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Abstract

During front crawl swimming, water is driven backwards with the limbs. Drag forces generated by the limbs
are consequently used for forward propulsion. The hands are responsible for approximately 60% of the gen-
erated propulsive forces. Reaching a podium place in competitive swimming is dependent on differences in
finishing times smaller than 0.5%. For this reason, investigating the effects of hand configuration on swim-
ming performance is of interest. Configurable properties of the hand are the finger spreading and hand palm
cupping. It is argued that a small finger spreading leads to a larger obstruction in the fluid flow compared
to closed fingers, resulting in larger generated drag forces. Similarly, a small hand cupping is expected to
increase the drag forces in analogy to the drag increase experienced by cupped disks. In this thesis, an ex-
perimental investigation is carried out to look into the effects of both finger spreading and hand cupping.
Furthermore, CFD simulations are used for the abstract modelling of hands with finger spreading by use of
slotted disks.

Towing tank experiments in water are performed to investigate the effects of finger spreading for five full-
scale arm models. The research showed that a small finger spreading of 5° can increase the drag coefficient
of the hand with 1.7%, in comparison to closed fingers. Larger spreadings were found to influence the drag
coefficient disadvantageously, where a 20° finger spreading reduced the drag with 1.5%. The found effects
indicate that finishing times can be reduced with 0.3% by using 5° finger spreading instead of 20° spreading.

Wind tunnel experiments are used to look into the effects of hand cupping. Dynamic scaling based on the
Reynolds number is used to account for the used air flow. Effects for five full-scale arm models with different
hand cuppings were investigated, these have a 5° finger spreading which was found optimal from previous
research. It appeared that small rotations around the longitudinal axis of the arm have large influences on
the drag coefficient, where a maximum in drag was never found for the hand palm perpendicular to the flow,
but with an abducted thumb opposing the flow. The research showed that 6% more drag is generated for a
flat hand in comparison to the largest investigated hand cupping. This indicates that finishing times can be
reduced with 0.8% by using a flat hand instead of a large hand cupping.

In conclusion, the research found a hand configuration with 5° finger spreading and a flat hand palm
optimal for maximizing drag forces. The found effects on finishing times indicate that using this hand con-
figuration can play an important role in reaching podium places during front crawl swimming.
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Nomenclature

Acronyms

CFD Computational Fluid Dynamics

POA Point of application of force

Dimensionless numbers

Fr Froude number -

Re Reynolds number -

St Strouhal number -

Greek Symbols

α Angle of attack ◦

β Porosity [-]

ε Turbulent dissipation rate Jkg−1 s−1

µ Dynamic viscosity kgm−1 s−1

ν Kinematic viscosity m2 s−1

ω Specific turbulent dissipation rate s−1

φ Blockage ratio -

ρ Density kgm−3

σx Standard error of the mean -

τw Wall shear stress kgm−1 s−2

ϕz Angle of attack ◦

Roman Symbols

A Projected area on a plane perpendicular to the free stream m2

a(t ) Acceleration m2 s−1

CD Drag coefficient -

CL Lift coefficient -

CM Drag moment coefficient -

D Characteristic diameter m

f Vortex shedding frequency Hz

FD Drag force N

FD (t ) Instantaneous drag force N

FL Lift force N
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viii Nomenclature

g Gravitational acceleration ms−2

k Turbulent kinetic energy Jkg−1

L Characteristic length m

ma Added mass kg

U Swimming velocity ms−1

u∗ Wall friction velocity ms−1

V Flow velocity ms−1

y+ Dimensionless wall distance -
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1
Introduction

The 50 meter freestyle swimming for women on the Olympic Games of 2016 in Rio de Janeiro illustrated that
differences in finishing times are minimal. The number six finished only 0.12 s behind the number one, on a
total swimming time of 24 s. This indicates that even the smallest improvements in swimming performance
can be crucial in reaching a podium place. Fundamental research to the fluid dynamics involved in human
swimming can lead to a better understanding of the drag and propulsion acting on swimmers. As a result,
performance improvements for elite swimmers could be derived. In the past, thorough research has been
done both experimentally and numerically on different aspects of swimming hydrodynamics, varying from
the hydrodynamics around the complete body of a swimmer to just the orientation of the thumb. During
this thesis the effects of hand configuration on propulsive forces in swimming are investigated. All research
is performed at constant velocities. Aspects of hand configuration are finger spreading, thumb positioning,
cupping of the hand and rotations of the hand. This chapter starts by giving general information on a front
crawl swimming stroke. Hereafter fundamental information on drag is presented. Based on this drag, the
propulsive aspects within swimming are discussed, with an overview of current literature towards the effects
of hand configuration. Finally the objectives of the research are formulated together with an outline of this
report.

1.1. Front crawl swimming

Figure 1.1 gives an illustration of a front crawl swimming stroke. As a swimmer moves forward through water
its body experiences a drag force. To overcome for this drag, a swimmer generates propulsive forces by driving
water backwards with his arms and legs (van Ingen Schenau & Cavanagh, 1990; van Houwelingen et al., 2017).
In this way a swimmer uses drag and lift forces acting on its arms and legs for forward propulsion. The swim-
ming velocity U can either be increased by lowering drag acting on the body, or by increasing the propulsive
forces generated by the swimmer. The latter is investigated during this thesis by looking into effects of varying
the hand configuration.

Four different phases are distinguished during front crawl swimming (Polloreno, 2014), figure 1.1 gives
an illustration of the different phases. During the catch the hand enters the water, here lift forces play an
important role in forward propulsion (van Houwelingen et al., 2017). Then the hand moves underwater in
the pull phase, this phase is responsible for generating most propulsive forces and uses drag forces for this
purpose. The forearm moves perpendicular to the water in a large portion of this phase as shown in figure
1.1. As the hand moves along the body it reaches the water surface again, where it is pulled out of the water in
the exit phase. Then finally the hand moves above the water surface in the recovery phase, such that it comes
back in the original catch position. Especially small improvements within the pull phase can have significant
influences on the swimming performance, as most propulsive forces are generated during this phase. For this
reason it is most interesting to find an optimum hand configuration for the pull phase.

1



2 1. Introduction

(a) Catch (b) Pull (c) Exit

Figure 1.1: Illustration of the different phases distinguished during a front crawl swimming cycle, with from left to right the
catch, pull and exit phases. (b) Illustrates the forces and velocities acting on a swimmer during the pull phase. Propulsive
forces can either be drag- or lift-based (van Houwelingen et al., 2017). Modified from Strzala & Tyka (2009).

1.2. Fundamentals of drag
The importance of viscous effects is quantified by the Reynolds number, it signifies the transition of laminar
to turbulent flow. The Reynolds number represents the ratio of inertial and viscous forces and is expressed as

Re ≡ V D

ν
. (1.1)

Here V is the flow velocity with respect to an object, D is a characteristic diameter and ν the kinematic vis-
cosity of the fluid (White, 2011). Furthermore, the Reynolds number is used for scaling to achieve dynamic
similarity for experiments performed in different fluids or at different circumstances. For the purpose of
scaling, matching Reynolds are needed while the fluid conditions vary.

Forces are experienced on an object that is exerted to a fluid flow, a drag and lift force are respectively
experienced in the streamwise direction and in a direction perpendicular to it. Dimensionless drag and lift
coefficients are expressed as

CD,L = FD,L
1
2ρV 2 A

, (1.2)

whereρ is the fluid density, A is the projected area of the object on a plane perpendicular to the mean flow and
FD,L is the drag or lift force (White, 2011). These force coefficients are generally dependent on the Reynolds
number and shape of the object. Drag force is often proportional to V 2 for high Reynolds number flows as
inertia is dominating (Re > 104) (Kundu et al., 2015).

The formulation of the drag coefficient in equation 1.2 only applies to fluid flows at a steady-state. When
accelerations take place, an extra component in drag due to added mass arises, which originates from the
fluid inertia that surrounds the moving object. In this situation the instantaneous, i.e. time dependent drag
force is expressed as

FD (t ) = a(t )ma + 1

2
AρV (t )2CD (V (t )), (1.3)

where a(t ) is the acceleration, CD (V (t )) the velocity-dependent drag coefficient and ma the added mass (van
Houwelingen et al., 2017).

Distinction in three types of drag is made for an object moving through water, these are viscous drag,
pressure drag and wave drag (Marinho et al., 2009). Detailed descriptions of these are given in the next sub-
sections.

1.2.1. Viscous drag
Viscous drag is the fluid resistance associated with viscosity and the formation of boundary layers. These
boundary layers cause the fluid flow along the surface of a body to slow down. Viscous drag is predominant
for low flow velocities, i.e. Re < 1 (Hoerner, 1965). It depends on the flow velocity, and the wetted surface
area and surface characteristics of the body (Marinho et al., 2009). Viscous drag is usually dominant for
streamlined bodies, e.g. an airfoil (Nakayama & Boucher, 1998).

1.2.2. Pressure drag
Pressure drag usually dominates for fluid flow around blunt bodies, e.g. circular cylinders, where a wake is
formed due to flow separation (Nakayama & Boucher, 1998). In the wake, velocity and pressure both decrease
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Figure 1.2: Growth of a boundary layer on a flat plate including transition to turbulence. Different wall layers distin-
guished in the turbulent boundary layer; a viscous sublayer, a buffer layer and a turbulent region, respectively (Frei,
2017).

(a) (b)

Figure 1.3: Flow pas a circular cylinder: (a) laminar separation (103 <Re < 3 ·105); (b) turbulent separation (Re > 3 ·105),
where the separation point moves downstream and a narrower wake is formed resulting in lower drag (White, 2011).

relatively to the free stream. Pressure drag is introduced due to the pressure difference over the front and rear
of the body. Pressure drag depends on the flow velocity and cross-sectional area of the body (Marinho et al.,
2009).

The drag coefficient CD is usually nearly constant at high Reynolds numbers (Re > 104), however for circu-
lar cylinders a strong decrease in drag coefficient called the drag crisis is found. For smooth circular cylinders
the drag crisis is found for 3 ·105 < Re < 3 ·106. As shown in figure 1.4, a sudden dip in CD from 1.2 to 0.3 is ob-
served inside the drag crisis of a smooth cylinder. This decrease in CD is a result of boundary layer transition
(Kundu et al., 2015). Initially a thin laminar boundary layer grows as fluid flows downstream. Then transition
to a faster growing turbulent boundary layer takes place for higher Reynolds numbers (Kundu et al., 2015).
An illustration of such boundary layer transition along a flat plate is given in figure 1.2. Different regions are
distinguished inside the turbulent boundary layer. A viscous sublayer is found next to the wall where viscous
stresses are dominating. Further away from the wall in the buffer layer, turbulence stresses start to dominate
over viscous stresses. The buffer layer eventually connects to a turbulent region where viscous stresses are
negligible compared to turbulence stresses (Frei, 2017). Depending on the shape of an object, the bound-
ary layer starts decelerating at a certain point downstream as a result of adverse pressure gradients. Here
reverse flow is observed, which results in flow separating from the wall. Flow separation is responsible for
the formation of a wake behind an object, figure 1.3 gives an illustration of flow separation around a circular
cylinder. Large drag is observed for a fully laminar boundary layer where a broad wake is formed, this wake
can be completely turbulent (Kundu et al., 2015). Transition to turbulence delays flow separation as a tur-
bulent boundary layer is more capable of withstanding adverse pressure gradients (Kundu et al., 2015). This
leads to the separation point moving downstream, such that a narrower wake and lower drag are observed as
shown in figure 1.3b.

Figure 1.4 also illustrates the effects of wall roughness on the drag coefficient for a circular cylinder. Wall
roughness can accelerate the boundary layer transition, such that a drag crisis is observed at lower Reynolds
numbers. Figure 1.4 shows that the decrease in drag inside the drag crisis becomes smaller for a rough surface
compared to a smooth surface. Effects of wall roughness generally come into play when the roughness height
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Figure 1.4: Measured drag coefficient for a circular cylinder with effects of wall roughness. For the smooth surface, the
drag crisis for 3 ·105 < Re < 3 ·106 is due to the transition of the boundary layer to turbulence and the consequent down-
stream movement of the point of separation (Kundu et al., 2015). The surface roughness shifts the occurrence of a drag
crisis to lower Reynolds numbers. Modified from Isyumov (2015).

h of the surface is larger than the thickness of the viscous sublayer, meaning that the Reynolds number Re∗ =
hu∗/ν>> 1 (Nieuwstadt et al., 2016). Here u∗ is the friction velocity that gives information on the velocity in
the boundary layer.

1.2.3. Wave drag
An object that pierces the free water surface forms surface waves in its wake as it moves relative to a fluid. The
energy required for this wave formation introduces an extra component of drag, called wave drag (Hoerner,
1965). The Froude number is a dimensionless quantity that gives similarity rules for free-surface flows (e.g.
surface waves). It is often used to describe different flow regimes in which wave drag is of importance. The
Froude number represents the ratio of inertial to gravitational forces and is expressed as

Fr ≡ V√
g L

, (1.4)

where g is the gravitational acceleration and L is a characteristic length scale, usually taken as the length
of the object at the free-surface in the streamwise direction. Koo et al. (2014) used large eddy simulations
to look into the effects of interface piercing circular cylinders for varying Reynolds and Froude numbers.
Figure 1.5a and 1.5b show the wave formation at Fr = 0.44 and Fr = 1.24, respectively. For increasing Fr an
increase in surface deformations is observed, as water is piling up at the front, and a hollow forms behind the
object. Furthermore, for increasing Froude number a broader wake is formed consisting of larger waves in
comparison to lower Fr.

Figure 1.5c presents the drag coefficients for interface piercing circular cylinders as function of Froude
number (Hoerner, 1965). For Fr → 0 the water surface has the effect of a solid ceiling, no surface deforma-
tions are observed, such that only viscous drag and pressure drag are experienced. An additional wave drag
component is observed when the Froude number increases, where a maximum is found for Fr ≈ 1. As Fr
increases further the waves produced by the interface penetrating cylinder break up. Water piling up at the
front of the cylinder moves upwards and sidewards such that water sprays in the air. This results in a decrease
in drag coefficient that becomes asymptotically stable for large Fr.

1.3. Drag in swimming
A swimmer uses drag forces acting on its limbs for forward propulsion. Around 85-90% of propulsive forces
are generated by the arms, where the hand has a 2.5 times bigger contribution to the propulsion than the
forearm (van Houwelingen et al., 2017; Bilinauskaite et al., 2013). The large contribution of the hand makes it
interesting to look into the effects of hand configuration on propulsive forces in swimming. As a hand has no
streamlined shape, contributions of viscous drag to the propulsion in swimming are small.
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(a)

(b) (c)

Figure 1.5: For an interface piercing circular cylinder: (a) and (b) show the wave field at Fr = 0.44 and Fr = 1.24, respectively.
The first column gives a side view and the second column shows the wake region (Koo et al., 2014); (c) shows the effect of
drag coefficient for varying Froude number, modified from Hoerner (1965).

Many applications prefer the delay of flow separation as it decreases drag, however along the arm of a
swimmer it is the exact opposite as it needs drag maximization. Geometric similarity between a forearm and
a circular cylinder exists. For a forearm (as well the hand palm) with width D = 0.1 m and stroke velocity V
= 2 ms−1 the Reynolds number is Re ∼ 2 ·105. Theoretically only a laminar boundary layer grows around a
cylindrically shaped forearm for this Reynolds number, however surface roughness and the forearm not being
perfectly cylindrically shaped can (de)accelerate the boundary layer transition (Hoerner, 1965; Nieuwstadt
et al., 2016). In this way effects of a drag crisis can be experienced around the forearm at Reynolds numbers
observed in front crawl swimming.

Van Houwelingen et al. (2017) gives an extensive literature review on the aspects of hand configuration
on the hydrodynamics in swimming. Based on literature review, effects of finger spreading, thumb position,
hand orientation and Reynolds number dependency on drag and lift around the hand of a swimmer are dis-
cussed in this section. Furthermore, the velocity path of hand during front crawl swimming is described.

1.3.1. Angle of attack
During a swimming stroke, the arm can rotate along all three Cartesian axes, these orientations play an im-
portant role in experienced drag and lift forces. Especially effects of rotations around the x-axis as shown
in figure 1.6a are extensively investigated, this rotation is defined as the angle of attack α. An overview of
effects on drag and lift coefficients for varying angle of attack is given by van Houwelingen et al. (2017), here a
collection of both numerical and experimental work is presented. Effects on drag coefficient CD from experi-
mental studies are presented in figure 1.6b, while numerical work shows similar results. All studies obtained a
clear parabola with a maximum drag coefficient aroundα= 90°, which is the position that has the hand palm
perpendicular to the flow and maximizes the projected area. Note that large differences in drag coefficient
occur in figure 1.6a for the work of different researchers. This is due to the differences in investigated arm
models and differences in definitions. Some researchers looked at only a hand, while others had a forearm
attached to the hand. Furthermore, different definitions for the area A in equation 1.2 were used, both the
wetted surface area and the projected area.

All studies show that CL ≈ 0 forα= 90°, where CL becomes positive for a leading thumb and negative for a
leading little finger. For most orientations lift has lower values than drag. Lift force can be used for propulsion
by use of so called sculling motions. However it is argued that a straight pull that uses only drag for propulsion
is more effective (van Houwelingen et al., 2016), hence for the present research it is mostly relevant to look at
effects of drag for increasing propulsion in swimming.

1.3.2. Finger spreading
Schleihauf (1979) performed extensive research on the hydrodynamics of the hand of a swimmer, among
which the effect of finger spacing was investigated. Steady state experiments were performed in an open-
water channel for different angles of attack α. Schleihauf (1979) found that closed fingers lead to a highest
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(a) (b)

Figure 1.6: (a) Gives the definition of angle of attackα, where the thumb is leading forα= 0−90◦ and forα= 90◦ the hand
palm is perpendicular to the flow. (b) Presents an overview of found drag coefficients for varying angles of attack based
on experimental work (van Houwelingen et al., 2017).

drag coefficient, independent of α. For 6.35 mm spacing a decrease in drag coefficient of 11% compared to
closed fingers was observed while α= 90° (hand palm perpendicular to direction of motion), and a decrease
of 19% for 12.7 mm spacing.

