means that the filter behaves the same way as the initial
respectively. The aim is to design an intermediate realizatigtationary filter up ton = —1.
m(a,b,c,d) such that the transitional output functions both The reconstruction version of Fig. 3 can be obtained by
on the decomposition and reconstruction sides are minimagversing the directions of signal flows in it. For this recon-
Fig. 3 schematically depicts the state-space model of thEuction filter, the impulse response at time stepvhich is
transition process on the decomposition side. Let the time aii® same as theth column of the reconstruction ma, is
be such thain is a realization at, = 0, as shown in Fig. 3., given by

ie. A 7
’ (n) = |9 = Db(n)
my: n € (—oo,—1] r(n) = [ d(n) ®)
mn)=<¢m: n=0 ~
ma: n € [1,+00). whereO(n) is the observability operator a@f.(n). Clearly, on

_ . o ~the reconstruction side, for the impulse responses to agree with
Recall that the filter weight vectar(n) at time-instantr is  the respective stationary values before and after the transition,

given bye(n) = [¢(n)C(n) d(n)]. This means that if the filter the intermediate realizatiom must satisfy
weight vectors forn > 1 have to be equal to the stationary

values of the final filter, then the intermediate realization D top {@15} (9)
m(a, b, c,d) should satisfy

Co lef [aCy  b] 7) where®; andO, are the observability operators on the recon-

struction sides of the initial and final stationary filter banks,

where C; and C; represent the controllability operators ontespectively, andZ stands for equality after disregarding

the decomposition sides of the initial and the final stationappssible zero rows at the topmost positions of the matrices.
filter banks, respectively, an stands for equality after

disregarding possible zero columns on the left-most sides &f Solving for the Intermediate Realizationsand m

®C(n) andO(n) are called the controllability and observability operators |et L; and L, represent the lengths &% and(C,, respec-
at fime-instant, respectively. o tively. Also, letCy(:,1 : K,,) with 0 < K,, < min(Ly, L)

There is one output vector for each state-space realization. The transition he firsk | i h thataC: — Col
duration is measured by the dimensigh of the output vector of the represent the firskl,, columns ofC; such that(; = [0 2(-7

intermediate realization:. 1: K,)], where0 is a zero matrix of appropriate dimensions.
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Then, if (7) has to be satisfied, we must have if the rows of [0 C»(:,1 : K,)], K. > 0, are spanned by

i the rows ofC;. The reverse is also true. That is to say, if
a=[0 C(,1:Ku)lC (10)  there exists &, > 0 such that the rows go Ca(:,1: K,)]
b=Co(:, Ky +1: Lo). (11) are in the space spanned by the rowsCof we can always
express the former as linear combinations of the rows of the

Similar conditions fora and in (9) are latter. In other words, there exists a nonnull matrifor which

A 0 aCy = [0 Co(;,1: K,,)]. With the same argument, it can be
a=0] [@2(1 Ky, ;)} (12)  shown that (9) is satisfied by a nonnull mateixf and only
_ H 0
e=Op(Ky+1: La,:) (13) g_)the columns of[oz(lsz)] are spanned by the columnDs of
1-
where () is a pseudo-inverse operator. For a maximally Once a,a, b, are determined, we need to calculate the
decimated biorthogonal filter bankym = 1. With rest of the parameters d,b and d to complete the design.
b -3 This can easily be done by generating equations from the
m= {“ d} and m = {‘f J} requirementsinm = I (biorthogonality) andmm = I
C C

(maximally decimation) as follows:
this impliesaa + b¢ = I. Substituting the values df, a, b,

and z from (10)—(13), we get aa —i—E_Jc =1 ab+bd=0

0 ab+bd=0 ca+dc=0

[0 62(171 : Ku)]CIOI |:@2(1 K, ):| Ea—|—ch: 0 CE—i— dd=1T
+Co(5, Ky +1: Lo)Oo(K, +1: Ly,:)=1. (14) éb+dd=1.

If we replace the terng O] in (14) with an identity matrix, Note that given the solutionsi(a, b, ¢,d) and m/(a, b, , d),
the left-side terms reduce & 0,. However, for a maximally m’(a, b, tc,td) andm’(a, bs, €, ds) are also solutions, provided
decimated final filterC, O, = I. This means (14) is true if thatst = I. In Section 1lI-D, we will use this property to refine
and only if the behavior of the transition filters.

