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Glossary

Latent Class Model Latent class models are statistical models used to identify un-observable sub-
groups, or latent classes, within a population based on observed variables. These models
assume that the observed data are generated by a finite number of latent classes, each char-
acterized by a unique pattern of responses on the observed variables. Through estimation
techniques, latent class models uncover these underlying groups, allowing for insights into
population heterogeneity and facilitating classification of individuals into meaningful cate-
gories.

Loss function A loss function measures how well the predictions of the model fit with the actual
target values.

One-vs-One A One-vs-One model trains a separate classifier for each class pairing.

One-vs-Rest A One-vs-Rest model trains a classifier on each separate class independent of the
other classes.

Random Residual The random Residual is the part of the utility equation that contains all unob-
served attributes and other factors that influence the utility value of an alternative for an
agent. As the attributes and other factors are not known this value is treated as a random value
picked from a random distribution, the distribution type depends upon the model used.

Revealed Preference A Revealed Preference is an observed preference, if for example an assumed
rational agent has the option between 2 products (product a and b) and it picks product a,
then product a is a revealed preference. The key here is that revealed preference is based on
actual observations

Shapely values A shepely value is a concept from cooperative game theory. This concept

SHapely Additive exPlanation An algorithm that helps visualize the effect of certain trained pa-
rameters on the overall outcome of the model for Machine Learning methodologies.

Stated Preference When a rational agents is asked whether they prefer product a over product b or
the other way around, the result is then a Stated Preference. For scientific researches this is
usually executed in the form of a survey

Supervised learning A Machine Learning approach where the data is labeled and each input set
is matched with a distinct correct output label. The goal is that a trained model can predict
output labels on unseen input data

Trip Chain A Trip Chain is a sequence of events that happen during a trip, for example a trip chain
could be as simple as driving from home to the supermarket and back. But multiple activities
can be done within one trip chain as well, such as driving from home to the supermarket to
the library and then back to the home again. The entire trip is called a Trip Chain.

Unsupervised learning A Machine Learning approach where data is not labeled en there are no
defined outputs. The goal is to find patterns and relationships within the data.

Weak learner A weak learner is a Machine Learning model that performs only slightly better com-
pared to making random guesses.

v



Abstract

This thesis explores the use of Machine Learning (ML) techniques to model and predict transporta-
tion mode choice behavior, a critical component of urban mobility planning. Traditional mode
choice modeling relies on Random Utility Maximization (RUM) theory, with models such as Multi-
nomial Logit model and Mixed Logit model (MXL). While these offer interpretability, they often
struggle with complex feature relationships and heterogeneity in large datasets. ML methods, by
contrast, offer greater predictive power and flexibility, albeit with interpretability challenges. This
study evaluates the performance of various ML models like Gradient Boosting and Random Forest
Decision Tree on two datasets, with a primary focus on a detailed case study using Swiss travel data.
The models are assessed under various configurations, including feature limitation, latent variable
extraction, and SMOTE-based resampling. Comparative results demonstrate that ML models con-
sistently outperform traditional Logistic Regression models in terms of F1 and Balanced Accuracy
metrics. Additionally, tools like SHapely Additive exPlanation (SHAP) are employed to enhance the
interpretability of ML outcomes. The findings highlight the potential of ML to improve Mode Choice
modeling, particularly when combined with theory-informed structures and advanced data balanc-
ing techniques.

vi



1
Introduction

This chapter serves as a general introduction to the context of this thesis in the area of mode
choice problems and the investigation of the potential of the machine learning methods for such
problems. In Section 1.1 the relevance and general methodology of conducting Mode Choice (MC)
research is explained and the nature of MC problems are discussed. In Section 1.2 the opportunities
of applying Machine Learning (ML) to Mode Choice problems are discussed and the basis to the
goal of this research is made. This basis is further developed into research questions in Section 1.3.
In Section 1.4 the methodology used for each research question. Finally the structure of the
research is explained in Section 1.5.

Mode choice problems refer to the decision-making process individuals or groups face when se-
lecting a mode of transportation for a particular trip. These choices can include various options
such as driving a car, taking public transit, cycling, walking, or using shared mobility services like
ride-hailing. The decision-making process is influenced by multiple factors, including convenience,
cost, travel time, safety, environmental impact, and personal preferences.
Understanding mode choice is crucial for transportation planning, urban development, and policy-
making. By analyzing how people choose their modes of transport, planners and researchers can
better predict travel patterns, optimize transportation networks, and identify areas where infras-
tructure improvements are needed. The insights gained from studying mode choice problems are
essential for promoting sustainable transportation, reducing traffic congestion, and enhancing ac-
cessibility in cities.

Figure 1.1: Two examples of wider bicycle paths in Manhattan (DOT, 2025b)

Overall, mode choice problems play an important role in shaping transportation systems that are
not only efficient but also equitable and sustainable, which are essential qualities for modern urban
environments. One example of where a MC study has delivered results is in New York City (NYC
DOT - NYC Streets Plan, 2021), like many large cities, New York faces large quantities of car traffic
and as a result a lot of congestion within the city. To combat this the city wanted to rebalance how
public streets prioritize different modes of transport in order to reduce the number of private mo-
tor vehicles, which take up a majority of street space despite not being the majority mode choice
already. In combination with other studies related to the traffic and use of public space within NYC,
the city was able to invest in relevant projects that would improve the attractiveness of other mode
alternatives, such as cycling, walking and public transit, in order to reduce the number of people in
private motor vehicles.

1
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Follow up studies show that areas that have had infrastructural improvements, such as the examples
shown in Figure 1.1, enjoy higher usage of alternative modes and lower pedestrian fatalities due to
increased safety (DOT, 2025a; Rong & Freeman, 2024)

1.1. Mode Choice Problems
As mentioned MC is a key aspect of transportation planning and decision-making, focusing on how
individuals or groups select a particular mode of transportation (car, bus, bike, walking, train, etc.)
for their trips. These problems are central to understanding and predicting travel behavior, espe-
cially in the context of urban planning, public transportation design, and transportation policy.
Moreover, these problems are becoming increasingly important for freight logistics as well in or-
der to influence the chosen modes for addressing sustainability challenges. However predicting the
behavior of entire groups can be a difficult task.

1.1.1. How to predict mode choice behavior
To make accurate predictions of a given choice it is important to acquire information about the
system. For example, when predicting how much ice cream will be sold you would look at the pre-
dicted weather (will it be warm or cold?), what day of the week or year it is (is there a holiday, are
people probably at work?), how expensive the ice cream is, etc. For mode choice systems this works
the same, an analyst would observe important attributes of the system as a whole and also of each
available alternative and based on historical data could predict an individuals mode choice behav-
ior.
However it is fair to say that no two individuals are alike, where one individual would happily travel
from A to B using a bicycle, another could choose to use a car provided the same circumstances
in both scenario’s. To compensate, the characteristics of individuals are typically also accounted
for, e.g. someone’s socio-economic background contains a lot of information that could explain
the difference in what mode of transport they would use. Attributes such as age, occupation, living
situation, etc. can thus all be used to help make better predictions. Unfortunately a new problem
arises now in that the model quickly can become extremely complex with an increasing amount of
variables to consider.
To do this, an analyst typically uses a so called Random Utility Maximization (RUM) based model.
This theory was developed by McFadden (2001) and works on the basis that each individual has
a ’utility’ that they always want to maximize. Each alternative that can be chosen will provide an
individual with a specific utility value and the alternative that has the highest utility will end up as
the chosen alternative. To account for unobserved attributes and heterogeneity within the popula-
tion there is a random distribution included in the model. This allows for the model to be relatively
simple and still somewhat accurate.

1.1.2. Relevance of mode choice studies
As mentioned before, the goal of doing a mode choice study can vary but often focuses on trans-
portation planning, decision making and policy shaping. A typical mode choice study thus also
tends to focus on how impactful each observed attribute is on the system rather than looking at
how well the model actually predicts. In a RUM based model each alternative will have a weight
connected to it. This weight is determined during the training of the model and thus based on
known historical data. By looking at the value and statistical outputs of each weight the analyst will
be able to tell how impactful the corresponding attribute is on the system as a whole. This can in
turn be used to possibly alter the system to show a more preferred behavior. For example, in the
interest of combating climate change, it is favorable to entice more people to use public transport
or walk/bike compared to using a private motor vehicle. Similarly, for freight transportation, it is
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desirable to shift to waterways in order to reduce externalities in our urban and suburban areas. A
mode choice study can be conducted on a specific area or between specific locations and the results
will show which specific attributes are more important to the population as a whole in their deci-
sion to take a specific mode of transport and thus where the system can be improved to achieve the
more favorable behavior in the future. Similarly it can thus also be used for private companies such
as public transportation providers or cargo shippers to identify how they can change to make their
alternatives more attractive and which technologies and policies they can adopt for improving the
services they provide.
While it is rare for the models to be used to predict future travel behavior, it is still important for the
model to be accurate in doing so. If the model is good at predicting it can in turn be concluded that
the weights and variables that eventually will be used for evaluation are better representations of
the system.

1.2. Machine Learning opportunities
While there are already good methods that can be used for MC problems, they also have their lim-
itations. Complex relations between different attributes and heterogeneity within the population
can be difficult to accurately capture and model, even with more advanced RUM based models. On
top of that do RUM based models also require various pre-made assumptions regarding the used
random distribution which can influence the accuracy of the results. With a ML model making such
assumptions is not always needed, due to their ’data driven’ nature. All context will be extracted out
of the provided data rather than out of existing knowledge as would be the case with RUM based
models which are ’theory driven’. This could possibly allow for an easier set up of a mode choice
analysis. However it also negatively influences the ability to extract the required information out of
the trained model, which can make it more difficult to draw accurate interpretations and conclu-
sions.
Furthermore, there is also a global change in how data is collected and how widely available it is.
With automated data gathering by sensors and computers, it is possible to get large amounts of data
to train a model, but due to constraints such as privacy concerns this data is often not as in depth
as data gathered using specifically designed surveys. This lack of available attributes will make it
more difficult to get an accurate RUM based model. ML models however tend to do well with large
datasets and could potentially still capture the more complex relations of the system despite having
relatively less attributes as input.

1.3. Research questions
The main goal of this research is to investigate how ML can be used to better understand the MC
process of a system, which is done by answering the following main research question:

What is the potential of machine learning models to accurately evaluate Mode Choice behavior
for transportation systems?

To help answer this question, the following sub-research questions are formulated:

1. What Machine Learning methods can be used for MC problems?

2. What is the potential of using synthetic data generation and over/under sampling for imbal-
anced datasets?

3. How can integrated theory based knowledge improve ML models to make the most of both
paradigms?
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4. How can interpretable insights, such as the importance of features influencing mode choice,
be extracted from trained ML models?

1.4. Research methodology
Each of the mentioned research questions in Section 1.3 will be answered using the following
methodology respectively:

1. A literature review will asses various different ML techniques.

2. A combination of literature review and a direct comparison of several created ML models,
with and without synthetic data generation techniques, will be used to asses the viability.

3. A direct comparison between several created ML models will be used to find out if integrating
theory based knowledge improves the model results. Additionally a Logistic Regression model
is included as it is well suited to represent a traditional logit based Random Utility Maximiza-
tion model and can thus be used as a benchmark. The comparison will be done by evaluating
the model accuracy with F1 and Balanced Accuracy scores.

4. The created ML models will be evaluated using different techniques discussed in the literature
review. The evaluations will be compared with already existing studies.

1.5. Report structure
To answer the research questions from Section 1.3 the report is structured as follows: In Chapter 2
various existing studies are being reviewed regarding combining ML and MC to identify problem
areas and possible tools that can be used as solutions. After that in Chapter 3 this knowledge is
applied to create the methodology for applying ML to MC. The created models are used on two case
studies in Chapter 4:

• Rhine-Alpine corridor Dataset: A dataset containing shipping data (cargo transportation)
between different location along the Rhine-Alpine corridor.

• Switzerland Dataset: A dataset containing passenger commuter data throughout Switzer-
land. Both of these datasets were chosen because of the unique challenges each of them
provide. This gives the ML models the opportunity to be tested with both aggregate and dis-
aggregate datasets as well as with passenger and cargo transportation systems. This chapter
serves to answer the main research question by evaluating which model type has the best
predictive accuracy and in turn can be best used to understand what the most important or
influential variables are for choosing mode choice alternatives.

Finally in Chapter 5 a conclusion is drawn and the posed research questions are answered. Addi-
tionally some future research opportunities are discussed as well.



2
Literature

This chapter provides an overview of relevant research on the various Random Utility Maximiza-
tion based models that are used on MC studies. First in Section 2.1 a more high level overview of
MC literature is provided. After that in Section 2.2 the most prominent Random Utility Maximiza-
tion based models are discussed and various existing literature papers are reviewed to identify the
strengths and weaknesses of these models and how they are applied. Additionally in Section 2.3
some research that applies latent class models to MC problems is reviewed. In Section 2.4 the fo-
cus is shifted to research related to using Machine Learning on MC problems. Finally in Section 2.5
the most important differences between Random Utility Maximization based models and Machine
Learning based models are highlighted and a research gap is identified.

2.1. Mode Choice literature
There are various reasons to perform a MC study and what modes are looked at during. Before
diving deeper into the used methodology it is important to review how mode choice studies are
performed on a higher level. Wu et al. (2019) performed an extensive review on a large collection
of MC related papers. With this review they were able to identify the important research topics and
most used keywords. Specifically the keywords can paint a good picture of what most studies have
as research goals. In Figure 2.1 the results of this review study are displayed, from this it is clear that
there is a large focus on methodology with Logit and Discrete choice models dominating the field.
Additionally this review also gives a good insight in the purpose of the research and what modes
are considered. With environmental protection and urbanization making up over half the keywords
relating to purpose it thus also makes sense that the modes looked at the most are related to mass
transport and sustainable alternatives to private vehicles.

Figure 2.1: The classification of keywords used in various MC related research papers (Wu et al., 2019).
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2.2. RUM based models
Based on the research review from Wu et al. (2019) it is clear that RUM based models are very pop-
ular as a use for MC studies. The most used ones, Multinomial Logit model, Nested Logit model
and Mixed Logit model are reviewed in this section in Subsection 2.2.1, Subsection 2.2.2 and Sub-
section 2.2.3 respectively.

2.2.1. Multinomial Logit Model
The Multinomial Logit model (MNL), is a widely used model when faced with a MC problem, it
benefits from the fact that it can be used for problems with 3 or more possible alternatives which a
MC problem generally has. The upside of the MNL is that it is relatively simple to set up and use,
this does however come with the downside that many complex characteristics of a MC problem
may not be captured.