Minetti et al. (2009) performed Computational Fluid Dynamics (CFD) simulations on hands with eight
different finger spacings and found that CD is independent of Reynolds number and has its maximum at
8 mm spreading, giving ∼8.8% more drag than for closed fingers. It is observed to have a 20% larger wake
region at the optimal spacing. Which indicates that more energy is extracted from the flow and thus the
pressure differential is larger over the hand leading to a higher propulsion.

Marinho et al. (2010) performed CFD simulations in ANSYS Fluent for hands with different finger spacings
based on the hand of an Olympic swimmer. For simulations at 2 ms−1 in water it was found that a 3.2 mm
spacing gave an increase in drag of around 13% compared to a closed hand, while a 6.4 mm spread gave a
decrease of around 7%.

A more fundamental description of finger spreading is given by Lorente et al. (2012), where 2D CFD sim-
ulations around a row of cylinders with different spacings were performed. The spaced cylinders give a rep-
resentation of finger spreading. Effects of Reynolds numbers in the range 20 < Re < 100 were investigated.
For this range of Reynolds numbers a finger spacing of 0.2 - 0.4 times the diameter of the cylinder is found
optimal, such that for Re = 100 the drag increases with 18%. Note that the Reynolds numbers around the
fingers of a swimmer are orders of magnitude higher, with a finger thickness D = 0.01 m and V = 2 ms−1 the
Reynolds number is Re ∼ 104 around a finger.

Bilinauskaite et al. (2013) performed CFD simulations at different velocities for four hand models (spread/
closed fingers and abducted/adducted thumbs). They did find an increase in drag coefficient for spread
fingers, both for abducted and adducted thumbs.

In the research of van Houwelingen et al. (2016), five full scale forearm/hand models with different finger
spreadings were investigated. They performed both experiments (wind tunnel) and simulations (immersed
boundary method) on the same five models. Drag coefficients CD and moment coefficients CM were de-
termined. Their numerical work shows a local maximum in CD,M for 10° and 20° finger spreading. Their
numerical work found maxima in CD and CM for respectively 5° and 10° finger spreading. Increases in CD,M

of 2% and 5% with respect to the closed fingers were obtained for the experimental and numerical work,
respectively.

Westerweel et al. (2016) formulated a theoretical concept based on the actuator disc model to describe
the drag force as function of finger spreading. A hand with finger spreading is here described by four paral-
lel cylinders with length l , diameter D and a spacing d . Similarly to an actuator disc, streamlines for a flow
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around the four cylinders start expanding, where the degree of expansion depends on d/D . Streamline ex-
pansion results in a pressure decrease in the wake and hence to propulsion. A scaling argument for the drag
force based on the actuator disc principle is derived as

FD ∼ ρV ·4lD ·
[

1+ 3d

4D

][
1−

√
d

D
· d/D

1+d/D

]
. (1.5)

Similarly to research on realistic hand models it is found that small gaps can be beneficial for maximizing
drag force. A maximum increase in drag force of 4% compared to a closed hand is found for d/D = 0.3,
disadvantageous effects in FD arise for d/D > 0.7.

1.3.3. Thumb position
Several authors looked into the effects of thumb positioning, where adducted, abducted and partially ab-
ducted thumbs are used (van Houwelingen et al., 2017). Here an abducted thumb moves away from the hand
and an adducted thumb touches the hand. Schleihauf (1979) found that abducted thumbs result in more lift
for small angles of attack α, while for larger angles a partially abducted thumb is favourable. Takagi et al.
(2001) showed that thumb abduction for a leading thumb leads to larger lift forces, while drag forces for ab-
ducted and adducted thumbs are similar. For a leading little finger an adducted thumb gives both larger drag
and lift forces. Bilinauskaite et al. (2013) showed that thumb adduction results in largest drag during the pull
phase of a swimming stroke. Here spreading the finger simultaneously leads to even larger drag forces.

All these studies considered hand models with no forearm attached to it, hence the effects of interaction
between the thumb and forearm remains unknown. But the studies agree that thumb abduction can be
beneficial in the parts of the swimming stroke where lift is important for forward propulsion, while thumb
adduction is favourable for maximizing drag.

1.3.4. Reynolds number dependency
Previous research looked into the effects on CD,L for varying Reynolds numbers while maintaining the angle
of attack at α= 90◦. Van Houwelingen et al. (2017) concluded that drag and lift coefficients are independent
of Reynolds number for 2 ·104 < Re < 4 ·105. A drag crisis around the cylindrically shaped forearm is expected,
therefore it is unlikely that CD,L is independent of all Reynolds numbers. It is expected that Reynolds number
independences found for numerical work around arm models are an artefact of using too coarse grids, such
that the turbulent boundary layers cannot be fully resolved (van Houwelingen et al., 2017).

1.3.5. Front crawl velocity path
Van Houwelingen captured the path of motion of the hand during a front crawl swimming stroke. For this
purpose a light-emitting diode connected to the hand of a swimmer was tracked with a camera. The corre-
sponding velocity path of the hand is shown in figure 1.7. Those hand velocities correspond to the velocity
V in figure 1.1. Positive velocities correspond to the underwater pull phase and negative velocities represent
the recovery phase. Figure 1.7 shows that the hand is moving at a velocity from 0 - 2 ms−1 during the pull
phase. The drag force is proportional to the squared velocity for high Reynolds number flows. Then a velocity
that is associated with the average drag force F̄D that is generated during the pull phase is given as

VF̄D
=

√√√√∫ t2
t1

V (t )2dt

t2 − t1
, (1.6)

where t2 - t1 correspond to the duration of the pull phase. Accordingly it is found for the data of figure 1.7
that VF̄D

= 1.5 ms−1 during the pull phase.

1.4. Wind tunnel fundamentals
This research uses wind tunnel experiments to look into the effects of hand configuration. This section
describes some important fundamentals of wind tunnel testing, e.g. effects of flow induced hysteresis and
blockage effects.
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Figure 1.7: The velocity path of the hand during a front crawl stroke. Negative velocities indicate the underwater pulling
motion, while positive velocities indicate motions above the water surface. Note that the graph contains dashed regions,
here the light-emitting diode was out of sight for the camera, therefore the missing data is interpolated.

(a) Drag coefficient (b) Lift coefficient

Figure 1.8: Drag and lift coefficient for an airfoil for increasing and decreasing angle of attack (AOA). A hysteresis loop is
observed around the stall angle. From Yang et al. (2008).

1.4.1. Flow induced hysteresis
Hysteresis is the dependence of the state of a system on its history. Effects of hysteresis can be observed
in a fluid flow when experiments are done for varying angles of attack (Yang et al., 2008). Figure 1.8 shows
the variation of drag and lift coefficients for an airfoil as function of the angle of attack. For small angles of
attack the airfoil can be considered a streamlined body such that the flow nicely attaches to the body and low
drag force is experienced. As the angle of attack increases (at α = 16°) a phenomenon called stall is observed,
where a sudden jump in CD and drop in CL occur, at this point the flow starts separating from the body
and a wide disturbed wake is formed (Yang et al., 2008). As the angle of attack decreases again, it can be
observed that stall appears at a lower angle of attack than before (at α = 14°), thus the flow starts reattaching
at a different angle of attack than at which separation started initially (Yang et al., 2008). This phenomenon is
demonstrated by the hysteresis loop in figure 1.8.

1.4.2. Blockage effects
During wind tunnel experiments, air flows past a bluff body that is bounded by rigid walls, and introduces
so-called blockage effects. The rigid boundaries prevent a free lateral displacement of the airflow by the
body, leading to an increase in the free-stream velocity (Maskell, 1963). As the free-stream velocity increases,
larger drag forces are experienced on a body according to equation 1.2. Correction methods are developed to
account for these blockage effects (Maskell, 1963). Blockage (φ) is defined as the ratio of the projected area
of the model and the cross sectional area of the wind tunnel’s test section. Barlow et al. (1999) suggests to not
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Figure 1.9: Illustration of hand cupping the hand. On on the left a cupped hand is shown, with a curvature in the hand
palm and fingers. On the right a flat hand is illustrated.

use blockage correction methods for φ< 5% based on the lack of confidence in these methods.

1.5. Research objectives
The current research is exploring the effects of hand cupping on propulsive forces. Also the effects of varying
the angle of attack and Reynolds number are investigated. The next subsections give motivations for these
research topics.

1.5.1. Hand cupping
Many authors looked into the effects of finger spreading and thumb positioning in swimming, while this is not
the only variable in hand configuration. Cupped hands are formed by having a curvature in the fingers and
hand palm, figure 1.9 gives an illustration of such cupped hand. A literature study did not show that effects
of hand cupping were previously investigated, although there are arguments for hand cupping leading to an
increase in drag. This was derived from the experimental data on cupped disks from Hoerner (1965) shown
in figure 1.10a. Here the effects on drag coefficient are presented for varying ratios of disk height to thickness
(h/d). It shows an increase from CD = 1.17 for a flat disk to CD = 1.41 for a hemispherical shaped disk, where
105 < Re < 106. A hand with its fingers in a cupped shape has a geometrical similarity to a cupped disk.
Therefore it is expected that similar effects in drag coefficient are arising for cupped hands.

Although the data from figure 1.10a shows an increase in drag coefficient, it does not take into account
the reduction in frontal projected area as h/d increases. Therefore it is more interesting to look at the effect
of CD A as a function of h/d , since this quantity needs maximization to maximize the drag force. Figure
1.10b shows the relation between CD A and h/d . A maximum of CD A = 1.21 is found for h/d = 0.08, giving an
increase in CD A ∼ 3% compared to a flat disk. This gives reason to expect an increase in drag when a swimmer
cups his hands.

1.5.2. Angle of attack
Previous research looked into the effects of varying the angle of attackα. Takagi et al. (2001) was the only who
looked into the effects of varying the angle of attack for different hand models, with respectively an abducted
and adducted thumb. As the two hand models give different effects on CD for varying α it is expected that
different finger spreadings or hand cuppings also respond differently to varied angles of attack. Hence it is of
interest to perform experiments for various hand configurations at varying angles of attack.

1.5.3. Reynolds number dependencies
Previous research found Reynolds number independent effects on CD,L for hand models with and without
forearm attached to it. It is argued that the presence of a forearm is likely to introduce effects of Reynolds
number dependency. Because of the occurrence of a drag crisis around a cylindrically shaped forearm. Fur-
thermore, Reynolds number effects are not necessarily equal for different hand configurations and angles of
attack. This makes it interesting to explore the effects of Reynolds numbers during this research.
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Figure 1.10: (a) Presents the drag coefficient of cupped disks as a function of their height to thickness ratio h/d for Re
between 105 −106 (Hoerner, 1965). (b) Shows CD A as a function of h/d based on the data from Hoerner (1965).

1.6. Outline of the report
For this thesis, the effects of hand configuration on the propulsive forces in swimming are investigated. In
chapter 2 the effects of finger spreading are investigated by means of towing tank experiments. Chapter 3 ex-
plores the modelling of simplified shapes that can describe hands with finger spreading, CFD simulations are
carried out to look into the effects of drag for those simplified shapes. Chapters 4 and 5 look into the effects
of hand cupping, wind tunnel experiments are used for this investigation. Finally, chapter 6 draws conclu-
sions towards the effects of hand configuration. Here the found effects of hand configuration are applied to
competitive swimming to investigate possible performance enhancements.



2
Finger spreading: towing tank experiments

Effects of fingers spreading in swimming have extensively been researched. Van Houwelingen et al. (2016) did
both CFD simulations and wind tunnel experiments on one set of arm models with varying finger spreading.
This chapter describes experiments done with the same arm models, performed in a towing tank facility at
TU Delft. Here experiments are carried out in water with the presence of a free surface, in contrary to the wind
tunnel experiments of van Houwelingen et al. (2016). This chapter starts with a description of the used arm
models and experimental setup. Hereafter the experimental methods and the obtained results are discussed.
Finally conclusions on the effects of finger spreading are drawn.

2.1. Hand models
Figure 2.1 shows five configurations of finger spreading as used by van Houwelingen et al. (2016), here the
forearm is not visualized but it is equal to that in figure 4.1. Those models are created by use of 3D-printing,
with a 0.002 m wall thickness and a hollow inside. Each model has a hand palm width, arm length and pro-
jected frontal area A of 0.096 m, 0.507 m and 0.042 m2, respectively. Physically, the skin of a hand can extend
and compress when fingers are spread. These effects are not taken into account for the projected areas of the
five arm models from van Houwelingen et al. (2016), i.e. all arm models have an equal projected area A.

2.2. Experimental setup
This section gives information on the characteristics of the used towing tank and measurement of forces
acting on the arm models as they are towed through the water.

2.2.1. Towing tank characteristics
The idea of a towing tank came from the naval architect William Froude, who developed the facility to per-
form experiments on scaled ship hulls. A towing tank available at the department of Maritime and Transport
Technology at TU Delft is used. This towing tank is illustrated in figure 2.2, it consists of a large water filled
basin made out of concrete. It has a length of 85.00 m, width of 2.75 m and maximum water depth of 1.25 m.
A towing carriage is mounted on two rails above the water basin and can move in its x-direction by means of
electric power drives. The facility is designed in such a way that vibrations transmitted from external sources

Figure 2.1: The finger spreads are 0°, 5°, 10°, 15° and 20°. The angle of each finger is defined as the angle relative to the
0° position. For example, for the 20° model the index finger and ring finger are positioned 20° outward compared to their
position in the 0° model, whereas the little finger is bent 40° outward. These angles roughly correspond to a spacing
between the finger tip side edges of 0, 7.5, 15, 20 and 25 - 30 mm, respectively (van Houwelingen et al., 2016).

11
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Figure 2.2: Illustration of the towing tank facility in a top view. Here the water basin and the corresponding dimensions
are given. The towing carriage moves with velocity V on top of two rails in positive x-direction.

Figure 2.3: Photo of the used six-component measurement system and the corresponding coordinate system, here the
towing carriage moves in the positive x-direction with velocity V .

to the towing tank are minimized. The towing carriage is limited to a maximum velocity of 2.00 ms−1 and an
acceleration of 0.250 ms−2 (van ’t Veer, 2018).

2.2.2. Force measuring system
The arm models are connected to the towing carriage, drag and lift are experienced on the arm models as
they are towed through the water basin. The magnitude of these forces and moments are determined with
the six-component measurement system that is shown in figure 2.3. The measurement system consists of two
frames interconnected by six load cells, with the arm models mounted to the bottom frame. The top frame is
on one side connected to the towing carriage and at the other side to the six load cells. In this way forces and
moments acting on the objects lead to small motions and rotations of the bottom frame, this causes defor-
mations in the strain gauges on the load cells which can be translated into forces. A right-handed Cartesian
coordinate system is used with its origin at the centre between the top and bottom frame. The x, y, z-axes
are respectively directed downstream, transverse and upward. Appendix A gives a detailed description of the
characteristics of the force measuring system, where the measuring accuracies are presented in figure A.2.
Drag forces are measured more accurately at higher velocities, with an accuracy <0.5% for towing velocities
V > 1 ms−1. Drag moments are measured more accurately at lower velocities, with an accuracy ≈ 1% for V <
1 ms−1

2.3. Experimental methods
It is the purpose to study the influence of finger spreading on drag of the hand. It is assumed that interference
exists between flow generated by the fingers and only a part of the forearm. This makes it unnecessary to

Table 2.1: Overview of the investigated finger spreadings and towing velocities. Towing velocities correspond to Reynolds
numbers ranging from 0.24 ·105 < Re < 1.90 ·105.

Finger spreading [◦] 0, 5, 10, 15, 20
Velocity [ms−1] 0.250, 0.500, 0.750, 0.875, 1.000, 1.125, 1.250, 1.500, 1.750, 2.000
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Figure 2.4: Distinction in the difference parts of the immersed arm models, with a contribution of the hand and forearm,
and an additional forearm contribution due to water level variations. Ahand = 0.018 m2, Aar m = 0.0067 m2 and A′

ar m =
±0.000067 m2.

fully immerse the arm models. The arm models are chosen to immerse for 0.31 m, such that a quarter of the
forearm is under water. In this way forces acting on the models are reduced, reducing the risks of mechanical
failure.

Table 2.1 gives an overview of the investigated towing velocities, these correspond to 0.24 · 105 < Re <
1.90 ·105. Effects of random errors are taken into account by performing experiments at each towing velocity
three times for all finger spreadings from table 2.1. Furthermore, arm models are remounted during the
experiments, such that effects of the alignment of the arm models are taken into account. Also experiments
take place in a random order of towing velocities.

Significant temperature variations were observed during the experimental campaign, varying from 17 -
19◦C. By measuring the temperature at the beginning, middle and end of each measuring day those varia-
tions are tracked. For water, viscosity has a notable dependence on temperature, such that ν(17◦C)/ν(19◦C)
= 1.05. These changes in viscosity are taken into account by the Reynolds number from equation 1.1, used as
a non-dimensional quantity for comparing experiments performed at different towing velocities and water
temperatures. As a result of vaporization, the water level experiences daily variations; the level was measured
three times per day to track the variations. Maximum water level variations of ± 0.001 m were observed. For
the drag force FD from equation 1.2, a distinction in drag coming from the arm and the hand can be made,
such that

FD = 1

2
ρV 2(AhandCDhand + Aar mCDar m + A′

ar mCDar m

)
. (2.1)

Here the subscripts hand and arm correspond to the immersed parts of respectively the hand and forearm, as
illustrated in figure 2.4. Variations in the water level result in an additional forearm immersion A′

ar m . The area
Ahand = 0.018 m2, Aar m = 0.0067 m2 and A′

ar m varies with ±0.000067 due to the water level variations. Takagi
et al. (2001) found that the drag coefficient of the hand CDhand ≈ 1.75. As the forearm is roughly cylindrically
shaped, a drag coefficient CDar m ≈ 0.64 is expected (White, 2011). Accordingly, the small water level variations
of ±0.001 m lead to deviations in the drag force FD of ±0.15%. For further experiments, corrections to the
projected area A are applied to account for the water level variations.

