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Preface

Improving railway services, we surely need that, many would say. And we could
also agree, mathematical models are certainly worth-exploiting to do so. But, don’t
we already have a blast of available models and approaches to perform these tasks
correctly and we only need to translate them into real applications? Do we really
need another PhD thesis focusing on railway timetabling in the sea of already existing
research? Nevertheless, only limited implementations of designing timetables do exist
in practice, so something must be missing still. It was not always easy, particularly
in the beginning of our quest, to discover these missing links and define new concepts
to advance the state-of-the-art. Thanks to much previous research, coming from ETH
Zürich and TU Berlin among others, we had to look further and explore the railway
system in greater details in order to understand what is still needed before applying
such mathematical models to timetabling becomes a common and widely accepted
practice.

This thesis incorporates optimization, simulation and data analysis to create better,
more effective and more reliable railway transport system. It advances the current
practice in infrastructure capacity assessment and timetabling by integrating different
mathematical models for designing high-quality railway timetables. This PhD research
was part of the European FP7 project Optimal Networks for Train Integration Manage-
ment across Europe (ON-TIME) that gathered infrastructure managers, IT companies
and research groups to develop advanced models and algorithms for improving railway
planning and operations that optimizes the use of existing infrastructure capacity and
reduces overall delays in networks. I was engaged in manufacturing and writing this
thesis between 2012 and 2016.

This book aims to be a teaching material and a sound support to students (e.g., in the
fields of transport, logistics, operations research, computer science and econometrics)
and practitioners in the field of railway traffic planning and management. Each chapter
is considered to be standalone and can be read independently. The book is not only
a set of new and improved optimization models for timetabling, but it represents a
comprehensive package of advanced mathematical models and algorithms that serve
to better and more effective overall timetable evaluation and design. Furthermore,
it incorporates in-depth technical knowledge of railway systems and makes benefit
of it in creating more realistic modelling representation of the system. It combines
and balances operations research techniques and railway engineering knowledge. I
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strongly believe, and this book shows, that advanced mathematical models coupled
with a field expert knowledge represent the future of planning systems and greatly
contribute to creating more attractive and sustainable railway services.

First and foremost thank goes to Rob Goverde for his wonderful support; his rigorous
eye for even tiniest details kept the research at the high-end note and made me always
strive for perfectionism. I also thank my great friend now Egidio, and four years back,
a big brother in research and out of it. Rob, Egidio, thank you for your encouragement,
patience and given freedom during my first steps as a PhD researcher. Thank to Ingo
Hansen for critical and detailed feedback on our research and for the opportunity to
co-lecture the course in Beijing in 2016. Thank to Serge for being a good promotor
and for being always fit to discuss our progress.

I am indebted to co-authors and complete ON-TIME team for creating a great multi-
disciplinary dynamic and challenging environment, for great discussions and valuable
contribution to this book. I would also like to express my gratitude to all commit-
tee members, taking time to read this thesis and to provide useful comments. Thanks
to ProRail and Netherlands Railways, we tested our approaches on real-life instances
from which this thesis contributed greatly. Also, thank to Pavle for processing a moun-
tain of TROTS data and allowing us to use clean and easy input for our work. Thank
to Sander for being a great collaborator on developing the graphical interfaces for the
timetable planning toolbox.

Utmost, special love and admiration to you Natalija and my family, for the everlasting
and unconditional support during these long and colourful times. Without you, this
journey would not have been as joyful and inspiring.
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Chapter 1

Introduction

1.1 Background and motivation
Mainline railways in Europe are experiencing more and more intensive use of their
train services, particularly in urban areas, as the worldwide demand for passenger and
freight transport is increasing across all transport modes. At the same time, much of the
existing mainline railway network has become susceptible to delays and disturbances.
For example, Figure 1.1 compares punctuality and track occupation in twenty-four
countries around the world (NS, 2015). It shows that the Netherlands, together with
Switzerland and Japan, is one of the busiest networks internationally. Note that, in
terms of performance, several countries have somewhat higher punctuality.

Figure 1.1: Punctuality vs congestion (NS, 2015)

In order to accommodate future demand, more train services need to be scheduled
while maintaining or even improving the performance. In the Netherlands, the ongo-

1
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ing project Better and More (Beter en Meer in Dutch) focuses first on better operat-
ing services, i.e., increased punctuality and customer’ satisfaction, and then on more
scheduled trains in the railway network (Ministerie van Infrastructuur en Milieu, 2013).
In addition, a similar project exists that focuses on increasing number of train services
– High-Frequency Rail Transport Programme (abbreviated PHS in Dutch). From the
project report (Ministerie van Verkeer en Waterstaat, 2010), one of the principal goals
(originally until 2020) was stated:

“There will be [on average] 6 intercity trains and 6 Sprinters (all-
station regional trains) every hour on the busiest rail routes in the coun-
try and there will be additional rail capacity for freight transport. This
is the crux of the decision made by the Dutch Government on 4 June
2010 regarding the development of the High-Frequency Rail Transport
Programme (PHS).”

This suggests that more train services will operate on a number of routes. However,
current infrastructure capacity use with today’s planning approaches is reaching its
limits. After gradual increases on certain corridors in past years, some trains in 2017
timetable could not be scheduled due to insufficient infrastructure capacity. For exam-
ple, from Utrecht to Amersfoort, six intercity trains per hour were requested, but only
four were scheduled due to limiting platform capacity in station Amersfoort.

Meanwhile, designing railway timetables is still a largely manual process, which is
extremely time-consuming and incorporates a substantial amount of constraints, par-
ticularly for busy networks such as the Netherlands and Switzerland (ProRail, 2016;
SBB, 2016). In addition, such manual processes do not always include all design per-
formance indicators, such as timetable feasibility (i.e., all trains operate undisturbed
by other traffic), stability (do not have excessive infrastructure capacity occupation) or
robustness (i.e., ability to mitigate certain everyday operational disturbances) (e.g., NS
(2015); ProRail (2016)).

In the current planning process, planners often do not know if trains will be able to run
without conflicts, so it is necessary to additionally evaluate timetables. Solutions are
only tested afterwards and if any issues are observed, then those have to be updated
and resolved by planners again. However, sometimes, detailed testing is performed
only partially and only for certain performance indicators. For example, a microscopic
simulation software, such as OpenTrack and RailSys, may be used to test a (part of)
the network on timetable feasibility (Planting, 2016), while stability is hardly ever
checked. Translating such partially evaluated timetables to everyday services means
that trains may run late and have unexpected stops on the open tracks, somewhere in
the fields, or just before the stations (De Goffau, 2013). This consequently affects the
on-time performance causing delayed trains and reduces passenger satisfaction.

On one hand, a solution to the problem of saturated railway networks would be to build
more railway capacity sufficient to run all trains on dedicated infrastructure; however,
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constructing new railways is expensive, takes considerable time and faces a number of
environmental constraints. On the other hand, mathematical models and algorithms for
capacity estimation and timetabling could be used to produce better timetable solutions
and to speed up the planning process. The latter is particularly useful as planners would
have more time available for evaluating different timetable variants, schedule more
trains and have more satisfied customers overall. In order to achieve goals of Better and
More and PHS, more sophisticated automatic tools and algorithms are surely needed.

One of the successful implementations of mathematical models for timetabling is a
tool called Designer of Network Schedules (DONS) (Kroon et al., 2009), developed
for the main railway undertaking Netherlands Railways (NS) and currently used by
both NS and the Dutch infrastructure manager ProRail. DONS consists of two mod-
els: CADANS and STATIONS. CADANS is a macroscopic design tool that focuses on
normative feasibility, which is finding a timetable that satisfies so called macroscopic
constraints. The macroscopic level considers stations as simple nodes and tracks in-
between as arcs. STATIONS is a more detailed routing tool that finds a good routing
plan for complex stations. However, DONS does not include efficiency (i.e., short
travel times), stability, feasibility or robustness. To improve efficiency of solutions,
DONS is supported by a post-optimization model. In 2008, only one year after new
planning tools had been implemented, passenger numbers increased with 2.8% and
annual profit with 10 million Euro, while the train punctuality improved from 84.8
to 87.0%. In recent years, DONS has barely been used for designing new timeta-
bles, as the timetabling instances became too complex and too difficult to solve by
the existing algorithm. A similar timetabling application exists in Germany, where the
tool TAKT has been developed (Opitz, 2009). TAKT also finds a timetable that satis-
fies macroscopic constraints in a first step, and is supported with a more sophisticated
post-optimization to improve the constructed timetable according to a chosen objective
function (Nachtigall & Opitz, 2008).

In the literature, various other mathematical models have been proposed for railway
timetabling (Cacchiani & Toth, 2012). These models commonly use different objec-
tive variants of efficiency and robustness. However, most of the current models assume
a macroscopic representation of infrastructure and do not include microscopic details.
A microscopic level also considers detailed track infrastructure, signalling system, and
train characteristics. This means that generated solutions are not always feasible, i.e.,
conflict-free, and thus would directly induce certain delays when operated in prac-
tice. Therefore, macroscopic timetabling models should be extended or integrated
with more detailed models to ensure operational feasibility of the timetable. To this
end, a few approaches have been proposed in the literature based on a hierarchical in-
tegration of timetabling models with different levels of detail. Schlechte, Borndörfer,
Erol, Graffagnino, and Swarat (2011) presented a bottom-up approach which first ag-
gregates microscopic running and headway times to be used by a macroscopic model
that subsequently identifies an optimised timetable for a given objective function. Fea-
sibility is checked by simulating the timetable at a microscopic level. Caimi (2009)
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proposed a two-level framework for designing conflict-free timetables which presents
a top-down approach.

The main shortcoming of existing integrated timetabling approaches is that they do
not consider any iterative modification to the timetable when it has proven infeasible
at the microscopic level (Caimi, 2009; Schlechte et al., 2011), which can occur quite
often in dense railway networks. In other words, these approaches are one-directional
and cannot guarantee timetable feasibility. In addition, they do not consider timetable
stability and robustness. What is more, existing approaches for capacity estimation
are limited to corridors, while they tend to be not applicable to stations (and complete
networks) (Lindner, 2011).

1.2 Research questions

Considering the existing need for more sophisticated and in-depth approaches for cre-
ating more reliable and high quality railway timetables and more accurate capacity
estimation, we formulate the main research question of this thesis as:

How to design efficient, feasible, stable and robust railway timetables that provide a
high level of service to passengers and freight operators?

Timetable efficiency reflects the amount of time allowances in the scheduled travel
times (running, dwell and transfer times) which must be as short as possible to provide
short journey times and seamless connections. Timetable feasibility is the ability of
all trains to adhere to their scheduled train paths1. A timetable is feasible if (i) the
individual processes are realisable within their scheduled process times, and (ii) the
scheduled train paths are conflict-free, i.e., all trains can proceed undisturbed by other
traffic. Timetable stability is the ability of a timetable to absorb delays so that delayed
trains return to their scheduled train paths without rescheduling. This is directly con-
nected with the infrastructure occupation rate. The higher this rate, the lower are the
time allowances and hence the less stable is the timetable. Timetable robustness is the
ability of a timetable to withstand design errors, parameter variations, and changing
operational conditions.

In order to answer the posed research question, we identify several open challenges that
have to be tackled in advance to make generating feasible, stable and robust timetables
possible.

1. How to evaluate infrastructure capacity occupation accurately? How to use ca-
pacity occupation as a stability measure? (Chapter 2)

2. Which performance measures and models have to be considered for high quality
timetable planning? (Chapter 3)

1A train path is the infrastructure capacity needed to run a train between two places over a given
time period (EC, 2001).
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3. What is the added value of using microscopic models for timetable planning?
(Chapter 4)

4. How to include efficiency, stability and robustness in macroscopic timetabling
models and guarantee a good trade-off between timetable efficiency and robust-
ness? (Chapter 5)

5. How to integrate microscopic and macroscopic models for efficient, feasible,
stable and robust timetabling? (Chapter 6)

6. How to provide reliable running times2 for timetable design using traffic realiza-
tion data? (Chapter 7)

To guarantee designing efficient, feasible, stable and robust timetables, the timetable
planning process should integrate multiple models considering different levels of detail
to provide accurate input, detailed evaluation and fast computing optimizations. A
conceptual timetabling framework is given in Figure 1.2. Given are a line plan (i.e.,
list of train lines with their stopping stations and frequencies), infrastructure including
signalling system and rolling stock characteristics. The framework should include a
macroscopic optimization model to solve timetabling problems for complex, large and
dense railway networks. Since we also aim for robust solutions, timetables should be
tested with stochastic simulation. What is more, they should provide a good trade-
off between efficiency and robustness. Microscopic simulation of running times and
capacity estimation are necessary to generate the input to the macroscopic models and
to evaluate timetable feasibility and stability. Finally, we need data analysis to calibrate
rolling stock characteristic parameters to provide reliable input to the overall planning
framework.

Traffic realization data

Rolling stock characteristics 
calibration

Corridor fine-tuning

Line plan, infrastructure, 
rolling stock

Capacity assessment

Microscopic timetabling 
models

Macroscopic timetabling 
models

Efficient, feasible, stable and robust 
timetable

Figure 1.2: Modular multi-level performance-based timetabling framework

2The running times that are possible to realize in everyday operations.
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1.3 Context
The research of this thesis was supported by the European FP7 project Optimal Net-
works for Train Integration Management across Europe (ON-TIME, 2016). The project
involved infrastructure managers, academic institutions and software companies from
France, Germany, Italy, Netherlands, Sweden, Switzerland and the UK. The project
aimed at new models and methodologies for improving timetable planning and traffic
management to provide better services by more efficient use of the existing infrastruc-
ture and reducing train delays.

1.4 Main contributions
The main contributions of this thesis are in the design, optimization, simulation and
data analysis for an integrated railway timetabling approach of dense railway networks
that incorporates the performance indicators: efficiency, feasibility, stability and ro-
bustness.

• A modular performance-based railway timetabling approach to integrate time-
table construction and evaluation into one consistent framework. The advantage
of this approach is that performance indicators are already taken into account
during the timetable construction by which the resulting timetable is computed
together with all performance measures which are either satisfied or optimized
depending on the required criteria. This relieves the exhausting task of ex-ante
simulation that some railways apply to test the constructed timetable such as con-
flicts, stability, robustness and energy consumption. Moreover, it is a notoriously
difficult issue for timetable planners to adjust the timetable if the simulation out-
put indicates timetable flaws like existing conflicts or unrealisable train running
times. Each local change may have an impact elsewhere.

In our approach, we replace the feedback from timetable evaluation to timetable
adjustment by an integrated approach embedding the timetable evaluation in the
construction process. The proposed framework and integrated models are suit-
able for developing both periodic and non-periodic timetables.

• Microscopic models for evaluating the microscopic feasibility and stability and
resolving conflicts of the macroscopic timetables. Minimum running times are
computed by integrating Newton’s motion formula, while accurate headway
computation is based on blocking time theory (Hansen & Pachl, 2014). In this
way, train process times can be computed very fast, even for very dense rail-
way traffic. Operational running times are calculated by means of an adjusted
bisection model that introduces cruising phases at reduced speeds to cover the
supplement times imposed by the timetable. The feasibility of the timetable is
checked by an efficient conflict detection and resolution model that is based on
blocking time theory, and in case of conflicts automatically computes new run-
ning and minimum headway times in order to adjust the macroscopic timetable.
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In addition, the capacity occupation assessment is realized by a novel max-plus
model following the compression method indicated by the UIC Code 406. With
this new model, it is possible to compute the capacity occupation in stations as
well as corridors. If the capacity occupation satisfies technical thresholds, the
timetable is considered to be stable.

• Macroscopic timetabling model for network optimization. The developed stability-
to-robustness approach is the first to introduce stability together with efficiency
and robustness for the periodic timetabling problem. This two-stage approach
integrates models for minimizing the cycle time and distribution of time al-
lowances. The model also includes new multi-objective functions for improving
timetable efficiency, stability and robustness. We provide a sensitivity analysis
and demonstrate that a detailed analysis of weight factors must be considered to
generate the best trade-off between efficiency and robustness. We also determine
objective functions that allow more flexibility in generating different solutions.

• The implementation of an iterative micro-macro approach. This approach incor-
porates the strengths and advantages of microscopic and macroscopic algorithms
to provide an overall effective and reliable solution. Network transformation al-
gorithms are introduced to automatically convert data from the microscopic to
macroscopic level and vice versa. A robust network timetable is designed by
macroscopic optimization over large networks, including stochastic models for
robustness evaluation. This is afterwards converted and analysed at the micro-
scopic level. If track conflicts are detected and/or capacity norms are violated,
necessary adjustments to train process times are undertaken by applying proce-
dures of constraints tightening and relaxation. This iterative micro-macro pro-
cess automatically terminates once the timetable is also microscopically feasible
and stable.

• A new simulation-based optimization method to calibrate the parameters of train
running characteristics against observed track occupation data. This approach
derives train speed profiles from real distance-time trajectories collected at dis-
crete points from track-free detection sections. A simulation-based optimization
approach calibrates the parameters of the dynamic motion equations describing
the tractive effort, the motion resistances, the braking effort, and the cruising
phase. These parameters are fine-tuned for different classes of train composi-
tions. A probability distribution is estimated for the input parameters of each
class of composition. This also gives insight into different driving behaviour
adopted during real operations. A practical application of the train parameter
calibration method can be at the planning stage for generating distribution of pa-
rameters suitable for robust timetabling design, and in real-time operations for
obtaining more reliable predictions of train speed profiles.

With these contributions, this thesis demonstrates the applicability of optimization,
simulation and data analysis to efficiently solve relevant practical challenges of railway
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traffic management.

1.5 Societal relevance

Mathematical models for automatic generation of timetables can provide reliable train
services that use the given infrastructure optimally and can handle daily stochastic
disturbances. In addition, the solutions are proven to be conflict-free and could be im-
plemented in practice. The main importance of the proposed models and the modular
framework for timetabling is to give planners means to perform their job better, which
would lead to a higher level of service to customers. Railway planners can switch the
focus from manual and time-consuming timetable design to detailed analyses of mul-
tiple automatically generated timetables. This will lead to choosing the best overall
solutions that provide better service for passengers and freight operators by reduced
delays and more trains running.

The modular framework developed in this thesis focuses on tactical planning. By
tactical, we refer to planning undertaken well in advance of operations, when a line
system is given and the available infrastructure is known. In particular, this thesis
solves the problem of finding a basic hour pattern, which is generally performed up
to one year ahead. Such basic hour pattern can be easily extended to a complete day
timetable by copying the same train sequence.

The developed capacity assessment models can be used on both strategic and opera-
tional levels. The developed methods for capacity assessment can determine existing
bottlenecks in networks, evaluate the benefits of infrastructure improvement projects
and quantify gained additional transport capacity. The possible implications of a capac-
ity assessment could be constructing new infrastructure, improving the existing one, or
using the existing one more efficiently. Models for capacity assessment can help on
deciding the most cost-effective projects. This would eventually save considerable
amounts of money and direct it to the most profitable investments.

By better planned timetables, passengers could expect more trains running on time,
short connection times and less delays. Such new timetables would generate better
passenger punctuality and highly valued transport services. The timetabling frame-
work can provide also more accurate running times for freight trains to be used in the
planning processes. In addition, automatic support tools can be suited for more effi-
cient ad-hoc planning of freight trains. These would lead to more flexibility to freight
train operators and more punctual freight trains operations that minimally disturb pas-
senger traffic.

1.6 Collaborations in the thesis

This thesis is a collection of five scientific articles and one book chapter and has been
written together with co-authors. This section summarizes the contributions of people
engaged with the research in this thesis. The most of the work in this thesis has been
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done independently by the author. The author has been responsible for formulating
research questions, studying related literature, performing the data analysis, formulat-
ing and implementing the models, analysing the results, and writing the chapters and
corresponding articles. In the thesis, chapters are based on the following articles:

• Chapter 2: Bešinović, N., & Goverde, R. M. P. Capacity assessment in railway
networks, In Borndörfer, R., Klug, T., Lamorgese, L., Mannino, C., Reuther, M.,
Schlechte, T. (Eds.), Handbook on Operations Research in Railway Industry,
Springer, accepted.

• Chapter 3: Goverde, R. M. P., Bešinović, N., Binder, A., Cacchiani, V., Quagli-
etta, E., Roberti, R., & Toth, P. (2016). A three-level framework for performance-
based railway timetabling. Transportation Research Part C: Emerging Technolo-
gies, 67, 62–83.

Anne Binder contributed in Section 3.3.5 on methodology and writing regard-
ing the model for energy-efficient train driving. Valentina Cacchiani, Roberto
Roberti and Paolo Toth contributed in Section 3.3.4, on methodology and writ-
ing on the macroscopic model.

• Chapter 4: Bešinović, N., Goverde, R. M. P. & Quaglietta, E. (2017). Micro-
scopic Models and Network Transformations for Automated Railway Traffic
Planning. Computer-Aided Civil and Infrastructure Engineering, 32 (2), 89–
106.

• Chapter 5: Bešinović, N. & Goverde, R. M. P.. A two-stage stability-to-robustness
approach to robust periodic timetabling, submitted.

• Chapter 6: Bešinović, N., Goverde, R. M. P., Quaglietta, E., & Roberti, R.
(2016). An integrated micro-macro approach to robust railway timetabling.
Transportation Research Part B: Methodological, 87, 14–32.

Roberto Roberti contributed in Section 6.5 and the Chapter’s Appendices A and
B, on implementing the macroscopic timetabling model of Cacchiani, Caprara,
and Toth (2010).

• Chapter 7: Bešinović, N., Quaglietta, E., & Goverde, R. M. P., (2013). A
simulation-based optimization approach for the calibration of dynamic train speed
profiles. Journal of Rail Transport Planning & Management, 3(4), 126–136.

1.7 Thesis outline

The remainder of the thesis is structured as follows. Figure 1.3 gives the visual out-
line of the thesis. Chapter 2 introduces capacity assessment approaches for corridors,
stations and networks that are applied in Chapters 3, 4, 5 and 6. It also includes a
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Chapter 1: Introduction

Chapter 7: Rolling stock characteristics 
calibration

Chapter 2: Capacity assessment

Chapter 3: Three-level timetabling

Chapter 4: Microscopic model Chapter 5: Macroscopic model

Chapter 6: Integrated micro-macro model

Chapter 8: Conclusions and 
recommendations

Figure 1.3: Visual outline of the thesis

new approach based on max-plus algebra for corridors and stations. Chapter 3 de-
scribes a conceptual framework for performance-based railway timetabling integrat-
ing timetable construction and evaluation on three levels: microscopic, macroscopic,
and a corridor fine-tuning level. Chapter 4 defines microscopic models for timetable
planning and in particular, models for computing accurate input for a macroscopic
model, evaluating feasibility and stability of railway timetables and network transfor-
mations that allow seamless transitions from microscopic to macroscopic models and
vice versa. Chapter 5 develops a new two-stage stability-to-robustness model for com-
puting stable and robust timetables. Chapter 6 integrates the microscopic models from
Chapter 4 with another macroscopic timetabling model for feasible, stable and robust
timetabling. Chapter 7 presents a simulation-based optimization approach to calibrate
the characteristic parameters of the train dynamics from realization data. Chapter 8
gathers the conclusions of this thesis and gives recommendations for future research
on designing advanced decision support models for timetabling.

Appendix A demonstrates the graphical user interfaces for micro-macro timetabling
and evaluating timetable robustness.



Chapter 2

Capacity assessment in railway
networks

This chapter has been accepted for publication as:

Bešinović, N., & Goverde, R. M. P. Capacity assessment in railway networks, In
Borndörfer, R., Klug, T., Lamorgese, L., Mannino, C., Reuther, M., & Schlechte, T.
(Eds.), Handbook on Operations Research in Railway Industry, Springer.

2.1 Introduction

Passenger and freight railway traffic have increased considerably worldwide over the
past two decades, and this trend is expected to continue (UNECE, 2015). Many rail-
way networks are already exploited to their maximum capacity and extra measures are
needed to satisfy the growing demand. The ON-TIME project has diagnosed multiple
capacity issues in several European countries including France, Italy, the Netherlands,
Sweden, and the UK (ON-TIME, 2012).

The possible implications of a capacity assessment could be constructing new infras-
tructure, improving the existing one, or using the existing one more efficiently. Up-
grading the infrastructure may achieve these objectives, but is very costly and time-
consuming. Therefore, more efficient planning of services may be more appropriate.
Thus, understanding railway capacity is important to identify the most effective ac-
tions.

Various approaches for capacity assessment can be found in the literature and in prac-
tice. For example, RMCon (2012) and Jensen, Landex, Nielsen, Kroon, and Schmidt
(2017) deployed simulations for this purpose. Schwanhäußer (1978, 1994) introduced
queueing theory approach for evaluating the capacity. The extensions of this approach

11
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are given in Büker and Seybold (2012); Huisman, Boucherie, and van Dijk (2002);
Wendler (2007); Yuan and Hansen (2007) and Weik, Niebel, and Nießen (2016). Krueger
(1999) and Lai and Barkan (2009) proposed parametric modelling. Analytic approaches
based on optimization models for capacity assessment are presented in Burdett and
Kozan (2006); Mussone and Calvo (2013) and Burdett (2015). However, none of these
models consider a timetable with its scheduled arrival and departure times as an input
for the capacity assessment.

Based on extensive practical experience, it has been concluded that timetable structures
are required to understand the interactions in a dense and complex railway network.
Therefore, timetable structures should be used to determine the required infrastructure
in terms of numbers of platforms or tracks (Odijk, Romeijn, & van Maaren, 2006).
Mackie and Preston (1998) and Eliasson and Börjesson (2014) also stressed the neces-
sity of timetables for estimating the social benefit of railway investment appraisals. In
particular, explicit timetable decisions (e.g., train orders and connections) are required
assumptions for the analysis. Otherwise, the results will be arbitrary and scenarios will
not be comparable.

This chapter describes the main (timetable-based) methods for capacity assessment
that are based on timetable compression. Particularly, we focus on timetable-based
models that consider infrastructure and rolling stock as given and fixed. In addition,
the chapter is oriented towards deterministic models for assessing the level of capacity
occupation, rather than the maximum theoretical capacity. For the latter, we refer to
Delorme, Gandibleux, and Rodriguez (2009). Section 2.2 introduces the relevant ter-
minology and aspects of railway capacity research. Section 2.3 presents the compres-
sion methods, the basics of blocking time theory, and states the limitations of existing
applications. These form the basis for the description of advanced tools for capacity
assessment on the different infrastructure levels of corridors (Section 2.4), nodes (Sec-
tion 2.5) and networks (Section 2.6). Finally, Section 2.7 discusses approaches for
improving capacity and gives directions for further development.

2.2 Railway capacity and blocking times

In order to discuss railway capacity, it is important to first give some definitions. Rail-
way capacity is highly complex and depends on multiple factors. The theoretical ca-
pacity of railway lines and station layouts is defined as the maximum number of train
paths (time-distance infrastructure slots) on the infrastructure in a given time window
and represents an upper limit for infrastructure capacity. It usually assumes a homo-
geneous traffic where all trains are identical and optimally spaced throughout the time
period (UIC, 2004).

The practical capacity of railway infrastructure is defined as the maximum number
of train paths on the infrastructure in a given time window given the traffic pattern,
operational characteristics or timetable structure. Practical capacity thus depends on
the mix of train services with different characteristics.
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Table 2.1: Used terminology in railway capacity research

Term Synonyms

Theoretical
capacity

Design capacity (TRB, 2013), absolute capacity (Burdett
& Kozan, 2006), capacity throughput (Čičak, Mlinarić,
& Abramović, 2012; Sogin, Lai, Dick, & Barkan, 2013)

Practical capacity Achievable capacity (TRB, 2013), effective capacity
(Goverde & Hansen, 2013)

Capacity occupa-
tion

Infrastructure occupation (UIC, 2004), occupancy time
(UIC, 2013), consumed capacity (Hansen & Pachl,
2014), capacity utilization (Goverde, 2007), carrying ca-
pacity (Hu, Li, Meng, & Xu, 2013), used capacity (Abril
et al., 2005)

Capacity occupa-
tion rate

Utilization rate (Landex, 2009)

Capacity occupation is defined as the amount of time that the train paths from a given
timetable structure in a given time window occupy the infrastructure. Commonly, ca-
pacity occupation is expressed in minutes. Moreover, the capacity occupation rate
(expressed in %) is defined as the ratio of capacity occupation to the given time win-
dow. It provides an indication of how a timetable may perform. Other measures for
quantifying railway capacity found in the literature like the number of passengers over
a given time window and amount of goods over a given time window. Table 6.1 gives
an overview of the terminology commonly found in railway capacity research.

Railway capacity depends on various aspects that can be categorized in three groups:
infrastructure, rolling stock, and traffic. Infrastructure is defined by the railway layout
(single-track, double-track, number and length of platform tracks), distance between
stations, track speed limits (depending on curves, grades and switches), and the sig-
nalling system (block lengths, number of signalling aspects, train protection). For
example, Goverde, Corman, and D’Ariano (2013) showed the influence of various sig-
nalling systems on the capacity occupation. Rolling stock characteristics are, among
others, train composition (multiple unit or locomotive hauled wagons), length, maxi-
mum speed, and traction and braking characteristics. Capacity also depends on traf-
fic management and operational rules like dominant train type (passenger, freight or
mixed), use of tracks (unidirectional/bidirectional), mix of train services with different
characteristics (speed, stopping pattern, frequency), train sequences, dwell times and
connections in stations (Strategic Rail Authority, 2014). UIC (2004) explained that
capacity depends on the way the infrastructure is utilized which is represented in the
capacity balance of the number of trains, the average speed, the traffic heterogeneity,
and stability. A detailed analysis of different aspects affecting capacity can be found
in Abril et al. (2008); Harrod (2009); M. J. Schmidt (2014); Shih, Dick, Sogin, and
Barkan (2014) and Lindfeldt (2015), while an empirical comparison of different ca-
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pacity assessment methods can be found in Rotoli, Navajas Cawood, and Soria (2016).

Due to the high complexity of capacity assessment, railway infrastructure is often de-
composed and assessed independently (Pachl, 2014). We distinguish different infras-
tructure segments such as nodes, line sections (corridors) and networks. A node is a
track layout with switches and multiple route possibilities. A node may be a small
station with only a few platform tracks and limited interlocking areas, but also a big
station with higher number of tracks and more complex interlockings, and may serve
as a terminal for train lines. In addition, a junction can be considered as a node, which
includes only interlocking but does not provide train stopping possibilities. A line sec-
tion is a railway line between two nodes with a fixed number of parallel tracks and no
switches. A line section can have one or more parallel tracks and the sequence of trains
cannot change. Trains on a line section are usually separated by a block system, where
each block can be allocated to at most one train. A corridor represents a longer rail-
way line that consists of multiple line sections. Finally, a network is an area of various
interconnected corridors which are considered at once during the capacity assessment.

2.2.1 Blocking times

The concept of blocking times (Pachl, 2014) is closely related to capacity assessment
and the basis for the remainder of this chapter. A resource represents a subset of
infrastructure elements that is exclusively allocated to a single train at a given time. In
practice, this is a block section or an interlocking route section including one or more
switches or crossings. A train route defines a set of consecutive resources that can be
used by a train to traverse from one point to another (e.g., between two stations). A
(time-distance) train path extends the train route with the time the route is used.

The blocking time of a resource is the time during which the resource is solely dedi-
cated to a single train and cannot be used by any other. The blocking time consists of
an approach, running and clearing time, corresponding to the train running time from
the approach signal to the point located train length away the signal at the end of the
block. In addition, the blocking time includes setup and release times of the route and
signals, as well as the driver sight and reaction time before the approach signal. Figure
2.1 illustrates a blocking time computation for a single resource (i.e., block section) of
a running train.

The successive blocking times over a train route form a blocking time stairway, which
can be computed for all train paths of a given timetable. Generally, a timetable con-
sists of arrival and departure times at nodes, defining scheduled running time, which
includes running time supplement. For computing blocking times, we need running
times over each resource, which are obtained by computing an exact train time-distance
speed profile corresponding to a feasible dynamic speed profile for a given scheduled
running time. Figure 2.2 illustrates the conversion from timetable departure/arrival
times to a train dynamic speed profile and blocking time stairway. The modelling de-
tails of the macroscopic to microscopic conversion are presented in Bešinović, Goverde,
and Quaglietta (2017).
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Figure 2.1: Blocking time for a running train over a block section defined by two
signals and the corresponding approach signal
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Figure 2.2: Macro to micro conversion: from time-distance line to blocking time stair-
way between two stations on a single track with five block sections

Blocking time stairways are applied to compute minimum headways. The minimum
headway time hi js between trains i and j on a corridor or node z is computed as

hi jz = max
k∈Ri jz

( fik− s jk), (2.1)

where Ri jz are the resources used by both i and j in corridor or node z, and s jk and
fik are the associated start time and end time of the blocking time for resource k, re-
spectively. We assume that i precedes j and both stairways have the same reference,
namely, time 0. If z is a corridor, then we obtain the minimum line headway time be-
tween the two trains; and if it is a node, then it is a minimum station headway time. The
resource that defines a minimum headway time is called a critical resource, such as,
the critical block between two compressed blocking time stairways is the block where
the stairways touch each other.

2.3 Existing methods in practice

In Europe, the two most common analytic approaches for capacity assessment are
based on the timetable compression method. Timetable compression is the process
of shifting train paths to each other as much as possible, bringing them to the time
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distance of minimum headway times. The total time needed for operating such a com-
pressed timetable is the capacity occupation. Here, the minimum headway time is the
minimum time separation between two train paths that provides conflict-free train runs.
The first method has been proposed by the International Railway Association UIC –
the UIC 406 capacity method (UIC, 2004). The second method is the British Capacity
Utilization Index (CUI) method (Gibson, Cooper, & Ball, 2002). Meanwhile, in the
US, a timetable compression method has not been applied yet (Pouryousef, Lautala, &
White, 2015).

2.3.1 UIC 406 capacity method

The UIC 406 capacity method is based on the blocking time theory. Originally, UIC
(2004) described a method for evaluating capacity of line sections. In the 2nd edition,
UIC (2013) expanded the approach to the capacity assessment of nodes. The method
requires a timetable and a division of the network into line sections and nodes. The
original purpose of the UIC 406 capacity method was to measure the capacity occu-
pation of a given timetable, which is achieved by compressing the train blocking time
stairways. In addition, the method has been used for assessing practical capacity. This
has been done by adding extra trains in the timetable, called timetable enrichment.

The UIC 406 capacity method intends to standardize evaluations for obtaining compa-
rable examination results by defining recommended values for the capacity occupation
rate of a line section (UIC, 2004). The recommended capacity occupation rates have
been proposed only for double tracks and are distinguished between a) dedicated sub-
urban passenger traffic, dedicated high-speed lines, and mixed traffic lines and b) peak
period and daily period. Suggested capacity occupation rates are 85% and 70% for
dedicated suburban traffic (peak and daily period), while they are 75% and 60% for
dedicated high-speed lines and mixed traffic lines. UIC (2013) proposed some prelim-
inary ranges for nodes, but these still have to be confirmed. It is assumed that these
occupation rates would guarantee stable services with respect to small disturbances.
These recommendations were based on the practices among European infrastructure
managers (IMs) at the time, but highly depend on the infrastructure layout, the way it
is utilised, and the typical size of delays. Recommended capacity occupation rates are
referred to as saturation rates (Abril et al., 2008), while a corridor that reaches these
rates is called a saturated corridor.

If a corridor is not saturated yet, additional trains may be added. This is done through
an iterative process. First, the capacity occupation is computed by timetable compres-
sion. If the rate is smaller than the saturation rate, the timetable is enriched by one
or more trains. Then, the capacity occupation rate is reassessed. These iterations are
repeated until the corridor has been saturated. In addition, enriching can be used to de-
termine a corridors’ theoretical capacity. For further details on the enrichment process,
see Delorme et al. (2009) or Jensen et al. (2017).
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2.3.2 CUI method

The CUI is the measure based exclusively upon the headway norms in nodes, given as
Timetable Planning Rules (Network Rail, 2015). Similar to UIC 406, the CUI method
builds on a network decomposition into line sections that are evaluated separately by
compressing the timetable for each infrastructure segment. A line section for CUI is
always determined by two neighbouring nodes, while it may be longer for the UIC 406
method. The method does not consider an exact infrastructure occupation based on
blocking times, which makes it less accurate than the UIC 406 method. Thus, we refer
to CUI method as to a normative capacity assessment. A further comparison between
UIC 406 and CUI may be found in Melody (2012) and ON-TIME (2012).

2.3.3 Open challenges

Recently, Lindner (2011) evaluated the UIC 406 capacity method. The 2nd edition
(UIC, 2013) improved on his observations partially. One of the main remaining lim-
itations of the UIC 406 method is the capacity assessment in nodes. It proposes to
decompose a node in switch areas and (platform) track areas, and evaluate each seg-
ment independently. More recently, Rotoli et al. (2016) gave a descriptive simplified
approach for evaluating nodes by using this decomposition and assuming a general
node layout. Such a node decomposition may not consider all route dependencies and
leads to underestimated capacity occupation. Section 2.5 introduces an analytic model
that overcomes this issue.

A second limitation is due to the network decomposition to line sections which causes
certain train dependencies to be neglected and result again in an underestimated capac-
ity occupation. Third, the lengths of the decomposed line sections affect the resulting
capacity occupation significantly. To overcome these challenges, we propose a network
model for capacity assessment that preserves microscopic details of the infrastructure
and all train dependencies (Section 2.6). Fourth, the given saturation rates represent
a rough guideline rather than an exact values to follow. These rates are highly depen-
dent on the infrastructure layout, train characteristics and level of service; and they
may vary significantly for different national networks. However, additional research is
necessary to achieve better insight.

Armstrong, Preston, and Hood (2015) proposed a solution for the limitation of the
CUI method, which is mainly applicable on line sections, an extension for assessing
the capacity in nodes. However, due to the coarser level of detail, CUI is a less accurate
and rather cumbersome method that is difficult to apply to complex nodes. Following
the timetable planning requirements defined by European IMs (ON-TIME, 2014), we
encourage using the UIC 406 capacity method for further capacity analyses.
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2.4 Capacity assessment of corridors
The compression method is quite easy to apply and should allow a natural deployment.
However, only the capacity assessment of corridors is straightforward. To that pur-
pose, various analytical and simulation models have been developed. Landex (2009)
extended the UIC 406 method to single tracks, while Abril et al. (2005) applied it on
double-track corridors. Čičak et al. (2012) proposed an approach for theoretical ca-
pacity of single track lines using a normative compression method. Abril et al. (2008)
and Pouryousef et al. (2015) are suggested for further reading on implementations of
capacity assessment for corridors in Europe and the USA.

However, only a few of them incorporate a compression method explicitly to evaluate
the capacity use of a given timetable, such as RailSys (RMCon, 2012) and EGTRAIN
(Quaglietta, 2014).

2.5 Capacity assessment of nodes
In this section, we describe the max-plus automata model for capacity assessment in
nodes and give a numerical example (Section 2.5.1). Max-plus automata combine
properties of the heaps-of-pieces theory and max-plus algebra, and were introduced by
Gaubert and Mairesse (1999). The max-plus algebra is a mathematical technique to
model and analyse discrete event dynamic systems (DEDS) such as railway systems.
We refer to Goverde (2007) and Heidergott, Olsder, and van der Woude (2014) for
more details on max-plus algebra applied to railways.

One of the main advantages of max-plus automata is that it explicitly model the infras-
tructure resources and the blocking times of these resources corresponding to blocking
time stairways. This is exactly what is required to compute the capacity occupation of
a set of resources by a given set of train paths. Differently from the general max-plus
algebra, in the max-plus automata, both the start and end time of each resource by each
train is taken into account.

We assume a given timetable with assigned train routes (i.e., a route plan) and corre-
sponding blocking time stairways for the trains. In this section, we view a blocking
time stairway of a single train as a piece. Note that a piece may represent a complete
or partial train route through a node. For example, a train route may consist of multiple
pieces. Graphically, we may picture a compressed timetable as a heap of all blocking
time stairways stacked on each other, a heap-of-pieces.

2.5.1 Max-plus automata model

A max-plus algebra is a semiring over Rmax = R∪{ε = −∞}, equipped with the two
binary operations maximum (⊕) and addition (⊗). For a,b ∈ Rmax the max-plus oper-
ations are defined as

a⊕b = max(a,b) and a⊗b = a+b. (2.2)
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The element ε = −∞ is the neutral element for ⊕ and absorbing for ⊗. The element
e = 0 is the neutral element for ⊗. Many properties of max-plus algebra are similar
to conventional algebra. The scalar max-plus operations are extended to matrices in a
standard way. Let Rn×n

max be the set of n×n matrices with elements in Rmax. Then, for
any matrices A = (ai j), B = (bi j) ∈ Rn×n

max matrix addition ⊕ and matrix multiplication
⊗ are defined as

[A⊕B]i j = ai j⊕bi j = max(ai j,bi j), (2.3)

[A⊗B]i j =
n⊕

k=1

aik⊗bk j = max
k=1,..,n

(aik +bk j). (2.4)

A max-plus automaton is a tuple H = (T,R,M,s, f ). Here, T is a finite set of tasks that
represent all train routes l ∈ T , while R is a finite set of resources that can be block
sections or track detection sections (as defined in Section 2.2.1). Also, M is a function
that maps a task to the resources it uses. Formally, M is a morphism T →RR×R

max defined
uniquely by a finite family of matrices M(l), l ∈ T . We define si(l) and fi(l) as the
start and end time of resource i used by task l, respectively. Further, these construct
the corresponding R-dimensional row vectors s(l) and f (l). In other words, the task l
represents a (partial) train route, while s(l) and f (l) depict the upper and lower contour
of the corresponding blocking time stairway. We also assume that each stairway starts
at time 0.

The matrix M(l) represents the blocking time stairway, which also equals the capacity
occupation, of a task l and is defined as

Mi j(l) =


e, for i = j, i /∈ R(l),
f j(l)− si(l), for i, j ∈ R(l),
ε, otherwise.

(2.5)

A matrix element Mi j(l) gives the time difference between the end time of the resource
j and start time of the resource i. In addition, if a resource is not used, we assign e, if
i = j, and ε elsewhere.

We define a route plan w as an ordered sequence of tasks by successive trains w =

l1 · · · ln, where l1, . . . , ln ∈ T . Then, tasks from the route plan are added one by one to
the heap of pieces by which the occupation of the resources is computed sequentially
as

M(w) = M(l1 · · · ln) = M(l1)⊗·· ·⊗M(ln). (2.6)

Thus, matrix M(w) defines the capacity occupation used by all train routes in w com-
pressed together. Moreover, we define x(e) as an empty schedule of length |R|. Then
an upper contour x(w) of schedule w is given as

x(w) = M(w)⊗ x(e).
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In general, schedule w represents a given train mix (number and types of trains with
corresponding routes). For practical reasons, the first train may be added as an addi-
tional train at the end of the sequence. The start time of this final train is the end point
of the capacity occupation. In case of a periodic timetable, adding this first train from
the next period is required, as it determines the earliest possible time to schedule the
next period, which completes a full cycle. This will guarantee a necessary separation
between the last train of the current period and the first of the next one. To do so, let
a be the first task in a schedule of tasks w. Then the capacity occupation µ(w) of a
schedule w is computed as

µ(w) = min
i∈R(a)

(xi(wa)− ( fi(a)− si(a)) , (2.7)

where wa is the schedule for one period w with an additional train route a that belongs
to the next period. We use an added train route a to determine the earliest possible
start of the next period. Here, x(wa) represents the capacity occupation including
repeated train a. However, as mentioned, the actual occupation is defined until the start
time of a, so we subtract the occupation time of a from x(wa), that is, the difference
f (a)− s(a). Next, the capacity occupation µ(w) is defined between the start time of
each element of the first train in w and a. Accepting that w starts at 0, then µ can
take the minimum value of the vector (x(wa)− ( f (a)− s(a)). So, (2.7) computes the
occupation µ of a node for a given route plan w that specifies an ordered sequence of
blocking time stairways l ∈ T . Note that the model complexity depends on the route
choices and not on the station layout complexity, so the set R can be limited to the set
of used resources in the given route plan.
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Figure 2.3: Example 1: Simple node infrastructure with trains a, b and c
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Figure 2.4: Train routes: a – red, b – green and c –blue

Consider the following example for computing the capacity occupation of the node
presented in Figure 2.3. Consider three trains a, b, and c, timetable w1 = abc and
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resources r = 1, ..,4. Trains a and c use resources {1,3,4}, while b uses {4,2,1}. Note
that the order of resources defines the direction of each train. The train blocking times
are given in the blocking stairways (in seconds) as follows:

Route r s(r) f (r)

a [0,ε,25,40] [40,ε,60,75]
b [80,25,ε,0] [140,100,ε,35]
c [0,ε,35,100] [50,ε,120,160]

Figure 2.4 shows individual train routes, i.e., pieces, of a, b and c. Each piece is
physically connected in reality. However, it does not have to be connected in a two-
dimensional plot since the horizontal axis reports all resources in the node (Figure 2.3)
and more, these resources can be ordered randomly. So, if a train route does not use a
resource, a ’gap’ in a piece may be observed. For example, resource 2 is not used by
train route a.

The corresponding matrices M for train routes a, b and c are defined by applying (2.5)
as follows

M(a) =


40 ε 60 75
ε e ε ε

15 ε 35 50
0 ε 20 35

 , M(b) =


60 20 ε −45

115 75 ε 10
ε ε e ε

140 100 ε 35

 ,

M(c) =


50 ε 120 160
ε e ε ε

15 ε 85 125
−50 ε 20 60

 .
The matrix M for a partial route plan ab is computed as

M(ab) = M(a)⊗M(b) =


215 175 60 110
115 75 ε 10
190 150 35 85
175 135 20 70

 .
Matrix M(ab) defines the capacity occupation of ab, representing that a is immediately
followed by b. Similarly, train route c is added to the route plan as M(abc) = M(ab)⊗
M(c). The upper contour of the route plan abca is then computed as x(abca) =
M(abca)⊗ x(e) = (375,175,395,410)T . And the capacity occupation for the route
plan abc is then computed using (2.7) as

µ(abc) = min(x(abca)− ( f (a)− s(a))) = min




375
175
395
410

−


40
ε

35
35


= 335,
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where the minimum is taken over the vector entries. Figure 2.5 shows the final result.
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Figure 2.5: Capacity occupation for a route plan w1 = abc. The upper contour x(abca)
is showed by the blue line. The capacity occupation µ(w) is presented with a double
arrow.

2.5.2 Satisfying additional timetable constraints

Since the max-plus automata model takes train routes in temporal order and com-
presses them one by one, some additional modeling is necessary to properly represent
certain train interactions. In particular, we propose procedures needed for modelling
train overtaking and connections due to passenger transfers or train coupling/decoupling.
Meanwhile, constraints for a train turning in a terminal station do not request any extra
modelling.

Overtaking of a slower train and/or a lower priority one is applied as a common mea-
sure for reducing capacity occupation in the planning phase, and alleviating train de-
lays during operations. If a train is overtaken in a node, then the train route is parti-
tioned in an inbound route and an outbound route. The inbound route is a train route
from the node entry point to the platform track, while the outbound route runs from
the platform track to the exit from the node. Coupling or decoupling of trains can be
treated similarly.

A timetable often includes constraints that represent traffic requirements such as pas-
senger transfers, which are not necessarily related to the infrastructure limitations. In
other words, connecting trains often use a dedicated infrastructure. In order to main-
tain the timetable dependency in the max-plus automata model, additional modelling
is necessary to keep the two trains together. To do so, train routes of these trains are
modelled as a single task.
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2.6 Capacity assessment in networks

Capacity assessment of railway networks is not a general practice yet. CAPRES (Luc-
chini, Rivier, & Emery, 2000) is a railway network capacity assessment tool based
on saturation of a periodic timetable with extra train paths. PETER (Goverde, 2007,
2010) is an analytical tool for evaluating the capacity occupation rate and stability of a
periodic timetable on the network level based on max-plus algebra. These models are
based on a macroscopic network description and were originally developed for nor-
mative headway times, like the CUI. On the other hand, KABAN (Ekman, 2011) is a
microscopic capacity assessment tool built on a detailed modelling of infrastructure,
periodic timetable and train routes, which also applies max-plus algebra to compute
the capacity occupation. However, due to the high level of details, KABAN is limited
only to small-sized networks. This section focuses on the general max-plus algebra
modelling, such as used in PETER. For similar approaches, see also Heidergott and de
Vries (2001) and Heidergott et al. (2014). Note that instead of using normative head-
way times, we also explain how to deploy the results of capacity assessments of corri-
dors and nodes as input to the network capacity assessment. This provides improved
accuracy similar to UIC 406 over the CUI method, and allows evaluating large-scale
national networks.