Masoumi et al. (2020) used MNL to investigate what factors are important in the mode choice a
child (between the ages of 9 and 12 years old) takes to school. The data used for the research con-
tains survey entries from 9 different cities in 7 European countries, this resulted in the researchers
being able to make more comparisons because of the different infrastructure and general economic
status between the countries.
Ding and Ning (2016) also applied MNL to identify key factors in MC decision making, however
this research combined Revealed Preference and Stated Preference to also compare the current
situation to a hypothetical situation where different policies were implemented. In this research
this concerned travel behaviour in the Central Business District (CBD) of Nanjing, China. Ding and
Ning (2016) investigated how modal shift from cars to mass-transit would occur when applying
policies such as introducing a managed (dedicated) bus lane, decreasing ticket prices for public
transit and increasing parking fees.
Eluru et al. (2012) also used MNL to predict the impact of policy changes, just like Ding and Ning
(2016) the main goal is investigating what type of policies would be effective at getting more people
to use other modes of transport over the car. The results of this research show that mainly the
number of transits and transport time when using public transits impacts the decision maker when
choosing between car and public transport.
The research of K. Wang et al. (2022) uses the MNL as a comparison tool to a different model
type, namely the Multinomial Probit model (MNP). Nonetheless this research does serve as a good
example of applying MNL to a MC problem. K. Wang et al. (2022) uses the data from a web-based
travel survey issued in the Shanghai area as input to their model resulting in a data set of 1743
individual trips. A total of six alternatives / mode choices were considered in this research and the
various resulting coefficients are well discussed. However the answer to the main research question
(comparing the MNP to various other models including the MNL) actually shows that the MNP
outperforms the other models.
Moreover Sekhar et al. (2016) used MNL as a comparison tool to a Random Forest Decision Tree
(RFDT). A total of eight different modes were considered in this research and to answer its research
question the total of correct predictions on a validation set of the two model types were compared
with each other. This resulted in MNL scoring 78.01% while RFDT achieved an accuracy of 81.65%.
The research of Ton et al. (2020) uses multiple model types as well, however here MNL is not used
as a model to compare others to but rather just one of the possible alternatives that can best fit
the data. In contrast to the researches of K. Wang et al. (2022) and Sekhar et al. (2016) the other
model types used in this research are the more common ones, namely the Nested Logit model
(NL), Cross Nested Logit model (CNL) and the Mixed Logit model (MXL). Surprisingly and against
the expectations of the researchers the MNL resulted in the best data fit even though this model
type is the most simplified out of all 4 options. Ton et al. (2020) claim that this is a result of how
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they had set the utility function: "because we include a relationship in the utility function between
alternatives that contain the same modes via the estimation of mode-specific parameters "
MC does not only apply to passenger travel, also cargo operators have a wide variety of transport
modes to choose from when transporting their goods from point A to B. The research of Pochan
and Wichitphongsa (2020) investigates what some entrepreneurs would prefer in a hypothetical
situation where infrastructure for high speed rail and normal double track rail existed to transport
their goods between Bangkok and Chiangmai (Thailand). An interesting insight from this research
however is that the mode of truck transport still covered more than half of the market share. The
researchers stated the following about this: "... entrepreneur are still familiar with road transport
and mainly used handling time more than transit time". This highlights an important factor in these
types of hypothetical scenarios: ’resistance to change’ (Dent & Goldberg, 1999). However, generally
after some time this resistance fades away resulting in different real life outcomes compared to the
predicted ones using MC models.

2.2.2. Nested Logit Model
The Nested Logit model (NL) is a further development of the RUM theory, which allows for different
alternatives to be grouped together (nested). This allows for alternatives within a nest to be
correlated together, as a result the different alternatives within each nest will get more closely
related Random Residual values. An example of how this can be useful can already be found in
MC problem; When a decision maker faces the alternatives of traveling by driving, taxi/Uber, bike,
bus, train/metro and walking it can be nested together in 3 categories namely: Car (driving and
taxi/Uber), Public transportation (bus and train/metro) and Self powered (walking and biking). The
alternatives within these categories have overlapping characteristics that can result in the decision
maker viewing them similar and thus having a similar Random Residual value for them in their
utility function. For example the group of public transport has the overlapping characteristic of not
going directly from the origin of the decision maker to the desired destination and having to share
the vehicle with others. It can be reasonably assumed that a decision maker has a certain like or
dislike (utility or dis-utility) for these aspects and therefore it is useful and more accurate if these
alternatives are correlated with each other.

The research from Shahikhaneh et al. (2019) applies NL to find the key parameters as to why mo-
torcyclists in Mashhad, Iran choose the motorcycle over the relatively safer alternatives of Light Rail
Transit (LRT) and Bus. Here the two alternatives where grouped together in a nest and ’main alter-
native’ of the motorcycle is alone in a nest. The research states that the reasoning for this nesting
structure is to better assess the actual research question: "How to get motorcyclists to use public
transportation alternatives?". It thus makes sense to group the two public transportation alterna-
tives together versus the motorcycle.
Qi et al. (2020) applied the NL in a more unique way such that rather than grouping different modes
together in nests, this research only considered two modes and different Trip Chains. The research
proposes two different nested models, one where the two modes of travel (private car and public
transport) are the nests that each contain the same five Trip Chain sequences and a model that is
the opposite (five nests with the different Trip Chains each containing the two modes). The good-
ness of fit tests that were done on the two models showed that the first model represented the data
at a much higher level indicating that people more often choose the mode of travel based on the
planned activities during the trip.
While the NL already introduces the ability of alternatives belonging to multiple groups/nests and
thus having overlapping Random Residual values, the research of Wen et al. (2012) adds to this by
also introducing a Latent Class Model. First the researchers identified the best nesting structure
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by comparing goodness-of-fit data. Three different structures were looked at with an additional
MNL to compare to, the three structures were: 1) A public transport nest while the other options
were un-nested. 2) A car nest while the other options were un-nested. 3) A public transport nest
and a car nest. Between these different structures the third one outperformed the others based
on the likelihood ratio test. Later in the research the Latent Class Model is added to the MNL and
best performing NL structure, both Latent Class Model versions performed better then their stan-
dard counterparts with significantly better goodness-of-fit. The Latent Class Model NL with four
segments is the overall best according to the researchers: "it had the best goodness-of-fit and the
ability to accommodate a flexible structure for the similarity among alternatives and variations in
taste parameters.".
Hess et al. (2013) uses a different type of NL: Cross Nested Logit model (CNL). This model type is
already mentioned in Subsection 2.2.1 in the research of Ton et al. (2020). CNL allows alternatives to
be part of multiple nests resulting in even more correlation between similar alternatives. This par-
ticular research focuses on slightly more then just MC but rather looks at a trip consisting of three
different main choices: Airport, Airline and Access Mode. In the research each alternative of those
three choices is a nest, all final options will than belong to three nests based on the alternatives that
are used in the option. This nesting structure is visualized in Figure 2.2.

Figure 2.2: The CNL structure used in the research of Hess et al. (2013) (Hess et al., 2013)

Just as the research of Ton et al. (2020) multiple model types were also used to compare with and
to check whether the CNL is significantly better then the simpler MNL and NL methods. Three
different NL structures were used, each using nest of the alternatives from one of the main choices
that make up a trip (NL1. Each airport is a nest NL2. Each airline is a nest NL3. Each access mode
is a group). The NL1 structure shows a significantly better log-likelihood over the MNL structure
while NL2 and NL3 are only slightly better and not statistically significant. This indicates that there
is significant correlation between the different airport alternatives but not between the airlines and
the access modes. However the CNL structure proves to have an even better log-likelihood than
the MNL and NL1 structures. It also rejects all three NL structures on the basis of the χ2 test. This
concludes that unlike what the results of NL2 and NL3 show, there is actually significantly relevant
correlation between these nests which only shows up within the CNL structure.
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2.2.3. Mixed Logit Model
A Mixed Logit model (MXL), also known as a Logit Mixture Model, is an even further development
of the RUM theory. MXL allows for more random distributions in order to capture correlations be-
tween different aspects such as the alternatives or observations. This can be a useful methodology
as several situations imply some kind of correlation. With MNL there is no possibility to capture any
correlation, this is a result of the Independence of Irrelevant Alternatives (IIA) assumption for the
Random Residual. The NL partially solves this by allowing for correlation between alternatives that
are placed within the same nest. MXL expands upon that by allowing even more flexible correlation
structures through any type of random distribution.

Polydoropoulou et al. (2022) uses a MXL in order to capture the correlation between observations
of the same individual, this is beneficial to this specific research as the observation data contains
three separate observations for each individual which makes it important to be able to capture the
correlation between these observations. The research itself focuses on sustainable last mile deliv-
ery where traditional package delivery is compared to more high tech delivery solutions with au-
tonomous vehicles. The research is conducted in the form of a Stated Preference survey and even-
tually concludes that people preferred the traditional delivery methods.
Similarly the research of Ye et al. (2020) uses MXL because the "influencing factors" used in the study
are not independent of each other. As a result the standard MNL can not be used due to the men-
tioned IIA assumption. Different to the other literature discussed, this research does not consider
multiple mode choices as alternatives but rather how often the respondent would use bike-sharing
as their mode of transport. This is combined with hypothetical travel scenarios that included: the
distance to travel, weather, time of day and trip purpose; together with personal information the
researchers determine what personal attributes as well as external attributes influence people’s de-
cisions to use bike-sharing. In order to achieve this goal the research also contains three different
Mixed Logit models:

• The first model describes what impact individual attributes have on a person’s travel charac-
teristics (travel time and travel expense)

• The second model investigates how various factors such as age, travel distance, etc. influence
an individual’s bike-sharing usage

• The third model looks at an individual’s willingness to shift to bike-sharing

Yang and Sung (2010) aim to analyze the effects of introducing a new mode to the market on pas-
senger MC behaviour in Taiwan. Similar to Polydoropoulou et al. (2022) and Ye et al. (2020) this
research also uses MXL with the intend to allow for heterogeneity among individuals. In order to
analyze the effect that the introduction of a High-Speed Rail (HSR) line has on the transportation
market in Taiwan the Stated Preference survey is split up into two sections. One section covers the
situation before the introduction of HSR and one section with HSR. The MXL model is than applied
to both data sets in order to visualize the differences before and after the introduction of HSR. Fi-
nally it was concluded that the introduction of HSR in the market did influence the relationship
between the other alternatives to some degree.
Nicolet et al. (2022) use a weighted Mixed Logit model to estimate heterogeneous mode choice be-
haviour within a cargo route along the Rhine-Alpine corridor. The challenge with this case study
is that the available data is aggregated and contains less context and details compared to most MC
studies. To be able to extract useful results from the dataset they use a combination of a Weighted
Logit Model (WLM) and a Mixture Logit model (or MXL). By assigning a weight to the model it is
possible to correctly use the aggregated data, this is because this data set only shows the total flow
for each Origin-Destination (OD) pair. The weighted factor within the model represents the total
volume for each OD pair.
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2.3. Latent Class models
A Latent Class Choice Model (LCCM) are considered an extension to Discrete Choice Model (DCM),
similar to MXL a LCCM is able to capture unobserved heterogeneity in the population. LCCM does
this by segmenting the population in different classes based on similarities between individuals.
This has the benefit of allowing more interpretable values to represent why individuals within
different classes make certain decisions. In contrast to having a singular random distribution
describing the entire population, as would be the case with MXL (Hess et al., 2009).

Greene and Hensher (2003) looks closer into the differences between a MXL and LCCM. In the re-
search they mention the trade-off between the two model types: The latent class structure is less
vulnerable to false assumptions made by the analyst as there is no need to specify random distri-
butions that describe the population, in turn this does mean that the overall model becomes less
flexible. To compare the two models they use a Stated Preference choice experiment on what road
type an individual would prefer to drive on by car. In this experiment a MNL was also included, with
a log-likelihood test it was clear that this methodology did not perform nearly as well as MXL and
LCCM. From this it can be concluded that unobserved heterogeneity is present within the data as
this is what MNL is unable to capture. The two other methodologies performed nearly on the same
level, Greene and Hensher (2003) concluded that neither model can be considered superior over
the other and state that the usage of either methodology would be a result of the earlier mentioned
trade-off.
Matyas and Kamargianni (2021) use LCCM to investigate heterogeneity is Mobility as a Service
(MaaS) preferences. One of the most important parameters to figure out for a LCCM is the num-
ber of (latent) classes the model should have. To figure this out Matyas and Kamargianni (2021) ran
six different models, each with one more class than the previous model, and ran various tests on the
results to identify the best performing one. The tests chosen for this evaluation were the "rho-bar
squared", Akaike Information Criterion (AIK) and Bayesian Information Criterion (BIC). Because the
first ran model is a 1-class LCCM this is the same as running the model without any latent classes.
This allowed the researchers to also identify if any heterogenous latent classes were present within
the data. Although not all tests pointed to the same model being the best performing, combined to-
gether the 3-class LCCM was considered the best overall fit. The benefit of introducing latent classes
is that researchers have the ability to directly see what type of groups are present within a popula-
tion and what their specific implied importance is towards certain attributes and alternatives. In
this case the 3-class model showed the following groups: MaaS avoiders, MaaS explorers and MaaS
enthusiasts.
Lahoz et al. (2023) combine both LCCM and ML. This allows them to have the strong power ML
methodologies provide for capturing unobserved behaviour and heterogeneity while maintaining a
nicely interpretable model because of the LCCM. In the proposed framework a traditional LCCM is
used with its two sub-models:

• A class membership model: This model is responsible for computing the probability an indi-
vidual n belongs in a certain class k.

• A class-specific choice model: This model is responsible for assigning a probability an indi-
vidual n chooses an alternative taking into account that this individual belongs in a certain
class k.

An ANN is used to construct the latent variables for this model: "We propose a nonlinear relation-
ship between the socio-characteristics of the individuals and the latent constructs by employing two
densely connected layers, where one is a hidden layer and the other is the latent variables layer". Fi-
nally, the researchers conclude that the unique properties of both LCCM and a ML methodology
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such as ANN indeed allow them to capture complicated nonlinear relations between various pa-
rameters. And while the created framework did not provide a substantial improvement in predic-
tive performance, this captured nonlinear behaviour does allow for a better analysis in how socio-
chatacteristics are related to some attitudinal indicators.

2.4. Machine Learning in Mode Choice problems
2.4.1. The benefits and challenges of Machine Learning in Mode Choice problems
Van Cranenburgh et al. (2022) identifies the potential that ML techniques can have on Choice
Modeling (CM) by describing the similarities and differences between the two main modeling
paradigms: Theory-driven and data-driven modeling. These paradigms mainly correspond to the
’classical’ RUM based methodologies and ML respectively. The researchers conclude that both
paradigms share the same underlying concepts and theory, albeit that both fields use different
terminology for similar principles. The differences however are more interesting, where theory-
driven methodologies can show a clear connection between the choices individuals make and
the reasoning for them. These connections can directly be derived from the coefficients within
for example the utility function. With data-driven methodologies this is however a lot harder
or even impossible to do: "the underlying ‘first principles’ are unknown, or the systems under
study are too complex to be mathematically described" (Ran & Hu, 2017). The focus and strong
point of data-driven methodologies is the ability to make more accurate predictions based on
out-of-sample data. Van Cranenburgh et al. (2022) also provide some recommendations on how
ML can be directly applied to CM, for example by capturing random heterogeneity within the data.
While the Mixed Logit model (MXL) is already designed to do just that with the usage of one or
multiple random distributions for model parameters. However, these distributions still need to be
defined by the analysts themselves which leaves room for error. On top of that there is also the
possibility that a good fitting random distribution does not exist for the data. ML can be used here
to help capture the random heterogeneity and in that way make the overall model more accurate.
Hillel et al. (2021) also review the usage of ML regarding CM and even specify more towards Mode
Choice (MC). One of the main problems this research brings up is that there have not been many
studies that sought out to "comprehensively compare ML techniques with each other and with
Random Utility Maximization (RUM) models". As a result of this, most researches that apply ML
to a MC problem do not have a good framework that supports which ML model can be used best
for the problem. This is in contrast with how research that solely use RUM based methodologies
where there is often clear reasoning why a specific model is used and sometimes results of multiple
models are even compared within the research. One of the results of this problem is that many
researches make some critical errors with their usage of datasets and validation in regards to ML
methods.