Tested models
A variety of experiments are carried out in the towing facility, below the different cases are described.

• Circular cylinder: experiments are done for a circular cylinder as validation of the used force measur-
ing system. For a circular cylinder, the time-averaged lift force Fy = 0. In this way, experiments on the
cylinder are used to properly align the force measuring system such that Fy ≈ 0 is reached. The force
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measuring system is finally aligned with an accuracy of 2°. Furthermore, the circular cylinder is used
to look into the effects of surface piercing that were described in subsection 1.2.3. The used circular
cylinder has a 0.08 m diameter and 0.31 m immersion depth that are similar to that of the arm models;
its PVC surface is considered hydrodynamically smooth.

• Finger spreading: experiments are done for the five full scale arm models from van Houwelingen et al.
(2016) that have 0°, 5°, 10°, 15° and 20° finger spreading. The hand palm is always held perpendicular
to the towing direction (angle of attack α = 90°). Experiments are repeated three times to take effects of
random errors into account. These experiments are considered the main experiments to obtain insight
in the effects of finger spreading.

• Variation of immersion depth: experiments are done for the arm models with 5° and 10° finger spread-
ing at a larger immersion depth, 0.34 m instead of 0.31 m. In this way the effects of immersion depth
are investigated. This is used to validate the assumption that the flow around the fingers only interferes
with a quarter of the forearm.

Data acquisition
A measurement amplifier from Peekel Instruments (Type: PICAS 600) is used to amplify the output voltages
from the load cells. Measuring sensitivities of 49.4, 20.3 and 145 mV/N are used for the load cells in x-, y-
and z-direction, respectively. An analog filtering system built-in the amplifier has been used. The signals
are digitized for further processing in a LabView programme. In this programme, voltages are converted to
forces by means of calibration factors. Calibrations factors for each load cell were determined by applying
multiple known forces to them. A sampling frequency of 1000 Hz is used for the experiments. Depending on
the towing velocity, sampling times in the range of 18 - 50 s were used, where a higher towing velocity results
in less sampling time. As part of a calibration procedure the forces acting on the arm models at rest are
measured, whereafter these forces are subtracted from the forces measured during the towing experiments.

2.4. Results and discussion
In this section the results following from the towing tank experiments are presented and discussed. At first
results for the circular cylinder are discussed where comparisons to literature are made. Hereafter, results
for the the five 3D-printed arm models are discussed in detail, where the reliability of the measurements is
investigated. Finally, the effects of immersion depth for the arm models are investigated.

2.4.1. Circular cylinder
Figure 2.5 gives an overview of the drag and lift coefficients found for the circular cylinder, presented as both
a function of Reynolds number and Froude number. In similarity to figure 1.5c, a parabolic shape in CD is ob-
served with its maximum around Fr = 1. The determined drag coefficient is of the same magnitude as shown
was in figure 1.5c. As it concerns a hydrodynamically smooth cylinder, CD is expected to be constant for the
investigated range of Reynolds numbers, that is with the absence of a free water surface. Hence it can be
concluded that the found behaviour of drag coefficients is purely an effect of the free-surface deformations.

Fluid flow around a circular cylinder is characterized by oscillating flow patterns. Vortices are shed from
a circular cylinder as part of the flow separation, this results in an oscillating lift force FL . Vortex shedding
around circular cylinders occurs in the range 102 < Re < 107 (White, 2011). The oscillating flow mechanisms
are described by the Strouhal number

St ≡ f D

V
, (2.2)

here f is the vortex shedding frequency, D is a characteristic diameter and V is the flow velocity. For circular
cylinders St ≈ 0.21 for the Reynolds numbers range used in figure 2.5 (White, 2011). This indicates that vor-
tices have shedding timescales 1/ f in the range of 0.20 - 1.5 s. The used sampling times were in the range
of 18 - 50 s. The shedding timescales are small compared to the sampling times. This indicates that large
amounts of vortices are shed during the towing experiments, which should result in a time-averaged lift co-
efficient CL = 0. However, figure 2.5 shows that CL 6= 0, this is assigned to the suboptimal alignment of the
force measuring system. Based on CD,L from figure 2.5 it is found that the alignment is approximately 2◦ off.
Alignment inaccuracies will be taken into account for the measurements around the arm models.

Figure 2.6 gives a presentation of the wake around an arm model as it is was observed during the experi-
ments, similar effects were observed for the circular cylinder. Similar to the results shown in figure 1.5a and



2.4. Results and discussion 15

0.2 0.4 0.6 0.8 1 1.2 1.4
Re [-] ×105

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 C
D

,  
C

L
 [

-]

 C
D

 C
L

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
Fr [-]

Figure 2.5: Drag and lift coefficients for a circular cylinder as function of Reynolds and Froude numbers.

figure 1.5b, it is observed that for low Froude numbers a narrow wake is formed with little water piling up at
the front of the object. The wake is broadening directly behind the object. At larger Froude numbers water
is piling up at the front of the object. Initially a large, narrow hollow is formed in the wake of the object, re-
sulting in a large standing wave. Only after this wave the wake becomes broader, with its width increasing far
beyond that at low Froude numbers.

2.4.2. Finger spreading
In this subsection the results from experiments with the five arm models are presented. Experiments are done
at the towing velocities from table 2.1. Figure 2.7a - 2.7b present force coefficients as a function of Reynolds
number. The mean value of the independently done experiments are presented, with the corresponding
error bars included. Errors are expressed as the standard error of the mean, given as σx = σ/

p
n, here σ

is the standard deviation and n is the sample size. For CD,M it appears that errors at the lowest Reynolds
numbers are relatively large, ≈0.4% of the mean value. Errors are considered negligible at higher Reynolds
numbers as they are ≈0.05% of the mean value. This indicates that the influence of random errors due to for
example fluctuations in the fluid flow, dents in the towing tank rail and vibrations on the towing carriage are
not affecting the time-averaged values of CD,M . Errors in CL are generally somewhat larger, possibly because
of larger fluctuations in the fluid flow in the y-direction due to vortex shedding from the forearm and fingers.
Furthermore, the load cells in y-direction measure with a lower resolution than the load cells in x- and z-
direction , which is likely to increase the size of random errors.

Figure 2.7a presents the drag coefficient CD as a function of Reynolds number. A similar parabolic shape
in CD is observed as for the circular cylinder, with a larger magnitude in CD due to the influence of the less
streamlined hand compared to the cylinder. Differences in CD for the investigated finger spreadings are small.
Figure 2.7a shows that drag curves of the different finger spreadings have inconsistent behaviour at different
Reynolds numbers, which is not explained by the done integral force measurements. For example, intersec-
tions of the drag curves at Re ≈ 1.6 ·105 are observed. However, a clear distinction between the different drag
curves is observed for 105 < Re < 1.4 ·105, which shows that a small spreading of 5° is beneficial for drag max-
imization. The drag coefficient decreases as the finger spreading becomes larger than 5°, giving a minimum
in CD at 20° spreading. While no clear distinction in CD over the whole Reynolds number range can be made,
it shows that a small spreading of 5° is always optimal, and a large spreading of 20° is always disadvantageous.

In addition to drag forces, the force measuring system also provides information on the drag induced
moments. The corresponding moment coefficient CM is presented in figure 2.7b as function of Reynolds
number. A similar trend in CM is observed as in CD , with as main difference that 10° spreading leads to in-
creased drag in the range 0.8·105 < Re < 105. Furthermore, differences in CM for the different finger spreadings
are somewhat larger than differences in CD .

Similar to the circular cylinder, the parabolic shape in CD,M is likely a result of free-surface deformations,
as the cylindrically shaped forearm intersects the water surface in a similar fashion. Therefore no Reynolds
number dependence effects on CD,M are expected for a hand model towed through water in the absence of
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(a) (b)

(c) (d)

Figure 2.6: The wake formed behind a surface piercing arm model. (a) Top view with Fr = 0.65; (b) top view with Fr = 1.62;
(c) side view with Fr = 0.65; (d) side view with Fr = 1.62.

a free-surface. This is in agreement with the Reynolds number independent effects that Takagi et al. (2001)
found.

Figure 2.7c shows the variation of the lift coefficient CL . Here, positive lift coefficients are directed from
the thumb to the little finger. Lift coefficients are small compared to the drag coefficients, being ≈ 5% of CD .
No zero lift is found with the hand palm orientated perpendicular to the flow, in contrary to previous research.
This could partly be an effect of the suboptimal alignment of the force measuring system, but it is likely to be
mostly an effect of the fluid flow around the arm models, as the alignment is only 2° off. Figure 2.7c shows
that all arm models have significant different lift coefficients. This indicates that for varying angles of attack,
the drag coefficients of all arm models change in different ways. Therefore it would interesting to investigate
the effects of CD , CM and CL for varying angles of attack during future research.

For the different arm models, weighted averages of CD,M are taken over the Reynolds number range. These
weighted averages are shown relatively to that of the hand with 0° finger spreading in figure 2.7d. This gives
information on the drag over the whole Reynolds number range, an optimum is found for 5° finger spreading.
For 5° spreading, the coefficients CD and CM are respectively 1.1% and 1.7% larger in comparison to closed
fingers. Furthermore, a 20° finger spreading results in a decrease in CD,M of 1.5%, compared to closed fingers.

The outcomes of the research towards the same arm models done by van Houwelingen et al. (2016) were
presented in subsection 1.3.2. Note that they subjected the whole forearm to a fluid flow, while the towing
tank experiments only had them partially immersed. Similarly to the experimental work of van Houwelin-
gen et al. (2016), the maximum in CD is found for 5° spreading. However their experimental work found an
optimum in CM for 10° finger spreading, which is not in agreement with towing tank experiments. Also the
numerical work of (van Houwelingen et al., 2016) shows different trends, where 10° finger spreading is leading
to largest drag, and an increase in drag for 20° finger spreading is observed as well. This trend is contradictory
to figure 2.7a and 2.7d, where CD,M only decreases for spreadings larger than 5°. Magnitudes of the differ-
ences in CD,M for various finger spreadings are of the same order as van Houwelingen et al. (2016) showed,
where their experimental work found differences up to 2%.

The found observations in drag coefficient agree with literature as it shows that a small finger spacing
gives a larger obstruction in the flow than closed fingers, whereas a too large spacing has disadvantageous
effects on the generated drag. The theoretical model of Westerweel et al. (2016) showed a maximum increase
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Figure 2.7: Force coefficients as function of Reynolds number for the models with finger spreading, here (a) shows the
drag coefficient CD , (b) shows the drag moment coefficient CM and (c) the lift coefficient CL . Weighted averages of CD
and CM are taken over the whole Reynolds number range. (d) Presents the weighted averages of CD and CM relatively to
the weighted average of the hand with 0° finger spreading.

in CD of 3.5% for d/D = 0.3, while CD decreases with up to 6% for d/D = 1. The towing tank experiments
show smaller effects in CD than Westerweel et al. (2016), which is not illogical since their abstract model has
a completely different geometry than the arm models with finger spreading. However, the general relation
between finger spacing and drag is the same.

2.4.3. Variation of immersion depth
It was assumed that the flow around the spread fingers only interacts with a quarter of the forearm. The
validity of this assumption is investigated by varying the immersion depth of two of the arm models, i.e. 0.34
m immersion instead of 0.31 m. The 0.34 m immersion leads to an increased part of the forearm subjected to
the flow, in analogy to figure 2.4 follows A′

ar m = 0.00021 m2. Corrections are applied to have insight in only
the drag forces acting on Ahand and Aar m . This allows for comparisons of drag coefficients from experiments
done with 0.31 m and 0.34 m immersion.

The experiments for the deeper immersed arm models are only performed once due to time limitations.
The minimalistic error bars from figures 2.7a - 2.7b suggest that it is not necessarily needed to repeat exper-
iments. Figure 2.8 presents effects of immersion depth on the drag coefficients for 5° and 10° spread fingers,
while the drag moment coefficient CM shows similar behaviour. The experiments for deeper immersion were
performed at somewhat higher temperatures, such that Reynolds numbers are around 5% larger. Therefore,
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Figure 2.8: Effects on drag coefficient for deeper immersed arm models with 5° and 10° finger spreading. Immersion
depths of 0.31 m and 0.34 m are investigated.

comparing drag coefficients on basis of Froude numbers is more suitable, as the obtained parabolic shape is
likely to be an effect of the created surface deformations only, and temperature variations have no effects on
the Froude number.

The found drag coefficients are not exactly matching for both immersion depths, but it is seen that the
same parabolic shapes are obtained and differences in CD are generally small. Especially the values of CD are
similar for 10° finger spreading when 1 < Fr < 2, where the differences in CD are of the size of the error bars
from figure 2.7a. Differences in CD become significantly larger outside the range of 1 < Fr < 2, with deviations
in CD up to 2%. For Fr < 1 the low accuracy of the force measuring system is likely to cause the deviations in
CD . For 5° finger spreading, the drag coefficient is significantly deviating for most Froude numbers, with de-
viations in CD up to 1.5%. Although some large deviations in CD are observed, there is still a clear distinction
between the models with 5° and 10° finger spreading. This leads to the conclusion that a finger spreading of
5° can generate larger drag forces than a spreading of 10°. This indicates that the used immersion depth of
0.31 m was sufficient to find differences in drag acting on arm models with varying finger spreading.

2.5. Conclusion
Experiments on the circular cylinder found surface piercing effects that were in agreement with Hoerner
(1965). The parabolic shape in CD,M for the circular cylinder was assigned to the surface piercing, as the drag
coefficient for circular cylinders is independent of Reynolds number for the investigated range of Reynolds
numbers. A similar parabolic shape in CD,M was found for the hand models. This indicated that, in the
absence of free surface, Reynolds number independent effects on CD,M are expected as well. This observation
matches with those of previous research by e.g. Takagi et al. (2001), who showed that the drag coefficient of a
hand model is independent of Reynolds number.

The effects of immersion depth were investigated. Experiments for one finger spreading, with varied
immersion depth found significant differences in CD . However, the distinction in generated drag forces for
different finger spreadings remained unchanged. This indicates that only a small immersion depth is needed
to find differences in drag between the different arm models.

The error bars for the repeated experiments were found small. The smallest and largest errors in CD

were around 0.05% and 0.4% of the mean value, respectively. This indicates that effects of random errors are
negligible and experiments are very well repeatable. Therefore, the effects of fluctuations in the fluid flow and
external vibrations are negligible in the determined time-averaged forces and moments. For this reason, the
used experimental setup is considered sufficient for finding small differences in forces and moments that act
on the arm models.

The towing tank research showed that an optimum in drag coefficient arises for small finger spreadings. A
hand with 5° finger spreading is responsible for around 1.1% to 1.7% larger drag compared to closed fingers.
The drag coefficient decreases for spreadings >10°, where for a largest spreading of 20° the decrease in CD,M is
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about 1.5% compared to closed fingers. The dependency of drag on finger spreading did no completely agree
with the work of van Houwelingen et al. (2016). Their wind tunnel experiments found an optimum in CD and
CM for 5° and 10° finger spreading, respectively. And the numerical work found optima in CD,M for both 10°
and 20° finger spreading.





3
Finger spreading: abstract modelling

Chapter 2 investigated the effects of finger spreading by use of different 3D-printed arm models. This gave a
realistic reproduction of the hand of a swimmer in different configurations. The increase in drag is explained
by the enhanced obstruction in the fluid flow provided by slightly opened fingers. This is in analogy to the
drag experienced by a porous disk, where small porosities can enhance the drag (Theunissen et al., 2016).

The experiments on the full scale arm models from chapter 2 were both time and money consuming,
which makes the exploration of more simplified shapes interesting. Therefore it is investigated how a hand
with finger spreading can be described more abstractly, such that simple, mathematically well described 2D
geometries can be created for further research. This chapter looks into simple geometries usable for this
purpose.

Hands with finger spreading are represented by circular disks that have well-defined shapes cut into it
(slotted disks). CFD simulations in ANSYS Fluent are carried out to look into the effects of drag for different
slotted disks. The first part of this chapter looks into the analogy between hands with finger spreading and
circular disks. Then simulations are carried out around ordinary circular disks, as validation of the simulation
methods. Hereafter, the used slotted disk geometries are described, whereafter the simulation results are
discussed. Finally, conclusions are drawn whether slotted disks can represent hands with finger spreading.

3.1. Disk-hand analogy
A hand is relatively thin and has no streamlined shape, it is expected that contributions of viscous drag to
the total drag are small. Then in the absence of a free-water surface only influences of pressure drag are
experienced by the hand. This is in analogy to the experienced drag for circular disks, where Nakayama &
Boucher (1998) show that contributions of viscous drag are negligible for a circular disk. A circular contour
can be drawn around a hand with 0° finger spreading, hence as a first approach, a hand with closed fingers is
represented by a circular disk. Similarly, a hand with spread fingers is enclosed by a circular contour in which
slots are cut to account for the finger spreading. The slotted disks discussed in section 3.3 are created for the
purpose of abstractly describing finger spreading, examples of slotted disks are presented in figure 3.8. This
section gives information on the flow around circular disks. Furthermore, the effects of porosity in perforated
disks are discussed.

3.1.1. Flow around a circular disk
Figure 3.1 illustrates the flow field around a circular disk. Here a stagnation point exists at the inflow side of
the disk, resulting in a high pressure relative to the free stream. A boundary layer grows on the front of the disk
from the centre to the edges. Negligible boundary layer growth takes places on the edges of the disk, as the
disk is thin in comparison to its diameter. Therefore the flow separates immediately from the edge, resulting
in a broad wake with low pressure compared to the free stream. The pressure differential over the disk results
in a contribution of pressure drag, while effects of viscous drag are negligible (Nakayama & Boucher, 1998).