[0 Co(:,1: KD, [@2(1 :OKu, :)} B. Minimality of the Intermediate Realization
0 We say the intermediate realization is minimal if its
=0 G 1:Ky) [@2(1 K, ;)} (15) output vector dimensiol) is minimal. In the decomposition
’ map F, this is equivalent to the number of transition filters.
whereP, = CI@I = O,C; is a projectat to the column space For example, in (17)¢ would be the number of rows in the
of @, and to the row space df,;. Note that if K, = 0 the transition blocke},.
above equation is trivially satisfied witha = [].° We address ~ Proposition 11.2 Let a, @, b, andz be given as in (10)—(13).
this in Section IlI. In the following, we present a propositiolhe intermediate realizations. and n are then minimal if
that puts conditions on the initial and final filters under whichnd only if there exists nd¢{ such thatk > K, for which
(15) is nontrivially satisfied. (15) is satisfied, where < K,, < min(L;, L), with L; and
Proposition 1.1 Let m(a, b, ¢, d) andm(a, b, ¢, d) represent L as defined earlier.
the state-space maps of the transition system on the decompo- Proof: From the definitions of: andb, we see that: is
sition and reconstruction sides, respectively. Then, (7) and (@) V2 x Ny matrix andb is an Ny x (Lo — K,,) matrix, where
are, respectively, satisfied by nonnull matrieesnda without N; and N, are the state dimensions of the initial and final
violating biorthogonality if and only if there exists &, > 0 filters, respectively. For maximally decimated systemsijs
such that the rows of0 Co(:,1 : K,)] are all in the space square. This means that the dimensigrof the output vector
spanned by the rows @} and the columns O[féz(l?z(u,:)] are must be@ = Ly + (N; — N;) — K,,. Here, all the quantities
all in the space spanned by the columnscaf exceptK,, are fixed by the initial and the final filters. Thus, our
Proof: Biorthogonality is preserved if (14) is satisfied byonly free parameter i#,. This means that if there does not
the intermediate realization. Féf,, = 0, the relation is always €Xist aK > K, for which (15) is satisfied, then the number
satisfied as long as the final filter is maximally decimate@f transitional output function§ is minimal and, hencen is
NeverthelessK.,, = 0 means both: anda are null. Thus, if Minimal. In the same way, it is easy to show thatis also
these have to be nonnull matrices, thp must be nonzero. Minimal. U
This means that the relation given in (7) is nontrivially satisfied
if we can find ak,, > 0 such thataC; = [0 Ca(;,1: K,,)]. C. Classifying the Transitions
Since the matrixaC; is formed by the linear combinations of K, is a measure that indicates the sizes of the common

the rows ,Ofcl’ it always I|es_|n thg space spanned by the rom@bspaces spanned by the controllability operators on the

of C;. This means that (7) is satisfied by a nonnull matrix decomposition sides and by the observability operators on the
8This can easily be verified by showirfg. = P2. reconstruction sides of the initial and final filters. Its value
9Where[] stands for a null matrix with arbitrary dimensions. characterizes the transition behavior. This is summarized in
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f1(C1,(?1) [JF Zl L Nll
2(C2, O2) P oo oy---ooo ooy "

1 | ~
: I
! m;; ' N,
K,=0 Kys#0 | J—>:
(Blocked Transition) (Lapped Transition) / ; N +/
— 2 : m;2 :N +2
l e T
Ku<min(L1.L2) Ku: L1: L2 : \\\\ i
(non-Instant Tran) (Instant Transition) P ; \ Qo
| T
Optimized Interpolated. . . . . o
transnfl_on transition Fig. 5. Details of the intermediate state-space realization on the decompo-
iiters filters sition side for the case = 0.