2.4.2. Implementing Machine Learning to Mode Choice problems
As mentioned in Subsection 2.4.1 one of the challenges of using ML with MC problems is the lack
of frameworks on to which researchers can choose the best ML methodology to use. Kashifi et al.
(2022) sets out to make such a framework by using five different ML methods on a case study that
uses three years worth of travel data in The Netherlands: Logistic Regression (LR), Decision Tree
(DT), Random Forest (RF), Multilayer Perceptron (MLP) and Light Gradient Boosting Decision Tree
(LightGBDT). The data set contains 230,608 trips in total recorded by 69,918 individuals. As can be
expected the majority of the data (52.3%) showed mode preference towards the Car. This results in
the dataset being imbalanced, to overcome this obstacle Kashifi et al. (2022) experiment with both
over- and under sampling strategies. The research also attempts to solve another downside of using



2.4. Machine Learning in Mode Choice problems 12

ML, namely the lack of interpretability of the model. In order to solve this problem, the researchers
implemented SHapely Additive exPlanation (SHAP), this allowed them to display how large each
features influence is on what MC someone chooses.
Kim (2021) also recognizes the difficulty to appropriately interpret the relationship between input
and output values when using ML methodologies, the so called "black-box" nature of ML and
attempts to make a more interpretable model. In total, three model types were applied to the
model: eXtreme Gradient Boosting (XGB), RF and Artificial Neural Network (ANN). For each model,
the interpretability was enhanced by using various algorithms such as Accumulated Local Effects
(ALE) in order to visualize the effect a input variable has on the alternatives: "the value of ALE
measures the main effect of a variable at a specific value (or specific category) on the prediction.".
This visualization allows the researcher to identify which factors are important in an individual’s
decision making process just as with RUM based models. The result of this ALE evaluation can
even show a better representation due to its ability to display the non-linear relationship between
variables and alternatives. Figure 2.3 shows an ALE evaluation on how the total travel time impacts
an individuals choice to use certain alternatives. For example a low travel time has a negative
impact on cars and a positive impact on transit and walking and thus people are more likely to use
the latter two modes in situations where the total travel time is low. Meanwhile it shows that bike
usage is nearly unaffected by the total travel time metric.

Figure 2.3: An example of an ALE analysis for total travel time (Kim, 2021)

F. Wang and Ross (2018) aim to truly test the performance difference between a ML and RUM
based model. The research compares XGB to MNL on a household travel survey dataset. After
filtering out invalid data points this resulted in a total usable dataset of 51,910 trips. However,
F. Wang and Ross (2018) point out that the dataset is very unbalanced with car trips accounting for
83.20% of the dataset while biking has a mere 1.00%. Unlike Kashifi et al. (2022), there is no over-
or under sampling tactics to counteract this unbalance. Instead F. Wang and Ross (2018) choose to
train the model on two datasets, one with the complete dataset of 51,910 trips and another with
the underrepresented bike alternative removed altogether. This method allows for some unique
insights on how impactful an unbalanced dataset actually is for either model type. To compare the
models, the dataset was split up randomly in 75% training data and 25% testing data 100 times for
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each data set and subsequently the average prediction accuracy and robustness over these 100 runs
was used. Overall, the XGB model performs better compared to the MNL for both datasets, while
both models do better on the smaller dataset, the XGB model performs significantly better on it.
This indicates that this model type is more sensitive to unbalanced datasets than the MNL model.
Moreover, the research concludes that both models have their strengths and weaknesses in the
training. For example, a mentioned strength of the XGB model is how easy it is to go through the
fitting process where MNL requires careful monitoring to ensure that the model assumptions hold.
Zhang et al. (2020) explore the potential of a so called Deep Neural Network (DNN), a neural
network with multiple hidden layers. They claim that benefit of a DNN over a more regular Fully
Connected Neural network (FCN) is its ability to deal well with large volumes of data and the
versatile architecture. To test this, multiple model types are set up as comparison as well including
also some RUM based models (MNL and NL) and a RF model. The DNN model used is one with
two hidden layers, the first of these layers is designed such that it acts similar to the weights that
are assigned in a RUM based model, this can be seen in Figure 2.4. The DNN model is then, along
with the other models, trained on a large dataset. This dataset is a combination of multiple data
sources and is eventually split into a 80-20% split for training and testing data respectively. Finally
the accuracy of each of the 5 models is calculated, together with the so called Welch’s t-test this
shows that the DNN model performs significantly better. Closer compared to the FCN it is also
shown that the DNN model saturates much later in the training process. Because of the earlier
mentioned structure of the DNN model, it is also easier to extract data from the trained model on
which attributes are influential for a decision maker similar to how this would be done with RUM
based models.
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Figure 2.4: A simplified view of the proposed DNN structure (Zhang et al., 2020)

Salas et al. (2022) aim to make an accurate comparison between various ML and the MNL and MXL
methodologies. The researchers want to measure how well each model performs by looking at how
accurate they are on a test set of the data. The data is split up according to a stratified K -fold
cross-validation scheme. This allows the researchers to train and test the model multiple times
on different sets of the data (K -fold cross-validation) while ensuring that each training and test set
remains representative to the entire data set (stratified). After evaluation they conclude that ML
methodologies score significantly better than the MNL mainly due to unobserved heterogeneity in
the datasets. However, the MXL can already easily account for this. Finally they do conclude that the
Artificial Neural Network (ANN) does outperform all other evaluated methodologies, including the
RUM based ones. This greater performance mainly shows in its ability to accurately predict choices
within the test sets.
Li et al. (2024) have a very different approach compared to most other researches that aim to use ML
on MC problems. Rather than using an extensive Revealed Preference dataset, they opted to use a
questionnaire to gather Stated Preference data from individuals within Xi’an City in China. As a re-
sult the final dataset only consisted of 985 pieces of data, combining this with the 8:2 training:testing
ratio this only leaves 788 data entries to train the XGB model with. This is even considered a low
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number of data entries when using RUM based methodologies. Despite that, the researchers man-
aged to get a 63% accuracy on their model.

2.5. Full Comparison
The literature reviewed in this chapter brings up a lot of different insights, challenges and benefits
when it comes to the development of Mode Choice modeling. In this section the most important
ones are highlighted and discussed more in depth.

2.5.1. Black-box
One of the most well known down sides of ML is its black-box nature. Most ML model types have a
vast amount of variables that are set during the training phase. Often these variables do not have a
clear indication on how exactly they affect the output data and it is thus extremely difficult to figure
out which attributes are important. For many problems, this is not really an issue, for example when
using ML to figure out whether a picture is a dog or a cat it is not really important which pixels lead
to the conclusion and why. However, in the Choice Modeling field, determining which attributes are
important and which aren’t is generally actually one of the main research goals. It is thus important
to be able to look into the black-box of a ML model. This problem is also highlighted by Van Cra-
nenburgh et al. (2022) and the researches from Kashifi et al. (2022) and Kim (2021) set out to find
good solutions to this problem. A variety of algorithms exist that can help uncover what attributes
are more important than others such as SHAP and ALE. Most of these algorithms are able to give
such a clear indication by changing specific variables within the trained model and identifying how
that changes the results. While this method is a lot more time extensive than simply looking at the
trained variables as would be sufficient with RUM based models, the results can actually be more
detailed. This is a result of the non-linearity that ML models can have, Figure 2.3 is such an example
of this.

2.5.2. Model types
As stated by Hillel et al. (2021), there does not really exist a good framework for using ML algorithms
on MC problems. This lack of framework causes researchers to make critical mistakes with how
they treat data and train/validate their models. This problem is exaggerated by the vast amount
of different model types that exist within the ML sector. The research of Hillel et al. (2021) already
mentions five types of supervised learning methodologies. Most of these methodologies also have
different model types that fall inside, Kalimi (2023) even lists 50 different model types. Each model
obviously has its own strengths and weaknesses but there seems to be little to no reasoning within
the literature to pick one methodology over another one and why.

2.5.3. Unbalanced datasets
Another overlapping issue within the literature is the occurrence of unbalanced datasets. In order
for the chosen ML algorithm to identify which attributes indicate what alternative is most likely
the model requires a significant amount of data. As mentioned in Section 2.4.2 the theory-driven
nature of RUM models allows them to get away with a much smaller sample size, providing that
the granularity of the data is large enough. The data-driven nature of ML needs to make up for
this lack of context in the form of more data. However a lot of MC problems tend to show a clear
overrepresented alternative and also underrepresented ones, this can be seen in the datasets used
by Kashifi et al. (2022) and F. Wang and Ross (2018). The former attempts to alleviate the problem by
experimenting with over- and under-sampling from the dataset in order to make it more balanced.
Both methods have their risks when it comes to how well the model will end up performing but it
does allow the underrepresented alternatives to remain. The need to keep such alternatives in the
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evaluation can be very important, for example when wanting to identify what attributes cause an
alternative to be so rarely used compared to other more popular alternatives.

2.5.4. Research Goals
As shown in Section 2.5.2 and as discussed in the papers from Section 2.4.1 it is clear that there
is no coherent structure as to which ML methods are to be used. As a result, a significant part of
the existing literature either focuses on evaluating different methodologies or comparing them with
others. Other researches that focus on extracting usable results out of datasets also struggle with
finding the best working model for their data. For example, the research of Li et al. (2024) went
through thirteen different models to eventually pick the most accurate one for further analysis.

2.5.5. Research gap
It is clear that using ML for MC studies already is a more common practice with plenty of researches
focusing on finding different methodologies that work. However as mentioned in Subsection 2.5.4
the main focus is still on comparing different ML and logit based models with each other. There is
little known on how these models could potentially be improved by applying theory based knowl-
edge used in RUM based models. Applying methods such as the use of latent variables to help train
the model could prove beneficial in ML just as they can be when applied to other methodologies.



3
Model Selection and Development

In this chapter the methodological approach is explained. In Section 3.1 the base models are se-
lected and how each model works is briefly explained. Afterwards in Section 3.2 there is an in depth
explanation on how the datasets are prepared for use in the ML models. Furthermore in Section 3.3
latent variables are introduced to explore whether applying expert knowledge to the dataset helps
improve the results. Finally in Section 3.4 the technique to how the results of the trained models are
analyzed is explained.

3.1. Machine Learning model types
Within the ML paradigm there are a vast amount of different methodologies with each having dif-
ferent strengths and weaknesses and thus different use cases. Most algorithms fall under one of
two main branches within ML: Supervised learning and Unsupervised learning. The key differences
of these two types of ML is that Supervised learning works with datasets that have input data that
is paired with defined output labels. This type of dataset structure corresponds with how data in
MC problems is represented. Historical data shows how a person or goods traveled between loca-
tions within an area of interest, this data represents the output label. All additional data collected
describe potentially relevant factors and attributes for this trip, this represents the input data. A Su-
pervised learning model can, when given enough data, learn how each input parameter influenced
the agents decision to choose for a specific mode of transport.
Within the Supervised learning category there are a vast amount of different ML methodologies. In
Subsection 2.5.2 this was listed as a key challenge when it comes to using ML on MC problems. As
discussed there is no clear guideline on which model types work best under what circumstances.
In order to ensure good results this research will therefore compare the results of the most com-
monly used methodologies as found in the reviewed literature in Subsection 2.4.2: Random Forest
Decision Tree (RFDT), Gradient Boosting (GB), Support Vector Classifier (SVC) and Multilayer Per-
ceptron (MLP). These model types will finally be bench-marked against a simple Logistic Regression
(LR) model.

3.1.1. Gradient Boosting
Gradient Boosting consists of two different concepts combined: A boosting process and a gradient
descent. The boosting part uses a so called Weak learner as the basis for the model. This Weak
learner is evaluated based on the residuals also called the Loss function. A second Weak learner is
now trained, however this model will no longer try and predict the expected target values. Instead
this model will try to predict the residual of the first model based on the same input data. Equa-
tion 3.1 shows the mathematical approach to this. Here F (x) represents the final model, f1(x) refers
to the initial weak learner that tries to predict the target values based on the input x. All further fi (x)
functions are new iterations that are added to the total function and represent the weak learners that
try to predict the residual of the previous total function based on the input data x.

F (x) = f1(x)+
m∑

i=2
fi (x) (3.1)

The gradient descent part of the model refers to how each new weak learner fi (x) is constructed.
For each data point the model evaluates the gradient of the Loss function and based on whether this
gradient is negative or positive, the model can now adjust the next iteration in the correct direction
in order for the loss function to decrease.

17
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3.1.2. Random Forest Decision Tree
A Random Forest Decision Tree model consists of multiple Decision Tree (DT) models where each
tree is trained on a different subset of the total dataset. Sequentially each node on a tree will also
take a random subset of features to consider for a split. With these two specifications each tree
will be trained as any other DT where each split is based on trying to split the dataset in the most
homogeneous way possible (when considering the target output labels or values). In the end the
average result of all trees is taken as the final output of the model.

3.1.3. Multilayer Perceptron
A Multilayer Perceptron is a type of Artificial Neural Network (ANN). The architecture of a MLP con-
sists of an input layer, one or more hidden layers and an output layer. The input layer has individual
nodes for each input feature, each node is thus specifically assigned to one of the features in the
dataset. The hidden layer(s) receive values from all nodes of the previous layer multiplied by some
weight, this weight corresponds to how important the value is. Additionally the model has the op-
portunity to add a bias to a node which is independent from the input value. Lastly the final value
is calculated for a node and it is passed through an activation function to introduce non-linearity
into the model. The final layer is the output layer, here all values are combined and passed through
another type of activation function (for example a Sigmoid function) which will determine the final
output value of the model. The learning process of a MLP consist of changing the weights in the
model, similar to GB this is done via gradient descent to identify which way certain values need to
move to minimize the loss function.

3.1.4. Support Vector Classifier
A Support Vector Classifier model tries to create a boundary (or hyperplane) that will separate the
data in its different classes. This boundary is created in order to maximize the distance between the
hyperplane and the data points from the classes, the points closest to the hyperplane are also called
’support vectors’ and they are the most important in forming the final hyperplane. However most
datasets are impossible to perfectly separate due to outliers and noise present within the data, to
account for this the model is allowed to draw the hyperplane in a way that some data is misclassified.
The objective of the model is now to maximize the distance between the hyperplane and its support
vector combined with minimizing the number of misclassifications.

3.1.5. Logistic Regression
To provide a baseline for evaluating the performance of ML models, a Logistic Regression (LR)
model is trained alongside them. LR is particularly relevant in the context of mode choice modeling
because it shares strong conceptual similarities with RUM based models such as the MNL model,
which is widely used in transportation research. Both models are based on probabilistic decision-
making, using the softmax function to estimate the likelihood of selecting a particular alternative
from a finite set of discrete choices.