Figure 3.2 shows the drag coefficient for a circular disk as function of Reynolds number (Hoerner, 1965).
This figure summarizes data coming from several wind tunnel experiments all showing that CD ≈ 1.17 for
104 ≤ Re ≤ 106. For a hand palm width of 0.1 m, Reynolds numbers are of the order Re ∼ 105 during actual
swimming. Therefore, in this CFD research towards a hand-disk analogy, simulations are performed at three

21



22 3. Finger spreading: abstract modelling

Figure 3.1: Illustration of a fluid flow normal to a circular disk. Modified from Crowe et al. (2008).

Figure 3.2: Drag coefficients for circular disks (in normal flow) as a function of Reynolds number (Hoerner, 1965).

Reynolds numbers ranging from 104 ≤ Re ≤ 106. The simulations are used to see if the value CD ≈ 1.17 can be
retrieved, and if the drag coefficient is independent of the Reynolds number.

3.1.2. Effects of porosity
The enhanced drag found for a small finger spreading has similarities with the drag for a porous plate. Batch-
elor (2000) considered a flat rigid plate with holes drilled into it that is subjected to a steady flow velocity V .
Then fluid discharges from the rear of the plate as a number of jets which ultimately mix with the surround-
ing fluid. In the wake, the velocity equals that of the free stream velocity V again (Batchelor, 2000). A simple
model based on a momentum balance argument found the drag force acting on a perforated plate as

FD = 1

2
ρV 2(1−β)2, (3.1)

here the porosity β corresponds to the perforated fraction of the plate (Batchelor, 2000). Equation 3.1 indi-
cates that the drag coefficient decreases for increasing porosity, which is illustrated in figure 3.3a. Next to the
simple momentum balance argument of Batchelor (2000), Theunissen et al. (2016) performed experimental
research to the modelling of porosity by a continuous distribution of (singular) point sources on the surface
of a disk. Figure 3.3a shows experimental data taken from Theunissen et al. (2016), where six different hole
topologies were investigated with porosities β ranging from 0.05 to 0.50. Theunissen et al. (2016) shows a
similar trend of decreasing drag coefficients as the model of Batchelor (2000). However, the decrease in CD

for the model of Batchelor (2000) is much steeper, this is likely a result of the infinite plate size and the con-
tinues distribution of the holes in this model. From Theunissen et al. (2016) follows that a small porosity
of β = 0.05 can increase the drag coefficient with 3%, compared to a closed circular disk. For β = 0.10, the
drag coefficient equals that of a closed circular disk again, whereafter CD decreases further for β> 0.10. Drag
coefficients were found independent of Reynolds number for the investigated range 0.4 ·105 < Re < 1.7 ·105.
Hole topology has large effects on the drag coefficient, resulting in variations of CD up to 5% for a constant
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Figure 3.3: The relationship of drag coefficient for different models. (a) Shows the effects of porosity based on Batchelor
(2000) and Theunissen et al. (2016). (b) Shows the effects of varying the ratio d/D (finger spacing to finger thickness)
(Westerweel et al., 2016).

porosity. The findings of Theunissen et al. (2016) indicate that the drag of porous disks is caused by a combi-
nation of the pore flow and the separated flow around the disk. It is likely that similar flow behaviour is found
around slotted disks, where the slots act as a porosity.

The model of Westerweel et al. (2016) can be used as an alternative to describing finger spreading with
porosity. Here a pore flux is assumed proportional to the pressure difference across a disk, where the flux is
also determined by the geometry of the interdigit region. In this way, finger spreading is represented by four
equispaced cylinders with spacing d and diameter D . The corresponding relation between drag force and
ratio d/D is presented in equation 1.5. Figure 3.3b gives an illustration of the relation between the effects on
CD and the ratio d/D . Here a small spacing of d/D = 0.3 increases the drag coefficient with 4%, while CD

decreases with 6% for d/D = 1. Similarity in geometry between the slotted disks and the model of Westerweel
et al. (2016) is observed, which suggests that the drag on the slotted disks can be described by the flux through
the interdigit region.

3.2. Simulation on circular disks
This section describes the CFD simulations carried out on circular disks as part of a validation of the sim-
ulation methods. The used computational domain and simulation settings are discussed, and the effects
of grid refinement and turbulence modelling are investigated. Finally, conclusions are drawn regarding the
suitability of the used simulation methods for further use on the slotted disks.

3.2.1. Computational domain
The circular disk is modelled as two-dimensional and infinitely thin, as this makes grid generation easier
compared to a three-dimensional disk. Two-dimensional modelling of the disk is expected to be suitable
based on the observed fluid flow illustrated in figure 3.1, where no viscous drag is observed due to the small
thickness of the disk.

In principle, simulations around circular disks can be carried out in a two-dimensional domain by use
of the axisymmetry condition. However, simulations around the slotted disks require a three-dimensional
computational domain, as they have an axisymmetrical shape. In principle, simulations along all the slots of
the slotted disks are not required to obtain insight in the drag coefficients, as the slots have a repeating pat-
tern over the circumference of the disk. However, to generate a computational domain that is also suitable
for future simulations around asymmetric geometries, a three-dimensional computational domain is used
where the flow around the complete (slotted) disk is simulated. Therefore for the purpose of validating the
simulation methods, the three-dimensional domain from figure 3.4a is used for simulations around the cir-
cular disks. This domain is subdivided into 3x3x3 blocks. The two-dimensional disk is placed in the centre of
the domain, as shown in figure 3.4b. The fluid flow is directed normal to the disk, where flow variables near
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(a) The complete three-dimensional computational domain
subdivided into 3x3x3 blocks.

(b) Part of the computational domain that shows the
location of the circular disk.

Figure 3.4: Different views of the computational domain, the fluid flow is directed normal to the disk with velocity V .

Table 3.1: Number of cells for the different used grids as part of a grid refinement study.

Grid Number of cells
Coarse 2 ·105

Medium 6 ·105

Fine 2 ·106

the disk and inside its wake are changing with large gradients. Small cell sizes are required to resolve the large
gradients in the flow. The used computational domain allows for small cell sizes around the disk and in its
wake, making the flow in these regions well described. Gradients in the flow are smaller further away from
the disk, therefore larger cells are used in these regions to save computational time.

Figure 3.5a shows a front view of the mesh created in the plane intersecting the disk, where figure 3.5b
zooms in around the disk. On the surface of the disk an unstructured grid is used which small cells, the cells
grow larger from the edge of the disk to the rectangle that encloses it.

Figure 3.5c shows a side view of the grid, where fluid flows from top to bottom. Cells become smaller from
the domain inlet to the disk, and after the disk they grow larger again. In this way, the fluid flow in the near
wake and stagnation point of the disk is well described, where gradients in the flow are large. Meshes for three
different grid refinement levels are investigated as part of a grid refinement study. Table 3.1 gives an overview
of the used grids and their number of cells.

3.2.2. Turbulence modelling and wall Layers
For the current CFD study, fluid flow is simulated normal to a two-dimensional circular disk in the range of
104 ≤ Re ≤ 106. Chaotic flow with a highly turbulent wake behind the disk will be observed for the investigated
Reynolds numbers. The turbulence is modelled by means of the the Reynolds-averaged Navies-Stokes (RANS)
equations. Those RANS equations decompose the velocity, pressure and force components in a mean and
fluctuating part (Nieuwstadt et al., 2016). Turbulence models are needed for closure of the system of RANS
equations. For this closure, an extra equation describing the change in turbulence kinetic energy k is added
(Nieuwstadt et al., 2016). Several two-equation closure models exist and are implemented in ANSYS Fluent.
These models assume that two independent scales are needed to statistically describe turbulence. Commonly
the k−ε and k−ω are used for turbulence modelling, of which several variations exist, below a description of
the turbulence models is given.

• k −ε: this model solves a transport equation for the turbulent kinetic energy k and a similar transport
equation for the turbulent dissipation ε (the rate at which turbulent kinetic energy is converted into
thermal energy). The model is often useful for free-shear layer flows with relatively small pressure gra-
dients (Frei, 2017; ANSYS, 2009). A free-shear layer develops between the free stream velocity and the
near zero velocity occurring within the wake of a circular disk. Because of the shape of the disk, a strong
pressure gradient and strong flow separation will be observed in its wake, making the k−εmodel likely
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(a) (b)

(c)

Figure 3.5: Presentation of different views of the grid. Where (a) shows a front view with the disk in the centre and (b)
gives a close up view of the disk in front view, here fluid flows normal to the disk. In (c) a side view is shown, where cells
become larger further away in the wake, fluid flows from top to bottom.
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not to be suitable. Another drawback is that the model does not behave well in the logarithmic region
of the boundary layer, which requires the implementation of wall functions.

• Realizable k −ε: this model uses an improved equation for the turbulent dissipation rate ε. This im-
proves the simulation of flows involving boundary layers under strong adverse pressure gradients or
separation (ANSYS, 2009). This makes the model more suitable for simulations around a circular disk
than the standard k −ε model, where strong adverse pressure and separation occur close to the disk.

• k −ω: in this model a transport equation for the specific dissipation rate ω= k/ε is solved, rather than
the dissipation rate ε. A drawback of this model is its sensitiveness to the inflow boundary conditions.
Therefore a modification to this model is suggested that uses the k −ω formulation for the inner parts
of the boundary layer and k−ε in the free-stream, the so called k−ωmodel SST (Shear Stress Transport)
(Frei, 2017; ANSYS, 2009). In this way the model behaves well for adverse pressure gradients and flow
separation, which are observed for the fluid flow around a circular disk.

These different turbulence models will be applied to the simulations on the circular disks, such that a suitable
turbulence model can be chosen for the simulations around the slotted disks.

The front and rear of the two-dimensional disk are modelled as walls. On the front of the disk a boundary
layer grows according to the principles figure 1.2. Fluid particles that collide on the front of the disk move
near the outer edge. The fluid particles experience shear stresses as they move over the disk, which results in
boundary layer growth. As the disk is infinitely thin, the flow separates immediately as it reaches the outer
edges. The turbulent boundary layer on the front of the disk either needs to be in in the viscous sublayer or
in the turbulent region, such that either the viscous stresses or the turbulence stresses have to be described
(Nieuwstadt et al., 2016). Insight in the wall layers is obtained by studying the dimensionless wall distance
y+. For 5 < y+ < 30 the buffer layer is observed, hence a wall distance y+ is required outside this interval to
properly describe the fluid stresses (Nieuwstadt et al., 2016). The wall distance y+ is calculated as

y+ = y
u∗
ν

, (3.2)

here y is the distance to the nearest wall and u∗ is the friction velocity at the nearest wall. The friction velocity
u∗ gives information on the flow velocity in the boundary layer and is defined as

u∗ =
√
τw

ρ
, (3.3)

here the wall shear stress τw is the shear stress in the layer of fluid next to the wall. This shear stress is a
result of the friction created by the stationary wall on the moving fluid. The wall shear stress is a quantity that
follows from the simulations.

3.2.3. Simulation settings and boundary conditions
Table 3.2 gives an overview of the important simulation settings and dimensions of the disk and domain.
Furthermore, table B.1 in appendix B gives more detailed numerical settings.

Only time-averaged properties of the flow are required in order to obtain insight in the drag acting on
the disks. For this reason a steady-state solver is used. This has as advantage that the computational time is
reduced, compared to transient solving. However the time-averaging deprives insight in instantaneous flow
fields.

The front of the domain from figure 3.5a is used as velocity inlet. The fluid flows out of a plane that is
opposite to the inlet, at this boundary a pressure outlet is defined at atmospheric pressure. The four outer
planes that connects the inlet and outlet have a symmetry boundary condition. In this way fluxes, velocity
components and other variables are set to zero at the boundary. The symmetry condition treats the flow as
if the flow patterns mirror symmetrically around the boundary, which reduces computational time (ANSYS,
2009). A no-slip wall boundary condition is used on the circular disk, this models the disk as a solid on which
all velocity components are set to zero.

3.2.4. Validation
Effects of grid refinement, turbulence modelling and Reynolds numbers are investigated to validate the simu-
lation methods. Figure 3.6a presents the found drag coefficients for simultaneously varied grids and Reynolds
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Table 3.2: Main settings of the simulations, where table B.1 in appendix B gives details of the numerical settings.

Description Symbol Value Unit
Disk diameter D 1.4 m
Domain width - 20.5 m
Domain height - 20.5 m
Domain length - 13.8 m
Density of fluid ρ 1.225 kgm−3

Dynamic viscosity of fluid µ 1.7894·10−5 kgm−1 s−1

Reynolds numbers Re/105 0.2, 1.0, 1.8 -
Turbulent intensity - 5 %
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Figure 3.6: Found drag coefficients for circular disks. (a) Shows CD as part of grid refinement study. The required compu-
tational time for the coarse, medium and fine grid were around 1 hour, 4 hours and 13 hours, respectively. (b) Shows CD
as part of a turbulence modelling study.

numbers. Those simulations used the k−ω SST model. It appears that CD is independent of Reynolds number
for 0.2 ·105 < Re < 1.8 ·105, which is in agreement with the experimental data from figure 3.2. The drag coef-
ficient CD clearly converges for the finest grid size. The required computational time for the coarse, medium
and fine grid were around 1 hour, 4 hours and 13 hours, respectively. The required computational time for the
medium grid is significantly lower than for the fine grid, while the found drag coefficients are comparable,
therefore it is recommended to perform simulations for the slotted disks on the medium grid.

Figure 3.6b gives an overview of found drag coefficients for different turbulence models at Re = 1.0 ·105,
where both the coarse and medium grid are considered. Figure 3.6b shows that found drag coefficients are
strongly dependent on the used turbulence model, which can give variations in CD up to 15%. Similar effects
of turbulence models are found for the two grids, with k−ε giving largest CD and realizable k−ε giving lowest
CD . Both the realizable k − ε and k −ω SST models are expected to be suitable for simulations around two-
dimensional circular disks. On the medium grid, the realizable k − ε models found CD = 1.25, this gives a
difference of 7% compared to the experimental data from figure 3.2. Similarly, the k −ω SST model found
CD = 1.31, giving a difference of 11% compared to the experimental data. Simulations on the slotted disks
will be performed with both turbulence models, with the remark that the realizable k − ε model is likely to
give more accurate results, because realizable k−ε found better agreement with experimental data than k−ω
SST.

Two contour plots are presented to illustrate that the fluid flow matches figure 3.1. Figure 3.7a shows
the velocity field on a plane through the centre of the circular disk, while figure 3.7b shows the variation of
static pressure. These two contour plots are in agreement with figure 3.1. They show there is zero velocity
and a large static pressure in the stagnation point. The velocity decreases significantly in the wake near the
disk, whereafter the velocity starts stabilizing again to the free stream velocity further downstream in the
wake. Note that the free stream velocity is not yet obtained at the outflow of the domain, this could give
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(a) (b) (c)

Figure 3.7: Contour plots on a plane through the centre of the circular disk; (a) shows the velocity magnitude and (b) the
static pressure. (c) Presents the the dimensionless wall distance y+ at the front of the disk.

a pressure increase in the wake, resulting in too low drag forces experienced on the disk. Simulations for
an increased domain length were carried out to look into its influence on the experienced drag forces. An
increased domain length did not have effects on the drag forces. As the larger domain required significantly
more computational time, it is chosen to perform further simulations for the slotted disks on the original
domain that was illustrated in figure 3.4.

Figure 3.7c shows that in general the dimensionless wall distance is y+ > 40 on the front of the disk. Only
around the centre of the disk lower values of y+ are obtained, because here the friction velocity u∗ = 0 ms−1,
resulting in y+ = 0 according to equation 3.2. As y+ > 40, the boundary layer is located inside the turbulent
region, where the viscous stresses are negligible compared to the turbulence stresses. A dimensionless wall
distance y+ < 5 can be reached on the whole front of the disk by drastically refining the grid. More accurate
values of CD are expected when y+ < 5, as this would model the viscous stresses acting on the disk. However,
due to the required increase in computational time there is settled for the current simulation results.

So in conclusion, the simulations for the slotted disks will be carried out on the medium grid, that contains
6 · 105 cells. The same computational domain as shown in figure 3.4 will be used. The effects of both the
realizable k −ε and k −ω SST models will be investigated.

3.3. Simulations on slotted disks
Previously, a circular disk was used to represent a hand with 0° finger spreading. Finger spreading is intro-
duced by creating slots on the edges of the disk. The slots are shaped in a mathematically well described
manner, such that hands with finger spreading are represented more fundamentally. This section describes
the created slotted disks and the corresponding simulation results. Finally conclusions are drawn on the
validity of modelling hands with finger spreading by means of the slotted disks.

3.3.1. Geometric properties
Slots are cut along the edges of a circular disk, the slot width varies in a similar way as for a hand with finger
spreading, illustrated with the ratio d/D in figure 3.9. As the slot width increases, the diameter of the disk
needs to increase simultaneously, to maintain a constant projected area A. Also the slot height needs to vary
simultaneously to maintain a constant ratio of slot height to disk diameter. Furthermore, for realism the
smooth shape found along the trajectory of spread fingers is preferably maintained for the slotted disks. A
Gaussian is found to satisfy all these criteria This function has a bell curved shape and is described by

f (x) = ae−
(x−b)2

2c2 , (3.4)

where a is the height of the curve, b is the position of the centre of curve and c controls the width of the curve.
Slotted disks are created by subtracting selected Gaussians from the edge of a circular disk. This results in
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(a) c = 1.75 (b) c = 3.00 (c) c = 4.50

Figure 3.8: Illustration of three slotted disks with varying gap width c.