When considering large-scale networks, the microscopic detail of the capacity assess-
ment of corridors and nodes is aggregated into a macroscopic model that connects all
the corridors together at the nodes. For the capacity assessment at corridor level, the
train paths were split in parts and tackled separately over the successive line sections.
At the network level, the successive train paths must again be considered as a whole.
Likewise, existing interactions between various train paths at nodes, over successive or
crossing corridors, must be regarded at the network level as well. Since the resources
were already taken into account at the corridor and node level, the network model can
be formulated using only time constraints. On the other hand, for a normative capacity
assessment, the events can be any arrival, departure or passing-through events in the
network which are connected by minimum running and dwell times or normative min-
imum headway times. Moreover, on the network level other operational constraints
can be taken into account, such as passenger transfers and rolling stock connections.

In general, the network model consists of event times at nodes and precedence con-
straints between them, which represent the interconnection structure of the various
trains. Before an event time may occur, it must satisfy all precedence constraints which
take the form

xi ≥ ai j + x j, (2.8)

where xi and x j are two event times and ai j ≥ 0 is the minimum time duration from
event time x j to event time xi. This precedence constraint is very general and can be
used to define a directed acyclic graph (DAG) with the event times as the nodes and
the minimum time durations as the arc weights between the nodes. The minimum time
durations may correspond to minimum line or station headway times, or to scheduled
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activities between events such as the aggregated running time between nodes or a min-
imum dwell or transfer time in a node (see Figure 2.6). A critical path between two
nodes in a graph represents the longest path between the two nodes, that is, the path
with the highest sum of weights. A critical path algorithm over the DAG then finds the
earliest occurrence times of all the events in the network which correspond to a com-
pressed timetable with all precedence constraints respected. Finding a critical path in
DAG can be done by any shortest path algorithm after negating the weights.

Figure 2.6: Modelling timetable constraints in a network including event times (dots),
runs, stops and transfers (solid arcs), and minimum headway times (dashed arcs)

For periodic timetables, it is more convenient to consider periodic event times and
assess the network capacity occupation in a basic timetable period. For this, an event
i represents a triple i = (Ei,Li,Si), where Ei is the event type (arrival or departure),
Li is the associated train line and Si the station. Denote by xi(k) the event time of a
periodic event i in timetable period k. So, the event time of an event i in the first period
is xi(1), in the second period it is xi(2), and so on. If the events occur on time with
a scheduled cycle time T , then xi(k+1) = xi(k)+T . Now the precedence constraints
can be written as

xi(k)≥ ai j + x j(k−mi j), (2.9)

for all predecessor events j of i, where ai j is the same for each period and mi j is a
non-negative integer indicating the period shift between the two events. For example,
event j is scheduled mi j periods before event i. Mostly, mi j ∈ {0,1}, corresponding
to two events that are scheduled in the same period (mi j = 0) or in successive periods
(mi j ≥ 1), so that the time separation crosses a period boundary. Any scheduled activity
that covers more than one period can be split in parts with dummy events, so in the
sequel we assume mi j ∈ {0,1}.

The earliest occurrence of an event time is now obtained by

xi(k) = max
j

(
ai j + x j(k−mi j)

)
, (2.10)

where j ranges over the predecessors of i. This can be formulated conveniently in
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max-plus algebra. Let x(k) =
(
x1(k), . . . ,xn(k)

)′, and collect the minimum activity
and headway times in two matrices A0 and A1, with [Ami j ]i j = ai j and fill the empty
entries by ε = −∞ indicating that there is no direct precedence relation from event j
to i. If there are parallel arcs between the same events with the same period shift, then
only the maximum arc weight has to be added to the matrix. The recursive equation
(2.10) can now be written for all events together as x(k) = A0⊗ x(k)⊕A1⊗ x(k− 1),
where k ranges over the successive timetable periods. It is a straightforward result from
max-plus algebra theory that any max-plus system can be reformulated as a purely
first-order system of the form

x(k) = A⊗ x(k−1), (2.11)

where A = A∗0⊗A1, with the Kleene star operator A∗ = A0⊕A1⊕ . . .⊕An−1 and the
powers are understood in the max-plus algebra, e.g., A2 = A⊗A (Heidergott et al.,
2014). For simplicity, we assume that A is irreducible, meaning that it corresponds to
a strongly-connected precedence graph defined by n nodes and an arc ( j, i) with arc
weight ai j for all entries ai j 6=−∞. For the general results, see Goverde (2007).

The main result from the max-plus algebra approach is that the network capacity oc-
cupation equals the eigenvalue λ of the system matrix A. The eigenvalue problem is
defined as

A⊗ v = λ⊗ v, (2.12)

where v is an eigenvector corresponding to the eigenvalue λ. The eigenvector v repre-
sents a compressed timetable allowing the railway system to operate with cycle time
λ. To see this, we write (2.12) in conventional form as

max
j

(
ai j + v j

)
= λ+ vi. (2.13)

Considering v as a timetable vector in some period, then the left-hand side gives the
earliest occurrence time for event i in the next period and the right-hand side says that
this occurrence time is exactly λ after the previous event time vi. If G(A) is strongly
connected, then the eigenvalue λ is unique (Goverde, 2005; Heidergott et al., 2014),
and so (2.13) holds for each vi with the same λ. Since the ai j are the minimum activ-
ity and headway times, v is the compressed timetable, and λ is the network capacity
occupation.

A critical circuit is a circuit in the precedence graph with the maximum ratio of to-
tal arc weight to the number of arcs in the circuit, which equals λ. To obtain a sta-
ble timetable that can cope with delays, the timetable must be operated with a period
length T > λ. The events on the critical circuit also identify the critical activities and
headways in the network, similar to the critical blocks in the capacity assessment of
corridors. Figure 2.7 shows a large network where the critical circuit is the traffic over
a partial single-track line. Efficient algorithms are available for solving the max-plus
eigenvalue problem, and in particular graph algorithms based on the critical circuit



26 Integrated models for railway timetabling

Figure 2.7: Critical circuit in a large network (PETER)

(Goverde, 2005; Heidergott et al., 2014). For example, the policy iteration algorithm
runs in IO(m) time where I is the number of iterations of the main loop and m is the
number number of arcs (Cochet-Terrasson, Cohen, Gaubert, McGettrick, & Quadrat,
1998).

2.7 Conclusions and future developments

Railway capacity research plays an important role in railway planning and operations.
In this chapter, we gave an overview of methods for railway capacity assessment,
with the focus on deterministic timetable-based models. We first presented common
methods based on timetable compression, UIC 406 and CUI. The CUI is a normative
method while the UIC 406 model considers a higher level of detail that allows more ac-
curate estimation of capacity occupation. We also described the existing and advanced
models for assessing different infrastructure segments independently like corridors and
nodes, but also whole networks.

The benefit of capacity assessment is manifold. First, evaluating existing or new
timetables to determine capacity occupation will provide insight into the expected level
of service. Second, the infrastructure bottlenecks can be determined in a network.
Third, capacity assessment may suggest possible improvements in traffic organization
like using alternative train routes that are more efficient. Fourth, proposing the most
attractive and beneficial infrastructure projects based on capacity assessment is partic-
ularly valuable to infrastructure managers and governments in using available funds
most efficiently. Fifth, the impact of scheduled construction and maintenance works
on traffic can be estimated.

The future development of capacity assessment models should stay in line with the
existing compression method, the UIC 406. To make it a standard evaluation tool and



Chapter 2. Capacity assessment in railway networks 27

apply it internationally, additional research on capacity saturation rates and required
levels of service for punctuality and regularity is essential. The network models should
gain more attention, as only these are able to incorporate all interactions occurring in
a timetable. In addition, it is necessary to maintain the high level of accuracy by
transforming data from microscopic to macroscopic models.
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Chapter 3

A three-level framework for
performance-based railway
timetabling

Apart from minor updates, this chapter has been published as:

Goverde, R. M. P., Bešinović, N., Binder, A., Cacchiani, V., Quaglietta, E., Roberti, R.,
& Toth, P. (2016). A three-level framework for performance-based railway timetabling.
Transportation Research Part C: Emerging Technologies, 67, 62-83.

3.1 Introduction
The performance of railway operations depends highly on the quality of the timetable.
In the last decade, timetabling software has become more and more common, from run-
ning time computations via mathematical timetable optimization to railway operations
simulation. Nevertheless, these tools and their focus vary widely from country to coun-
try and often lack consistency since they are used independently for different purposes
and do not lead to an integrated set of tools geared towards a well-defined timetable de-
sign process. Also many papers on railway timetabling have been published in the sci-
entific literature, but they hardly found their way into practice. The same could be said
for train rescheduling models. This raises the question: what would be needed to get
the scientific state-of-the-art implemented and applicable to practical (re)scheduling?
This question was the basis for the EU FP7 research project ON-TIME (Optimal Net-
works for Train Integration Management across Europe) (ON-TIME, 2016). Although
wider in scope, one of the aims was to develop improved methods for the construction
of timetables that are capable of coping with normal statistical variations and minor
perturbations in operations. The result is a three-level framework for performance-
based timetabling which is explained in this paper.

29
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A state-of-the-art review of literature and practice revealed a lot of research in math-
ematical models for macroscopic timetable optimization (ON-TIME, 2013), see also
the review papers by Bussieck, Winter, and Zimmermann (1997), Cordeau, Toth, and
Vigo (1998), Caprara, Kroon, Monaci, Peeters, and Toth (2007), and Lusby, Larsen,
Ehrgott, and Ryan (2011). These macroscopic models rely implicitly on reliable in-
put data which may not always be available. This might explain why these models
and algorithms did not yet find their way into daily timetabling practice, except at the
strategic level. A recent trend in the scientific literature consists of robust timetabling
models that incorporate stochasticity or uncertainty in the input (Cacchiani & Toth,
2012). Microscopic timetabling models that use a higher level of detail are limited
in the literature and mainly focus on single track railways (e.g., Brännlund, Lindberg,
Nou, & Nilsson, 1998). Also models based on blocking time theory (Hansen & Pachl,
2014) fall within this category. Most of these blocking time models are employed for
computing capacity consumption using the timetable compression method or within
microscopic simulation tools. Moreover, optimization models based on blocking times
have been developed for real-time rescheduling (e.g., Corman & Meng, 2015; Corman
& Quaglietta, 2015; D’Ariano, Pranzo, & Hansen, 2007; Meng & Zhou, 2014). Re-
cent papers apply two-level microscopic-macroscopic models to generate conflict-free
timetables (Caimi, Chudak, Fuchsberger, Laumanns, & Zenklusen, 2011; Gille, Kle-
menz, & Siefer, 2008; Schlechte et al., 2011). In these papers, the transformation from
microscopic to macroscopic models is straightforward but the reverse is more compli-
cated.

The timetabling practice shows a similar separation, with either macroscopic models
to compute network timetables using normative input, or microscopic blocking-time
based tools for detailed planning on corridors and stations but without support for net-
work optimization. Timetable evaluation on feasibility, stability or robustness is typi-
cally applied –if at all– after timetable construction using simulation tools with unclear
procedures how the results are used to improve the timetable design. Timetabling tools
are mostly concerned with routine work such as running time calculations, mostly dis-
carding energy-efficiency, and making visualizations such as time-distance diagrams
and platform occupation diagrams. Some railways (SE, UK) are starting to apply
microscopic simulation tools for conflict detection as a complementary step to their
macroscopic timetable planning tools. If a significant change of the timetable is fore-
seen either for lines or for complicated areas, robustness simulation studies are made
also to ensure the feasibility of the timetable and give a rough idea of its robustness
(ON-TIME, 2013).

Based on the state-of-art review essential performance measures were derived that
should be taken into account to achieve a good timetable (Goverde & Hansen, 2013).
These performance indicators include infrastructure occupation, stability, feasibility,
robustness, resilience, journey time efficiency and energy efficiency. Depending on
the degree that these indicators are taken into account in the timetable design process,
a higher timetabling level can be obtained that lead to better timetables but at the cost
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of increased data requirements (Goverde & Hansen, 2013).

In this paper, we propose to integrate timetable construction and timetable evaluation
with the aim to incorporate all timetable performance indicators in the timetable design
process and thus achieve the highest timetabling level. Using a microscopic model for
large-scale networks including stochastic elements to evaluate and optimize a timetable
is practically impossible due to abundant level of details and the size of real-life prob-
lems. But this is also not necessary, since the timetable performance indicators apply
to different levels of timetabling detail and therefore we may zoom in and out at dif-
ferent levels to optimize or evaluate the various performance indicators. We therefore
propose an integrated timetable design process at three levels:

• A microscopic level based on accurate running time and blocking time calcu-
lations using train dynamics, infrastructure characteristics, and signalling logic.
This level is required for evaluating feasibility, infrastructure occupation, and
stability.

• A macroscopic level based on an aggregated network structure of main timetable
nodes only. This level is required for optimizing and evaluating journey time
efficiency and robustness over large-scale networks.

• A mesoscopic level for fine-tuning the train speed profiles on corridors between
the main nodes. This level is required for optimizing energy-efficiency and ro-
bustness on corridors between the main nodes.

The mesoscopic level gets input from both the microscopic and macroscopic levels
and may use a mixture of microscopic and macroscopic models itself. In particular, at
this level the train speed profiles over the corridor are optimized taking into account
the available time allowances computed in the other levels. Finally, a consistent datas-
tructure is important to switch between the three levels. In particular, the microscopic
models compute reliable input to the macroscopic and mesoscopic models, and re-
versely the macroscopic timetables need to be translated back to the microscopic level
for microscopic evaluation and further fine-tuning in the corridors.

This paper presents an innovative three-level modular timetabling framework to inte-
grate the three levels of timetable optimization and evaluation into a consistent design
process. We propose an iterative process on the three levels, where each performance
indicator is optimized or evaluated at the appropriate level. As a proof of concept this
framework has been implemented with a set of algorithms that are described in this
paper from a functional perspective as examples of a possible implementation. The
implemented models and algorithms are state of the art but it is their interaction in
the framework that is the main contribution of this paper. The railML standard was
selected as the data exchange format between the developed modules and external data
sources. The modularity of the framework allows any algorithm to be replaced by any
other algorithm of choice, such as existing software within railway companies or other
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models for specific needs. The approach is applied to a case study from the Dutch
railways showing an overall improved timetable performance and thus demonstrating
the feasibility of this approach. However, we emphasize that the framework and im-
plemented models are generic and can be applied to any railway from any country.
For instance, we apply blocking time theory for conflict detection and infrastructure
occupation, which is also supported by the International Union of Railways (UIC,
2013). The blocking time modelling represents a generic building block while the ex-
act computation of its components (mainly the approach time) depends on the specific
signalling logic (Hansen & Pachl, 2014).

The main original contributions of this paper can be summarized as

1. A proposal for performance-based railway timetabling with integrated timetable
construction and evaluation,

2. Description of an integrated three-level modular framework incorporating six
main performance indicators in the timetabling process,

3. A proof-of-concept by an implementation of algorithms in a consistent architec-
ture with standardized data exchange formats, and

4. Demonstration of the approach on a real-life non-trivial dense railway network.

Section 3.2 presents the timetable performance indicators that should be taken into ac-
count to reach a high timetabling design level. Section 3.3 then presents the performance-
based timetabling framework with successively the functionalities of microscopic time-
tabling, macroscopic timetabling, corridor fine-tuning, and their interactions. Section
3.4 illustrates the approach to a case study of the Dutch railway network, and finally,
Section 3.5 ends with conclusions and recommendations.

3.2 Timetable performance

The quality of a railway timetable can be measured by several Key Performance Indi-
cators (KPIs). Traditional KPIs are the operational speeds or scheduled running times
on train lines, and more general scheduled journey times in networks including transfer
times where train lines meet. On the other hand, the main KPIs of railway operations
are punctuality and reliability. Short journey times in the timetable do not necessar-
ily imply good punctuality or transfer reliability, but on the contrary they may lead
to large waiting and realized travel times when connections are missed or trains can-
celled. Therefore, the timetable must also be robust to normal variations of running
and dwell times so that punctual and reliable operations can be realized.

Furthermore, structural route conflicts between trains due to too tight scheduling must
be avoided to prevent unnecessary braking and waiting of trains with negative con-
sequences for safety, punctuality and energy consumption. The latter point is typical
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for railways which are characterized by trains competing for the same infrastructure.
Track capacity allocation is therefore an integrated part of railway timetable design.
At this level the timetable is also known as the traffic plan, which contains the exact
routes of all trains and the orders of trains over conflicting routes. Also the safety
and signalling constraints must be incorporated to prove that the traffic plan is conflict
free and the infrastructure capacity consumption allows normal deviations from train
paths. The above concepts are captured in several performance indicators as follows
(Goverde & Hansen, 2013):

• Journey time efficiency: The time scheduled between any origin and destina-
tion including running times, dwell times and transfer times.

• Infrastructure occupation: The share of time required to operate trains on a
given railway infrastructure according to a given timetable pattern.

• Timetable feasibility: The ability of all trains to adhere to their scheduled train
paths. A timetable is feasible if (i) the individual processes are realizable within
their scheduled process times, and (ii) the scheduled train paths are conflict free,
i.e., all trains can proceed undisturbed by other traffic.

• Timetable stability: The ability of a timetable to absorb initial and primary de-
lays so that delayed trains return to their scheduled train paths without reschedul-
ing.

• Timetable robustness: The ability of a timetable to withstand design errors,
parameter variations, and changing operational conditions.

• Energy consumption: The amount of energy consumed by the train traffic.

Some of these performance indicators are based on typical macroscopic quantities such
as journey time efficiency, while others require a microscopic level of detail such as in-
frastructure occupation, timetable feasibility and energy consumption. Timetable sta-
bility refers to a minimum amount of time allowances that must be available throughout
the timetable and in particular at bottlenecks, while robustness refers to how these al-
lowances are distributed between the train paths to maintain performance when trains
deviate slightly from their scheduled paths. Stability is closely related to infrastructure
occupation and can be incorporated using the UIC guidelines on acceptable infras-
tructure occupation (UIC, 2013) at the microscopic level, while robustness represents
a trade-off with short journey times and is therefore best considered at the macro-
scopic level together with journey time. Energy consumption is typically a secondary
objective, particularly in dense railway networks, and can therefore be considered as a
fine-tuning step after the time allowances have been set based on feasibility and robust-
ness. The contribution of the present paper is to apply these indicators in an integrated
timetabling framework to actually compute timetables that satisfy all the indicators and
thus reach the highest timetabling level with an additional sustainability dimension of
energy efficiency.
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In this paper we measured the performance indicators as follows. Journey time effi-
ciency is measured as the maximum and mean journey time increase over the minimum
journey times1 for selected origin-destination journeys over the network. Timetable
feasibility is a hard constraint in the timetable design framework, which means that all
resulting process times are realizable and all conflicts between train paths have been
solved. For feasibility we accept tight headways between train paths (i.e., zero buffer
time), while this is penalized by robustness. For evaluation we count the number of
conflicts and unrealizable running times. Infrastructure occupation is measured using
the UIC compression method in percentage for each (partial) corridor and station in
the network. Stability is based on the measured infrastructure occupation and the UIC
guidelines for stable infrastructure occupation, and is measured as satisfying the UIC
guidelines for each corridor and station. It is also a hard constraint in the timetable
design framework. Robustness is measured by the average settling time of the delay
propagation over the entire network over a set of delay scenarios. Finally, energy con-
sumption is measured as the percentage energy saving over all trains in the network
with respect to the minimal running times.

3.3 Performance-based timetabling

3.3.1 Framework

The proposed timetabling approach tries to schedule all train path requests with suf-
ficient time allowances for a stable and robust conflict-free timetable and satisfying
the UIC infrastructure occupation norms (UIC, 2013). This is in accordance to the
Network Statements issued by the Infrastructure Managers from all EU countries to
allocate the infrastructure capacity to the Railway Undertakings. This might require
extending critical running times on corridors with an unacceptable capacity consump-
tion to decrease running time differences. Moreover, we compute timetables at a preci-
sion of 5 s instead of a minute, to avoid capacity waste and unrealizable process times
by rounding to minutes.

The timetabling framework is performance-based in the sense that all six timetabling
KPIs from Section 3.2 are explicitly taken into account to guide the timetable con-
struction process. To make this possible an integrated approach is proposed on three
levels:

• A microscopic level for highly detailed local computations;

• A macroscopic level for aggregated network optimization; and

• A fine-tuning level for corridor optimization.

Figure 3.1 illustrates this three-level timetabling approach. The input data are standard-
ized railML files (Bosschaart, Quaglietta, Janssen, & Goverde, 2015). The microscopic

1A minimum journey time is the minimum technical time based on a given line plan.
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Figure 3.1: Three-level performance-based timetabling framework

model computes detailed running and blocking times, and aggregates the results into
a macroscopic model that contains only the main macroscopic stations characterized
by train interactions such as overtaking, connections, and merging or crossing railway
lines that need decisions at the macroscopic level such as synchronization and train
sequence orders. The macroscopic model then computes a network timetable taking
into account network constraints and trying to avoid cancelled train path requests. The
macroscopic timetable is transformed back to the microscopic model that fills in the
details on microscopic level. These two models work iteratively where the microscopic
model is used for conflict detection, infrastructure occupation and stability given the
(completed) macroscopic timetable, while the macroscopic model optimizes a trade-
off between journey time efficiency and robustness given the constraints set by the mi-
croscopic model. Infrastructure occupation is based on the UIC timetable compression
method (UIC, 2013) which also provides norms for acceptable stability. The macro-
scopic model is an Integer Linear Programming (ILP) model and includes a simulation
model to find the most robust timetable out of several hundred feasible solutions. The
overall cost function contains several terms including a robustness cost derived from
the simulations. These micro-macro iterations converge to a timetable that is conflict-
free, stable and robust (Bešinović, Goverde, Quaglietta, & Roberti, 2016).

The final allowance times (over a required minimum allowance time) and buffer times
in the timetable are the result of the interaction between the microscopic and macro-
scopic models. The microscopic level takes care that sufficient buffer time is avail-
able on the corridors and stations by computing the infrastructure occupation using
the timetable compression method, while the macroscopic model optimally allocates
it over the timetable. If the train density is very high then the optimization will try
to find the optimal train sequence orders and overtaking locations, and homogenize
the trains by e.g. extending the running time of the intercity trains until the capacity
consumption is satisfied. Of course, the number of trains must be realistic otherwise
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the macroscopic algorithm will have to cancel train path requests to build a feasible
timetable. This is clearly penalized in the objective function, but it can be applied as
a last operation. Since our aim is to design robust conflict-free timetables, we assume
that the capacity balance of the number of trains, heterogeneity, average speed, and
stability can be satisfied. If this is not the case then the timetable planner must adjust
the input data based on the feedback given by the optimization (e.g., cancelled train
path requests, homogenized trains, and high infrastructure occupation at bottlenecks).
Hence, our framework also works in highly congested networks.

Along with the developed microscopic, macroscopic and fine-tuning models it is highly
important to utilize the data consistency between the models. In particular, the iterative
data flow has to be maintained between the micro and macro models on one side and
between the micro and fine-tunning models on the other. To this purpose, we developed
two functions to transform data to a desired model. First, we perform a micro-to-macro
network aggregation, which determines stops and other timetable points that will be the
nodes (macroscopic stations) in the macro network connected by arcs with the corre-
sponding aggregated running times. A similar network aggregation was deployed in
Schlechte et al. (2011). Second, a new reverse macro-to-micro transformation com-
putes operational running times for computed macroscopic arrival and departure times
from the macroscopic timetable (MacroTT), where the allocated time supplements are
exploited in a feasible speed profile for each train run. By doing this, we enable further
microscopic calculations such as conflict detection and capacity assessment.

The third level optimizes the speed profiles of all trains on each corridor between main
stations while maintaining the scheduled event times at the corridor ends. The micro
and fine-tuning models use the same level of infrastructure detail, so no network trans-
formations are needed here. The microscopic model mainly provides the scheduled
event times to the corridor fine-tuning model which have to be respected. The fine-
tuning module first computes energy-efficient speed profiles (EE speed profiles) for
the given scheduled event times, after which the blocking times are updated and band-
widths are determined around the speed profiles for the local trains (micro-to-corridor
transformation) for corridor improvements. The IC trains are now fixed by the com-
puted energy-efficient train speed profiles, while the time-distance speed profiles for
the local trains over the successive corridors will be optimized within the available
bandwidths that maintain feasibility. The corridor fine-tuning optimization optimizes
the arrival and departure times at the intermediate stops in the corridor with respect to
expected delays and energy savings considering stochastic dwell times at these stops.
The train bandwidths are initially determined by the earliest start and latest end of
the blocking times over the given corridor. The optimization of the published depar-
ture times within the given bandwidths between the important timetable points and
bottlenecks does not influence the robustness of the network which was optimized in
the previous level. This is the reason that only the local trains are fine-tuned within
the given freedom left. If a given bandwidth results in a fine-tuned EE speed profile
that is not conflict-free, a more conservative bandwidth is determined and the corridor
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EE speed profile is recomputed. This process is repeated until a feasible timetable is
obtained. In this way, we preserve timetable feasibility. These feasibility checks are
internal to the fine-tuning module to avoid reiterations over the micro-macro levels.
The final result is exported in railML timetable format extended with scheduled speed
profile information that can be used by the trains for running punctual and energy effi-
cient.

In timetable construction passenger demand can be considered explicitly or implicitly.
Recently, Niu and Zhou (2013) proposed an approach for optimizing a train timetable
in a highly congested urban subway line with the goal of minimizing the passenger
waiting times at stations, while taking into account passengers that cannot board a
train due to the limited capacity. They proposed a local search algorithm to optimize
a timetable for a single station and a genetic algorithm to optimize a timetable for
a subway line. Barrena, Canca, Coelho, and Laporte (2014b) proposed two mathe-
matical formulations for a rail rapid transit single-line timetabling problem with the
goal of minimizing passenger waiting times at stations, while considering a dynamic
demand context. They solved the problem by an adaptive large neighborhood search
meta-heuristic. The framework we propose considers passenger demand in several
ways implicitly. As mentioned above, we try to schedule all train path requests, which
are obtained beforehand based on the passenger demand, i.e., one of the goals is to
maximize the transport volume. Furthermore, the passenger demand is taken into ac-
count by minimizing the trip times, which correspond to the sum of running and dwell
times. In addition, passenger connections are optimized: we consider both the number
of available connections (which is maximized) and the connection times (connection
times that are “too short” or “too long” are penalized). The latter objective is similar to
those considered in the literature, i.e., we try to reduce passenger waiting times at sta-
tions. All these goals related to passenger demand are considered in the macroscopic
timetabling model, while the microscopic timetabling model is fundamental to check
the timetable feasibility. Algorithm 1 shows a complete list of the successive steps of
the performance-based timetabling approach. Each of these steps is performed by a
separate exchangeable module and as such the approach is general. In the remainder
of the paper we will focus on the implementations carried out within the ON-TIME
project from a functional point of view.

3.3.2 Microscopic timetabling

The microscopic module considers multiple functions for computing and providing
necessary input to other modules as well as evaluating a timetable at the microscopic
level. These functions incorporate three KPIs: infrastructure occupation, stability and
feasibility. As already mentioned in Section 3.3.1, the module first computes the speed
profiles and running times. Next, the blocking times are determined which are the nec-
essary input for conflict detection and infrastructure occupation, as well as for deriving
minimum local headway times for the macroscopic module.

The microscopic network used within the microscopic timetabling allows high de-
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Algorithm 1 Performance-based railway timetabling
Input: railML infrastructure, rolling stock, interlocking, timetable
Result: railML timetable with traffic plan at track section level
Build microscopic network topology
Compute time-optimal speed profile and minimum running times
Build macroscopic network topology
Compute nominal running times by adding minimum running time supplements
Compute operational speed profiles based on nominal running times
Compute blocking times
Conflicts← 1; Stable← 0
repeat until Stable

while Conflicts do
Compute minimum local headways
Compute macroscopic network by aggregating running times
and local headways
Compute macroscopic timetable using network timetable optimization
Recompute operational speed profiles based on the macroscopic timetable
Compute microscopic running and blocking times
Conflict detection

end while
Compute capacity consumption
if an unstable corridor exists then

for each unstable corridor do
Relax nominal and maximum running times
Conflicts← 1

else Stable← 1
end if

end repeat
Compute energy-efficient speed profiles
Compute bandwidths for local trains
Corridor timetable optimization of local trains
Return Timetable railML

tailed computations with accurate output. Arcs represent homogeneous behavioural
sections defined by a constant characteristic of speed limit, gradient, and curvature,
while the nodes present various infrastructure elements like signals, stopping points,
and borders of track sections and switches. Additionally, procedures were developed
for network and data transformations from the microscopic to macroscopic level, and
vice versa. For details of the building blocks of the microscopic module, see Bešinović
et al. (2017); Bešinović et al. (2016); Bešinović, Quaglietta, and Goverde (2014). In
the remainder of this section we consider successively the main microscopic func-
tionalities: speed and running time calculations, conflict detection, and infrastructure
occupation and stability.
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Speed and running time calculations

At the basis of a good timetable are well-defined running times. In particular, the
scheduled running time consists of a minimum running time and an additional running
time supplement. A good understanding of these two components is essential for the
design of conflict-free, robust and energy-efficient timetables.

The minimum running time is the time required for driving a train from one point to an-
other assuming conflict-free driving as fast as possible. Additionally, the correspond-
ing speed profile represents a detailed train speed profile. The computation algorithms
for speed profiles and running times have to be as detailed as possible in order to pro-
vide the high accuracy requirements. Running times are computed from microscopic
train dynamics that require detailed rolling stock and infrastructure data, including
route-specific static speed and height profiles. The corresponding Newtons motion
equations are solved by numerical ordinary differential equation solvers (Hansen &
Pachl, 2014).

In regular daily operations, trains are affected by stochastic variations of running and
dwell times due to e.g., varying train compositions, driver behaviour, passenger vol-
umes and weather conditions. Therefore, allowance times are added to the minimum
process times so that they are robust to normal variations of the process times. These
allowances must satisfy certain timetable design norms, consisting of a mix of rela-
tive and absolute values for the nominal process times (minimum process time plus
minimum allowance). Running time supplements are given in percentage of minimum
running time, in some countries depending on train category, while nominal dwell
times are specified depending on rolling stock type and station, and nominal transfer
times are provided depending on station and platform distances. The resulting nominal
process times are input to the macroscopic timetable optimization as lower bounds to
the scheduled process times. In the optimization the nominal times can be increased
further depending on the network constraints and objective functions, resulting in the
scheduled running times. The objective function of the macroscopic optimization must
prevent excessive journey times by stretches of all running and dwell times. In addition
an overall upper bound can be provided to the roundtrip time of trains.

Hence, in the first iteration, the minimum running times are enriched with the mini-
mum time supplements and as such represent the nominal running times that are used
in the macroscopic model. Additional to the running time, the operational speed profile
defines the associated train speed profile. The operational speed profile can be obtained
by exploiting the available time supplements in two ways: a) cruising at speeds below
the speed limits, or b) computing energy-efficient speed profiles with optimal cruis-
ing speeds and coasting. During the timetable construction with several micro-macro
iterations the reduced speeds are applied as these are much faster to compute than
the optimal speed profiles. In the fine-tuning these speed profiles are replaced by the
energy-efficient ones.

In current practice mostly macroscopic timetabling models are used that, in a nutshell,
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try to assign time allowances in order to satisfy a given objective function. In this way,
the running time supplements are allocated without actually testing that the resulting
distribution of time supplements result in acceptable train speed profiles. A big varia-
tion between two (or more) successive allocated time supplements may be problematic
to reproduce a valid speed profile. Even if a speed profile is possible satisfying the
given time supplements, the constructed running behaviour may be unacceptable from
a practical point of view when very low cruising speeds result. For example, the Ger-
man practice requires that cruising speeds may not be under 40 km/h. This may be
violated in the case of a relative large running time supplement over a short section.
Furthermore, it is undesirable to continuously change driver behaviour such as alter-
nating between accelerating and decelerating with different cruising speeds. Hence,
even a macroscopically feasible timetable cannot always be reconstructed at the mi-
croscopic level and consequently implemented in practice. Therefore, the operational
speed profiles must be computed to test feasibility of the distribution of the time al-
lowances.

We implemented these guidelines in the computation of operational speed profiles. The
scheduled running times and corresponding operational speed profiles are computed
after each macroscopic timetable computation, resulting in feasible train speed profiles,
which are also essential for an accurate calculation of blocking times.

The successive blocking times per train over a corridor represent a so-called blocking
time stairway. Blocking times are computed using blocking time theory (Hansen &
Pachl, 2014). The blocking time of a block section depends on the block length, the
train speed, and the signalling system. It consists of a setup time, sight and reaction
time, the approach time to the block section over at least the braking distance, the
running time in the block, the clearing time in which the train clears the block over
its entire length, and the release time of the route, see Figure 3.2 for an example in
three-aspect two-block signalling (Goverde et al., 2013). The blocking times are the
essential input to the main microscopic algorithms such as conflict detection, capacity
assessment and minimum headway computation. Recall that the blocking times are
based on the nominal running times in the initial micro-macro iteration, and on the
scheduled running times in all following iterations.

Conflict detection and realizability

Timetable feasibility is a key performance measure. It is important to have a feasible
timetable in order to provide uninterrupted train runs, i.e., without unnecessary braking
and re-acceleration. This timetable KPI is beneficial from several perspectives: 1)
it improves safety by preventing unnecessary red signal approaches; 2) it gives less
workload to drivers; 3) it provides a more comfortable ride to passengers; and 4) it
saves energy. Therefore, each time a macroscopic timetable has been computed, the
microscopic module automatically checks the timetable on microscopic feasibility.

The feasibility of the timetable is tested twofold: a) a realizability check of sched-
uled event times; and b) conflict detection. The former is simply tested by checking
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Figure 3.2: Blocking time of a running train

whether the scheduled running and dwell times exceed the minimum values. Note that
the macroscopic timetabling model always provides realizable aggregated scheduled
process times, so this realizability check is mainly focused on the event times at the
smaller stations and other microscopic timetable points after transforming the macro-
scopic timetable onto the microscopic network. Unrealizable process times are mainly
caused by rounding down, which becomes problematic specifically when scheduled
event times must be given in minutes. In our approach, the macroscopic model com-
putes timetables with a precision of 5 s, while we allow a precision of 1 s in the micro-
scopic model so that rounding is not an issue anymore.

The conflict detection model determines if the scheduled trains can run undisturbed.
For this blocking times are used on the basis of the operational speed profiles. Con-
flicts are indicated by an overlap of the blocking times of two successive trains. The
second train then approaches the block section that is still blocked by the preceding
train and therefore must brake in response to the signalling logic. These track conflicts
are solved by shifting trains in time until their blocking times do not overlap anymore.
After all track conflicts have been detected, the corresponding minimum headways
are recomputed. These new headways are given back to the macroscopic timetabling
model to iteratively adjust the macroscopic timetable until all track conflicts are re-
solved.

Capacity consumption and stability

Capacity consumption is defined as the time share needed to operate trains on a given
infrastructure according to a given timetable pattern taking into account scheduled
running and dwell times. As such, it directly determines the stability of the timetable.
The same as for conflict detection, we use the computed blocking times to evaluate the
capacity consumption.

A timetable is called stable if a certain initial and primary train delay can be absorbed
by the time allowances in the timetable without active dispatching (Goverde, 2010).
Therefore, the larger the time supplements and buffer times the better is the ability of
the timetable to prevent propagation of delays, i.e., the timetable is more stable. If
the total amount of buffer time in a corridor is higher than the amount recommended
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by the UIC code 406, the timetable is considered sufficiently stable. Otherwise it
is defined unstable and the macroscopic timetable has to be recomputed to reduce
the infrastructure occupation on the critical corridors or stations and thereby releasing
buffer times.

The recommended UIC stability norms are given in Table 3.1. The values presented
here are for a given corridor for the peak period or the whole day. Norms for station
areas still require more research as elaborated in UIC (2013).

Table 3.1: Recommended UIC infrastructure occupation for corridors

Type of line Peak period Daily period
Dedicated suburban passenger traffic 85% 70%
Dedicated high-speed 75% 60%
Mixed traffic 75% 60%

The capacity assessment model developed is based on max-plus automata (Gaubert
& Mairesse, 1999) and explained in Bešinović et al. (2017). The model is applicable
to both corridors and stations. For now, we assume the given UIC norms from Table
3.1 for both corridors and stations. If the computed infrastructure occupation is not
satisfactory for a corridor then we relax the running time supplements of the trains
in the corridor to allow more homogenized traffic through the considered corridor by
reducing running time differences. For instance, a fast train line may be allowed a
higher time supplements over such a corridor. This relaxation is explained in Bešinović
et al. (2016). The relaxed constraints are input to a new iteration of the macroscopic
timetable optimization.

3.3.3 Macroscopic timetabling

The macroscopic timetabling considers the railway network at an abstract level, ne-
glecting many details of the real-world network. In particular, only network points
like stations and junctions, where trains overtake, merge, cross or connect, as well as
the lines connecting them are represented at the macroscopic level. The motivation of
applying this network reduction is that it is computationally faster to work with a sim-
plified network, and therefore several potential timetables can be evaluated according
to the different key performance indicators, including robustness. Clearly, once the
‘best’ macroscopic timetable has been determined, its feasibility at a microscopic level
is checked, as described in Section 3.3.1. Macroscopic timetabling is used to deter-
mine the best feasible schedule of trains in the macroscopic network by considering a
trade-off between timetable efficiency (e.g., scheduling as many trains as possible on
the network and obtaining the shortest journey time for the passengers between origins
and destinations, by scheduling efficient passengers connections) and robustness.

Several macroscopic timetabling approaches have been presented in the literature. In
the proposed three-level framework, we focus on macroscopic optimization models,
as they are suitable to achieve the performance measures described in Section 3.2.
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Indeed, these indicators can be seen as the objectives to be reached through the op-
timization models. The main objectives traditionally considered in the optimization
models can be summarized as providing the maximum efficiency of the railway system
and avoiding delay propagation as much as possible. These goals lead to a common
classification of the optimization models in nominal timetabling models and robust
timetabling models (Cacchiani & Toth, 2012).

A way for modelling nominal timetabling is introduced in Serafini and Ukovich (1989)
for periodic timetabling, in which one needs to determine a schedule of trains that is
repeated every given time period (e.g. every hour). This problem is called the Periodic
Event Scheduling Problem (PESP). In PESP, an event represents a periodic arrival or
departure of a train at a station. Such events are scheduled for one basic period (say,
1 hour), which is then repeated throughout the day. Let N be the set of all events to
be scheduled and T the considered cycle time. Then, the model uses integer variables
vi ∈ {0, . . . ,T − 1} representing the time instant at which event i ∈ N takes place. In
order to satisfy safety and track capacity requirements, a set of periodic constraints is
needed. In particular, for any pair of trains using the same track, a minimum headway
time must be respected, and overtaking along a track linking two consecutive stations,
as well as crossing of trains traveling in opposite directions along the same track, must
be forbidden. In addition, for each train, minimum running times and dwell times must
be respected. Each periodic constraint deals with a pair of events i, j ∈ N (i.e., arrivals
or departures of trains) and a periodic time window that imposes a lower bound li j

and an upper bound ui j on the time interval between the two events modulo the cycle
time, li j ≤ v j− vi (mod T ) ≤ ui j. These constraints can be linearized by introducing
a binary variable pi j for each pair of events i, j ∈ N so that the periodic constraint can
be formulated as

li j ≤ v j− vi + pi jT ≤ ui j, (3.1)

where pi j = 1 if v j < vi, and 0 otherwise. These constraints can also be used to model
connections between trains.

A different way for modelling nominal timetabling is to formulate it as a job-shop
scheduling problem. A train trip is described by a set of stations which a train must
serve or pass through. Therefore, a trip can be viewed as a job, i.e., a set of tasks to
be performed (Oliveira & Smith, 2000; Szpigel, 1973). These jobs are scheduled on
tracks regarded as resources (or machines) in such a way that only one train can occupy
a track segment at a time, while several trains can be at a station at a time as long as its
capacity is respected. These types of models turn out to be very effective for real-time
rescheduling (D’Ariano, Pacciarelli, & Pranzo, 2007).

An alternative effective representation, frequently used for the nominal non-periodic
timetabling, is to expand the graph representing the railway network, through the entire
time horizon, usually of one day, discretized in time units (Cacchiani et al., 2010;
Caprara, Fischetti, & Toth, 2002). In this case, the problem is modelled by means of
a time-space graph G = (V,A). The node set V is defined by the union of the sets of
nodes, called, respectively, departure and arrival nodes, representing the time instants



44 Integrated models for railway timetabling

at which some train can arrive at and depart from a station. The arc set A is partitioned
into arc subsets A1, . . . ,A|Tr| for each train t ∈ Tr, where Tr represents the set of trains
to be scheduled. In particular, the arc subset At for a train t contains a set of starting
arcs corresponding to the feasible departures of train t from its first station; a set of
station arcs representing the feasible dwellings of train t at each visited station; a set
of segment arcs representing the feasible runs of train t from each visited station to the
following; and a set of ending arcs corresponding to the feasible arrivals of train t at its
last station. With the described time-space graph representation, a time-distance path
in the graph corresponds to a timetable for a train. Given this graph representation of
the timetabling problem, two modelling options exist. The first one is to use binary
arc variables xa,a ∈ At , t ∈ Tr, where xa is equal to 1 if, and only if, arc a is selected
in an optimal solution (Borndörfer & Schlechte, 2007; Cacchiani et al., 2010; Caprara
et al., 2002). This formulation is a multi-commodity flow formulation, in which the
commodity, i.e., the train, index is hidden in the multi-graph definition. The second
model is the path formulation (Borndörfer & Schlechte, 2007; Cacchiani, Caprara, &
Toth, 2008). It considers the sets Pt , t ∈ Tr of feasible paths for each train t ∈ Tr, i.e.,
paths that respect the requirements on running and dwell times. The path formulation
has binary path variables xp, p ∈ Pt , t ∈ Tr, indicating if path p is chosen (xp = 1) or
not (xp = 0) in the solution. The model contains exponentially many variables and
can be solved by a branch-and-price approach or by using heuristic algorithms. The
multi-commodity flow and the path formulations are characterized by constraints that
forbid the simultaneous selection of incompatible arcs or paths, respectively, due to
e.g., minimum headway time violation, overtaking or crossing of trains. Indeed, in
these models, the nominal running and dwell times for the trains are imposed directly in
the definition of the time-space graph. The incompatibility constraints are formulated
in the form of packing or clique constraints:

∑
a∈C

xa ≤ 1, C ∈ C , (3.2)

where C represents the (exponentially large) family of maximal subsets C of pairwise
incompatible arcs. Similar constraints are imposed in the path formulation. Additional
constraints are used to impose that at most one arc, associated with a given train t ∈ Tr,
is selected among all the arcs in the set δ

+
t (σ), representing the arcs starting from

source node σ, so that at most one timetable is selected for each train:

∑
a∈δ

+
t (σ)

xa ≤ 1, t ∈ Tr. (3.3)

Similar constraints are imposed in the path formulation to ensure that at most one path
is selected for each train. Additional constraints can also be imposed to model the
connections between trains, taking into account the nominal connection times.

Each one of the described optimization models for the nominal timetabling problem
can be embedded in the proposed three-level framework. These models aim at de-



Chapter 3. A three-level framework for performance-based railway timetabling 45

termining an efficient train schedule, i.e., they take into account the nominal run-
ning times, dwell times and connection times computed in the microscopic model,
as described in Section 3.3.2. However, as explained in Section 3.2, the quality of a
timetable is evaluated also according to its robustness against delays. Robust timeta-
bles can be achieved through different methods, such as Stochastic Programming (Kroon,
Maróti, Retel Helmrich, Vromans, & Dekker, 2008), Light Robustness (Fischetti &
Monaci, 2009), Recoverable Robustness (Liebchen, Lübbecke, Möhring, & Stiller,
2009) or Lagrangian Robustness (Cacchiani, Caprara, & Fischetti, 2012). These meth-
ods are based on modifications of the optimization models for nominal timetabling,
so as to include empty time slots between trains that help to reduce delay propagation.
Even though these methods can effectively compute robust timetables, they generally
require longer computing times than those for solving the nominal problem.

To limit the computing time, instead of embedding an optimization model for robust
timetabling in the three-level framework, we split the macroscopic timetable compu-
tation into two components. The first component represents macroscopic timetable
optimization, which is implemented by an ILP model for nominal timetabling. In
particular, we use the path formulation with a time horizon of one hour and a time
discretization of 5 seconds. The ILP model is solved iteratively in a heuristic way, and
its output provides a set of efficient macroscopic timetables (see Section 3.3.3). The
second component aims at evaluating the robustness of these efficient timetables by
means of a fast local search algorithm (see Section 3.3.3). The output of this com-
ponent is a robust and efficient macroscopic timetable that will then be checked at a
microscopic level by the microscopic module. Providing a set of timetables to the sec-
ond component is a key point of our framework, as it increases the chances of deriving
a good quality robust timetable. This also motivates our choice of solving the nominal
timetabling through a heuristic algorithm.

In the following, we outline the objectives and constraints that are included in the
macroscopic ILP model, and present a delay propagation algorithm that is used to
achieve timetable robustness. We refer the reader to Bešinović et al. (2016) for further
details on these methods.

Macroscopic timetable optimization

The macroscopic timetable optimization adopts a time expanded graph, built upon
the macroscopic network, and is based on the path formulation described above. For
a given train and its route (i.e., the sequence of macroscopic stations that the train
serves or passes), its macroscopic feasible timetable corresponds to a feasible time-
distance path in the time expanded graph that visits all the stations on the route while
respecting the given maximum journey time from its origin station to its destination
station. We associate a cost to each time-distance path, which represents the quality of
the corresponding timetable for the train, without taking into account the interaction
with other trains. In particular, the path cost takes into account the running and dwell
times exceeding the nominal ones. The ILP model contains a binary variable for each
feasible time-distance path of any train, which specifies whether the path is selected
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as the timetable of the train in the solution or not. Therefore, this model contains
exponentially many variables. Instead of solving it to optimality by a branch-and-
price approach, which would require long computing times, we apply a randomized
multi-start greedy heuristic (Bešinović et al., 2016). The macroscopic timetable op-
timization takes into account several performance measures, included as a weighted
multi-objective function, in which different penalties are associated with the different
objectives. Depending on the penalty values, one objective can have priority over an-
other one, or the goal can be to find a trade-off between the different objectives. The
multi-objective function contains the following terms, each one weighted by a penalty
which are parameters of the optimization model:

• Minimization of path costs, i.e., minimization of running and dwell times,

• Minimization of missed connections,

• Minimization of time exceeding the nominal connection times,

• Minimization of cancelled train path requests.

The first three terms clearly relate to the performance measure of journey time effi-
ciency described in Section 3.2, while the latter maximizes transport volume. Connec-
tion times cannot be included directly in the path cost, since they refer to pairs of trains
and not to single trains. However, timetable connectivity, i.e., the connection between
pairs of trains for passenger transfers or rolling stock connections, is also taken into
account as one of the objectives of the macroscopic model. In particular, we minimize
the number of missed connections, as well as the time exceeding the nominal connec-
tion time. We consider a connection as missed if at least one of the two connecting
trains is cancelled. If both trains are scheduled we compute the difference between the
actual connection time and the nominal one.

Another main goal of the macroscopic optimization component is to maximize the
transport volume, i.e., the passenger or cargo-tonne delivered: this is achieved in our
model as the minimization of cancelled train path requests. Timetable feasibility at a
macroscopic level is achieved by defining, for each train, feasible time-distance paths
in the graph, and by imposing that at most one path, among a set of conflicting paths,
can be part of the solution.

