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Abstract— Combining biomechanical modeling with robotic
physiotherapy is a promising direction to provide real-time in-
sights during the rehabilitation of patients with musculoskeletal
injuries, such as rotator-cuff tears. One aspect is to prevent
re-injuries caused by high strain in the injured tissues while
allowing patients to perform the required rehabilitation exer-
cises. In this paper, we propose a novel shared control method
for robots to limit unsafe patient movements, through physical
guidance based on a strain-space representation of the human
rotator cuff. The method provides motion corrections through
two complementary predictive modules. The first module exerts
a lower degree of intervention and is analogous to rumble
strips or speed bumps for cars on the road. In this case, an
impedance controller induces variable damping to slow down
the patient’s movement when a danger zone is approached.
The second module produces a higher degree of intervention
and is analogous to lane-assist in cars. In this case, the robot
plans an optimal deflection trajectory and temporarily takes
over control of the movement to avoid an unsafe situation.
We performed experiments with a healthy participant acting
as a patient and evaluated the effect of different human-robot
interaction modalities on the resulting human movement in
terms of avoidance of high-strain areas of the rotator-cuff
tendons and contact forces exchanged.

I. INTRODUCTION

Musculoskeletal injuries can occur during many daily
activities, ranging from workplace and household tasks to
sports. Such injuries negatively affect the quality of life of
those who suffer from them, limiting their comfort, mobility,
agency and productivity in their daily life as well as at
workplaces. Elderly populations are particularly susceptible
to such injuries due to weakening of the musculoskeletal
system and general reduction in muscle mass that occurs with
age. One of the most typical injuries occurs in rotator cuff
muscles that keep the upper arm (humerus) in the socket of
the shoulder blade (glenoid of the scapula). The prevalence
of rotator cuff injuries is estimated to be as high as 22% in
the general population [1].

Traditional therapy in treating injuries to the shoulder
involves sessions with human physiotherapists. Nevertheless,
re-injuries are common [2], and demand for the therapy often
exceeds physiotherapists’ capacity, which can further affect
the recovery times and completeness of recovery. To this end,
robots provide a good solution to augment the capacity of
human physiotherapists. Existing works in robotics for phys-
iotherapy enable the generation of prescribed rehabilitation
movements [3], as well as learning these movements from
expert human demonstrations [4]. These strategies are excel-
lent in automating the movements of human physiotherapists.
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Fig. 1. An overview of the proposed robot-assisted shoulder physiotherapy
system. (a) The robot end effector is connected to the human elbow
with a customized brace, allowing the robot to limit human motion when
necessary. (b) Shoulder strain map is pre-calculated from a high-fidelity
musculoskeletal model to determine unsafe movement zones. (c) The current
and predicted human arm pose are projected in the strain map to formulate
the planning scene. When potential injury is detected, optimal movement in
the elbow is achieved through shared control from the robot physiotherapist.

Nevertheless, repeating prescribed or learned movements can
be limiting when addressing the specific needs of every
patient.

Musculoskeletal models are a valuable addition to the
robot motion and force sensors, enabling personalized in-
sights into what is happening inside the human body during
the interaction [5]. Most of the existing studies employ
models offline, for example, to quantify assistance needed
by a human operator [6]-[8] or reduce human metabolic cost
in walking-assistive devices [9]-[11]. Some recent studies
also explore the use of models in an online manner, where
they are integrated into the robot control loops for real-time
adjustments of robot assistive movements [12]-[15].

Our previous work [13] developed a method that mapped
tendon strains on the human state space using an OpenSim
musculoskeletal model to create so-called “strain maps”,
which chart the high-strain areas where re-injury could
occur. The approach employed an offline optimization to
create the low-strain therapy trajectories used to navigate
the strain maps in real time. A significant advancement was
recently made with BATON [16], which enabled an online
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Fig. 2. Diagram of the proposed real-time system for safely limiting human motion during rehabilitation, on the basis of a high-fidelity OpenSim shoulder
model. The two shared control modules receive the current state of the human shoulder and their corresponding strain maps to identify dangerous situations
and output commands for variable impedance control of the robotic arm. Low-authority guidance is achieved by damping human velocities approaching
unsafe high-strain zones. High-authority guidance relies on deflecting human motion away from the danger zones by actively tracking an optimized reference
trajectory. These modules are complimentary and can be selected based on the therapy requirements and user preferences.