Fig. 4. Summary of the transition behaviors characterizedihy ) ]
0 x 0, N; x Ny and N; x 0, respectively. This means that

Fig. 4. Depending on the value &f,, the transition behavior all the parameters exceptare null, and we can write: = c.

ranges from instantaneous to blocked. Obviously, if the biorthogonality has to be preservethust be
an invertible matrix. Notice that the number of the boundary
[ll. BLOCKED AND LAPPED TRANSITIONS filters so determined are minimal because we cannot find a

The meaning ofk, = 0 (or a,a = []) is that during & > &u(= 0) which satisfies (15)Rroposition I1.3.
transition none of the states are transferred from the initial to ) ) )
final stationary filters. In such a case, the resulting transitiéh Starting up the Final Filter
is said to be a blocked (or a nonoverlapped) transition. ThisIn this case, we assume that there exists a null initial filter
is equivalent to first terminating the initial filter and therand we takeL; = 0 and N; = 0. This means that the
starting the final one. Under this condition, the intermediatimensions ofz, b, c,d are Ny x 0, No X Lo, (Ly — Na) X 0,
realizationm can be split into two, as shown in Fig.5. and (L, — N3) x Lo, respectively. The only nonnull matrices
The corresponding decomposition madg,—o then has the are, thereforep andd, giving m = [g ]. Note thatb is fixed
following structure: by the relation given in (11), and witl,, = 0 it becomes
oo . b = Cs. d must be chosen in such a way that biorthogonality
) is preserved. Clearly, the boundary filters so determined are
minimal becausek,, = 0 is the maximum value for which

€1 (15) is satisfied.

E,_o= . (16) C. Lapped Transition

-0 €22 When K,, > 0 (or a,a # []), some of the states are
""" e ‘ transferred to the final filter and the resulting transition is said
o to be a lapped transition. This is because if we construct the

\—‘ rows of the decomposition mal of the time-varying system
using (6), we get overlaps of the filter weight vectors at the

. T .. transition as shown below:
From the structure, we see that the initial and final filter _

banks are independently bounded from the bottom and top, -
respectively. Thus, we would like to do two things: firstly,
we would like to terminate the initial filter with a minimum

number of boundary filters and, secondly, we would like to
start the final filter minimally. E= €lo . @n

€1

A. Terminating the Initial Filter ‘ & ‘

We start off by assuming that there exists a null final
filter. With this assumption, we can directly use the results ]

Ny = 0. The dimensions o, b, ¢, andd are then0 x Ny, f K, = Ly = L, and N, = N, = N, thena is an

10This case is considered in [2] for two-channel orthogonal filter banks. invertible IV x N matrix with @ = a~!. Such pairs of filter
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Y

banks form a special class characterized by

C = TCl, and @2 = @15 (18) 7

. . . Sf(z) g(z)
for some invertible matrice® andS such thatS7T =75 = 1.

Filter banks under this category are considered in Sections IV
and V.

Y

Fig. 6. A two-channel ladder filter bank.
D. Controlling the Behavior of the Transition

andor the Boundary Filters (Er(er), Ri(r1)) and (Ea(eq), Ro(r2)), does there exist a

In real applications, in addition to perfect reconstructioffijter bank (B2, Ri2) with
good filtering behavior is required. Therefore, we would like
to know if we can alter the behavior of the transition functions By, = [&} and Ris = [Ri | Ro.]
as desired without violating biorthogonality. Fortunately, we 2,b ’ ’
have some degree of freedom to do so.

Consider the state-space realization of the intermedidCh thatRl?E,lQ =L ) ) , »
system shown in the middle part of Fig. 3. Cascading thisThe answer is partly contalnec_i in the following proposition,
system with an invertiblg) x ¢ constant matrix does not a proof O_f _Wh'Ch can be found in [3].
affect biorthogonality. This is actually equivalent to replacing PoPosition [V.1 Let (E(er), Fu(ri)), and (Ex(ez),
the ¢ and d parameters of the decomposition part of th&2(r2)) be two stationary biorthogonal filter banks with
intermediate realization withic and td, respectively. If, in 'ealization matrix pairs
addition,? is optimized to give good desired impulse response
transitions inR while maintaining smooth filter weight vector
transition in £, we can improve the behavior of the transitio?" ~ ~
filters without destroying biorthogonality. Note that due to (ma(az, b2, c2, d2), M2(a2, b2, C2, d2))
the mixing of the filter coefficients of the upper and lower