As a result, LR can serve as an effective benchmark to assess whether more complex ML models like
GB or MLP offer substantial performance improvements over this well-understood baseline.

Using LR in this way allows for direct comparison with traditional discrete choice models and pro-
vides insight into whether the added complexity of ML methods is justified by significant gains in
predictive accuracy or interpretability.

3.1.6. Single class classification
To help with understanding results and pinpointing strong and weak areas of the above mentioned
models, a separate model will be trained for each alternative class within the dataset, also called
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a One-vs-Rest. In Figure 3.1 the basic structure of this approach is visualized, first the dataset is
split into an input and observation set. The input set contains all the features used for the mode
choice evaluation and are thus also the variables that will eventually be evaluated and ranked on
how important they are. The observations are the mode choices made corresponding to the input
data. This data is split into a training and testing set where the training set is used to train the ML
models and the testing set is used to evaluate how accurate the model is. Because the target will
be the observations of a single mode, this structure will be applied separately for all mode choices
considered in the data set. The 80/20 split training and testing sets will be identical for all mode
choices however, this ensures consistent results for all modes and allows them to be compared with
each other.

Dataset input features/attributes

ML Methodology

Training Set Testing Set

Trained Model

Dataset single mode observations

Scoring Metrics

Figure 3.1: Schematic of the base model setup.

3.2. Dataset
The most important and time consuming part of using ML is the preparation of the to be used
dataset. In this section some common problems with datasets will be discussed and possible solu-
tions to these problems are explored.

3.2.1. Aggregate vs Disaggregate
Data concerning MC is collected in a variety of different ways. The two main techniques of acquir-
ing data are Stated Preference and Revealed Preference. Stated Preference data is typically collected
through surveys where individuals or agents are asked hypothetical scenario’s in which they can
state what alternative they would choose. This allows for the analyst to handcraft specific scenario’s
to analyze and conduct a targeted analysis. Revealed Preference is a more commonly used method
when working with MC problems. Revealed Preference is data collected through observing individ-
uals or agents making actual decisions in real world scenario’s. This in turn allows for the analyst to
look at specific areas of interest to uncover why these individuals choose for specific alternatives.
While Revealed Preference data can also be collected via surveys just like with Stated Preference,
there are also other options to gather the required data. (Automatic) data gathering through compa-
nies or institutions such as railway operators can provide large datasets that cover the entire system.
This however comes with the downside that the dataset is often aggregated. This often also changes
how the data is represented, instead of having individual data points the information is aggregated
and summarized. Not only does this result in specific individual data, such as socio-economic data,
to be unavailable, it also results in the individual trips to be displayed as total traffic flows. For exam-
ple, instead of having a separate data entry for everyone that traveled between point A and B there
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will only be a couple of entries, each showing the total flow of traffic between these two points for
a different mode of transport. This results in the dataset containing significantly less information
compared to disaggregate datasets even though the amount of data represented within the dataset
is often much higher.
This difference in how data is represented also warrants a different approach to analyzing the MC
problem. With disaggregate level datasets it is logical to use classification supervised learning, it is
known for each individual what mode of transport is chosen and it can thus be labeled with either a
0 or a 1. Using classification on aggregated datasets can however result in a fairly large loss of infor-
mation for the model to learn. Combined with the already low amount of information that can be
retrieved out of such a dataset can cause the results to be incorrect.
The solution would be to treat the problem as a regression problem. Instead of learning how at-
tributes result in a specific alternative being the most chosen one, the model will learn how the
attributes impact the different total traffic flows of each different alternative. Table 3.1 is an exam-
ple of such an approach, the displayed values are the target output values that the model will try to
predict using the specific attributes of each Origin-Destination (OD) pair.

Table 3.1: An example of an aggregated MC problem dataset showing the total flow for each mode over different OD pairs.

OD-Pair Mode A Mode B Mode C
1 5500 2500 1000
2 150 700 200
3 8000 2500 750
4 4500 2000 1500

To further simplify the model, the dataset can be modified to where the output target is represented
as shares of the total flow over the OD pair as shown in Table 3.2. This ensures that the model
does not need to learn the specific absolute value of the traffic flows that can vary across the entire
dataset.

Table 3.2: The same example as shown in Table 3.1 but with its output targets converted into shares of the total flow along
an OD pair.

OD-Pair Mode A Mode B Mode C
1 61.11% 27.78% 11.11%
2 14.29% 66.67% 19.05%
3 71.11% 22.22% 6.67%
4 56.25% 25.00% 18.75%

3.2.2. Imbalanced datasets
A common issue with datasets when using ML is dataset imbalance. For a ML model to learn the
right relations between input variables and the desired output value there needs to be a good variety
within the output in the training set. If this variety is not present the model wont learn how attribute
values caused the target output. For example, if a dataset contains 100 entries of which alternative
A is the correct output 99 times, the trained model would get a 99% accuracy rate when predicting
that all outputs are alternative A. While this accuracy rate looks good on paper, the model shows
that it is unable to accurately predict what situation leads to alternative A not being correct.
For MC problems imbalanced datasets are very common, as discussed in Subsection 2.5.3 one pos-
sible solution is oversampling.
An interesting technique for oversampling is the use of Synthetic Minority Over-sampling TEch-
nique (SMOTE). SMOTE will create new data points for the minority class rather than using exact
duplicates for oversampling Chawla et al. (2002). To create these synthetic data points SMOTE will



3.2. Dataset 21

look at a few closes neighbors of each existing data point in the dataset and create new ones in
between them as shown in Figure 3.2.

Figure 3.2: An example of how SMOTE oversamples the minority (orange) class to make the dataset more balanced.
Prudhvith, 2022

The overall structure of the model will only change slightly as displayed in Figure 3.3, only the train-
ing set will be altered with the SMOTE technique while the testing set remains clean. This model
will be used in addition to the model displayed in Figure 3.1, the results from both models can sub-
sequently be compared to determine the influence SMOTE has.

Dataset input features/attributes

ML Methodology

Training Set Testing Set

Trained Model

Dataset single mode observations

Scoring Metrics

SMOTE

Figure 3.3: Schematic of the model including SMOTE applied to the training set.

3.2.3. Feature selection
An important step in any MC problem is selecting what features to include in the model. Generally
speaking the more features added the better the model can perform as more relations between fea-
tures can be created to distinguish alternatives from each other. However data collection is easier
and cheaper with less features. Therefore it is important to find out if the developed models also
have a satisfactory performance with a low number of features.
To evaluate the performance there will be several different so called ’experimental plans’ where each
experimental plan uses a different set of features. Most datasets used for MC problems are relatively
similar in what features or attributes are included, however they will often also include relatively
unique variables that are specific to, for example, the region of interest or chosen alternatives to be
evaluated. The features can however be grouped together in different sets:

• Attributes of the alternatives: This group of attributes is specific to one or more alternatives
and includes variables such as cost, distance, travel time, etc.
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• Socio-economic features: This group of features are related to the individuals and describes
their socio-economic background with variables such as age, gender, profession, private ve-
hicle ownership, etc.

• Cargo features: This set of features describes the type of cargo being transported such as
whether it is bulk, break bulk, container, etc. These features are of course only used when
the MC problem concerns cargo shipment and replaces the socio-economic features that this
type of problem does not have.

• Trip specific attributes: These attributes give information about the reason for a specific trip
and the region it is held in.

• Indicator variables: This set of variables can show an individuals preference towards certain
themes related to the different alternatives such as climate.

• Latent features: This is a set of variables not directly included in the dataset but rather cre-
ated with the help of other features and attributes. Latent variables inherently don’t represent
anything specific but can still be useful for the models to create a more accurate result.

The different experimental plans will be created from a combination of above mentioned feature
groups or different modeling strategies and are explained below, in Table 3.3 all experimental plans
are displayed and for each of them the exact composition of feature sets used is shown.

Experimental plans:

1. Full feature plan: This experimental plan will use (almost) all available features and attributes
from the dataset and the results of this plan are used to compare the other experimental plans
with.

2. Limited feature plan: For this plan only the Attributes of the alternative and trip specific at-
tributes will be used and only a limited number of socio-economic features. This is to sim-
ulate a situation where data collection is limited to automatically gathered information and
thus where personal socio-economic features are not available due to, for example, privacy
concerns.

3. Latent variable plan: In this experimental plan the Limited plan is expanded with latent vari-
ables. This experimental plan is used to test whether theory based knowledge can improve
the results. The latent variables are further explained in Subsection 3.3.1.

4. CNN plan: Similar to the Latent variable plan this experimental plan is also an expansion on
the Limited plan, however the addition now are variables created as a result of a Convolutional
Neural Network (CNN) model with the help of the indicator variables. The results of this ex-
perimental plan can show whether combining data to form latent variables can be done with
a CNN approach. This model is further explained in Subsection 3.3.2.

5. Logistical regression model: This model uses the exact same features and attributes as the
Limited plan, however instead of using the ML methodologies shown in Section 3.1, a logisti-
cal regression model will be used. This will serve as an other way to compare results to.

6. One-vs-One model: Because of the required interpretability all above plans use the men-
tioned One-vs-Rest strategy as mentioned in Subsection 3.1.6. This model will use the same
features and attributes as the Limited plan but the training process uses One-vs-One instead.
This model can be used to compare how much performance is gained or sacrificed compared
to the One-vs-Rest strategy and will thus also be run in tandem.
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Table 3.3: Overview of the experimental plans and feature sets used. (*: Partial use, **: Used to create the latent features,
***: Indirectly used to determine variables for the latent features)

Full
Feature Plan

Limited
Feature Plan

Latent
Variable Plan

CNN
Plan

Attributes of the Alternatives x x x x
Socio-Economic\Cargo Features x x∗ x∗ x∗

Trip-specific Features x x x x
Indicator Variables x *** x∗∗

Latent Features x x

3.3. Latent features
Latent features can provide useful data points for attributes that are inherently difficult or impos-
sible to quantify on their own. In this research two sets of latent features will be used to study the
impact they have on the overall results of the model.

3.3.1. Latent variables
The first latent feature set to be used is one developed by Atasoy et al. (2013). The latent variables are
created based on a couple of Socio-economic variables with the help of some Indicator variables.
With this technique it is possible to, once training is complete, get additional variables that tell how
’Pro-car’ and ’Environmental friendly’ an individual is without needing to know their responses to
the indicator statements. In turn these latent variables can thus help the model in estimating what
mode choice the individual used.
For this research these latent variables can be used as well to identify if they have the same positive
impact on the ML models or if the model is already capable of making these connections during the
training process without the help of additional input variables. The latent variable model will both
be used in combination with the SMOTE technique mentioned in Subsection 3.2.2 and without. The
model schematic is shown in Figure 3.4

Dataset input features/attributes Dataset single mode observations

Latent variables

Training Set Testing Set

Input

SMOTE*

Figure 3.4: The top part of the model schematic with latent variables. (*: The model will also be used without SMOTE)

3.3.2. CNN model variables
In addition to the above mentioned latent variable model, a similar experiment will be done using
a CNN model. The goal remains the same where latent variables are created and used to possibly
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improve the ML models. As mentioned in Subsection 3.2.3 the CNN model will use the indicator
variables from the dataset to help create the CNN latent variables. In Figure 3.5a the revised model
architecture is shown where the CNN model also uses the indicator variables as an input in addition
to the normal (limited) features and the single mode target observations. Important to note is that
unlike with those 2 inputs, the CNN latent variable train/test split is not created using the same
dataset. Instead the features are created by feeding the trained CNN model different inputs, namely
the input training features and the input testing features as shown in Figure 3.5b.

Dataset input 
features/attributes

Dataset single mode 
observations

Training Set Testing Set

Input

SMOTE*

Indicator variables

CNN model

CNN latent variables

A
train/test 

split
train/test 

split

(a) The top part of the model schematic with latent variables
created with a CNN model. Green lines indicate training data and

red lines indicate testing data. (*: The model will also be used
without SMOTE)

CNN model trainingInput features 
(training)

Target observations 
(training)

Indicator variables

Trained CNN model

CNN Latent variables 
(testing set)

A

Run model Run model

CNN Latent variables 
(training set)

Input features 
(testing)

(b) Detailed view of CNN implementation. (note: input testing set
flipped for ease of viewing)

The CNN model itself is created with the goal to only use the indicator variables during training.
In order to achieve this the model is initially split up in two separate input branches, one for the
regular input features and another for the indicator features. Both branches go through various
CNN layers before finally being merged and fed into the single output layer that contains the mode
choice target values. In Figure 3.6 the full structure of the CNN model is displayed. As can be seen
there is a special layer within the regular input branch (left) that extracts the latent variables, during
training this layer is influenced indirectly by the indicator variables but after training these variables
no longer influence the results in this layer anymore. Because of this the indicator variables are no
longer needed after the model is trained, this is in line with how the latent variables are created as
in Subsection 3.3.1.

Dataset input 
features/attributes Indicator variables

Dataset single mode 
observations

Dense 64 layer Dense 64 layer

Dense 32 layer Dense 32 layer

Dense 3 layer
Latent variables

Batch normalization

Batch normalization

Batch normalization

Merge layer

Dense 32 layer

Dropout 0.3

Figure 3.6: The full structure of the CNN model used to create additional input variables for the main ML models.
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3.4. Model analysis
Analyzing a model consists of two important parts:

• Analyzing the accuracy and overall performance of the model

• Analyzing the results of the model

In Subsection 3.4.1 different methods for scoring the accuracy and overall performance are ex-
plained, in Subsection 3.4.3 the tools used to analyze the results of the model are shown.

3.4.1. Scoring Metrics
It is extremely import to verify how well the created model performs on a test dataset as this directly
reflects how well conclusions can be made based upon the results of the model. After all a model
that is not able to make accurate predictions has not learned any connections between the input
attributes and the available alternatives. It is thus important to evaluate the prediction accuracy of
the different models and compare those with each other to determine which model is ’better’.
There are various scoring methods available for both regression and classification models (Bajaj,
2025). Below the scoring metrics used to evaluate the model performance in this research are shown
and explained.

Confusion Matrix

A confusion matrix is a way to visualize how well a model is able to predict binary targets. For a sin-
gle binary target there are four possible classification states: True Positive (TP), True Negatie (TN),
False Positive (FP) and False Negatie (FN). The prerequisites for each of these states are displayed in
Table 3.4. A perfect model would have both the FP and FN values at 0, indicating that all predictions
are correct. In reality this is not possible to achieve with complex datasets and thus the goal is to
minimize both these values and therefore maximizing the TP and TN.

Table 3.4: The classification names for the four possible prediction states.

Classification Name Predicted Target Class Actual Target Class
True Negatie (TN) 0 0
False Positive (FP) 1 0
False Negatie (FN) 0 1
True Positive (TP) 1 1

However because the values for TN and TP are also dependent on how many total observations there
are in the test set, it can be helpful for additional visual improvement to display the four values as
percentages. This can be done by taking the sum over each row in a confusion matrix as shown
in Table 3.5, and divide the values in that row with the sum. For example the TN value would be
calculated as shown in Equation 3.2.

TN% = TN

TN+FP
(3.2)

Table 3.5: The layout of a confusion matrix.