trajectory optimization and accounted for real-time changes
in strain space by considering both the strain behavior and the
human arm dynamics. Notably, these approaches focused on
optimizing robot-led therapy, which is suitable for early-stage
shoulder rehabilitation. Since patients take a more active
role as therapy progresses [17], safety and potential re-injury
concerns should be addressed while specifically promoting
patient-led exercises. In this context, shared control is a
promising solution that allows the patient to retain author-
ity over the movement [18], [19], while a robot therapist
monitors and potentially intervenes to limit unsafe motions.
A simple solution to patient-robot interaction during rotator-
cuff rehabilitation was proposed in [15], where the robot
provided a “safety net” during physiotherapy by segmenting
the dangerous high-strain zones and generating haptic bound-
aries around them, thus preventing patients or therapists
from entering these unsafe regions. Although this offered
a promising first step toward a biomechanics-aware safety
approach to patient-led physiotherapy, potentially unsafe
situations could still occur if a haptic boundary was contacted
with high velocity or at a high angle. Therefore, an open
challenge is how to predict potential impacts with high-strain
zones in advance and avoid them before they occur.

To address this challenge, we developed a method based
on shared control that allows the user to perform rehabilita-
tion movements freely, with the robot intervening whenever
an incursion into a high-strain danger zone or a high-
impact collision with a haptic boundary is about to occur.
We propose two distinct predictive modules, each handling
the robot’s intervention in a different manner. In the first
module, the robot exerts lower authority, similar to “rumble
strips” or “speed bumps” for cars on the road. In this case,
the impedance controller induces variable damping when a
danger zone is approached in a potentially unsafe direction
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to slow down the movement. In contrast, the second module
exerts higher authority, akin to lane departure correction
autopilot (e.g., “lane assist” or “lane centering”) in cars. In
this case, the robot plans an optimal deflection trajectory
and temporarily takes over control of the movement to avoid
an unsafe situation. The two modules are complementary,
where the advantage of the first is that it takes away less
control from the patient/therapist, while the second module
provides a smarter and more assertive way of avoiding
unsafe situations. Each module can be selected based on
the specific exercise, stage of therapy, user confidence, etc.
To demonstrate the key aspects of each, we performed
experiments with a healthy participant acting as a patient and
evaluated the effect of the different human-robot interactions
on the resulting human movement in terms of avoidance of
high-strain areas and contact forces exchanged.

II. METHODS

Figure 2 illustrates the proposed system with key elements.
The human modeling and strain map computation element
provide insight into the human musculoskeletal system and
allow the physiotherapy robot to navigate away from danger-
ous high muscle strains. Human state estimation is performed
in real-time from the robot’s onboard sensors, to monitor
human safety. The robot controller implements our two novel
modules for predictive guidance to avoid dangerous zones in
the strain maps, leveraging a low-level impedance controller
that governs physical human-robot interaction. Finally, we
present our experimental setup. Each of the key elements is
described in the following subsection.

A. Human Biomechanical Model and Strain Maps

To capture the biological properties of the human shoulder,
we employ a high-fidelity musculoskeletal model of the
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human shoulder complex [20] developed in OpenSim [21],
[22]. In particular, we are interested in the behavior of the
rotator cuff tendons, spanning the glenohumeral joint and
connecting the humerus to the shoulder blade. Therefore,
we obtained a reduced-order model of the human shoulder,
capturing the mobility of the glenohumeral joint alone in
terms of three rotational coordinates (PE: plane of ele-
vation, SE: shoulder elevation, and AR: axial rotation),
while retaining the information about the relevant muscles
and tendons contained in the original model. As such, the
variables that define the configuration of the human model
are:

x=1q, q|", with ¢g=[PE,SE,AR]" (1)

where PE,SE, and AR are defined as the Y-X’-Y” se-
quence of intrinsic Euler angles in the fixed shoulder refer-
ence frame [20], and PFE,SFE and AR are their correspond-
ing derivatives with respect to time. Similar to our previous
work [13], [16], we employ the OpenSim functionalities
to pre-compute the relationship between human pose and
strain o of the tendon(s) of interest, generating “strain maps”
that carry the same information as the original model, but
much quicker to access. By defining a threshold on the
strain value, we leverage this data to identify elliptical
unsafe zones Zy on the map, corresponding to configurations
of the human arm that should be avoided during therapy.
Since rehabilitation mostly occurs with a limited speed of
movement, the dependency between the fiber velocity and
the strain level was neglected.