The proposed model can deal both with cyclic and non-cyclic timetabling. In the
former, we are given routes for train lines rather than individual trains, as all trains
belonging to the same line must visit the same sequence of stations. Similarly, we
are given the journey time of each line and in addition the periodicity of the trains of
the line. In order to satisfy the periodicity constraint, we impose that either all trains
of the line are scheduled or all of them are cancelled. Clearly, the penalty for train
cancellation is very high and therefore it is very unlikely that a complete train line
will be cancelled. Different planning time horizons are to be considered for cyclic or
non-cyclic timetabling. In our case study we focus on the cyclic case (see Section 3.4).
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The ILP model is solved in a heuristic way by iteratively executing a randomized multi-
start greedy heuristic. At each iteration, the trains are scheduled one at a time according
to a given order. Scheduling a train corresponds to selecting one of the feasible time-
distance paths for the train. A dynamic programming procedure, which takes into
account all the trains already scheduled in the current iteration, computes a feasible
timetable for the current train, and takes into account all the described objectives by
assigning penalties to the unpromising nodes of the graph associated with the train, so
that the best path will visit the nodes with the smallest possible penalties. In the case
of periodic timetabling, at each iteration of the algorithm we select a feasible time-
distance path for the entire line, i.e., we select simultaneously one path for each train
of the line ans thus ensuring that the periodicity constraint is respected.

Once the algorithm has been executed for a given number of iterations, several macro-
scopic feasible timetables are available and are then evaluated to assess their robust-
ness quality. As explained in Section 3.3.2, robustness is incorporated at a microscopic
level by inserting time allowances. In the next paragraph, we explain how we consider
robustness also at a macroscopic level.

Robustness evaluation

A delay propagation algorithm is used to take into account the stochasticity of the
events, such as train delays, that can occur during operations. The goal of this algo-
rithm is to evaluate the robustness quality of each feasible timetable determined by the
randomized multi-start greedy heuristic and to select as best timetable the one having
the smallest robust cost. The latter is given by the cost of the timetable according
to the multi-objective function plus the cost of the timetable according to the delay
propagation algorithm.

A set of delay scenarios (1000 in our computational experiments) is randomly gener-
ated. For each delay scenario the effect on each timetable is evaluated by applying a
local search algorithm that tries to resolve the potential conflicts caused by the gener-
ated delays by retiming the trains (Bešinović et al., 2016). The algorithm computes the
overall delay propagation or establishes that some conflicts cannot be resolved. Ac-
cordingly, a cost is assigned to each timetable: it takes into account the effect of all
the delay scenarios on the timetable, and is defined as the average settling time (i.e.,
the time required until all delays have been absorbed by the time allowances in the
timetable) over all the delay scenarios. The timetable with the smallest robust cost is
then selected as the best macroscopic timetable and this is the outcome of the macro-
scopic timetabling.

3.3.4 Corridor fine-tuning

Energy efficiency becomes more and more important within the railway system. Cur-
rently several approaches exist for energy-efficient driving and energy-optimal conflict
resolution within real-time traffic management and optimization (Hansen & Pachl,
2014). Although energy efficiency is an important concern to railway infrastructure
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managers and railway undertakings, only little literature focuses on energy-efficient
timetabling. However, the timetable is the static basis for real-time operation. On the
one hand, the static timetable has to enable real-time operational control measures,
which means that allowance times are available to provide flexibility for traffic man-
agement. On the other hand, when real-time optimization methods are applied such
as energy-efficient driving, the possible real-time speed profiles have to be considered
already within the timetabling process in order to avoid conflicts due to the real driv-
ing behaviour. Therefore, within the ON-TIME timetabling approach energy-efficient
speed profiles are already considered in the timetabling process.

Energy-efficiency within the entire planning process

Most of the scientific literature focuses on energy efficient driving strategies, where the
real-time train speed profile is optimized. However, the potential of energy-efficient
driving is directly connected to the given timetable (Scheepmaker & Goverde, 2015).
Still, energy consumption is typically considered as a secondary goal in the existing
timetabling models, with feasibility, efficiency and robustness being the primary goals.
We also consider this hierarchical approach within our tree-level timetabling frame-
work. Before presenting our corridor fine-tuning approach, we first describe different
timetabling approaches that consider energy consumption and classify them according
to the timetabling levels.

Line planning was not considered within the ON-TIME project. Although line plan-
ning affects the energy consumption and the operational costs, the energy consumption
is only scarcely regarded in methods for line planning. The number and position of the
stops, the train lines and the train frequency are planning decisions for the railway un-
dertakings and the public authorities. Oettich, Albrecht, and Scholz (2004) presents an
approach for the optimal train frequency planning in a suburban network considering
feedback of the quality of the offer on demand. It turns out that vehicle size, head-
way and demand are closely coupled and frequent small vehicles lead to less energy
consumption per passenger. Gassel and Albrecht (2009) present the impact of request
stops on railway operation including the energy consumption.

The process of creating a conflict-free timetable deals with the optimal allocation of the
infrastructure capacity. Within the ON-TIME project this is considered at the macro-
scopic and microscopic optimization level. However, approaches can be found which
consider energy as relevant criteria within this timetabling level. Kraay, Harker, and
Chen (1991) already dealt with the optimal pacing of freight trains on a single-track
line under the consideration of energy consumption.

Adjustment and optimization of running times is regarded in several publications,
where energy consumption is part of the operating costs. Ghoseiri, Szidarovszky, and
Asgharpour (2004) consider energy consumption as a measure of railway undertaking
satisfaction and total passenger journey time as a measure of passenger satisfaction.

In the timetabling process a trade-off between these conflicting objectives has to be
made. T. Albrecht (2005) discusses a similar dependency between planned and given
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running time and energy consumption. He minimized the traction energy consumption
of a train during the whole journey by finding the optimal allocation of running time al-
lowance for a suburban railway line among different sections. This algorithm is based
on a predefined total amount of running time allowance between fixed target points
and energy-efficient driving between two target points according to a given running
time. Sicre, Cucala, and Fernandez (2010) presented a similar approach to calculate
the optimal allocation of running time allowances among the different sections in order
to generate an optimal schedule. The total available running time supplement for the
whole service is an input parameter from macroscopic timetabling, as well. Cucala,
Fernandez, and Sicre (2012) also consider finding the optimal allocation of the run-
ning time allowance. Hence, in recent approaches the allocation of running time under
consideration of energy efficiency is based on a predefined macroscopic timetable with
fixed required passing, arrival and departure times at important timetable points as en-
ergy efficiency is always a conflicting criteria against minimizing the journey times and
enlarging capacity consumption. Within the ON-TIME project infrastructure occupa-
tion is one of the major optimization criterion and is therefore considered on a higher
level. Energy consumption is consequently a secondary optimization criteria in order
to ensure the required capacity, robustness and stability needs. This approach ensures
that in dense networks minimizing the energy consumption does not reduce timetable
stability.

On the other hand, although detailed speed profile planning is typically not part of
the timetabling process the consequences of different driving speed profiles should be
considered. Therefore, the energy-efficient driving strategies of a train journey should
be regarded for the calculated scheduled running times to guarantee feasibility and
stability of the final timetable.

The optimized timetable must be communicated to both the driver and the passenger.
The timetable is published to the passengers with a precision of one minute in Europe.
T. Albrecht (2005) already discussed the effects of rounding the arrival and departure
times in a timetable. Different published departure times can increase or decrease
the energy consumption along a line. Especially when the dwell time is shorter than
the planned dwell time, additional energy savings are possible by using the actual
allowance times.

On the one hand, the published times are important for passenger arrivals and delay
calculations in case of long dwell times. On the other hand, these published times
are restrictive because early departures are not allowed in case of small dwell times.
During timetabling the dwell time allowances could be exchanged with running time
allowances where they could be applied for e.g. energy-efficient driving in case of
short dwell times.

Energy-efficient speed profiles

The energy-efficient speed profiles are computed with respect to the microscopic in-
frastructure and rolling stock characteristics for the scheduled running times (includ-
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ing running time supplements) obtained from the micro-macro timetabling iterations.
The optimal driving speed profiles are determined according to the theory of energy-
efficient driving (Howlett & Pudney, 1995). This speed profile is typically charac-
terized by different optimal driving regimes and the switching points between the
regimes: acceleration with maximum acceleration power, cruising at an optimal cruis-
ing speed, coasting without any tractive effort, and braking with maximum (service)
braking effort. Figure 3.3 shows a simplified illustration of the application of differ-
ent driving regimes between two stops on a simple section with constant gradient and
speed limit (T. Albrecht, 2014). The determination of the optimal driving regimes and
the switching points is a well-discussed optimization problem and can be done using
different optimization methods.

Figure 3.3: Energy-optimal driving regimes (T. Albrecht, 2014)

T. Albrecht (2005) already developed and applied an approach for finding the optimal
regimes and regime durations. He used the theory of energy-efficient train control to
implement the algorithm on a driver advisory system for energy-efficient train oper-
ation in real-time. The algorithms can be used off-line within the timetable planning
process as well in order to simulate energy-efficient train movements when drivers are
familiar with the theory of energy-efficient train operation or are supported by a driver
advisory system. Therefore, the energy-efficient speed profiles should be used in the
planning process, as well.

The calculated speed profiles are used to recompute the blocking times within the
three-level timetable design framework so that at the microscopic level the speed pro-
files can be checked on conflicts within the timetable. In addition, the information on
the switching points and regimes can be used to guide optimal energy-efficient driving
in case of punctual train operation even if no dynamic driver advisory systems are used.
If driver advisory systems are used they essentially give dynamic speed advice with re-
spect to delays and follow the scheduled energy-efficient speed profile otherwise. The
output of the timetabling framework is a Timetable railML file with scheduled train
paths at (track-free detection) section level, extended with scheduled energy-efficient
speed profiles, consistent with the ON-TIME real-time railway traffic management
framework (Quaglietta et al., 2016).
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Corridor optimization

Figure 3.4: Dependency between the dwell time distribution, departure of the train,
and corresponding energy consumption

Figure 3.4 explains the dependency between the dwell time distribution, the departure
of the train, and the corresponding energy consumption. The figure shows that a short
planned dwell time leads to a possible punctual departure of the train and less energy
consumption because the allowance time could be used for additional running time. If
the dwell time is slightly higher this leads to a little delayed departure and a higher
energy consumption on the following section. In contrast to this, a pessimistic pub-
lished departure time (for a higher scheduled dwell time) might use the little delayed
departure time as published departure time. In this case, the probability of a delayed
departure is less, but the probability of waiting for the departure time is higher, be-
cause there is a high probability that the dwell time might be shorter. Therefore, the
minimal achievable energy consumption is higher than when publishing an earlier de-
parture time. This means that dwell times should not be considered as deterministic
in the timetabling process but as dwell time distributions within the process of find-
ing the published departure times. The dwell time distributions must correspond to
the realized dwell times and must be obtained using operational data. Because the lo-
cal trains at intermediate stations are influenced mostly by the stochastic dwell time
process rather than other conflicts or restrictions, these trains should be considered to
enlarge the robustness of the timetable.

The target of the corridor optimization is to determine the published arrival and depar-
ture times at intermediate stops within given bandwidths, under consideration of the
stochastic dwell times and energy-efficient driving in case of short dwell times. The
mathematical approach is another two-stage optimization process (Binder & Albrecht,
2013).
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This final step in the timetabling process is the corridor fine-tuning for local trains
between the defined macroscopic timetable points. Note that the event times at these
macroscopic timetable points were optimized in the macroscopic timetable optimiza-
tion. For intercity trains all served stations are important points and the energy-efficient
speed profiles are already determined in the previous step. For local trains however
the arrival and departure times at intermediate stops on the corridors were not yet
optimized and they offer flexibility for optimization within given time windows, see
Figure 3.5. Therefore, the departure and arrival times at the beginning or end of the
corridors are fixed at the major stations, and this in fact defines the corridors in which
the timetables of the local trains are optimized.

Figure 3.5: Flexibility of the corridor optimization

The bandwidths at the intermediate stations are determined from the blocking times of
the trains preceding and following the local train that has to be optimized (gray shaded
in Figure 3.5). Hence, the speed profiles of the adjacent trains are important in order to
maintain a conflict-free timetable. The total amount of running time supplement over
the corridor and the bandwidth between the macroscopic timetable points are provided
by the macroscopic and microscopic timetable levels, respectively.

The optimization algorithm is based on the running time optimization along a line as
presented in T. Albrecht (2005). However, T. Albrecht (2005) considered the dwell
times as deterministic and only the departure events at the intermediate stations were
considered as process stage at which the decision about the running time supplement
on the following sections are made. In our new approach the dwell process is divided
into two different states, an arrival and a departure stage. This is illustrated in Fig-
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ure 3.5 by marked dots around the dwelling process. The departure and arrival time
pairs between successive intermediate stops define the time supplement that can be
used for energy-efficient driving between the two stops. The stage transition from
the departure stage to an arrival stage is determined by a running time including run-
ning time supplement and the corresponding energy consumption under the assump-
tion of energy-efficient driving. The probability of the stage transition can be regard
as one, which means that the optimized running time must be realized. Furthermore,
the dwelling processes need time supplements. The amount of supplement is based
on the probability of a given dwell time according to the dwell time distribution func-
tion. Consequently, the dwelling process is characterized by a minimal process time
and possible time allowance. The different dwell times at one station are determined
by a specific probability of these dwell times. The process transition from the arrival
stage to the departure stage does not consume energy. The convolution of all possi-
ble arrival times and the dwell time distribution leads to all possible departure time
stages and their corresponding probability. Each stage (of arrival and departure time)
is consequently characterized by a cost and a probability of reaching this stage.

In our approach, in addition to the total energy consumption the probability of delays
at the target station and at the intermediate stops are considered as relevant. These have
to be determined according to the possible corridor timetables since different published
times at the intermediate stops may influence the departure stage (no departure before
the published departure time) and of course the departure delay. In order to quantify
the quality of a timetable, these three criteria are calculated at the arrival and departure
stage. Hence, the first optimization target is the optimal distribution of the running
time supplement according to possible timetables. This results in a multi-stage, multi-
criteria decision problem which can be solved using dynamic programming (Bellman,
1957). Table 3.2 summarizes the relevant variables of the corridor optimization.

The quality criteria are calculated backwards starting at the last stage I of the opti-
mization space which has fixed quality criteria. As the stage transition of the dwelling
process is stochastic, expected values of the quality criteria are calculated for i = I−1
back to i = 1 as follows, for the expected energy consumption
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Table 3.2: Notation of variables
Notation Description
T R

min, j minimal running time on section j
T R

max, j maximal running time on section j
u j running time supplement on section j
E j(u j) energy consumption on section j by using u j
T D

min,i minimal dwell time at station i
T D

max,i maximal dwell time at station i
td
i possible departure time at station i

ta
i possible arrival time at station i

Φ possible corridor timetable (planned arrival and departure times)
Φ∗ optimal corridor timetable (planned arrival and departure times)
td
plan,i planned departure time at station i

ta
plan,i planned arrival time at station i

Qa
q,q ∈ [1,2,3] quality criteria at arrival stage

1 - expected energy consumption
2 - expected delay at target station
3 - expected delay at intermediate stations

Qd
q,q ∈ [1,2,3] quality criteria at departure stage

wq weighting factor of the running time optimization
vq weighting factor of the corridor timetable optimization

the expected delay at the target station
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and the expected delay at intermediate stations
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The decision within the dynamic programming approach is made based on the expected
values of the criteria within a multi-criteria approach at each stage. Therefore the
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optimal running time supplement u∗j at the departure stage is given by

u∗j(t
d
i ) := argmin

u j
Q̃(u j, td

i ) (3.13)

with

Q̃(u j, td
i ) = ∑

q
wqQd

q,i(u j, td
i ). (3.14)

The output of the allowance allocation process gives for each possible departure and
arrival time at each station the expected values of the relevant criteria for the remain-
ing train run until the target station. Hence, the values obtained for the given departure
time at the first station Qd

q,1 give an indication about the timetable itself, because the
criteria are significantly influenced by ta

plan,i and td
plan,i. In order to find the optimal cor-

ridor timetable all possible timetables Φk have to be analyzed which result in specific
timetable quality criteria Qd

1,1(Φk), Qd
2,1(Φk) and Qd

3,1(Φk). Consequently, another
multi-criteria optimization problem has to be defined, in order to find the optimal cor-
ridor timetable Φ∗. Again, the weighted sum method is used to find the solution that
minimizes all three criteria,

Φ
∗ := argmin

Φk
∑
q

vqQd
q,1,(Φk). (3.15)

A more detailed problem formulation and results for a German regional train line can
be found in (Binder & Albrecht, 2013).

3.4 Case study
The performance-based timetabling approach has been applied on a case study of a
central part of the railway network in the Netherlands, consisting of the railway net-
work bounded by the four main stations Utrecht (Ut), Eindhoven (Ehv), Tilburg (Tb)
and Nijmegen (Nm), with a fifth main station s-Hertogenbosch (Ht) in the middle and
20 additional smaller stations and stops. Four corridors connect Ht to the other main
stations. The train line plan in this part of the network is taken from the 2011 timetable
and consists of four intercity lines and six local train lines with a frequency of two
trains per hour each, see Figure 3.6. The intercity lines 800 and 3500 offer a regular
15 min service between Ut and Ehv but have different origin/destinations outside this
area. The regional line 13600 from Tb to Ht continues as the line 16000 from Ht to
Ut, and vice versa. The line 9600 from Ehv couples in Ht to the line 4400 to Nm, and
vice versa. In addition, an hourly freight path with maximum speed of 120 km/h is
scheduled from Ut-Ehv. So overall, 41 trains are running per hour in this network. For
the computation of the nominal running times we used 5% running time supplement
for each train type. So the scheduled running times include at least 5% running sup-
plements. As an illustration of our results we focus on the corridor Utrecht-Eindhoven
in this paper, although we report the computation times for the entire network.
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Table 3.3: Computation times (entire network)

Iterations Mean time [s] Total time [s]
Initial microscopic computations 1 35 35
Micro-macro iterations 1080

Macro (1000 macro iterations) 9 80
Micro computations 9 40

Finetuning* 215
Micro computations 1 5
Energy-efficient speed profiles 1 210

Total 1330
*Excluding stochastic optimization of local trains

Table 3.3 shows the breakdown of the computation time of the optimized timetable for
the entire network. The total computation time was 22 minutes. The initial microscopic
calculations required 35 s. The micro-macro iterations converged in 9 iterations with
a mean computation time of 2 minutes per iteration, with 80 s for the macroscopic
calculations and 40 s for the microscopic calculations. The time to set up the input
for the fine-tuning model was 5 s and the computation of the energy-efficient speed
profiles for all train runs between stops for the fixed scheduled running times took
another 210 s. The stochastic optimization of the local trains over all the corridors
took some additional hours, but this can be seen as a final fine-tuning step which only
changes the timing of short stops but does not change the timetable at the main nodes.

Figure 3.7 shows a time-distance diagram of the computed hourly timetable for the
corridor Ut-Ehv. The vertical axis shows time in minutes downwards. The horizon-
tal axis shows distance with the station positions indicated. The blue lines are IC
trains, the magenta lines are local trains, and the green line is the freight train. Note
that the sections Btl-Ehv and Htn-Htnc have four tracks. Figure 3.8 shows the corre-
sponding blocking time diagram for the route of intercity train line 3500. Note that
only the blocking times are shown for all trains running on the same tracks as train
line 3500. The gaps in the blocking time stairways for some trains correspond to
running on parallel tracks in stations or the four-track lines between Htn-Htnc and Btl-
Ehv. Around Ht also some blocking times are visible corresponding to crossing trains
from/to Tilburg or Nijmegen.

The optimized timetable shows periodic passenger trains with regular 15 min services
of both IC and local trains where two similar train lines follow the same route. Hence,
effectively 15 min train services are realized instead of two separate 30 min train lines.
The ICs overtake the local trains at Geldermalsen (Gdm) in the southbound direction,
but not in the return direction. The fast freight train departs after the local train from
Utrecht Centraal (Ut) and overtakes this local train at the four-track line around Houten
(Htn).

The blocking time diagram of Figure 3.8 shows no overlapping blocking times and
hence illustrates that the timetable is conflict-free. Moreover, the timetable is robust
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Figure 3.6: Passenger line plan of the Dutch case study

illustrated by the buffer times (white space) between the train paths. Only between
Houten Castellum (the station just after Htn) and Culemborg (Cl) the freight path and
the next local train are tight so that a slight delay of the freight train might propagate
to the local train but the buffer time between this local train and the next IC prevents
further knock-on delays. In Gdm, the local train also has a longer dwell time that can
be used to recover from an arrival delay. In the absence of the freight train the situation
is robust, which is the usual case currently with on average one freight path per two
hours on this corridor.

Table 3.4: Infrastructure occupation

Corridors Stations
Corridor Time [min] Ratio [%] Station Time [min] Ratio [%]
Ut-Ht 34.7 57.8 Btl 15.7 26.2
Ht-Ut 32.1 53.4 Ehv 15.7 26.1
Ehv-Ht 22.0 36.7 Gdm 15.7 29.5
Ht-Ehv 24.2 40.3 Ht 35.0 58.3

Htn 15.0 25.0
Ut 20.9 34.8
Vga 17.2 28.7

Table 3.4 gives the infrastructure occupation of the main corridors and stations, re-
spectively. All the infrastructure occupation percentages are below the recommended
stability value of 60% defined by the UIC for mixed traffic corridors in daily periods,
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Figure 3.7: Time-distance diagram corridor Utrecht-Eindhoven

Figure 3.8: Blocking time diagram corridor Utrecht-Eindhoven
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Figure 3.9: Speed profiles: static speed limit (solid grey), time-optimal (dashed red),
reduced cruising speed (dotted blue), and energy-optimal (solid green)
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which was one of the constraints of the timetabling algorithms. Corridor Ut-Ht is the
heaviest used one with infrastructure occupation 57.8%. Ht has the highest infrastruc-
ture occupation of 58.3%, which includes also the crossing routes from/to Tilburg and
Nijmegen. The relative low infrastructure occupation of corridors Ht-Ehv and back is
due to the four tracks between Btl and Ehv.

Table 3.5: Journey times

O-D Minimum [min] Scheduled [min] Increase [%]
Ut-Ehv 44.9 48.2 7.3
Ehv-Ut 47.6 51.3 7.8

Table 3.5 gives the average journey times over all trains running over the complete
corridor from Ut to Ehv or backwards in a basic hour, i.e., eight IC trains and one non-
stop freight train of 120 km/h speed limit. The minimum journey time refers to the
minimum running and dwell times while the scheduled journey time includes the time
supplements. On average, the time allowances over the complete corridor are 7.3%
and 7.7% for the southbound and northbound directions, respectively, which can be
exploited for energy-efficient driving.

Table 3.6: Energy consumption all trains

Speed profile Energy consumption [kWh] Energy saving [%]
Minimal-Time 64 395 -
Reduced cruising speed 58 800 8.7
Energy-optimal 41 667 35.3

Figure 3.9 illustrates the various speed profiles for the intercity line 3500 Ut-Ehv with
intermediate stop in Ht. The bottom of the figure indicates the gradients (solid black
line) and the signals (magenta circles) over the line. The dashed red line is the time-
optimal speed profile corresponding to the minimum running times, while the dotted
blue line is the operational speed profile with the running time supplements distributed
over the line using reduced cruising speeds. The solid green line is the energy-optimal
speed profile with clear coasting regimes before the areas with speed restrictions. Table
3.6 gives the total energy consumption of all trains running in the network of the case
study, so 21 trains with all passenger trains counted once (corresponding to a basic half
hour timetable including the freight train). With respect to the minimum running times
the running time supplement saves 8.7% energy consumption when cruising at a re-
duced speed and even 35.3% using the energy-optimal speed profile with coasting. As
was illustrated in Figure 3.9 for the IC 3500, the time supplements of the trains are dis-
tributed well over the corridor so that coasting could be applied very effectively. While
concentrating on this corridor, the various local train lines might be optimized within
the corridor-fine tuning. Therefore, the important network points have to be defined,
e.g., Ut and Ht, but also important overtaking points such as Geldermalsen (Gdm) or
smaller stations with operational importance such as Boxtel (Btl). Consequently, the
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number of important network points within a very dense network such as the Nether-
lands, is very high. This leads to a very restrictive optimization potential within the
corridor fine-tuning. Furthermore, the dwell times at the minor station, such as Best
(Bet) or Eindhoven Beukenlaan (Ehb) are high compared to the planned running times
between Ehv and Btl. Because of these restrictions the corridor fine-tuning is not able
to offer high additional energy saving in the Netherlands, but would be suitable in
networks with less traffic demand.

Table 3.7: Comparison between optimized and original timetable

KPI Measure Original
timetable

Optimized
timetable

Journey time efficiency Max journey time increase [%] 33.3 14.2
Mean journey time increase [%] 18.3 9.1

Timetable feasibility Unrealizable minimum running times [#] 9 0
Unrealizable nominal running times [ #] 16 0
Conflicts [ #] 1 0

Infrastructure occupation Max infra occupation corridor [%] 61.4 (Ut-Ht) 57.8 (Ut-Ht)
Max infra occupation stations [%] 57.4 (Ht) 58.3 (Ht)

Stability Infrastructure occupation ≤ 60% no yes
Robustness Average settling time [s] - 14340
Energy consumption Energy saving [%] 14.7 8.7

Table 3.7 compares the KPIs from Section 3.2 computed for the optimized timetable
and the original basic hour timetable from 2011 over the network corresponding to
Figure 3.6. Journey time efficiency is measured with both the maximum and mean
journey time increase over the minimum journey time. The maximum and mean jour-
ney times are considerably less for the optimized timetable as a result of the optimiza-
tion. Zooming in on the scheduled running times, we see that the original timetable
has 9 train runs with scheduled running times smaller then the minimum running time
(with 291 s total running time shortage), and an additional 7 train runs for which the
nominal running time with 5% supplement is not realized. In practice, these 16 train
runs will result in delays and possibly conflicts. In general, the original timetable has
much more time supplements but they are unevenly distributed with more supplements
allocated before the main stations. Moreover, the original timetable has 1 scheduled
conflict (with 46 s overlap). The optimized timetable is realizable and conflict-free.
For the original network the infrastructure occupation has been computed with the un-
realizable running times replaced by the minimum running times (and corresponding
speed profile and blocking times). The maximum corridor infrastructure occupation
is for both timetables on the corridor Ut-Ht, with the original timetable exceeding
the UIC stability norm of 60% for daily periods. The other corridors for the original
timetable are stable. Station Ht has in both timetables the highest infrastructure oc-
cupation, with the optimized timetable slightly higher but within the stability norm of
60%. For the robustness evaluation we used the stochastic delay propagation algorithm
as implemented in the framework and computed the average settling time. The opti-
mized timetable settled on average within 4 hours (14340 s) from initial delay scenarios
with a mean delay of 523 s and a maximum delay of 1365 s. The implemented delay
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propagation requires a feasible timetable and therefore could not be used to evaluate
robustness of the original timetable, which had 9 unrealizable running times and an
additional conflict that generated structural delays and thus never settled. A different
delay propagation algorithm could be used that is able to deal with structural delays,
such as described in Goverde (2010). The used initial delay scenarios in the optimiza-
tion assumed quite large delays leading to a big delay propagation, which in practice
would lead to timetable adjustments by traffic control. A benchmark for a settling time
norm does not yet exist. Note that in the macroscopic optimization we did not consider
a hard constraint on the setting time but just took the timetable with the best robust cost
incorporating settling time performance. The reported energy savings are relative to
the minimal-time running times, and computed with respect to cruising at a reduced
speed determined by the available running time supplements. Again, for the original
timetable we used the minimum running times for the unrealizable running times. The
energy consumption of the original timetable was computed as 54935 kWh, which is
less than the optimized timetable despite some unrealizable running times. This can be
explained by the excessive running time supplements in the original timetable. In con-
clusion, the optimized timetable outperforms the original timetable, which is slower,
unstable, contains structural delays, and a scheduled conflict. This demonstrates the
validity of the performance-based timetabling approach and its implementation in the
three-level framework.

3.5 Conclusions

This paper proposed to integrate timetable construction and evaluation into one con-
sistent framework. The advantage of this approach is that performance indicators are
already taken into account during the timetable construction by which the resulting
timetable is computed together with all performance measures which are either sat-
isfied or optimized depending on the required criteria. This relieves the tedious task
of ex-ante simulation that some railways apply to test the constructed timetable on
e.g. conflicts, stability, and robustness. Moreover, it is a notorious difficult issue for
timetable planners to adjust the timetable if the simulation output indicates timetable
flaws. Each local change may have an impact elsewhere. In our approach, we re-
place the feedback from timetable evaluation to timetable adjustment by an integrated
approach embedding the timetable evaluation in the construction process. This has
been made possible by the advances in both microscopic and macroscopic timetable
models, but also by efficient and consistent data transformations between various lev-
els. This enables an effective framework where microscopic details can be combined
with macroscopic optimization over large networks, including stochastic models for
robustness evaluation.

This paper presented a three-level modular performance-based timetabling framework
to integrate timetable construction and evaluation, and illustrated it to a case study from
the Netherlands showing excellent results on all performance indicators. In particular,
the approach highlighted eight recommendations that need to be considered explicitly
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in the design of a stable robust conflict-free timetable with optimal journey times:

• Microscopic calculations of running and blocking times taking into account all
running route details at section level (gradients, speed restrictions, signalling),

• Microscopic conflict detection guaranteeing a conflict-free timetable,

• Timetable precision of 5 s (or at most 10 s) to minimize capacity waste,

• Incorporation of (UIC) infrastructure occupation and stability norms,

• Macroscopic network optimization with respect to trip times, transfer times, can-
celled train path requests and associated cancelled connections,

• Macroscopic robustness analysis using stochastic simulation to obtain a robust
network timetable,

• Stochastic optimization of timetables for local trains on corridors taking into
account stochastic dwell times at intermediate stops,

• Energy-efficient speed profiles computed and incorporated for all trains.

Moreover, standardized data exchange files such as railML for infrastructure, rolling
stock, and the timetable is recommended, where the presented timetabling approach
generates an output Timetable railML with scheduled train paths at (track-free de-
tection) section level, extended with scheduled energy-efficient speed profiles. The
modularity of the framework allows any algorithm to be replaced by any other algo-
rithm which is further supported by the use of standardized data formats making the
framework very flexible. The implemented algorithms use generic models that can be
configured for any specific railway characteristics making the implemented framework
internationally applicable.



Chapter 4

Microscopic models and network
transformations for automated
railway traffic planning

Apart from minor updates, this chapter has been published as:

Bešinović, N., Goverde, R. M. P. & Quaglietta, E. (2017). Microscopic Models and
Network Transformations for Automated Railway Traffic Planning. Computer-Aided
Civil and Infrastructure Engineering, 32 (2), 89-106.

4.1 Introduction

Timetabling is one of the major planning tasks in railway traffic and becomes increas-
ingly complicated with the increasing demand for more services. Planners are con-
stantly under pressure to fit additional trains into busy schedules while at the same
time maintaining and improving the level of service such as seamless connections and
punctuality. Timetables need to provide accurate time-distance infrastructure slots, or
train paths, that secure conflict-free train runs. Moreover, the plan must adhere daily
stochastic variations in the train services, i.e., be robust.

Integrated automatic timetabling models provide fast solutions that allow analyses of
multiple timetable scenarios and tweaking different planning criteria. This will eventu-
ally lead to a better understanding of the capacity use and overall high-quality timeta-
bles. Tsiflakos and Owen (1993) already stressed the importance of automated de-
cision support and presented a structural representation of railway data necessary for
any further application of optimization techniques. Indeed, there is an evident need for
modelling approaches that allow an efficient use of optimization algorithms and other
supporting models in timetabling.

63
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We make a distinction regarding the level of detail considered in timetabling. Two ap-
proaches can be recognized – microscopic and macroscopic. The latter considers the
railway network at a higher level, in which station is represented as a node and tracks
by linking arcs. In a microscopic approach, detailed infrastructure aspects like speed
limits, gradients, curves are signaling system are considered. In this paper, we intro-
duce microscopic models that can accurately evaluate timetables and support macro-
scopic models to construct operationally acceptable timetables which are feasible and
stable. The railway research on both microscopic and macroscopic models attracted
significant research (Castillo et al., 2015; Peng et al., 2011; Sels, Dewilde, Cattrysse,
& Vansteenwegen, 2016; Xie, Ouyang, & Somani, 2016).

An extensive review of timetabling models is given in Cacchiani and Toth (2012).
Kroon et al. (2009) presented the practical implementation of a set of optimization
models for Netherlands Railways. These optimization models assumed a macroscopic
infrastructure model using default norms for safe separation times of following, cross-
ing and meeting trains. This normative approach cannot guarantee to solve all route
conflicts in the computed (macro) timetable, or on the other hand may lead to ineffi-
cient large buffer times. Moreover, scheduling train paths over the given infrastructure
and the capacity assessment of the resulting timetable are separated processes. There-
fore, macroscopic approaches should be integrated with more detailed models that
ensure the operational feasibility of the timetable.

Timetable feasibility is the ability of all trains to adhere to their scheduled train paths.
A timetable is feasible if (i) the individual processes are realisable within their sched-
uled process times, and (ii) the scheduled train paths are conflict free, i.e., all trains can
proceed undisturbed by other traffic. A conflict is defined as an overlap (in time and
space) between two trains on the same route which represents that one train cannot use
the railway infrastructure without interfering the other train. A few approaches have
been proposed in literature based on a hierarchical integration of timetabling models
with different level of details (Caimi, Fuchsberger, Laumanns, & Schüpbach, 2011;
De Fabris, Longo, Medeossi, & Pesenti, 2013; Gille et al., 2008; Schlechte et al.,
2011). The current integrated models using microscopic details for timetabling, do
not perform any feasibility check of the timetable produced, except for Schlechte et al.
(2011); while none of them considers any iterative modification to the timetable if it is
proved to be infeasible at the microscopic level. In other word, Schlechte et al. (2011)
used a microsimulation for conflict detection, while none of the approaches consider
any conflict resolution methods. Hence, these models solve the timetabling problem in
one direction only and thus represent an open-loop strategy.

D’Ariano et al. (2007) proposed a model for real-time train rescheduling that includes
a feasibility check and recomputing speed profiles with some simplifying assumptions,
such as trains running at maximum speeds with possible braking at conflicts, a simpli-
fied interlocking model at station layouts, and fixed speed-independent clearing times.
In our model, we explicitly compute operational running times, sight, setup and clear-
ing times, and consider track sections instead of block sections which in particular
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matters in station areas with switches. This provides a more accurate conflict detec-
tion. A review of other real-time resceheduling models can be found in Cacchiani et
al. (2014).

Timetable stability is defined as the capability of absorbing train delays (UIC, 2013).
As a stability measure, we adopted the UIC recommendation that a timetable is stable
if capacity occupation rates are under certain norms depending on the traffic structure.
Capacity occupation is defined as the time share needed to operate trains according
to a given timetable pattern taking into account scheduled running and dwell times.
Thus, we first compute the capacity occupation for stations and corridors and then
compare obtained values with the UIC norms. The current practice of a posteriori
capacity assessment of the final timetable is not efficient: a lot of time may be invested
in producing a timetable that afterwards may not satisfy the stability norms.

Within tactical railway planning, capacity assessment is generally based on the micro-
scopic UIC compression method (Landex & Jensen, 2013; UIC, 2013), while stability
on the network level can be assessed by the stability analysis tool PETER (Goverde,
2007). The UIC method have been developed for assessing lines and corridors. How-
ever, the main limitation of the UIC method is that it computes the capacity in station
areas by considering the platform tracks separately from the interlocking areas in be-
tween the home signals and the platform tracks (Armstrong et al., 2015; Lindner, 2011)
This independence assumption results in an underestimated station capacity.

Nash and Huerlimann (2004); Siefer and Radtke (2006) and Quaglietta (2014) pre-
sented advanced microscopic simulation tools, which are able to accurately simu-
late railway operations based on a detailed modelling of infrastructure, signalling and
train dynamics that could be used to detect conflicts in a timetable. However, these
multi-purpose microscopic simulation models need long computation times to eval-
uate conflict-freeness of timetables on large and heavily utilized railway networks.
Therefore, they are not suitable for fast analyses during the design of a timetable.

Train running time computations are one of the most common models in railway appli-
cations, and have been used for computing minimum running times in timetable plan-
ning or for energy efficient driving in real-time applications. These models are com-
monly including principles of optimal control theory. A detailed review can be found
in A. R. Albrecht, Howlett, Pudney, and Vu (2013), or Scheepmaker and Goverde
(2015). An operational speed profile is the one that exploits existing time supplements
between departure and arrival times to allow the train arriving on time, instead of being
ahead of scheduled. The operational speed profile is used to assert that an acceptable
speed profile exists for allocated time supplements. For example, it may occur that a
macroscopic timetable assigned an excessive running time supplement that would re-
quire a train to run very slow, below a certain practical minimum speed. Such a speed
profile should be avoided. Second, we need the operational speed profiles for detecting
timetable conflicts and assessing the infrastructure capacity.

Communication between microscopic and macroscopic models is essential for efficient
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and consistent bidirectional transformations. These transformations would allow gen-
erating accurate input to a macroscopic model on one side, and evaluating a timetable
on the detailed microscopic level on the other. Schlechte et al. (2011) introduced a mi-
cro to macro transformation, but the reverse transformation from macro to micro has
not been described in the literature yet.

The state-of-the-practice suggests that improvements in the timetable planning process
are necessary in various directions (ON-TIME, 2016). Most notably, a timetable is
expected to be realisable considering a great level of detail including infrastructure,
rolling stock, signalling and automatic train protection (ATP). Second, timetabling
tools should work as a whole, as well as in-terms of individual functions, i.e., a step-
wise development is recommended. Third, the final timetable should satisfy specified
values for performance measures such as feasibility, capacity occupation, robustness,
and energy consumption (Goverde & Hansen, 2013). Finally, it is important to reduce
the computation time of the planning tools.

In order to overcome the limitations in the state-of-the-art and answer the questions
from practice, we developed a hierarchical framework of performance-based railway
timetable design in the European FP7 project ON-TIME (Optimal Networks for Train
Integration Management across Europe) (Goverde et al., 2016). In particular, the
framework includes microscopic models presented in this paper and a macroscopic
timetabling model that interact iteratively by adapting microscopic running and mini-
mum headway times until the produced macroscopic timetable is proved feasible and
stable.

The aim of this paper is to provide a methodology for timetable design that will cater
for more structural insight into a timetable and make the process itself more efficient,
which would result in timetables of a higher overall quality. In the past, we intro-
duced a conceptual ON-TIME framework (Bešinović et al., 2014). In this paper, we
describe the deterministic microscopic timetabling models and provide efficient auto-
matic transformations between microscopic and macroscopic networks. Microscopic
models compute accurate running and minimum headway times that are used as input
to a macroscopic model, and verify that the timetables produced by the latter are feasi-
ble at the level of track sections. For timetable evaluation, and particularly the micro-
macro framework, operational speed profiles may be recomputed numerous times.
Thus, we define a new model for fast computing operational speed profiles, although
various models based on optimal control exist in the literature. Stability is checked by
verifying that the infrastructure capacity occupation respects the UIC guidelines (UIC,
2013). We propose an analytic model for capacity assessment that efficiently deals
with both stations and corridors. Network transformations are required to provide the
relevant data for specific computations. Aggregating the data to a macroscopic level
allows the application of macroscopic optimisation models while considering a con-
sistent operationally relevant railway infrastructure. After computing a macroscopic
timetable, the reverse transformation is applied from macro to micro. This is done by
recomputing the operational speed profiles with respect to the arrival/departure times
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from the macroscopic timetable. All microscopic models can be used for designing
and evaluating both periodic and non-periodic timetables and each model can be used
individually or as a building element of the timetabling framework. The microscopic
models have been tested on a part of the Dutch railway network including the main
corridor Utrecht–Den Bosch–Eindhoven.

The main contributions of this paper are the following:

• Fast computation of operational train speed profiles from scheduled event times
that enable microscopic timetable evaluation;

• Capacity assessment based on max-plus automata that compute the capacity oc-
cupation in stations more realistically than the current UIC method;

• Automatic conflict detection that accurately determines existing conflicts at the
level of track sections;

• Consistent network transformations from micro to macro and vice versa.

The remainder is organized as follows. Section 2 gives the structure of the general
framework. Section 3 describes the network and data modelling. It also includes con-
versions from micro to macro and vice versa. Section 4 presents a detailed description
of the microscopic modules and their functions. Further, it introduces the basics of
max-plus automata theory and its application to the UIC compression method. Section
5 illustrates the approach in a Dutch case study. Section 6 reflects on the developed
models and finally Section 7 presents conclusions and future research.

4.2 The micro-macro timetabling approach

The ON-TIME project defined a framework for achieving high-quality railway timeta-
bles with an integrated set of state-of-the-art timetabling techniques. More details
about the models used and the framework developed can be found in Goverde et al.
(2016). One of the main objectives of the project was to build up ‘a scheduled train-
path assignment application, with automatic conflict detection capabilities, that builds
on the concept of robust timetables, has a unified network coverage, is microscopic at
selected parts of the control area, is scalable, and able to connect to Traffic Manage-
ment Systems, with user-friendly interfaces and execution states that correspond to the
IM timetabling management milestones.’ This objective has been reached by the two-
level functional framework represented in Figure 4.1, which indicates the interactions
among the microscopic and macroscopic models.

Input data of the framework are microscopic characteristics of the infrastructure (e.g.
track gradients, position of stations, switches), the rolling stock (e.g. mass, number
of coaches, tractive effort-speed curve, resistance parameters), the signalling and ATP
system (braking behaviour, signal aspect sequence) and the interlocking (e.g. local
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Figure 4.1: Scheme of the micro-macro framework for timetable design

feasible routes). Both input and output of the framework are in a standardized railway
data format, known as RailML (RailML, 2015).

The timetabling computation is an iterative process of two models:

• A microscopic model that computes reliable train running and blocking times at
a highly-detailed level and checks for feasibility and stability of the timetable,

• A macroscopic model that produces a timetable at aggregated network level, by
identifying arrival/departure times at/from stations or junctions in order to opti-
mize a given objective function (e.g. minimise journey times). This is an opti-
mization model that can also provide timetables that are robust versus stochastic
operation disturbances.

In the first iteration a timetable is not available yet, so the microscopic model computes
minimum running times and blocking times, which are aggregated to macroscopic
running times and minimum headway times and sent to the macroscopic model to
calculate a timetable. When a macroscopic timetable has been produced this is sent
back to the microscopic model which computes updated blocking times required for
detecting track conflicts based on the operational running times (i.e. the running times
including time supplements scheduled by the macroscopic timetable). If there are track
conflicts, these are resolved and minimum headway times are computed which are
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transferred to the macro model again. This iterative process is repeated until all track
conflicts have been solved and the macroscopic timetable can be defined as feasible.

In the next step, the microscopic model evaluates the stability of the timetable. If the
timetable is not stable enough, new operational running times are computed by e.g.
increasing the value of time supplements and/or buffer times. This is performed until
the timetable stability is also verified. For the transformations from the microscopic
level to the macroscopic level, and vice versa, efficient procedures have been developed
to aggregate and disaggregate input and output data. In general, microscopic models
are necessary to 1) compute initial input data for the macroscopic timetabling model, 2)
assess the timetable feasibility and stability when used independently and 3) guarantee
operational feasibility and stability when included in the micro-macro framework.

4.3 Network and data modelling

As already pointed out by Tsiflakos and Owen (1993), we need to use structurally
organized input data. In the past years a significant effort has been seen in defining
a standardized railway data format RailML. This RailML data format is more and
more adopted for communication between railway software tools, and therefore we
also adopted this RailML data exchange format. The input to our models thus consists
of a set of RailML files composed of: a) Microscopic infrastructure data, b) rolling
stock data, including train formations, c) Interlocking, signalling and automatic train
protection system (ATP) data, d) available routes, and e) train lines. A train line is de-
fined with origin and destination points, stopping pattern at timetable points (stations,
stops) and a corresponding rolling stock type. It also includes the service category,
such as local or intercity, and the frequency represented in number of trains per hour.
These data are converted to a suitable internal format of ascii data which is used by the
microscopic models. Additional parameters, such as connections and transfer times,
dwell times, and other timetable design parameters and norms are provided externally.
The hierarchical framework for timetable design is composed of two network models
that respectively represent the same network with a microscopic and a macroscopic
level of detail.

4.3.1 Network modelling

Microscopic network

The microscopic model considers homogeneous behavioural sections for the accurate
computation of train speed profiles and running times (Figure 6.2a). A homogeneous
behavioural section is defined as a section with a certain length l, and constant charac-
teristics of speed limit vlim, gradient g and radius ρ. The microscopic network is based
on a graph whose arcs are obtained by aggregating the homogeneous behavioural sec-
tions into track sections denoted by b. A track section corresponds to a track-free
detection section, or several track-free detection sections including at most a single
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switch. On the open track, a block is considered as one track section, while in inter-
locking areas one block may include multiple sections. The nodes of the microscopic
network coincide with the joints between consecutive block/track sections or to infras-
tructure elements such as signals, switches and platforms. This level of infrastructure
details allows very accurate infrastructure capacity assessment, feasibility checks and
minimized wasted capacity, which is particularly important in highly utilized networks.

We distinguish between functions working on the behavioural section level of the in-
frastructure network on one hand, and the track section or block section level on the
other. Computations of minimum and operational running times and corresponding
speed profiles are applied on the former, while computation of blocking times and
minimum headway times, conflict detection, and capacity assessment are applied on
the latter. We also define a set of microscopic timetable points K, where each point k
represents an infrastructural point of interest such as stations that provide passenger
(and/or freight) interaction and allow train overtaking, stops that do not have enough
tracks to facilitate overtaking or dwelling of more than one train, and junctions where
two or more railway lines intersect or merge and no trains are scheduled to stop.

Figure 4.2: Representation of a (a) microscopic network and (b) macroscopic network

Macroscopic network

The macroscopic network N = (S,A) is automatically produced from the microscopic
one and used for the macroscopic timetabling model (Figure 6.2b). Nodes in a macro-
scopic network are referred as to macroscopic timetable points, s ∈ S. The potential
candidates for s are stations and junctions from K. An arc a∈ A represents the corridor
between two successive macroscopic points si and s j. Each arc is comprised of a set
of microscopic arcs, a = (b1,b2, . . . ,bn). The generation of a macroscopic network is
explained in Section 3.3.

4.3.2 Timetables, trains and routes

We distinguish between a microscopic and macroscopic timetable. A macroscopic
timetable (macroTT) includes scheduled running, dwell and transfer times as well
as event times such as arrivals, departures and passages between and in macroscopic
points. A microscopic timetable (microTT) includes all the aforementioned event times
for microscopic timetable points and the corresponding train speed profiles defining the
exact train behaviour.



Chapter 4. Microscopic models and network transformations for timetabling 71

The set of trains is indicated by T . For each train t ∈ T , St ⊆ Sis a set of served
macroscopic timetable points. We assume that for each train the route ρt (i.e., the
sequence of traversed tracks without the corresponding travel times) is provided. Here,
we differentiate between a microscopic route ρmicro

t = (b1,b2 . . . ,bnt ), where nt is the
number of microscopic arcs for train t, and a macroscopic one ρmacro

t =(a1,a2 . . . ,amt ),
where mt is the number of macroscopic tracks for train t.

For each train t ∈ T and each macroscopic arc a the minimum running time rta, the
nominal running time rta including a running time supplement, and the maximum run-
ning time rta are given. All running times are computed by microscopic algorithms,
while the nominal and maximum ones are given as input to the macroscopic model.
The scheduled running times in macroTT are called operational running times and
denoted as r̃ta. Similarly, we define running times rtk1k2 , rtk1k2 , r̃tk1k2 between two mi-
croscopic points ki and k j, representing the minimum, maximum and scheduled ones,
respectively.

For each train t ∈ T and each microscopic point k ∈ K the nominal dwell time wtk and
maximum dwell time wtk is provided. Since the aim of timetable planning is to provide
an acceptable quality of service, certain design norms need to be predefined. The set
of these parameters consists of minimum transfer times, turnaround times, minimum
and maximum running time supplements (%), and maximum allowed journey times of
train lines (%).

4.3.3 Microscopic to macroscopic conversion

Algorithm 2 describes the automatic procedure for the micro to macro network and
data transformations, which are similar to Schlechte et al. (2011). Our approach differs
in two points. First, the algorithm of Schlechte et al. (2011) does not compute running
or blocking times, but uses the commercial software OpenTrack to do so. Second, their
algorithm performs a search over all infrastructure elements (i.e., block sections) to
determine macroscopic points, while we do it exclusively over microscopic timetable
points. Note that a set of microscopic points is quite extensive and includes much
more than just stations and stops, but also each important junction, switch, crossing,
movable bridge or platform. In terms of complexity, this means that our algorithm
has significantly less work than that of Schlechte et al. (2011)., making our model
computationally faster. The CPU time for our micro to macro conversion is under one
second.

