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Abstract—Affine formation control of multiagent systems has
recently received increasing attention in various applications.
The distributed control of these agents, under single integrator
dynamics, relies on the observations of relative positions of the
neighboring agents, which when unavailable is detrimental to the
mission. In this paper, we propose an adaptive fusion estimator of
the relative positions under intermittent and consecutive observa-
tion loss settings. A relative affine localization (RAL) solution is
developed by exploiting the geometry of affine formation, which is
then embedded into a distributed relative Kalman filtering (RKF)
framework, leading to the geometry-aware relative Kalman filter
(GA-RKF). We show through simulations that the GA-RKF
exhibits enhanced robustness to both intermittent and consecutive
observation losses, as compared to RAL and existing state-of-art
methods.

Index Terms—formation control, distributed Kalman filter,
multiagent systems, sensor fusion

I. INTRODUCTION

Distributed formation control of multiagent systems plays a
vital role in various fields, such as cooperative object transport
[1], [2], space interferometry [3], [4], and underwater sensing
[5], [6], to name a few. Recently, there has been a variety
of formation control solutions based on the displacement of
agents [7], inter-agent distances [8], or bearings [9]. In par-
ticular, a stress-based framework for affine formation control
has been actively researched from a static formation control
[10] to a dynamic formation control [11]. By using a leader-
follower strategy, maneuvering formations can be achieved
by controlling a small number of agents, whereas the other
agents in this framework can be autonomously steered into the
desired locations by observing relative positions with respect
to neighboring agents. One of the classical paradigms in
Bayesian information fusion is the Kalman filtering, where
the state-space equations, comprising of the dynamic and
observation models of the states are combined to estimate
the unknown parameters in the minimum variance sense [12].
This framework (to some extent) is robust against intermittent
observation losses as estimations can still be achieved by
the dynamic model in the presence of observation losses
[13], [14]. In general, Kalman filters are well suited for
linear systems with or without observation loses [15], [16],
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and for non-linear systems, variants of the Kalman filter or
other solutions have been proposed e.g., neural network-based
approaches [17].

More recently, intermittent observation (or packet losses)
have been addressed in the formation control community,
predominantly by approximating the dynamic behavior for pre-
dictions using e.g., iterative learning control (ILC) [18], long
short-term memory (LSTM) [19] or Kalman filters. However,
existing works are limited to discussion on intermittent obser-
vation losses, in contrast to consecutive or permanent losses,
which are rarely addressed [20]. This is due to the nature of
Kalman filters where the uncertainty accumulates in the ab-
sence of observation correction, and subsequently the posterior
covariance typically converges to infinity. In affine formation
control networks, the occurrence of consecutive observation
losses is equivalent to changing the graph connectivity of
agents which may lead to suboptimal formation convergence
or even instability. As such, an alternative estimation w.r.t these
relative positions is crucial in this challenging scenario.

In this work, we propose adaptive fusion algorithms for
affine formation control framework under observation losses
In Section II, the fundamentals of affine formation control
are introduced with emphasis on the importance of relative
position observations. In Section III, a relative state-space
model is introduced and a distributed Kalman filtering for
intermittent observations as in [20] will be established. In
Section IV, we explore the geometrical property of affine
formations and derive a distributed linear estimator for the
missing observations using available ones in the neighborhood
under some constraints. Finally, we propose an adaptive fusion
scheme of this estimator into the Kalman filtering framework
in Section V. The solutions are evaluated under intermittent
losses over a spectrum of observation availability and consecu-
tive loss scenarios in Section VI. Conclusions and future work
are highlighted in Section VII.

Notation. Vectors and matrices are represented by lowercase
and uppercase boldface letters respectively such as a and
A. Sets and graphs are represented using calligraphic letters
e.g., A. Vectors of length N of all ones and zeros are
denoted by 1N and 0N respectively. An identity matrix of
size N is denoted by IN . The Kronecker product is ⊗ and a
vectorization of a matrix is denoted by vec(·) by stacking all
the columns vertically.
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II. FUNDAMENTALS OF AFFINE FORMATION CONTROL

Consider a setup where N mobile agents are deployed in
RD where N ≥ D+1. The agents and their pairwise connec-
tions are typically represented by a graph G = (V, E), where
the vertex (node) set V = {1, ..., N} denotes the identities of
agents and the edge set E ⊆ V × V denotes the information
flow between agents. We assume an undirected graph, i.e.,
(i, j) ∈ E ⇔ (j, i) ∈ E , and the total number of undirected
edges is denoted by M . The set of neighbors and the number of
neighbors of node i are defined as Ni = {j ∈ V : (i, j) ∈ E}
and |Ni| respectively.