Movement in the human state space obeys the equations
of motion of the corresponding multibody skeletal system.
As OpenSim natively provides this information only numer-
ically, we resorted to OpenSimAD [23] as an instrumented
version of OpenSim to automatically generate differentiable
outcomes and functions from our reduced-order shoulder
model. We obtained a differentiable representation of the for-
ward and inverse dynamics functions relating the evolution
of the human state « to the generalized torques u € R3
applied to the model’s degrees of freedom:

T = fFD(mau)v (2)
u = fip(x, ) 3

The use of model-based human skeletal dynamics was
recently proposed as a strategy for real-time planning of
biomechanical-aware trajectories on strain maps [16] and
brings the benefit of accounting for subject-specific param-
eters both regarding tendon behavior and human inertial
properties.

B. Human State Estimation

We developed a human state estimation module to inform
our control algorithms about the current state of the human
subject during therapy. Our subject wore a custom-made
brace during our experimental validation, connecting them
rigidly to the robot’s end-effector (Fig. 2). As such, the
estimation of the current human state &; = [q,, q,]' can
be achieved based on the Cartesian pose ppp € R® of the
end-effector (EE), assuming a fixed orientation of the human
torso and negligible movement of the scapula. The interested

979-8-3503-8068-2/25/$31.00 ©2025 IEEE

reader is referred to our previous work for a full derivation
of the human pose and velocities ( [16], Section II.D).

C. Robot Control

The interaction between our rehabilitation robot and the
human subject is shaped with an impedance controller [24]
running at 200 Hz, whose parameters are adjusted in real
time according to the estimated human state. Specifically,
the commanded force at the end-effector Figg € RS can be
defined as:

Frr = K¢(Prr — PEe) — DiPEE 4

where the end-effector reference and actual pose are pgy and
PEE, respectively, and K, D, € R%%% are the desired, time-
dependent stiffness and damping matrices in Cartesian space.
The selection of pyg, K;, and D, ultimately determines the
level of authority of the robotic therapist on the movement
performed by the human subject, and modifies the control au-
thority of the human during therapy. As such, we present two
different modules for tuning the controller’s parameters and,
effectively, the robot’s intervention authority. Both modules
combine a prediction of the future human state based on the
current human state and determine if future movements will
be safe. If the predicted motion will be unsafe (resulting in
higher tendon strains), the robot physiotherapy will provide
force-based feedback/corrections to the human subject, with
lower or higher authority.

1) Low-Authority Shared Control: The human subject
retains control of their movements as much as possible,
provided that they stay within the safe boundaries defined
by the strain maps. In addition to the safe and unsafe zones,
we also introduce “damped zones” which represent regions
in the human state space that are near, but not yet within, an
unsafe zone. At time step ¢, we perform a biomechanical-
safety check on estimated human pose g, projecting it on
the strain maps to assess if it lies in a safe, damped, or unsafe
zone. Accordingly, we define three conditions (captured in
Algorithm 1):

« if g, is safe, then stiffness and damping of the controller

are set to zero, permitting free subject movement;

o if the subject’s pose lies in a damped zone, then we
analyze their velocity g,. If g, points away from the
closest unsafe zone, then the movement is safe, and free
movement is enabled. Otherwise, the damping in the
physical human-robot interaction is increased, setting
low stiffness K, associated with damping exceeding
the critical one D; = 2rv/Kj,, (Where we employ the
ratio » > 1). In this way, the subject receives haptic
information for safer direction of movement;

o if g, lies within an unsafe zone, the closest point
on the elliptical contour Cy of the zone is set as a
reference point in human coordinates, and tracked with
K; = Khighv D, = 2\/Khigh' In this way, the human
subject is pushed to the nearest safe point by the robot
intervention (similar to [15]).