Table 3.3: Geometric properties of the slotted disks. Here c characterizes the gap width, R is the radius of the disk, d/D
gives a ratio of spreading as illustrated in figure 3.9 and β= (Aout − Ai n )/Aout is the porosity.

c R d/D β

Disk 1 1.75 84.53 0.20 0.14
Disk 2 3.00 89.05 0.34 0.22
Disk 3 4.50 94.75 0.56 0.31
Hand 0° - - 0.00 0.00
Hand 5° - - 0.23 0.04
Hand 10° - - 0.44 0.09
Hand 15° - - 0.65 0.13
Hand 20° - - 0.82 0.16

slotted disk with x- and y-coordinates given by

x = (
R − f (x)

)
cosθ, (3.5)

y = (
R − f (x)

)
sinθ, (3.6)

here R is the radius of the disk and θ the angle for which it exists. For the sake of symmetry, slots are created
over the entire arc of the disk, i.e. 0 ≤ θ ≤ 2π. A hand with four spread fingers is observed to occupy approx-
imately a third of a circle. Therefore it is chosen to cut ten slots into a full circle to have geometric similarity
with a hand with finger spreading. For a hand it is observed that the finger length is approximately the radius
of a circle that surrounds the hand. As the slots are present over the whole edge of the circle it is chosen to
give them a height equal to half the circle radius, i.e. a = R/2. Figure 3.8 gives several examples of slotted
disks that are created in this way. The positions of the slots are kept constant, i.e. b = 0. When the slot width
varies by changing c, the radius R needs to change simultaneously to keep the surface area constant.

Figure 3.9 gives an overview of geometric properties that are found for both the slotted disk models and
the hand models used in chapter 2. Here d and D correspond to the geometry of the slots and finger spread-
ing. A ratio d/D is presented in table 3.3 for both the slotted disks and hand models. The areas Ai n and Aout

correspond to the surface areas enclosed by respectively the solid and dashed lines. A porosity is defined as
β= (Aout − Ai n)/Aout , which is presented in table 3.3.

The topology of the slotted disks has on one side similarity with that of a perforated disk, where slot acts
as a porosity. However, the porosity of the slots is not equally distributed over the disks as the holes in a
perforated disk. This gives the expectation that effects of obstruction in the fluid flow are different for the
slotted disks and perforated disks. Furthermore, the slots have a similarity with spaced cylinders. Analogy
between the slotted disks and spaced cylinders seems a more realistic representation because the slot width
can be varied in a same fashion as the spread fingers. For this reason, variations in d/D are investigated for
the slotted disks. For the investigated ratios d/D from table 3.3 the model of Westerweel et al. (2016) gives
expectations in drag increase of respectively 6.4%, 6.9% and 3.9% compared to closed fingers.

3.3.2. Results and discussion
The same simulation methods as for the circular disks from section 3.1 are used. Simulations are performed
on the medium grid, where effects of both the realizable k − ε and k −ω SST models are investigated. The
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(a) (b)

Figure 3.9: Geometric properties; (a) for slotted disks, (b) hands with finger spreading. Here d/D gives information on the
spreading for the fingers and slots. Ai n and Aout correspond to the surface areas enclosed by the solid and dashed lines,
respectively.

required computational times were around 8 hours, this is an increase of 4 hours in comparison to the sim-
ulations for the circular disks in section 3.2. An overview of drag coefficients following from simulations is
presented in figure 3.10, here CD is given for varying ratios d/D . It appears that the two different turbulence
models lead to opposite effects. Realizable k − ε shows an increase in CD of 1% for increasing d/D , while
k −ω SST shows a decrease in CD of 2% for increasing d/D . Furthermore, significantly lower values of CD are
observed in comparison to the closed circular disks. Contour plots for the slotted disks appeared to be similar
to those in figure 3.7.

The theoretical model from Westerweel et al. (2016) gives expected drag increases of respectively 6.4%,
6.9% and 3.9% for the investigated ratios of d/D from table 3.3. This trend is not found in the simulation
results of figure 3.10 for either of the used turbulence models. This indicates that the flow around the slotted
disks does not correspond to the model of Westerweel et al. (2016).

Theunissen et al. (2016) looked into the effects of porosity for perforated disks. For the investigated porosi-
ties of the slotted disks from table 3.3 (β = 0.14,0.22,0.31) the drag coefficients would decrease with respec-
tively 5.5%, 11% and 17%, according to Theunissen et al. (2016). The simulations with the k −ω SST model
show a similar trend, where the drag coefficients are decreasing as the porosity increases. However, the de-
creases in CD for the slotted disks are significantly smaller compared to the perforated disks of Theunissen
et al. (2016). This is could be caused by the unevenly distributed porosity for the slotted disks, in compar-
ison to the evenly distributed porosity for the perforated disks. The k − ε model shows opposite behaviour
that does not correspond to the drag coefficient of perforated disks. As the simulation results for different
turbulence models are contradictory, it is uncertain whether the slotted disks have an analogy with porous
disks.

The contradictory simulation results give concerns whether the used simulation methods are suitable for
the slotted disks. It appeared that the used simulation methods were valid for the circular disk, although
differences in CD were fairly large compared to experimental data. For future research, several modifications
are recommended to make to the simulations that might improve the results. By giving the disk a small
finite thickness, boundary layer growth is introduced on its edges. This would result in a more realistic flow
separation from the edges, resulting in a more accurate wake formation and thus more accurate drag forces.
Another improvement could be found by refining the grid significantly, in a way that the dimensionless wall
distance y+ < 5 everywhere on the disk. In this way the simulations take the viscous stresses acting on the
disks into consideration. This gives a more complete description of the fluid flow, therefore it is expected that
simulation results will come in better agreement with experimental results when y+ < 5 on the disk.

3.4. Conclusion
The simulations around circular disks found drag coefficients comparable to experimental research, being
around 7% - 11% off. The medium grid that contains 6 ·105 cells was found sufficient to solve the flow around
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Figure 3.10: Drag coefficients following from the simulation on the slotted disks, presented as function of the ratio d/D .
Results of both the realizable k −ε and k −ω SST model are presented.

a circular disk. Furthermore, effects of CD appeared to be independent of Reynolds number. The same sim-
ulations were expanded to slotted disks that represented finger spreading. For the slotted disks, opposite
trends in CD were observed for different turbulence models. Furthermore, the increases and decreases in CD

appeared to be small, being respectively 1% and 2% for the realizable k −ε and k −ω SST model, respectively.
The simulations around slotted disks did not show a similarity in behaviour with the drag experienced by
perforated disks. Also no similarity in CD was found for the slotted disks and the abstract finger spreading
model from Westerweel et al. (2016). From the observations in the simulations results can be concluded that
simple simulations on slotted disks are not a viable option to represent hands with finger spreading.

For future research it is recommended to investigate the effects on CD for the slotted disks by use of exper-
imental research. Wind tunnel experiments can give quick insight in the behaviour of CD for different slotted
disk models. By means of those experimental results, statements can be made regarding the validity of the
found simulations results and used simulation methods.





4
Cupped hands: at constant angle of attack

Chapter 2 showed that a swimmer can increase its propulsive forces by spreading its fingers, where a spread-
ing of 5° lead to the largest increase in drag. Besides the effect of finger spreading, it is expected that cupping
the hand influences the propulsive forces as well. This chapter describes the experimental procedure used
to investigate the effect of cupping the hand. Starting by describing the characteristics of five full scale 3D-
printed arm models that were created for this purpose. Hereafter the experimental facility (low speed wind
tunnel) and force measuring system are described. Furthermore, the experimental methods and the results
generated from those experiments are discussed in detail. Finally, conclusions are drawn regarding the effects
on drag for varying hand cuppings.

4.1. Cupped hand models
The five full scale 3D-printed arm models consist of an equal forearm, while the hand cupping is varied.
All cupped hands have a 5° finger spreading, since towing tank experiments on models with varying finger
spreading found this optimal. The models are created with the open source 3D computer program Make-
Human, that is generally used for the prototyping of human models (The MakeHuman team, 2016). The
program uses a detailed human skeleton including its bones and joints. The cupped shapes are created by
projecting the end points of the phalanges (digital bones in the hand) on known curved shapes. The thumb
is hereby fixed in its neutral (abducted) position since Schleihauf (1979) showed that thumb position on its
own already has a large effect on the drag, while the present study only focusses on the effect of the fingers.
The five arm models are created by a 3D-printer with a printing resolution of 120 µm (Shapeways, 2018).

Figure 4.1 shows the five created models, for convenience the different models are respectively called:
handball, basketball, neutral, flat and reverse, the characteristics of those models are given below.

• Handball: the end points of the phalanges lie on a sphere with the diameter of a handball (D = 0.19 m).
The sphere is placed at the hand palm side, with the end point of the middle finger’s phalanx that is
nearest to the hand palm fixed on it. From here the positions of all other phalanges are modified.

• Basketball: equal to the handball model, with as difference a used sphere with the diameter of a bas-
ketball (D = 0.24 m).

• Neutral: the phalanges are in a neutral position as generated by MakeHuman, this can be considered a
hand at rest.

• Flat: a plane perpendicular to the hand palm intersects the end point of the middle finger’s phalanx that
is nearest to the hand palm. All end points of the other phalanges are projected on this same plane.

• Reverse: equal to the basketball model, with as difference a sphere with D = 0.24 m placed at the rear
side of the hand, creating a hand with its fingers in a reverse direction. White (2011) shows that for a
flow over the convex side of a cup a strong decrease in drag coefficient occurs compared to a flat disk.
Therefore a strong decrease in drag coefficient is expected for the reverse hand as well.

The five arm models have an equal surface area, however the frontal projected area A changes by cupping the
hand. For the calculation of force coefficients the projected area of the neutral model is used as a reference,
i.e. effectively values CD A/Aneutr al are compared. In this way, insight in the performance of all cupped hands
relative to the neutral hand is obtained.

33
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Figure 4.1: Side view of cupped hand models, from left to right respectively the handball, basketball, neutral, flat and
reverse model are shown.

Table 4.1: Characteristics of the low speed wind tunnel from Eindhoven University of Technology (Willemsen, 2016).

Maximum velocity 15.5 ms−1

Test section height 1.1 m
Test section width 0.7 m
Test section length 8 m
Inlet turbulence level 5%

4.2. Experimental setup
Comparison of the towing tank research from chapter 2 with the wind tunnel research from van Houwelin-
gen et al. (2016) showed that towing tank experiments are not necessarily required to find small differences
in drag acting on arm models. Wind tunnel experiments have several advantages over towing tank experi-
ments. An experimental wind tunnel campaign is less time intensive, as there is no equivalent of a free-water
surface present where disturbances appear. Therefore no waiting time is required to make the disturbances
stabilize before a new experiment is started. Also there are no limitations in the measuring time, as air flows
continuously along the arm models. Furthermore, the forces on the arm models are reduced as the air flow
is less dense, this reduces the risk of mechanical failure during the experiments. Therefore the arm models
are now fully subjected to a fluid flow, which takes all effects of finger/forearm interference into account. For
those reasons the experiments on cupped hands are done in a wind tunnel. This section describes the wind
tunnel and force measuring system that are used to look into the effects of cupped hands.

4.2.1. Wind tunnel
In a wind tunnel the model is at a fixed position in a test section, aerodynamic forces are introduced as air
flows along the model. Reynolds number scaling is used to enable the comparison of experiments performed
in air and water. A closed-loop low speed wind tunnel from the department of Turbulence and Vortex Dy-
namics at Eindhoven University of Technology is used for this research. It reaches velocities up to 15.5 ms−1,
giving a Reynolds number Re ∼ 105 around the hand palm for a characteristic diameter D = 0.1 m, which is in
accordance with a hand moving through water at 1 ms−1. This is two times lower than the Reynolds number
reached during a swimming stroke and the towing tank experiments. The previous towing tank research in-
dicated that CD is not dependent on Reynolds numbers ranging from 0.2 ·105 < Re < 1.9 ·105, for this reason
the limitations in wind tunnel velocity should be no limitation to finding differences in drag coefficients for
the arm models. Further characteristics of the wind tunnel are given in table 4.1. Appendix C describes the
calculation of flow velocity based on a measured pressure differential over the contraction of the wind tunnel.

Blockage effects
For the used wind tunnel and arm models the blockage ratio φ= 5.5%, this blockage ratio is on the boundary
ofφ< 5% where Barlow et al. (1999) suggested to not use blockage correction factors. Besides, all arm models
have an almost equal projected area, this gives the expectation that occurring blockage effects are equal for
all arm models. Therefore, without applying blockage corrections the experiments still give insight in the
relative performance of the arm models. For this reason no blockage correction factors are used.



4.2. Experimental setup 35

(a) (b)

Figure 4.2: (a) Gives a schematic overview of the force sensor with l = 0.1 m and (b) gives a picture of an arm model
connected to it. Air flows from left to right while it generates a drag force, lift force and a drag induced moment on the
arm model.

4.2.2. Force measuring system
A force measuring system is attached to the ceiling of the measurement section. It consists a configuration
of two identical three-axis load cells that have a measuring capacity of 10 N in all three Cartesian directions
(ME-Meßsysteme, 2016). Individual load cells have a measuring accuracy of 1%, hence their combination
has one of 2%. By placing the two sensors in a tandem arrangement as shown in figure 4.2, the drag force, lift
force and drag induced moment on the models can respectively be determined as

FD = Fx,1 +Fx,2, (4.1)

FL = Fy,1 +Fy,2, (4.2)

My = (Fz,2 −Fz,1)l . (4.3)

Figure 4.2b shows that the force sensor is located inside the measuring section itself. The rectangular shaped
force sensor is considered a bluff body, an air flow along it introduces significant drag forces. Especially
forces Fx,1 and Fx,2 are introduced as the flow is assumed purely uniform in the x-direction. These forces are
considered independent of the attached arm model, as no interference between the flow around the force
sensor and arm models is expected. Willemsen (2016) investigated the velocity profile along the height of the
currently used wind tunnel. Figure 4.3 shows there is a boundary layer thickness of around 0.15 - 0.20 m. The
force sensor has a total height of 0.05 m, hence it is completely immersed in the low velocity boundary layer.
The arm models are connected to the force sensor with a cylindrical shaped adapter with a height of 0.04 m.
Due to the spacing given by the adapter it is assumed that the low velocity flow along the force sensor is not
interfering with the flow around the hands. As a result, forces acting on the hands are only a result of the
uniform fluid flow along them.

Statically indeterminate
A possible complication is found in the force measuring system as the two load cells are connected with a
rigid beam. This makes the construction statically indeterminate, as there are more unknown internal forces
than equilibrium equations. The construction is restricted to deform when external forces and temperature
variations are introduced. Deformations caused by external forces and temperature fluctuations are respec-
tively given as ∆LT and ∆LF , where

∆LF = F L0

AE
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Figure 4.3: The velocity profile along the height of the wind tunnel. It can be noticed that the boundary layer thickness at
the top of the wind tunnel is slightly larger than at the bottom Willemsen (2016).

and

∆LT =αL0∆T.

Here F is the applied force and ∆T the experienced temperature difference. Furthermore, L0, A, E and α

correspond to the initial length, cross-sectional area, elastic modulus and coefficient of thermal expansion of
the beam, respectively. The used load cells have a rated displacement of 0.1 mm at the maximum force (ME-
Meßsysteme, 2016). The expected deformations∆LF and∆LT are much smaller than the rated displacement.
For this reason it is expected that the deformations are not influencing the measured forces, hence it is de-
cided to continue the experiments with this statistically indeterminate force measuring system.

The 2% accuracy of the force measuring system could be improved by using one load cell instead of the
tandem arrangement. In this way a measuring accuracy of 1% remains, however insight on drag induced mo-
ments is no longer available, and effects of crosstalk in the measured forces are enhanced. As an alternative,
the tandem arrangement can be improved by making it statically determinate. Replacing one of the supports
that connects the rigid beam to the load cells by a roller, is an option to make it statically determinate.

4.3. Experimental methods
For all arm models the experiments are performed at a variety flow velocities, i.e. 0.4 ·105 < Re < 105. Mea-
surements are performed in an order of increasing velocity. In this way boundary layer development takes
place similarly around the different arm models, with no influences of velocity induced hysteresis. By wait-
ing 2 minutes after increasing the velocity it is made sure that flow velocity is completely converged inside
the tunnel. Hereafter forces and pressure are measured for 5 minutes with a sampling frequency of 205 Hz.
For the handball and basketball models the experiments are performed twice, with remounting the mod-
els in between. In this way the repeatability of the experiments is investigated. The arm models are always
mounted with the hand palm perpendicular to the flow, as previous research showed this position is optimal
for maximizing drag forces (Takagi et al., 2001).

At the start of a measuring campaign, the wind tunnel is first run for 15 minutes such that a constant
air temperature inside the tunnel is obtained. No larger temperature fluctuations than 0.5◦C were observed
during the experiments by following this procedure, hence the flow properties become nearly constant. Both
the density and viscosity of the air are assumed to be constant during the experiments at ρ = 1.18 kgm−3 and
ν = 15.6 ·10−6 m2 s−1. Taking the temperature fluctuations of 0.5◦C into account would lead to variations in
CD < 0.2%, and variations in Re < 0.3%.

4.4. Results and discussion
Forces are measured at varying Reynolds numbers for the different arm models. Corresponding drag and lift
coefficients are presented in figure 4.4. Experiments for the handball and basketball models are performed
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Figure 4.4: A presentation of the drag coefficients (a) and lift coefficients (b) for the different arm models as a function of
Reynolds number. For all coefficients the projected area of the neutral is used.

twice, the repeatability of the experiments is discussed. In figure 4.4b the data points corresponding to re-
peated experiments are presented with markers, with a line plotted through the mean value.

Drag coefficient
Figure 4.4a shows that drag coefficients are following identical trends for all arm models, with a maximum
around Re = 7.5 · 105. The drag coefficient appears to start decreasing for Re > 105, this is possibly due to
the start of a drag crisis around the cylindrically shaped forearm. The existence of a drag crisis could not be
confirmed due to the limited maximum flow velocity. Variations in CD of ∼ 3% are found for the investigated
range of Reynolds numbers, this indicates that CD is approximately Reynold number independent.