The conversion from microscopic to macroscopic models includes three steps: comput-
ing process times, generating a macroscopic network, and aggregating process times
for the macroscopic network. The algorithm first computes the minimum running
times and corresponding blocking times. Then, it aggregates microscopic arcs (track
sections) bi to macroscopic arcs a = (b1,b2, . . . ,bn). Each arc a is described with the
number of tracks and its orientation (mono- or bidirectional). The former is determined
by identifying different routes between two nodes using the function DetermineTracks,
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while function DetermineDirection determines the latter. The subset of macroscopic
points S is then derived from the microscopic points K. The algorithm compares all
pairs of train routes separately. The macroscopic point is chosen based on the inter-
play between train routes. The microscopic point k is in S only if i) any two routes
are converging, diverging or crossing in k, or ii) k is the origin or destination point of
any route. For example, for two routes using microscopic points {k1, k2,k3,k5} and
{k1,k2, k4}, respectively, the set of macroscopic points is S = {k1, k2,k4,k5}. Point
k2 is included because it is a diverging point (first criterion), while k1,k4 and k5 satisfy
the second criterion.

After initialising the macroscopic network, headways are determined at each macro-
scopic point s and for all possible interactions between each two train routes. The
computation of the blocking times and minimum headway times are executed on the
block section level of the infrastructure network. Once all process times are computed
on the microscopic models, the algorithm performs the aggregation of process times
and the discretisation of time. The function AggregateProcessTimes aggregates the
microscopic running times (i.e., between each two microscopic timetable points) to
aggregated process times between two timetable points in the macroscopic network.
The minimum running time rta between two macroscopic points may comprise several
microscopic running times and dwell times since S⊂K, i.e., not all micro points are in
S. The nominal running time over a is obtained by adding a running time supplement
λmin to the minimum running times plus the intermediate dwell times:

rta :=
m

∑
i=1

(1+λmin)rtkiki+1 +
n

∑
i=1

wki,

where arc a is bounded by some macro points [si, s j], m is the number of consecutive
running sections, and n is the number of intermediate microscopic points between si

and s j. Likewise, the maximum running time rta over a is obtained with respect to a
maximum running time supplement λmax. Initially, λmin is provided such as 5%. In
any following iteration it is computed from the macroTT returned by the macroscopic
timetable model.

The macroscopic model may use a coarser time granularity, so a time discretisation of
process times is performed as well. The incorporated function represents an innovative
rounding method that has the objective to control the rounding error by combining
rounding up and rounding down. By applying AggregateProcessTimes, we obtain all
process times that are necessary for macroscopic computation.

The network transformation is applied in the initial stage of timetable planning to pro-
vide the required network input to a macroscopic model since the given line requests
(origin/destinations and stop patterns) are considered as fixed. Hence, the macroscopic
network structure remains the same during all iterations. On the other hand, Aggre-
gateProcessTimes is run each time (e.g., iteration) a data input (for a macroscopic
model) is adjusted based on the output of the microscopic models such as the updated
train speed profiles, running times and headway times that need to be aggregated for
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each new run of the macro model.

Algorithm 2 Micro to macro conversion
Input: Microscopic network M, microscopic points K, dwell times W ,

timetable design norms λ, set of trains T
Output: macroscopic network N = (S,A), macroscopic running,

dwell and headway times
Forall t ∈ T

Compute microscopic running times Rt,micro
Compute blocking times Bt

End Forall
Forall microscopic timetable points k ∈ K

Forall pairs of train lines
If k is origin or destination point OR lines converge OR lines diverge

OR lines cross
add k to macroscopic nodes: S→ S∪ k

End If
End Forall

End Forall
Forall adjacent timetable points s ∈ S

Create a macroscopic arc a = (si,s j)
DetermineTracks of arc a = {bi} , i = 1, . . . ,n
DetermineDirection of arc a

End Forall
Forall macroscopic timetable points s ∈ S

Compute minimum headway times hstit j

End Forall
AggregateProcessTimes for N = (S,A)

4.3.4 Macroscopic to microscopic conversion

After obtaining a macroTT, we need to translate it to a microscopic level of detail in
microTT, see Algorithm 3. In other words, from the scheduled event times for the
macroscopic timetable points we reconstruct the train speed profiles and scheduled
times for all microscopic timetable points. To do so, we apply the following three
steps for each train. Step 1 derives running time supplements for a macroscopic route
ρmacro

t and distributes them to the corresponding microscopic route ρmicro
t . Step 2

determines the operational speed profile for the given time supplements (Section 4.2).
Finally, the computation of blocking times concludes Step 3 (cf. Section 4.3). Step 1
is explained in more details in the following subsection and is followed by an example
of the macro to micro conversion.

Allocation of running time supplements

In Step 1 we determine the running time supplements that are allocated in a given
macroTT. Based on the scheduled running time (difference between the scheduled de-
parture time and scheduled arrival time at the next considered point.) in macroTT, we
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Algorithm 3 Macro to micro conversion
Input: microscopic network M, macroTT
Output: microTT
Forall trains t ∈ T

1. Determine allocated running time supplements Ψt
2. Compute operational speed profiles (see Section 4.2)
3. Compute blocking times Bt(see Section 4.3)

End Forall

compute the corresponding allocated running time supplement between two macro-
scopic points. We denote ψta as the difference between the scheduled and minimum
running time for macroscopic arc a of train t, r̃ta and rta, respectively. This defines a
vector Ψt of the time supplements ψta between each two macroscopic timetable points
over the corresponding route qmacro

t . This is done for all trains t ∈ T .

Recall that the not all microscopic timetable points are necessary also macroscopic,
but S ⊂ K. This means that several microscopic timetable points may exist between
two adjacent macroscopic points. By computing an operational train speed profile
over an arc a and considering just a given time supplement ψta, one may obtain an un-
equal distribution of time supplements between two consecutive microscopic timetable
points. Hence, we need to migrate from time supplements over arcs, to the lower
level, i.e., time supplements between each two microscopic points, which results in
distributing time supplements in a more justified manner. In order to do so, we as-
sign ψta proportionally to all sections between each two adjacent microscopic points
based on the running time over that section. So, each section k1k2 receives a portion:
ψtkik j =ψtartkik j/rta, where rta is the minimum running time between two macroscopic
points over arc a, rtkik j the one between two microscopic points ki and k j and ψtkik j is
the corresponding running time supplement. By doing this, we enforce an equal time
supplement distribution and prevent that some sections get no time supplements.

Figure 4.3 gives a graphical representation of the macro to micro transformation for
a given train t operating between A and D. Let A and D be macroscopic timetable
points, while B and C the microscopic ones. The macroscopic arc a = (A,D). The
train stops at all points. Solid lines represent scheduled running times, and dashed
lines are the minimum ones. The macroscopic timetabling model produces (macroTT)
the scheduled running time, r̃ta, and corresponding minimum running time rta. Step
1 computes the running time supplement ψta, as ψta = r̃ta− rta (Figure 4.3a). Then,
ψta is distributed proportionally between each two neighbouring microscopic points
(Figure 4.3b). In the Figure 4.3c the dotted line is the static speed limit along the
route. Step 2 computes the operational speed profiles for each section between two
microscopic points (Figure 4.3c) which is explained in the following section.
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Figure 4.3: Macro to micro transformation

4.4 Microscopic computations

4.4.1 Minimum running times

The minimum running time is the time required for driving a train from one infrastruc-
ture point to another assuming conflict-free driving as fast as possible. Running times
are computed using microscopic train dynamic models that require detailed rolling
stock and infrastructure data, including route-specific static speed profiles.

Running times are modelled by means of the Newton’s motion equations (Brünger &
Dahlhaus, 2014). The tractive effort is assumed a piecewise function of speed consist-
ing of a linear part and one or more hyperbolic ones. The resistance force is modelled
based on the Davis resistance equation, a second-order polynomial of speed. The
braking rate is defined as a single deceleration rate. A train speed profile and the as-
sociated running time are determined as function of distance (Bešinović, Quaglietta,
& Goverde, 2013). These first-order ordinary differential equations are solved by the
numerical Dormand-Prince method (Butcher, 2008), which is a variant of the more
general Runge-Kutta approach. The output of this function constitutes microscopic
running times rtkik j for each t ∈ T and where ki and k j are the subsequent microscopic
points along the route ρmicro

t . It also includes the corresponding train speed profiles,
i.e., time-distance and speed-distance diagrams.
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4.4.2 Operational running time computation

In Step 2, for each train t ∈ T and corresponding Ψt , we compute the operational
running time consisting of the detailed train speed profile and scheduled times at mi-
croscopic timetable points, which are used for further microscopic analyses as conflict
detection and capacity assessment.

By definition, the scheduled running time contains time supplements added to the mi-
croscopic minimum running time to absorb a stochastic variation of train runs during
real operations. In the initial stage of the timetable planning, the time supplement is
usually 5% of the minimum running time, which is a common value for Netherlands
Railways. At the microscopic level, the operational speed profile is obtained by ap-
plying cruising with a speed lower than the maximum speed. The insertion of cruising
phases at lower speeds is realized by means of a customised bisection algorithm. This
identifies the speeds and the cruising phases that return a running time equal to the
operational one provided by the timetable.

The input of this model is therefore the arrival/departure times and the operational
running times planned in macroTT. The output are microscopic train speed profiles
that satisfies the operational running time in microTT. In the following, we leave out
the indices in order to keep the text easier to read.

We focus on computing an operational speed profile between two consecutive stopping
points. In order to acquire the operational profile we use an operational parameter
p [%], which represents the ratio between the given static speed limit and an actual
speed that should be used to consume the given time supplement ψ. Lower and upper
bounds for p are 30 and 100, respectively. Lower bound prevents that a train cruises
at unacceptably low speed. For example, if the maximum speed is 130 km/h, the
minimum allowed speed would be 39km/h. Upper bound gives the minimum running
time. The operational parameter is applied on open-track in order to exploit the running
time supplement, while maintaining the maximum speed through areas with restricted
speeds (i.e., sections with the maximum speed of 40km/h). The running time with
respect to the operational parameter is computed by applying the running time function
(described in Section 4.1) for adjusted static speed limits over the infrastructure. If
several microscopic points exist between two adjacent macroscopic timetable points
like stops at the open-track, then for each train line p is a vector with different values
between each two microscopic points.

The function uses an adjusted bisection algorithm to find an operational parameter p
with a corresponding operational speed profile as described in detail in Algorithm 4.
The focus here is on a single section between two microscopic timetable points. The
function inputs are the scheduled running time r̃ from the microTT and the microscopic
minimum running times r as well as a tolerated error εtolerance [s], which is applied as
a stopping criterion. The algorithm introduces the currently computed running time
rcurrent for the given operational parameter and the absolute computed error εabs, i.e.,
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the difference between r̃ and rcurrent . Initially, rcurrent is set equal to the minimum
running time and p is set to pub = 100.

In each repetition, the algorithm:

1. Computes a speed profile (and running time) for value p

2. Refines the search range [plb, pub] for p depending on the relation of r̃ and rcurrent

3. Updates p and εabs.

Steps 1-3 are repeated until the absolute error satisfies the stopping criterion.

Algorithm 4 Computation of operational speed profile
Input: Micro network, time supplements (from Step 1), εtolerance, train lines T
Output: Operational speed profiles for all train lines
Initialize plb = 30, pub = 100
Forall tuples (train line, running section, time supplement)

Set bounds for operational parameter p, [plb, pub]
Initialize rcurrent ← r, εabs← |rcurrent− roper|, p← pub
While εabs > εtolerance

rcurrent ←RunningTimeComputation(p)
If roper− rcurrent > 0

Update lower bound plb← p+ pub−plb
2

Update operational parameter p← plb
Else

Update upper bound pub = p− pub−plb
2

Update operational parameter p← pub
End If

Update error εabs← |rcurrent− roper|
End While

End Forall

Consequently, the blocking times are computed for all operational speed profiles and
feasibility and stability of the microTT is evaluated applying the algorithms described
in the next section.

4.4.3 Blocking times

A blocking time is the time interval that a given section (block section or track detec-
tion section) is exclusively allocated to a single train and therefore blocked for other
trains. In railways it is not allowed for two trains to be contemporary in the same block
section. Blocking times are computed according to the classical blocking time theory
(Hansen & Pachl, 2014).

As can be seen in Figure 4, the blocking time of a train relative to a given block section
is composed of the following components: setup time tsetup [s] to set the route for the
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Figure 4.4: Blocking time stairway

approaching train; sight distance lsight [m] or sight time tsight [s] of the train driver
when approaching the previous block section (approach signal); reaction time treaction

[s] of the driver, usually equal to 1.5 – 2 s; approach time tapproach [s] needed by the
train to cross the previous block section; running time tblock [s] of the train to cross
the block section; clearing time tclear[s] needed by the train to clear the block section
over its train length; release time trelease [s] needed to release the route after the train
clearance. After having computed all these terms the blocking time di j of the train t
relative to block i is obtained as:

dti = tsetup,i + tsight,ti + treaction,ti + tapproach,ti + tblock,ti + tclear,ti + trelease,ti.

The input to this function are the infrastructure characteristics and running times of
trains. In particular, the operational running times, either from the initial iteration
that include 5% of running time supplements or from macroTT, are used to produce
the scheduled blocking time stairways. Note that the signalling system presented in
Figure 4.4 represents a three-aspect two-block signalling system but different systems
can be also modelled like four-aspect (UK signalling), the Dutch progressive speed
signalling system, or the European Train Control System (ETCS) Level 1, 2 and 3.

Blocking times represent the main ingredient for the following functions, so we intro-
duce it formally as dti = (ds

ti,d
e
ti), where each blocking time dti of section i by train t
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is specified from the start ds
ti to the end de

ti of the blocking time. Each train t has an
attributed list of blocking times Dt = {dt1,dt2, . . . ,dtn}, where n is the number of track
sections along the route ρmicro

t .

4.4.4 Minimum headway time computation

A minimum headway time is the time separation between two trains at certain posi-
tions that enable conflict-free operation of trains (Hansen & Pachl, 2014)The minimum
headway is computed based on the blocking times of each train for every macroscopic
point, and for each pair of consecutive trains. In particular, for each pair of trains we
calculate a set of minimum headways considering all the possible interactions between
them such as both trains leaving a station, both trains entering a station or one entering
and the other leaving.

We introduce the computation of the minimum headway at a timetable point s ∈ S.
Let Bi js be the set of blocks associated to conflicting routes (inbound or outbound) of
train lines i and j in timetable point s, de

il be the end of blocking time dil and ds
jl the

start of blocking time d jl . Assume that both trains have the same reference event (i.e.,
departure, arrival or passing) time at s, e.g., equal to 0. Then the minimum headway
hi js from train line i to j in timetable point s is computed as

hi js = max
l∈ Bi js

(
de

il − ds
jl

)
. (4.1)

4.4.5 Conflict detection and resolution (CDR)

The CDR model consists of two algorithms: conflict detection (CD) and conflict res-
olution (CR). The aim of the CDR is to verify the feasibility of the macroscopic
timetable and to locally resolve potential conflicts by analysing the interaction be-
tween scheduled trains at the microscopic level. A track conflict occurs when two or
more trains are scheduled to the same track section at overlapping periods of time. In
other words, a track conflict is identified when the blocking times of two trains overlap
fully or partially at a given track section. When a macroscopic timetable is available,
we can test its feasibility at microscopic level using the CD procedure. This function
takes as input the blocking time stairways produced for the operational running times.
If there is an overlap between the blocking times of two different trains, this indicates
a track conflict that must be solved. Specifically, track conflicts are solved by shifting
trains in time until the blocking times do not overlap anymore. This shift initiates a
change in the minimum headway between the trains. After all track conflicts have been
detected, it is necessary to recompute the corresponding minimum headways. These
new headways may be given to the macroscopic timetabling model to iteratively adjust
the macroscopic timetable until no conflicts are detected anymore. Therefore, conflict-
freeness is tested comparing the interaction of scheduled blocking times for each pair
of trains, i.e., checking the possible blocking time overlaps between those two. The
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blocking time overlap ci jϕ from train line i to j at corridor ϕ is computed similarly as
the minimum headway times as

ci jϕ =max
l∈ Bϕ

(
de

il − ds
jl

)
, (4.2)

where Bϕ is the set of conflicting blocks at corridor ϕ. If ci jϕ > 0 then a conflict exists.
Usually, a corridor corresponds to a macroscopic arc. In this way, the whole network
is analysed by the conflict detection algorithm.

For the modelling purposes of CD we used a compact but efficient algorithm:

1. Sort the start and end times of the blocking time intervals over shared blocks.

2. Go through the sorted end times and build up the list of conflict pairs by looking
at the preceding start time.

Algorithm 5 for CD is presented in the following. First, we initialise the set for ob-
served conflicts Γ. The CD algorithm progresses through the list of track sections and
for each b∈ B it generates the set Db that includes blocking times of trains that traverse
the b-th section. Then, Db is sorted regarding the start and end times (ds

ti,d
e
ti). For each

pair of adjacent trains (t i, ti+1) the procedure checks the relation between the block-
ing time end of train ti and blocking time start of train ti+1, de

t − ds
t+1. If this value is

positive then a conflict exists. A conflict γ ∈ Γ is described with a pair of conflicting
trains t1 and t2, the corresponding track section b, and the total time in conflict, i.e., the
overlap η← de

t −ds
t+1; formally, γ = (b, t1, ti+1,η).

Algorithm 5 The conflict detection procedure
Input: set of track sections b ∈ B, set of blocking times Dt ∈ D
Output: set of conflicts Γ

Initialize Γ := /0

Forall b ∈ B
Create a set of trains Tb that use block b and
corresponding blocking times Db
Sort Db based on start of blocking times
Create a pairing list of adjacent trains (ti, ti+1)
Foral pairs (ti, ti+1)

If de
t −ds

t+1 > 0
η← de

t −ds
t+1

Insert into Γ a conflict γ = (b, t1, ti+1,η) between trains (ti, ti+1)
End If

End Forall
End Forall

Once all the conflicts have been determined, the CR procedure described in the Al-
gorithm 6 resolves existing conflicts between pairs of trains. The CR procedure 1)
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computes the maximum overlap, 2) determines the associated headway (pair of trains
and corresponding macro point) to be updated, and 3) updates the headway time for
the maximum overlap. Recall that headways were defined for each macroscopic point,
while a conflict may be located somewhere between two macro points. Therefore, we
also need to choose the corresponding macro point to assign the updated headway.

Algorithm 6 The conflict resolution procedure
Input: tracks a ∈ A, conflicts γ ∈ Γ, t ∈ T , headways h ∈ H
Output: updated headway times H
Forall a ∈ A

Forall pairs (t1, ti+1)
Step 1. Initialize a subset, Γsub, of conflicts that exist on arc a
Step 2. Compute the maximum overlap for γ ∈ Γsub
Step 3. Choose macro point s
Step 4. Update ht1ti+1s← ht1ti+1s + ct1ti+1a

End Forall
End Forall

In the first step, the procedure determines the subset of conflicts Γsub ⊂ Γ that corre-
sponds to a pair of conflicting trains (t1, t2) at a given arc a ∈ A. Then, the maximum
overlap ct1t2a is determined using (4.2). Step 3 finds the macroscopic point s for which
the headway should be updated. This choice has been made based on the geographi-
cal distance between the track section with the maximum overlap and the surrounding
macroscopic points, i.e., the closer point is selected. Finally, the relative headway
ht1ti+1s is increased by ct1ti+1a.

4.4.6 Capacity assessment

In this section, we define the idea of infrastructure capacity assessment. Our approach
for capacity assessment is based on the timetable compression method, which is com-
mon practice. Timetable compression is the process of shifting train paths to each
other as much as possible, bringing them to the (time) distance of minimum headway
times. The total time needed for operating such a compressed timetable is the capac-
ity occupation. Capacity assessment consists of determining capacity occupation and
capacity occupation rate (share of used capacity expressed in %). We briefly introduce
the max-plus automata theory and then apply it to compute capacity occupation. Note
that in this section we use a common max-plus algebra notation that may differ from
the rest of the paper. Our approach overcomes the current limitation of the UIC method
and estimate the capacity for the station as a whole, and thus, includes all route depen-
dencies in the station area. The capacity occupation µ(ϕ) of corridor ϕ can be obtained
by:

µ(ϕ) = ∑
{(i, j)∈Wϕ}

hi jϕ , (4.3)

with Wϕ the cyclic pattern of successive train pairs (i, j) in corridor ϕ, and hi jϕ the



82 Integrated models for railway timetabling

minimum line headway. The minimum line headway is computed similarly to a local
minimum headway but with respect to all blocks on a corridor ϕ instead of a timetable
point s. A corridor may be equal to a station area, an arc or comprise several adjacent
arcs, ϕ = ∪ai. We compute the capacity occupation for each corridor ϕ ∈Φ, applying
an algorithm based on max-plus automata theory.

Basics of max-plus automata theory

Max-plus automata combines elements of the heaps-of-pieces theory and max-plus
algebra and was introduced by Gaubert and Mairesse (1999). A max-plus algebra is
a semiring over the union of real numbers and ε = −∞, equipped with the two binary
operations maximum (⊕) and addition (⊗). Let Rmax be the set of real scalars and−∞,
then for a,b ∈ Rmax the operations are defined as:

a⊕b = max(a,b) , a⊗b = a+b.

The element ε = −∞ is the neutral element for ⊕ and absorbing for ⊗. The element
e = 0 is the neutral element for ⊗. Properties of max-plus algebra are similar to con-
ventional algebra. We refer to Goverde (2007) for more details on max-plus algebra
with application to railways.

A max-plus automaton H is a triple (Q,R,M), where:

• Q is a finite set of tasks, e.g., all possible train routes,

• R is a finite set of resources, e.g., block section or track detection section,

• M is a morphism Q∗→ R|R|x|R|max which is uniquely specified by the finite family
of |R|×|R|-dimensional matrices M (l) , l ∈Q. Also, Q∗ denotes a set of chosen
train (partial) routes over a given corridor from Q, Q∗ ⊂ Q.

We define a timetable as an ordered sequence of tasks, w= l1 . . . ln. Therefore,

M (w) = M (l1 . . . ln) = M(l1)⊗·· ·⊗M (ln) .

A task is called an elementary task if R-dimensional row vectors s(l) and f (l) exist
such that s(l)≤ f (l) and

Mi j (l) =


e, if i = j, i 6= R(l) ,
f j (l)− si (l) , if i, j ∈ R(l) ,
ε, otherwise.

(4.4)

Variables s(l) and f (l) represent the start and end time of task l, respectively. In the
railway terms, task l is a (partial) route of a train line, while s(l) and f (l) correspond
to occupation and release times of the i-th block, ds

i and de
i , respectively.
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Route s(r) f (r)
a [0,ε,15,25][25,ε,35,50]
b [25,15,ε,0][50,35,ε,25]
c [0,ε,20,90][30,ε,100,120]

The upper contour x(w) of a schedule w is defined as

x(w)=M (w)⊗ x(e) ,

where x(e) is an R-dimensional vector corresponding to an empty schedule. A more
extensive description of max-plus automata theory is given by Gaubert and Mairesse
(1999) and Egmond (2000).

Application of max-plus automata to capacity occupation

The capacity occupation µ(w) of the schedule w is computed as

µ(w)=min(x(wa)− ( f (a)− s(a))) , (4.5)

where schedule wa is a schedule for one cycle w and the first train service a that belongs
to the next cycle, and f (a)− s(a) is the blocking time stairway of the repeated train
service a over all resources. This formulation corresponds to the Equation (4.3). The
capacity occupation rate C (w) is defined as C (w) = µ(w)

P · 100 [%], where P is the
scheduled cycle period.

Let us summarize the capacity occupation model. First, we define a set of arbitrary
railway sections φ. A section ϕ ∈ φ may represent a corridor or a station (i.e., macro-
scopic timetable point). A corridor is bounded by a pair of macroscopic timetable
points, e.g., ϕ = (s1,s2, . . .sn). A station is treated similarly by accepting ϕ = s.Then,
we determine a subset Q∗ of train routes that are selected for train lines over section ϕ.
Finally, the model computes the capacity occupation for each ϕ ∈ φ by using (6.6) and
is represented with µ(ϕ).

Numerical example

Let us consider the following example for computing the capacity occupation in a
station. Consider three trains a,b,c, schedule w = abc and resources r = 1, ..,4, as in
Figure 4.5a. Train route a uses resources [1,3,4], b uses [4,2,1] and c uses [1,3,4].
The train blocking times are given as

Note that ε represents an unused resource. The corresponding matrices M for routes a,
b and c are defined using Equation (4.4) as follows:

M (a) =


25
ε

10
0

ε

ε

ε

ε

35
ε

20
10

50
ε

35
25

 M (b) =


25
35
ε

50

35
20
ε

35

ε

ε

ε

ε

0
10
ε

25

 ,
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M (c) =


30
ε

10
−60

ε

ε

ε

ε

100
ε

80
10

120
ε

100
30

 .

The matrix M for schedule ab is computed as:

M (ab) = M (a)⊗M (b) =


100
35
85
75

85
20
70
60

35
ε

20
10

75
10
35
25

 .

Similarly, train c is added to the schedule in the same manner, i.e., M (abc) = M (ab)⊗
M (c). The upper contour of the schedule abca is then computed as

x(abca) = M (abca)⊗ x(e) =


220
85

230
245

 .

The capacity occupation for the scheduled services abc is then computed as:

µ(abc) = min(x(abca)− ( f (a)− s(a))) = min




220
85

230
245

−


25
ε

20
25


= 195.

Note that 85− (−∞) = +∞. If the cycle period equals P = 600s, then the capacity
occupation rate is

C (abc) =
µ(abc)

P
·100 [%] =

195
600
·100 [%] = 32.5 [%].

Figure 4.5b provides a graphical representation of the compressed schedule w = abc.
The coloured blocks represent the train occupation of the infrastructure, with one train
movement depicted by the same colour. Note that train a is added twice in order to
determine the earliest possible departure of a train from the following period. The
red line represents the capacity occupation for schedule w, C (w). The white space
(between the x-axis and red line) depicts unused capacity which might be used to add
extra trains.
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Figure 4.5: (a) Example infrastructure and (b) capacity occupation for schedule abc

4.5 Case study

In the case study we focus on two elements. First, we show the applicability of
each function within the microscopic model. Besides that, we demonstrate the de-
veloped timetabling framework with all functionalities of the microscopic module ap-
plied to a real railway network. We apply the macroscopic model from Bešinović et
al. (2016). However, any other macroscopic model could be used (e.g., Siebert and
Goerigk (2013)).

We consider a real-life instance for train line services on the 80km long corridor
Utrecht (Ut)-Den Bosch (Ht)-Eindhoven (Ehv) (Figure 6.6), a highly utilised part
of the railway network in the central Netherlands. The values present number of
tracks in stations or junctions and lines between depict number of track between two
timetable points. The microscopic infrastructure includes various topology – double,
triple and quadruple tracks. The microscopic graph M for the considered corridor in-
cludes around 1000 nodes and 1500 microscopic arcs considering infrastructure details
like location of signals, switches, train detection points, the speed limits, slope gradi-
ents and curves. For running time computations, a detailed train dynamics have been
modelled. The network included 13 microscopic timetable points such as stations,
stops, junctions and bridges.

Figure 4.6: Case study infrastructure with macroscopic (circles) and microscopic
(squares) timetable points

The original timetable on this network is periodic with half an hour pattern composed
of 20 train lines, of which 12 are Intercity (IC) and eight are regional trains. Train
lines originate and terminate at different stations along the corridor and have different
stopping patterns. Regional trains stop at all stations, while ICs stop at limited stations.
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4.5.1 Functionality of the microscopic model

We start by computing the minimum running times and the corresponding headway
times, constructing the macroscopic network and aggregating the process times (Al-
gorithm 2). Solving the equations for running time is performed over distance with
computational accuracy set to 10−5 m, while εabs = 1 s. The accuracy of other models
is one second. The average computation (CPU) time for the minimum speed profile
for one train line was one second, while for the operational speed profile was four sec-
onds. Generating macroscopic network resulted in seven macroscopic timetable points
(important stations and junctions) and six macroscopic arcs. A total of 1000 head-
way times was computed in eight seconds. In the later iterations, a limited number of
headways is usually updated, so the CPU time then is well under one second. The CPU
times for conflict detection for the whole network and capacity assessment per corridor
(or station) are on average three and one second, respectively. Lastly, network trans-
formations, micro to macro and vice versa, take under one second as well. For testing
purposes, we applied a macroscopic timetable model as in Bešinović et al. (2016) to
generate a macroTT. Once a macroTT is obtained, the microscopic models evaluated
its feasibility and stability. First, a microTT is generated by identifying the operational
train speed profiles corresponding to the scheduled running times (Algorithm 3 and
4). The output of the Algorithm 4 for one train line is illustrated in Figure 4.7 and
depicts the distance-speed diagram for the local train 6000 (blue dotted line) running
over the corridor Ht-Ut. Such a speed profile corresponds to the scheduled running
time where time supplements are exploited by cruising at a speed lower than the time-
optimal speed profile, i.e., computed for the minimum running time (red solid line).
The circles represent line-side signals, black solid line are gradients, black dashed line
is the static speed limit.

The newly produced blocking times are used in the CDR model to detect possible
conflicts between trains. The corridor included 600 track sections. Figure 4.8 gives
the (partial) output of the blocking time computation for the different train services
operating between Gdm and Ut. The diagram shows only the infrastructure that train
6000 uses, in order to clearly visualise actual conflicts between trains. The red box
depicts a conflict of train services 6000 and 3500 between Utrecht Lunetten (Utl) and
Ut. The minimum headway hdd

6000,3500,Ut between these two trains originally was 150
s while the maximum overlap of their conflicting blocking times (three in total) is
max(48,38,38) = 48 s. The track conflict is therefore resolved by shifting the train
over an extent equal to the overlap. In this case, the minimum headway increases by
48 s, resulting in a new headway time hdd

6000,3500,Ut = 198 s, so that the blocking times
are touching but not overlapping. This new headway is sent to the macroscopic model
together with the other updated headways and running times, for reproducing a new
macroscopic timetable.

The capacity occupation for a given microTT is computed by applying the max-plus
automata method. The capacity occupation for all corridors and stations is given in
Tables 6.1 and 6.7.1, respectively. In addition, the last column in both tables shows
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Figure 4.7: Train speed profiles for minimum running time (red solid line) and sched-
uled time supplements (blue dotted line). The maximum speed of the train is 130
km/h.

Gdm Cl Htnc Htn Utl Ut

Distance [stations]

0

5

10

15

20

25

30

T
im

e 
[m

in
]

Blocking time diagram for the train series 6000

6000

3500

16000

800

6000
3500

Figure 4.8: Blocking time diagram the corridor Gdm–Ut

the total number of resources used by all routes, which defines the size of matrix M
(cf. Equation (5)), and thus the complexity of the computation. We describe here the
capacity occupation for station Ht, which consists of six station tracks including four
platform tracks. Fourteen trains operate each 30 minutes through Ht, which use in
total 69 different infrastructure resources. Figure 4.9 shows the station layout and the
output of the capacity assessment. The x-axis reports all the track detection sections
belonging to the station. Note that their sequence does not follow a topological order.
The y-axis denotes time, and the blocks show for each track detection section when
they are used by a train service. The different colours of the blocking times correspond
to distinct train routes through a station. In red we highlight the first train service of the
next timetable period. We found that the capacity occupation time of station Ht is 1539
s (25.6 minutes) and the rate is 42.8% in a timetable period of 60 minutes. This means
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Table 4.1: Capacity occupation at corridors

Corridor Time (s) Rate (%) No of resources
Ut-Ht 1892 52.6 110
Ht-Ut 1924 53.4 104
Ehv-Ht 1320 36.7 90
Ht-Ehv 1372 38.1 91

Table 4.2: Capacity occupation at stations

Station Time (s) Rate (%) No of resources
Btl 870 24.2 85
Ehv 930 25.8 37
Gdm 954 26.5 48
Ht 1539 42.8 69
Htn 900 25.0 24
Ut 844 23.4 58
Vga 934 25.9 34

that the timetable locally contains 2061s (57.2%) of time allowances. By comparing
these values with those suggested by the UIC 406 Code, i.e., a minimum of 50%, it is
concluded that Ht has an acceptable amount of time allowances, and therefore satisfies
the stability norms.

Figure 4.9: Station Den Bosch: (a) station layout and (b) capacity occupation

4.5.2 Testing the developed framework

In order to show the suitability of the microscopic models within the developed frame-
work, we used the macroscopic timetabling model described in Bešinović et al. (2016).
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Table 4.3: Characteristics of the macroscopic timetable after each iteration

Iteration No of conflict-
ing train pairs

Overlap
time (s)

1 6 160
2 4 130
3 3 98
4 5 110
5 3 65
6 1 8
7 0 0

We present the computational results and the computed timetable, including the achi-
eved values for the performance measures, i.e., feasibility and stability.

Table 4.3 presents the microscopic conflicts in the macroscopic timetable at the end of
each iteration. The number of conflicting train pairs equals the number of headways
that has been updated at the microscopic level. Overlap time is the sum over all max-
imum conflicts between two trains ∑ct1t2a. In the first iteration, there are six conflicts
that add up to 160 seconds of overlapping blocking times. In the second iteration, only
four conflicts remain with a total overlap time of 130 seconds. In the subsequent itera-
tions, all conflicts are resolved. It can be seen from the table that the approach can solve
all conflicts successfully within several iterations, gradually reducing the number and
size of total overlaps. However, resolving conflicts in one iteration may produce some
new conflicts in the following iteration. But the algorithm converges to a timetable
which is completely feasible both macroscopically and microscopically. The observed
computation time for obtaining the feasible and stable timetable was about 14 minutes,
with on average 2 minutes per iteration.

Figure 4.10 shows a time-distance diagram of the computed hourly timetable for the
corridor Ut-Ehv. The vertical axis shows time in minutes downwards. The horizontal
axis shows distance with the station positions indicated. The blue lines are IC trains,
the magenta lines are local trains. Note that the sections Btl-Ehv and Htn-Htnc have
four tracks where trains may cross each other. Figure 4.11 shows the corresponding
blocking time diagram for the route of intercity train line 3500. Note that only the
blocking times are shown for the trains running on the same tracks as train line 3500.
The gaps in the blocking time stairways for some trains correspond to running on par-
allel tracks in stations or the four-track lines between Htn-Htnc and Btl-Ehv. Around
Ht also some blocking times are visible corresponding to crossing trains from/to dif-
ferent corridors.

The optimized timetable shows periodic passenger trains with regular 15 minute se-
rvices of both IC and local trains where two similar train lines follow the same route.
Hence, effectively 15 min train services are realized instead of two separate 30 min
train lines.

The blocking time diagram shows no overlapping blocking times and hence asserts
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Figure 4.10: Time-distance diagram for corridor Ut–Ehv

Figure 4.11: Blocking time diagram for corridor Ut–Ehv

that the timetable is conflict-free. Moreover, the timetable is robust which is illustrated
by the buffer times (white space) between the train paths.

Finally, the obtained capacity occupation rates are below the recommended stability
values of 65% for mixed traffic corridors in daily periods and 50% for stations defined
by the UIC, which were the constraints of the timetabling algorithms. Corridor Ut-Ht
is the heaviest used with the capacity occupation rate of 57.8%. Therefore, we may
conclude that the produced timetable is also stable.

4.6 Practical reflection of the developed microscopic model

The developed framework has been evaluated by experts from the infrastructure man-
agers Network Rail (UK) and Trafikverket (Sweden). Here we give a summary re-
garding the functionality of our microscopic model. The applied time precision of
one second is highly appreciated, as it leads to minimizing the unused capacity and
unrealizable running times. Also, its relevance is supported by the current efforts in
this direction in the UK. They emphasized the ability of the model to compute highly
detailed running and blocking times taking into account all route details at the track
section level (speed restrictions, signalling, gradients). The implementation of the new
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conflict detection and resolution algorithms that accurately assess the timetable feasi-
bility gives valuable transparency to timetable planners. The importance of capacity
occupation and stability norms was also stressed, but they also pointed out the need
to standardize and configure the norms to reflect local (national) capacity standards.
The overall comment is that ‘The implemented functionality to timetable planning was
reviewed as highly valuable and an advance on current practice’. This is also con-
firmed by the infrastructure manager ProRail and main railway undertaking NS from
the Netherlands. The microscopic models are currently applied in a pilot project by
ProRail and NS to evaluating the Dutch timetables at the national network level.

4.7 Conclusion

In this paper we have provided a methodology and new microscopic models for sup-
porting the timetable design as well as the network and data transformations to manage
communications between microscopic and macroscopic models. The main focus was
on the microscopic models for computing reliable running and minimum headway
times for the macroscopic model, as well as analysing the feasibility and stability of
the macroscopic timetables at the microscopic level. Operational running times are
calculated by integrating the Newton’s motion formula and a fast bisection model that
introduces cruising phases at lower speeds to cover the supplement times imposed by
the timetable. Accurate headway computation is based on the blocking time theory.
In this way, we could generate train process times in short time, even for very dense
railway traffic. The timetable feasibility was checked by an efficient conflict detection
model based on the blocking time theory, which automatically recomputes new mini-
mum headway times if a conflict arise. The capacity assessment is realized by the new
application of max-plus automata following the compression method. Our method al-
lowed computing capacity occupation in stations as well as at corridors. If the capacity
occupation rate satisfies technical thresholds the timetable is considered as stable.

The microscopic models were also integrated in an innovative timetabling framework
to develop timetables that are operationally feasible and stable. The framework is
completely general and based on the iterative interaction among macroscopic and mi-
croscopic models. Due to its modular development, the macroscopic model can be any
optimization model for timetable computation.

We applied the microscopic models at a real Dutch railway network. Small compu-
tation times make us confident that the models could also be used on more complex
instances, although no microscopic infrastructure data for other networks is available
to us yet. In practice, microscopic models could be interfaced with existing timetabling
tools to rapidly obtain good quality timetables that are also conflict-free and able to ef-
fectively absorb delays. We believe that presented microscopic models have a great
potential for improving real-life applications for railway planning.
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Chapter 5

A two-stage stability-to-robustness
approach to robust railway
timetabling

This chapter has been submitted for publication as:

Bešinović, N. & Goverde, R. M. P. A two-stage stability-to-robustness approach to
robust railway timetabling, submitted.

5.1 Introduction

The constant growth of railway transport demand on one hand and the limiting exist-
ing infrastructure capacity on the other force the railways to constantly improve their
processes and rise performance in managing existing and planned resources. This
paper describes a timetable planning model that will support timetable designers to
achieve more robust timetables that are less sensitive to delays. The traditional Train
Timetabling Problem (TTP) aims at finding a train schedule on a railway network that
satisfies operational constraints and maximizes the efficiency of the transportation ser-
vices. Timetable efficiency is interpreted as providing fast services which assure a
competitive offer to passengers. Due to the growing demand, the need for using the
capacity in an optimal way becomes greatly important, and so, improving capacity
utilization directly improves timetable stability. A timetable also has to handle daily
stochastic disturbances within the network. Thus, a robust timetable is capable of cop-
ing with stochastic process time variations. Therefore, we focus on finding an efficient,
stable and robust periodic timetable and define the problem as the Stable and Robust
TTP (SR-TTP). The questions that arise in the timetable design are: 1. How to use
the infrastructure in the optimal way? 2. Where to insert time allowances in order to

93
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guarantee a good trade-off between an efficient and a robust TTP solution? 3. What is
the best objective function that generates the best timetable solutions?

We distinguish between periodic and non-periodic TTPs, where the former introduces
a certain cycle time and a given timetable repeats every cycle. A periodic TTP is com-
monly modeled as a periodic event scheduling problem (PESP), which was introduced
by Serafini and Ukovich (1989). PESP is originally a feasibility problem which was
used by Schrijver and Steenbeek (1994) to design railway timetables. Periodic TTPs
are often modeled as mixed integer linear programs (MILP) by adopting an objective
function as in Peeters (2003).

In this paper, we adopt a common way to tackle SR-TTP, that is, by introducing so-
called time allowances in the planning phase. Time allowances are additional times
allocated to the train- and passenger-related processes on top of the minimum process
times, called time supplements, or between processes to reduce the time dependency
between them, called buffer times. First, passengers want to travel fast so the goal
would be to have as minimum time supplements as possible. On the other hand, adding
some time supplements would increase trains running on time. In addition, adding
buffer times reduce possible delay propagation between trains. So, the interplay of
time allowances has a significant impact on the timetable quality.

We propose a two-stage model for finding stable and robust solutions to the periodic
TTP. The model is based on PESP and introduces the concept of stability-to-robustness.
The first stage aims at finding an optimal stable timetable structure that minimizes both
capacity utilization and journey times. To do so, a model for minimizing the cycle time
is developed. In the second stage, the objective is to find the optimal allocation of time
allowances so as to maximize the robustness for a given timetable structure. To this
aim, several objective functions are proposed. Additionally, we use a delay propagation
model to evaluate the obtained timetable.

Benefits of our two-stage model for solving SR-TTP are summarized as follows. The
stability-to-robustness model is the first macroscopic model that introduces stability
together with efficiency and robustness for periodic TTP. Second, a transformation be-
tween the minimal cycle time optimization model and the cycle periodicity formulation
is proposed. Third, we introduce new objective functions that build on the intermedi-
ate outcome of the model’s first stage to provide higher quality solutions. Fourth, more
promising cycle bases have been detected for our model. Fifth, we also showed that
a thorough analysis of model weight factors should be considered to generate the best
trade-off between efficiency and robustness. What is more, certain objective functions
tend to allow more flexibility that lead to generating significantly different solutions.
Finally, computational times were significantly smaller, which suggests that our two-
stage model may be successfully used on bigger instances.

The remainder of the paper is as follows. Section 5.2 reviews existing timetabling
and capacity estimation models. Section 5.3 describes the basic model for periodic
timetabling. In Section 5.4, we define the two-stage formulation for robust periodic
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TTP and give the connecting elements between the two optimization stages. In ad-
dition, several objective functions are proposed and the robustness evaluation model
is explained. Section 5.5 presents computational results on real-life instances in the
Netherlands. Finally, conclusions are given in Section 5.6.

5.2 Literature review

A timetable consists of event times such as arrival and departure times in stations and
processes between events like running, dwelling and transfer times. Process times also
include infrastructure constraints (i.e., headways) between events that guarantee safe
operations. In periodic timetabling, a cycle time T is given and all events are selected
in the interval between 0 and T .

For solving PESP, Schrijver and Steenbeek (1994) applied constraint programming to
find a feasible timetable, while Kümmling, Großmann, Nachtigall, Opitz, and Weiß
(2015) used SAT solvers to the same problem. In addition, local search heuristics
have been applied to improve timetable quality by using modified simplex modulo ap-
proaches like in Nachtigall and Opitz (2008) and Goerigk and Schöbel (2013). By
adding an objective function to the PESP formulation, the TTP can be solved using
mixed integer programming (MIP) techniques (Peeters, 2003). Kroon and Peeters
(2003) introduced a variable trip time model that considered lower and upper bounds
on running and dwell times instead of so far fixed ones. Liebchen (2008) presented the
first optimized railway timetable based on a PESP formulation in practice implemented
at Berlin Metro. The goal of the model was to minimize passenger waiting times
and reduces the number of rolling stock. Kroon, Peeters, Wagenaar, and Zuidwijk
(2013) extended the PESP formulation with flexible connections like passenger and
rolling stock dependencies. Borndörfer, Hoppmann, and Karbstein (2016b) introduced
a new pseudo-polynomial time separation algorithm for cycle inequalities. Pätzold and
Schöbel (2016) defined matching-based heuristic for solving PESP. In addition, a pe-
riodic TTP represents a strongly NP-hard problem (Nachtigall, 1993) while a robust
version is even harder to solve (Kroon et al., 2008). For integrating passengers in pe-
riodic timetabling problems we refer to M. Schmidt (2014), M. Schmidt and Schöbel
(2015), Robenek, Maknoon, Azadeh, Chen, and Bierlaire (2016), Borndörfer, Hopp-
mann, and Karbstein (2016a) and Gattermann, Großmann, Nachtigall, and Schöbel
(2016).

A timetable includes multiple performance indicators that has to be considered in the
design phase. Goverde and Hansen (2013) defined indicators like timetable efficiency,
stability and robustness. Timetable efficiency reflects the amount of time supplements
in the scheduled travel times (running, dwell and transfer times) which must be as
small as possible to provide short journey times and seamless connections. Timetable
stability is the ability of a timetable to absorb initial and primary delays, so that delayed
trains return to their scheduled train paths without rescheduling. According to Goverde
(2007) and Heidergott et al. (2014), network-level stability of a periodic timetable can
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be expressed as the minimum cycle time λ of the timetable. Thus, the timetable is
stable when the minimum cycle time is smaller then the given timetable cycle time
T . Even more, a timetable is more stable when the minimum cycle time is as small
as possible. The higher λ is, the smaller are the time allowances and hence the less
stable is the timetable. Timetable robustness is the ability of a timetable to withstand
design errors, parameter variations, and changing operational conditions. In the exist-
ing literature, efficiency has been most often considered and such models are referred
as to nominal TTP (Cacchiani & Toth, 2012). Robustness attracts increasing research,
while stability has been considered in just a few articles. Finally, all three indicators
have been considered only in Bešinović et al. (2016) and Goverde et al. (2016), whom
proposed an integrated iterative approach between microscopic and macroscopic mod-
els.

Bešinović et al. (2016) proposed a micro-macro approach that includes a macroscopic
timetabling model (with fixed minimum headways) and microscopic models that check
the feasibility and the stability of the timetable generated by the macro model. Due to
extending running times at the macroscopic level, some original minimum headways
could have become insufficient to guarantee a conflict-free run of trains. Then, for such
cases, the minimum headways are recomputed and the macroscopic model is run again.
In addition the microscopic models evaluated stability (as capacity occupation) and
proposed adaptations to process times for macroscopic model. The micro and macro
models communicate iteratively until no conflicts are found and the stability is under
required stability margins. Goverde et al. (2016) introduced a general performance-
based framework that also integrates models for ex-post improving energy-efficiency
of timetables.

To answer the first question of better infrastructure use, we consider the timetable sta-
bility in the timetable planning. Stability is often presented as an outcome of the infras-
tructure capacity occupation; however, it has only been used for evaluating timetables.
The idea of minimizing the cycle time for measuring stability was firstly introduced
by Bergmann (1975) for a single-track line. He proposed a mixed integer formulation
of a simplified periodic scheduling problem for a synthetic case study that considers
a single-track railway line with all stations equipped with sidings and homogeneous
fleet. Heydar, Petering, and Bergmann (2013) extended this model to tackle a single
track, unidirectional rail line that adheres to a cyclic timetable and considered two
types of trains. The objective was to minimize the capacity occupation and minimize
the total dwelling time of local trains at all stations. Sparing and Goverde (2013) and
Sparing (2016) developed an extension to the PESP model that minimizes the cycle
time and train running times which is applicable to both lines and networks. They
tested the model on a part of the Dutch railway network. Zhang and Nie (2016) fur-
ther expanded Sparing and Goverde (2013) by adding flexible overtaking constraints
and heuristics to speed up the computations. In addition, authors analysed the effect
of some timetable design parameters on the minimum cycle time. Petering, Heydar,
and Bergmann (2015) extended the model of Heydar et al. (2013) to allow selection of
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platform tracks in a station and schedule train overtakings. In our research, we extend
the approach of Sparing and Goverde (2013) and define a model for stable and robust
timetabling.

For solving a robust periodic TTP several approaches have been found in the liter-
ature such as stochastic programming, convex programming, recovery-to-optimality,
half-buffers (Peeters, 2003), delay resistance, passenger robustness, and flexible PESP
(FPESP). Kroon et al. (2008) used stochastic programming for modeling and solving a
robust periodic TTP. The model was used to modify a given periodic timetable to con-
struct an improved timetable by minor adjustments of event times. In particular, it was
used to redistribute time allowances to the processes in the original timetable so that
the average delay of the realizations of the timetables of the trains is minimized. The
authors described a stochastic optimization variant of PESP that incorporates stochas-
tic disturbances of the railway processes. The model is composed of two parts: a
timetabling part for determining the timetable (which shows many similarities with
PESP) and a simulation part for evaluating the robustness of the timetable under con-
struction. In order to keep the computation times at an acceptable level, the model fixes
the precedence constraints. Indeed, the aim is to keep the structure of the timetable as
in the input timetable and to optimally reallocate the time allowances, so that the re-
sulting timetable is more robust This formulation for robust periodic TTP lead to large
models which are time consuming to solve and thus, the model’s application has been
limited to small networks. More recently, Maróti (2016) proposed a more efficient
model for solving the same problem as in Kroon et al. (2008) by applying convex pro-
gramming and was able to obtain results for the complete Dutch network within one
minute.