Predicted Negative Predicted Positive
Actual Negative TN FP
Actual Positive FN TP
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Scatter Plot

When dealing with a regression problem it is not possible to use a confusion matrix. To make it easy
to still visualize the performance of the model a scatter plot can be used instead. In this plot the
x-axis corresponds to the predicted values and the y-axis the actual values. Each observation in the
test set will be plotted in this graph, in a perfect model all observations will be plotted exactly on the
lin y = x as this indicates that the prediction is exactly equal to the actual value. In reality it is thus
easy to see how well a model performs by looking at how close the observations are to this y = x line.

F1-score

The F1 score is a useful metric when dealing with binary classification models, specifically for mod-
els applied to unbalanced datasets. The scoring metric combines both the precision (Equation 3.3)
and the recall (Equation 3.4) values into a single score by taking the harmonic mean of the two as
can be seen in Equation 3.5 (Van Rijsbergen, 1979).

Precision = TP

TP+FP
(3.3)

Recall = TP

TP+FN
(3.4)

F1 = 2× Precision×Recall

Precision+Recall

= 2×TP

2×TP+FP+FN

(3.5)

This harmonic mean will cause the F1 score to only be high when both the precision and recall are
performing well. With unbalanced datasets this is useful as a poorly performing minority class will
actually impact this score negatively by a much greater amount compared to looking at just the
precision score (Grandini et al., 2020).

Balanced Accuracy score

The Balanced Accuracy (BA) score is a balance between the recall for both the positive as the nega-
tive class in a model. Where the classical recall score only looks at TP (as shown in Equation 3.4), the
BA also calculates the recall for the TN class. Both the recall scores are balanced together as shown
in Equation 3.6.

BA = 1

2
(

TP

TP+FN
+ TN

TN+FP
) (3.6)

This scoring metric is perfect for the use on unbalanced classification datasets as it gives an equal
weight to all classes and is therefore not skewed towards how the majority class performs (Grandini
et al., 2020).

R2 score

The R2 score, also known as the coefficient of determination, is a common metric to evaluate re-
gression models. The score can directly tell how well the model captures the variance in the data
and is formulated as displayed in Equation 3.7. In this equation yi represents the actual observed
data point i , ŷi is the predicted value corresponding to yi and finally ȳ is the mean of all the actual
values y .

R2 = 1−
∑

(yi − ŷi )2∑
(yi − ȳ)2 (3.7)
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A prefect model would have an R2 score of 1 as there difference between the predicted and actual
value would always be 0 and thus 100% of the variance is explained by the model. Furthermore a
model that has an R2 score of 0 has not captured any of the variance and is in performance similar
to always predicting the mean value regardless of input data.

Root Mean Squared Error score

The Root Mean Squared Error (RMSE) score is a value that explains the average magnitude of the
errors between predicted and actual values as formulated in Equation 3.8 where yi and ŷi represent
the same values as in Equation 3.7.

RMSE =
√

1

n

n∑
i=1

(yi − ŷi )2 (3.8)

The benefit of this scoring metric is that the RMSE score has the same unit as the target variable
and can thus be easily related to the data itself. Another feature of the RMSE score is its sensitivity
to large errors, on the one hand this can results in the model seemingly performing worse than
it actually is due to a few large outliers. However this can also be a benefit when working with
imbalanced datasets where it is important that the model also works well on a minority class or
group. A relatively small group of large errors would have a great impact on the RMSE score.

Mean Absolute Error score

The Mean Absolute Error (MAE) score is very similar to the RMSE score. However in this approach
all errors have a similar impact on the score and a small group of larger errors does not impact the
score as heavily. The formulation for the MAE score is shown in Equation 3.9 where the values for yi

and ŷi are again the same as in the previous equations.

MAE = 1

n

n∑
i=1

| yi − ŷi | (3.9)

3.4.2. Averaged results
To prevent the results from showing a unusual high or low score due to a favorable training and
testing split, the models will be trained multiple times using different random splits. The eventual
score will be the average over all trained models. To ensure that each model type and mode type can
still be compared with each other fairly, each unique train-test is used on all of them before a new
train-test split is generated.

3.4.3. Result analysis

SHapely Additive exPlanation

In Subsection 2.4.2 the use of SHapely Additive exPlanation (SHAP) is briefly mentioned as a tool
to visualize the inner workings of a trained ML model. As the name suggests SHAP works on the
principle of Shapely values a concept introduced in cooperative game theory Hart (1989). The idea
behind this is that this value represents a fair way of how to distribute a reward among players based
on their individual contribution to the game. When applying this to ML the players are the input
features of the model and the value will represent how much each feature has contributed to the
final output result. This property makes SHAP an extremely useful tool for MC problems, as with
these studies the goal is often to find out how features influence an agents MC in order to better
understand the system as a whole and possibly influence it.



4
Case Studies

To test how well the ML models formulated in Chapter 3 perform on MC problems, they will be
applied to two existing cases. Firstly there is the Rhine-Alpine corridor dataset, explained in Sec-
tion 4.1. This dataset is aggregated and can thus be used to show the potential of ML when used
as a regression modeling tool. Secondly there is the Switzerland dataset, explained in Section 4.2.
This is a more classic MC problem case study that is disaggregated and covers the MC behavior of
passenger travel. This dataset is set up well to use ML on in the form of a classification model. After
that inSection 4.3 some SHAP analyses are conducted to evaluate the models potential to actually
be used as a tool for MC studies. Finally in Section 4.4 the results of the different models and exper-
imental plans are compared and discussed.

4.1. Rhine-Alpine corridor dataset
The first dataset that will be used is the Rhine-Alpine corridor dataset (Nicolet et al., 2022). This
dataset contains information on freight shipping along different regions along and close to the
Rhine river. This corridor starts in Rotterdam and follows the river all the way up towards Basel.
In this dataset three different modes of transport are considered: Road, Rail and Inland Waterways
Transport (IWT). However only container shipping is considered in this case study and the use of
dry bulk and other types of transportation are thus not included.

4.1.1. Dataset structure
The dataset shows the yearly container flow of two commodity types (Foodstuffs and Machinery)
between 2011 and 2021 between set Origin-Destination locations. For each OD pair there are two
entries, one for either of the commodities. The features and attributes recorded fall largely under
the ’Attributes of the Alternatives’ and ’Trip specific features’ categories with most variables describ-
ing operating cost or travel time.
Because the data is collected in terms of total container flow rather than on a per container basis
this dataset can be classified as an aggregate dataset. This means that the approach as described in
Subsection 3.2.1 will be used in order to create the ML models. The dataset is made out of obser-
vations from 600 different OD pairs with two commodity types resulting in 1200 unique samples.
Additionally there is eleven years of shipping data over these samples, however, there is only one
variable available per OD pair for all included features and attributes. As a result the eleven years
of data can not all be used as separate entries as there would not be any unique training input data
and only one year can be picked as a target for the model, for this the year 2017 was chosen. In
Table 4.1 the total shipping volume for the three transport modes are displayed, from this it can be
concluded that there is a single majority class (Road) and two minority classes with specifically rail
having only a tiny contribution to the total TEU flow. Additionally over the 1200 samples it is shown
which mode holds the majority of volume shipped, these results indicate that if this problem were
to be treated as a classification problem, the dataset imbalance would be even greater.

4.1.2. Base ML model
The initial full feature experimental plan results show poor performance on all three modes in Fig-
ure 4.1. None of the models is capable of reaching a R2 score of 0.5 or higher indicating that the
predictive power of the model is not sufficient. This is confirmed with the scatter plots where the
two minority classes have most to all of the predictions in the lower half regardless of actual shares

28
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Table 4.1: Shipping volume distribution over the three modes of transport during the year 2017 in the Rhine-Alpine
corridor.

Mode Volume (TEU) Share (%) # of Max Share Cases Share (%)
IWT 72,949,130 29.3% 148 12.3%
Road 169,685,385 68.2% 1037 86.4%
Rail 6,246,724 2.5% 15 1.3%
Total 248,881,239 100.0% 1,200 100.0%

scoring higher on occasions. Meanwhile the majority class has the opposite problem where the
model predicts very high even when the actual share is very low. From this it can be concluded that
the class imbalance is too severe and the model only learns that the majority class always has a high
share and the other two always have a low share and can not identify input variables as an indication
to other results. As such for this research the usage of this dataset is discontinued.
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Figure 4.1: Scatter plots depicting the predicted vs actual values using a GB model with included the R2, RMSE and MAE
scores.

4.2. Switzerland dataset
The second case study uses a Swiss dataset (Atasoy et al., 2013). This is a more traditional dataset in
the sense that it covers the travel behavior of Swiss citizens in 2009 and 2010 across three different
modes of transport: Private, Public and Soft (walking, cycling, etc.). This dataset has additional
variables present in relation to the individuals and the alternatives compared to the Rhine-Alpine
dataset from Section 4.1.

4.2.1. Dataset structure
This dataset has separate entries for a single trip conducted with on of the mentioned modes of
transport, as such it can be classified as a disaggregated dataset. For each entry there are 110 fea-
tures, attributes and variables collected that can be used in the model training. Moreover, these vari-
ables can be split up in such a way that they populate each category mentioned in Subsection 3.2.3.
The three modes are however not balanced well. After filtering there are 1906 separate entries of
which most represent a trip taken with private transport as can be seen in Table 4.2.

4.2.2. Logistic Regression model
Similar to the Rhine-Alpine corridor dataset the initial model is a LR model that will provide a base
line comparison to the various ML based models. As such the model is trained twice, once with the
full feature plan and once with the limited feature plan.
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Table 4.2: Positive labels in the dataset for each mode.

Mode Positive Labels Percentage

Public 536 28.1%
Private 1256 65.9%

Soft 114 6.0%

Full feature experimental plan

Initially the full feature experimental plan is used with both the One-vs-Rest and One-vs-One ap-
proaches. The F1 and BA scores for these experiments are displayed in Table 4.3. For both Public and
Private transport the model scores well (>0.8) on both metrics indicating that is capable of detecting
both the TP and TN labels well. However for the Soft transport mode the metrics are significantly
lower, especially concerning the F1 score indicating that the model has trouble identifying the TP
labels.

Table 4.3: Average performance metrics (F1 and BA) for the LR model using the full feature experimental plan.

Public Private Soft One vs One

F1 0.8300 0.8121 0.6797 0.6999
BA 0.8496 0.8213 0.7899 0.7542

These assumptions can be confirmed when looking at the averaged confusion matrices for the three
modes in Table 4.4. As can be seen the negative cases are predicted correctly between 80% and 90%
of the cases for all three modes. This is similar for the positive cases with the exception of the soft
transportation mode where the TP score is only 68.5%.

Table 4.4: Averaged confusion matrices for Public, Private, and Soft mode choices using a LR model with the full feature
experimental plan.

Public

PN PP

AN 87.0% 13.0%
AP 17.0% 83.0%

Private

PN PP

AN 80.1% 19.9%
AP 15.7% 84.3%

Soft

PN PP

AN 89.5% 10.5%
AP 31.5% 68.5%

The One-vs-One approach shows similar results albeit slightly worse on all aspects. While the F1 and
BA metrics are similar for One-vs-One compared to soft transport (see Table 4.3), it is clear from the
confusion matrix displayed in Table 4.5 that all TP scores are lower compared to the One-vs-Rest
counterparts.

Table 4.5: Averaged confusion matrix for a LR model using the One-vs-One approach and full feature experimental plan.

Predicted
Public Private Soft

Public 80.0% 13.3% 6.7%
Private 9.9% 81.7% 8.4%

Soft 10.1% 25.0% 64.9%
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Limited feature experimental plan

Using the limited feature experimental plan reduces the number of available features from 110 to
22. Unsurprisingly the performance of the LR model worsens as a result, as shown in Table 4.6 the
scoring metrics are lower for every mode compared to the results from the full feature experimental
plan shown in Table 4.3.

Table 4.6: Average performance metrics (F1 and BA) for the LR model using the limited feature experimental plan.

Public Private Soft One vs One

F1 0.7732 0.7736 0.5923 0.6205
BA 0.8093 0.7954 0.8152 0.7452

Notably when comparing the averaged confusion matrices there is actually a significant TP rate
increase from 68.5% to 86.4% within the soft transport mode class. However this increase is at the
cost of a higher FP rate as well and, considering that this is a minority class, that increase leads to
an overall worse performing model.

Table 4.7: Averaged confusion matrices for Public, Private, and Soft mode choices using a LR model with the limited
feature experimental plan.

Public

PN PP

AN 77.9% 22.1%
AP 16.2% 83.9%

Private

PN PP

AN 83.2% 16.8%
AP 24.1% 75.9%

Soft

PN PP

AN 77.6% 22.4%
AP 13.6% 86.4%

4.2.3. Base ML model
The base ML model uses the four methodologies mentioned in Section 3.1 and the full feature plan
in order to get a basic understanding of what each ML model is capable of.

Table 4.8 shows that, similar as with the LR model, both the public and private transport modes
perform better than the soft transport and One-vs-One approach. Comparing the different ML
methodologies with each other reveals that, while not by much, GB performs the best for all modes,
approaches and on both metrics.

Table 4.8: Average performance metrics (F1 and BA) using the four ML models with the full feature experimental plan.

Model Public Private Soft One vs One

GB 0.8797 0.8653 0.7960 0.7872
RF 0.8546 0.8406 0.7379 0.7411
MLP 0.8571 0.8275 0.7297 0.7118
SV 0.8370 0.8178 0.6923 0.6895

F1 score

Model Public Private Soft One vs One

GB 0.8728 0.8598 0.7686 0.7648
RF 0.8305 0.8289 0.6845 0.7002
MLP 0.8522 0.8257 0.6986 0.6976
SV 0.8565 0.8258 0.7647 0.7429

BA score

When evaluating the averaged confusion matrix for the GB model we can see in Table 4.9 that the
results are biased towards what is provided in the dataset. When comparing the confusion matrices
with Table 4.2 it is clear that the class with the most positive labels (private transport) also has the
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best TP score but the worst TN score of the three modes. For the soft transport mode (the mode with
the least positive labels) this is opposite.

Table 4.9: Averaged confusion matrices for Public, Private, and Soft mode choices using a GB model with the full feature
experimental plan.

Public

PN PP

AN 94.7% 5.3%
AP 20.1% 79.9%

Private

PN PP

AN 79.4% 20.6%
AP 7.3% 92.7%

Soft

PN PP

AN 98.4% 1.6%
AP 45.6% 54.4%

Finally the One-vs-One approach shown in Table 4.10, shows slightly better results in terms of TP
rates for both Public and Private transport compared to the One-vs-Rest approach. Interestingly
both the F1 and BA score of the One-vs-One approach are lower compared to the One-vs-Rest ap-
proach as can be seen in Table 4.8.

Table 4.10: Averaged confusion matrix for the GB model using the One-vs-One approach and full feature experimental
plan.

Predicted
Public Private Soft

Public 81.4% 17.9% 0.8%
Private 4.9% 93.4% 1.7%

Soft 11.7% 34.3% 54.0%

The GB model is the best performing, however the other models are not far behind, especially the
RFDT model. In the subsequent sections the GB model is used as the main model to compare with,
additionally better performing metrics per mode are also highlighted. The performances for all
experimental plans and methodologies can however be viewed in Appendix B.