Let zi ∈ RD denote the position of agent i, then the config-
uration of all agents is defined as z = [zT1 , ..., z

T
N ]T ∈ RDN .

Similarly, we define z∗ = [z∗1
T , ..., z∗N

T ]T ∈ RDN as the
target configuration, where z∗i ∈ RD is the target position
of agent i. Additionally, we define a generic configuration
p = [pT

1 , ...,p
T
N ]T ∈ RDN called nominal configuration [11],

which presents a general geometric pattern that agents are
expected to maintain. The target configuration will be designed
as a time-varying affine transformation of the nominal configu-
ration to denote formation maneuvers in this formation control
framework. A set that contains all affine transformations of the
nominal configuration is called an affine image i.e.,

A(p) = {z ∈ RDN : z = (IN ⊗Θ)p+ 1N ⊗ t}, (1)

where Θ ∈ RD×D and t ∈ RD are the transformation matrix
and translation vector respectively. The time-varying target
configuration has the form of

z∗(k) = (IN ⊗Θ(k))p+ 1N ⊗ t(k), (2)

where the transformations Θ(k) ∈ RD×D and t(k) ∈ RD

are varying across time instances k. This indicates a ma-
neuvering pattern of rotation, scaling, translation, etc. based
on the structure and values in Θ(k) and t(k). Note that the
nominal configuration is usually adopted as the initial target
configuration, i.e., p ≜ z∗(0), and by definition, the target
configuration z∗(k) is in affine image A(p) for all k. The
maneuverability is typically ensured by a technique called
leader-follower strategy in which a small set Vl of agents are
set aside to be the leaders and the rest Vf = V \ Vl are the
followers. The time-varying target formation is prescribed to
the leaders while the followers only need to follow the leaders
and stay in formation without any knowledge of the target
configurations. The leaders will be left out of the scope of
discussion as they typically occupy a small number of agents.
An example of nominal formation is in Fig. 1.

leaders

followers

Fig. 1. An example of nominal formation in R2

In this work, agents will adopt single-integrator dynamics
żi = ui, where the control input ui is taken as the velocity

information żi. In the discrete domain, this relation can be
translated into

zi(k + 1) = zi(k) + ∆tui(k) (3)

for i ∈ V , where the position of agent i is incremented
by the velocity in time-interval ∆t. Distributed control laws
under single-integrator dynamics to track formations have
been actively developed. Some control laws based on leaders’
movements are shown in Table I in which all control laws
rely on the observations of relative positions zij = zi − zj
up to a translation in the neighborhood j ∈ Ni. As such, the
losses of these terms w.r.t. some neighbors will jeopardize the
optimality of control. Note that lijs in these control laws are
stress weights for edge (i, j) used to stabilize the graph.

TABLE I
CONTROL LAWS UNDER SINGLE-INTEGRATOR DYNAMICS [11]

Leaders Control law

static ui = −
∑
j∈Ni

lijzij

constant velocity ui = −α
∑
j∈Ni

lijzij − η

∫ t

0

∑
j∈Ni

lijzij(τ)dτ

varying velocity ui = −
1

γi

∑
j∈Ni

lij(zij − żj)

In practice, the observations are carried out by onboard
sensors, which will also introduce measurement noise. Since
relative localization methods abound, the modeling of the
observation also differs [21]. We assume an additive noise
modeling for the observations of zij(k)

yij(k) = zij(k) + vij(k) i ∈ Vf , j ∈ N k
i , (4)

where the noise vij(k) has zero mean and a covariance of Rij .
It is assumed that observation noises are i.i.d. across all edges.
We introduce a binary variable νij(k) for all observations
across time to represent their availability, i.e., νij(k) = 1 when
yij(k) is available, otherwise νij(k) = 0. If observation losses
are intermittent across time, we model νij(k) as a Bernoulli
process characterized by a unified λ, the probability of arrival.