Goerigk and Schöbel (2014) initially proposed a recovery-to-optimality concept for
improving robustness of non-periodic timetables. Their model uses predefined input
scenarios of disturbances U (called uncertainty set) and the original timetable is being
adjusted according to those. Goerigk (2015) extended an integer programming model
for periodic timetabling and gave a bi-criteria local search algorithm for large-scale
instances. His work is based on the concept of recovery-to-optimality. The model in-
tegrates two stages, it first computes an optimal solution for each disturbance scenario
l ∈U , and then solves a location problem to find an optimal solution for any scenario.
The author considered two minimization versions of the location problem, the max-
imum distance, which is equal to the center location problem, and sum of distances,
the median location problem. As concluded in the paper, this approach becomes eas-
ily computationally extensive and thus, inapplicable for real-life instances. Thus, a
heuristic approach is applied, which iteratively performs a local search for minimizing
travel time (maximizing efficiency) or maximizing robustness, depending whether a
minimum robustness rate is satisfied or not. The best solution is given after a given
number of iterations have been performed.

Peeters (2003) proposed an objective function for the PESP-based model that forces
buffer times to the middle of their lower and upper bound (’half-buffer’). A on periodic
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TTP, is limited to a given time period (cycle time). This would mean that having too
much buffer time between two periodic events in one period, i(T1) and j(T1) in period
T1, may result in too little buffer between j(T1) and i from the following period, i(T2).
He defined an additional variable that tracks the deviation from (u− l)/2 for all process
times and minimize the sum of such values.

Liebchen, Schachtebeck, Schöbel, Stiller, and Prigge (2010) introduced a model for
improving delay resistance of railway timetables. They assessed the delay resistance
of a timetable by evaluating it subject to several delay scenarios to which optimum
delay management was applied. The model was tested on real-world data of a part of
the German railway network and the computational results suggested that a significant
decrease of passenger delays can be obtained at a relatively small price of robustness,
i.e. by increasing the train travel times.

Sels et al. (2016) developed a PESP-based model for designing robust timetables while
minimizing the total expected passenger travel time. This model has been tested on the
complete Belgian railway network and provided a reduced waiting time of 3.8 % com-
pared to the existing timetable. In addition, a timetable evaluation showed improved
punctuality.

Caimi, Fuchsberger, Laumanns, and Schüpbach (2011) proposed an extension of the
PESP, the flexible periodic event scheduling problem (FPESP), in which intervals are
used instead of fixed event times. These intervals may be considered as a robustness
improvement. By applying FPESP, the output does not define a final timetable but an
input for finding a feasible timetable on a microscopic level, which may be used to
increase timetable robustness.

For non-periodic variants of the robust TTP, a few other approaches have been pro-
posed in the literature like light robustness (Fischetti & Monaci, 2009) or recovery
robustness (Liebchen et al., 2009) and heuristics based on the Lagrangian relaxation
(Cacchiani et al., 2012). A comprehensive review of nominal and robust versions of
TTPs is given in Cacchiani and Toth (2012). Note that all robust TTP are more complex
and therefore more computationally extensive compared to their nominal TPP coun-
terparts. Another stream of non-periodic timetabling includes modeling of passenger
demand and computing the optimal timetables that satisfy given demand. Examples of
such models are Barrena, Canca, Coelho, and Laporte (2014a); Barrena et al. (2014b).

In this paper, we give several contributions compared to the existing work on robust
periodic timetabling. First, we incorporate stability and robustness in a macroscopic
model for periodic TTP for the first time by introducing the two-stage stability-to-
robustness approach. Second, differently from models for improving robustness of an
existing timetable Goerigk (2015); Kroon et al. (2008); Maróti (2016), we focus on
developing a new timetable. Third, stability-related models like Petering et al. (2015)
and Heydar et al. (2013) do not generate a final timetable, but only a compressed one,
and thus, these are considered as capacity assessment models rather than timetabling
models. In addition, we use our model also for networks, while models in Heydar
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et al. (2013) and Petering et al. (2015) were developed only for lines. Sparing and
Goverde (2013) reached a final timetable just by proportionally extending all process
times. Fourth, in order to successfully link stability and robustness we develop a con-
nection between the two stages. Fifth, once the train orders are known, we are able
to define robustness more explicitly then in Peeters (2003) as we determine the neigh-
bouring arcs to include in the objective function. Differently from Kroon et al. (2008);
Maróti (2016) and Goerigk (2015) we maximize only buffers, while minimizing time
supplements. In this way, we get better suited timetables to current driver behaviors.

5.3 Problem description

Here we give the terminology used throughout the paper and define the problem formu-
lation for solving a periodic SR-TTP. The macroscopic timetabling approach is based
on a periodic event-activity network represented by a directed graph N = (E,A,T ),
which is associated with a set of train lines Q. A train line q ∈ Q defines a requested
periodic train service characterized by its origin and destination, stopping pattern, and
frequency within a given common timetable period T , referred as to scheduled cycle
time. In the periodic event-activity network N = (E,A,T ), the set of events E consists
of periodic arrival, departure and pass-through events for each train line in Q in each
station along its route. This means that if an event i is scheduled at time πi then it will
also occur at times πi+k ·T for k = 1,2, . . .. Therefore, for each event we determine the
event time in the basic period πi ∈ [0,T ). Each train line q ∈ Q consists of a sequence
of process times a = (i, j), where i and j are two consecutive events.

Set A represents process times (i, j) ∈ A, where i and j are two consecutive events and
it can interpret various rules and restrictions. Running times are the times needed for
a train to run between two timetabling points. A lower bound li j for the running time
represents the nominal running time, which is the minimum running time increased
by a certain percentage to satisfy stochastic train behavior. The upper bound ui j is the
maximum running time extension with respect to the passenger quality of service. The
set of running processes is denoted as Arun. Dwell times are the durations of a train stop
in a station. The minimum represent a time needed to board and alight the train, while
the upper bound ui j limits the waiting time for passengers. The set of dwell processes
is denoted as Adwell. A passenger connection is a transfer of passengers from a feeder
to a connecting train in a station. The minimum transfer time l defines the necessary
time to alight from the first train, walk to the departure platform, and board the second
train. A set of connection processes is denoted as Aconn. Minimum headway times li j

represent infrastructure capacity constraints between two trains. As such it reflects the
railway safety system and may be accurately computed by using models described in
Bešinović et al. (2017). The upper bound ui j = T − li j guarantees a minimum headway
between trains in the reverse order. The set of minimum headways is denoted as Ainfra.
In case that a train line q has a frequency greater than one, fq > 1, we introduce fq

copies of such a train line (Siebert & Goerigk, 2013). Departure and arrival events are
additionally connected by regularity activities Areg, whose lower and upper bounds are
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set to T/ fq . Figure 5.1 shows an example of arrival and departure events for two trains
in a station. Periodic constraints are given in the form [li j,ui j]T , where lower and upper
bounds, li j and ui j, hold for the cycle time T .

Figure 5.1: An extract of a periodic event-activity network for two trains stopping in
a station with running (dashed line), dwell (full), transfer (dotted) and headway (dash-
dotted) constraints

The aim of PESP is finding values πi for all events i ∈ E that satisfy constraints:

π j−πi + zi jT ∈ [li j,ui j].

The variable zi j represents a modulo parameter that determines the order of events i and
j within a period T for given bounds [li j,ui j] and equals 1 if π j < πi or 0, otherwise.
This binary property of zi j holds assuming li j ≤ ui j, 0≤ li j < T and 0≤ ui j− li j < T .

Originally, PESP is a feasibility problem, which can be extended with a linear objective
function and then solved by a mixed integer programming (MIP) formulation. Some
of the choices for the optimization function are minimization of the total passenger
journey time, minimization of required train units or maximization of the reliability
of passenger connections. Peeters (2003) gives a detailed description on modeling
objectives. In this paper, we adopt the common function of minimizing total journey
time and define the nominal PESP, as:

(PESP−N) Minimize ∑
(i, j)∈A

τi j(π j−πi + zi jT ) (5.1)

subject to

li j ≤ π j−πi + zi jT ≤ ui j, ∀(i, j) ∈ A (5.2)

0≤ πi < T, ∀i ∈ E (5.3)

zi j ∈ {0,1}, ∀(i, j) ∈ A. (5.4)

Here, τi j equals 0 if (i, j) ∈ Ainfra, and 1 otherwise. As already stated, objective func-
tion (5.1) is the minimization of the total journey times. Constraint (5.2) defines bounds
on the process times. Constraint (5.3) gives the periodicity of the events and sched-
ules them in the interval [0,T ). Constraint (5.4) defines modulo operation as a binary
decision variable. In the remainder of the paper, we refer to the original PESP with
objective (5.1) as to the nominal timetable model PESP-N and the cycle time T as
nominal cycle time.
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Time allowances are additional times allocated to the processes on top of the minimum
process times or minimum headway times. We differentiate between time supplements
and buffer times. A time supplement is assigned to a single train process like running or
dwelling to reduce possible stochastic behaviour of a given train. These variations may
be due to a changed rolling stock, weather conditions or higher demand of passengers.
Buffer times are inserted between trains, i.e., empty slots, to reduce the time depen-
dency between them and therefore reduce possible delay propagation from an initially
delayed train to other ones. In terms of arcs A in a periodic event-activity network,
we treat differently running, dwelling and connection processes, Arun∪Adwell∪Aconn

and headways Ainfra by assigning them different time allowances. In particular, time
supplements are given to process arcs, while buffer times to headway arcs. Figure 5.3
shows the distinction between time supplements and buffer times.
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Figure 5.2: An example of a running time supplement for train r and a buffer time
between trains r and r′. Subscripts min, sched and max define nominal, scheduled and
maximum running times, respectively; hmin is the minimum headway between r and
r′.

The scheduled cycle time (or timetable period) T defines a predetermined scheduled
cycle time and in railway terms is usually 30, 60 or 120 minutes. The minimum cycle
time is the shortest time duration in which all the events are feasible, meaning that all
dependency constraints such as minimum running times and minimum headway times
required by the infrastructure are respected.

The Stable and Robust periodic TTP can now be formulated as follows. Given are
the requested train lines, periodic event-activity network and lower and upper bounds
for running and dwell times, headways, and transfer times. The goal is to find a train
schedule that is robust to minor delays during operations and at the same time provides
efficient services and uses the infrastructure capacity minimally.

5.4 Two-stage model formulation
We propose the new concept stability-to-robustness which integrates a two-stage model
for finding robust solutions of the periodic TTP. The first stage aims at finding an op-
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timal stable timetable structure, i.e., the train orders that minimize the cycle time and
thus allow maximimal buffer time for stability (Section 5.4.1). The obtained sched-
uled activities from Stage 1 are used as input to Stage 2 which determines an optimal
allocation of time allowances within the timetable (Section 5.4.2). In Section 5.4.3 we
discuss different objective functions considered in Stage 2. Finally, an optimization
model for the robustness evaluation is deployed (Section 5.4.4).

To improve robustness, we focus on the interplay of time supplements and buffer times.
Commonly, a certain amount of time supplement is preassigned to train running and
dwell times. Thus, the corresponding lower bounds in timetabling models represent
technical minimum running (dwell) times extended by some minimum time supple-
ment that is necessary to withstand variations in train behavior. It is known that the
minimum cycle time and thus the infrastructure capacity use depends on timetable
structure (Hansen & Pachl, 2014). For example, assume a unidirectional track and two
types of trains, slow and fast, both with frequency f = 3 trains per hour. These trains
may be scheduled bundled such as three slow trains and then three fast ones; and such
a timetable consumes the least infrastructure capacity. However, for passenger conve-
nience, this should be avoided and trains of different types should run interchangeably
(Figure 5.3). This problem becomes more difficult for more complex networks with
different types of trains and various frequencies and stop patterns.
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Figure 5.3: Track capacity occupation depending on train speed and train order: (a)
maximally heterogeneous and (b) maximally bundled

Stage 1 allocates only additional time supplements that provide a better consumption
of the railway infrastructure and are necessary to make all events feasible. Hence, we
may consider these time supplements as beneficial (for the operators). Afterwards, in
Stage 2 the aim is to increase robustness of a timetable by smart allocation of buffer
times while keeping time supplements intact. Assuming that the initially allocated time
supplements are sufficient to compensate variations caused by a single train, we accept
that further addition of time supplements would be unfavorable for both passengers and
operators. First, excessive running times are considered as reduced travel efficiency
meaning that passengers want to travel as fast as possible. Second, train drivers do
not always exploit existing time supplements to arrive on time in a station. On the
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contrary, they tend to run faster which may result in arriving (or passing) too early a
certain timetable point and catching up with the preceding train causing an unnecessary
conflict and resulting braking and possible waiting in rear of a red signal (De Goffau,
2013). Even more, such early trains tend to be late in arriving at the terminal stations
(Cerreto, Nielsen, Harrod, & Nielsen, 2016). Then such a train consumes even more
energy and time, and thus also infrastructure capacity. In order to prevent this issue,
the goal is to minimize allocation of further time supplements and introduce them only
when they significantly improve the timetable robustness.

5.4.1 Finding an optimal stable timetable structure

The first stage aims at finding an optimal stable timetable structure, that is, the train
orders that minimize infrastructure capacity use and thus maximize buffer time for sta-
bility. The performance of the timetable may be evaluated by determining its (network)
minimum cycle time. The minimum cycle time is the shortest time duration in which all
the events scheduled in the timetable are feasible for all precedence constraints such
as minimum running times and minimum headway times required by the infrastruc-
ture (Goverde, 2010). In other words, the minimum cycle time represents the network
capacity occupation while the scheduled event times within this model reflect a com-
pressed timetable. We denote minimum cycle time as λ. It is easy to understand that if
a train schedule uses less time on infrastructure resources, then there is more remaining
time allowances to be distributed among the activities to increase the robustness of the
timetable. Therefore, the goal of the first stage is to find the optimal stable timetable
structure that consumes the minimal infrastructure capacity and as such corresponds
to minimizing the cycle time. The difference between the minimum and scheduled
cycle time defines the available time allowances on the critical circuit (considered in
Stage 2). Therefore, the output of this model is referred to as the most stable timetable
structure, i.e., the structure that uses the infrastructure in the optimal way and therefore
leaves the most time allowances. The problem of finding the optimal stable timetable
structure is formulated by taking the cycle time T as variable, and then solving the
problem to minimize the cycle time λ. In addition, we use minimization of journey
times as a secondary objective term with a small weight α to prevent an excessive ex-
tension of journey times. The new MILP formulation of the first stage problem is then
the following:

(PESP−λ) Minimize λ+α ∑
(i, j)∈A

τi j(π j−πi + zi jT ) (5.5)

subject to

li j ≤ π j−πi + zi jλ≤ ui j, ∀(i, j) ∈ A (5.6)

0≤ πi < λ, ∀i ∈ E (5.7)

zi j ∈ {0,1}, ∀(i, j) ∈ A (5.8)

0 < λ≤ λmax. (5.9)
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The objective function (5.5) is minimizing the cycle time and total journey times. Con-
straint (5.6) defines bounds on the process times. Constraint (5.7) sets the events in a
periodic interval [0,λ). Constraint (5.8) defines the modulo parameter as an integer
decision variable. Constraint (5.9) defines λ to be strictly positive and smaller than a
given upper bound λmax. In order to preserve Constraint (5.8) it should hold 0≤ li j < λ

and 0 ≤ ui j− li j < λ. If this is not the case, additional dummy nodes should be mod-
eled as in Sparing and Goverde (2013). In the remainder of the paper, we refer to this
model as PESP-λ.

Since the scheduled cycle time T from (5.1) is substituted with a decision variable λ,
the constraint (5.6) becomes nonlinear because of the nonlinear terms zi jλ. This can be
linearized by introducing new variables yi j = zi jλ and the following set of constraints
(Sparing & Goverde, 2013):

0≤ yi j ≤ λ (5.10)

yi j ≥ λ−M(1− zi j) (5.11)

yi j ≤Mzi j (5.12)

Here, M is a suitable upper bound for the objective value λ and it is defined by solving
an original PESP formulation and finding a feasible solution to given constraints and
fixed T . When a feasible solution exists for T , then M = T . In addition, an upper
bound on λ is set to T , λmax = T , as it is proven that λ ≤ T by finding a feasible
solution. Constraints (5.10)-(5.12) allow exactly the values of 0 or λ to yi j, depending
on the modulo value zi j. When zi j equals 0, yi j is also 0, while zi j equals 1, yi j takes
λ. Note that by solving PESP-λ, it may happen that λ becomes bigger than a desired
value of T . Then, the timetable is structurally unstable (Goverde, 2007, 2010). If that
is the case, we first relax lower and upper bounds (see Bešinović et al. (2017)).

The output of PESP-λ is the minimum cycle time λ and (π,z), where π are the event
times for all i ∈ E and z are the modulo parameters for each arc (i, j) ∈ A. The associ-
ated scheduled activity times can be directly computed as:

ãi j = π j−πi + zi jλ, (i, j) ∈ Arun∪Adwell. (5.13)

The obtained minimal scheduled activity times ãi j provide the optimal cycle time and
as such should be maintained as close as possible when distributing buffer times in
Stage 2. In particular, Stage 1 fixes the train orders and minimum passenger times.

5.4.2 Optimal distribution of time allowances

In Stage 2, the aim is the optimal allocation of time allowances so as to maximize the
robustness. The goal is to increase the time separation between trains while preventing
the extension of running, dwell or connection times. In other words, we maximize
buffer times, while minimizing extra time supplements.
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The train orders and available time allowances are known after solving PESP-λ, and
the focus is on the problem of the optimal allocation of the time allowances within the
given timetable structure. Here we exploit an alternative MILP formulation of PESP
which solves the problem using activity times ai j of arcs (i, j) ∈ A instead of solving
for events i ∈ E and event times πi where ai j presents the periodic difference between
event times π j and πi as ai j = π j−πi+ zi jT . Such a formulation is known as the cycle
periodicity formulation (CPF) (Peeters, 2003).

In the CPF, the cycles in the periodic event-activity network represent the essential
graph structure for defining a feasible solution. For a cycle c an arc is assigned with a
variable di j equal to 1 if ai j is a forward arc and di j = −1 if ai j is a backward arc. A
cycle basis of a graph is a family of cycles that spans all cycles of the graph.

Let N = (E,A,T, l,u) be a periodic event-activity network representing a PESP in-
stance, and a ∈Q|A|. Then for every cycle c in N, we have

∑
(i, j)∈c

di jai j = pcT, pc ∈ Z, (5.14)

and li j ≤ ai j ≤ ui j. (5.15)

In other words, the sum of all arcs ai j corresponding to periodic events πi and π j along
a cycle must be equal to an integral multiple of T . Here, pc is called cyclic periodicity
integer variable.

The CPF model may use various cycle bases in terms of a number of cycles and their
structure. Yet, it is sufficient to consider fundamental cycles from which all other
cycles may be obtained (Liebchen & Peeters, 2009). We restrict ourselves to a strongly
connected graph. The necessary number of cycles is |C| = m− n+ 1, where m = |A|
and n = |E|. Different approaches have been considered for constructing cycle bases.
Liebchen, Proksch, and Wagner (2008) reported that the cycle basis generated over
a minimum spanning tree (MST) gives good overall results. Thus, we adopt their
approach and generate a cycle basis C that consists of fundamental cycles of a MST
with respect to the span between maximum and minimum process times, ui j− li j.

Let d−i j equal -1 if (i, j) is a backward arc, and d−i j = 0 otherwise. Likewise, d+
i j equals

1 if (i, j) is a forward arc, and d+
i j = 0 otherwise.

Proposition 1 (Odijk, 1996) Let N = (E,A,T, l,u) be a periodic event-activity net-
work representing a PESP instance. Then for any cycle c in C, the following inequali-
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ties hold:

lc ≤ pc ≤ uc (5.16)

with lc =

⌈
1
T

(
∑

(i, j)∈c
d−i j ui j + ∑

(i, j)∈c
d+

i j li j

)⌉
(5.17)

and uc =

⌊
1
T

(
∑

(i, j)∈c
d−i j li j + ∑

(i, j)∈c
d+

i j ui j

)⌋
. (5.18)

The search space of CPF may be reduced considerably by setting appropriate bounds
for pc. The lower bound (5.17) on a cycle lc is computed by summing the maximum
time allowances of backward arcs and the minimum time allowances of forward arcs.
Similarly, the upper bound (5.18) is the sum of minimum times of backward arcs and
maximum time allowances of forward arcs.

Denote by si j the time allowance of (i, j) ∈ A. Naturally, si j takes only positive values,
si j ≥ 0, as we allow only realizable process times, meaning that ai j ≥ li j for all (i, j) ∈
A. The relation between the scheduled process time ai j and the time allowance si j is
known and defined as ai j = li j + si j + zi jT . Hence, we have si j = ai j− li j− zi jT ≥ 0.
This allows us to focus on the time allowances s and we rewrite (5.14) as

∑
(i, j)∈c

di jsi j− pcT =− ∑
(i, j)∈c

di jli j. (5.19)

The corresponding upper bound on the time allowances is defined as the difference
between upper and lower bound for ai j. So, si j ∈ [0,ui j− li j]. The CPF formulation
for solving optimal times allowances s = [si j] reads as follows:

(CPF− s) Maximise f (s) (5.20)

subject to

∑
(i, j)∈c

di jsi j− pcT =− ∑
(i, j)∈c

di jli j, ∀c ∈C (5.21)

lc ≤ pc ≤ uc, ∀c ∈C (5.22)

si j ∈ [0,ui j− li j], ∀(i, j) ∈ A (5.23)

pc ∈ Z, ∀c ∈C. (5.24)

The objective function (5.20) is maximizing a given function of s that will be defined
in Section 5.4.3. Constraint (5.21) bounds the total time allowance on the fundamental
cycles. Constraints (5.22) define bounds on pc as presented by Proposition 1. Con-
straint (5.23) defines bounds on time allowances si j. In the remainder of the paper we
refer to the problem of optimizing the allocation of time allowances as CPF-s. Using
the timetable structure from Stage 1, we define several improvements to the CPF-s for-



Chapter 5. A stability-to-robustness approach to robust timetabling 107

mulation. Recall that time supplements are assigned to process arcs while buffer times
to headway arcs.

Improvement 1 Given an optimal stable timetable structure from PESP-λ, a tighter
formulation of constraints (5.21) for processes may be obtained by substituting lower
bounds li j with scheduled process times ãi j for (i, j) ∈ A\Ainfra.

In Stage 2, the goal is to maintain the running times from Stage 1, meaning that min-
imal scheduled process times ãi j are taken as an input to be preserved or eventually
increased minimally. In this way, the optimal minimum cycle time λ is maintained.
Note that this improvement is not applied to buffer times, as we want them to be as
flexible as possible to achieve a better timetable robustness.

As a consequence of Improvement 1, we also get the following.

Improvement 2 Given an optimal stable timetable structure from PESP-λ, then (5.23)
can be replaced by si j ∈ [0,ui j− ãi j] for (i, j) ∈ A\Ainfra.

Here, the upper bound (5.23) is improved for every ãi j > li j, (i, j) ∈ A \Ainfra, and
remains unchanged otherwise. One may notice that the amount of time allowances for
a critical circuit equals T −λ while for other (non-critical) circuit it is always greater
than T −λ. From Stage 1, all cycles in C have the following property:(

∑
(i, j)∈c

di jãi j

)
mod λ = 0. (5.25)

Since the train order from Stage 1 defines the optimal stable timetable structure, we
need to fix event orders from Stage 1 to Stage 2. To do so, we first introduce the relation
between modulo parameters zi j and cyclic periodicity integer variable pc. The modulo
parameters zi j and cyclic periodicity integer variable pc for a cycle c are related by

pc = ∑
(i, j)∈c

di jzi j,

meaning that pc equals the directed sum of modulo values.

In order to fix train orders from Stage 1, the modulo parameters zi j for all (i, j) ∈ A are
fixed and given in Stage 2 as follows.

Improvement 3 Given an optimal stable timetable structure (π, z̃) from PESP-λ where
z defines event orders, then cyclic periodicity integer variables pc are computed and
fixed as:

pc = ∑
(i, j)∈c

di j z̃i j, ∀c ∈C.
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According to Nachtigall (1999) and Peeters (2003), this constraint secures the se-
quence of events in the cycle. Therefore, we use this proposition to fix the order of
events from Stage 1 to Stage 2 and this also fixes integer variables in CPF-λ-s. Note
that Improvement 3 relaxes CPF to the linear programming (LP) formulation, which
renders the model to be easily solvable.

In order to further speed up the model’s computation time, we introduce new cycle
bases by the MST approach and apply different edge weights. In particular, we exploit
scheduled process times as well as lower and upper bounds to generate different MSTs.

Improvement 4 We use the timetable structure obtained in Stage 1 and adapt sched-
uled activity times ãi j as graph weights for constructing fundamental cycle bases. New
cycle bases X are constructed:

• Xã: MST subject to arc weights according to the minimally scheduled activity
times ãi j

• Xl: MST subject to weights li j

• Xλl: MST subject to weights λ− li j

• Xλã: MST subject to weights λ− ãi j

• Xãl: MST subject to weights (ãi j− li j)

• Xλãl: MST subject to weights λ− (ãi j− li j)

We generated six new cycle bases with different characteristics, and the task is to
determine the preferable cycle basis (see Section 6.5.2).

Finally, the linear programming (LP) model of the CPF in Stage 2 used for the optimal
distribution of time allowances consists of solving the following:

(CPF−λ− s) Minimize f (s) (5.26)

subject to

∑
(i, j)∈c

di jsi j = pcT − ∑
(i, j)∈c

di jai j, ∀c ∈ X (5.27)

pc = ∑
(i, j)∈c

di j z̃i j, ∀c ∈ X (5.28)

si j ∈ [0,ui j− ãi j], ∀(i, j) ∈ A\Ainfra (5.29)

si j ∈ [0,ui j− li j], ∀(i, j) ∈ Ainfra (5.30)

Note that constraints (5.27)-(5.29) represent improved variants of (5.21)-(5.23) by ex-
ploiting the Improvements. Also, a new cycle basis is used, where X represents one
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from Improvement 4. The procedure to obtain back periodic event times πi is as fol-
lows. Given time allowances si j from CPF-λ-s and the MST X . Choose an arbitrary
event r ∈ E and set πr = 0. Assuming N is a connected graph, for all other events i∈ E,
we take the undirected path Pri in X from r to i and set

πi =

(
∑

(i, j)∈Pri

di j(li j + si j)

)
mod T.

5.4.3 Objective functions for Stage 2

Distributing time allowances is a complex task, maybe not computationally but for
sure tactically and it often does not depend on one goal but on multiple ones. On one
hand, we want to run trains on time and to ensure that a certain amount of time supple-
ment is assigned to minimum process times. Second, big extensions of running and/or
dwell times should be avoided as it would lead to inefficient solutions and would be
negatively perceived by passengers. In addition, we aim to prevent trains being sched-
uled too closely in time which will help reducing the occurrence of delays propagating
between consecutive trains. Note that certain time supplements have been allocated
already in Stage 1 to obtain the optimal stable timetable structure. Therefore, in the
second stage, the goal is to maintain them as much as possible, but distribute buffer
times in a clever way. For this purpose, we introduce different weights for buffer times
and time supplements, wb and ws, respectively. Thus, we consider the second stage as
a bi-objective problem where wb takes a positive and ws takes a negative value. The
chosen objective function for (5.26) may have a significant effect on the robustness and
efficiency of the final solution and thus, on its quality. Therefore, we propose and test
several objective functions for solving CPF-λ-s in Stage 2.

In Stage 1 of the stability-to-robustness approach, the PESP-λ model used all head-
way constraints between each pair of train lines in order to satisfy timetable feasibility.
However, in Stage 2, adding buffer times to all headway arcs does not necessarily in-
fluence the timetable robustness. First, adding more buffer between two trains already
significantly separated in time does not add on the robustness. Second, adding buffer
between two trains that are not consecutive (i.e., not running exclusively after each
other) may also be unprofitable. Thus, we want to focus on allocating buffer between
two consecutive trains, and stretch away such neighboring trains (i.e., their correspond-
ing events) in order to allow more flexibility in reducing consecutive delays, that is
providing better timetable robustness. To do this, we create a set of essential headway
arcs Ĥ, where Ĥ ⊂ Ainfra, that would benefit the most from extra buffer time. This
makes our objective functions more compact and explicit by targeting the subset of
right headway arcs.

Set Ĥ is determined using the procedure explained in Algorithm 7. First, the procedure
selects headway arcs (and corresponding events) that belong to a single station, which
gives a subset Ak with arcs (i, j) ∈ Ainfra that have at least events i or j occur in station
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Algorithm 7 Determine essential headways
Ĥ =∅
For k ∈ K

Ak←{(i, j)|(i ∈ Ek∨ j ∈ Ek)∧ (i, j) ∈ Ainfra}
Make an undirected graph (Ak→ Āk) with edges ei j = min(ãi j,T − ã ji)
Find a minimum spanning forest over Āk: F = MSF(Āk)
Assign all forest arcs from F to essential headways: Ĥ← F
For non-forest arcs (i, j) ∈ Ak \F

if length of ei j < ShortestPathi j in F
Ĥ← (i, j)

EndIf
EndFor

EndFor

k. All events belonging to station k are included in set Ek.

Second, we assume an edge for each arc (i, j) in Ak and assign the following weight to
each edge ei j = min(ãi j,λ− ãi j). This has been done to determine the relevant (time)
dependencies between events i and j and translate them in a single scheduling period
between 0 and T . The minimum spanning forest (MSF) Fk is determined for station k.
The MSF represents a set of minimum spanning trees, meaning that multiple connected
components may exist in Ak. Note that it is common to expect multiple MSTs in a
station as a result of physically separated infrastructure that creates independent routes
in stations for (groups of) trains. For example, trains running in opposite directions
through a station often do not share infrastructure and thus operate independently. All
forest arcs (i, j) ∈ Fk are assigned to essential headways Ĥ.

In addition, it may occur that there exists a shorter (i.e., more restrictive) edge between
i and j in Ak but which is not in F , i.e., a non-forest edge. Check the example of five
events in Figure 5.4. In order to include such arcs in the essential headways, we look
at all non-forest arcs. If a non-forest arc (i, j) has a weight smaller than the shortest
path (SP) between i and j using only MSF arcs, then such arc (i, j) is also included
in Ĥ. Therefore, in order to increase timetable robustness, we maximize buffer times
over arcs in Ĥ.

Consider five trains running through a station with passing event times π1 = 0, π2 = 7,
π3 = 5, π4 = 11 and π5 = 19 minutes, respectively, the minimum headways between
each two events equal 1 minute (in total, 6 arcs), the optimal minimum cycle time is λ=

28 minutes and the cycle time is T = 30 minutes (Figure 5.4). Note that if process time
ai j in a half period is over λ/2 = 15 minutes, then ei j assigns λ− ãi j. For example, the
edge (1,5) weighs e15 =min(19,28−19)= 9. The corresponding MSF includes edges
{(1,3),(2,3),(2,4),(4,5)} and evaluates to 18. Comparing the remaining non-forest
edges {(1,2),(3,4),(3,5),(1,5)}with the corresponding shortest paths, it is concluded
that only edge (1,5) has a smaller weight than its SP, and thus this edge is also added
to Ĥ. Finally, Ĥ = {(1,3),(2,3),(3,4),(4,5),(1,5)} and the corresponding arcs are
taken in the objective functions for CPF-λ-s. We now propose several objectives. First,
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Figure 5.4: An extract of a periodic event-activity network for five events a station
with headways (dash-dotted) constraints. Scheduled events are given in circles, the
corresponding event times are attached to circles, and edges are accompanied with its
weights. Bold edges represent the minimum spanning tree.

MaxBuffer is the function that maximizes a weighted sum of headway buffers while
minimizing the passenger-related process times,

Maximize ∑
(i, j)∈Ĥ∪Arun∪Adwell∪Aconn

wi jsi j, (5.31)

where wi j is equal to wb if ai j ∈ Ĥ and equal to ws otherwise. Note that wb > 0
and ws < 0. This objective function focuses on obtaining linear time allowances. This
means that there is no distinction between smaller and bigger time supplements, instead
all are treated as equally important. Thus, MaxBuffer tends to unevenly distribute
buffer times assigning big buffers to a few activities while nothing to the others.

In general, having arcs (i, j) ∈ Ainfra of the length in the middle of the time window
[li j,ui j] would be the most beneficial for timetable robustness as train events would be
separated as much as possible. We apply this idea of spreading trains in time. Let us
use essential headway arcs in Ĥ. We define the parameter mi j as

mi j =
ui j− li j

2
,

similarly as in Peeters (2003). We also introduce a new variable βi j as the difference
between buffer times si j ∈ Ĥ and parameter mi j, βi j = si j−mi j. Variable βi j may take
the both bigger and smaller values than mi j and thus, the objective is to minimize the
sum of |βi j|. In order to preserve |βi j| linear, two new constraints are added for all
(i, j) ∈ Ĥ:

βi j ≥ si j−mi j,

βi j ≥ mi j− si j.
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and the corresponding objective is defined as

Minimize ∑
(i, j)∈Ĥ

βi j.

This objective function forces buffer times si j ∈ Ĥ toward the middle of the time win-
dow mi j with window bounds li j and ui j and thus dividing corresponding events as
much as possible. Due to the proposed bi-objective function that maximizes both ro-
bustness and efficiency, we introduce the objective MaxHalfBuffer as

Minimize ∑
(i, j)∈Ĥ

βi j− ∑
(i, j)∈Arun∪Adwell∪Aconn

wi jsi j. (5.32)

During the second stage optimization, the resulting timetable may have a high value of
the objective value, such as the total sum of buffer times, but it may still have processes
with no buffer time allocated. For example, many headways receive big buffer times,
while a certain number of them receives no buffer times at all. Therefore, to encourage
allocating buffers to all processes, we introduce the objective function MaxMin that
maximizes the minimum value of buffer times

Maximize min
(i, j)∈Ĥ

si j. (5.33)

The objective function (5.33) can be reformulated to a standard maximization linear
program by introducing a new variable t as

Maximize t (5.34)

subject to
t ≤ si j, ∀(i, j) ∈ Ĥ. (5.35)

Therefore, MaxMin is accommodated with a second objective of minimizing time sup-
plements, referred to as MaxMin+.

Maximize min
(i, j)∈Ĥ

si j + ∑
(i, j)∈Arun∪Adwell∪Aconn

wi jsi j. (5.36)

Objective (5.36) is modified in a same way as (5.33). Setting the objective over Ĥ
is without loss of generality as to the headway arcs that are in Ainfra \ Ĥ since the
corresponding buffer times are always at least equal (but usually bigger than) to the
ones in Ĥ. Thus, we may exclude them from the objective function.

Note that only MaxMin is a single objective function, while all other are bi-objective
that maximize buffer times and minimize time supplements. Also, defining objective
functions over essential headway and not over all possible ones is an added benefit of
a two-stage stability-to-robustness approach. This was not possible to define in single-
stage models (e.g., Caimi, Fuchsberger, Laumanns, and Schüpbach (2011); Liebchen
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(2008); Peeters (2003)), since the order was not defined in advance.

5.4.4 Robustness evaluation model

We use a delay propagation model to evaluate the obtained timetable. The robustness
evaluation model is defined as an optimization model that aims at minimizing the sum
of all delays for a given set of disturbance scenarios. The objective is to minimize the
average cumulative delay from the network over all delay scenarios. We consider a
time horizon over H̄ hours in order to capture the propagation over a longer period of
time. In transportation networks with dense traffic, it may commonly happen that a
train from one hour causes a delay to a following train in a next period. In the delay
propagation model, we assume a train order to be fixed as is in the planned timetable,
so no reordering measures within station areas are taken into account.

For modelling the delay propagation, we use the formulation of the precedence con-
straints:

π j−πi ≥ li j (5.37)

where πi and π j are the fixed scheduled event times from the optimization and li j is
the minimum process time over arc (i, j). The objective is to minimize the cumulative
delay over a given network. Depending on the size and the distribution of the distur-
bance input, it may be partially or totally compensated within the time horizon. Let
bi j be fixed binary parameters from two-stage optimization defining whether a process
(i, j) crosses the hour. Thus, bi j equals 0 if πi ≤ π j, and 1 otherwise. The robust-
ness evaluation model is implemented as a Monte Carlo simulation of R replications
over an optimization model that aims at minimizing the sum of all delays for a given
disturbance scenario δ(r) in replication r:

D(r) = Minimize ∑
i∈V

∑
h∈H

Di(h) (5.38)

subject to

π
(r)
j (h+bi j)−π

(r)
i (h)≥ li j +δ

(r)
i j (h), ∀(i, j) ∈ E,∀h ∈ H, (5.39)

π
(r)
i (h)≥ πi +hT, ∀i ∈V,∀h ∈ H, (5.40)

π
(r)
i (h)−πi−hT ≤ Di(h), ∀i ∈V,∀h ∈ H (5.41)

Here, H = {1, . . . , H̄} and π
(r)
i (h) defines a simulated event time for event i in hour h

and realization r with respect to the input disturbances. Constraint (5.39) guarantees
that the precedence constraints are satisfied for the minimum process times plus a
disturbance δ

(r)
i j (h) in the h-th hour. Constraint (5.40) satisfies the market needs that

a train may not depart earlier than scheduled in the h-th hour. Finally, (5.41) defines
all delay variables Di(h) as non-negative values. Given a timetable output from CPF-
λ-s, the robustness evaluation model tests it against a large set of R replications of
disturbances, one at a time, collecting the information on the value of the objective
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function and providing the average cumulative delay

D̄ =
1
R

R

∑
r=1

D(r)

as a quality measure of the timetable robustness.

5.5 Experimental results

5.5.1 Case scenarios

We illustrate the benefits of the two-stage stability-to-robustness approach for design-
ing stable and robust periodic timetables on three highly utilized parts of the network
in the Netherlands. Figure 5.5 gives a graphical representation of the considered net-
works. The first considered network N1 is adopted from Kroon, Huisman, and Maróti
(2014) and consists of 6 major stations and is served by 12 passenger and one freight
train line. The nominal timetable period is T = 60 minutes.

Figure 5.5: Considered networks: N1, N2 and N3

The second network N2 is a central part of the Dutch railway network (Bešinović et
al., 2016), consisting of the railway network bounded by the four main stations Utrecht
(Ut), Eindhoven (Ehv), Tilburg (Tb) and Nijmegen (Nm), with a fifth main station s-
Hertogenbosch (Ht) in the middle and 20 additional smaller stations and stops. Four
corridors connect Ht to the other main stations. The train line plan consists of four
intercity lines and six local train lines with a frequency of two trains per hour each.

The third network N3 is more complex and includes a bigger portion of the Dutch rail-
way network, called Randstad area, which represents a third of the complete national
network. We consider only IC train lines in this network. Table 5.1 gives the overview
on the characteristics of the used networks like the number of train lines (Q), stations
(K), events (E) and processes (A) (i.e., total, run, dwell and headways) as well as av-
erage nominal running times (Lrun), dwell times (Ldwell), average minimum journey
times over train lines (av minJT) and minimum headway times (Linfra).
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The scheduled cycle time is 3600 seconds (i.e., 1 hour). For the first two networks, all
lines have a frequency of two trains per hour. Hence, it is possible to consider only
one train of each train line and a half timetable period, which is T/2 = 1800 seconds.
After the timetable is generated for T/2, it can be duplicated w.l.o.g. in order to obtain
services for the complete hour.

Some of the timetabling parameters are given in the following. Lower bounds of run-
ning times, defined as nominal running times, are equal to the minimum running times
increased by a minimum allowed time supplements of 5%. This is a common value for
planning purposes that is needed to compensate for uncertain train driving behavior.
The upper bounds represent 30% increment from the minimum running times, which
reflects the commercial need of a train operating company. Dwell times represent the
required times to board/alight and are accepted somewhat bigger than the technical
minimum to passengers convenience. Passenger connection times are computed in
a similar fashion. Usually, a train operating company defines norms for a technical
minimum dwell and passenger connection times. The minimum passenger connection
times is assumed 4 minutes. After initial experiments, the weights of time supplements
the the secondary objective in PESP-λ are set to ws = 0.0001; and weights of buffer
times and time supplements in CPF-λ-s are set to wb = 0.1 and ws =−1, respectively,
unless stated otherwise. In addition, to scale the two objectives in MaxMin+, being
minimal buffer time and time allowances, we used the multiplication factor of 107 for
the former.

We implemented the two-stage model in Matlab using the Yalmip toolbox (Löfberg,
2004) and the commercial solver Gurobi version 6.0.2. All computations have been
evaluated using an Intel i7 PC with 2.8 GHz and 8GB RAM. The reported computation
times represent the average over 30 repeated runs of each model. We also set the time
limit on the computation time to 1800 s and in case that an optimal solution is not
achieved, we report the optimality gap.

Table 5.1: Network characteristics
Net |Q| |K| |E| |A| |Arun| |Adwell| |Ainfra| Lrun Ldwell av minJT Linfra
N1 14 6 56 97 34 8 51 1084 60 795 181
N2 20 14 152 592 108 24 449 528 49 384 90
N3 74 86 1116 7896 834 208 6854 125 51 110 180

The robustness of the produced timetables is evaluated using the robustness evaluation
model (Section 5.4.4). The simulation setup consists of the following input: distur-
bances of process times are modeled according to an Exponential distribution with
distribution parameter ρ, the simulation horizon is H̄ = 4 hours, and the number of
replications equals R = 30. Parameter ρ represents the percentage of the minimum
process time (e.g., run, dwell) and defined as ρ = µ ·ai j. Parameter µ varies from 0 to
10 % of the minimum process times. Note that similar distributions have been used at
Netherlands Railways (NS) (Maróti, 2016). From the formulation in Section 5.4.4 can
be seen that maximizing the robustness equals minimizing the cumulative delay. Thus,
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we report the average cumulative delay in the experiments. In this section, we perform
the following analyses:

• Quantifying the effect of the various cycle bases - Improvement 4,

• Performance evaluation of stability-to-robustness models and comparison with
PESP-N,

• Sensitivity analysis of robustness for different disturbance scenarios,

• Measuring impact of the time supplements’ weights on the generated timetables.

5.5.2 Testing cycle bases

Before detailed analyses of computed timetables, we tested the effect of the Improve-
ment 4 on the computation times. Table 5.2 reports the obtained cycle basis width, and
average absolute and relative running times for defined cycle bases. It can be seen that
the MST with weights λ− li j performs the best for the network N1, while the originally
proposed cycle basis C is one of the worse performing ones by having 149.2 % bigger
computation time than Xλl . Similar results were observed for N2 and N3, and so we
accept cycle basis Xλl for all further experiments and all test networks.

Table 5.2: Performance of cycle bases on N1

Cycle basis Arc weights CPU time [s] CPU time [%]
Xλl λ− li j 0.0137 100.0
Xλul λ− (ui j− li j) 0.0149 108.3
Xal ai j− li j 0.0227 165.2
Xλa λ−ai j 0.0289 210.3
Xl li j 0.0309 225.2
C ui j− li j 0.0342 249.2
Xa ai j 0.0346 252.0
Xλal λ− (ai j− li j) 0.0425 309.1

5.5.3 Testing the two-stage model on different network instances

We used the single stage PESP formulation PESP-N as reference to compare with
the timetables generated by the two-stage stability-to-robustness approach. PESP-N
was applied with two objective functions: one minimizing total train journey times
(N-MinTrainTimes) and second minimizing time supplements and maximizing buffer
times N-MaxBuffer, which is similar to MaxBuffer (5.31) and sums time allowances
over A. In all two-stage cases, PESP-λ is solved in Stage 1, while CPF-λ-s with differ-
ent objective functions being MaxBuffer, MaxMin, MaxMin+, HalfBuffer and Half-
Buffer+ is applied in Stage 2. Table 5.3 gives the statistics of the obtained results
for all instances. In particular, it shows the considered network (Net), model and used
weights for time supplements and buffer times; and then, presents the results like objec-
tive value (ob jval), cycle time λ, time supplement (running, dwell and total), average
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time supplement (Avg time supp), minimum allocated buffer (Min buffer), number of
headway arcs without any buffer allocated (Zero buffers), computation time and opti-
mality gap. The minimum cycle time λ was computed in PESP-λ and given as fixed
for other models as λ = T . The reported time supplement is the amount of the time
that has been allocated within a model for PESP-λ and PESP-N, while for CPF-λ-s,
it represents the sum of time supplements in both stages, since the time supplements
assigned in Stage 1 are given as input and fixed in Stage 2 as defined in Improvement
1.

The minimum cycle time λ for the optimal stable timetable structure was 1621 s, 1560
s and 3060 s for the three considered network instances, respectively.

Analyzing the objective values, MaxMin and MaxMin+ are straightforward to under-
stand. For MaxMin, the negative value is the minimal buffer time and for MaxMin+,
the minimal buffer is multiplied with 107 and the remainder is the sum of time al-
lowances. For example, MaxMin for N1 reported objval of -30 and the correspond-
ing minimum buffer time is exactly 30 s and thus, no zero buffers were obtained.
On the other hand, other objective values are more complex. For MaxBuffer, N-
MinTrainTimes and N-MaxBuffer, the computed value represents the sum of all time
allowances. For HalfBuffer and HalfBuffer+, (part of) the value is the sum of the
deviated headway values from the middle of the scheduling interval mi j. Comparing
Halfbuffer and Halfbuffer+, the latter resulted in higher ob jval due to the included time
allowances in the objective function. As a consequence, HalfBuffer+ reports less total
time supplements, e.g., being 2.07 % compared to 5.02 % for N1. The same relation
was observed for all networks and even more, for functions MaxMin and MaxMin+.

By looking at each network, we observe that the models performed significantly differ-
ent in finding a stable and robust periodic timetable which resulted in various amounts
of time supplements allocated, ranging from 130 to 1932 s for N1, 5989 to 8852 s
for N2 and 450 to 28114 s for N3. These all generated an average time supplement
rate from 0.45 %, as MaxBuffer for N1, to 35,36 % as MaxMin for N3. In general,
MaxBuffer tends to allocate less time supplements compared to other two-stage mod-
els. For PESP-N models, N-MinTrainTimes is purely focused on reducing train-related
process times which resulted in only limited time supplements, totaling up to 0.7 % for
all networks, Meanwhile, N-MaxBuffer allocated slightly more time supplements and
at most 4.76 % for N3.

At the other extreme, MaxMin and HalfBuffer allocated significantly the most time
supplements in the resulting timetables as these models do not include minimization of
time supplements in the objective function. The most time supplements were assigned
by HalfBuffer in N3, 35.36 %.

PESP-λ often had the most headways with no buffers which is expected due to the fact
that the main goal was minimizing cycle time λ (and train-related times as the sec-
ondary objective) and consequently, headway arcs were kept as small as possible. This
is exactly the main characteristic of the defined network stability/capacity measure.
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PESP-λ reported 5, 27 and 36 zero buffers for instances N1, N2 and N3, respectively.
And then in Stage 2 models, the available buffers, defined by T −λ, were distributed
according to the given objective functions. All models reported less zero buffers than
in Stage 1 (The only exception was HalfBuffer+ for N2 creating 39 zero buffers.).
MaxMin found solutions with minimal buffer times of 30, 10 and 54 s, for N1, N2
and N3, respectively. However, these came at the expense of greater time supplements
which are often bigger than for other objectives. The other models generated some
zero buffers. MaxMin+ seemed to have a good balance between minimal buffer and
time allowances and resulted in up to 7.27 % of average time supplements (for N2).

For the two-stage approach, solving PESP-λ for networks N1, N2 and N3 took 0.04 s,
0.03 s and 0.69 s, respectively. In addition, solving CPF-λ-s with different objective
functions was always faster than its corresponding Stage 1 problem. For instance,
CPU time for N1 was always up to 0.01 s, for N2 ranged from 0.03 to 0.06 s and for
N3 – from 0.08 to 0.12 s. Comparative single stage models PESP-N always needed
more CPU time than the two-stage ones. Most notably, N-MinBuffer was not able to
reach the optimal solution within the given time limit and instead, the optimality gap
of 10.36 % and 1.93 % was observed for N2 and N3, respectively. N-MinTrainTimes
reported comparable CPU times for N1 and N2, while for N2 was sgnificantly larger,
14.45 s. So, it may be seen that the computation time of our two-stage approach may
be even significantly lower compared to the single stage model PESP-N, particularly
to N-MaxBuffer. This is a quite important observation because the existing approaches
for solving robust TTP suggest quite extensive computational efforts.