4.2.4. Limited features
To mimic more easily acquired datasets the limited features experimental plan uses fewer features
and variables as the input of the model. This benefits model training time but has the potential
of producing worse results compared to the full feature experimental plan. The goal is to evaluate
whether the model is still capable enough of producing results that are useful for a mode choice
study.

Similar as with the LR model, the performance metrics shown in Table 4.11 are lower compared to
the full feature experimental plan (Table 4.8). However the decline is not as significant and the F1

and BA scores for public and private transport are still greater than 0.8.

Table 4.11: Average performance metrics (F1 and BA) for the GB model using the limited feature experimental plan.

Public Private Soft One vs One

F1 0.8559 0.8360 0.7656 0.7446
BA 0.8469 0.8322 0.7398 0.725

With the limited feature dataset the RFDT model performs better for the soft transport mode and
slightly when using the One-vs-One approach. The different values for both the GB and RFDT mod-
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els is displayed in Figure 4.2.
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Figure 4.2: Differences in F1 and BA scores between the best scoring models for the limited feature experimental plan.

4.2.5. SMOTE implementation
Because minority classes are not an uncommon problem within the ML paradigm, it is possible
to apply SMOTE to the dataset and balance out the classes by generating synthetic data. This can
help the model with learning the positive labels associated with the minority class and thus provide
better results.

Table 4.12 displays the performance metrics for the limited feature experimental plan over the three
different modes and the One-vs-One approach. While the public and private transport modes see a
minor decrease in performance as a result of SMOTE, the soft transport mode scores slightly better
in terms of the F1 score and makes a significant step up with BA. The BA score even rises above the
one from the full feature plan. Similar as with the model without SMOTE, GB is the best performer

Table 4.12: Average performance metrics (F1 and BA) for the GB model using the limited feature experimental plan and
SMOTE implementation.

Public Private Soft One vs One

F1 0.8435 0.8358 0.7757 0.7450
BA 0.8329 0.8389 0.7869 0.7523

on both metrics for public and private transport but loses out again on the other two modes/strate-
gies as shown in Figure 4.3. Again RFDT performs better however also SVC ranks highest but only
for the BA score with the soft transport mode as shown in Figure 4.3b. However, Figure 4.3a shows
that at the same time the model scores very poorly on the F1 metric. It can thus be concluded that
the TP rate has increased at the cost of a significant increase of FP rates as well.

4.2.6. Latent features
The latent variables were able to improve model performance for Atasoy et al. (2013) when applied
to a logit model. In Table 4.13 the results are shown when the same variables were added as input
features for the GB model. These results are without SMOTE modification to the training dataset as
the results with SMOTE are similar but overall slightly more negative. Overall the metrics are near
enough the same compared to only applying SMOTE as shown in Table 4.12. One slight difference
is that the soft transport mode once again benefits. Furthermore when comparing this model with
the other ML methodologies GB only loses out once. This is on the F1 score for the soft transport
mode, in turn GB still holds a higher BA score compared to RFDT as shown in Figure 4.4.
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Figure 4.3: Differences in F1 and BA scores between the best scoring models for the limited feature experimental plan using
SMOTE.
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Figure 4.4: Differences in F1 and BA scores between the best scoring models for the limited feature experimental plan
combined with the latent variables.
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Table 4.13: Average performance metrics (F1 and BA) for the GB model using the latent feature experimental plan without
SMOTE implementation.

Public Private Soft One vs One

F1 0.8483 0.8309 0.7910 0.7613
BA 0.8444 0.8322 0.7893 0.7653

CNN features

Finally in this research there is also a more unique attempt at creating latent variables to potentially
improve the model results, this is in the form of variables created using a CNN model. Similar as
with the latent variable model, the performance was slightly better when not applying SMOTE on
the training dataset. In Table 4.14 the performance metrics for the GB model are displayed. As can
be seen the overall performance is worse compared to the latent variable model for all modes and
the soft transport mode specifically.

Table 4.14: Average performance metrics (F1 and BA) for the GB model using the CNN feature experimental plan without
SMOTE implementation.

Public Private Soft One vs One

F1 0.8416 0.8188 0.7688 0.7440
BA 0.8416 0.8178 0.745 0.7282

The other ML models do not perform much better with only the RFDT model having a better results
with a higher F1 score for the soft transport mode as shown in Figure 4.5a, however for the same
mode the BA score is lower compared to the GB model as displayed in Figure 4.5b.
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Figure 4.5: Differences in F1 and BA scores between the best scoring models for the limited feature experimental plan using
CNN latent variables.

To understand why the models with the CNN based latent variables performs poorly there are vari-
ous options to inspect. The first possibility is that the CNN model did not train properly, to evaluate
this an accuracy and loss function can be plotted. In Figure 4.6 it can be seen that the accuracy
increased from the first training epoch to the last one as well as a decrease in loss. This indicates
that the CNN was able to effectively learn the connections between the input and output variables.
This leaves as options that the created latent variables are not of a good quality and as a result only
confuse the model rather than help it.
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Figure 4.6: Accuracy and Loss function for the CNN model training.

4.2.7. Best performers
For each mode the best performing model can be picked based on the F1 and BA score. However
because these metrics are not tied together (i.e. F1 can increase while BA decreases and vice versa)
first a system needs to be introduced to identify what model is ’best’. For this research an equal
balance between the two is chosen and thus the average score of the two metrics determines the best
model. For this evaluation only models are considered that use the limited feature experimental
plan or a derivative of it. The results of this evaluation are displayed in Table 4.15

Table 4.15: Best performing models over all iterations (excluding the full feature experimental plan) for each different
mode based on the average score between F1 and BA.

Metric Public Private Soft One vs One

Model GB Limited GB with SMOTE RFDT with SMOTE GB with latent variables
F1 0.8559 0.8358 0.7844 0.7613
BA 0.8469 0.8389 0.8068 0.7653
Average 0.8514 0.8374 0.7956 0.7633

This shows that overall GB is still the best performing model with it only being outperformed for the
soft transport mode by RFDT.

4.3. SHAP analysis
For the SHAP analysis it is important to check which features are important for the outcome of
the model. To compare how a ML model potentially improves the accuracy of a SHAP analysis the
results for this are shown in Figure 4.7, Figure 4.8 and Figure 4.9. Here the SHAP analysis for the
LR model is compared with the analysis for the best performing ML model as per Table 4.15 for
all three modes of transport. From these figures it can be seen that the ML models show different
importance levels for the evaluated features, important to note is that the values shown are not nec-
essarily the same unit (scikit-learn developers, n.d.), thus comparing the displayed values between
different model types can prove meaningless. However the ranking of importance, i.e. where a spe-
cific feature appears in the plot can still be compared as the overall meaning of the bars is still the
same (highest mean absolute shap value means the biggest impact on the model). This is why for
example the values in Figure 4.9b are significantly lower, but can still be compared with the plot in
Figure 4.9a. These two plots also show something interesting, namely that with the RFDT model
the distance is deemed the most impactful while in the LR model it does not appear in the four-
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teen highest impact variables at all. Overall comparing the two models per mode shows that most
features are approximately the same, however, the differences that do exist could potentially prove
beneficial for mode choice studies. This is due to the F1 and BA scores being higher for the ML
models and those thus have more accurate results.
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Figure 4.7: SHAP analysis bar plots indicating the global importance of each feature based on the mean absolute value for
that feature over all given samples for public transportation.

4.3.1. SHAP results
For this specific case study the SHAP plots from figure 4.7, 4.8 and 4.9 can be used to determine
which features are most impactful on the total system. Changes in the values for the highest ranked
variables have the highest impact and enforcing changes in those can result in the respective mode
of transport to be more or less attractive as an alternative to individuals. For example, with both
private and public transportation it can be seen that the reported duration is ranked as the most
important variable by quite some margin. This means that decreasing the travel duration for either
mode will result in individuals to be more inclined to use that mode. Important to note is however
that the shown SHAP plots do not actually provide the information on whether an increase or de-
crease in value will have a positive effect, in this case it is however reasonable to assume that a lower
travel duration is seen as a positive change. There are different SHAP plots available that are capable
of giving more in depth information like this, however for this research it is outside of the research
scope and thus too time consuming to create.

4.4. Results analysis
In this section the results are discussed and important findings are highlighted. Initially the compar-
ison between the results of the LR model and the ML models are discussed in Subsection 4.4.1. After
that in Subsection 4.4.2 the different ML model iterations are compared and model improvements
and declines are discussed. Finally in Subsection 4.4.3 a more high level discussion is held.
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(a) SHAP feature importance bar plot for the LR model.
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Figure 4.8: SHAP analysis bar plots indicating the global importance of each feature based on the mean absolute value for
that feature over all given samples for private transportation.
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Figure 4.9: SHAP analysis bar plots indicating the global importance of each feature based on the mean absolute value for
that feature over all given samples for soft transportation.
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4.4.1. LR vs ML models
From the performance metrics it is clear that the LR model which represents the RUM based logit
models is not capable of performing at the level that any of the ML model iterations is capable of.
In Figure 4.10 it can be seen that the F1 scores for all modes is significantly lower. When it comes to
the BA score however, the soft transport mode actually scores really well. But because the F1 score
is extremely low this can be explained with a high TP rate at the cost of a high FP rate. This can also
be confirmed when looking at the confusion matrix for soft transport in Table 4.7. The subsequent
increase in the F1 and decrease in BA score for the base ML model shows that the TP rate drops
somewhat with the benefit of the FP rate dropping massively.

Logistic Regression Full feature Limited feature SMOTE Latent features CNN features

0.60

0.65

0.70

0.75

0.80

0.85

Sc
or

e

F1 Scores

Public
Private
Soft
OvO

Logistic Regression Full feature Limited feature SMOTE Latent features CNN features
0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

Sc
or

e

Balanced Accuracy
Public
Private
Soft
OvO

Performance Metrics Across Model Iterations

Figure 4.10: F1 and BA performance scores for each different model iteration on all modes with the GB model.

4.4.2. ML model iterations
The initial full feature experimental plan shows a strong performance with mainly the F1 scores for
all modes ranking very high. However this model uses 110 different features, attributes and variables
as inputs, this amount of data is usually not available when conducting a mode choice study. As such
the limited feature run is used and as a result the input features drops to 22. With only a fifth of the
features remaining it is harder for the model to make accurate predictions as a lot more information
is no longer available. However, the limited feature experimental plan results show that the drop in
performance is not severe. In fact for some models, such as the RFDT, the change can even cause
an improvement as shown for the soft transportation class in Figure 4.11.
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Figure 4.11: F1 and BA performance scores for each different model iteration on all modes with the RFDT model.

When applying SMOTE to the training set an additional improvement can be seen for the soft trans-
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port mode, especially for the BA score which, with the RFDT model even rises above the BA score for
public transport. This however is also in part due to the SMOTE model having the opposite effect
on this transport mode in both ML model types.
The latent variable model has mixed results, for the soft transport class the GB model has both the
F1 and BA score improve while with the RFDT this is only true for the F1 score. Even though these
results seem to overall improve the best soft transport results are created in the SMOTE only run as
shown in Table 4.15.
Finally the CNN model proves to be a downgrade compared to most iterations, for the RFDT model
the public transport scoring metrics both improve but the scores for the GB model on the base
limited feature run still slightly outperform. It can thus be concluded that the CNN model is not ca-
pable of extracting meaningful latent variables with the help of indicator variables that the regular
latent variable model was able to do. Considering the good performance of the CNN model itself
as shown in Figure 4.6, the likely cause for this is that the created latent variables are actually not
representative for the mode choices.

4.4.3. Overall results
Overall the performance changes are not of a significant magnitude, mainly for the public and pri-
vate transport mode that seem to hover around the same score over all iterations. The only mode
that actually has more significant changes is the soft transport mode, this is also a positive develop-
ment as minority classes are generally of higher interest for mode choice studies as it is a class that
needs to be improved to increase its usage. Even though most performance changes are small, the
impact on the SHAP analysis can still be seen. In Figure 4.12 two GB models are compared on the
public transport class. The first model (Figure 4.12a) does not have SMOTE applied and the second
plot (Figure 4.12b) does. In Figure 4.10 it can be seen that the first model is only slightly superior to
the second yet the SHAP analysis shows some differences.
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(a) SHAP feature importance bar plot for the GB model without
SMOTE.
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Figure 4.12: SHAP analysis bar plots between two GB models, one with and one without SMOTE applied.

Furthermore it can be concluded that it is not ideal to use a singular ML model on all modes as
the GB and RFDT models both are not superior on all of them. It is interesting to note that the
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RFDT model seems to do specifically well on the minority class (soft transport). This result is in
line with other studies where RFDT or similar variant are commonly used for unbalanced datasets
(Leevy et al., 2018). This and the fact that the One-vs-One models constantly perform the worst on
both scoring metrics (Figure 4.10 and Figure 4.11) also highlights how a one hot encoded binary
classification is superior for the purpose of mode choice studies. It gives the model the chance to
focus on a specific class and the SHAP plots can show the features that are important to that mode
specifically because as shown in Section 4.3 those do not necessarily overlap.



5
Conclusion

The goal of this thesis was to investigate the potential of Machine Learning models to accurately
capture Mode Choice behavior within transportation systems. The demand for more flexible, data-
driven transportation modeling is growing as a result of modern data collection methods and the
global increasing demand to limit private vehicle usage in favor for more sustainable alternatives.
This research has explored the ability of various Machine Learning methodologies to address limi-
tations observed in traditional Random Utility Maximization (RUM) models.

In doing so, this research addressed the following main research question:

What is the potential of machine learning models to accurately evaluate Mode Choice
behavior of transportation systems?

To answer this, the research was guided by four sub-questions:

1. What Machine Learning methods can be used for Mode Choice problems?
The literature review identified a wide range of Machine Learning models applicable to Mode
Choice problems, with supervised learning models like Random Forest Decision Tree (RFDT),
Gradient Boosting (GB), Support Vector Classifier (SVC), and Multilayer Perceptron (MLP)
stand out for their predictive accuracy and flexibility. However, no single dominant frame-
work was evident, highlighting the need for structured model evaluation.

2. What is the potential of synthetic data generation and over/under-sampling for imbal-
anced datasets?
The case studies showed that applying oversampling techniques such as Synthetic Minority
Over-sampling TEchnique (SMOTE) can help alleviate performance issues on underrepre-
sented classes (e.g., soft transport modes), though effects were modest. When the dataset
imbalance is extreme SMOTE or comparable alternatives failed to achieve meaningful im-
provements. This confirms it’s role as supportive tools that can give slightly more insights
rather than a complete solution to dealing with minority classes.

3. How can integrated theory-based knowledge improve Machine Learning models?
Incorporating domain-specific knowledge through the use of latent variables improved some
Machine Learning models by adding contextual interpretability. However, gains in perfor-
mance were not always consistent. Furthermore it is difficult to tell if theory-augmented Ma-
chine Learning models may be more beneficial for interpretability rather than raw accuracy.