The hypothesis that a reverse hand shape is disadvantageous orientation for maximizing propulsion is
confirmed by figure 4.4a, for all Reynolds numbers a significant lower drag coefficient is obtained compared
to the other arm models (≈ 8% lower). The basketball and handball hand shapes tend to follow identical CD

curves, with only small differences in CD for the two lowest Reynolds numbers. This is possibly a result of
the low resolution of the force measurements at low velocities. Similarly, CD curves for the neutral and flat
shapes are following identical trends, for those hand shapes a largest drag is obtained for Re < 0.9 ·105. Those
hand shapes are accountable for 0.4% - 0.9% more drag compared to the cupped hands for Reynolds numbers
ranging from 0.7·105 < Re < 0.9 ·105. For Re > 0.9·105, the differences in CD become very small, it appears that
the basketball model obtains largest drag for further increasing Reynolds numbers, measurements at higher
Reynolds numbers are needed for confirmation.

Lift coefficient
The arm models were orientated with the hand palm perpendicular to the flow. Previous research suggested
that CL ≈ 0 for this orientation. Figure 4.4b presents the lift coefficient for varying Reynolds numbers, it shows
that CL 6= 0 in this orientation. In contrast to CD , no Reynolds number independent effect is observed for CL ,
where |CL | increases for increasing Reynolds number. As the current used angle of attack ϕz is not resulting
in zero lift, there should exist a rotated orientation that gives CL = 0.

Similarity in drag coefficients was found for the pairs handball - basketball and neutral - flat. However,
within those pairs significant differences in CL are observed, around 20% and 10%, respectively. The drag
coefficient for the neutral hand is likely to increase more at zero lift than for the flat hand, while CD for
basketball increases more than for handball. This indicates that drag curves would deviate strongly from 4.4a
when experiments are performed at an orientation where CL = 0.

Repeatability
Experiments are performed twice for the handball and basketball models. Figure 4.4 included the data points
of the repeated experiments. The experiments for the basketball model are very accurately repeated, with
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differences in CD,L smaller than 0.3%. In contrary, for the handball model, large differences in CD up to 1%
are observed. It shows that one of the handball data sets reaches significantly higher drag coefficients than
the basketball, while the other data set reaches significantly lower CD than the basketball model. It appears
that the used force measuring system is not very well suitable to compare drag coefficients of the arm models,
as repeating the experiments can lead to considerably different conclusions. Furthermore, deviations in CL

are even larger for the handball model, being of an order 10%. However, there is still a clear distinction
between the CL curves of all arm models.

4.5. Conclusion
This chapter investigated the effects of hand cupping on drag and lift coefficients. Firstly, the reverse hand
shape was found strongly disadvantageous, leading to around 8% less drag compared to the other hand
shapes. The research indicates that a flat and neutral hand are preferred for maximizing drag forces. These
two hand models lead to approximately 0.4% to 0.9% larger drag, compared to the basketball and handball
hand shapes.

In contrary to previous research, zero lift was not found while the hand palm was orientated perpendic-
ular to the flow. For the different arm models, the observed differences in CL are large in comparison to the
differences in CL . It is unlikely that the currently found trend in CD for the arm models is maintained at vary-
ing angles of attack. Unfortunately the used force measuring system lacks the possibility to change the angle
of attack easily.

Previous research found no Reynolds number dependent effects on CD for arm models. The current study
found small variations up to 3% in CD for the investigated range of Reynolds numbers, indicating that CD is
approximately Reynolds number independent. It seems that CD starts decreasing for Re > 105, this is possibly
due to the start of a drag crisis around the cylindrically shaped forearm. The existence of a drag crisis could
not be confirmed due to the limited maximum flow velocity. For future research it would be interesting to
look into the behaviour of CD at Re > 105.

Experiments for the basketball and handball models were done twice. Repetition of the experiments
lead to maximum deviations in the drag coefficient of 1%. These deviations are of the same magnitude as
differences in CD between the different arm models. This indicates that the used force measuring system
might not be sufficient to find the small differences in drag forces on the arm models.

The observed measuring inaccuracies, in combination with the small differences in drag experienced by
the arm models, make it hard to draw conclusions on the propulsive performance of the cupped hands. The
only observation that stands out is that the reverse model leads to drastically lower drag coefficients. It is
useful to redo the experiments on cupped hands, preferably in a wind tunnel with a larger test section that
reaches higher flow velocities. In this way the occurrence of blockage effects is reduced, and the effects of
increased Reynolds numbers can be investigated. Furthermore, an external force measuring system located
outside the test section is preferred, such that it does not interfere with the fluid flow. Also a more accurate
force measuring system is preferred to reduce the effect of random errors and make measurements more
reliable. Lastly, a force measuring system that can vary the angle of attack easily would be a nice addition,
such that effects of drag and lift for varying angles of attack can be investigated. A wind tunnel available at TU
Delft fulfils these requirements and was used to redo the experiments. The results are presented in chapter 5.
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The experimental setup used in chapter 4 had several downsides for the measurement of aerodynamic forces
acting on the arm models. For this reason the experiments on the cupped hands are repeated in another,
larger wind tunnel that reaches higher flow velocities. This wind tunnel also contains a more accurate force
measuring system. This chapter describes the used wind tunnel and its force measuring system. Subse-
quently, the experimental methods are described, whereafter a discussion of the experimental results takes
place. Finally, conclusions are drawn regarding the effects on drag for varying hand cuppings.

5.1. Experimental setup
The experimental investigation was carried out in the Low Turbulence Tunnel (LTT) at TU Delft, a wind tunnel
that is often used for research towards drag and lift. For example, Timmer & van Rooij (2003) used it for
research towards force coefficients for a large variety of airfoils that play an important role in the design of
wind turbines. The LTT is an atmospheric tunnel of the closed-throat single-return type and is illustrated in
figure 5.1a, where figure 5.1b shows a photo of its test section and contraction.

Further properties of the tunnel are given in table 5.1, due to its large contraction ratio a very low free-
stream turbulence level is obtained in the test section. Flow properties (density and viscosity) are controlled
by cooling the corner vanes (Timmer & van Rooij, 2003). The wind tunnel consists of techniques to vary the
angle of attack with < 0.5° precision (Lentink et al., 2007). The next subsections describe the force measuring
system, data acquisition, and the relevance of blockage and wall correction methods.

5.1.1. Force measuring system
As shown in figure 5.1a, an external six-component balance is located directly above the test section, a de-
tailed sketch of this balance system is given in figure D.1 from appendix D. Figure 5.2b illustrates just the test
section and its corresponding coordinate system. Figure 5.2a shows an arm model attached to a turntable
plate at the ceiling of the wind tunnel. The turntable plate is directly connected to the balance system, such
that the angle of attack of the model is variable by rotating the balance system. Forces and moments acting
on the model are via the ceiling reflected to the balance system, such that the system has to rebalance itself
continuously when different forces and moments are applied. This rebalancing takes place by six stepper
motors translating six individual weighbeams. The forces and moments acting on the model are determined
based on the amount of steps taken by the stepper motors. They are determined with an accuracy of 0.01
N/0.01 Nm along the axis of the rotated frame of reference of the balance system.

Table 5.1: Characteristics of the Low Turbulence Tunnel from TU Delft (Timmer & van Rooij, 2003).

Maximum velocity 120 ms−1

Total circuit length 72.7 m
Test section height 1.25 m
Test section width 1.80 m
Test section length 2.60 m
Contraction ratio 17.8
Inlet turbulence level 0.015% at 20 ms−1

39
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(a) (b)

Figure 5.1: (a) Gives an illustration of the Low Turbulence Tunnel with some characteristic dimensions and its compo-
nents (Dimchev, 2012). (b) Shows the test section (H) and contraction (G) of the LTT.

(a) (b)

Figure 5.2: Overview of the wind tunnel test section. (a) Shows an arm model attached to the turntable plate withϕz = 0◦.
(b) Gives an illustration of the coordinate system inside the test section. Air flows from right to left with velocity V . Positive
x-, y- and z-forces are respectively directed to the left, out of the paper and downwards (Dimchev, 2012).

As shown in figure 5.2b, air flows from right to left with a velocity V . The Cartesian coordinate system is
directed in the rotated frame of reference of the balance system. Figure 5.2b shows the definition of angle of
attack ϕz , where for positive ϕz the thumb has a leading position upstream in the flow. For ϕz = 0◦, the x-
axis points in the streamwise direction, with the y-axis perpendicular to it and the z-axis in the gravitational
direction. This results in the measurement of the forces Fx , Fy and Fz , as well the moments Mx , My and Mz .
For further processing these forces and moments are decomposed in the tunnel axis itself.

5.1.2. Data acquisition
Translations of the six stepper motors, flow temperature, angle of attack and the pressure difference over the
contraction cone are measured quantities during the experiments. Acquisition of these quantities takes place
with the CompactRio embedded controller from National Instruments. The data is further processed with a
National Instruments LabVIEW programme. Forces and moments acting on the models, flow properties and
flow velocity follow from the processing.
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5.1.3. Blockage effects
Inside the LTT the arm models have a blockage ratio φ = 1.9%. Barlow et al. (1999) suggested to not use
blockage correction factors for φ < 5%. Therefore no blockage correction methods are applied during this
research.

5.1.4. Wind tunnel wall effects
The walls of the LTT can be considered as flat plates along which boundary layers grow, as illustrated in figure
1.2. For such boundary layer a Reynolds number is defined as Rex =V x/ν, where V is the free-stream velocity
and x is a specified location downstream. When a flow with low turbulent intensity passes along a smooth
wall, the boundary layer transits from laminar to turbulent for Rex ∼ 5 ·106 (Kundu et al., 2015). Therefore,
the boundary layer around the walls of the LTT at the location of the arm model (x = 2.5 m) is laminar for
all investigated velocities. Hence, the boundary layer thickness can be approximated with the Blasius profile
(White, 2011). This gives the boundary layer thickness along a flat plate as

δ≈ 5.0x/
√

Rex (5.1)

where δ ≈ 0.01m for Rex = 1.8 · 106, x = 2.5 m and V = 10 ms−1. The boundary layer thickness δ becomes
even smaller at higher flow velocities V . This indicates that the boundary layer thickness δ is negligible in
comparison to the 0.5 m height of the arm model, therefore no flow interference between the boundary layer
and the hands is expected. For this reason no corrections are applied to compensate for wall effects.

Vertical force predictions
Vertical forces Fz are experienced on the arm models when subjected to a fluid flow. An enhancement in
the force Fz is experienced by mounting the arm models directly to the ceiling of the LTT, in comparison to
mounting them to the ceiling via a strut. The enhancement in Fz is of the same principle as vertical force
that is experienced on a hemisphere attached to a flat plate, illustrated in figure 5.3a. Streamlines move both
along and over the hemisphere when subjected to a fluid flow. This introduces a high velocity flow at the top
of the hemisphere, leading to a low pressure region. This introduces a vertical force that is directed upwards.
For an irrational flow, the pressure coefficient on the surface of the hemisphere is given as

CP = p −p∞
1
2ρV 2

= 1− 9

4
sin2θ, (5.2)

where 0 ≤ θ ≤ π (Yu, 2010). Then by integrating CP over the surface area of the hemisphere a vertical force is
found as

Fz = 11

32
πρ

(
D

2

)2

V 2, (5.3)

where D is the diameter of the hemisphere. In a similar fashion, vertical forces are introduced on the arm
models, where the forearm has a diameter D = 0.1 m. The magnitude of the vertical forces Fz can be expressed
as a function of the drag forces FD . By use of equations 1.2 and 5.3 then follows Fz ≈ 0.4FD .

Figure 5.3b illustrates the predicted vertical force Fz from equation 5.3. Furthermore, forces FD , FL and Fz

measured during the experiments are presented. It appears that the predicted vertical forces are in agreement
with the measured forces, and that Fz ≈ 0.4FD is a good estimate. This indicates that the forces Fz on the
arm models are caused according to the principle found for the hemisphere. Thus, a low pressure region is
experienced underneath the hand, resulting in a vertical suction force.

5.2. Experimental methods
The LTT reaches higher flow velocities than the wind tunnel used in chapter 4, making Reynolds number
scaling possible for actual front crawl swimming stroke velocities. During previous experiments, the arm
models were always positioned with the hand palm perpendicular to the flow (ϕz = 0◦). This orientation
maximizes the projected area of the arm models, leading to the assumption that drag forces and moments
are maximized as well. However, the results from chapter 4 showed that this is not an orientation where zero
lift occurs, hence it is expected that a maximum drag occurs at a different angle of attack. As mentioned, the
LTT contains a rotatable balance system, making the angle of attack of the models variable. In this way it is
investigated whether having the hand palm perpendicular to the flow is optimal.

Table 5.2 gives an overview of the arm models for which aerodynamic forces and moments are investi-
gated, furthermore it shows the velocities and angles of attack for which this is done. The reverse model is left
out, since previous research in chapter 4 already showed this is a disadvantageous hand shape.
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Figure 5.3: (a) Gives an illustration of a flow field along a hemisphere attached to a flat plate, which introduces a vertical
force Fz . Modified from Yu (2010). In (b) an overview of forces acting on the neutral arm model are presented, here
ϕz = 0◦. Furthermore, the predicted vertical force Fz is illustrated.

Table 5.2: Overview of arm models, flow velocities and angles of attack that are investigated during the experiments in
the LTT. Velocities correspond to 0.6 ·105 < Re < 1.7 ·105

Arm model Handball, Basketball, Neutral, Flat
Velocity [ms−1] 0, 10, 15, 20, 25, 30
Angle of attack [◦] -15, -10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10, 12, 14, 18, 22, 26, 30, 34, 38

5.2.1. Calibration of resistances acting on turntable plate
A calibration procedure is required before doing experiments for the cases from table 5.2. Figure 5.2a shows
an arm model mounted to the turntable plate, both the model and turntable plate have a contribution to the
total measured aerodynamic resistances. By doing experiments at all velocities and angles of attack from 5.2
with no arm model mounted, the effect of the turntable plate itself is investigated. Results from this analysis
are shown in figure 5.4. The projected area of the arm models is used, such that statements regarding the
influence of the turntable plate on the total drag can be made. The drag coefficient CD shows a constant
behaviour for angle of attack, which is a result of the axisymmetrical shape of the turntable plate. The plate
experiences a drag force due to the boundary layer growth in its streamwise direction. This boundary layer
growth introduces wall shear stresses on the plate, where the stresses reduce in size as the boundary layer
grows thicker. The plate experiences drag due to the skin friction that the shear stresses introduce. Previous
research showed for arm models CD ∼ 1, hence the turntable plate itself is accountable for ∼ 4% of the total
drag. Therefore it is of importance to subtract the resistance turntable plate from that found for the arm
models mounted to it.

Since there is a uniform flow in the x-direction, expectations would be that the boundary layer grows
uniformly in x-direction, with no variations in y-direction. This would mean that no wall shear stress is
observed in y-direction, such that zero lift is observed, this is not true according to figure 5.4b. Apparently
there are disturbances in for example the wind tunnel ceiling that cause small local velocity components in
the y-direction, resulting in CL 6= 0.

5.2.2. Flow induced hysteresis
Chapter 1 introduced the effects of hysteresis in the fluid flow, which is likely to apply to the arm models as
well. As the arm models are geometrically complex shaped, flow separation can occur at various sections of
the models, i.e. around the hand and forearm. It is expected that changing the angle of attack has effect on the
occurrence of flow separation at the different sections of the arm. The forearm has similarities in shape with a
cylinder, hence flow separation is occurring independent of the angle of attack. The same holds for the hand
with its palm perpendicular to the flow, however by increasing the angle of attack the hand becomes more
of a streamlined body, where the flow might start to attach. This makes it likely that hysteresis as observed
for an airfoil described in chapter 1 occurs around the arm models. To exclude effects of hysteresis during
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Figure 5.4: Drag and lift coefficients of the turntable plate itself, here the projected area A = 0.042 m2 of the arm models
is used.

Table 5.3: Overview of the used wind tunnel flow velocities that are investigated and their corresponding Reynolds num-
ber. Furthermore, the corresponding velocities in water are given for a water temperature of 15◦C.

Air flow velocity [ms−1] Reynolds number [-] Water flow velocity [ms−1]
10 0.6 ·105 0.7
15 0.9 ·105 1.0
20 1.1 ·105 1.3
25 1.4 ·105 1.6
30 1.7 ·105 1.9

the experiments, the angle of attack is always set to ϕz = −15◦ at the start, whereafter increments are made
until ϕz = 38◦. Hence experiments are not performed in a randomized order due to these considerations in
hysteresis.

After increasing the angle of attack the flow, measurements are started after 10 s, such that the flow around
the arm becomes stable. Then with a measuring time of 20 seconds and a sampling frequency of 4 Hz the
forces and moments are determined.

5.3. Results and discussion
Experiments are carried out for the cases of table 5.2. This section presents the found effects on the drag and
lift coefficients for varying Reynolds numbers and angles of attack. Furthermore, drag and lift coefficients are
shown a function of Reynolds number atϕz = 0◦. Also the maximum drag coefficient and the drag coefficient
at zero lift are presented as function of Reynolds number. The performance of each hand cupping over the
velocity domain of a swimming stroke is investigated. This is done by taking weighted averages of the drag
coefficients over the investigated range of Reynolds numbers. In appendix E, a method is described that
determines the point of application of force on the arm models.

5.3.1. Force coefficients versus angle of attack
Experiments are performed at the flow velocities and angles of attack from table 5.2. Drag and lift coeffi-
cients found from the experiments are shown as a function of angle attack in figures 5.5 – 5.9. Table 5.3
gives an overview of the Reynolds number corresponding to the investigated flow velocities, furthermore the
corresponding velocities for experiments in water are presented. Force coefficients are based on the frontal
projected area of the neutral model at zero angle of attack, since this is the reference case to which differences
in force coefficients are compared. Therefore, effectively comparison of values CD A/Aneutr al takes place.