5.5.4 Evaluating robustness of the two-stage approach

In order to gain more insight in the timetable robustness using different objective func-
tions, we tested them on different disturbance scenarios that range from slight random
delays to bigger and more often occurring ones. To this end, we evaluate the two-stage
models MaxBuffer, MaxMin, MaxMin+, HalfBuffer, and HalfBuffer+, and compare
with the single stage ones N-MinTravelTimes and N-MaxBuffer, by applying values
for µ between 0 and 10% of the minimum process times. Clearly, µ = 0 represents an
undisturbed scenario. Figure 5.6 gives the obtained average delay D̄ as the robustness
cost for all objective functions. It can be seen that for small disturbances, µ < 3, all
designed timetables were able to withstand (most of) the disturbances. In all cases,
the N-MinTrainTimes model generates the most delays as a result of having the least
time supplements. On the other hand, HalfBuffer and MaxMin are the least affected
by various disturbances due to the large time allowances. In particular, these two func-
tions performed the same for N2, while HalfBuffer was better for instances N1 and
N3. MaxBuffer, MaxMin+ and HalfBuffer+ performed similar for N1 and N2, while
HalfBuffer+ tends to perform better and generates less delays for N3 and µ > 4.

For network N3, N-MaxBuffer generated smaller average delay D̄, compared to the
two-stage solutions like MaxBuffer, MaxMin+. Mostly, this was a result of more time
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Figure 5.6: Comparison of timetable robustness: Average delay D̄ for scenarios N1,
N2 and N3 for distribution parameter µ = [0,10]

supplements in N-MaxBuffer compared to the latter two, i.e., 4.8% compared to 1.8%
and 2.8%, respectively.

One of the main advantages of the stability-to-robustness approach is that by having
the optimal stable timetable structure, the corresponding timetable allows a significant
(i.e., maximal) amount of time allowances at the most critical cycle too. Such notion of
stability is not recognized in PESP-N models. As a result, we may expect less delays
for a timetable computed with our approach when disturbances occur at the critical
cycle.

In order to show this advantage of the two-stage stability-to-robustness approach, we
rerun the robustness evaluation by allowing disturbances only on the critical cycle.
Figure 5.7 depicts the clear difference between single-stage PESP-N and the two-stage
model, resulting in almost all initial disturbance being absorbed by the two-stage mod-
els. All computed solutions, managed to absorb the smallest disturbances µ≤ 1. How-
ever, both PESP-N generated significant delays for bigger values of µ, while CPF-λ-s
managed to absorb all delays while µ ≤ 9. Finally, for µ = 10 only delays of several
seconds were generated by all two-stage functions.
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Figure 5.7: Comparison of timetable robustness: Average delay D̄ for scenario N3
and varied distribution parameter µ on the critical cycle, complete (left) and zoomed
(right).

5.5.5 Sensitivity analysis on time allowances’ weights

The computed timetables may be affected by the weights assigned to time allowances.
Thus, we perform a sensitivity analysis focusing on the network N3, where PESP-
N computed more robust solutions for some cases. The purpose of this sensitivity
analysis is twofold: first, to determine the behavior of objective functions in CPF-λ-s
influenced by ws, and second, to recognize promising values of ws that could generate
better timetable solutions.

The weight for buffer times wb is assumed as fixed, while ws takes values from the
interval [−30,0.001]. Table 5.4 gives the statistics of solutions for different values of
ws. The structure is similar to Table 5.3.

Figure 5.8 reports the allocated time supplements rate (in %) for given weights ws.
The bottom horizontal solution (solid star-marked line) is defined by the optimal stable
timetable structure obtained by solving PESP-λ that was used as a fixed reference, and
it represents the total time supplement of 0.43 %. Note that MaxMin and HalfBuffer
are unaffected by ws because time supplements are not included in these objective
functions (MaxMin and HalfBuffer maximize only buffer times), and thus, we obtain
horizontal lines that are independent of ws.

For the remaining functions, MaxBuffer, MaxMin+ and HalfBuffer+, we see a reduc-
tion of allocated time supplements with a given greater importance which is driven
by lowering ws. The solution of MaxMin+ (HalfBuffer+) for ws = 0 becomes equal
to MaxMin (HalfBuffer) as these two functions become essentially the same. Note
that the objective values (ob jval) between MaxMin and MaxMin+ (as well as Half-
Buffer and HalfBuffer+) slightly differ since MaxMin+ (HalfBuffer+) still includes
the weighted buffer times as the secondary objective. Even more, MaxMin+ included
the multiplication factor as opposed to MaxMin. As soon as ws becomes smaller than
0, the allocated time supplements become smaller, meaning that MaxMin+ and Half-
Buffer+ are bounded from above by their (time supplement) non-weighted counterpart
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Table 5.4: Sensitivity analysis of CPF-λ-s objective functions for network N3

Obj avg Rtsupp Min Zero CPU
function ws objval Rtsupp Dtsupp Tsupps Rate Buffer Buffers time
MaxBuffer -30 -2205 210 240 450 0.43 0 19 0.09
MaxBuffer -10 -2205 210 240 450 0.43 0 19 0.09
MaxBuffer -5 -2205 210 240 450 0.43 0 19 0.09
MaxBuffer -4 -2205 210 240 450 0.43 0 19 0.09
MaxBuffer -3 -2205 210 240 450 0.43 0 19 0.09
MaxBuffer -2 -2205 210 240 450 0.43 0 19 0.08
MaxBuffer -1 -2205 210 240 450 0.43 0 19 0.08
MaxBuffer -0.8 -2205 211 240 451 0.44 0 19 0.11
MaxBuffer -0.6 -2205 211 240 451 0.44 0 19 0.10
MaxBuffer -0.4 -2214 292 240 532 0.50 0 19 0.09
MaxBuffer -0.2 -2256 847 662 1509 1.32 0 20 0.09
MaxBuffer -0.1 -2371 906 781 1687 1.52 0 15 0.09
MaxBuffer -0.05 -2434 873 819 1692 1.91 0 16 0.18
MaxBuffer -0.01 -2483 965 732 1697 1.75 0 18 0.11
MaxBuffer 0 -2496 7607 4554 12161 15.12 0 38 0.08
MaxMin+ -30 -54235075 331 268 599 0.54 54 0 0.14
MaxMin+ -10 -54248508 331 268 599 0.54 54 0 0.12
MaxMin+ -5 -54249254 331 268 599 0.54 54 0 0.11
MaxMin+ -4 -54249403 331 268 599 0.54 54 0 0.12
MaxMin+ -3 -54249552 331 268 599 0.54 54 0 0.11
MaxMin+ -2 -54249702 331 268 599 0.54 54 0 0.12
MaxMin+ -1 -54249851 331 268 599 0.54 54 0 0.12
MaxMin+ -0.8 -54249881 331 268 599 0.54 54 0 0.12
MaxMin+ -0.6 -54249910 331 268 599 0.54 54 0 0.12
MaxMin+ -0.4 -54249940 331 268 599 0.54 54 0 0.12
MaxMin+ -0.2 -54249970 331 268 599 0.54 54 0 0.12
MaxMin+ -0.1 -54249985 331 268 599 0.54 54 0 0.12
MaxMin+ -0.05 -54249993 331 268 599 0.54 54 0 0.12
MaxMin+ -0.01 -54249999 331 268 599 0.54 54 0 0.11
MaxMin+ 0 -54250000 6328 4421 10749 10.11 54 0 0.12
HalfBuffer+ -30 1048805 210 281 491 0.43 0 15 0.13
HalfBuffer+ -25 1048400 292 317 609 0.52 0 15 0.12
HalfBuffer+ -20 1047453 353 325 678 0.64 0 15 0.12
HalfBuffer+ -10 1037498 1124 1668 2792 1.94 0 35 0.12
HalfBuffer+ -7 1027993 1886 2278 4164 3.47 0 33 0.13
HalfBuffer+ -6 1023950 2413 2376 4789 4.47 0 26 0.12
HalfBuffer+ -5 1019363 2842 2417 5259 5.73 0 24 0.13
HalfBuffer+ -4 1014342 3215 2737 5952 6.60 0 26 0.12
HalfBuffer+ -3 1008078 4135 3174 7309 8.48 0 30 0.13
HalfBuffer+ -2 1000600 5184 3743 8927 10.51 0 29 0.13
HalfBuffer+ -1 990553 8113 5527 13640 15.11 0 32 0.14
HalfBuffer+ -0.8 987400 9237 7590 16827 17.35 0 33 0.13
HalfBuffer+ -0.6 984070 9885 7415 17300 18.39 0 33 0.14
HalfBuffer+ -0.4 980641 9886 7981 17867 18.78 0 34 0.19
HalfBuffer+ -0.2 977022 10476 8700 19176 19.54 0 36 0.14
HalfBuffer+ -0.1 975127 10603 9027 19630 20.18 0 36 0.15
HalfBuffer+ -0.05 974168 10941 8689 19630 20.67 0 36 0.13
HalfBuffer+ -0.01 973401 10693 8937 19630 20.19 0 36 0.14
HalfBuffer+ 0 973209 15278 12836 28114 35.36 0 37 0.12
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functions (i.e., MaxMin and HalfBuffer). In addition, since the optimal stable timetable
structure computed in Stage 1, defines the input for Stage 2, solutions from CPF-λ-s
can never be lower (i.e., have less time supplements) than the one computed in Stage
1, i.e., all solutions are bounded with the output of PESP-λ.

All three ws-dependent functions, MaxBuffer, MaxMin+ and HalfBuffer+, have de-
creasing behavior of allocated time supplements with increased importance of the cor-
responding weights. However, they all have different degrees of steepness. MaxBuffer
has a steep reduction of time supplements for ws = [−0.6,0), while for ws <−0.6, the
amount of time supplements is equal to PESP-λ, i.e., 0.43%. Thus, MaxBuffer seems
very sensitive to ws over a small range very close to 0. Such behavior could be due to
the buffer times in MaxBuffer being assigned weights that are of the same scale as ws

(wb = 0.1) and thus, the sums of weighted time supplements and buffer times are rather
comparable as well. On the other hand, as soon as ws reduced below -0.6, the sum of
weighted time supplements overweighs the buffer times. MaxMin+ seems rather insen-
sitive to ws values between (0,−100] and always generated the same amount of time
supplements equal to 0.54 %. This may be due to the fact that we applied the multipli-
cation factor of 107 to the minimal buffer time z compared to the weighted sum of time
allowances. Only for ws = 0, the solution of MaxMin+ equals the one of MaxMin. In
addition, we ran MaxMin+ for ws =−108 and obtained the solution equal to PESP-λ.
HalfBuffer+ has a more gradual decrease compared to MaxBuffer, as it generates sig-
nificantly different solutions for ws = [−15,−0.01] which allocated time supplements
ranging from 0.64 % to 20.67%. When lowering ws below -15, the amount of time
supplements changes only minimally and it finally reaches the lower bound, imposed
by PESP-λ, for ws = −30. Solutions having time supplements bigger than 15% may
be considered inefficient, meaning that they include abundant time supplements, while
the ones having smaller than 5% may not be robust enough, i.e., having insufficient
time supplements. Thus, the most promising weight values for HalfBuffer seem to fall
between -10 and -1.

Due to the degree of steepness, ie., sensitivity to ws, HalfBuffer+ seems preferable
objective function over MaxBuffer (and MaxMin+) to provide significantly different
timetables for various ws.

These observations bring us to the second question in the analysis: which values of ws

produce a timetable with a good trade-off between efficiency and robustness? To that
purpose, we undertook the robustness analysis of the timetables obtained by applying
different ws while keeping wb fixed. Based on the results in Table 5.4 and Figure 5.8,
we evaluated MaxBuffer and HalfBuffer+ with additional values for ws. In particular,
we used MaxBuffer with ws =−0.05, and HalfBuffer+ with ws ∈ {−30,−5,−3,−2}
Figure 5.9 reports the functions MaxBuffer and HalfBuffer+ and N-MinTrainTimes
and N-MaxBuffer. MaxBuffer (HalfBuffer+ with ws =−30) allocated only 1.9% (0.4
%) of time supplements and thus, generated big average delays for all µ. On the other
hand, HalfBuffer+ with ws = {−5,−3,−2} demonstrated results comparable and even
better than N-MaxBuffer. These three solutions were also comparable to N-MaxBuffer
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Figure 5.8: Comparison of timetables: Allocated time supplements for ws = [−30,0]
(left) and zoomed to ws = [−0.6,−0.001] (right)
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Figure 5.10: Time-distance diagram for corridor Ehv-Ut with HalfBuffer+ and ws =
−2 (for N2)

in terms of allocated time supplements. Finally, Figure 5.10 gives the time-distance
diagram for HalfBuffer+ with ws =−2.
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Based on these results, we may conclude that HalfBuffer+ seems to be a preferable
choice for the objective function for the stability-to-robustness model that tend to gen-
erate the best solutions with a good trade-off between efficiency and robustness. In ad-
dition, it allows flexibility to compute provide significantly different timetables when
time supplements weight is varied. During the timetable planning, this is particularly
important when different timetable alternatives need to be generated and afterwards
evaluated to determine the best performing timetabling solution. However, it is im-
portant to gain thorough understanding of each objective function behavior. And only
then, by adjusting given weights, one could get the most satisfying solutions that are
both efficient and robust. In addition, a choice of the objective may even differ for
different networks. In general, the choice should be made according to a range of fac-
tors, such as the desired robustness against the amount of expected delays, acceptable
amount of time supplements and/or allowed upper bounds for process times. Also, the
weights of buffer times and time supplements should be considered carefully.

5.6 Conclusion

In this paper, we studied the robust train timetabling problem in railway networks. We
proposed a two-stage stability-to-robustness model that incorporated three important
parameters of timetable design: efficiency, stability and robustness. The first stage
focused on stability, the second stage on robustness, while efficiency was considered
in both stages. For the first time, a timetable model explicitly considered the infras-
tructure capacity occupation to obtain a stable and robust timetable. An alternative
formulation for optimally allocating time allowances was introduced. Five objective
functions (MaxBuffer, MaxMin, MaxMin+, HalfBuffer, HalfBuffer+) were defined
to generate timetables which were evaluated a posteriori and compared with existing
single-stage PESP models.

The two-stage stability-to-robustness model was tested on real-life Dutch railway net-
works. The produced timetables were, in most cases, better than the ones computed
by existing single-stage PESP models, meaning that they generated smaller amount of
average delays. MaxMin and HalfBuffer tend to generate solutions that incorporate an
excessive amount of time supplements and as such may be inefficient for passengers.
MaxBuffer, MaxMin+ and HalfBuffer+ usually created the most robust solutions that
were also efficient, that is, only limited time supplements were allocated. We also
showed that a thorough analysis of the models’ weight factors should be considered
to generate the best trade-off between efficiency and robustness. Objective function
MaxBuffer+ seems too sensitive to changing weights, while HalfBuffer+ tends to allow
more flexibility to generate different solutions. Given these observations, HalfBuffer+
seems to be the most promising objective function for the stability-to-robustness ap-
proach.

The reported computational times for the two-stage approach were significantly lower
compared to the single stage timetabling model.
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Future work could include testing the current model on bigger instances. Conse-
quently, techniques to speed up the computation times may be necessary. Also, a
thorough analysis of model parameters and weight factors should be considered to gen-
erate the best solutions. In addition, the model can be used to identify bottlenecks and
suggest possible infrastructure improvements. Finally, the computational efficiency
leaves more time to planners to generate different alternative timetables and evaluate
them before implementing in practice. Although tested only on limited instances, our
two-stage model could help improving timetable robustness.



Chapter 6

An integrated micro-macro approach
to robust railway timetabling

This chapter has been published as:

Bešinović, N., Goverde, R. M. P., Quaglietta, E., & Roberti, R. (2016). An integrated
micromacro approach to robust railway timetabling. Transportation Research Part B:
Methodological, 87, 14-32.

6.1 Introduction

The recent growth in the demand for railway passengers and freight encourages infras-
tructure managers to improve efficiency of their networks in terms of higher infrastruc-
ture occupation and service quality (e.g., punctuality and travel times). Upgrading the
infrastructure or the signalling system may help to achieve these objectives with the
downside of massive financial investments. A cost-effective alternative is represented
by designing effective timetables that can absorb everyday variations in running and
dwell times while exploiting network capacity as much as possible. This means al-
locating as many trains as possible to the available infrastructure while guaranteeing
sufficient time allowances (i.e., supplements and buffer times) to reduce delay propaga-
tion. In this context, timetable design must rely on accurate computations of realisable
train paths and buffer times. Only a robust construction of train time-distance paths al-
lows designing dense timetables which are operationally feasible, i.e. free from track
conflicts including constraints imposed by the infrastructure layout and the safety and
signalling systems.

In the literature, timetabling problems are most commonly modelled at a macroscopic
level, usually referred to as the Periodic Event Scheduling Problem (PESP) (Serafini &
Ukovich, 1989) or Train Timetabling Problem (TTP) (Caprara et al., 2002). Cacchiani
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and Toth (2012) gave an extensive review of variants of PESP and TTP, covering both
nominal and robust approaches. Most of the models assume a macroscopic infrastruc-
ture, and as such neglect microscopic details (e.g. signal position, switches) important
for accurate timetabling. These models tend to use predefined norms for timetabling
constraints such as default time values for train separation at stations and as such can-
not guarantee timetable feasibility in practice. Therefore, macroscopic models must
be upgraded or integrated with more detailed models if operational feasibility of the
timetable must be ensured. To this end, different approaches have been proposed in
the literature based on a hierarchical integration of timetabling models with different
levels of detail. Schlechte et al. (2011) presented a bottom-up approach which first ag-
gregates microscopic running and headway times to be used by a macroscopic model
that identifies an optimised timetable for a given utility function, and then checks
its feasibility by simulating it at a microscopic level. Middelkoop (2010) described
the tool ROBERTO which uses a microscopic infrastructure model to compute accu-
rate running and headway times which are then input to the macroscopic timetabling
model DONS (Kroon et al., 2009). De Fabris et al. (2013) introduced a mesoscopic
timetabling model which simplifies representation of station layouts to combine fast
computation of macroscopic models with the accuracy of microscopic models. Caimi,
Fuchsberger, Laumanns, and Schüpbach (2011) extended PESP by proposing the flex-
ible periodic event scheduling problem (FPESP), where intervals are used instead of
fixed event times. By applying FPESP, the output does not define a final timetable but
an input for finding a feasible timetable on a microscopic level (Caimi et al., 2011).

The main shortcomings with these approaches are that some do not perform any fea-
sibility check of the timetable produced (De Fabris et al., 2013; Kroon et al., 2009),
while others do not consider any iterative modification to the timetable if it is proved in-
feasible at the microscopic level (Caimi et al., 2011, Schlechte et al. (2011)). Another
way of using a microscopic model to improve the outcome of a macroscopic model
has been developed for the purpose of real-time railway traffic management. Kecman,
Corman, D’Ariano, and Goverde (2013) tested the behaviour of various macroscopic
models and compared them with a microscopic one in order to determine the level of
detail and operational constraints that are necessary to incorporate at the macroscopic
level. Within the European project ON-TIME (Optimal Network for Train Integra-
tion Management across Europe), we have developed a hierarchical iterative tool for
the optimized design of railway timetables which combines microscopic, macroscopic
and fine-tuning models (Goverde et al., 2016; ON-TIME, 2016). In this paper, we fo-
cus on the integration of a microscopic and a macroscopic model, which interact by
iteratively updating macroscopic parameters that are re-computed at the microscopic
level until the produced timetable is proved feasible, stable, and robust. This micro-
macro timetabling approach has been applied to a real case study in the Netherlands.
Experimental results show that our algorithms compute in short time a high quality
timetable having an infrastructure occupation that satisfies UIC recommendations on
capacity norms.
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The main contributions presented in this paper are:

• A new timetabling approach that for the first time incorporates robustness in a
micro-macro framework,

• An integrated iterative approach for computing a microscopically conflict-free
and stable timetable that is optimized at a network level,

• An automatic procedure to adapt macroscopic input by constraint relaxation and
tightening methods at the microscopic level,

• A macroscopic timetable optimization model with a post-processing Monte Carlo
stochastic robustness evaluation of the generated timetables.

The remainder of the paper is organized as follows. The next section defines the
problem statement of this paper and introduces the framework of the micro-macro
approach. Section 6.3 describes the network and data modelling at different level of
details and the automatic transformations between these networks. Section 6.4 and 6.5
elaborate on the microscopic and macroscopic models of the approach, while Section
6.6 describes the applied constraint adaptations between successive iterations. The
case study is presented in Section 6.7, while conclusions are provided in Section 6.8.

6.2 Problem description

We adopt the definitions from (Goverde et al., 2016). A line service is defined with
origin and destination points, stopping pattern, i.e. served timetable points (stations,
stops), and a corresponding rolling stock type. It also includes the service category,
such as local or intercity, and the frequency represented in number of trains per hour.
A train path is the infrastructure capacity needed to run a train between two places
over a given time period (EC, 2001). A conflict is determined as an overlap (in time
and space) between two train paths and entails that one train cannot use the railway
infrastructure without interfering with another train. Timetable efficiency reflects the
amount of time allowances in the scheduled travel times (running, dwell and transfer
times) which must be as short as possible to provide short journey times and seamless
connections. Timetable feasibility is the ability of all trains to adhere to their scheduled
train paths. A timetable is feasible if (i) the individual processes are realisable within
their scheduled process times, and (ii) the scheduled train paths are conflict free, i.e.,
all trains can proceed undisturbed by other traffic. Timetable stability is the ability
of a timetable to absorb initial and primary delays so that delayed trains return to
their scheduled train paths without rescheduling. This is directly connected with the
infrastructure occupation rate. The higher this rate, the lower are the time allowances
and hence the less stable is the timetable. Timetable robustness is the ability of a
timetable to withstand design errors, parameter variations, and changing operational
conditions.
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We distinguish between a microscopic and macroscopic timetable. A macroscopic
timetable, or MacroTT, includes scheduled running, dwell and transfer times, as well as
event times such as arrivals, departures and passages between and at relevant timetable
points (introduced in Section 3.1). A microscopic timetable, or MicroTT, includes
scheduled running, dwell and transfer times as well as event times such as arrivals, de-
partures and passages for microscopic timetable points (introduced in Section 6.3.1)
and the corresponding train speed profiles defining the exact train trajectories. A
MacroTT is the outcome of the macroscopic model and is analysed by the microscopic
one, while the MicroTT is the final output of the developed framework.

Given infrastructure and rolling stock characteristics, and the requested line services,
the Train Timetabling Problem (TTP) consists of finding a feasible, efficient, stable
and robust microscopic timetable.

6.2.1 The timetable planning framework

We propose a micro-macro framework to solve the TTP and design a railway timetable.
The structure of such a framework is shown in Figure 6.1, which indicates the inter-
actions among the different models, their functions as well as the input-output data
flow. The framework is implemented using a standardized RailML interface (Boss-
chaart et al., 2015; RailML, 2015). In particular, the RailML data required for the
initialization of the models relate to characteristics of the infrastructure (i.e., gradients,
speed limits, positions of stations, switches), rolling stock (i.e., mass, length, braking
rate, tractive effort-speed curve), interlocking (i.e., alternative local routes), signalling
system (e.g., position and type of signals, automatic train protection (ATP) behaviour),
and routes/stopping pattern of the train services to be scheduled. Both input and output
data of the framework are in RailML format, which is being developed with the goal
of becoming a standard in Europe for communication among railway software tools.

Timetabling computation is an iterative process of two different models: a microscopic
and a macroscopic model. The microscopic model computes reliable train running and
headway times at a highly-detailed local level and checks for feasibility and stability
of the timetable. The macroscopic model has an aggregated infrastructure represen-
tation and produces a timetable for the entire network by identifying arrival/departure
times at/from stations or junctions which optimize a given objective function (e.g.,
minimize journey times). Such a macroscopic model includes methods for estimating
delay propagation to assess produced timetables in terms of robustness versus stochas-
tic operation disturbances.

In the first iteration a timetable is not available yet, so the microscopic model com-
putes minimum running times and headways that are sent to the macroscopic model
to calculate a timetable. The achieved macroscopic timetable is sent back to the mi-
croscopic model that, based on the operational running times (i.e. the running times
including time supplements scheduled by the macroscopic timetable), computes train
blocking times necessary for detecting track conflicts. If there are track conflicts, these
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Figure 6.1: Functional scheme of the micro-macro framework

are solved and new headways and running times are computed and transferred to the
macro model again. The macroscopic model solves an optimization problem which in-
corporates heuristics with an integer linear programing problem minimizing a weighted
sum of running, dwell and transfer times, and a robustness cost. The robustness cost
is defined as the delay settling time obtained from a Monte Carlo simulation of the
delay propagation for given candidate timetable solutions. This iterative process is
repeated until no more track conflict is detected and the timetable is thus feasible at
both the macroscopic and microscopic levels. Once feasibility is achieved, the micro-
scopic model evaluates the stability of the timetable (i.e., the capability in absorbing
delays). If the timetable is not stable, new operational running times are computed
by e.g. increasing the value of time supplements and/or buffer times. This is per-
formed until timetable stability is verified to have reached the required level (UIC,
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2013). Transformations from the microscopic level to the macroscopic and vice versa
require appropriate procedures that have been developed to aggregate/disaggregate in-
put and output data. This interaction continues until the timetable produced by the
macroscopic model is proved to be microscopically feasible and stable. As a result,
the final output of the framework is a feasible and stable timetable with a suboptimal
trade-off between efficiency and robustness.

6.3 Network and data modelling

In our approach, input and output data are exchanged between models with different
levels of detail, so consistency in data flows must be guaranteed. This is achieved by
automatic data transformation (aggregation/disaggregation) processes that we describe
in this section.

6.3.1 Network representation

The hierarchical framework for timetable design is composed of two models that rep-
resent the same network but with a microscopic and a macroscopic level of detail.

The microscopic graph G = (X ,B) represents the network at the level of homogeneous
behavioural sections (i.e. sections with constant values of speed limit, gradient and
curvature radius). Each infrastructure section (arc), bi ∈ B, is described with con-
stant characteristics of speed limit vi, gradient gi and radius ρi and given length li,
i.e., bi = (vi,gi,ρi, li). Microscopic nodes x ∈ X represent both points in which these
characteristics change and infrastructure elements like block section joints, switches,
and station platforms. This detailed microscopic model is used to aggregate the ho-
mogeneous behavioural sections in block sections for open tracks and in track-free
detection sections for interlocking areas which are required for considering sectional-
release route-locking behaviour. This level of detail is important for computing block-
ing times, conflict detection, and infrastructure occupation.

On top of the microscopic network, a discrete set of microscopic timetable points K ⊂
X is defined. A microscopic timetable point k ∈ K represents an infrastructure point
where an interaction exists between a train and passengers (boarding and alighting)
or cargo (loading and unloading), or between two trains (converging and diverging
tracks). These microscopic points therefore define important discrete events at stations,
junctions, bridges or tunnels.

The macroscopic network is represented by a multi-graph N = (S,A∪E), where the
vertices represent a set S⊆ K of macroscopic points corresponding to the microscopic
timetable points that allow interaction between trains, i.e., meeting, overtaking, or con-
nections. In the remainder, we refer to macroscopic points as timetable points. The
macro tracks are defined as mono-directional a = (s1,s2) or bidirectional e = s1,s2.
The sets of arcs A and edges E represent mono-directional and bidirectional tracks
between pairs of timetable points, respectively. For each timetable point si inS, the
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capacity capsi for each station is known and corresponds to the number of tracks. For
each pair of timetable points si,s j ∈ S, we consider that the number of directed arcs
(mono-directional tracks) αsis j from i to j, the number of directed arcs αs jsi from j to
i, and the number of edges (bidirectional tracks) βsis j are known.

Inputs from the basic architecture consists of a set of data expressed in RailML for-
mat, namely: a) Microscopic infrastructure data, b) rolling stock data, including train
formations, c) Interlocking, signalling and ATP, d) available routes, and e) train line re-
quests. These data are converted to a suitable internal format of ASCII data that is used
by the microscopic computation models. Additional parameters, such as connections,
dwell times, timetable design parameters and quality norms are provided externally.

6.3.2 Trains, train lines and routes

Let T be the set of all trains in the network and L be the set of all lines of trains, i.e.
L = L1,L2, ,Ll̄ , where l̄ = |L|, L j ⊆ T , j = 1, · · · , l̄,

⋃L j
j=1 = T , and L j ∩Lk = /0, 1≤ j,

k≤ |L|, j 6= k. For each line L j, j = 1, · · · , l̄, the period time per j is given, representing
the ideal interval time between the stops at each station of two consecutive trains from
the same line. Moreover, let S j ⊆ S be the set of stations served by line j ∈ L. For each
train t j ∈ T , l( j) indicates the corresponding line. We assume that the trains of a given
family L j = t1, t2, , t|Tj|, j = 1, · · · , l̄, are ordered in increasing order of departure times.

Moreover, we assume that for each train, its route ρt (i.e., the sequence of traversed
tracks without the corresponding travel times) is provided. Finally, we differentiate be-
tween a microscopic route ρmicro

t = (b1,b2, · · · ,bnt ), where nt is the number of micro-
scopic arcs, and a macroscopic one ρmacro

t = (a1,a2, · · · ,amt ), where mt is the number
of macroscopic tracks.

For each train t ∈ T and each arc a ∈ A, (each edge e ∈ E, resp.) the minimum running
time rta (rte)), the nominal running time rta (rte), and the maximum running time rta

(rte)) are given. All running times are computed by microscopic algorithms, while
the nominal and maximum ones are given as input to the macroscopic module. Also
provided for each train t ∈ T is the maximum journey time J̄t from origin to destination.

The algorithms developed within the ON-TIME project, both microscopic and macro-
scopic, are suitable for both periodic and non-periodic timetabling. In the non-periodic
case, each line contains exactly one train. Therefore, the microscopic tools may accept
both trains and train lines without any adjustment of the algorithms.

6.3.3 Other parameters

For each train t ∈ T and each station s ∈ St , the nominal dwell time wts and maximum
dwell time w̄ts is provided. Let Q be the set of all connections between pairs of trains
at given stations. Then each connection q = (t1, t2,s) with t1, t2 ∈ T , s ∈ S, is charac-
terized by a nominal and a maximum connection time, uq and ūq, respectively, which
need to be respected by connection constraints. Since the aim of timetable planning
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is to provide an acceptable quality of service, certain design norms need to be prede-
fined. The set of these parameters consists of minimum and maximum transfer times,
turnaround times, minimum and maximum running time supplements (%), and max-
imum allowed journey times of train lines (%). The set of timetable design norms is
named Λ.

6.3.4 Microscopic to macroscopic conversion

Microscopic data are migrated to the macroscopic level using the procedure described
in Algorithm 8, which is comparable with the one implemented by Schlechte et al.
(2011). The conversion from microscopic to macroscopic is instead done in two steps.
First, the subset S from K is derived. The algorithm compares all pairs of train lines.
The macroscopic nodes are chosen based on the interplay between train routes. The
set S includes only microscopic timetable points if two train routes are converging,
diverging or crossing. This process of defining the set of timetable points is done auto-
matically. Second, it consists of the aggregation of microscopic arcs bi to macroscopic
arcs a or edges e, a = (b1,b2, . . . ,bn) or e = (b1,b2, ,bn). For each arc a and edge e the
following data is determined: 1) the number of tracks (αi j,βi j) by identifying differ-
ent routes between two nodes using function DetermineTracks, and 2) the orientation
(mono- or bidirectional) for each of them by function DetermineDirection.

We will describe the inclusion into S with an example. Consider two train lines that
use the same successive microscopic timetable points k1,k2,k3. Then the set S will
include k1,k3, since k1,k3 are the origin and destination of both lines, while k2 /∈ S as
both trains use the same points before and after this. As another example, consider two
train lines, where the first train line uses k1,k2,k3 and the second one k1,k2,k4, then S
will be equal to k1,k2,k3,k4 since the train lines diverge in k2, which makes k2 ∈ S.

After having initialised the macroscopic network, the microscopic model is activated
to compute microscopic minimum running times (over homogenous behavioural sec-
tions), blocking times and minimum headways. Headways are determined for all pos-
sible interactions between each two train routes (inbound-inbound, in-out, out-in, out-
out) at every macroscopic timetable point s. The last two are executed on the block
section level of the infrastructure network.

Once all process times are computed on the microscopic model, we carry out the ag-
gregation of process times and the discretisation of time. The function AggregatePro-
cessTimes is introduced to provide mitigation from microscopic running times (i.e.,
between any consecutive microscopic points) to aggregated process times between
any consecutive timetable points in the macroscopic network. Since the macroscopic
model uses a coarser time granularity, the time discretisation of process times is per-
formed as well. The incorporated function represents an innovative rounding method
that has the objective to control the rounding error by combining rounding up and
rounding down. By applying AggregateProcessTimes, we obtain all process times that
are necessary for macroscopic computation.
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Algorithm 8 Microscopic to macroscopic conversion
Input: Microscopic network, microscopic timetable points, dwell times,

timetable design norms, set of train lines
Output: N = (S,A∪E), process times
For all microscopic timetable points k ∈ K

For all pairs of train lines
If k is origin or destination point OR lines converge
OR lines diverge OR lines cross

Include k in the set of macroscopic timetable points
End If

End For
End For
For all adjacent timetable points

DetermineTracks
DetermineDirection
If track is used in both directions

Create edge e
Else

Create arc a
End If

End For
Running times computation
Blocking times computation
For all macroscopic timetable points s ∈ S

Minimum headway computation
End For
AggregateProcessTimes

6.3.5 Macroscopic to microscopic conversion

To convert data from the MacroTT to the MicroTT, we use the process described in Al-
gorithm 9. Substantially, from the scheduled event times for the macroscopic timetable
points we have to reconstruct the corresponding train trajectories and scheduled times
for all of the microscopic timetable points. The details of each module used in this
description are given in Sections 6.4 and 6.5.

Starting with MacroTT, we determine the scheduled running time over each macro-
scopic edge (arc), as the difference between the arrival in one station and the departure
from the preceding station. Further, we compute the corresponding allocated running
time supplement ψt as the difference between the scheduled and minimum running
time for each train t ∈ T , where T is the set of all trains. This defines a vector Ψt of
the time supplements ψt over each two macroscopic timetable points. For each train
t ∈ T and the corresponding Ψt we compute the operational running time consisting
of the detailed train trajectory and scheduled times at microscopic timetable points,
which are used for further microscopic analyses. Consequently, the blocking times are
computed for all trains.
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Algorithm 9 Macroscopic to microscopic conversion
Input: microscopic network, MacroTT
Output: Feasible, stable and robust timetable
For all trains do

Determine allocated running time supplements
Compute operational running times
Compute blocking times

End For
Conflict detection
If timetable is not conflict-free

Constraint Tightening
Run Macroscopic optimization

Else
Capacity evaluation
If capacity norms are not satisfied
Constraint Relaxation
Run Macroscopic optimization
End If

End If

Once blocking times are computed, conflict detection and capacity assessment are per-
formed, and if one of those is not satisfied then train process times (headways and run-
ning times) are updated by applying constraint tightening and/or relaxation (cf. Section
6.6). Updated process times are sent again to the optimisation model described in Sec-
tion 6.6 to re-compute MacroTT. After a new MacroTT has been obtained, Algorithm
9 starts from the beginning. Once MacroTT satisfies an acceptable quality of service,
the algorithm terminates. The final output of the model is a feasible, stable and robust
timetable.

6.4 Microscopic timetabling

The microscopic module consist of the following computation functions: minimum
and operational running times, blocking and headway times, conflict detection and
resolution and capacity assessment. A description of each function is given in the next
paragraphs.

6.4.1 Running times

The minimum running time is the time required for driving a train from one infras-
tructure point to another infrastructure point assuming conflict-free driving as fast
as possible. In this section we will focus on the running time between two stations.
Running time computation considers detailed characteristics of the infrastructure (i.e.,
gradients, speed limits, positions of stations, switches), rolling stock (i.e., mass, com-
position, braking rate, tractive effort-speed curve), signalling system (e.g., position
and type of signals), and routes/stopping pattern of the train services to be scheduled.
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Running times are computed for every line service by means of dynamic Newton’s
motion equations (Hansen & Pachl, 2014) according to the implementation described
in Bešinović et al. (2013).

As already explained, MacroTT represents the scheduled running time between two
macroscopic timetable points, which consists of the sum of the minimum running
times and time supplements (usually 5%-7% of the minimum running time) to recover
from statistical variations during real operations. This means that from the scheduled
running time given by MacroTT we must be able to retrieve the corresponding micro-
scopic train trajectory (speed-distance, time-distance diagrams) in the MicroTT that
satisfies that scheduled running time (described in Section 6.3.5). Such train trajecto-
ries incorporate the available time supplements. The operational running time repre-
sents the recomputed train trajectory that satisfies the scheduled running time between
two timetable points. This trajectory will exploit associated running time supplements
by applying cruising with a speed lower than the maximum speed, and to do so we
implemented a customised bisection algorithm (Bešinović et al., 2017).

6.4.2 Blocking times

The blocking time of a section of track (block section or interlocked route) is the time
duration that the section is exclusively allocated to a train and therefore blocked to
other trains. Blocking times are computed in function Blocking times computation by
applying the procedure described in Hansen and Pachl (2014).

The blocking time of a train for a given block section is composed of the following
components: setup time tsetup,ti to set the route for the train approaching, sight and
reaction time tsight,ti of the train driver when approaching the approach signal, approach
time tapproach,ti needed by the train to traverse the braking distance from the approach
signal to the main signal, the running time tblock,ti of the train to traverse block section i,
the clearing time tclear,ti to clear the block section over the train length, and the release
time trelease,ti to release the route after the train clearance. After having provided all
these terms the blocking time dti of the train t relative to block i is obtained as:

dti = tsetup,ti + tsight,ti + tapproach,ti + tblock,ti + tclear,ti + trelease,ti. (6.1)

Each blocking time dti of section i by train t is specified from the start ds to the end de

of the blocking time. Hence, dti = (ds
ti,d

e
ti).

6.4.3 Minimum headway times

The minimum headway time between two trains is the time separation that prevents the
trains from having track conflicts with each other. Here we introduce the computation
of one minimum headway at a timetable point s∈ S. Let Bi js be the set of shared blocks
associated to routes of both trains i and j in timetable point s, de

il be the end of blocking
time dil and ds

jl the start of blocking time d jl . Let us assume that both trains have the
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same reference event (i.e., departure, arrival or passing) time at s, e.g., equal to 0. Then
the minimum headway hi js from train i to j in timetable point s is computed as

hi js = max
l∈Bi js

(de
il−ds

jl). (6.2)

For each pair of trains t1, t2 ∈ T and each timetable point s ∈ S, we compute the nom-
inal headway time hdd

t1t2s (hda
t1t2s) between the departure of train t1 from timetable point

s and the departure (arrival) of train t2 from (at) timetable point s, and the nominal
headway time had

t1t2s (haa
t1t2s) between the arrival of train t1 at timetable point s and the

departure (arrival) of train t2 from (at) timetable point s. Any headway time is equal to
0 whenever the two trains do not meet at a timetable point.

6.4.4 Conflict detection

The aim of conflict detection is to verify the feasibility of the macroscopic timetable by
checking: a) the absence of track conflicts and b) the realisability of scheduled process
times (i.e., running times, dwell times, turnaround times). Track conflicts are detected
as partial or full overlaps of the blocking times provided by the BlockingTimesCom-
putation function. Therefore, conflict-freeness is tested comparing the interaction of
scheduled blocking times for each pair of trains, i.e., checking the possible blocking
times overlap between them. The blocking time overlap ci jϕfrom train line i to j at
corridor ϕ is computed similarly as the minimum headway times:

ci jϕ = max
l∈Bϕ

(de
il−ds

jl), (6.3)

where Bϕ is the set of successive blocks at corridor ϕ, and the scheduled start and
end of the blocking times are used. If ci jϕ > 0 then a conflict exists. Usually, a
corridor corresponds to a macroscopic arc (or edge). In this way, the whole network is
considered by the conflict detection algorithm, and not only timetable points.

Realisability is tested by checking if the scheduled running and dwell times exceed
the corresponding minimum technical values. Note that the macroscopic timetabling
model is such that it always provides realisable scheduled times, so the realisability
check can then be omitted.

6.4.5 Infrastructure occupation

Infrastructure occupation is defined as the time share needed to operate trains accord-
ing to a given timetable pattern taking into account scheduled running and dwell times.
The infrastructure occupation µ(ϕ) of corridor ϕ can be obtained by:

µ(ϕ) = ∑
{(i, j)∈Wϕ}

hi jϕ, (6.4)
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with Wϕ the cyclic pattern of successive train pairs (i,j) in corridor ϕ, and hi jϕ the
minimum line headway on this corridor. The latter is computed similarly as local
minimum headway, where blocks at a corridor ϕ, instead of a timetable point s, are
considered. A corridor may be equal to an arc (or edge) or comprise several adjacent
arcs (edges), ϕ = ∪iai. We compute the infrastructure occupation for each corridor
ϕ ∈ Φ, applying an algorithm based on max-plus automata theory (Bešinović et al.,
2017; Gaubert & Mairesse, 1999).

6.5 Macroscopic timetabling

The macroscopic timetable optimization algorithm iteratively communicates with the
microscopic module in order to achieve a timetable that is both macroscopically and
microscopically feasible.

The macroscopic optimization module receives as input the following data from the
microscopic calculation module: a) railway infrastructure aggregated at macroscopic
level (including capacity of arcs/edges and macroscopic timetable points), b) a set
of train lines to schedule with the corresponding routes, c) headway times between
pairs of train lines meeting at timetable points, d) nominal and maximum running and
dwelling times along the routes of each train line, and e) a set of connections (where a
connection states that, at a given timetable point, the departing time of a train must be
within a given time interval from the arrival time of the previous train).

The macroscopic timetable computation provides the microscopic module with a macro-
scopic timetable that consists of a set of paths (at most one for each train) and the in-
dication of the trains that are cancelled – trains can be cancelled if all corresponding
feasible paths violate some of the constraints defined on the network (e.g., headway
times, capacity). A path of a train is an ordered sequence of tracks and provides,
for each of the traversed tracks, the times where the trains enter and leave the track.
Furthermore, Monte Carlo simulation is applied to obtain a timetable with improved
robustness. The timetable provided by the macroscopic module is not only feasible,
but also robust.

From an algorithmic point of view, the macroscopic timetable computation consists of
a randomized multi-start greedy heuristic (hereby referred to as MacroHeu) that iter-
atively generates a set of feasible timetables and, among them, selects the one having
the minimum cost. The cost of a timetable takes into account properly defined penal-
ties plus a specific penalty that considers its robustness. To assess the robustness of a
timetable, a number of different scenarios (each one featuring a randomly generated
delay for each train) are considered and evaluated in terms of absorption of the delays.

The macroscopic timetable computation algorithm may be run several times in a loop
with the microscopic module exchanging information based on tightening and/or re-
laxing constraints, in order to guarantee that the final macroscopic timetable is also
feasible from a microscopic perspective. For this reason, MacroHeu needs to imple-
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ment a relatively easy methodology that can provide a good solution within limited
computing times (i.e., tens of seconds).

6.5.1 Optimization algorithm

The problem addressed by the macroscopic module can be formulated as an ILP model
with four different types of binary and integer variables and an exponential number of
constraints.

Let Pl be set of all feasible paths of each train of line l = 1, . . . , l, where a path p is
an ordered sequence of arrival and departure times for each timetable point of the set
Sl , defined as (τD

t1s1 p,τ
A
t1s2 p,τ

D
t1s2 p, . . . ,τ

D
t1s|Sl |−1 p,τ

A
t1s|St |p

,τD
t2s1 p, . . .τ

A
t|Tj |S|Sl |p

), where τD
tsp

represents the departure time at timetable point s ∈ Sl\{|Sl|} of train t over path p and
τA

tsp is the arrival time at timetable point s ∈ St\{s1} of train t. A path p is feasible if it
satisfies the following constraints:

• all timetable points of the set Sl are visited according to the given route ρmacro
t ;

• the total maximum journey time Jt is not exceeded;

• for each i = 1, . . . , |Sl| − 1, the difference between the arrival time τA
tsi+1 p at

timetable point si+1 and the departure time τD
tsi p at timetable point si is at least

rta and does not exceed rta, with a = (si,si+1), that is rta ≤ τA
tsi+1 p− τD

tsi p ≤ rta;

• for each i = 2, . . . , |Sl| − 1, the difference between the departure time τD
tsi p and

the arrival time τA
tsi p at timetable point si is at least wtsi and does not exceed wtsi ,

that is wtsi ≤ τA
si+1 p− τD

si p ≤ wtsi .

In addition, the following penalties are defined:

• πcanc
l : penalty paid for cancelling the trains of line l ∈ L;

• πrunn
l : penalty for each time unit of running time exceeding the nominal one for

trains of line l ∈ L;

• πdwell
l : penalty for each time unit of dwell time exceeding the nominal one for

trains of line l ∈ L;

• πconn
q : penalty for the connection time exceeding uq for connection q ∈ Q;

• π
conn
q : penalty for missing connection q ∈ Q.

The cost cp of path p∈Pl that is assigned to the trains of line l = 1, . . . , l, is given by the
running and dwell time exceeding the nominal ones penalized according to penalties
πrunn

l and πdwell
l , respectively, that is:

cp = π
runn
l ∑

t∈Ll

|St |−1

∑
i=1

(
τ

A
si+1 p− τ

D
si p

)
−π

dwell
l

|St |−1

∑
i=2

(
τ

D
si
− τ

A
si

)
.
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Let U be the set of all paths cliques, where each path clique U ∈U is a subset of the
paths of all lines (i.e., U ⊆

⋃
l∈L Pl) which may have conflicts with each other. This

means that at most one of such paths can be in the solution simultaneously because any
pair of those paths violate constraints on headway times and/or station/arc capacity.

By introducing the following sets of variables:

• Binary variable xp equal to 1 if path p ∈ Pl of trains of line l ∈ L is selected (0
otherwise),

• Binary variable ξl equal to 1 if all trains of line l ∈ L are cancelled (0 otherwise),

• Integer variable yq representing the connection time exceeding uq for connection
q ∈ Q if connection q ∈ Q is not missed,

• Binary variable χq equal to 1 if connection q ∈ Q is missed (0 otherwise),

the problem addressed by the macroscopic module can be formulated as the following
ILP:

min ∑
l∈L

∑
p∈Pl

cpxp +∑
l∈L

π
canc
l ξl + ∑

q∈Q
π

conn
q yq + ∑

q∈Q
π

conn
q χq (6.5)

such that

ξl + ∑
p∈Pl

xp = 1 l ∈ L (6.6)

ξl(t1)+ξl(t2) ≤ 2χq q = (t1, t2,s) ∈ Q (6.7)

∑
p∈Pl(t2)

τ
D
tspxp− ∑

p∈Pl(t1)

τ
A
tspxp ≥ uq−Mχq q = (t1, t2,s) ∈ Q (6.8)

∑
p∈Pl(t2)

τ
D
tspxp− ∑

p∈Pl(t1)

τ
A
tspxp ≤ uq + yq +Mχq q = (t1, t2,s) ∈ Q (6.9)

∑
p∈U

xp ≤ 1 U ∈U (6.10)

xp ∈ {0,1} p ∈ Pl, l ∈ L (6.11)

ξl ∈ {0,1} l ∈ L (6.12)

yq ∈
{

0,uq−uq
}

q ∈ Q (6.13)

χq ∈ {0,1} q ∈ Q (6.14)

where M is a large enough number.

The objective function (6.5) guarantees that the timetable achieved minimizes the total
cost, given by the sum of: (a) the cost of the paths selected; (b) the cost for cancelling
trains; (c) the cost for exceeding the nominal connection time; and (d) the cost for
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missing connections. Constraints (6.6) impose on the model that each train is either
cancelled or scheduled. Constraints (6.7) ensure that if one or both trains correspond-
ing to a connection are cancelled, then a penalty for missing the connection is paid.
Constraints (6.8) state that if both trains of a connection are scheduled, then the dif-
ference between the corresponding departure and arrival times at the station where the
connection takes place must be not less than uq. Constraints (6.9) trigger the penalty for
exceeding the nominal connection time for each connection having both trains sched-
uled. The term Mχq in constraints (6.8) and (6.9) is used to prevent counting the
penalty of the exceeding connection time when the connection is missed. Constraints
(6.10) are clique constraints that impose on the provided timetable to be conflict-free
(i.e., no headway and capacity constraints are violated); notice that constraints (6.10)
can also be used to model simultaneous arrival or departures of pairs of trains at given
stations, if these have to be considered as hard constraints. Constraints (6.11)-(6.14)
set the domains of the variables of the model.