4. How can important information regarding mode alternatives be extracted from a trained
Machine Learning model?
Through a feature importance analysis (using SHapely Additive exPlanation (SHAP)), it was
demonstrated that Machine Learning models can reveal detailed and often nonlinear rela-
tionships between features and predicted choices. This offers a clear advantage over tradi-
tional models when explaining behavior, especially in disaggregated contexts, in addition it is
also shown that results differ between a Logistic Regression and better performing Machine
Learning model highlighting the relevance of using the better performing model to get a more
accurate picture of which features are important and which are not.

42
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Overall, this research found that ML models, particularly Gradient Boosting and Random Forest
Decision Tree, can indeed outperform Logistic Regression models in predicting individual mode
choices, especially when using One-vs-Rest classification with one hot encoded binary class tar-
gets. Yet, challenges persist in interpretability, framework consistency, and imbalanced datasets.
While interpreting the final results with the help of feature importance analysis tools is no longer
impossible or even difficult, they do not help with pinpointing ways to improve the model. When
additional applied methods such as SMOTE and latent variables give mixed results, there is little to
fall back on in order to figure out where the issue might be.

Importantly, these results echo the concerns highlighted in Chapter 1; Machine Learning offers a
promising yet not fully mature alternative to theory-driven models. While it bypasses many of the
assumptions RUM models require and have an easy initial set up, it introduces new challenges when
it comes to data dependency, tuning complexity, and reduced transparency.

It can be concluded that Machine Learning has great potential, even as a plain model it already is
capable of capturing the complex relations between variables which results in a strong predictive
power. With the help of interpretability tools the models are capable of providing interested parties
with targeted information on what features are critical.

5.1. Policy recommendations
The goal of this research was to uncover the potential of Machine Learning methodologies to be
used for Mode Choice problems. This includes the ability to extract useful policy recommendations
from the gathered results. While the used case studies were chosen based on data availability and
not the actual need for a specific system change/improvement, for the sake of this research it is still
worthwhile to translate the results into them. Based on the results from the Mode Choice study
the most important variables for each transport mode can be identified and dependent on what
changes are desired these can be improved. One of the most common goals for mode choice studies
is to increase the use of more sustainable mode alternatives over the use of private cars. Based on
figures 4.7, 4.8 and 4.9, a possible way to do such thing is to decrease the time it takes to travel
by public transport while increasing the time it takes for private vehicles. This can be achieved by
introducing dedicated transit roads or lanes and force private vehicles to take a longer route. This
change can also help decrease the eventual costs of using public transportation as travel time and
distance are down resulting in a higher capacity with the same equipment, furthermore can this
also result in the driving distance when using private transport increasing due to more direct routes
being converted to only allow public transport. These changes all positively impact the desired
change as well and thus have the potential to snowball the increased usage of public over private
transportation.

5.2. Future Research
While this research makes clear that Machine Learning is a viable alternative to use for Mode Choice
modeling, the further attempted improvements to the model failed to provide overwhelming results.
However, this should not mean that the explored avenues are a dead end and therefore several rec-
ommendations can be made for future research to potentially achieve more.

5.2.1. Datasets
One limitation that this research had was the data availability, while the Switzerland dataset was ex-
tremely detailed it still lacked the larger sample size that Machine Learning models generally need
for training. Similarly the Rhine-Alpine dataset was not of a high enough quality to be used in a
Machine Learning model. This is unfortunate considering there was shipping data for 600 Origin-
Destination pairs on two commodity types collected over eleven years, this should be good for a
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sample size of 13200. However the lack of available input features over this period left the dataset
with only 1200 instead. This combined with a high class imbalance caused it to be unusable, how-
ever this does highlight the gap that an other dataset could potentially fill. It would be interesting to
see how Machine Learning performs on a better structured aggregated dataset.
Generally research done on the topic of Mode Choice focuses on a specific region and a dataset re-
lated to it. However the usage of Machine Learning opens the door to applying transfer learning,
this is a method already used to problems such as image recognition but can also potentially be
used here. While Mode Choice studies generally need to be on a specific area this technique can
help create a stronger final model as basic principles regarding Mode Choice are similar or the same
regardless of the scope of the area. This could in turn also help with minority classes as in a small
area there might be limited data available but when combined with a model that is already trained
on similar data it is possible to get stronger results in return.

5.2.2. Model structure
Due to the limited knowledge of the author this research was limited to using existing libraries for
the implementation of Machine Learning models. While this does mean that the used models are
efficient and initially very easy to use, it has as a downside that they are not flexible and modular
and thus incorporating theory driven knowledge was limited to the outside of the model and served
more as a pre-processing step. Future research could focus on including theory driven structure
into the core of Machine Learning models to potentially more efficiently get the best of both worlds
similar to the work of Zhang et al. (2020). This also highlights the two different directions that can be
taken in order to improve results: Better models or better data processing. Future research could be
done to establish a well working framework for both direction on steps that can be taken to improve
results.
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Abstract—TODO

I. INTRODUCTION

Understanding how individuals choose their mode of trans-
port—such as driving, public transport, cycling, or walking—is
vital for developing efficient and sustainable urban mobility.
By analyzing how these individuals choose what mode of
transport to use for specific trips it allows policy makers and
urban planners to create an environment that encourages the
usage of more favorable alternatives. This in turn can help
prevent high amounts of traffic within cities which is a source
of both noise and environmental pollution. An individuals
decision making process depends on various factors, including
their socioeconomic background, the trip characteristics, their
own perceived environmental concerns, and overall policy
constraints.

Traditionally, researchers have used Random Utility Maxi-
mization (RUM) models (Wu et al., 2019) to understand mode
choice behavior. However, these models are theory driven
and often require strong assumptions about distribution and
linearity and may struggle with large, complex datasets as a
result. The rise of Machine Learning (ML) in transportation
modeling presents an opportunity to explore new, data-driven
approaches that can overcome these challenges and make the
overall process of modeling mode choice behavior easier and
more accurate.

This study addresses the following research question: What
is the potential of machine learning models to accurately
capture mode choice behavior in transportation systems?
In order to answer this question several sub questions are
created as well:

1) What Machine Learning methods can be used for Mode
Choice problems?

2) What is the potential of synthetic data generation and
over/under-sampling for imbalanced datasets?

3) How can integrated theory-based knowledge improve
Machine Learning models?

To answer these questions, existing literature is reviewed on
both the classic approach as on studies that already attempt
to implement ML. Additionally several ML models are im-
plemented and applied to an existing dataset regarding Swiss
travel behavior.

II. LITERATURE REVIEW

A. Mode Choice Modeling Background

Mode choice modeling is a popular field in research. For a
normal mode choice study the goal is to predict the mode
of transportation an individual will choose given a set of
alternatives and contextual factors, based of of that model it
can then be determined what features and attributes have lead
to that choice. However in the scientific community there is
a strong drive to improve the modeling techniques. Wu et al.
(2019) performed a literature review study in which they found
that the majority of studies focuses on model improvements
often aimed towards RUM-based models such as the Multi-
nomial Logit Model (MNL), Nested Logit (NL), and Mixed
Logit (MXL). These models have been widely used due to
their solid theoretical foundations and interpretable outputs
and most improvements focus on improving the capability of
dealing with heterogeneity.

B. Random Utility Models

RUM models assume that individuals make choices to
maximize their perceived utility. The utility of each alternative
is typically modeled as a function of observed attributes and a
random component to account for unobserved variation. While
MNL is straightforward to implement, it suffers from the
Independence of Irrelevant Alternatives (IIA) property. This
however does not make it useless and for basic problems it
is still a viable option. Masoumi et al. (2020) used MNL
to what features and attributes are important in the mode
choice behavior of a child’s (between 9 and 12 years old)
commute to and from school. Ding and Ning (2016) applied
MNL to directly investigate the effects of specific policy
changes. For this they created the model and later manually
changed certain input variables to reflect changes in parking
pricing and public transportation cost. The predicted results
could then be compared to analyze how the population would
likely respond. Too indicate the relevance MNL still has a
research from Ton et al. (2020) compared the results of the
model against that of a NL and MXL model. To their surprise
MNL actually proved to be the model that was able to fit the
data best. However this does not indicate that the latter two
model types are not capable. NL and MXL models attempt



to address the limitation that MNL experiences with IIA by
allowing for correlated alternatives or random taste variation,
respectively. Shahikhaneh et al. (2019) used this property
NL has by grouping certain public transportation alternatives
together to help answer their main research question: ”How to
get motorcyclists to use public transportation alternatives?”.
The nested structure also allows researchers to get more
creative with problems, for example Qi et al. (2020) use
this structure to create two models, one where the same two
modes are grouped together based on the trip chain that is
used with them and another where the same five trip chain
types are grouped together based on the transportation mode
used. Based on what model performed best they were able
to conclude that tourist tended to choose their mode of travel
based on the type of trip chain they had planned (rather than
the other way around). Finally MXL models provide even
more flexibility, Polydoropoulou et al. (2022) to deal with a
dataset that captures multiple samples from each individual
and MXL allowed the researchers to capture the correlation
between these samples. Ye et al. (2020) and Yang and Sung
(2010) both used the MXL model specifically for the reason of
capturing heterogeneity in the observed population indicating
a strong need for the ability to model that.

C. Machine Learning Applications

Recent research has applied ML models such as Random
Forests (RF), Gradient Boosting Classifiers (GBC), Multilayer
Perceptrons (MLP), and Support Vector Classifiers (SVC) to
mode choice problems. Studies have shown that these models
can outperform traditional methods in terms of predictive
accuracy, particularly in handling nonlinear interactions and
high-dimensional data. For example Kashifi et al. (2022)
compares several of these models with each other and manage
to achieve impressive accuracy scores with the lightGBDT
model. During their research they however did encounter a
common problem for ML: Imbalanced datasets. To alleviate
this problem Kashifi et al. (2022) experimented with under and
oversampling strategies, with oversampling they were able to
get good results even on the minority classes. Furthermore
with the help of SHapely Additive exPlanation (SHAP) they
were also capable of ’opening’ the trained model and look in
to the so called ”black-box”. In doing so the interpretability
of the model raised and they were able to show how different
features impacted the model. Wang and Ross (2018) try to
compare a eXtreme Gradient Boosting (XGB) model with
a basic MNL model. While the XGB model showed better
performance one of the key takeaways from the research was
that the MNL model required more attention in the set up and
training in regards to the assumptions made for the random
distribution. Zhang et al. (2020) attempt to make a hybrid
model with the use of a Deep Neural Network (DNN) shaped
like a RUM based model. When the model was tested on
a large dataset it showed a higher accuracy than competing
models which included logit models but also a RF model.
While the results were still not through the roof the shape of
the DNN model allowed the researchers to easily interpret the

results and model itself without the need for additional tools
and algorithms.

D. Literature review results

The conducted literature review highlighted a couple of
areas that ML models struggle with when it comes to MC
studies:

• Black-box: A well known downside of ML models is
knowing how everything the model does between input
and output works. While for some research fields this
is not a big problem, with MC studies this connection
between input and output is often the main goal.

• Different model types: Where logit models already have
different variations, this is even more accurate for ML
models. For example the research of Kalimi (2023) lists
50 different model types. This makes it extremely difficult
to figure out what model best fits the available data.

• Unbalanced datasets: With MC studies it is very com-
mon that a specific mode is underrepresented within the
data. Unfortunately the data driven nature of ML models
can result in this class having poor performance after
training because the model was not capable to learn the
positive labels.

For these challenges this research needs to find some meth-
ods to resolve the issues. Fortunately the literature has also
provided useful tools such as SHAP and Synthetic Minority
Over-sampling TEchnique (SMOTE) to potentially use.

III. METHODOLOGY

A. Models

This study evaluates the predictive performance for five
models of which one represents a logit model as a way to
compare the other four with. These models are:

• Logistic Regression (LR)
• Gradient Boosting (GB)
• Random Forest (RF)
• Multilayer Perceptron (MLP)
• Support Vector (SV)

The LR model is used to represent a classic logit based model,
this subsequently allows it to be used as a baseline model to
compare with in this study. The other models are chosen based
on the literature review as having the most potential.

B. Data Preprocessing

One of the most important steps with training ML models
is how the training (and testing) data is processed. There are
two main approaches to presenting the target data to the model:
One vs One (OvO) and One vs Rest (OvR). The first approach
is a multiclass method where the model will attempt to train
each mode against each other and finally create a model that
can predict which mode is chosen based on the input data.
The other approach uses binary one hot encoded target data
to train and test on. As a result a separate model is trained for
each mode and the predicted output is either a 0 indicating this
mode was not used, or a 1 indicating that the mode was used.



This research will include both approaches to determine which
approach has the best results. To deal with the imbalanced data
SMOTE will be applied to the dataset in order to generate
synthetic data for the minority class. During model evaluation
results are compared both with and without SMOTE training
data.

C. Feature Sets

For the purpose of comparing potential improvements the
model will be trained using different feature sets:

• Full features: All observed variables.
• Limited features: A subset of features selected based on

domain relevance and perceived general availability.
• Latent features: Extracted using existing variables.
• CNN features: Latent features extracted by training a

Convolutional Neural Network (CNN).
The full feature set contains almost all features that are
available with the dataset and is thus expected to provide
the best results. However, in order to simulate a realistic
mode choice study a second feature subset (Limited features)
is created that only contains features that are related to the
alternatives, trips and only a very limited number of socio-
economic features. The latent features set builds upon this
subset by creating two latent variables. These variables are
created using the results of Atasoy et al. (2013).

D. CNN model

Finally the CNN features set aims to create three latent
variables by training a separate CNN model in a similar way as
how the latent variables are created. This CNN model has two
input branches of which one is strictly used during training
and contains indicator variables. These variables consist of
multiple opinion questions where respondents could quantify
to what degree they agreed or disagreed with a statement.
The CNN structure itself is displayed in Figure 1. It contains
two input branches, the right branch is only used during
training of the CNN model and uses the indicator variables. In
the left branch the other input variables from the experimental
setup are provided. After some CNN layers the two branches
are merged and trained on the mode choice observations.
The goal is that the left branch of the trained model has
been influenced by the indicator variables and thus the ’latent
variables’ are extracted before the merge layer so that the
model does not require new indicator variables for unseen data
in order to create new latent variables. When implementing the
CNN model it is trained beforehand and the latent variables are
extracted and added as training data for the mode choice ML
models. During testing the trained model is used to create the
latent variables as explained above and those latent variables
are again used to test the mode choice ML models.

E. Model Training and Evaluation

The different models defined earlier are trained on the
different feature sets according to the experimental setups
as displayed in Table I. Each experimental setup is trained
on all model types, to evaluate the trained models they are

Dataset input 
features/attributes Indicator variables

Dataset single mode 
observations

Dense 64 layer Dense 64 layer

Dense 32 layer Dense 32 layer

Dense 3 layer
Latent variables

Batch normalization

Batch normalization

Batch normalization

Merge layer

Dense 32 layer

Dropout 0.3

Fig. 1. The full structure of the CNN model used to create additional input
variables for the main ML models.