(ma(a1,br,c1,dr), ma(as, by, e, di))

boundary filters by the cascaded operatowe get a sort of r_espe_ctiw_aly. Ha=a=ay b =b=1by, a1 =a=a,
“overlapped” transition for the case,a = [] as well [see 1 =C=Ca2, 2 =tXc1,dg =1txdy, by = b1 xs,dy =di x5,
(16)]. The matrixt could be determined using a wide range Ands x ¢ =1
optimization procedures. In all cases, we are simply exploiting (= 77

. a bl a b
the extra freedom we have in the parameterand d on I= e d|'le dy

the decomposition side and the parameterand d on the - s
reconstruction side (see Section 1I-A). For further reading on = . 0} . {I 0} _[“ b }

optimization methods, the reader is advised to consult [2] and "1 0 s][0 t]'la d

[7]. _ by [a b }

In the remaining part of this paper, we will show that if the c2 do
two filters under question are such that (18) is satisfied, the
transition between the filters can be made arbitrarily smathen ([%:;], [R1,; | Ro,]) is a biorthogonal filter bank with
In the limiting case, we can instantaneously switch fronmstantaneous filter weight vector transition in the decomposi-
the initial filter to the final one without any transition. Fortion part and instantaneous impulse response transition in the
this subclass of filters, we first summarize (in the followingeconstruction part.
section) results for the instantaneous transition case, whicHn the above proposition we have tacitly assumed that the
were presented in [5]. In Section V, we extend these resuttgo banks(Ei(e1), Ri1(r1)) and (Esz(ez), Ra(r2)) have the
by introducing an interpolation method which allows a smoottame number of channels. However, this is not a restriction.
transition between filter weight vectors in the decompositidndeed, ifm; (a1, b1, c1,d;) is the realization matrix of, say, a
part of the bank, and at the same time a smooth transitiprchannel filter, then a number of such realizations (sayn
between impulse response vectors in the reconstruction p@irne) succession can be merged (by eliminating intermediate
of the bank. states) to obtain a realization matnix; (a1,b1,¢1,d;) of an

r x p channel filter. The realization matrixz(asg, b2, c2,ds)
V. INSTANTANEOUS TRANSITION in the proposition will then also characterize anx p filter
bank. See the example in Section VI.

Corollary IV.2 If two filter banks characterized b1 (e1),
R1(r1)) and (Es(e2), Ra(r2)) are related according to (18),
then they satisfyProposition 1V.1

ErL By, Proof: This can easily be shown by constructidg,

Now, let By (e1) = [g5] Bz(e2) =[] and Bu(ry) = Cy, @1, and O, from the ystate—space pe)l/rameters gf/%n in
(B | Rl Ro(ro) = [Rog | Rop] Ra(r)En(er) = Proposition 1V.1 O
I and Rs(r2)Es(ez) = I. The problem we want to ad-
dress in this section is that given the above two filter banks!!Up to similarity transformations.

[T~
o
S

| |
~

1T
[STER~|

Let (E(e), R(r)) be a stationary biorthogonal filter bank.
Put E(c) = [£¢] and R(r) = [R; | R,] where E, is the part
of E(e) above the central row and R; is the part ofR(r) to
the left of the central columm.
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V. INTERPOLATED TRANSITION 0

The matrix equation in the previous section expresses s
biorthogonality. The additional property is that the system
is state stationary over all time, including the time instant '°]
of instantaneous transition. The transition is instantaneous;s
because the transformation matrideand s are constant. If,
on the other hand, we let these matrices be time varyir;*°F
then the transition will follow a certain trajectory, which weg _,s|
will have to control in the case when we want to enforcé
meaning on the trajectories of the filter weight vectors in the
operator £ as well as the impulse response vectors in the_gs
operator R. One can envisage several strategies to control
the transition behavior, but we shall be confined to one of*
them—spiral interpolation—which has proven to be simple_ss
and satisfactory.

-30}

Thus, let {t(n)} be the sequence of reat x w trans- % 05 1 15 2 25 3
formation matrices on the transition intervial,, n ], where Frequency
t(n,) = I andt(ns) = t (¢ being, for example, the matrix @

t in Proposition 1V.1) Associated with this sequence is the ,.
sequence of inverse matric¢s(n)}, s(n)t(n) = I. Now let

t =glhg~! ands = gA~1g~! be the eigenvalue decomposi-
tions of t ands. The eigenvalues are either reg| or appear
in conjugate pairg|\x|e?? | A\x|e=7%).