In contrast to previous research of Schleihauf (1979) and (Takagi et al., 2001), it is clear that the maximum
value in drag coefficient is never found at ϕz = 0◦, at which the hand palm is perpendicular to the flow. In-
stead, a maximum drag coefficient is always found at ϕz > 0◦, where the thumb is leading. The lift coefficient
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Figure 5.5: Drag and lift coefficient as function of the angle of attack at 10 ms−1, Re ≈ 0.6 ·105.
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Figure 5.6: Drag and lift coefficient as function of the angle of attack at 15 ms−1, Re ≈ 0.9 ·105.

is observed to always increase from negative to positive for increasingϕz , but zero lift never occurs atϕz = 0◦.

Force coefficients at 10 m s-1 and 15 m s-1

As can be observed from figures 5.5 and 5.6, drag and lift curves for 10 ms−1 and 15 ms−1 are following similar
trends, therefore their discussion is combined. At negative angles of attack the little finger is leading upstream
in the flow, while for positive angles the thumb is leading. Drag coefficients of all arm models have a parabolic
shape, with a maximum somewhere in the range of ϕz = 0 – 14°. There is a clear distinction in magnitude of
CD curves from the different hand shapes. The neutral and flat hands are responsible for most drag, and
cupping the hand gives a significant decrease in CD . In the same way an increase in lift coefficient is seen for
increasing angle of attack, where CL = 0 around ϕz = 10 – 14°. Thus, there is an angle of attack at which no
shear forces are experienced by the arm. In this case a swimmer does not have to put in effort to compensate
for its hand being pulled away by the flow, saving him energy.

Force coefficients at 20 m s-1

Figure 5.7 shows the drag and lift coefficient at 20 ms−1. The values of CD and CL are comparable to those
at the velocities 10 ms−1 and 15 ms−1. However, no clear parabolic shape can be observed for CD as for the
lower velocities. For ϕz = 8 – 14° a local minimum occurs in both CD and CL . Due to this local minimum in
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Figure 5.7: Drag and lift coefficient as function of the angle of attack at 20 ms−1, Re ≈ 1.1 ·105.

CL the occurrence of zero lift now shifts to a larger angle of attack of ϕz = 14 – 18°.
A possible reason behind the local minimum in CD could be an effect of drag crisis. As mentioned in

chapter 1, for smooth cylinders a drag crisis is observed around Re = 3 ·105, where CD drops from 1.2 to 0.3
(Hoerner, 1965). A much smaller drop is observed for the arm models (1.06 to 0.1), which finds its explanation
in the large influence of the hand on the drag coefficient. Therefore a drag crisis around the forearm would
lead to a relatively small decrease in total drag coefficient for the complete hand/forearm model. The reason
for the drag crisis to occur only at a specific range of ϕz might be found in the interaction of the complex
hand shape and the forearm. For positive ϕz the thumb is leading upstream, vortices shed from the thumb
later on move around the hand and forearm. Hence the turbulent intensity of the flow is increased due to the
thumb, which influences the hand and forearm differently than a purely uniform flow. This results possibly
in a specific range of ϕz where effects of a drag crisis are observed.

Subsection 1.2.2 introduced the principle of wall roughness and its effects on boundary layer transition.
For the arm models the resolution of the 3D-printer is used as roughness height (h = 120 µm). Then with u∗ =
V /15 and V = 20 ms−1 follows Re∗ = hu∗/ν ≈ 11 > 1. This indicates that the arm models have a rough wall,
making its roughness elements dominating in the flow separation. The found decrease in drag coefficients
occurs at a different Reynolds number (Re = 1.15 ·105) than for a smooth cylinder (Re = 3 ·105), this can be
an explanation of wall roughness. The effects of wall roughness, in combination with interference of the
flow around the fingers and forearm, and the forearm not being perfectly cylindrical shaped, gives a possible
reason for the decrease in drag coefficient occurring at a lower Reynolds number than for a smooth circular
cylinder.

Force coefficients at 25 m s-1

Drag and lift curves become more unstructured at 25 ms−1, where even less of a parabolic shape in CD is
present. Again two local maxima are present as was seen for 20 ms−1. However, for the handball, basketball
and neutral hands the first maximum is now lower than the second maximum. Furthermore, the location of
the first maximum has shifted to ϕz = 10 – 20°. The optimum from the second maximum is found for very
large angles of attack, around ϕz = 25 – 35°. In contrary to lower flow velocities, the maxima in CD are not
obtained around CL = 0. In addition, there is a maximum in CL as well around ϕz = 0 – 10°, this results in
three angles of attack where CL = 0.

The drag coefficients of the flat hand are strongly deviating forϕz = 0 – 10°, where it reaches a significantly
larger maximum CD than the other hand shapes. For increasing angles of attack the curve follows similar
patterns as the handball, basketball and neutral models. Similarly, a strong deviation in lift coefficient is
observed for ϕz = 0 – 10°.

The local minimum in drag coefficient could again be an effect of drag crisis. The relative difference be-
tween the maximum and minimum is smaller than for 20 ms−1, but the absolute value of CD in the local
minimum decreased even further compared to 20 ms−1. This is an observation that agrees with the hypothe-
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Figure 5.8: Drag and lift coefficient as function of the angle of attack at 25 ms−1, Re ≈ 1.4 ·105.
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Figure 5.9: Drag and lift coefficient as function of the angle of attack at 30 ms−1, Re ≈ 1.7 ·105.

ses of a drag crisis.

Force coefficients at 30 m s-1

Increasing the velocity further leads to an even lower drag coefficient of CD ≈ 0.9 at ϕz = 0°, compared to
CD ≈ 1.0 at 10 ms−1. The optimum in CD again shifted to even larger angles of attack, where not so much of a
local minimum is observed in CD as for 25 ms−1. There are now two phases in which CD increases, between
ϕz = 10 – 20° it reaches a plateau after which it increases further between ϕz = 20 – 30°. The value of CD

eventually drops again for larger angles of attack. The continuous shift in ϕz where the maximum in CD is
found for increasing Reynolds number gives the impression that at a certain Reynolds number the maximum
in CD would be found with the hand palm parallel to the airflow. Which would be unlikely since this gives a
fairly streamlined shape and strong decrease in projected area A. Again the plot of the lift coefficient is fairly
chaotic, where a flat region exists for ϕz = 5 – 20° where CL ≈ 0.

Effects of hysteresis
Subsection 1.3.2 presented the effects of hysteresis in the fluid flow for an airfoil at varying angle of attack.
Similar effects of hysteresis were observed for the experiments around the cupped hands. To look into the
effects of hysteresis, the effects on CD for decreasing angle of attack were investigated. Significant differences
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Figure 5.10: Collection of force coefficients as a function of Reynolds number for the different hand cuppings. (a) And
(b) gives the drag and lift coefficients at ϕz = 0°, respectively; (c) shows the effects on the maximum drag coefficient; (d)
shows the effects on drag coefficient for zero lift.

in drag coefficient were observed for experiments carried out with decreasing and increasing angles of attack.
This indicates that effects of hysteresis are present in the flow around the arm models, in similarity to airfoils.
This emphasizes the importance to perform all experiments consistently with either increasing or decreasing
angles of attack.

5.3.2. Force coefficients versus Reynolds number
A presentation of selected drag and lift coefficients as function of Reynolds number is given figure 5.10, and
discussed in this subsection. The data from figures 5.5 – 5.9 has been used for this purpose. The graphs from
figure 5.10 demonstrate that no Reynolds number independent effects are found during the present study,
in contrary to previous research. Variations in CD of 15% are observed over the range of Reynolds numbers.
A significant decrease in CD occurs for Re > 1.2 ·105. This decrease can be linked to a drag crisis around the
cylindrically shaped forearm.

Drag and lift coefficient atϕz = 0◦
As was mentioned, previous research found a maximum in drag for ϕz = 0◦. During the present study this
was not found to be the case. Insight into the drag and lift coefficient at ϕz = 0◦ is still interesting since this is
the reference case to literature. Figure 5.10a and 5.10b show CD and CL at ϕz = 0◦ as a function of Reynolds
number. The flat hand gives most drag over the whole Reynolds number range. The neutral hand has a trend
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Figure 5.11: For the drag coefficients from figure 5.10 a weighted average over the Reynolds number is range is taken.
Then weighted averages are compared relatively to that of the neutral hand.

break at Re = 1.1 ·105 as can be seen in figure 5.7b, rotating the arm with ±2◦ changes CD significantly. For
every Reynolds number lower drag is observed for a more cupped hand.

Figure 5.10b shows that the lift coefficient is always negative atϕz = 0◦, hence it points in a direction from
the thumb to the little finger. Especially a large lift coefficient acts on the neutral hand for higher Reynolds
numbers, leading to a resultant force that acts on the hand with a relatively large angle.

Maximum drag coefficient
One might argue that a swimmer is purely looking for an arm/hand orientation that maximizes the drag
coefficient. Figure 5.10c presents the maximum drag coefficient for the arm models as a function of Reynolds
number. It shows an equal trend as 5.10a where cupping the hand only leads to a reduce in drag coefficient.

Drag coefficient at zero lift
It was mentioned that the orientation with zero lift is of interest to reduce shear forces acting on the hand of
the swimmer. For each arm model and Reynolds number it is determined for what ϕz the lift force is closest
to zero, such that the corresponding CD can be determined. For 10, 15 and 20 ms−1 this seems trivial since
the lift curves intersect CL = 0 just once. But for 25 and 30 ms−1 the lift curves intersect CL = 0 up to three
times, as shown in figures 5.8 and 5.9 . The mean drag coefficient corresponding to the three points where
CL = 0 are taken into account in figure 5.10d, where the individual points are plotted as well. Based on these
remarks figure 5.10d is formed, which shows the same effect of having a flat hand is beneficial and cupping
only reduces the drag coefficient.

Reynolds number averaged drag coefficients
The weighted averages of the drag coefficients of the graphs from figure 5.10 are taken, after which they are
normalized by the weighted average of the neutral hand. This allows for easy comparison between the differ-
ent arm models over the whole Reynolds number range. Figure 5.11 presents the averaged drag coefficients
relative to neutral hand. It can be seen that the flatter the hand is, the more drag it experiences. In compari-
son to the neutral hand, the handball shape experiences 2% to 3% less drag, the basketball model experiences
1% to 3% less drag, and the flat model experiences 0.5% to 3% more drag.

5.3.3. Repeatability
The drag and lift curves from figures 5.5 – 5.9 showed some irregularities, with the occurrence of local minima
and maxima. Verification is needed whether these irregularities are a result of random errors or actually
introduced by the fluid flow. For insight in the repeatability of experiments, the experiments for the neutral
model are performed two times. Figure 5.12a shows the resulting drag coefficients for 20 ms−1, ’Data set 1’
corresponds to the data as in figure 5.7a. ’Data set 2’ comes from the repeated experiments, where only a
collection of matching angles of attack is investigated.
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Figure 5.12: The effects of repeating the experiments for the neutral hand. (a) Shows the drag coefficients for the repeated
experiments at V = 20 ms−1. (b) Shows the differences in CD found for the repeated experiments.

Table 5.4: Influence of the balance system’s accuracy (η= 0.01 N) on the measured drag forces.

Velocity [ms−1] FD [N] η/FD [%]
10 2.5 0.4
15 6 0.2
20 10 0.1
25 16 0.06
30 23 0.04

Drag coefficients for both data sets follow a similar trend, with local minima and maxima for the same
angles of attack. Measurements performed at matchingϕz result in values of CD that are very similar. Repeti-
tion of the experiments at other flow velocities led to similar figures and observations, hence only the effects
for 20 ms−1 are presented. However, for all velocities the relative difference in CD for the two data sets is given
in figure 5.12b. Differences are generally around 0.5% – 1.0%. At lower velocities the accuracy η of the balance
system plays an important role, where η= 0.01 N/0.01 Nm.

Table 5.4 gives typical drag forces FD that were measured at each flow velocity, whereafter the accuracy is
given in comparison to the drag force. Apparently the balance system already introduces errors up to 0.4%.
Based on this and figure 5.12b can be concluded that the experiments are very well repeatable for the chosen
experimental procedure.

5.4. Conclusion
The research inside the LTT showed that the drag coefficient CD is largely affected by the angle of attack ϕz ,
a small variation of 2◦ can be responsible for variations in CD of 4%. A maximum in CD is never found where
the projected area is maximized (ϕz = 0◦), furthermore the angle of attack where maximum CD occurs varies
per Reynolds number and arm model. This shows the importance of always varying the angle of attack when
research is done towards force coefficients of human arm models. It also demonstrates that a high accuracy is
needed for varying the angle of attack, as a small difference of 2◦ has large effects on CD . Some local maxima
in CD were observed. During future research the angles of attack can be varied more gradually around these
maxima for more insight in the effects.

Especially at low Reynolds numbers a clear distinction is observed for the drag curves from different arm
models. Differences in CD between the arm models are up to 6%, where the flat and neutral hand shape
are responsible for largest CD . The differences in CD become smaller at the largest investigated Reynolds
numbers, resulting in differences in CD up to 2% between the arm models. Although, still a clear distinction
in performance for the different hand shapes is seen at high Reynolds numbers.

The Reynolds number effects are investigated for the maximum drag coefficient, the drag coefficient at
zero lift, and the drag coefficient at ϕz = 0◦. They all showed that a cupped hand is not beneficial for maxi-
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mizing drag forces. In fact, it appears that the flat hand shape is always optimal. As hands are getting more
cupped the drag coefficients are always decreasing, this is the case over the whole investigated range of
Reynolds numbers, this range covers the Reynolds numbers found in swimming. This is in contrary to the
cupped disks, where chapter 1 showed that a small cupping could be beneficial for increasing the drag.

Taking a weighted average over the different CD versus Reynolds number plots from figure 5.10 shows
relative effects of drag over the whole velocity range during a swimming stroke. They all show the same order
of performance for the different cupped hands, with only a difference in their magnitudes. Depending on the
used criteria, a flat hand can reach up to 3% larger CD than a neutral hand. Furthermore, the basketball and
handball models found decreases in CD up to 2% and 3%, respectively.

For the currently used arm models it is always advised to make a swimmers hand as flat as possible, while
simultaneously maintaining a 5° finger spreading, as this maximizes drag forces according to all different
analysis on force coefficients. The hand models were given a 5° finger spreading, as this was found optimal
from the research in chapter 2. However, this is not necessarily an optimum finger spreading for the flat hand
as well. Therefore it would be interesting to investigate the effect of finger spreading for the flat hand during
future research.

The local minima and maxima in the drag coefficient were linked to a phenomenon similar to a drag crisis.
Here wall roughness played an important role as this accelerates the effects of boundary layer transition and
causes a shift in the drag crisis towards lower Reynolds numbers.

Furthermore, drag coefficients for the arm models are showing Reynolds number dependencies. An op-
timum appears for Re ≈ 105, hereafter CD decreases such that up to 10% lower values are obtained at Re
≈ 1.7 ·105. This decrease in CD has again similarities to a drag crisis, where the cylindrically shaped forearm
is expected responsible for this behaviour. Here the surface roughness of the arm models is of importance
for the shift towards lower Re where the drag crisis occurs. For future research it is of interest to perform ex-
periments at even larger Reynolds numbers, such that a drag crisis hypothesis can be validated, even though
these higher Reynolds numbers are unrealistic for swimming. Furthermore, it would be of interest to look into
the effects on CD for arm models with a hydrodynamically smooth surface. Because for a smooth surface it
takes longer before the boundary layer becomes turbulent. Surface roughness can affect the flow differently
around different arm models at different Reynolds numbers and angles of attack. Hence performing exper-
iments with a smooth surface can for example show whether the local minima in drag curves are a result of
surface roughness. The observed Reynolds number dependency shows the importance to always vary the
Reynolds number for research on force coefficients of arm models.

The repetition of experiments showed the reliability of the used experimental setup. Differences in CD for
repeated experiments were smaller than 1%, and generally smaller than 0.5%. Forces are relatively small at
low Reynolds numbers, therefore the measuring accuracy plays an important role in the observed measure-
ment errors at low Re. As fluctuations in the flow become larger at higher Re, fluctuations in measured forces
also increase. Therefore the relative magnitude of the measurement errors did not decrease at high Reynolds
numbers.

This study used a set of four arm models all generated from the same base model inside MakeHuman,
this base model concerns the neutral hand with a 5° finger spreading. Among the human population varia-
tions in hand and arm geometry exist, these four arm models are not corresponding to that of all professional
swimmers per definition. However, it is likely that found conclusions for this particular set of hand configu-
rations can be extended to most human arms. Because the found trend is very clear, where a more flat hand
is always performing better. It is unlikely that this trend is specific for this particular arm geometry. However
magnitudes of the found effects are likely to vary for different human arms.

Taking everything into consideration gives as advise to swimmers to always make the hands as flat as
possible while simultaneously maintaining a 5° finger spreading to maximize propulsive forces. This result is
independent of the stroke velocity and angle of attack of the arm.



6
Conclusion

Extensive experimental research was carried out towards the effects on drag forces for three-dimensional arm
models with varying finger spreadings and hand cuppings. Furthermore, CFD simulations were performed
on simplified hand models that represent finger spreading. This chapter gives concluding remarks of all done
research, together with some recommendations for future research. Finally, performance enhancements in
swimming are derived based on the outcomes of the experimental research.

As a fist statement it should be taken into consideration the the experimental research only looked at
fluid flow in a steady state, with the arm model at a fixed orientation towards the flow. A swimming stroke
is a rather complicated motion, where the arm is rotating and (de)accelerations take place. Effects of hand
cupping were not investigated in the past, the current research at constant velocities is a necessary step before
looking into unsteady effects.