III. RELATIVE KALMAN FILTERING

In this section, we focus on the estimation of relative
positions across time through a relative Kalman filter (RKF)
as it exhibits robustness to intermittent losses [22]. With the
observation model given by (4), the challenge is to model
the relative dynamics. A straightforward way is to subtract
the agents’ dynamics (3) of neighboring agents [22], but
this imposes high demands on communication in terms of
delay and consistency, which can be impractical in case of
observation losses. Alternatively, it is preferred to adopt a local
approximation of the relative dynamics that does not require
communication. Since we assume linear dynamic motions of
the agents, we also assume their relative dynamics model is
also linear. Given the knowledge of the leaders’ dynamics,
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various approximate linear models can be assumed e.g., con-
stant velocity and constant acceleration. Here we present the
constant acceleration model for generality but others can also
be adopted under appropriate circumstances.

A. Relative State-space Model

For the constant acceleration model, an extended (relative)
state vector z′ij ∈ R3D is defined as

z′ij(k) = vec([zij(k), żij(k), z̈ij(k)]T ), (5)

where żij(k) and z̈ij(k) are the (relative) velocity and ac-
celeration, respectively. Then the relative state-space model is
given as {

yij(k) = Gz′ij(k) + vij(k)
z′ij(k + 1) = Fz′ij(k) +wij(k)

(6)

where in the observation model G = ID⊗[1 0 0] and vij(k) ∼
N (0D,Rij) recollecting from (4). In the dynamic model,

F = ID ⊗

1 ∆t 1
2∆t2

0 1 ∆t
0 0 1

 , (7)

assuming no correlation across dimensions and wij(k) ∼
N (0,Qij) is the process noise, which is used to approxi-
mate the inaccuracy of the state transition model caused by
assuming constant acceleration. The covariance matrix Qij

shall have the structure of

Qij = σ2
wID ⊗

∆t4

4
∆t3

2
∆t2

2
∆t3

2 ∆t2 ∆t
∆t2

2 ∆t 1

 , (8)

where σ2
w is the variance of acceleration uncertainty. This

structure can be derived by projecting small deflections of
acceleration in the state vector.

B. RKF under Observation Losses

Following the approach in a formation control framework
proposed in [20], we have the following Relative Kalman
Filter. For all i ∈ Vf , j ∈ Ni,

RKF prediction stage

ẑ′ij(k|k − 1) = Fẑ′ij(k − 1|k − 1) (9a)

Σij(k|k − 1) = FΣij(k − 1|k − 1)FT +Qij (9b)

RKF correction stage

Kij(k) = Σij(k|k − 1)GT (Rij+ (10a)

GΣij(k|k − 1)GT )−1

ẑ′ij(k|k) = ẑ′ij(k|k − 1) + νij(k)Kij(k) (10b)

(yij(k)−Gẑ′ij(k|k − 1))

Σij(k|k) = (I3D − νij(k)Kij(k)G)Σij(k|k − 1) (10c)

where νij(k) is the binary availability variable. The estimated
relative positions can then be extracted by applying the matrix
G again on the estimated state vector. Since the filter is built

for every edge, it can be carried out in a distributed manner
on each agent.

This method relies on intermittent observations to correct
for the large variance accumulated by making predictions.
When observations are unavailable for a longer time, i.e.,
under consecutive losses, the predictions can quickly deviate
from the truth, as will be shown later in numerical examples.
In these cases, alternative estimators that are independent of
the dynamics of agents are needed, which will be shown in
the next section.

IV. RELATIVE AFFINE LOCALIZATION

In this section, we focus on the estimation in a single
time instance, but we broaden our view from a single relative
position to all agents in the neighborhood. A local view of
observation losses is whether a relative position w.r.t. some
neighbors can be acquired. As such, for each agent i ∈ Vf ,
we split the set of neighbors into Ni = (N k

i ,Nm
i ) in which

N k
i contains the neighbors w.r.t. whom the relative position

observations are known, and Nm
i contains the neighbors w.r.t.

whom the observations are missing or unavailable. Then the
cardinality

∣∣N k
i

∣∣ indicates the number of available observa-
tions for agent i. The goal is then to estimate zij for j ∈ Nm

i

given zij for j ∈ N k
i . The split of the set of neighbors can

be random or consecutive across time based on the nature of
observation losses.