Proposition V.1Let for ¢ = 1,---,w, andn, < n <
ny, pi(n) and v (n) be real and monotonically increas-
ing functions from 0 atn, to 1 at ny. Put t(n) =
gldiag(pi(n)|Ai| + (1 = pi(n))e/%]g~1 t(n) is real.  -os)

Amplitude

) — pi(n)| A ) i i
!f qz(n). = SINIF—p ) then ¢;(n) is monotonically 5
increasing from 0 at, to 1 atny, s(n) = gldiag(g (n)| A7+ 10 10
(1 — qi(n)))ed =M% g=1 is real, ands(n) x t(n) = I. 5 5
Moreover, the transition filters are such that the overall system time o o impulse respomnses

remains biorthogonal. b)
Proof: The first part of the proposition is the result of N _ -
complex algebra: given a complex vector# 0 and two gt (R TS SO R ot the cecond channel
complex numbersy, 3 # 0, the sumax + /3C011J($) is real if  on the reconstruction side. The other channel transit in a likewise gentle way.
and only if 5 = conj(«), whereconj(-) stands for complex-
conjugate operator. In our case, if the interpolation is made on
the eigenvalues in such a way that conjugate pairs remain tgﬁb the final filter has
way throughout the transition while keeping the eigenvectors
unchanged, all the intermediatén), s(n) n, < n < ny will F(2) = 022321 — 0.2232
be real valued. Biorthogonality is preserved because of the fact
that we keeps(n) = #(n)~! throughout the transition. [ @
g(z) = 0.246271 — 0.2462.

VI. |LLUSTRATIVE EXAMPLES The intermediate state-space realization is constructed, as

discussed in Section II-A (for these filters, it can be shown

that K, = 4 and @ = 8). The resulting transitional behavior

is summarized in Fig. 7. From the plots, one can clearly see
In this example, the transition behavior between two twehe smooth transition in the spectra of the decomposition

channel filter banks of lengths 18 and 10 are considerdfiters and the gentle takeover in impulse responses on the

The intermediate state-space realization has the property thalonstruction side.

corresponds taK,, > 0 (see Section Ill). The structures of

both filters are as shown in Fig. 6. For the initial filter

A. Overlaped Transition

B. Instantaneous Transition

Here, we demonstratBroposition 1V.1by considering a
transition from a two-channel filter bank to a four-channel filter
and bank. The decomposition parts of the two banks are shown in

g(z) = —0.0945272 +0.213271 — 0.2132 + 0.094522 Fig. 8, in stationary state. In the figure) = 0.2228 ¢l =

f(z) = =0.1023272 4 0.2232 7 — 0.2237 4 0.10237>
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Fig. 8. A two-channel and four-channel decomposition part of two perfect
reconstruction filter banks.
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The Fourier transforms of the filter weight vectors of the two _,5|
decomposition parts are shown in Fig. 9.
If in the second filter in Fig. 8 the matrix is replaced

by the identity, then the resulting flow graph is essentially 3% 05 1 15 > 25 3
twice the first filter. Thus, it is taken away from the second Frequency
filter, then it represents two time steps of the two-channel (b)

decomposition filter. This filter can be run for a while and themig. 9. Fourier transforms of filter weight vectors of two- and four-channel
say atn = n,, t can be cascaded to the two two-channel filtefiers.
and start running as a single four-channel decomposition filter.
The takeover is instantaneous, i.e., the spectral characteristics®
switch instantly athn = n,, from the top spectra in Fig. 9 to
the bottom spectra. Moreover, the impulse responses of the
reconstruction filters also have an instantaneous transitiongat
n = ng,, as shown in Fig. 10, for the fourth channel of th%
two reconstruction filterd?

o]

C. Interpolated Transition 705J
Instead of instantly appending the constant matrgiven 0

in (19), we now “spiral” along the matrix trajectomyn), as
explained inProposition V.1¢(n) takes off att(n,) = I and

is constantt(n;) = ¢t from n = n, on. Similarly, for the Tim o o

. . . A & Impulse responses
reconstruction filter: the input matrix starts off frostn,) = o _ _
and spirals to end at constasfn;) = s at time- mstant Fig. 10. Instantaneous switching in the impulse response corresponding to

the fourth channel.