6.5.2 The macroscopic heuristic

Algorithm 10 Step-by-step description of Macroscopic optimization
Input: macroscopic network, set of trains, routes, headway times,
running times, dwell times, connections
Output: a feasible and robust macroscopic timetable MacroT T of
cost cMacroT T

Initialize MacroT T := /0 and cMacroT T := ∞

For iter = 1, . . . , iter Do
Initialize CurrT T := /0, cCurrT T := 0, and Le f tLines := L
While Le f tLines 6= /0 Do

Randomly select a line l from Le f tLines
Determine (see Appendix A) the min-cost path p ∈ Pl for line l that does not
conflict with any of the paths of the set CurrT T
If a path p ∈ Pl was found Then

Update CurrT T :=CurrT T ∪{p} and cCurrT T := cCurrT T + cp
Otherwise

Update cCurrT T := cCurrT T +πcanc
l

End If
Update Le f tLines := Le f tLines\{l}

End While
If cCurrT T < cMacroT T Then

Compute (see Appendix B) the robust cost crCurrT T of timetable CurrT T
If cCurrT T + crCurrT T < cMacroT T Then

Set MacroT T :=CurrT T and cMacroT T := cCurrT T + crCurrT T

End If
End If

End For

Algorithm MacroHeu is a randomized multi-start greedy heuristic that computes a
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number of heuristic solutions for formulation (6.5)-(6.14) and returns the ”best” one
found to the microscopic module. A step-by-step description of MacroHeu is provided
in Algorithm 10.

The initialization phase of MacroHeu consists of setting MacroT T equal to the empty
set and its cost cMacroT T equal to 0, where MacroT T is the subset of macroscopically
conflict-free paths (at most one for each line) that is returned as output of the proce-
dure. Then an iterative procedure starts running iter times, where iter is a parameter
that is set equal to 1000 in the computational experience reported in Section 6.7. At
each of these iter iteration, CurrT T represents the incumbent solution (i.e., it is a sub-
set of conflict-free paths), cCurrT T is the cost of timetable CurrT T , and Le f tLines is
the subset of lines that have to be processed in the current iteration iter. Each itera-
tion iter consists of two main steps: first, an attempt to find a macroscopically feasible
timetable is made by iteratively selecting a line and running a procedure that finds the
least-cost feasible path compatible with the paths of the set CurrT T (where the cost of
such a path does not consider only the cost of the path itself but also the cost deriving
from penalties related to connections); second, timetable CurrT T is assessed in terms
of robustness, compared with the best timetable MacroT T found so far, and the best
timetable MacroT T is possibly updated accordingly. Therefore, at each iteration, al-
gorithm MacroHeu makes an attempt to finding a macroscopic feasible timetable by
iteratively fixing variables xp to 1 (and variables ξl if no feasible path is found for line
l ∈ L), while increasing the cost of timetable CurrT T as little as possible.

Two crucial sub-routines are used in each iteration of MacroHeu. The first sub-routine
finds the least-cost (with respect to the current timetable CurrT T ) path for a line l ∈ L.
The second sub-routine assesses the robust cost crCurrT T of timetable CurrT T . These
two sub-routines are described in Appendix A and B, respectively.

6.6 Constraint updating
When running our micro-macro framework, we sequentially adapt process times at
micro level and return to the macroscopic model to re-compute the MacroTT again. In
fact, process times of the micro model represent and define constraints for the macro-
scopic timetabling model. If MacroTT has conflicts at the microscopic level, then
macro constraints on train process times are recomputed by the microscopic model
according to two main processes, namely: 1) constraints tightening and 2) constraints
relaxation. In this section we describe these procedures in detail.

6.6.1 Constraints tightening

Once the macroscopic timetable is obtained, the microscopic model runs the conflict
detection algorithm that tests the feasibility of the produced timetable, i.e., the potential
existence of conflicts. If a conflict is observed, then the time separation between two
trains has to be increased to satisfy safety constraints. By doing so, the degree of free-
dom for scheduling a train path (i.e., its search space) gets smaller, since constraints
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on minimum headway times between two train paths are introduced. We call the pro-
cedure of increasing the constraints on minimum headway times constraint tightening.

For each corridor ϕ ∈ Φ, the existing conflict for a train pair i, j ∈ T , ci jϕ > 0, is
resolved by updating the headway time as:

hi js← hi js + ci jϕ,

where s is a timetable point on corridor ϕ. Note that the process for detecting a conflict
on a corridor and identifying the corresponding station headway to solve that conflict,
is not trivial. Once a track conflict is detected, the algorithm identifies the location
of the closest timetable point s to the conflict, and computes the minimum headway
time which solves that conflict. In addition, the minimum time separation to avoid
conflicts between two trains depends on whether the trains run in the same or in the
opposite direction, so we determine the corresponding interaction between conflicting
trains that may be arrival-arrival or departure-departure for trains running in the same
direction, as well as arrival-departure or departure-arrival for trains running in opposite
directions. Consequently, the minimum headway time hi js can be correctly updated.

We here give an example for updating the minimum headway time between two trains
is updated if they were detected to be conflicting. Trains t1 and t2 run in the same
direction along corridor ϕ, from timetable point s1 to timetable point s2 and have a
track conflict with overlap time ct1t2ϕ. If the conflict is geographically closer to location
s1 then we update the headway between the departures of our trains at location s1,
hdd

t1t2s1
. Alternatively, if the conflict is closer to location s2 then we update the headway

between the arrivals of our trains at s2, haa
t1t2s2

. The minimum time headway hi js is
so increased by ci jϕ and thereby tightening the relative constraint in the macroscopic
model.

6.6.2 Constraints relaxation

A timetable point (e.g., station, junction) in a railway network is considered to be
a potential bottleneck if the corresponding infrastructure occupation rate exceeds the
thresholds recommended by the UIC on capacity usage. In this case, enlarging the time
separation between trains at that timetable point is necessary to reduce the infrastruc-
ture occupation rate and introduce additional buffer times beneficial for the mitigation
of delay propagation. We propose two types of constraint relaxations to reduce unac-
ceptable occupation rate: 1) train homogenization, and 2) journey time extension.

First, it is commonly known that homogenised traffic consumes the least infrastructure
capacity (Hansen & Pachl, 2014). Driven by this logic, we can guide trains to have
more unified behaviour, i.e., more similar macroscopic running times. This can be
obtained twofold: first, by allowing fast (intercity) trains to run slower, and second, by
increasing the operational speed of slow (regional) trains through the bottleneck area.
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This relaxation procedure is implemented as follows. Parameter µ is the threshold
recommended by the UIC for a good usage of infrastructure capacity, while ∆ is the
percentage increment in running time supplement in the timetable (e.g., +0.5%). If the
infrastructure occupation rate for corridor ϕ between two stations is µ(ϕ)> ν, then: i)
the maximum running time supplement for fast trains tF on corridor ϕ will be increased
by ∆1 as in (6.15) and ii) the nominal running time supplement for slow trains tS on the
same corridor will be decreased by ∆2 as in (6.16).

λ
max
ϕ (TI)← (1+∆1)λ

max
ϕ (tF) (6.15)

λ
nom
ϕ (TR)← (1−∆2)λ

min
ϕ (tS). (6.16)

As a further measure to reduce infrastructure occupation, we also increase the maxi-
mum allowed journey time of fast trains. Note that this relaxation goes in line with
(6.15) as a necessary correction. For example, let us assume a scheduled fast train that
has assigned the maximum journey time and runs on a corridor where the total capac-
ity is higher than µ(ϕ). If we increase the maximum running time for one train only
locally λmax

ϕ , while maximum journey time Jt stays unchanged, we might not experi-
ence the benefit of the λmax

ϕ relaxation because Jt will be still the bounding constraint.
Therefore, it is important to relax both λmax

ϕ and Jt .

6.7 Computational experiments

This section considers the computed timetable for the Dutch case study, including the
computational results, the achieved values for the performance measures and plots il-
lustrating the timetable and its performance measures. We have tested our iterative
approach for timetable planning on a railway corridor in the Netherlands. The models
and the framework are developed in Matlab and C++. Tests are made by using a dual
core Intel E7 with 2.6 GHz processor and 8 GB RAM. The microscopic and macro-
scopic modules used only one processor core. As input to construct the timetable, we
considered the Dutch train service specification for the year 2012.

6.7.1 Case study

We have designed the timetable for a relevant part of the Dutch network which includes
the corridors between the stations of Utrecht (Ut) and Eindhoven (Ehv), ’s Hertogen-
bosch (Ht) and Tilburg (Tb), and ’s Hertogenbosch and Nijmegen (Nm). Figure 2a
illustrates the geographical representation of the test case. The network in the micro-
scopic model consists of 1500 homogenous behavioural sections, 950 block sections
and 28 microscopic timetable points (e.g., stations, stops, junctions, bridges) of which
five are IC stations: Ut, Ht, Ehv, Nm and Tb. Most of the corridors are double-track.

The timetable on this network is periodic with an hourly pattern composed of eight
Intercity (IC) and twelve regional train lines all with two services per hour. So, a
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Table 6.1: Timetable design norms

Maximum journey time extension 20%
Minimum running time supplement 5%
Maximum running time supplement 30%
Dwell time at stops 35 s
Dwell time at macro points 1-2 min
Minimum transfer times 1-3 min

total of 40 train runs per hour are scheduled over the whole area. The corresponding
line plan is given in Figure 6.2b, where each colour represents a single train line.
In particular, two IC lines serve the corridor Ehv-Ht-Ut, one serves Tb-Ht-Nm and
one Ehv-Tb. Regional train lines operate on the corridors: Tiel (Tl)-Geldermalsen
(Gdm)-Ut, Tb-Ht, Ht-Gdm-Ut, Ht-Nm, Ehv-Ht and Ehv-Tb. This line plan results in
16 operating trains between Ut and Gdm, 4 between Gdm and Tl, 12 between Gdm
and Ht, 8 between Ht and Nm, as well as Ht and Tb, and 20 between Ht and Ehv.

Figure 6.2: a) Dutch railway network with highlighted case study area and b) train line
plan

Table 6.1 gives the timetable design norms that have been used as an input for the
timetabling process. These values are provided by the railway planners.

The developed framework computes the necessary process times and sets up the macro-
scopic network by applying Algorithm 8. The macroscopic model is built by aggre-
gating the microscopic infrastructure model. Specifically, this process has aggregated
the 28 microscopic points into 15 timetable points in the macroscopic model with 15
corresponding arcs between them. The macroscopic infrastructure model is illustrated
in Figure 3. Most of the lines are double-track unless the given number suggests differ-
ently. For example, the corridor between Boxtel (Btl) and Ehv consists of a four-track
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Figure 6.3: Macroscopic network

line. Note that not all microscopic timetable points are considered in the macroscopic
model as explained in Section 6.3.1. In total, the function AggregateProcessTimes pro-
duces 76 macroscopic running times for any pair of consecutive timetable points for
all of the 20 train lines, and 2027 minimum headway time computations. The compu-
tation time depends on the size of the network and the number of train runs. For the
considered case study, the execution of Algorithm 8 took under 30 seconds to generate
the macroscopic network model and compute the aggregated process times. The aver-
age computation time per iteration is about 40 seconds for the microscopic model, and
about 80 seconds for the macroscopic one (with iter =1000 macroscopic iterations).
Thus, the average time per micro-macro iteration was in total 120 seconds.

Figure 6.4 shows the computational results of the micro-macro iterations for obtaining
a conflict-free, robust and stable timetable. After nine iterations the algorithm con-
verged to a feasible solution which is both microscopically conflict-free and stable and
macroscopically optimized. During the iterations a decreasing trend can be observed
for the number of conflicts (blue solid line) and the total overlap time of conflicting
blocking times (green dashed line), with some iterations leading to an increased num-
ber of conflicts and overlap time when the timetable structure (train orders) changes
significantly from one iteration to the next in face of new minimum headway times
provided to resolve the conflicts. The total computation time, from the microscopic
input computation to the produced conflict-free, stable and robust timetable was about
20 min.

Figure 6.5 shows the time-distance diagram, while the associated blocking time dia-
gram is given in Figure 6.6. The vertical axis shows time in minutes downwards. The
horizontal axis shows distance with the station positions indicated. The blue lines are
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Figure 6.4: Evolution of the micro-macro interactions

Figure 6.5: Time-distance diagram corridor Utrecht – Eindhoven

Figure 6.6: Blocking time diagram corridor Utrecht – Eindhoven

IC trains, while magenta lines are local trains. Note that Figure 6.6 considers only the
infrastructure route used by the intercity train line 3500, running form Ut to Ehv. This
means that blocking times of other trains will be represented in the picture only if these
trains traverse block sections which are on the route of train line 3500.
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Table 6.2: Infrastructure occupation at main corridors

Corridor Time [s] %
Ut-Ht 1968 54.7
Ht-Ut 1924 53.4
Ehv-Ht 1320 36.7
Ht-Ehv 1338 37.2

The optimized timetable shows periodic passenger trains with regular 15 minute ser-
vices of both IC and local trains where two similar train lines follow the same route.
Hence, effectively 15 minute train services are realised instead of two separate 30
minute train lines. On the main corridor Utrecht-Eindhoven, the ICs overtake local
trains at Geldermalsen (Gdm), but this overtaking does not take place for trains in the
opposite direction.

Table 6.7.1 shows the infrastructure occupation on the main corridors. All the infras-
tructure occupation rates are below the threshold recommended by the UIC of 75%
defined for mixed traffic corridors at peak hours. The two heaviest used corridors are
Utrecht – ‘s -Hertogenbosch in both directions, with a maximum infrastructure occu-
pation rates of 54.7% for one direction and 53.4% for the opposite direction. The other
corridors have an infrastructure occupation rate below 41%.

6.7.2 Additional computational analyses

To demonstrate the applicability of the micro-macro timetabling model, we utilized
additional computations. We randomly generated line plans for a different number of
train lines in the train service specification that ranged from 16 to 25. Table 6.3 shows
the computational results for all given scenarios. For every scenario it is reported the
number of train lines in the line plan, the number of macroscopic running arcs and
headway arcs, the number of micro-macro iterations, the infrastructure occupation rate
of the most used corridor, the average time supplements allocated in the corresponding
timetable, the time for microscopic to macroscopic conversions in the initialization,
and the total computation times. The scenario previously analysed in Section 6.7.2 is
reported as scenario basic while the other scenarios were randomly generated from the
set of lines of the basic scenario by varying the chosen lines.

In general, the number of micro-macro iterations grows when the number of requested
train lines increases. The timetabling model needed at least three iterations to find a
solution (sc5) when the number of train lines was 16. On the other hand, at least 10
iterations were needed to obtain the conflict-free solutions for scenarios with more than
20 lines. This could be expected as the larger the number of train lines, the less is the
freedom to schedule trains on the given infrastructure. Consequently, the computation
times ranged between 353 and 1885 s.

The number of macroscopic running arcs also depends on the number of train lines in
the train service specification and we observed this number varied in the range from 56
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Table 6.3: Computational results for all scenarios

Scen. #
lines

#
trains

# macro
running
arcs

# head-
way arcs

#
iter

Max infra
occupation
rate (%)

Average time
supplements
(%)

Init.
(s)

CPU
time
(s)

basic 20 40 76 1712 9 53.44 8.80 29 1054
sc1 16 32 62 1304 6 42.46 8.79 23 611
sc2 16 32 56 966 3 46.89 8.78 23 353
sc3 17 34 66 1423 7 57.94 8.89 24 719
sc4 17 34 60 1049 5 46.89 8.88 24 539
sc5 18 36 70 1564 8 53.44 9.28 26 814
sc6 18 36 64 1154 4 51.33 9.27 26 502
sc7 19 38 70 1414 4 52.56 8.87 28 514
sc8 21 42 82 2030 11 59.06 8.93 30 1165
sc9 21 42 79 1846 5 57.94 8.84 30 640
sc10 22 44 88 2386 9 63.67 8.70 32 1089
sc11 22 44 82 2000 10 57.94 8.59 32 1207
sc12 22 44 84 2060 10 57.94 9.16 34 1304
sc13 23 46 91 2540 14 60.67 9.04 34 1795
sc14 23 46 85 2095 13 57.94 8.53 34 1694
sc15 24 48 90 2264 14 57.94 8.94 36 1809
sc16 24 48 90 2384 11 57.94 9.29 36 1456
sc17 25 50 96 2758 15 64.39 9.35 37 1885

to 96. A similar situation is observed for the number of headways which ranged from
996 to 2758 and the initialization time which varied between 23 and 37 s. The average
computation time for calculating minimum and operational running times for a single
train line was 1 s and 5 s, respectively. The average time supplement for all scenarios
varied between 8.78 and 9.27%.

We also observed that the infrastructure occupation rate does not explicitly grow when
increasing the number of train lines. Thus, changing the number of trains does not nec-
essarily mean a change in infrastructure occupation. For example, this was observed
between scenarios basic and sc5, where the maximum infrastructure occupation rate
remained the same although the number of train lines was different, 20 and 18, respec-
tively. Thus, we may say that the infrastructure occupation rate does not depend only
on the number of train lines, but also on the characteristics of the line plan such as the
type of line service (heterogeneity), the origin and destination stations, the line routes
and the scheduled connections.

Figure 6.7 gives the time-distance diagram for the scenario with the biggest line plan
sc17 which included 25 train lines.

.

6.8 Conclusions

This paper presented an integrated automatic timetable planning framework that pro-
duces timetables that are microscopically feasible, stable and robust. The developed
approach incorporated the strengths and advantages of microscopic and macroscopic
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Figure 6.7: Time-distance diagram corridor Utrecht – Eindhoven for scenario sc17

algorithms to provide overall efficient and satisfactory solution. Network transforma-
tion algorithms were introduced to automatically convert data from the microscopic
level to macroscopic one and vice versa. The macroscopic model is used for comput-
ing a robust network timetable which is afterwards converted and thoroughly analysed
at the microscopic level. The analysis includes conflict detection and capacity assess-
ment. If track conflicts are detected and/or capacity norms are violated, necessary
adjustments to train process times were undertaken by applying a procedure of con-
straints tightening and relaxation. This iterative micro-macro process automatically
terminates once the timetable is also microscopically feasible and stable.

A practical application to an area of the Dutch railway network showed the ability of
this framework in ensuring the feasibility of the macroscopic timetables at the level of
track detection sections. A high quality timetable was produced in 3 to 15 iterations,
depending on the given number of train lines plan, while the computing times were be-
tween 353 and 1885 seconds. In addition, the UIC norms on infrastructure occupation
rates were satisfied, so that for all the scenarios we obtain a maximum occupation rate
below 65% 1.

The proposed framework and integrated models are suitable for developing both peri-
odic and non-periodic timetables. Practitioners and timetable designers can use this
framework for timetable design and for the evaluation of existing timetables. Fu-
ture research will be addressed to generate and evaluate timetables that also include
scheduling of short-term freight train paths. Also a specific study will be dedicated
to define performance measures that evaluate the resilience of the timetable, i.e., the
ability of restoring scheduled operations when real-time rescheduling is applied during
perturbed traffic. The use of the proposed micro-macro approach is indicated for prac-
titioners as a tool for generating timetables that are operationally feasible and robust to
daily perturbations of the scheduled train operations.

1Only a subset of all freight trains was considered in the analysis.
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Appendix A. Finding the least-cost path for a given line
and timetable

The sub-routine for finding the least-cost path for a given line and a given partial
timetable works as follows. The insertion of a line into the incumbent timetable corre-
sponds to fixing a variable x into the model (6.5)-(6.14) and is performed by running
an exact dynamic programming recursion, a simplified version of the one used in Cac-
chiani et al. (2010), that identifies a feasible min-cost path that is compatible with the
paths assigned to the previously processed trains/lines, where the cost takes into ac-
count not only the cost of the paths but also the cost for connections. Such a dynamic
programming recursion computes functions f (t,σ,e) with three state-variables, where
t is the instant of time at which the event e (be it an arrival, a departure, or a pass at a
given station along the route of the train) takes places, and σ represents the total stretch
of the path (computed as the running and dwell time excess over the nominal ones).

This sub-routine receives as input the index l of a line of the set Le f tLines that must
be scheduled, and a timetable CurrT T that contains at most a path for each of the
lines of the set L\Le f tLines. The output of this sub-routine is either a path of the set
Pl that minimizes the increase in the cost of timetable CurrT T while maintaining its
feasibility, or the indication that all of the paths of the set Pl are incompatible with
the paths of the set CurrT T , which means that at least one of the constraints (6.10) is
violated if such a path of line l is added to CurrT T .

The sub-routine is a dynamic programming recursion that computes functions f (t,σ,e),
for each instant of time t = 0, . . . , t (where t is the length of the planning horizon
over which the timetabling computation is performed), each possible total stretch σ =

0, . . . ,sl with respect to nominal running and dwell times of line l, and each event e
(being it a departure and/or an arrival to each of the timetable points belonging to the
route of line l). Function f (t,σ,e) represents the cost of the min-cost partial path from
the departure from station s1 of Sl up to event e among all partial paths scheduling
event e at time t with a total stretch equal to σ.

Functions f (t,σ,e) are computed according to the following recursive propagation
rules:

• If event e = depi corresponds to the departure from timetabling point si ∈ Sl ,
i = 1, . . . , |Sl|−1, then

f (t,σ,depi) =

min
t ′=t+t−wl,si ,...,t+t−wl,si

{
f
(
t ′%t,max

{
σ+ t ′− t− t +wl,si,0

}
,arri

)
+π

dwell
l

(
max

{
t ′− t− t +wl,si,0

} )} (6.17)

for each instant of time t = 0, . . . , t and each possible stretch σ = 0, . . . ,sl;
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• If event e = arri corresponds to the arrival at timetabling point si ∈ Sl , i =
2, . . . , |Sl|, then

f (t,σ,arri) =

min
t ′=t+t−rl,(si−1,si)

,...,t+t−rl,(si−1,si)

{
f
(
t
′
%t,max{σ+ t

′
− t− t + rl,(si−1,si),0} ,depi−1

)
+π

runn
l
(

max{t
′
− t− t + rl,(si−1,si),0}

)}
(6.18)

for each instant of time t = 0, . . . , t and each possible stretch σ = 0, . . . ,sl .

Here, the term % represents the modulo operation, that is the remainder of the Eu-
clidean division, t

′
%t = t

′− t ·
⌊

t
′
/t
⌋

.

To explain the previous recursive propagation rules, consider the following examples:

• Given t = 100, t = 50, and σ = 10, and considering the departure from station
i (i.e., considering event depi), we want to compute functions f (50,10,depi),
knowing that the nominal dwell time wl,si is 5 and the maximum dwell time
wl,si is 10. All functions f (50,10,depi) recursively originate from functions
f (t ′,σ′,arri), where t

′
is in between 40 (=

(
t + t−wl,si

)
%t) and 45 (=

(
t + t−wl,si

)
%t)

and σ
′
= 10 when t

′
= 45, σ

′
= 9 when t

′
= 44, . . . , σ

′
= 5 when t

′
= 40, where

σ
′
= σ+ t

′− t− t +wl,si .

• Given t = 100, t = 50, and σ = 10, and considering the arrival at station i (i.e.,
considering event arri), we want to compute functions f (50,10,arri), knowing
that the nominal running time rl,(si−1,si) from station si−1 to station si is 5 and
the maximum running time rl,(si−1,si) from station si−1 to station si is 10. All
functions f (50,10,arri) recursively originate from functions f

(
t ′,σ′,depi−1

)
,

where t
′
is in between 40 (=

(
t + t− rl,(si−1,si)

)
%t) and 45 (=

(
t + t− rl,(si−1,si)

)
%t)

and σ
′
= 10 when t

′
= 45, σ

′
= 9 when t

′
= 44, . . . , σ = 5 when t

′
= 40, where

σ
′
= σ+ t

′− t− t + rl,(si−1,si).

In order to compute functions f (t,σ,e) recursively, the following initialization is re-
quired:

f
(

t,0,depl,s1

)
= 0

for each instant of time t = 0, . . . , t, which means that the cost for departing from the
first station of line l with no stretch is 0 no matter the departing time, and

f
(

t,σ,depl,s1

)
= ∞

for each instant of time t = 0, . . . , t and each possible stretch σ = 1, . . . ,sl .
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Moreover, whenever event e cannot take place at time t because this corresponding
path when added to CurrT T would violate some constraints (e.g., headway times,
capacity constraints, connections involving lines already scheduled in CurrT T , etc.),
we set f (t,s,e) = ∞ for each possible stretch σ = 0, . . . ,sl .

It is clear that, by computing functions f (t,σ,e) as described above, the only penal-
ties that are taken into account are the ones for exceeding nominal dwell times (i.e.,
πdwell

l ) and for exceeding nominal running times (i.e., πrunn
l ). So far, penalties related

to connections (i.e., πconn
q and π

conn
q ) have not been considered. Nonetheless, it is easy

to observe that, given the subset of paths of the set CurrT T , the penalties that must be
paid if a path for line l is selected depend uniquely on the time each of the events of
line l take place. This means that before computing functions f (t,σ,e), the penalty
πconn (t,e) for adding to CurrT T a path of line l where event e takes place at time t can
be computed.

Penalties πconn (t,e), for each instant of time t = 0, . . . , t and each event e are computed
as follows:

• If event e = depi corresponds to the departure from timetabling point si ∈ Sl ,
i = 1, . . . , |Sl|−1, then

π
conn (t,depi) =

∞ if ∃l ′ ∈ L\Le f tLines ∧ ∃q =
(

l
′
, l,si

)
∈ Q :

πA
p(l′)si

< t−uq∨πA
p(l′)si

> t−uq

∑q=(l′ ,l,si)∈Q πconn
q

(
t−πA

p(l′)si

)
otherwise,

where πA
p(l′)si

indicates the arrival time of line l′ at timetable point si in path
p(l′), which is the path assigned to line l′ in CurrT T . This means that, whenever
there exists a line l′ that has already been scheduled (i.e., l

′ ∈ L\Le f tLines) and a
connection between the arrival of line l′ and the departure of line l from timetable
point si that cannot be met if the departure of line l from si is scheduled at time
t, then any path of line l scheduling such a departure at time t is infeasible;
otherwise (if such a line and such a connection do not exist), then the penalty for
scheduling the departure of line l from timetable point si at time t is given by the
sum of the differences between t and the arrival time at si of all lines l′ for which
a connection

(
l
′
, l,si

)
∈ Q exists;

• If event e = arri corresponds to the departure from timetabling point si ∈ Sl ,
i = 2, . . . , |Sl|, then
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π
conn (t,arri) =

∞ if ∃l ′ ∈ L\Le f tLines ∧ ∃q = (l, l′,si) ∈ Q :
πD

p(l′)si
< t +uq∨πD

p(l′)si
> t +uq

∑q=(l,l′,si)∈Q πconn
q

(
πD

p(l′)si
− t
)

otherwise,

where πD
p(l′)si

indicates the departure time of line l′ at timetable point si in path
p(l′), which is the path assigned to line l′ in CurrT T . This means that, whenever
there exists a line l′ that has already been scheduled (i.e., l

′ ∈ L\Le f tLines)
and a connection between the departure of line l′ and the arrival of line l at
timetable point si that cannot be met if the arrival of line l at si is scheduled at
time t, then any path of line l scheduling such an arrival at time t is infeasible;
otherwise (if such a line and such a connection do not exist), then the penalty for
scheduling the arrival of line l at timetable point si at time t is given by the sum
of the differences between the departure time from si of all lines l′ for which a
connection (l, l′,si) ∈ Q exists and t.

Therefore, in order to keep into account penalties related to connections, the recursive
equations (6.15) and (6.16) have to be modified as follows:

f (t,σ,depi) =

min
t ′=t+t−wl,si ,...,t+t−wl,si

{
f
(

t
′
%t,max

{
σ+ t

′
− t− t +wl,si,0

}
,arri

)
+π

dwell
l

(
max

{
t
′
− t− t +wl,si,0

} )}
+π

conn (t,depi)

and

f (t,σ,arri) =

min
t ′=t+t−rl,(si−1,si)

,...,t+t−rl,(si−1,si)

{
f
(

t
′
%t,max

{
s+ t

′
− t− t + rl,(si−1,si),0

}
,depi−1

)
+π

runn
l

(
max

{
t
′
− t− t + rl,(si−1,si),0

} )}
+π

conn (t,arri) .

Then, the path for line l that implies the minimum increase when added to the set
CurrT T , corresponds to the one generating the function f

(
t∗,σ∗,arr|Sl |

)
, where

(t∗,σ∗) = arg min
t=0,...,t; σ=1,...,sl

{
f
(
t,σ,arr|Sl |

)}
.
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Appendix B. Robustness assessment of a given timetable

This procedure is aimed at assessing the robustness of a given timetable. The input of
the procedure is timetable CurrT T generated in a given iteration of MacroHeu, and
the output is its robust cost crCurrT T , which is defined in the following. The main idea
about assessing the robustness of the timetable is to generate a number of different
scenarios, each one characterized by a random delay for each train, and run on each
of these scenarios a local search procedure that tries to eliminate conflicts by retim-
ing trains. The robust cost crCurrT T is then determined by the weighted sum of the
unresolved conflicts plus the time to absorb the delays on each of the scenarios consid-
ered. A step-by-step description of the robustness assessment procedure is provided in
Algorithm 11.

Algorithm 11 Step-by-step description of the robustness assessment procedure
Input: macroscopic timetable CurrT T of cost cCurrT T
Output: robust cost crCurrT T of timetable CurrT T

0. Initialize crCurrT T :=0
For nscenario = 1, · · · ,nscenario do

1. Initialize T T Delay by starting from CurrT T
2. Generate a random delay for each train of timetable T T Delay
3. Run a local search procedure that retimes trains of T T Delay to resolve conflicts
4. Update crCurrT T

End For

Step 1 consists of an initialization phase. Timetable T T Delay is the timetable that
will be used in the following steps. It is the same as CurrTT except that the trains of
each line are replicated. This means that, for example, if in CurrT T there is a line
with periodicity 30 minutes that is scheduled to depart from station s at 10:00, then
in T T Delay such a line corresponds to n trains (where n is a parameter, e.g., n = 4);
the first one scheduled to depart from s at 10:00, the second at 10:30, the third at
11:00, and the fourth at 11:30. In other words, from the periodic timetable CurrT T the
corresponding non-periodic timetable T T Delay is generated.

Step 2 consists of the generation of the delays for each train, in particular, delays are
generated for the first train of each line of the non-periodic timetable T T Delay only.
The delays are generated according to a standard normal distribution and normalized
over the periodicity of the timetable. In particular, for each train t a random value
rand is generated and an event e (i.e., a departure or an arrival at one of the timetable
points traversed) is randomly selected. The time of event e in timetable T T Delay is
then postponed by rand ∗θ/3 units of time, where θ is the maximum delay considered.
Function rand generates a number randomly based on a truncated Normal distribution
N(0,1) that allows only positive values that are not greater than three.

Having generated a delay for the first train of each line, the resulting timetable T T Delay
may no longer be feasible from a macroscopic point of view: there may be headway
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times, capacity constraints, and/or connection times violated. In order to recover such
a feasibility, all conflicts are iteratively processed, one at a time, by considering first
the conflict occurring the last in time (i.e., conflicts are resolved starting from the latest
ones in the time horizon), and trains causing the conflict are retimed to resolve the
conflict. In particular, the retiming operation consists of simply increasing the dwell
times and/or the running times of the trains involved in the conflict; no reordering nor
rerouting of the trains are allowed. The procedure ends as soon as all conflicts are
resolved or the resolution of the conflicts would imply that more conflicts would be
generated.

Step 4 consists of updating the robust cost of timetable CurrT T . Let γ be the num-
ber of unresolved conflicts in T T Delay (i.e., the number of unsatisfied connections,
headway times, capacity constraints, etc.). Moreover, let π̂D

p(t)si
be the departure time

from timetable point si ∈ Sl , i = 1, . . . , |Sl| − 1, in the path p(t) selected for any of
the trains t of line l ∈ L, and let π̂A

p(t)si
be the arrival time at timetable point si ∈ Sl ,

i = 2, . . . , |Sl|, in the path p(t) selected for any of the trains t of line l ∈ L in timetable
T T Delay obtained after Step 3. The robust cost crCurrT T is updated by adding πunsγ+

πdelay
(

∑l∈L ∑t∈T (l)∑s∈Sl

(
π̂D

p(t)si
−πD

p(t)si
+ π̂A

p(t)si
−πA

p(t)si

))
, where πuns and πdelay

are parameters representing the penalties for each unsolved conflict and each unit of
delay, respectively.
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Chapter 7

A simulation-based optimization
approach for the calibration of
dynamic train speed profiles

This chapter has been published as:

Bešinović, N., Quaglietta, E., & Goverde, R. M. P., (2013). A simulation-based opti-
mization approach for the calibration of dynamic train speed profiles. Journal of Rail
Transport Planning & Management, 3(4), 126-136.

7.1 Introduction

Recent demand growth for passenger and freight transportation in railway systems has
raised the need for practitioners to increase the level of network capacity while keeping
a high standard of service availability and quality. To achieve this aim railway traffic
needs to be scheduled according to robust timetables that guarantee higher levels of
capacity usage also in presence of stochastic disturbances. On the other hand, suitable
control measures (e.g., train retiming, reordering and/or rerouting) must be applied
in real-time by dispatchers to provide rescheduling plans that mitigate the effects of
observed conflicts on network performances. Both robust timetabling and real-time
management of railway traffic aim at supplying conflict-free train paths computed on
the basis of off-line and on-line predictions of traffic behaviour. In the first step, train
trajectories must be computed taking into account microscopic details of the infras-
tructure (e.g., lengths, gradients, curvatures of rail tracks, speed limits), signalling
system (e.g., positions of signals, block section lengths, braking behaviour imposed
by the automatic train protection), train composition (e.g., number of wagons, rolling
stock characteristics), and current traffic information when the prediction is performed

159
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on-line. Then, based on the estimated train trajectory a conflict-free schedule is con-
structed by solving a mathematical problem (e.g., optimization, heuristics), or by re-
lying on rule-of-thumbs or experience of the operator (i.e., a planner in timetabling
and a dispatcher within real-time operations). The effectiveness of these schedules
depends on the reliability of the estimated train trajectories and the precise identifica-
tion of potential track conflicts. Inaccurate forecasts can lead to wrong detection of
possible conflicts and to traffic schedules that are ineffective or even infeasible when
put into operation. In this context, accurate traffic prediction models must be used to
confidently describe the real evolution of train behaviour. To this purpose a proper
calibration phase is needed to estimate input parameters against train data (e.g., po-
sition, speed) collected from the field, so that the model can reproduce the real train
trajectories as much as possible.

This paper presents an approach to derive the most probable speed profiles of train runs
from observed track occupation/release data. The train behaviour is modelled accord-
ing to the Newton dynamic motion equations which are numerically integrated over
distance employing the Runge-Kutta method (Butcher, 2008). A simulation-based op-
timization approach is adopted to calibrate input parameters of the equations describ-
ing the tractive effort, the motion resistances, the braking effort, and the cruising phase.
These parameters are fine-tuned for different classes of train composition (defined by
the number of wagons, the type of traction unit, and the length of the train) by minimiz-
ing the gap between observed and simulated running times, using a genetic algorithm.
Additionally, since the train composition is not known with certainty beforehand, a
model for train length estimation is developed. For each composition the calibration
experiment is performed over a significant set of observed train runs. This enabled
estimating the probability distributions the different input parameters for each class
of train compositions. This aspect gives also insight in different driving behaviours
adopted during real operations. The proposed approach is applied to train runs op-
erating along the corridor Rotterdam-Delft in the Netherlands. Results illustrate the
effectiveness of this method in calibrating parameters of the Newton’s dynamic equa-
tions versus track occupation/release data collected at the level of track sections.

With this paper the authors provide the following main contributions:

• A novel simulation-based method to calibrate the parameters of the train dy-
namic motion equations against observed track occupation data. This approach
allows the derivation of train speed profiles from the real distance-time trajectory
collected at discrete points from track-free detection sections.

• A procedure to assess the length of trains from time-distance data collected by
track-free detection sections

• A statistical assessment of parameters relative to both physical-mechanical char-
acteristics of trains (e.g., coefficients of resistance and traction equations) and
the behaviour of train drivers (e.g., compliance to the max speed limit on the
track, braking rate applied).
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• A practical application to a real test case which proves the applicability of the
proposed approach and the usefulness that results can have for both practitioners
(e.g., more reliable predictions of train trajectories) and academics (e.g., distri-
bution of parameters suitable for robust timetabling design).

Section 2 gives a literature review on the different approaches proposed to model train
running times and calibrate model parameters. In section 3, the methodology proposed
in this paper is described. Section 4 illustrates the case study considered for the ap-
plication and provides the corresponding results. Conclusions and final comments are
given in section 5.

7.2 Literature review

In the literature, several approaches are presented for estimating train running times
taking into account microscopic features of both trains and the infrastructure (includ-
ing the signalling system). In particular, models can be mainly divided in the ones
using kinematic motion equations and others adopting a dynamic representation of the
movement, basically by means of Newton’s motion formula (Hansen & Pachl, 2008).

T. Albrecht, Gassel, Knijff, and van Luipen (2010); T. Albrecht, Goverde, Weeda, and
Van Luipen (2006) described train motion based on the kinematic equations and cali-
brate their parameters (speed and acceleration) versus track occupation data collected
by means of train describer systems (Daamen, Goverde, & Hansen, 2009; Goverde
& Meng, 2011). T. Albrecht, Gassel, Binder, and van Luipen (2010) use calibrated
kinematic models to understand the influence of the Dutch signalling and ATP system
on train speed profile and energy consumption. The disadvantage of these models is
that they calibrate only the parameters of the kinematic motion equations which are
trajectory-dependent and cannot be used anymore when considering a different train
run even if the rolling stock is the same.

Medeossi, Longo, and de Fabris (2011) use a dynamic equation for each phase of the
train motion (i.e., acceleration, cruising, coasting and braking) and fine-tunes the re-
spective performance parameters against GPS data collected on-board of the trains. A
probability distribution is then estimated for these parameters to characterize stochastic
variations of running times.

Hertel and Steckel (1992) proposed a model that computes running times based on the-
oretical stochastic distributions of train parameters (e.g., resistance coefficient, braking
rate) instead of using typical deterministic parameters as commonly considered in prac-
tice. The parameter distributions adopted in this work are however not derived from
any realised train run.

Kecman and Goverde (2012) adopt a method suitable for real-time predictions, that
represents train trajectories by means of a weighted graph that evolves dynamically
each time that new information is gathered from the field; weights of the arcs are train
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running and dwell times and minimum headway times measured by means of detailed
track occupation/release data from train describer records collected at the level of track
sections (e.g., axle counters, track circuits).

During real operations stochastic variations to individual train runs are observed due
to changes in the rolling stock condition, rail deterioration, as well as variations in the
train driver behaviour and weather circumstances. These unpredictable variations in-
duce an alteration of train characteristics such as the deceleration and the acceleration
rates as well as motion resistances (e.g. due to gradient, air viscosity, rail curvatures)
and consequently, a change in train trajectories Kecman and Goverde (2013). Ac-
cording to this, approximated parameters estimated by manufacturer or train operators
should not be taken for granted (Radosavljević, 2006), but need to be computed for
each train composition and railway corridor separately.

This work helps filling the gap between practice and theory under the following per-
spectives:

• So far, research approaches proposed in literature were mainly focussed on cali-
brating parameters of the kinematic train motion equations (T. Albrecht, Gassel,
Binder, & van Luipen, 2010; T. Albrecht, Gassel, Knijff, & van Luipen, 2010;
T. Albrecht et al., 2006) or only performance factors of the dynamic train motion
equations[12]. This work instead has the objective to calibrate all the parame-
ters of the dynamic train motion equation and not only performance factors as in
Medeossi et al. (2011). The fact that we consider and calibrate all the parameters
of the dynamic equation, gives to our model a higher flexibility than (Medeossi
et al., 2011) since it can accurately describe every kind of observed trajectory.
This means that it can reproduce every type of observed driving behaviour.

• Compared to the previous work by Medeossi et al. (2011), the main advantage of
our approach is that we manage to accurately describe observed train trajectories
on the basis of track occupation data and not GPS. Currently, only in rare cases
it is possible to use GPS data, given that the most part of railway networks in Eu-
rope are not equipped with these systems. Most part of the railway networks are
equipped with track-free detection systems that detects the occupation/release of
a certain track from a train. This means that the model proposed in this paper
can be used for all those networks having track-free detection systems since we
use exactly these data to calibrate train parameters. Moreover, these data are au-
tomatically collected which provides a big amount of data for detailed analyses.

• The presented methodology provides probability distributions of train param-
eters fitted on data gathered from the real field, which can be used for more
reliable robust timetabling (where train running times are generated from ran-
dom distributions) or as more realistic input for the model of Hertel and Steckel
(1992) to calculate train running times.
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To the best of the authors’ knowledge no efforts have been addressed in literature to
the estimation of parameters relative to tractive effort and motion resistances based on
actual track occupation data.

7.3 Methodology

7.3.1 A simulation-based framework to calibrate dynamic equa-
tions of train motion

To provide a reliable prediction model able to accurately reproduce real train trajecto-
ries it is necessary to calibrate model parameters against real data collected from the
field. In this paper the calibration process is performed by developing a simulation-
based framework that integrates a genetic algorithm with a microscopic running time
model based on dynamic motion equations as given by Newton.

This framework has been developed in Matlab and consists of several components
(Figure 7.1). The entire framework is based on data relative to the infrastructure (e.g.,
track length, gradient, speed limits, signal and station positions), the rolling stock fea-
tures (e.g., train length) and the track occupation/release collected from the field. A
pre-processing phase is necessary to convert the different input data into a suitable
format and combine them in order to derive information needed to initialize the cali-
bration model. In particular these data are combined to identify the exact route (i.e. the
sequence of track sections, switches, signals, and stations crossed by the train during
its run) and the train length (which is related to the composition) of each observed train
run. Train length has been used to group the observed train runs in different classes of
train compositions. Parameters of the running time model are estimated separately for
each class.

Also, track occupation/release data are processed to derive discrete space-time trajec-
tory data for each observed run that are used to evaluate the objective function at each
iteration of the optimization algorithm. The calibration experiment is performed only
against distance-time data relative to unhindered trains, thus train runs that are not dis-
turbed by the presence of other trains on the network. This assumption consents to
understand how the value of train parameters varies over different runs only due to the
behaviour of the train driver and not to the interactions with other trains.

The proposed algorithm developed for the optimization problem is customised genetic
algorithm which is implemented in Matlab. Output of the framework consists of: cali-
brated parameters of the dynamic equation for each train (i.e., braking rate, parameters
of the tractive effort equation, coefficients of the resistance equation, speed adopted in
cruising phases) and the corresponding train trajectories (i.e., distance-time diagrams,
speed-time and speed-distance diagrams).

This framework has been applied to calibrate a significant set of train runs for each
class of train compositions. By doing this, it has been possible to estimate the proba-
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Figure 7.1: Functional scheme of the simulation-based optimization framework

bility distribution relative to the input parameters of the running time model for each
train class.

7.3.2 Input data

Input data to the proposed framework are relative to the infrastructure characteristics,
the rolling stock features and observed track occupation/release data collected at the
level of track sections for a significant set of train runs. In this section a detailed
description of each of these data is provided as follows:

• Infrastructure data contains detailed information about microscopic characteris-
tics of railway network. These data describe lengths of track sections, curvature
radii, gradients, static speed limits, positions of stations, signals and switches
as well as the braking behaviour and the supervised speed codes by the Auto-
matic Train Protection system (in this case represented by the Dutch ATB). All
this information is derived from infrastructure maps and digital InfraAtlas data
provided by the Dutch infrastructure manager (IM) ProRail.

• Rolling stock data specify the features regarding rail vehicles such as train com-
positions (number of wagons, type of traction unit), mass, parameters of the trac-
tive effort-speed curve as well as coefficients of the resistance equations. This
data have been supplied by the main Dutch railway Undertaking (RU) Nether-
lands Railways (NS).

• Track occupation/release data are gathered from field measurements that return
the event time that a given train has occupied or released a certain section on the
network. This information has been collected by means of the train describer
system in the Netherlands called TROTS (ProRail, 2008). This system logs
generated train number messages and incoming infrastructure messages (from
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signals, switches, track sections) to provide a list of events in a chronological
order. The advantage of the TROTS system is that it is able to record train num-
ber steps at the level of track sections. Measured occupation/release times are
rounded down to the full second and are affected by an error (i.e., delay) of
release of track circuits, that has been defined for safety reasons. This measure-
ment inaccuracy has a big influence on very short sections when short occupation
times are observed. These data are pre-processed by using the data mining tool
developed by Kecman and Goverde [9].

7.3.3 Data pre-processing

The main function of the pre-processing phase is to: i) convert the different input data
into a format that is usable by the developed framework, ii) combine these data in order
to derive additional information which are needed to initialize and apply the calibration
model. Specifically, the latter process is addressed to provide for each observed train
run: the exact route and the train length.

The route of a train is defined as the sequence of infrastructure elements (i.e. track
sections, switches, signals, station platforms) traversed during its run. To determine
the route relative to a certain observed train run, it is necessary to combine track oc-
cupation/release data corresponding to that run together with the infrastructure data
(InfraAtlas maps). The track occupation/release data is a chronological ordered list
of the IDs (identification number) relative to the infrastructure elements crossed by
the train during a certain run. By coupling this list of IDs with the infrastructure data
it is possible to identify the route followed by that run in terms of length of track
sections, gradients, static speed limits, curvature radii, the switches used, the signals
approached, and the platforms at which it stopped.

In the Netherlands, different rolling stock is used in service and these variations may be
observed even at a single train line. Despite the existing rolling stock plans for each day
of operation, the realised rolling stock tends to differ due to both real-time situations
that cannot be predicted in advance (i.e., train delays and track obstructions) and the
actual rolling stock availability (e.g. due to breakdowns or unplanned maintenance).
Moreover, both planned or realised rolling stock may be unavailable to the infrastruc-
ture manager. Hence, there is a need for detecting train compositions that have been
actually used during real operations. This detection can be performed by estimating
train lengths by means of track occupation/release data. To explain this procedure it is
possible to refer to the example illustrated in Figure 7.2 where two track sections si are
represented together with their respective section joints xi and xi+1. The average speed
of train run j when traversing track section si can be calculated as:

v̄i, j =
xi+1− xi

toccupy (si+1)− toccupy (si)
[m/s] (7.1)

where toccupy (si+1) and toccupy(si) represent the time in which the head of the train
enters track section si and si+1, respectively. Also, trelease(si) is the time instant in
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which the tail of the train releases track section si. As said in Section 3.2, the release
time trelease(si)is affected by an accuracy error δ that is the time delay between the
perceived and the actual instants in which a train releases section si (i.e., trelease± d).
Due to this delay we can only estimate an interval I j for the length of train j. The width
of interval I j (expressed in m) is easily assessed as:

I j = [v̄i, j · ((trelease(si)−d)− toccupy(si+1)), v̄i, j · ((trelease(si)+d)− toccupy(si+1))].

(7.2)

Consequently, we assume that the expected length l j of train j coincides with the me-
dian of interval I j.

Figure 7.2: Track sections and respective joints

Assume that from the analysis of rolling stock data we observe different possible train
compositions c1,c2,c3,c4 with associated lengths L1,L2,L3,L4, respectively. Li of each
possible composition ci, where i = (1,2,3,4). The composition assigned to j train will
be therefore the one whose length Li is the closest to the estimated length l j, i.e., the one
which minimizes the difference |Li− l j|. When the estimated interval I j is too wide,
it may happen that multiple composition lengths are covered. Also, it may happen
that no train lengths are feasible. In these cases it is not possible to assign a specific
composition to train run j.