During this research all experiments were done for one particular set of arm models. It should be kept
in mind that variations in the human body occur along the population. Therefore the found experimental
results cannot necessarily be extended to that of arm models with different geometries. Although, the opti-
mum in hand cupping was found at a boundary condition where the hand was completely flat. This indicates
that a flat hand is always beneficial for maximizing drag forces. Different research groups tend to make use
of different arm models, it is suggested to make use of a standardized arm model for all research towards
propulsion in swimming, this allows for better comparisons of different swimming research.

Angles of attack and hand configurations were investigated without paying attention to the required en-
ergy consumption to maintain these. It can be argued that it is more energy consuming to maintain a com-
plete flat hand for long distance swimming, compared to a relaxed neutral position. Similarly, large angles
of attack can be more more difficult to maintain. It would be interesting to look into the effects of energetic
efficiency during swimming. Such that a hand configuration can be found that maximizes propulsive forces
and minimizes energy consumption.

Chapter 2 looked into the effects of finger spreading by towing five different hand shapes through a large
water tank, here it concerned hands with a neutral hand cupping. The arm models were only partly im-
mersed, such that the forearm was piercing the water surface. Obtained results were partly in agreement with
previous research, as it confirmed that a small finger spreading is beneficial for drag maximization. A finger
spreading of 5° was found responsible for an increase in force and moment based drag coefficients of 1.1%
and 1.7%, respectively. Furthermore, it appeared that finger spreadings larger than 10° were always disadvan-
tageous for drag maximization. The research indicated that Reynolds number independent effects apply for
the hand models in the absence of a free water surface. It appeared that a towing tank is a suitable experi-
mental setup for finding small differences in drag acting on different hand shapes. Although the introduced
component of wave drag due to the interface piercing forearm might be undesirable. The research showed
that a variation of the immersion depth affects the values of CD , indicating that not all interference in the flow
generated by the fingers and forearm is taken into account for a small immersion depth. However, still a clear
distinction in drag coefficients of the different finger spreadings was obtained.

Wind tunnel experiments were carried out for a variety of cupped hand models in chapter 4, those models
have a 5° finger spreading as the towing tank research found this optimal. It appeared that varying the angle
of attack ϕz is of great importance when looking into effects of drag and lift that act on arm models. Small
variations inϕz of 2° can be responsible for variations in CD of 4%. Furthermore it was shown that, in contrary
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to cupped disks, cupping the hand is not beneficial for increasing drag forces. For a flat hand an increase in
drag of 0.5% to 3% compared to a neutral hand was found. Furthermore, a decrease in drag coefficient of
up to 3% was found for the cupped hands. The Low Turbulence Tunnel appeared to be a suitable facility for
well rounded research towards aerodynamic forces acting on arm models. It has a high measuring accuracy,
reaches high flow velocities, has a low turbulence intensity and a large test section. Moreover, the possibility
to easily adjust the angle of attack with high accuracy was found of great value for the current study.

CFD simulations were carried out in chapter 3 to look into the effects of abstractly modelling a hand with
finger spreading. Various slotted disks that could represent finger spreading were created for this purpose.
Simulations carried out with two turbulence models, both having suitable characteristics for this modelling
problem, lead to contradicting results in drag coefficients. This indicated that simple simulations around
slotted disks are not viable to represent hands with finger spreading. Experimental research by means of
wind tunnel tests is recommended to look into the effects of drag for the slotted disks before continuing any
simulations.

The experimental results provided information that swimmers can use to improve their performance,
with the remark that the research concerns just one particular set of arm models and experiments are done at
a constant velocity. Chapter 1 showed that the 50 m freestyle swimming for women has finishing times around
24 s, where a difference of only 0.12 s can result in a sixth place or a gold medal. This indicates that improving
the swimming velocity U with only 0.5% can lead to a podium place. A short analysis on the power and forces
generated by a swimmer can give insight in the changes in finishing times for varying hand configurations.
When a swimmer moves at a constant velocity U through the water, the drag force FD generated by its limbs
is equal to the resistive forces FD,B acting on its body, such that

FD = FD,B → 1

2
ρV 2 ACD = 1

2
ρU 2 AB CD,B . (6.1)

Here AB and CD,B are respectively the frontal projected area and drag coefficient corresponding to the body
of the swimmer, which are assumed constant. The velocity U needs maximization in order to improve the
swimming performance. With equation 6.1 a scaling argument for the velocity U is found as

U ∼
√

V 2CD . (6.2)

Furthermore, the power P that a swimmer can generate with its muscles is assumed constant, and is ex-
pressed as

P = FDV = constant → FD ∼V −1. (6.3)

Simultaneously, the drag force generated by the arm is

FD = 1

2
ρV 2 ACD ∼V 2CD . (6.4)

Combining equations 6.2, 6.3 and 6.4 gives a scaling argument for the swimming velocity as

U ∼C 1/6
D . (6.5)

The required swimming time for a distance s then scales as

t = s

U
∼C−1/6

D . (6.6)

Finally, the changes in finishing times with respect to a reference arm model are determined as

∆t = t∗− t∗
(

C∗
D

CD

)1/6

, (6.7)

here t∗ and C∗
D are the finishing time and drag coefficients corresponding to the reference model. Section

1.3 mentioned that 85% to 90% of propulsive forces in swimming are generated by the arm and hand, where
the hand has a 2.5 times larger contribution to the drag. Taking this into consideration, in combination with
equation 6.7, gives insight in the changes in finishing times for different hand configurations. The towing tank
experiments show that a 5° finger spreading can decrease the finishing times with 0.03 s, compared to closed
fingers. Similarly, a 20° finger spreading leads to an increase in finishing times of 0.04 s. The wind tunnel
research shows that a flat hand decreases the finishing time with 0.02 s to 0.10 s, compared to a neutral hand.
The largest investigated hand cupping leads to an increase in finishing times of 0.07 s to 0.10 s. This short
analysis on the effects of drag coefficients of the hand on finishing times, shows that having an optimal hand
configuration is of large importance in swimming. From which is recommended to use a flat hand with 5°
finger spreading in competitive swimming to increase the chances of winning medals.
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Force measuring system: towing tank

The force measuring system used in chapter 2 is composed of load cells that are chosen based on the expected
forces an moments acting on the arm models. The partly immersed arm models have a frontal projected area
A ≈ 0.025 m2. Chapter 1 showed drag coefficients for hand models are around CD ≈ 1.1. Then for a water
density ρ = 998 kgm−3 and the towing velocities from table 2.1 the expected drag forces FD are in a range of
3.4 - 55 N. Assuming that the mean drag force acts on the centre of the immersed hand part, the drag-induced
moments MD are of the range 1.4 - 22 Nm.

Figure A.1 gives a schematic top view of the bottom frame that was displayed in figure 2.3. The locations of
the six different load cells and distance to the centre of the frame are given. One load cell (Fx,1) measures force
in the x-direction. Two loads cells (Fy,1, Fy,2), measure in the y-direction. And three loads cells (Fz,1, Fz,2, Fz,3)
measure in the z-direction. The forces measured by the load cells can be translated into forces and moments
acting on the arm models, by use of the known positions of the load cells from figure A.1. This results in
equations A.1 to A.6, describing the calculation of Fx , Fy , Fz , Mx , My and Mz .

Fx = Fx,1 (A.1)

Fy = Fy,1 +Fy,2 (A.2)

Fz = Fz,1 +Fz,2 +Fz,3 (A.3)

Mx = 0.2274 · (Fz,1 −Fz,2) (A.4)

My = 0.13125 · (Fz,1 +Fz,2)−0.2625 ·Fz,3 (A.5)

Mz = 0.235 · (Fy,1 −Fy,2) (A.6)

The capacity of the six load cells is chosen in such a way that the expected forces and moments are measured
accurately. Table A.1 gives an overview of the selected load cells and their capacities and measuring inter-
vals. Based on the load cell intervals from table A.1, the measuring intervals of Fx and My are determined
as ±0.06 N and ±0.09 Nm, respectively. Based on the measuring intervals and the expected drag forces Fx

and drag moments My , the measuring accuracies of Fx and My are determined and presented in figure A.2.
Figure A.2 indicates that Fx is measured more accurate at higher towing velocities, with a measuring accuracy
smaller than 0.5% for V > 1 ms−1. My is measured more accurate at lower towing velocities, with a measuring
accuracy around 1% for V < 1 ms−1.
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Figure A.1: Schematic top view of the six-component measurement system with the important dimensions and positions
of the load cells.
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Figure A.2: Presentation of the measuring accuracies in Fx and My as function of the towing velocity. The accuracies are
based on the measuring intervals for Fx and My and the expected forces and moments acting on the arm models.

Table A.1: Specifications of the used load cells (Zemic, 2013).

Transducer Brand Type Capacity [N] Measuring interval [N]

Fx1 Zemic L6J-C3D-15kg-0.45B 150 0.06
Fy1 Zemic L6J-C3D-5kg-0.45B 50 0.02
Fy2 Zemic L6J-C3D-5kg-0.45B 50 0.02
Fz1 Zemic H3-C3-50kg-3B 500 0.17
Fz2 Zemic H3-C3-50kg-3B 500 0.17
Fz3 Zemic H3-C3-50kg-3B 500 0.17



B
Numerical settings

Table B.1: Numerical settings used during the CFD simulations carried out in ANSYS Fluent in chapter 3.

Solver Type Pressure-Based
Time Steady

Pressure-Velocity Coupling Scheme Coupled
Spatial Discretization Gradient Least Squares Cell Based

Pressure Second order
Momentum Second Order Upwind
Turbulent Kinetic Energy Second Order Upwind
Turbulent Dissipation Rate Second Order Upwind
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C
Wind tunnel flow velocity

The wind tunnel consists of a contraction cone in which the flow velocity is increased by reducing the pres-
sure. The pressure difference ∆P over this cone is determined by two pressure sensors, the flow velocity
leaving the contraction cone can be determined with the Bernoulli equation, given as

1

2
V 2 + g z + P

ρ
= constant. (C.1)

Here z is the elevation of the fluid, which can be neglected. P is the static pressure that is measured in the
the contraction cone. From the principle of conservation of mass follows that ρ1 A1V1 = ρ2 A2V2. Here A1

and A2 are respectively the cross sectional areas of the inlet and outlet of the contraction cone, and V1 and
V2 the respective velocities at these points. It is assumed that no density changes occur over the cone and
A1/A2 << 1, then the flow velocity entering the test section is found by rewriting equation C.1 to

V2 =
√

2(P1 −P2)

ρ
. (C.2)
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D
Force measuring system: LTT

Figure D.1 illustrates the six-component balance system.
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Figure D.1: Overview of the six-component balance system. Air is flowing from right to left with velocity V . Positive forces
are pointing along the x,y and z-axis.



E
Point of application of force

Aerodynamic forces are distributed over the hand and forearm during the wind tunnel experiments from
chapter 5. Especially insight in the distributed forces over the height of the arm model is of interest. The
measurement of both the forces and moments provides information on the distribution of forces. For exam-
ple for a two-dimensional case, if a point force Fx and moment My are measured with My = LFx , and L is the
length of the forearm, it indicates that the drag force is concentrated at the hand. This appendix describes a
method to determine the distribution of forces for the three-dimensional case. A sensitivity analysis is used to
investigate the effects of couple moments. Finally the method is applied to the experimental data on cupped
hands from chapter 5.

E.1. Analytical method
For the three-dimensional case of the experiments from chapter 5, the measured forces ~F are distributed at
distances ~a from the origin of the coordinate system, illustrated in figure E.1a. In other words, the distances
~a correspond to the point of application of force (POA). It is tempting to define the POA such that

~M =~a ×~F , (E.1)

given in matrix notation as Mx

My

Mz

=
ay Fz −az Fy

az Fx −ax Fz

ax Fy −ay Fx

 . (E.2)

Here ~F and ~M are the forces and moments measured during the experiments. Equation E.1 cannot be solved
as the system of three equations is linearly dependent, i.e. it only contains two unique equations while ~a
contains three unknown variables. Further characteristics of the POA introduce two extra equations that
have to be satisfied, namely

|~a| = |~M |
|~F | (E.3)

and
~a> ·~F = 0. (E.4)

Here equation E.3 follows from equation E.1, and equation E.4 follows from the principle that vector ~a is per-
pendicular to ~F . The introduction of equations E.3 and E.4, together with the two linear independent equa-
tions of E.1, leads to an overdetermined system of equations. Because there are now four linear independent
equations and only the three unknown variables in ~a.

The distance az (POA along the height of the arm) occurs in both the moments Mx and My from equation
E.2. Due to the overdetermined system of equations, only one of the moment equations from equation E.2
can be solved exactly while simultaneously solving equations E.3 and E.4. It is observed that My dominates for
ϕz → 0°, while Mx dominates forϕz →±90°. As an approach, equations for both Mx and My are tried to solve
simultaneously, where no exact solving of the equations takes place. Solving for both Mx and My results in
the calculation of~a. Substituting the calculated~a in equation E.2 results in the the calculated moment vector
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(a) Coordinate system in which ~F applies
orthogonal to the origin with ~a.

(b) A beam with 2 equally sized pressure distributions on both it sides,
resulting in a couple moment M and zero resultant force. Modified from

Chegg (2018).

Figure E.1: Coordinate system and visualization of couple moments for analysis point of application.

~M ′. Errors are present in the calculated moments M ′
x and M ′

y , compared to the measured moments Mx and
My , errors are defined as

εx,y =
Mx,y −M ′

x,y

Mx,y
(E.5)

The error εx needs minimization for ϕz → ±90°, as the moment Mx dominates for these angles of attack.
Similarly, the error in εy needs minimization for ϕz → 0°. From this an error is introduced that needs mini-
mization, expressed as

ε=
√

(εx sinϕz )2 + (εy cosϕz )2. (E.6)

An error formulated in this way allows for prioritizing the minimization of the error in the dominating mo-
ment. The system of equations necessary for determining the POA is solved iterative, such that a solution is
found that minimizes the error ε. In this way an estimate of the point of application of force is found.

A possible reason behind the errors in the calculated moments M ′
x and M ′

y are couple moments acting on
the arm models. Figure E.1b gives an illustration of a distributed pressure acting on a beam. The two pressure
distributions are equal in size but oppositely directed, this introduces a couple moment while there is zero
resultant force. It is expected that the distributed pressures on the arm models are not necessarily pointing
in one direction, this would lead to the introduction on couple moments on the arm models. A sensitivity
analysis is carried out in section E.2 that gives insight in the effects of couple moments, while the resultant
force is zero. Furthermore, in section E.3 the method for determining the POA is applied to the experimental
data on the cupped hands from chapter 5.

E.2. Sensitivity analysis
To investigate the effect of couple moments a sensitivity analysis is performed for artificial data. Points of
attraction for simultaneously varying Mx and My are found. Hereby the error from equation E.6 is mini-

mized. Now the sensitivity analysis is performed for varying Mx and My , such that ~M = ~M +~δ, here ~δ is the
introduced couple moment. Figure E.2a demonstrates the error ε as a function of the simultaneously varying
moments Mx and My . Figure E.2b shows their corresponding values of az . It is observed that ε= 0 when~δ= 0,
where no couple moments are introduced. az is varying significantly throughout the surface space, while ε
remains small. This makes the current used method promising for finding the POA when couple moments
are introduced to the experimental data.

E.3. Point of application of force
The point of application of force gives information about the distribution of drag forces on the arm mod-
els. The described procedure from section E.1 is used for finding an estimate of az for the experimental data
on the cupped hands from chapter 5. Furthermore, comparisons are made with the two-dimensional case
where a′

z = My /Fx . Similar graphs for az and a′
z are found for the different investigated flow velocities. There-

fore figure E.3 presents just the results of az and a′
z at 15 ms−1. As described in section E.1, errors εx,y are

introduced, these are presented in figure E.4.
Figure E.3 shows opposite behaviour in az and a′

z . Where az increases for increasing ϕz is a′
z decreasing.

The shape and projected area of forearm are not varying much by changing the angle of attack, therefore
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Figure E.2: Sensitivity analysis for varying Mx and My . (a) presents the obtained minimum error ε. While (b) shows the
corresponding variation of az

-20 -10 0 10 20 30 40
Angle of attack ϕz [◦]

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

a
z
[m

]

Point of application z-direction at 15ms−1

Handball

Basketball

Neutral

Flat

(a)

-20 -10 0 10 20 30 40
Angle of attack ϕz [◦]

0.08

0.1

0.12

0.14

0.16

0.18

0.2

a
′ z
[m

]

Point of application z-direction at 15ms−1

Handball

Basketball

Neutral

Flat

(b)

Figure E.3: (a) Gives az based on the analytical method from section E.3. (b) presents a′
z = My /Fx . Positive values of az

and a′
z are directed from the base of the arm to the hand.
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Figure E.4: Presentation of the errors in the moments following from the calculated POA. (a) gives the error in Mx and (b)
the error in My .

it is expected that the contribution of the forearm is approximately constant independent of the angle of
attack. CD decreases for increasing ϕz , meaning that the contribution of the hand to CD decreases. As the
contribution of the hand decreases, the POA should shift more towards the forearm, since the contribution
of the forearm on CD increases. This should mean that az and a′

z decrease for increasing ϕz . Only a′
z shows

such behaviour. Although the graphs show similar behaviour for ϕz = -10 - 14◦, a strong increase in az is
found for ϕz > 14°. This observation suggests that errors in M ′

x and M ′
y are large for ϕz > 14°. However for

this region of ϕz figure E.4 shows that εx < 10% and εy < 4%. As these errors are small, it gives the impression
that az is determined accurately. Calculations of az seem less reliable for ϕz < 2°, as the error εx is large for
those angle of attack. As a′

z shows a strongly different behaviour it can be seen that assuming My = f (Fx , az )
is incorrect, such that My = f (Fx ,Fz , ax , az ) is a better approach. This is expected to be an artefact of the used
experimental setup. Here a large component of Fz ≈ 0.4Fx is introduced by mounting the arm models directly
to the turntable plate. This subsequently introduces a large influence of Fz on My .
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