12The reconstruction filters are not shown, as they are easily obtained by In thi | h " d . . bi il
reversing the direction of signal flow from output to input in the filters fron{* = 7~ n this example, the transition duration is arbitrarily

Fig. 8. chosen to beAn = ny —n, = 5.
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Fig. 12. Eigenvalue trajectories on the transition support. Initial values are
all 1. End values are outside the unit circle for the decomposition filter and
inside the unit circle for the reconstruction filter.
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Amplitude

blocked one. All other transition behaviors are in between the
above two categories.

We are also able to show that under specific conditions the
transition interval can be arbitrarily varied. For this class of
filters, the transition filters are controlled in such a way that
both the filter weight vectors and the impulse responses gently
embrace.

Time Impulse responses Our approach makes use of two sets of equations generated
(b) from two major assumption: biorthogonality and maximally
Fig. 11. Smooth transitions in the frequency and impulse responses cod€cimation. Further generalization can be obtained by con-
sponding to the fourth channel. sidering oversampled filter banks. Finally, it is relevant to

mention that these results can readily be applied to multi-
dimensional filters by appropriately defining the state-space

The smooth transitions of both the spectral characteristi@Presentations [8].
at the decomposition side and the impulse responses at the
reconstruction side are clearly seen in the plots shown in
Fig. 11 for the fourth channel. The other channels transit ifl] R. A. Gopinath and C. S. Burrus, “Factorization approach to uni-
a likewise gentle way. As a final plot, the trajectories of the & time-varying filter bank trees and waveletZEE Trans. Signal
. . . Processingvol. 43, pp. 666—680, Mar. 1995.
eigenvalues of(n) ands(n) are shown in Fig. 12. [2] C. Herley and M. Vetterli, “Orthogonal time-varying filter banks and
wavelet packets,’JEEE Trans. Acoust., Speech, Signal Processuad
42, pp. 2650-2663, Oct. 1994.
VIl. CONCLUSION [3] R. L. de Queiroz and K. R. Rao, “Time-varying lapped transforms
. . . and wavelet packets,JEEE Trans. Signal Processingrol. 41, pp.
Using the state-space representation of filter banks, we are 3293-3305, Dec. 1993.

| m with morehensiv har rization 11] K. N. I. Sodagar and T_. P. BarnweII‘, “Time-varying filter banks and
able to come up th a comprehensive characterizatio d wavelets,”|EEE Trans. Signal Processingol. 42, pp. 2983—2996, Nov.

transitions between two stationary filter banks. The transition 1994
behavior is completely described by the common subspacés H. G. J. Theunis and E. F. Deprettere, “Piecewise stationary perfect

il i reconstruction filter banks Arch. Elektron.Ubertragung, Sept. 1995.
spanned by the controllability operators on the decompositiop, x5 Van der veen, “Time-varying system theory and computafional

sides and by the observability operators on the reconstruction modeling,” Ph.D. dissertation, Dep. Eiect. Eng., Delft Univ. of Technol-
sides of the respective filters. Depending on the sizes of ogy, Delft, The Netherlands, June 1993.

L . A. Mertins, “Time-varying and support preservative filter banks: Design
the common SUbSpaceS’ the transition behavior ranges fr of optimal transition and boundary filters via SVD,” IEEE Int. Conf.

instantaneous to blocked. Instantaneous transition is obtainable |cASsP-95, Digital Signal Processingol. 2, Detroit, MI, May 1995,
when the controllability/observability operators of the two  pp. 1316-1319.

. 8] A. N. Lemma and E. F. Deprettere, “State space behavior in time-
filters span the same space. On the other hand, when thé varying biorthogonal filter banks,” ivlll European Signal Processing

operators span disjoint spaces, the resulting transition is a Conf, vol. EUSIPCO-96, Trieste, Italy, Sept. 1013, 1996, pp. 65-68.
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