TABLE I
OVERVIEW OF THE EXPERIMENTAL SETUPS AND THE FEATURE SETS USED

FOR THEM. (*: PARTIAL USE, **: USED TO CREATE THE LATENT
FEATURES, ***: INDIRECTLY USED TO DETERMINE VARIABLES FOR THE

LATENT FEATURES)

Full
Feature Plan

Limited
Feature Plan

Latent
Variable Plan

CNN
Plan

Attributes of the Al-
ternatives

x x x x

Socio-Economic or
Cargo Features

x x∗ x∗ x∗

Trip-specific Features x x x x
Indicator Variables x *** x∗∗
Latent Features x x

scored based on some metrics. The first metric is a normalized
confusion matrix, this allows for an easy overview of how well
the model does on accuracy. Because of the normalization the
differences in representation within the dataset (unbalanced
classes) can be ignored in reviewing the results as both the
majority as the minority class have the same visual importance.
The different trained models are also graded using the F1 and
the Balanced Accuracy (BA) score, shown in equation 1 and
2 respectively. Both scores are useful to use when dealing
with unbalanced datasets as the resulting score will actually
be impacted negatively if the minority class under performs.

F1 =
2× TP

2× TP + FP + FN
(1)

BA =
1

2
(

TP
TP + FN

+
TN

TN + FP
) (2)

To ensure that the results are not a(n) (un)lucky occurance
with how the dataset was split into a training and testing set,
each model is trained 10 times with a different split (but equal
for each model) and the results are averaged. This means that
the results for each model can be compared with the other
models as all of them used the same train-test split.

IV. CASE STUDY: SWITZERLAND

A. Dataset Description

The Swiss dataset includes detailed trip and individual-level
data, such as age, income, household size, travel distance, and



selected mode of transport. Transport modes are categorized
into Public (e.g., bus, train), Private (e.g., car), and Soft (e.g.,
walking, cycling). The data is inherently imbalanced, with
the soft transport mode as a clear minority class as shown
in Table II.

TABLE II
POSITIVE LABELS IN THE SWITZERLAND DATASET PER MODE.

Mode Positive Labels Percentage

Public 536 28.1%
Private 1256 65.9%

Soft 114 6.0%

B. Results

Initially the Full Feature and Limited Feature experimental
setups were used to train the LR model. The resulting F1 and
BA scores are displayed in table III and IV respectively.

TABLE III
AVERAGE PERFORMANCE METRICS (F1 AND BA) FOR THE LR MODEL

USING THE FULL FEATURE EXPERIMENTAL SETUP.

Public Private Soft One vs One

F1 0.8300 0.8121 0.6797 0.6999
BA 0.8496 0.8213 0.7899 0.7542

TABLE IV
AVERAGE PERFORMANCE METRICS (F1 AND BA) FOR THE LR MODEL

USING THE LIMITED FEATURE EXPERIMENTAL SETUP.

Public Private Soft One vs One

F1 0.7732 0.7736 0.5923 0.6205
BA 0.8093 0.7954 0.8152 0.7452

From these results it can already be concluded that there
is a significant drop in performance between the two setups.
This however is to be expected considering the limited feature
run contains a lot less information for the model to train on.
Running the full feature setus with the four machine learning
methodologies resulted in higher F1 and BA scores compared
to the LR model, this can be seen in table V and VI. From
this it can also be observed that the Gradient Boosting method
has the highest scores across all modes of transport, as a result
the remainder of the research focuses mainly on this method
over the others.

TABLE V
AVERAGE F1 SCORES THE FOUR ML MODELS WITH THE FULL FEATURE

EXPERIMENTAL PLAN.

Model Public Private Soft One vs One

GB 0.8797 0.8653 0.7960 0.7872
RF 0.8546 0.8406 0.7379 0.7411
MLP 0.8571 0.8275 0.7297 0.7118
SV 0.8370 0.8178 0.6923 0.6895

TABLE VI
AVERAGE BA SCORES THE FOUR ML MODELS WITH THE FULL FEATURE

EXPERIMENTAL PLAN.

Model Public Private Soft One vs One

GB 0.8728 0.8598 0.7686 0.7648
RF 0.8305 0.8289 0.6845 0.7002
MLP 0.8522 0.8257 0.6986 0.6976
SV 0.8565 0.8258 0.7647 0.7429

When using the limited feature setup with the GB method
a similar drop in performance can be observed as with the
LR method. However as can be seen in Table VII the trained
model still outperforms the LR model and even produces better
or near equal results compared to the full feature setup used
with the LR model.

TABLE VII
AVERAGE PERFORMANCE METRICS (F1 AND BA) FOR THE GB MODEL

USING THE LIMITED FEATURE EXPERIMENTAL PLAN.

Public Private Soft One vs One

F1 0.8559 0.8360 0.7656 0.7446
BA 0.8469 0.8322 0.7398 0.725

Furthermore the other setups are also used with the im-
plementation of the Latent variables and the CNN model. In
table VIII and IX the F1 and BA scores are shown for both
the latent as the CNN variable setup respectively.

TABLE VIII
AVERAGE PERFORMANCE METRICS (F1 AND BA) FOR THE GB MODEL
USING THE LATENT FEATURE EXPERIMENTAL PLAN WITHOUT SMOTE

IMPLEMENTATION.

Public Private Soft One vs One

F1 0.8483 0.8309 0.7910 0.7613
BA 0.8444 0.8322 0.7893 0.7653

TABLE IX
AVERAGE PERFORMANCE METRICS (F1 AND BA) FOR THE GB MODEL

USING THE CNN FEATURE EXPERIMENTAL PLAN WITHOUT SMOTE
IMPLEMENTATION.

Public Private Soft One vs One

F1 0.8416 0.8188 0.7688 0.7440
BA 0.8416 0.8178 0.745 0.7282

It can be observed that the CNN variable setup is outper-
formed by the Latent variable setup for all transport modes.
Additionally both setups are either worse or nearly the same
compared to the limited feature setup results. This indicates
that the additional variables do not help the Gradient Boosting
model in the learning stage and in fact actually seem to confuse
the model slightly. Another interesting development is that the
results when using SMOTE as a pre-processing technique on
the data actually also resulted in worse overall performance.



C. Best performers

Finally over all the iterations and models the best perform-
ing setup can be chosen. This is done based on the average
score each model has over the F1 and BA score. In Table X the
results of this are shown. This confirms that the GB model is
generally the best performing method. However when looking
at the minority class the RF model has the best results, this
is in line with other studies such as the research of Leevy
et al. (2018) where RF model performs better on a minority
class compared to other standard ML models. Additionally it
can be seen that SMOTE does have a positive impact on the
results and is in part responsible for the best results for both
the minority classes.

TABLE X
BEST PERFORMING MODELS OVER ALL ITERATIONS (EXCLUDING THE

FULL FEATURE EXPERIMENTAL PLAN) FOR EACH DIFFERENT MODE BASED
ON THE AVERAGE SCORE BETWEEN F1 AND BA.

Metric Public Private Soft One vs One

Model GB Limited GB with SMOTE RF with SMOTE GB with latent variables
F1 0.8559 0.8358 0.7844 0.7613
BA 0.8469 0.8389 0.8068 0.7653
Average 0.8514 0.8374 0.7956 0.7633

V. CONCLUSION AND FUTURE RESEARCH

This research aimed to answer the question as to ”What the
potential of machine learning models to accurately capture
mode choice behavior in transportation systems is?”. In order
to answer this question several sub questions were posed and
answered as followed:

1) What Machine Learning methods can be used for
Mode Choice problems?:
Supervised models such as RF GB, SVC, and MLP
showed strong predictive performance as a result of a
literature review, though no universal best model exists.

2) What is the potential of synthetic data generation
and over/under-sampling for imbalanced datasets?:
Oversampling techniques like SMOTE can slightly im-
prove minority class results but are not a complete
solution.

3) How can integrated theory-based knowledge improve
Machine Learning models?:
Latent variables can add interpretability but yield incon-
sistent performance gains.

Overall, Gradient Boosting and Random Forest outper-
formed Logistic Regression, especially in One-vs-Rest clas-
sification. However, interpretability, dataset imbalance, and
framework consistency remain challenges. ML models provide
strong predictive power and, with interpretability tools, can
highlight critical features for decision-making. Yet, they also
bring issues of data dependency and tuning complexity.

A. Future research

1) Datasets: The Switzerland dataset, while detailed,
lacked sufficient size, and the Rhine-Alpine dataset suffered
from limited features and imbalance. Better structured, larger

datasets are crucial. Transfer learning could also be promising,
allowing models trained in one region to improve performance
in another and strengthening results for minority classes.

2) Model structure: This work used standard ML libraries,
limiting integration of theory within models. Future research
could focus on hybrid approaches that embed theory-driven
knowledge directly into model architecture. Progress can be
made either by improving datasets or developing more flex-
ible models, ideally leading to a framework combining both
directions.
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B
Results

In this appendix all Switzerland dataset results from the different model iterations are shown for all
four ML methodologies and for each mode.

B.1. Model F1 and BA results
B.1.1. Full feature results
Results from the full feature experimental plan.

Base results

Table B.1 shows the F1 and BA scores for the full feature experimental plan for all four ML method-
ologies and transport modes.

Table B.1: Average performance metrics (F1 and BA) using the four ML models with the full feature experimental plan.

Model Public Private Soft One vs One

GB 0.8797 0.8653 0.7960 0.7872
RF 0.8546 0.8406 0.7379 0.7411
MLP 0.8571 0.8275 0.7297 0.7118
SV 0.8370 0.8178 0.6923 0.6895

F1 score

Model Public Private Soft One vs One

GB 0.8728 0.8598 0.7686 0.7648
RF 0.8305 0.8289 0.6845 0.7002
MLP 0.8522 0.8257 0.6986 0.6976
SV 0.8565 0.8258 0.7647 0.7429

BA score

SMOTE results

Table B.2 shows the F1 and BA scores for the full feature experimental plan with SMOTE applied to
the training set for all four ML methodologies and transport modes.

Table B.2: Average performance metrics (F1 and BA) using the four ML models with the full feature experimental plan and
SMOTE.

Model Public Private Soft One vs One

GB 0.8802 0.8636 0.8129 0.7989
RF 0.8196 0.8368 0.7969 0.7732
MLP 0.8500 0.8395 0.7566 0.7154
SV 0.8263 0.8257 0.7123 0.7164

F1 score

Model Public Private Soft One vs One

GB 0.8708 0.8647 0.8018 0.7951
RF 0.7936 0.8329 0.7814 0.7628
MLP 0.8439 0.8416 0.7631 0.7274
SV 0.8392 0.8207 0.7129 0.7167

BA score

B.1.2. Limited feature results
Results from the limited feature experimental plan.

Base results

Table B.3 shows the F1 and BA scores for the limited feature experimental plan for all four ML
methodologies and transport modes.
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Table B.3: Average performance metrics (F1 and BA) using the four ML models with the limited feature experimental plan.

Model Public Private Soft One vs One

GB 0.8559 0.8360 0.7656 0.7446
RF 0.8445 0.8289 0.7858 0.7574
MLP 0.8304 0.8066 0.7725 0.7330
SV 0.8246 0.8103 0.6750 0.6966

F1 score

Model Public Private Soft One vs One

GB 0.8469 0.8322 0.7398 0.7250
RF 0.8283 0.8210 0.7496 0.7275
MLP 0.8266 0.8085 0.7669 0.7381
SV 0.8406 0.8226 0.8164 0.7770

BA score

SMOTE results

Table B.4 shows the F1 and BA scores for the limited feature experimental plan with SMOTE applied
to the training set for all four ML methodologies and transport modes.

Table B.4: Average performance metrics (F1 and BA) using the four ML models with the limited feature experimental plan
and SMOTE.

Model Public Private Soft One vs One

GB 0.8435 0.8358 0.7757 0.7450
RF 0.8173 0.8238 0.7844 0.7468
MLP 0.8222 0.7901 0.7441 0.7065
SV 0.7907 0.7923 0.7098 0.6902

F1 score

Model Public Private Soft One vs One

GB 0.8329 0.8389 0.7869 0.7523
RF 0.7962 0.8261 0.8068 0.7602
MLP 0.8131 0.7922 0.7670 0.7263
SV 0.8169 0.7984 0.8141 0.7475

BA score

B.1.3. Latent variables results
Results from the latent variables experimental plan.

Base results

Table B.5 shows the F1 and BA scores for the latent variables experimental plan for all four ML
methodologies and transport modes.

Table B.5: Average performance metrics (F1 and BA) using the four ML models with the latent variables experimental plan.

Model Public Private Soft One vs One

GB 0.8483 0.8309 0.7910 0.7613
RF 0.8257 0.8204 0.8004 0.7485
MLP 0.8320 0.8150 0.7718 0.7320
SV 0.8184 0.8021 0.6977 0.6852

F1 score

Model Public Private Soft One vs One

GB 0.8444 0.8322 0.7893 0.7653
RF 0.8110 0.8168 0.7793 0.7328
MLP 0.8301 0.8164 0.7828 0.7401
SV 0.8411 0.8200 0.8602 0.7802

BA score

SMOTE results

Table B.6 shows the F1 and BA scores for the latent variables experimental plan with SMOTE applied
to the training set for all four ML methodologies and transport modes.
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Table B.6: Average performance metrics (F1 and BA) using the four ML models with the latent variables experimental plan
and SMOTE.

Model Public Private Soft One vs One

GB 0.8315 0.8321 0.7878 0.7454
RF 0.8101 0.8101 0.7766 0.7308
MLP 0.8323 0.8040 0.7601 0.7103
SV 0.7992 0.7814 0.6980 0.6809

F1 score

Model Public Private Soft One vs One

GB 0.8205 0.8323 0.8024 0.7514
RF 0.7877 0.8104 0.7918 0.7412
MLP 0.8232 0.8042 0.7917 0.7373
SV 0.8260 0.7855 0.8129 0.7425

BA score

B.1.4. CNN variables results
Results from the CNN variables experimental plan.

Base results

Table B.7 shows the F1 and BA scores for the CNN variables experimental plan for all four ML
methodologies and transport modes.

Table B.7: Average performance metrics (F1 and BA) using the four ML models with the CNN variables experimental plan.

Model Public Private Soft One vs One

GB 0.8416 0.8188 0.7688 0.7440
RF 0.8427 0.8098 0.7718 0.7331
MLP 0.8320 0.7844 0.7551 0.7136
SV 0.8327 0.7915 0.6811 0.6574

F1 score

Model Public Private Soft One vs One

GB 0.8416 0.8178 0.7450 0.7282
RF 0.8397 0.8056 0.7334 0.7155
MLP 0.8328 0.7862 0.7474 0.7191
SV 0.8504 0.8097 0.8236 0.7379

BA score

SMOTE results

Table B.8 shows the F1 and BA scores for the CNN variables experimental plan with SMOTE applied
to the training set for all four ML methodologies and transport modes.

Table B.8: Average performance metrics (F1 and BA) using the four ML models with the CNN variables experimental plan
and SMOTE.

Model Public Private Soft One vs One

GB 0.8286 0.8098 0.7592 0.7250
RF 0.8248 0.7893 0.7749 0.6977
MLP 0.8165 0.7895 0.7243 0.6864
SV 0.8160 0.7873 0.6975 0.5842

F1 score

Model Public Private Soft One vs One

GB 0.8197 0.8119 0.7713 0.7336
RF 0.8131 0.7884 0.8003 0.7056
MLP 0.8087 0.7927 0.7550 0.7236
SV 0.8326 0.7827 0.7950 0.6436

BA score
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