The proposed estimator can be considered as a relative
localization method from the property of affine transformation
and is called relative affine localization (RAL). We will now
show that agents can locally determine the missing relative
positions of some neighbors given at least D relative positions
in the neighborhood. Recollect the nominal positions pi that
are prescribed and known and define relative nominal positions
as pij = pi − pj for all i ∈ V , and a matrix Pi =
[pi1, ...,pi|Ni|] ∈ R|Ni|×D that locally stores pij in the neigh-
borhood. Similarly, a matrix that stores the relative positions
in the neighborhood is Zi = [zi1, ..., zi|Ni|] ∈ R|Ni|×D. To
denote the missing observations, we define a local observation
matrix Φi(k) ∈ R|N

k
i |×|Ni| that sieves the available relative

positions in the neighborhood. It has the structure shown in
Fig. 2 where Xi ∈ R|N

k
i |×D aggregates all the available

relative positions.

=

Fig. 2. Illustration of the selection matrix Φi

Theorem 1 (Relative affine localization). Assume configura-
tion z(k) ∈ RDN is in affine image A(p). For agent i ∈ Vf ,
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given the split Ni = (N k
i ,Nm

i ), the missing relative positions
{zij(k)}j∈Nm

i
can be locally and uniquely determined if and

only if Hi(k) ≜ Φi(k)Pi is full column rank.

Proof. If configuration z(k) ∈ RDN is in affine image
A(p), then by definition it holds that

zij(k) = zi(k)− zj(k)

= Θ(k)pi + t(k)− (Θ(k)pj + t(k))

= Θ(k)pij (11)

for i ∈ Vf , j ∈ Ni. Then a local set of linear equations
could be established as Zi(k) = PiΘ(k)T . By applying the
observation matrix Φi(k) on both sides, we have

Xi(k) = Φi(k)PiΘ(k)T = Hi(k)Θ(k)T , (12)

where Xi(k) stores zij(k) ∈ {zij(k)}j∈Nk
i

.
(Sufficiency) If Hi(k) full column rank, then the global
affine transformation matrix Θ(k) can be locally and uniquely
determined by

Θi(k)
T = (Hi(k)

THi(k))
−1Hi(k)

TXi(k), (13)

followed by the local determination of missing observation

zij(k) = Θi(k)pij j ∈ Nm
i . (14)

(Necessity) If Hi(k) is not full-column rank, then there exists
no left inverse of Hi(k) which indicates that unique and non-
trivial local estimation for Θ(k) does not exist. Then items in
{zij(k)}j∈Nm

i
cannot be uniquely determined. ■

The rank condition implies that
∣∣N k

i

∣∣ ≥ D and enforces
some geometry requirements on the observations. The split
Ni = (N k

i ,Nm
i ) that fulfills these conditions are called

geometrically feasible for relative affine localization. Some
examples are given in Fig. 3 to further explain this feasibility.
Another intuitive understanding of geometrical feasibility for
RAL is the minimum number of independent equations to
solve for the parameters Θ(k) in the underlying affine trans-
formation.

(a) (b) (c)

Fig. 3. Some examples of infeasible and feasible available observations to
enable RAL in R2. Colored nodes represent agents of interest. (a) infeasible
due to |N k

i | < D locally. (b) infeasible due to collinear relative positions
such that Hi is not full-rank. (c) feasible.

In practice, the assumption that z(k) ∈ RDN is in affine
image A(p) rarely holds strictly due to insufficient formation
convergence and observations noises. Based on (12) and noise
model (4), the local linear equations can then be adapted as

Yi(k) = Xi(k) +Vi(k) = Hi(k)Θ(k)T +Vi(k), (15)

where Vi(k) = [vi1, ...,vi|Nk
i |]

T in which vij ∈ {vij}j∈Nk
i

is the observation noise matrix for known relative positions.
Θ(k) can be estimated by the formulation of

Θ̂i(k) = argmin
Θ(k)

∥∥Hi(k)Θ(k)T −Yi(k)
∥∥2
F
. (16)

Next, the missing relative positions can be estimated by

ẑral
ij (k) = Θ̂i(k)pij , j ∈ Nm

i . (17)

On another note, if the affine transformations are limited to
a few special cases such as scaling, rotation or similarity
transform. The transformation matrix Θi(k) will also have
special structures with which we can levy constraints on
the formulation (16) including diagonality and orthonormality
constraints. This will limit the solution space and result in
better estimates.