2) High-Authority Shared Control: This modality uses a
kinematic prediction of the future human state based on the
current human state &;, performed over a receding time
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Algorithm 1 Low-Authority Shared Control

Given: Unsafe Zone Z;;, Damped Zone Zp
Input: Human State x; = [q,, q,]
if g, € Zp \ZU AND g — Zy then
K; « Klow
D; < 2rvKow
Lref = Tt
else if g € Zy then
K; < Kpign
D < 2,/Kpign
Tref = ¥, with * = argmin,, distance(x;, Cy)
else
K;,+0
D; <+ 0
end if
Return: [K, D, pgp(@rr)] to Robot Control

horizon T', to find the estimated future subject’s trajectory
X = [#44+1, Zit2,-, Tear] . The future trajectory is
analyzed to determine whether it intersects any unsafe zone.
When X is entirely safe, free movement is enabled by setting
zero Cartesian stiffness and damping matrices, similarly to II-
C.1. If, instead, the current movement leads the subject to any
unsafe zones, the algorithm determines an alternative trajec-
tory X™* by defining an optimization problem that minimally
deflects the predicted trajectory but ensures that no unsafe
configuration is reached. The robot temporarily takes control
of the motion, setting K; = Kpign, Dy = 24/Kuign, and
tracks X * so the human is deflected to a safe configuration
where free movement is enabled again (see Algorithm 2).

Below, we specify the cost function and constraints that
constitute the optimal control problem to be solved over the
generic time interval [¢,¢ + T to find X ™.

Cost Function: we propose three terms that an optimal
deflection of the human movement should minimize, ensur-
ing that the latest human intention is respected as much as
possible and that forces and accelerations be low to mitigate
human discomfort:

o Li(zi,21) = wp0s7t||Qt_Qt||%+wvcl||Qt_Qt| 5, which
weights the distance between a given human state and
the predicted one, potentially with different weights for
the human coordinates position and velocities. Note that
a discount factor v < 1 is employed, to permit larger
deviations as time progresses;

o Lo(@, us) = Wiorg||¥— fin(2,,0) |3 accounting for the
difference between the generalized torques exerted on
the human model and the torques that would guarantee
equilibrium of the future trajectory;

o L3(t) = Waccl|q,||3, weighting the instantaneous ac-
celeration of the human model.

Constraints: the set of constraints that we employ formal-
ize the requirements that X ™ should satisfy:

e Initial Condition: Trivially, the deflected trajectory
should start from the current human state;

o Tendon Safety: The human pose should not cause ex-
cessive strain on the healing tendon(s), leading to the
requirement q, ¢ Zy;

979-8-3503-8068-2/25/$31.00 ©2025 IEEE

e Dynamic consistency: For each instant in time, the sys-
tem’s accelerations need to respect the dynamics of the
human skeletal system, resulting in &; = frp(x:, ut);

o Terminal Conditions: At the end of the optimization in-
terval, we require that the human speed be zero and that
the torques on the human model match the equilibrium
ones. This results in |g1| < evel, ||ur— fip(z7,0)|)3 <
€torqs Where suitable tolerances eyel, Etorq are used.
Moreover, the final human state should be far enough
from the contour of the closer unsafe zone, to guarantee
that the movement can be continued safely by the
human subject: dist(xr,Cy) > 4.

Through orthogonal collocation techniques [25], the prob-
lem formalized above is cast into an equivalent Non-
Linear Programming problem (NLP) that structure-exploiting
solvers can solve.

For slow movements and relatively short 7', the human
skeletal dynamics specified by (2)-(3) could introduce more
involved computations without significantly affecting the
quality of the optimal deflection X*. We tested this hy-
pothesis by considering an alternative version of the NLP
where the strain maps are navigated by a virtual point-mass
system instead, actuated by ideal forces. The accuracy of
this approximation, evaluated through computer simulations,
is presented in Section III-A.

Algorithm 2 High-Authority Shared Control
Given: Unsafe Zone Zy
Input: Human State ¢
X « pathPrediction(;)
if 3x; € X | 2; € Zy then
Kt — Khigh
Dt — 24/ Khigh
X7y argming L(X, X )
else
Kt ~—0
D; <+ 0
end if
Return: [K, D, pgp(X)] to Robot Control

D. Initial User Testing

Before conducting proof-of-concept experiments, we so-
licited the input of a physiotherapist for qualitative feedback
on the interaction. Initial trials with the PT were deemed to
be overly “aggressive” during motion correction. To account
for this, steps were taken to better tune the controller
parameters, (i.e., tuning the weights in the cost function and
increasing the sampling frequency of the reference trajectory)
to avoid this perceived behavior.