RAL is a very low-cost estimator because it uses only ge-
ometry information from the neighborhood and no additional
sensor data are required. Also, this is a linear estimator that
adds little stress to the onboard computers. If very few obser-
vations are missing in the neighborhood, the estimation can
be of high accuracy. However, the quality of RAL estimates
will degrade until the system has sufficiently converged to
equilibrium as the premise for RAL that z(k) is in affine image
A(p) is violated off-equilibrium. This would typically lead to
a slower convergence and raise some challenges in the fusion
as agents also need to locally determine the quality of RAL
estimates.

V. ADAPTIVE FUSION OF RAL WITH KALMAN FILTERING

In the previous sections, we discussed the relative Kalman
filter and the geometrically inferred RAL, which can be
considered two sources of estimates that exhibit different levels
of robustness for different types of losses. For instance, RAL
is not very robust to very heavy losses, e.g., with very small
λ in the intermittent cases, due to its geometrical feasibility
requirement. On the other hand, RKF is not robust against
consecutive observation losses since errors accumulate quickly
without the correction of observation. In this section, we aim
to combine these two types of estimators and propose an
improved solution in both intermittent and consecutive loss
settings.

A. Switching Observation Models

The fusion is done by treating RAL estimates as alternative
observations when real observations are missing. Then in
the RKF framework, there is a switching observation model
for every relative position. Note that switching observations
does not mean every missing relative position can be restored
by RAL due to its geometrical feasibility requirements. But
improvements in the performance can still be expected from
the extra percentage of observations from RAL. Assuming the
system has sufficiently converged, we can model the RAL
observation as

ẑral
ij (k) = zij(k) + ṽij(k), (18)
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Fig. 4. The formation maneuver pattern in our work. The colored nodes denote the true positions of agents, and the translucent (light gray) nodes represent
the target positions at other times.

where ṽij(k) is the equivalent noise of RAL estimates and
has zero mean. This is because no bias is introduced in the
estimations of Θ(k) and ẑral

ij (k) as they are strictly linear
operations on the unbiased observations yij . The covariance of
this noise is closely related to the covariance of the estimates
and is denoted by R̃ij .

B. Adaptive Penalty for Improved Convergence

It is discussed in the previous sections that RAL estimates
before formation convergence are subject to large errors, thus
a hard fusion of RAL estimates will also lead to larger errors
and slow convergence. To modulate the Kalman filter such that
it relies less on the RAL observations prior to convergence, we
can penalize the covariance for RAL observations with large
values. In this way, the Kalman filter will put less weight
on the RAL observation. But it is also necessary to ensure
that RAL observations are effective with sufficient formation
convergence. As such, we propose the following adaptive
penalty

R̃mod
ij (k) = R̃ij + ϵi(k)ID (19)

for i ∈ Vf , where ϵi(k) is designed as

ϵi(k) =
1

|Ni|
∑
j∈Ni

∥∥∥Θ̂i(k)− Θ̂j(k)
∥∥∥2
F
. (20)

This function serves as a convergence indicator and mimics
the tracking error based on the fact that local estimates of
the affine transformation matrix should reach a consensus if
affine formation is perfectly achieved. As such, when tracking
error is hard to locally compute since the target positions are
unknown to the followers, this indicator function is a good
substitute with some extra communication cost.

As can be seen from (19), an additional term is added to
penalize R̃ij . When the system is insufficiently converged,
large ϵi(k) will make the penalty dominating and when the
system is converged, small ϵi(k) will result in negligible
influence on the structure of R̃ij . Now we conclude the
switching observation models as

ỹij(k) =

{
ẑral
ij (k),with R̃mod

ij (k), if j ∈ Nm
i

yij(k),with Rij , if j ∈ N k
i

, (21)

if there exist RAL estimates. Then the same procedures in RKF
can be conducted with a replacement of yij(k) by ỹij(k) in

the correction stage. This solution of adaptive fusion is named
geometry-aware RKF (GA-RKF) for future reference.

VI. SIMULATIONS

Our work adopts a maneuvering pattern in R2 shown in Fig.
4 with the same nominal formation shown in Fig. 1. The graph
has N = 10 nodes and M = 30 undirected edges. The initial
positions of the agents are randomly drawn from a normal
distribution N (0D,P0). For this discrete-time control system,
we choose 1kHz as the control frequency i.e., ∆t = 1ms
interval between successive control inputs and a simulation
duration of 60s. The noise for the observations is chosen to
be Gaussian with a covariance Rij = 0.01I. The control law
is taken as the one with time-varying leaders in Table I. The
evaluation metric that we use in this paper is the tracking error
which is defined as

δ(k) =
1

D|Vf |
∑
i∈Vf

∥zi(k)− z∗i (k)∥2 . (22)

Next, we will show the performance improvements of the
proposed methods under both intermittent and consecutive
losses.

A. Intermittent Observation Losses

Recollect that the intermittent observations are modeled by
a Bernoulli process with λ being the probability of availability.

no estimator [11] RAL (proposed)

RKF [20]

Full observation

GA-RKF (proposed)

Fig. 5. Convergence by tracking error of the proposed solutions under
50% intermittent loss. The solid lines are the mean of 50 Monte Carlo
experiments with random initialization and the translucent strips are the 1
standard deviation region.
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no estimator [11] RAL (proposed)

RKF [20] GA-RKF (proposed)

Fig. 6. Average tracking errors under different Bernoulli probability λ. The
simulations are also averaged over 10 experiments.

Fig. 5 shows the convergence across time in tracking error with
λ = 0.5. The black dashed line represents the full observation
case which can be considered an experimental error bound.
Solutions closer to this line are preferred. The ”no estimator”
case is the default setup for the controller proposed in [11]
in case of observation losses, which induces high error as
observed in Fig. 5. If using only the estimation from geometry
(RAL) the error is suppressed but still not close to the
bound, and the convergence is slower. With RKF implemented,
the convergence speed is guaranteed and the error is very
low. Our proposed fusion solution GA-RKF exhibits close-to-
bound performance with an accelerated formation convergence
compared to the proposed RAL algorithm.

Similar conclusions can also be made with a spectrum of
probability λ as shown in Fig. 6, where δ̄ is the averaged
tracking error over all 60 seconds. λ = 1 is equivalent to
the ”Full observation” case in Fig. 5. Generally, the average
tracking errors increase as λ decreases as a general trade-off
of losing more observations. In the case of no estimators, the
error is boosted even with a small percentage of observation
losses. RAL shows robustness to slight losses, e.g., when
λ = 0.8, but not to heavy losses as there is less chance to
engage RAL estimation due to geometric feasibility issues.
RKF shows strong resilience to heavy intermittent losses, e.g.,
when λ = 0.2. The fusion method GA-RKF further improves
the performance compared to RKF.

B. Consecutive Observation Losses

We now examine their robustness in a consecutive or
permanent loss setup. To motivate consecutive observation

leaders followers

0-10s 10-35s 35-60s

Fig. 7. The setup for consecutive observation losses, where 2 followers are
offline successively in operation.

no estimator [11]

RAL (proposed)

RKF [20]

Full observation

GA-RKF (proposed)

Fig. 8. Convergence by tracking error with consecutive observation losses
caused by offline agents.

losses, we present a scenario in which one or more followers
are disconnected from the formation and thus the associated
observations are permanently missing. This occurs in practice
when agents are out of service due to e.g., maintenance,
scheduling, etc. and we still expect the rest of the agents to
maintain the original formation. One instance of this scenario
is shown in Fig. 7. In this case, the underlying graph is
fundamentally changed to one that may be unstabilizable. As
such, to prevent a diverging formation, constant estimations
shall be performed regarding the missing observations as if a
substitute virtual node is still running with the system.

The performance of the proposed solutions in this setup can
be seen in Fig. 8, where the two clear diverging curves are ”no
estimator” and RKF. For the ”no estimator” case, the previous
edge stress is no longer stabilizing the new graph. For the
RKF case, the system is diverging because no observations at
all provide corrections for the Kalman filter and the dynamics
model will be soon too outdated to give satisfactory estimates.
However, since two missing agents do not cause heavy edge
losses in general, RAL and the fusion solutions perform
well and the system remains almost unaffected. If there are
additional consecutive node/edge losses, their performance is
also expected to decline.

VII. CONCLUSIONS

In this work, we propose an adaptive fusion estimation for
affine formation control framework under observation losses.
Instead of using additional sensors, an alternative source of
information is extracted from the geometry of affine forma-
tions which is then adaptively combined with the conventional
Kalman filtering. The proposed GA-RKF exhibits stronger
robustness to intermittent losses under low availability of
observation, and also to consecutive losses in cases of offline
agents compared to the conventional distributed Kalman filter-
ing (RKF) or relative affine localization (RAL) alone. In our
future work, we aim to report rigorous theoretical bounds such
as posterior Cramér-Rao bounds for the given data model, to
investigate the optimality of the proposed solutions.
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