E. Experimental setup

A healthy subject participated in our experiments and
interacted with a KUKA LBR iiwa 7 through our custom
arm brace, allowing simultaneous human state estimation
and physical human-robot collaboration during a simulated
rehabilitation session. Our experimental protocol was ap-
proved by the Human Research Ethics Committee of TU
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navigating the strain map.

Delft. To demonstrate the key functionalities of our method
and ensure the repeatability of the experiments, we locked
the AR degree of freedom and considered a custom strain
map with one time-invariant unsafe zone. The subject was
instructed to maintain a constant torso orientation during the
interaction to satisfy the assumption of Section II-B. We
selected kpigne = 4002 and kpign, = 20% as high
translational and rotational stiffness respectively, while low
values were set to Koy, = 20% and Kiow r = 5%.

By removing the damped zone in the low-authority mod-
ule, we effectively recreated the haptic boundaries considered
in our previous work [15], to measure the performances of
this baseline controller in terms of robot-commanded forces
when the unsafe zone was reached (Section III-B). Then,
we set r = 4 to increase the damping of the controller, so
that our subject could receive anticipatory haptic feedback
before impacting the unsafe zone. In the high-authority
module, we selected 7' = 1 s and divided it into 10 discrete
steps, and up-sampled the resulting optimal deflection to the
required frequency for the controller. When the deflection
was executed, the system also played a sound to promptly
inform the subject that they should comply with the robot’s
corrective movement.

During these proof-of-concept experiments, the subject
interacted with the robot by moving their arm through a
natural range of motion. They were then directed to move
towards the prescribed unsafe region while the resulting
trajectory and forces were recorded. The subject repeated this
for both deflection modalities to analyze the effectiveness
of our method. Computations were performed on a Dell
Latitude 7420 laptop with an i7-1185G7 processor, interfaced
with a Dell workstation with an Xeon W-2123 processor
dedicated to the impedance controller. Our code is available
at https://github.com/itbellix/biomechanical _safe_deflection.

ITI. RESULTS
A. Evaluation of the approximated dynamics

We employed computer simulations to evaluate the dif-
ferences between the optimal deflections produced by the

979-8-3503-8068-2/25/$31.00 ©2025 IEEE

NLP presented in Section II-C.2 when the strain maps are
navigated with the human model’s dynamics or by the virtual
point mass. We selected 100 random initial conditions for
human poses and velocities, to represent the different ways
that a subject would move toward an unsafe zone, and
computed the optimal deflection proposed by the NLP in the
two cases. Figure 3 exemplifies the results obtained, given
the kinematic prediction of the human trajectory computed
from the randomly selected initial state. Overall, we observed
a RMSE of about 2° between the last point of the two
trajectories. The NLPs employing human skeletal dynamics
required an average solution time of 740 ms (failing to
converge in 4/100 instances), whereas the NLPs with virtual
point mass approximation could be solved in 12 ms on
average, with 100% convergence rate. For these reasons, we
opted to use the second approximation in the experiments
performed with our physical robot, the results of which we
present next.

B. Baseline controller

We ran our baseline controller [15] and recorded the forces
generated by the robot on the human as a consequence of col-
lisions with the unsafe zone during subject-led movements.
The peak force magnitude that we observed exceeded 17
N, with the subject executing similar movements as during
the rest of our experiments, but receiving no feedback or
deflection from the robot before hitting the unsafe zone.

C. Shared control modalities

We analyzed our two shared controllers during physical
human-robot interaction, mimicking a physiotherapy session.
In both cases, the human subject moved their arm, and
the robot behavior was dictated alternatively by one of the
two algorithms presented in Sections II-C.1, II-C.2. As the
movement started from a safe region, initially both modules
guaranteed minimal interaction force. On the contrary, the
behavior was different as the unsafe zone was approached.
The lower authority module (Figure 4) damped the human
movement as the subject entered the damped zone, gener-
ating a dragging force opposing human velocities pointing
towards the unsafe zone. The subject continued their move-
ment and entered the unsafe zone, triggering the algorithm
to pull them toward the closest point on the zone contour.
Finally, the subject left the unsafe zone and moved away
from it, receiving no further robot intervention in virtue of
the safe direction of movement.

Regarding the higher authority module (Figure 5), the
subject could move undisturbed closer to the unsafe zone
until their predicted future trajectory was no longer safe.
At this stage, the algorithm proposed a minimal deflection
of the original trajectory, triggering the robot to lead the
human subject toward a position where they could move
safely again. For both cases, we analyzed the magnitude
of the Cartesian forces that were commanded to the human
subject and found that the first control method led to a peak
interaction force of about 8 N, while a maximum force of
about 6 N was reached with the second control method.
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IV. DISCUSSION AND CONCLUSIONS

We have presented two shared control modalities that al-
low a robot to limit unsafe human movement during robotic-
assisted shoulder rehabilitation, using information from a
high-fidelity biomechanical model. Both modules permit
human-led movements to maximize patients’ independent
exploration of their shoulder range of motion, safeguarding
their users against reaching shoulder configurations that
could generate unsafe levels of strain in injured/healing
tendons. When the current human action is deemed unsafe,
our controller intervenes with different degrees of authority
to shape the resulting human movement. The use of the
shared control paradigm expands our previous contribu-
tions, in which the robotic therapist unilaterally dictated
the therapeutic motion [16] and did not anticipate human
intentions [15].

In the present work, the low-authority control modality,
designed to allow the human subject to retain greater agency
over the resulting movement, was capable of providing state-
dependent haptic feedback during human motion. The system
produced a force field that can allow the user to avoid unsafe
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(A). After that (B), control was given back to the human, who could
independently continue their free motion. The evolution of the controller’s
stiffness and damping and the resulting interaction force are highlighted.

zones autonomously (Figure 4). While entering such zones
is still possible, the maximum robot-commanded force was
smaller than what was observed when no predictive damping
was provided to the user for similar movements, since higher
unsafe velocities were limited. The high-authority control
modality, on the other hand, is expected to reduce the
autonomy of the human subject, as it temporarily takes over
the movement, to reposition the human in a pose where they
can safely continue their therapy. This approach allowed
the system to avoid our experimental unsafe zone better,
with lower force produced by the robot, by guaranteeing
initial alignment between the human intention and the robot’s
deflection. Moreover, our real-robot results validated the
initial simulation findings reported in Figure 3, showing that
the subject can be smoothly deflected without accounting
for the specific human skeletal dynamics, for the type of
rehabilitation movements considered.

Simplifying human inertia also allows for reduced com-
putational costs. Comparing the optimal deflections obtained
with and without accounting for the human skeletal dynam-
ics highlighted minor differences in our simulation results
(see Figure 3), likely due to different relative weighting of
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the torque terms in the cost function. Indeed, the inertial
parameters of virtual point mass navigating across the strain
map were not tuned to our participant since only the hu-
man kinematics was employed by the robot’s impedance
controller. Identifying the human-arm inertia at the robot’s
end-effector and using these parameters in the point mass
approximation could enhance the alignment between the
two methods under low accelerations, as in our case. This
approach could also enable integrating optimized generalized
torques from the human model into the robot controller, such
as for personalized gravity compensation [16].

While our findings demonstrate the potential of the pro-
posed shared control modalities, there are limitations that
warrant consideration and open avenues for interesting re-
search. In this work, we considered a stationary exemplary
strain map, purely dependent on the human shoulder pose,
which simplified the demonstration of our control modalities.
However, the effects of tendon fiber velocity and muscle
activation on the resulting strain are currently ignored, and
their inclusion will be necessary in the future, as was
demonstrated previously [26]. Including rapid estimation of
the muscle activation through dedicated solvers such as [27]
is an interesting future direction, as it would improve the
quality of the strain estimations by accounting directly for the
effect of the interaction wrenches that are exchanged between
the human and the robot during their physical interaction.

We are also planning to further explore the control
modality that potential users/stakeholders (both patients and
therapists) might prefer, allowing us to better define the
most effective way to share control of therapy between
human and robotic agents. As noted in the methodology,
to gather feedback on the system during development, we
have conducted a preliminary interactive session with one
of the leading experts in orthopedic physiotherapy in the
Netherlands. The response was generally very positive, and
the main takeaway was to make the shared control system
slightly less aggressive. We accounted for this feedback prior
to doing experiments for this paper, but our future work
will need to focus on testing the method on multiple healthy
participants first, to further explore the user experience before
moving to tests in more clinical settings.
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