7.3.4 Microscopic speed profile model based on dynamic motion
equations

The developed running time model is based on Newton’s dynamic motion equations,
where the train is modelled as a mass point. This assumption is widely accepted and
used in practice (Hansen & Pachl, 2008), since practical applications have shown satis-
factory results. The train length is not neglected in the model since the trajectory of the
tail of the train is obtained from the one of the head shifted back for the train length.
Referring to the Newton’s motion law, the force fs(v) (surplus force) that is used to ac-
celerate a train is produced by the difference between the tractive effort ft(v), and the
resistance forces r (v). The tractive effort is generated by the traction unit and applied
at the wheel’s rim. The resistance forces are obtained as the sum of the resistances due
to air viscosity and line characteristics (e.g., gradient and curves). This relation can be
formally expressed as:

ft (v)− r (v) = fs (v) = m ·dv/dt. (7.3)

The tractive effort is assumed a piecewise function of the train speed v consisting of a
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linear and a hyperbolic part (Hansen & Pachl, 2008):

ft(v) =
{

c0 + c1v, v≤ voverheat ,

c2/v, v > voverheat .
(7.4)

The linear part of the function (c0 + c1v) is valid for values of the speed lower than
the so called overheat speed limit voverheat , while a hyperbolic characteristic is denoted
for higher speeds and presents a limitation due to adhesion and tractive power. The
resistance forces r (v) acting against the train movement are modelled as a second-order
polynomial of speed, expressing resistances on a flat and straight line (r0+r1v+r2v2),
and constant resistances due to the topology of tracks, i.e., gradient ( fG) and curve
alignment ( fC), respectively [7]:

r(v) = r0 + r1 · v+ r2 · v2 + fC + fG. (7.5)

The coefficients r0, r1 and r2 depend on several variables such as type of the rolling
stock, train composition and number and type of train axles. The constant and lin-
ear term with coefficients r0 and r1 represent the mechanical resistance of the rolling
stock, while the quadratic term models the aerodynamic resistance. In this model extra
resistances relative to the presence of tunnels are not considered. Figure 7.3 shows a
typical trend for the tractive effort and the train resistances as described by 7.4 and 7.5,
respectively.

Figure 7.3: Train characteristics

It should be noted that the mass of the train is implicitly included within the coefficients
of resistances and tractive effort equations. Indeed, these are specific coefficients since
they are expressed per mass unit. Also, weather conditions such as wind speed, are
embodied as part of the parameters. For example, if weather conditions are bad (i.e.,
wind against train movement direction) this will result in higher resistance parameters.

In order to estimate train trajectories, it is necessary to solve equation 7.3 for each
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phase of the motion, that is to say: i) acceleration, ii) cruising and iii) braking. The
analysed corridor Rotterdam-Delft is one of the densest corridors in the Dutch net-
work, thus it is assumed that just small running time supplements had been allocated.
Therefore, the coasting phase is not included in the presented running time model. The
following characteristics are considered for each phase:

• In the acceleration phase the driver is supposed to accelerate the train by using
the tractive effort described by 7.4 until the train reaches the maximum speed
allowed for a given track, or the desired value of cruising speed.

• In the cruising phase the train moves with a constant speed. For a certain track
this speed can be the static maximum speed, or a certain lower cruising speed
deployed by the train driver. Therefore, the rate between a static speed limit
and the cruising speed actually operated is represented by θcruising. This cruising
performance can vary from track to track and depends on the driver behaviour.

• In the braking phase train speed is reduced to accomplish speed restrictions im-
posed by the track (e.g. static speed limits, switches, stops at stations) or by the
signalling system (e.g. red or yellow aspects). Experimental results presented in
Medeossi et al. (2011) show that during service two different braking rates are
used by trains when 1) slowing down to respect static or dynamic (e.g. given by
the signalling system) speed limits and 2) coming to a standstill because of stop-
ping in a station. This assumption has been made in the present model, whereby
two braking rates are used for the former (blimit) and the latter case (bstop), re-
spectively. Specifically, due to the specific allocation of track circuits it has been
not possible to collect time data suitable for the determination of bstop. That is
why a default value of 0.66 m/s2 has been used for this parameter as provided by
NS.

A partial train trajectory is determined for each phase by computing the speed v assumed
by the train at a certain distance s, and afterwards calculating the time t corresponding
to obtained speed and distance. Particularly, a dynamic train speed profile is modelled
as a function of speed depending on distance:

dv
ds

=
ft (v)− r (v)

v
, (7.6)

where dv/ds is the derivative of speed with respect to distance. \f speed dependent on
distance aerodynamic resistance. The corresponding running time is expressed as:

dt
ds

=
1
v
, (7.7)

where dt/ds is the derivative of time to distance. The given equations (7.6)-(7.7) are
autonomous first-order ordinary differential equations for which several numerical so-
lution methods have been tested in terms of speed and accuracy. As a result, the method
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given by Dormand-Prince (Butcher, 2008) is adopted which is a particular application
of the more general Runge-Kutta approach.

7.3.5 Formulation of the calibration model: a simulation-based
optimization problem

The calibration process is formulated as an optimization problem that aims to minimize
the error between simulated and real passage running times. As explained earlier,
actual running times are derived by pre-processing TROTS data.

The decision variables (i.e., the parameters that need to be calibrated) of the problem
are listed in Table 7.1.

Table 7.1: Decision variables
Parameter Description
c0 maximum starting tractive effort due to overheating limit [N/kg]
c1 linear parameter of tractive effort equation [Ns/m/kg]
c2 hyperbolic parameter of tractive effort function [Nm/s/kg]
r0 constant resistance coefficient [N/kg]
r1 linear resistance coefficient [Ns/m/kg]
r2 quadratic resistance coefficient [Ns2/m2/kg]
blimit braking to speed limit characteristic [m/s2]
θcruising cruising performance [%]

The optimization problem can now be formulated as:

min ∑
i∈N
|tobserved

i −tsimulated
i | (7.8)

Subject to

dv
ds

=
ft (v)− r (v)

v
, (7.9)

dt
ds

=
1
v
, (7.10)

c0 ∈ [clb
0 , cub

0 ], (7.11)

c1 ∈ [clb
1 , cub

1 ], (7.12)

c2 ∈ [clb
2 , cub

2 ], (7.13)

r0 ∈ [rlb
0 , rub

0 ], (7.14)

r1 ∈ [rlb
1 , rub

1 ], (7.15)

r2 ∈ [rlb
2 , rub

2 ], (7.16)

blimit ∈ [blb
limit , bub

limit ], (7.17)

θcruising ∈
[
θ

lb
cruising,θ

ub
cruising

]
, (7.18)

v(0) = v0 = 0, v(N) = vend = 0, (7.19)
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where the objective function (7.8) is represented by the absolute error between the
simulated and observed passage running times for all the N measurements provided
by the TROTS data. It is clear that the evaluation of the objective function requires a
preliminary computation of the speed profile and the running time. This means that a
numerical integration of the speed and the running time as represented by equations
(7.9) and (7.10) must be performed at each iteration of the optimization algorithm.

These parameters are relative to the tractive effort equation (c0, c1 and c2), the re-
sistance equation (r0, r1 and r2), the braking rate used to slow down (blimit) and the
cruising performance adopted by train driver during cruising phases (θcruising), respec-
tively. Equations (7.11) - (7.18) define the optimization constraints for each of these
variables imposing the lower (lb) and upper bounds (ub) of their domains. Finally,
the equation (7.19) gives the initial and final speed conditions representing that a train
starts the run from a standstill and stops at the end of route.

Therefore, a solution to the optimization problem is represented by the vector:

β = (c0,c1,c2,r0,r1,r2, blimit ,θcruising), (7.20)

which contains a set of values for the decision variables.

7.3.6 The optimization metaheuristics: a genetic algorithm

A genetic algorithm (GA) is developed to solve the optimization problem. GA is a
well-known robust and adaptive method largely used in the scientific field to solve
search and optimization problems. The algorithm works with a population of indi-
viduals, each representing a possible solution, in this case a set of train parameters β.
Each individual produces a different value of the objective function. The population
evolves towards better solutions (i.e. lower values of the objective function) by means
of randomized processes of selection, crossover, and mutation (see [13] for more in-
formation on the topic). The GA used in this research has been developed in Matlab
and customized to improve its performances according to the specific problem applied.
Moreover, its execution has been parallelized by allocating different functions of the
algorithm to different threads. This strongly reduces computing times of the optimiza-
tion when adopting multi-core computers.

7.4 Case study: the Rotterdam-Delft corridor

The framework proposed in this research has been applied to calibrate a significant set
of trains running along the corridor Rotterdam-Delft, which is one of the most densely
operated lines in the Netherlands. The line has a length of 14.3 km with a double
track layout. The Dutch signalling system NS’54 with ATB automatic train protection
is implemented over the whole corridor. A detailed explanation of this system can
be found in T. Albrecht, Gassel, Binder, and van Luipen (2010). Both regional and



Chapter 7. Calibration of train speed profiles 171

Table 7.2: Input data of rolling stock

Train composition Length [m] vmax [km/h]
VIRM4 108 160
VIRM6 162 160
VIRM10 270 160
ICRm (Locomotive 1700 + 10 cars) 282 160

Intercity (IC) trains operate on this line, but for the sake of simplicity the analysis
performed in this research is only demonstrated to the latter type of trains.

Figure 7.4: Schematic layout of the corridor Rotterdam – Delft

In particular, the intercity train line IC1900 is analysed. According to the timetable,
the rolling stock used in service is reported in Table 7.2. Four different classes of train
compositions have been observed: the electrical multiple units VIRM with four, six
and ten units as well as the locomotive hauled trains ICRm with ten cars. All these
trains use the same route and therefore the same platform tracks, in- and outbound
interlocked routes, and block sections, with a slight difference in terms of the stop
locations in stations.

The calibration of the running time model is performed for observed TROTS data
collected over a 28-days period of operation in April 2010. In total 42 track sections
have been considered. This means that the parameters of each train run have been
calibrated versus 42 time-distance observations.

All the calibration experiments are carried out on an AMD Athlon 3300 GHz processor
with six cores and 4GB of RAM. The integration of a single train trajectory takes
about 0.02 seconds, while the computing time needed to complete a single calibration
experiment is always lower than one minute.

7.4.1 Analysis of parameters and model performance

A preliminary sensitivity analysis has been performed to understand which input pa-
rameters is the more influential for the running time model. This has been carried out
by evaluating variation of the running time model output by changing the value of one
parameter while keeping fixed the other ones. This procedure has been repeated for
all input elements. Only the parameters that produced a significant variation of the
running time have been selected for the calibration, since the model is more sensitive
to these ones. In particular, the linear parameter of the resistance equation, r1, does not
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Table 7.3: Model performance output

Parameter Default value Average value Standard Deviation
Value %

c0[10−4N/kg] 5.62 5.33 0.05 0.96
c2[Nm/s/kg] 6.21 6.29 0.00 0.00
r0[10−2N/kg] 1.53 1.60 0.07 4.24
r2 [10−5Ns2/m2/kg] 4.08 3.55 0.10 2.79
blimit [m/s2] 0.66 0.24 0.00 0.00
θcruising[%] 100 101 0.00 0.00
Objective function [s] 135.76 79.00 0.34 0.42
Running time [s] 595.8 572.64 0.18 0.03

have significant importance, given that this parameter produces a variation of running
times less than 0.1%. Lukaszevicz (2001) came to the same conclusion for passenger
trains. A small relevance is also identified for the linear parameter of the tractive force
equation, c1. Hence, fixed values have been assumed for these two parameters and the
calibration process has been reduced to the following factors:

β = (c0,c2,r0,r2,blimit ,vcruising). (7.21)

As a result, the value of c1 has been set to zero, while r1 is fixed to the default value
used by the RU (given by the rolling stock input data) and dependent on the train
length.

A robustness analysis has been carried out to evaluate the robustness and performance
of the optimization algorithm. In particular, 30 calibration experiments have been ex-
ecuted for a fixed realised train trajectory. This gives insight in whether the algorithm
is able to return consistent results for the same calibration problem (with the same
observed data). If the value returned for each parameter is not the same over the dif-
ferent experiments then the algorithm is not robust enough and/or the optimization
problem is not well-defined. Results obtained from this test are reported in Table 3
which shows the average and the standard deviation of the values determined for each
parameter over the 30 calibration experiments. It can be seen that parameters c2, blimit

and θcruising converge to the same value for all the calibration experiments. Relatively
low values of the standard deviation are observed for r0 and r2, 4.24% and 2.79%,
respectively. However, variations of these two parameters produce just slight changes
in the objective function value and the total running time of 0.4% and 0.03%, respec-
tively. This outcome confirms the robustness of the algorithm used and the validity of
the formulated optimization problem.

The parameters are compared with the corresponding default values provided by the
RU (second column of Table 7.3). As can be seen the calibrated values vary around the
default ones for all the parameters but the braking rate blimit . The latter is due to the
fact that during the observed train run a train driver adopted a braking rate that was on
average lower than the one assumed by the operating company. Therefore, such aspect
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highlights the ability of the proposed model to estimate also the driving behaviour of
the train driver.
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Figure 7.5: Estimated speed profile and time-distance diagram for a single train run

Figure 7.5 illustrates the output of a single calibration experiment: the calibrated
distance-speed diagram (solid line) and the corresponding time-distance trajectory
(dashed line). The circles depict measured time-distance as given by TROTS. The
effectiveness of the calibration performed is immediately visible since the simulated
time-distance trajectory practically overlaps observed data. This means a very high
accuracy of the model. The gradient profile of the track is reported with the blue
line at the bottom while the static speed limit is depicted with the dashed blue line.
Yellow blocks represent the approach indication corresponding to those block sec-
tions in which trains has to start braking because of a restricted aspect imposed by the
NS’54/ATB system.

7.4.2 Train length estimation

The train lengths are estimated by means of the process explained in Section 3.3. Fig-
ure 7.6 shows the obtained intervals for the train lengths of the observed trains. Hor-
izontal lines show the width of this interval for each train run, while vertical lines
indicate the four lengths associated to each of the four compositions considered. A
different line style has been used to represent the estimated length. A dash-dotted line
is adopted for the class VIRM4, dotted for VIRM6, dashed for VIRM10, and solid for
ICRm, while solid grey is employed to represent cases in which it was not possible to
have a correct estimation of train length (i.e. when no composition length falls inside
the interval).

As can be seen these intervals of train lengths have different ranges. This depends
on the value of the measurement error d that affects release times of track circuits.
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Figure 7.6: Estimation of trains lengths for: a) actual measured release times, b) mea-
sured release times delayed by one second and c) measured release times delay by two
seconds

Specifically d is the time delay between the time in which the train actually releases a
track circuit and the time that instead this track circuit perceives this release. It is easy
to understand that as effect of this inaccuracy the average train speed and consequently
the intervals of train lengths are estimated with some tolerance as can be observed in
Figure 7.6. In order to understand how the value of error d affects the accuracy of the
estimated intervals of train lengths, we assessed these interval against three different
values of d, namely 0, 1 and 2 seconds. Such an assessment exposed that by assuming
a value of d = 1 s (7.6b) it was possible to estimate the lengths of the largest amount
of observed trains. Therefore we adopted this as the value of the time delay during the
whole analysis.

7.4.3 Calibration results

Calibration of parameters is undertaken for the four classes of train compositions. For
each class 70 train runs have been examined. Parameters of the running time model
have been calibrated for each of the train runs. This means that 70 sets of calibrated pa-
rameters β is provided for each train composition. This consents to estimate variations
of a certain parameter over different train runs for a given composition. A probability
distribution has been assessed for each parameter by applying the method of the max-
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imum likelihood estimation (MLE). The goodness-of-fit of the distribution to the data
has been tested using the Kolmogorov-Smirnov (KS) test. The probability distributions
that we obtained for a certain parameter are identified as the distributions having the
best fit with the observed data, i.e. the lowest value of the KS-statistic. The KS-statistic
assumes indeed low values for a good distribution fit, while high values for a bad fit.
On the other hand, the P-value ranges between 0 and 1, and it is close to 1 for a good
fit while close to 0 for bad fit. Figures 7.7-7.9 shows the results obtained for the train
class VIRM4. In particular, for each train parameter the figures report the correspond-
ing probability distribution, the related distribution parameters, and the corresponding
values of the KS-statistic and the P-value. It should be noted that similar distributions
are obtained for other compositions that for brevity are not explicitly reported.

Figure 7.7a gives the distribution of the constant parameter of the tractive effort. It
shows that this parameter fits best to a Weibull distribution. As expected, not all the
observed train runs use the maximum tractive effort while accelerating from a stand-
still. Nevertheless, some runs exceeded the theoretical maximum tractive force given
by the RU. Figure 7.7b shows that parameter c2 fits best to the generalised extreme
value (GEV) distribution. It is observed that in a certain number of train runs c2 was
higher than the experimental maximum.

Figure 7.7: Distributions of tractive effort parameters

The constant parameter of the resistance equation r0 (Figure 7.8a) shows a fit to a
uniform distribution. It can be observed that calibrated estimates tend to undervalue
the theoretical value. The distribution of r0 can be explained by recent developments
in rail-wheel contact and consequently, expected reduction of mechanical resistance.
On the other hand, higher values may be an effect of deteriorated rolling stock or a
train occupancy. The quadratic parameter r2 shows the best fitting to a Pareto dis-
tribution. From Figure 7.8b can be distinguished the variance of the aerodynamic
resistance, which may be considerable while taking into account adverse weather con-
ditions. Thereby, it may be assumed that the default value is slightly overestimated.
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Figure 7.8: Distributions of resistance parameters

The distribution of the braking rate (due to speed restriction) is shown in Figure 7.9a.
It can be observed that the most probable rate is significantly less than the default value
used by the RU which is 0.66 m/s2. Some of the higher values of the parameter can
be evaluated as an error in calibrated parameters regarding the inability of the current
model to detect and reconstruct coasting phases. For example, in case of coasting, a
simulated train speed profile tends to have a higher speed at the approach indication
than the realised train behaviour with coasting and it would consequently assume a
higher braking rate. The braking parameter shows the best goodness of fit with the log-
logistic distribution. This parameter shows a relevant variation over the different train
runs. An explanation to this can be the consistent difference in the driving behaviour
for different train drivers.

Finally, the cruising performance is depicted in Figure 7.9b. It is shown that the most
part of the trains tend to run at the maximum allowed speed given by the static speed
limit while some of them even overrun this limit for 1-2%. However, it has been
observed that some trains run only at 80% of the maximum speed, which presents a
significant diversity in the driver behaviour. This parameter fits best to the Johnson
bounded distribution (Johnson, 1949).

Table 7.4 present the ranges of calibrated parameters for all the train compositions.
Parameter r1 is not given as an interval since it was not part of the calibration and set
to a fixed default value, while the parameter c1 equals zero, as provided by the RU.

Figure 7.10 illustrates results from Table 7.4 and gives a comparison with the default
values of parameters provided by the RU. As can be observed the default values (yel-
low dots) represent neither the upper bound nor the average value of the distributions
of the calibrated input parameters. This aspect can be clearly seen for the factors rel-
ative to the tractive effort, c0 and c2. The default values given by the RU for these
parameters are usually employed for the calculation of the minimum running time, and
therefore should represent the upper bound of these intervals since it is assumed that
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Figure 7.9: Parameter distributions for: a) braking rate, b) cruising performance

Table 7.4: Calibrated parameters for the four train compositions

Parameter VIRM4 VIRM6 VIRM10 ICRm
c0 [10−3N/kg] [0.251, 0.621] [0.440, 0.600] [0.200, 0.511] [0.283, 0.503]
c2 [Nm/s/kg] [3.144, 8.648] [3.669, 7.075] [2.555, 7.355] [3.341, 11.792]
r0 [N/kg] [0.014, 0.016] [0.014, 0.016] [0.010, 0.020] [0.019, 0.022]
r1 [10−4Ns/m/kg] 2.162 1.939 3.341 3.342
r2 [10−5Ns2/m2/kg] [3.499, 4.678] [2.910, 3.904] [1.774, 3.597] [2.672, 3.616]
blimit [m/s2] [0.24, 0.9] [0.24, 0.9] [0.24, 0.9] [0.24, 0.9]
vcruising[m/s] [0.89, 1.02] [0.81, 1.02] [0.89, 0.98] [0.81, 1.02]

the train accelerates with the maximum power of the engine. Instead, the results of
the calibration experiment show the presence of train runs that overcome these values
in the reality. Furthermore, parameters of the resistance equation, r0 and r2, supplied
by the RU are within the estimated distributions, for all the train compositions. For
r0 was expected to be the lower bound of these intervals. Parameter r2 describes the
aerodynamic resistances and takes into account the effect of the wind in the same or
the opposite direction of the train run. The expectations were that the default values
supplied for these parameters would correspond to the means of the corresponding dis-
tributions. Nevertheless, it has been observed that the default values tend to represent
slightly overestimated values comparing with the observed distributions. On the other
hand, large variation intervals are revealed for the braking rate. This denotes a consis-
tent variation in the driving behaviour of train drivers. The default value for braking
rate cannot describe this aspect. Moreover, this value does not coincide with any repre-
sentative value of the distribution (i.e., mean, lower or upper bound). For the cruising
performance the same conclusions can be drawn as the braking rate.

7.5 Conclusions

Predictions of railway traffic are needed by designers and dispatchers respectively for
the design of robust timetables and the real-time management of perturbed conditions.
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Figure 7.10: Calibrated parameters for the four train composition

These tasks can be performed effectively only when using train running time models
which reliably describe actual trajectories. To this purpose the calibration of model
parameters against field data is necessary.

This paper presented an approach to derive the most probable speed profiles of train
runs from observed track occupation/release data. The train behaviour is modelled ac-
cording to the Newton dynamic motion equations, which are numerically integrated
over distance employing the Runge-Kutta method. A simulation-based optimization
approach is adopted to calibrate input parameters of the equations describing the trac-
tive effort, the motion resistances, the braking effort, and the cruising phase. These
parameters are fine-tuned for different classes of train composition (defined by the
number of wagons, the type of traction unit, and the length of the train) by minimiz-
ing the error between observed and simulated running times, using a genetic algo-
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rithm. For each composition the calibration experiment is performed on a significant
set of observed trains running along the Rotterdam-Delft corridor in the Netherlands.
A probability distribution has been estimated for the input parameters of each class
of composition. This aspect gives also insights in different driving behaviour adopted
during real operations.

The results show that the train length estimation model obtained good computation
accuracy. To this aim the error due to the delay of the release time has been distin-
guished. Further, the results illustrate the effectiveness of the proposed optimization
method in calibrating parameters of the Newton’s dynamic equations versus track oc-
cupation/release data collected at the level of track sections. It has been observed that
some of the parameters of tractive effort and resistance do not affect the train behaviour
significantly, i.e., the linear parameter of tractive effort as well as the linear parameter
of resistance force. Furthermore, the comparison with the default parameters provided
by the RU highlights that some of the default values tend to be inadequate for the cal-
culation of the technical running time for which they are generally used. Tractive effort
parameters seldom overreach the corresponding default values, therefore showing that
the latter are not the absolute maximum values, but a train has an extra power reserve
that can be used for faster running. On the other hand, the parameters of the resistance
equation tend to be slightly overestimated based on the received distributions. The
realised braking rate is significantly smoother than the default one; therefore trains tra-
verse the braking distance faster than computed in the minimum running time. Also,
train drivers do not always follow the maximum static speed limit. Instead, it has been
observed that in some cases the cruising performance is just 80% of the maximum.
Finally, it has been shown that a specific calibration process should be performed to
understand the variation in the coefficients of the dynamic motion equations over dif-
ferent train runs. In this way it is possible to set more reliable values to generate
stochastic running times during robust timetabling.

Instead, in a real time context the model can be used to predict train trajectories for
the detection of track conflicts. In particular, the implementation may be considered in
two different ways: i) By applying parameters only for a given train, we can perform a
deterministic and accurate prediction of its trajectory over a certain time period ahead
and consequently for a set of trains anticipate the future conflicts, ii) By using distribu-
tions for a category of trains we can identify a set of probable trajectories that a train
can have over a certain period ahead. In this case we can develop a statistical conflict
detection model that can derive probabilities of possible conflicts.

The current work can be extended in several ways. First, the calibration model could
be performed on different lines to evaluate possible different behaviour of train drivers
as well as to distinguish parameters for different train compositions. Second, it would
be noteworthy to compare realised and simulated running times based on achieved
stochastic parameters as well as analyse the dependency of running time and distribu-
tions of dynamic train parameters. Third, analyses to understand the train parameters
variation between delayed and on-time trains can be undertaken. Moreover, the com-
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putation time of the proposed simulation-based model can be enhanced by adjusting
parameters of the implemented GA. Finally, proper validation of the speed profiles
obtained by this model will be realized against GPS data.



Chapter 8

Conclusions and future developments

This thesis has developed automated capacity assessment and timetabling models using
data analysis, simulation and optimisation to successfully generate feasible, efficient,
stable and robust timetables. This chapter gives a summary of our main findings, main
conclusions, the recommendations to practice and future scientific research.

8.1 Main findings

Capacity assessment. In Chapter 2, we first reviewed methods for railway capacity
assessment, with the focus on methods based on timetable compression, such as UIC
406 and CUI. We then described the existing models for assessing the whole networks
as well as corridors and proposed a new max-plus model for the capacity occupation
assessment. The model follows the compression method and enables computation of
capacity occupation in stations while also being applicable for corridors. A capacity
occupation rate is considered as a stability measure, where a remaining available ca-
pacity identifies if delays could mitigate in limited time. If the capacity occupation
satisfies predefined thresholds the timetable is considered to be stable. The concept
of timetable stability was afterwards elaborated and applied in Chapters 3 to 6. This
chapter answers research question 1.

Conceptual timetabling framework. In Chapter 3, we proposed a concept of a three-
level modular performance-based timetabling framework that integrates timetable con-
struction and evaluation. We showed the importance of including performance indica-
tors, such as feasibility, stability and robustness, during the timetable construction. In
addition, multiple models need to be considered to represent each particular indicator
either at microscopic or macroscopic levels. This chapter answers research question 2.

Microscopic models. In Chapter 4, microscopic models were developed to compute
reliable running and minimum headway times for a macroscopic timetabling model,
as well as to check the microscopic feasibility and stability of the macroscopic timeta-
bles. Train running times are computed by integrating the Newton’s motion formulae,
while the accurate headway computation is based on the blocking time theory. In this
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way, we obtain a fast computation of train process times and acceptable speed pro-
files even for very dense railway traffic. The feasibility of the timetable is checked
by an efficient conflict detection and resolution model based on blocking time theory.
In case of conflicts, new running and minimum headway times are automatically com-
puted. Microscopic timetabling models are necessary to guarantee timetable feasibility
and stability and thus, create an added value to the timetable planning, which answers
research question 3.

Macroscopic model. In Chapter 5, a two-stage stability-to-robustness model is pro-
posed, which is the first timetable optimization model that incorporates three important
performance indicators of timetable design: efficiency, stability and robustness. Our
approach incorporates a network capacity assessment model in Stage 1 with a PESP-
variant of a timetabling model in Stage 2. The first stage focuses on stability, the
second stage on robustness, while efficiency is considered in both stages. Five objec-
tive functions were defined to generate alternative timetables, which were evaluated a
posteriori and compared with existing (single stage) PESP-based models. This chapter
answers research question 4.

The two-stage stability-to-robustness model was tested on a real-life Dutch railway
network. The produced timetables were, in most cases, better than the ones computed
by existing models, i.e., they generated a smaller a amount of average delays. Ob-
jective functions that focus only on increasing robustness, MaxMin and HalfBuffer,
tend to generate solutions that incorporate an excessive amount of time supplements
and as such may be inefficient for passengers. The multi-objective models MaxBuffer,
MaxMin+ and HalfBuffer+ usually created the most robust solutions that were also
efficient, meaning that only limited time supplements were allocated. The results also
showed that objective function MaxBuffer seems too sensitive to changing weight fac-
tors, while HalfBuffer+ tends to allow more flexibility to generate significantly dif-
ferent solutions. Therefore, HalfBuffer+ can be considered as a promising choice for
future implementations.

Micro-macro timetabling framework. In Chapter 6, we integrated microscopic models
from Chapter 4 with a macroscopic timetable model into a micro-macro timetabling
framework that incorporates performance measures from Chapter 3. The resulting
timetable is computed together with all measures which are either satisfied or opti-
mized depending on the required criteria. This alleviate the time-consuming task of
ex-ante simulations to test the constructed timetable on, for example, conflicts, stabil-
ity and robustness. This unprecedented integrated approach that guarantees feasible,
efficient, stable and robust solutions has been made possible by the advances in both
microscopic and macroscopic timetable models, and also by efficient and consistent
data transformations between the various levels. This enables an effective framework
in which microscopic details can be combined with macroscopic optimization over
large networks, including stochastic models for robustness evaluation. This micro-
macro approach provides the answer to research question 5.

The modular micro-macro framework was tested on a case study from the Netherlands,
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showing good results on all performance indicators. In particular, a practical applica-
tion to an area of the Dutch railway network showed the ability of this framework to
ensure the feasibility of the timetables at the level of track detection sections. High
quality timetables were produced in a limited number of iterations (up to 15), depend-
ing on the given line plan. In addition, the UIC norms on infrastructure occupation
rates were satisfied, so that for all the scenarios, we obtained a maximum occupation
rate below 65%.

Data analysis. In Chapter 7, we developed a simulation-based optimization model to
derive the most probable train speed profiles from observed track occupation data. The
train behaviour, which includes driving parameters like tractive effort, motion resis-
tances, braking effort, and cruising, was modelled according to the Newton’s dynamic
motion formulae. Train driving parameters were calibrated using a genetic algorithm
by minimizing the error between observed and simulated running times. This chapter
answers research question 6.

The calibration experiments were performed on a set of observed trains running along
the Rotterdam-Delft corridor in the Netherlands for four train compositions (defined
by the number of train units, the type of traction unit, and the length of the train). Prob-
ability distributions were estimated for the input parameters of each train composition,
which gave also insight in different driving behaviour adopted during operations.

Motivated by the successful results of this thesis, we developed a railway planning
toolbox with a micro-macro timetabling tool and a robustness evaluation tool. The for-
mer allows testing different timetabling scenarios by varying given line plan, timetable
design parameters, and selecting different objective functions. The latter provides a
basis for evaluating robustness by varying initial disturbances. These two tools consti-
tute a safe playfield to practitioners and students to experience design and evaluation
of timetables and understand effects of changing timetable design parameters. These
tools are described in Appendix A.

8.2 Main conclusions

Reliable and high quality railway timetables with better customer satisfaction and re-
duced train delays can be achieved by: a. capacity assessment, b. macroscopic network
timetable optimisation, and c. microscopic timetable evaluation. The thesis demon-
strated that these models have to be used together in the planning process to satisfy
all predefined performance indicators. The proposed performance-based timetabling
approach can design efficient, conflict-free, stable and robust timetables. Stability tests
assure that a timetable has sufficient buffer time to prevent or reduce delays. Moreover,
the settling time of delays is explicitly incorporated in the timetable optimization in a
trade-off with running, dwell and transfer times, to provide robust timetables. Micro-
scopic conflict detection and updating guarantees that the created timetable is conflict-
free. These models integrated together result in a more efficient use of capacity, higher
punctuality and increased customers’ satisfaction.
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Second, timetable stability should be considered in the planning phase and the cor-
responding models should be applied. This will prevent the exhaustive a posteriori
analysis of created timetables. What is more, as shown in Chapter 5, modelling sta-
bility in a macroscopic timetabling model can result in more robust timetables. Still, a
single dominant objective that generates the best solutions for all timetabling instances
does not exist. Instead, significant tests are necessary to determine the best objective
and appropriate weight factors for objective functions. Based on performed analysis,
HalfBuffer+ can be considered as a promising choice for future implementations.

Third, we can further gain on on-time performances by accounting for driver behaviour
in the planning phase. On one hand, tractive effort parameters tend to overreach the
corresponding default values, thus showing that a train may have an extra power re-
serve that can be used to accelerate faster. This would allow trains running faster than
theoretical minimum running times. On the other hand, the realised braking rate is
significantly lower than the default one; therefore, trains traverse the braking distance
slower than computed in the minimum running time. In addition, train drivers do not
always follow the maximum speed limit, but may cruise with just 80% of the maxi-
mum speed instead. This extra understanding of actual train behaviour can lead toward
better punctuality and more accurate scheduled train services.

Most importantly, by guaranteeing satisfaction of all performance indicators, a created
timetable can be applied directly in practice. Our integrated approach can save signif-
icant time for computing a single timetable solution, and makes possible generating
multiple solution alternatives that can be tested in consecutive planning steps such as
rolling stock and crew scheduling and also weighted on other (non-quantitative) crite-
ria such as travel comfort, crowdedness, and accessibility. Decision makers can then
choose the best ones that would provide the best quality of service to passengers and
freight operators. Increased punctuality would also support overall better capacity use
and more train services to be scheduled. This would eventually make up room for
achieving goals of Better and More, High-Frequency Rail Transport Programme and
projects alike.

8.3 Recommendations for practice

The integrated timetabling approach highlighted nine main recommendations that need
to be considered explicitly in the design of a stable, robust, conflict-free timetable with
optimal journey times:

• Microscopic calculations of running and blocking times taking into account all
running route details at section level (gradients, speed restrictions, signalling),

• Microscopic conflict detection guaranteeing a conflict-free timetable,

• Timetable precision of at most 6 s to minimize capacity waste,
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• Incorporation of infrastructure occupation and stability norms on corridor, node
and network level,

• Macroscopic network optimization, with respect to running, dwell and transfer
times, that exploits the most stable timetable structure,

• Timetable stability optimization directly in a macroscopic timetabling model to
produce more robust timetables,

• Macroscopic robustness analysis using stochastic simulation to obtain a robust
network timetable,

• Acceptable speed profiles computation for all trains,

• Reliable running time computation based on calibrated train driving parameters.

8.4 Future research developments

This thesis has been motivated by the general need for better mathematical models
and algorithms for timetable planning in railway networks and provides high quality
solutions. The potential of capacity assessment and timetabling models for improved
railway timetabling stimulates further research in this field. This section points out
promising research directions, which may be organized along the four main aspects:
modelling, behavioural, organisational and technological.

Modelling. The future development of capacity assessment models should stay in line
with the existing compression method. To make it a standard evaluation tool and apply
it internationally, additional research on capacity saturation rates and measures that
provide reliable services is essential. The network capacity assessment models should
gain more attention, as only these are able to incorporate all interactions (headways,
transfers, turnarounds) present in a timetable.

The developed timetabling framework is general and may be applied to other railway
planning problems like short-term planning and maintenance planning. For example,
for scheduling additional ad-hoc freight or passenger trains, the main structure of the
timetable may be fixed and the proposed framework can be applied to insert extra
trains. The current framework makes a first step in railway planning. As such, it
assumes fixed train routes and focuses on a single planning stage. Thus, the framework
could be further integrated with line planning on one side, and rolling stock and crew
scheduling on the other. In addition, integrating with routing models is required to
further improve the quality of timetable solutions.

More generally, the modular performance-based framework can be applied to planning
and scheduling resources in other industries, such as air and road transport systems
(Jacquillat, 2015; Van de Weg, Hegyi, & Hoogendoorn, 2014), and telecommunication
systems (Cohen & Katzir, 2010).
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In order to better understand and evaluate timetable robustness, future research could
introduce a microscopic robustness analysis of computed timetables. These models
would include detailed infrastructure data and realistic train movement characteristics
and driver behaviour. For this, we need to develop stochastic running time models
based on train parameter distributions. Consequently, stochastic buffer times could be
used to propose new and more sophisticated robustness measures.

Most of the proposed optimization models for timetabling are deterministic so far.
In future, more emphasis should be addressed on developing stochastic optimization
models which will directly consider variability of running and dwell times. What is
more, we should be able to integrate the actual (stochastic) passenger demand directly
in the timetabling process.

The ability of recovering as quickly as possible after a disruption determines the system
resilience. However, it is often overshadowed or even disregarded in the planning pro-
cess, which means that current timetables may involve a structural lack of operational
resilience to cope with disruptions. The consequence is that current planning measures
do not fully meet customers’ requirements allowing strong propagation of delays and
service cancellations in case of disturbances and disruptions of the network. To prevent
this, we would need to aim also at resilience already in the planning phase.

Behavioural. The calibration of train parameters should be performed on different
lines to determine possible different behaviour of train drivers related to the surround-
ing traffic and the geographical part of the network. In addition, rising availability
and use of advanced train positioning systems could be used to provide more detailed
data and allow more accurate calibrations. We could use this additional knowledge to
understand and estimate driver behaviour in various conditions, such as congested ver-
sus non-congested networks, and during regular (on-time) services versus disturbance
scenarios. Such calibrated train parameters should be used for timetable planning and
real-time models.

Organizational. Differences in objectives severely limit actors’ (infrastructure man-
ager - IM and railway undertakings - RUs) ability to jointly plan and operate the rail
system in a well-coordinated manner (Steenhuisen, 2009). For example, the IM fo-
cuses firstly on availability of infrastructure, quality of capacity allocation, safety and
non-discriminatory access to RUs. Passenger RUs, instead, value mostly punctuality,
growth of passenger numbers and safety, while freight RUs prefer availability of paths
and flexibility in choosing from multiple options. Also, when looking at the planning
time-scale, the needs of freight and passenger RUs differ as the former wants flexibility
for short-term scheduling, while the latter expect planning to be done well in advance.
Therefore, new organization and planning concepts are needed for improving commu-
nication between actors in addressing their needs more transparently and integrating
them in the operational planning.

Technological. Current models consider always the existing fixed-block signalling sys-
tems. However, with increasing level of traffic automation (e.g., automated trains) and
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new moving-block signalling systems (e.g., ETCS Level 3), the railway traffic be-
haviour may become more flexible and possibly more similar to road traffic today.
This may incur different concepts of train interactions, as well as computing running
and headway times, which could not be represented in the current timetabling models.
Therefore, new timetabling models should consider such new technologies and be able
to exploit the existing resources in the best possible way.

The current framework together with these future developments would eventually al-
low complete integration of automated planning models, from long-term to opera-
tional, in future railway decision support systems. This would result in better railway
operations that use infrastructure capacity most efficiently, provide conflict-free and
efficient services and reduce overall delays to both passenger and freight trains.



188 Integrated models for railway timetabling



Appendices

189





Appendix A

Railway planning toolbox STAFER

This appendix demonstrates the railway planning toolbox STAFER (Scheduling for
Today’s Advanced, Flexible and Effective Railways) for designing and evaluating rail-
way timetables. STAFER incorporates two main tools: Micro-macro timetabling for
designing improved railway timetables and RobEval for evaluating timetable robust-
ness. The modular structure of STAFER allows alternative optimization and evaluation
algorithms and further planning steps to be easily added.

Micro-macro timetabling tool. The core of the Micro-macro timetabling tool is the
performance-based framework from Chapter 3. The tool integrates microscopic mod-
els from Chapter 4 for computing running and headway times and evaluating feasibility
and stability. For network optimization, we implemented the macroscopic timetabling
model PESP-N from Chapter 5.3. The modular structure of the micro-macro frame-
work allows using different timetabling models. During development, we also tested
the framework with the stability-to-robustness model from Chapter 5 and reported it in
Bešinović, Goverde, and Quaglietta (2016).

Figure A.1 shows the graphical user interface (GUI) of the micro-macro timetabling
tool. The GUI consists of three building blocks: Input, Graphical output and Statistics.

Input includes selection of timetable design parameters, minimum and maximum run-
ning time rates (in %), minimum buffer time (in seconds), and a preferable objective
function. Objective functions can be minimizing efficiency (i.e., train journey times),
maximizing robustness (i.e., total buffer between train events) or a combination of
both.

Graphical output consists of three types of diagrams (see Figure A.2). First, the time-
distance diagram is shown for a selected corridor. Second, by selecting a train line
(solid green line) in the time-distance diagram, the corresponding blocking time dia-
gram appears. Note that only infrastructure occupation related to the selected train line
is pictured to explicitly represent conflict-freeness of a generated timetable. Third, the
computed minimum and operational speed profiles for the selected line are shown. By
analysing these diagrams, you could assure that a designed timetable includes accept-
able speed profiles and is conflict-free.
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Statistics report the characteristic values (minimum, mean and maximum) for sched-
uled running time supplements and train journey times over all lines. The button Line
statistics opens more detailed statistics defined per train line (see Figure A.3). In ad-
dition, the number of iterations needed to design a feasible, stable and robust solution
is produced by pressing the Iterations button (see Figure A.4). Clicking the Evaluate
robustness button, activates the RobEval tool.

Figure A.1: Graphical interface of Micro-Macro timetabling tool

Robustness evaluation tool. The robustness evaluation tool RobEval integrates the
delay propagation model from Chapter 5.4.4. The input timetable to RobEval is one
generated by the Micro-macro timetabling tool, or it can be loaded directly within the
GUI.

Figure A.5 shows the graphical user interface of the developed RobEval tool. The GUI
consists of three building blocks: Settings, Graphical output and Statistics.

Input provides defining an average input delay (in %), the number of simulations and
the considered time horizon. Graphical output gives a selection of three possible plots:
the time-distance diagram with all computed scenarios (Figure A.6 top left), the time-
distance bandwidth diagram with the corresponding mean running times (Figure A.6
top right) and network layout with visualised total delays in stations (Figure A.6 bot-
tom). Statistics report gives the total delay per hour and detailed total delays per train
line and per station (Figure A.7).
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Figure A.2: Graphical output of Micro-macro timetabling tool

Figure A.3: Line statistics for the designed timetable

Figure A.4: Number of iterations needed
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Figure A.5: Graphical interface of robustness evaluation tool

Figure A.6: Graphical output of robustness evaluation tool
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Figure A.7: Statistics reports of robustness evaluation
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Radosavljević, A. (2006). Measurement of train traction characteristics. Proceedings
of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid
Transit, 220, 283-291.
(Cited on page 162.)

RailML. (2015). Retrieved from www.railml.org (last accessed 30.06.2015.)
(Cited on pages 68 and 130.)

RMCon. (2012). Railsys 8 Enterprise, network wide timetable and infrastructure
management.
(Cited on pages 11 and 18.)

Robenek, T., Maknoon, Y., Azadeh, S. S., Chen, J., & Bierlaire, M. (2016). Passenger
centric train timetabling problem. Transportation Research Part B: Methodolog-
ical, 89, 107–126.
(Cited on page 95.)

Rotoli, F., Navajas Cawood, E., & Soria, A. (2016). Capacity assessment of railway
infrastructure: Tools, methodologies and policy relevance in the EU context.
EUR 27835 EN, Joint Research Center, European Union.
(Cited on pages 14 and 17.)

SBB. (2016). Network statement 2017.
(Cited on page 2.)

Scheepmaker, G. M., & Goverde, R. M. P. (2015). The interplay between energy-
efficient train control and scheduled running time supplements. Journal of Rail
Transport Planning & Management, 5(4), 225-239.
(Cited on pages 48 and 65.)

Schlechte, T., Borndörfer, R., Erol, B., Graffagnino, T., & Swarat, E. (2011). Micro-
macro transformation of railway networks. Journal of Rail Transport Planning
and Management, 1(1), 38-48.
(Cited on pages 3, 4, 30, 36, 64, 66, 71, 128, and 134.)

Schmidt, M. (2014). Integrating routing decisions in public transportation problems.
Springer.
(Cited on page 95.)
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Summary

Mainline railways in Europe are experiencing more and more intensive use of their
train services, particularly in urban areas, as the worldwide demand for passenger and
freight transport is increasing across all transport modes. At the same time, much of
the existing mainline railway network is reaching its capacity and has become suscep-
tible to delays and disturbances. On one hand, a solution to the problem of saturated
networks and growing demand would be to build more railway infrastructure; however,
constructing new railways is expensive, takes considerable time and faces a number of
environmental constraints. On the other hand, mathematical models and algorithms
for capacity assessment and timetabling should be used to produce better timetable
solutions and to speed up the planning process.

This thesis creates, optimizes, and evaluates railway timetables to promote more re-
liable, more attractive, and more sustainable railway transport systems. We develop
an integrated approach for improved railway timetabling that combines capacity as-
sessment and scheduling models in order to design timetables that are efficient, i.e.,
have as short as possible journey times, feasible, i.e., all trains operate undisturbed by
other traffic, stable, i.e., do not have excessive infrastructure capacity occupation, and
robust, i.e., are able to mitigate certain everyday operational disturbances.

We first reviewed methods for railway capacity assessment and described the existing
models for assessing the whole networks as well as corridors. Also, a new max-plus
model for capacity occupation assessment was defined. The model follows the com-
pression method indicated by the UIC 406. A capacity occupation rate is considered as
a stability measure, where the remaining available capacity indicates whether delays
could recover in limited time. If the capacity occupation satisfies predefined thresholds
the timetable is considered to be stable.

Second, we proposed a conceptual three-level performance-based timetabling frame-
work that integrates timetable construction and evaluation. The advantage of this ap-
proach is that performance indicators, such as efficiency, feasibility, stability and ro-
bustness, are already taken into account during the timetable construction. This alle-
viates the time-consuming task of ex-ante simulations to test the constructed timetable
on, for example, conflicts, stability and robustness.

Third, microscopic models were developed to compute reliable running and mini-
mum headway times for a macroscopic timetabling model, as well as check the mi-
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croscopic feasibility and stability of the macroscopic timetables. Train running times
are computed by integrating the Newton’s motion formulae, while the accurate head-
way computation is based on the blocking time theory. The feasibility of the timetable
is checked by an efficient conflict detection and resolution model based on blocking
time theory, and in case of conflicts, new running and minimum headway times are
automatically computed.

Fourth, a two-stage stability-to-robustness model is proposed, which is the first timetable
optimization model that incorporates three important performance indicators of time-
table design: efficiency, stability and robustness. The first stage focuses on stability,
the second stage on robustness, while efficiency is considered in both stages. Five ob-
jective functions were defined to generate alternative timetables. Results showed that
the approach is capable of computing both stable and robust solutions, which are in
most cases better than when applying existing timetabling models. It also showed a
computational dominance over existing models.

Fifth, we integrated microscopic models with a macroscopic timetable model into a
performance-based micro-macro timetabling framework. The resulting timetable is
computed together with all performance measures that are either satisfied or opti-
mized depending on the required criteria. This unprecedented integrated approach
that guarantees feasible, efficient, stable and robust solutions has been made possible
by developed microscopic and macroscopic timetable models, and also by efficient and
consistent data transformations between the various levels. This enables an effective
framework in which microscopic details can be combined with macroscopic optimiza-
tion over large networks, including stochastic models for robustness evaluation. The
application of the proposed framework showed that high quality timetables were pro-
duced in a limited number of iterations, while the capacity occupation rate was always
below an acceptable level.

Sixth, we developed a simulation-based optimization model to derive the most proba-
ble speed profiles of train runs from traffic realization data. The train behaviour, which
includes driving parameters like tractive effort, motion resistances, braking effort, and
cruising, was calibrated using a genetic algorithm by minimizing the error between
realized and simulated running times. Results showed differences in provided rolling
stock parameters and the actual driver behaviour. This gained info can be used in
planning and operations by tweaking inputs to the timetabling framework.

In summary, this thesis demonstrates that optimization, simulation and data analysis
can be successfully applied to improving railway planning and account for better in-
frastructure capacity use and increased level of service.



Samenvatting

Het spoor in Europa wordt steeds intensiever benut, vooral in stedelijke gebieden.
Dit komt doordat de vraag naar reizigers- en goederenvervoer wereldwijd toeneemt.
Tegelijkertijd bereikt een groot deel van de spoorinfrastructuur haar capaciteit, waar-
door het netwerk kwetsbaar is voor verstoringen en vertragingen. Een mogelijkheid om
dit op te lossen is om meer spoorinfrastructuur aan te leggen. Het nadeel hiervan is dat
dit veel tijd en geld kost en er veel ruimtelijke beperkingen zijn. Een andere mogeli-
jkheid is het gebruik van wiskundige modellen en algoritmes voor capaciteitsbenutting
en treindienstregelingsontwerp, waarmee betere dienstregelingen bepaald kunnen wor-
den en het planproces versneld kan worden.

Dit proefschrift ontwikkelt, optimaliseert en evalueert treindienstregelingen en bevordert
een betrouwbaarder, aantrekkelijker en duurzamer spoorvervoer. Een integrale method-
iek is ontwikkeld om een dienstregeling te verbeteren. Deze methodiek combineert
capaciteitsbenutting en planningsmodellen om een dienstregeling te ontwikkelen die
efficiënt (zo kort mogelijke rijtijden), haalbaar (conflictvrije treindiensten), stabiel
(voldoende speling in de capaciteitsbenutting) en robuust (verminderen van bepaalde
dagelijkse realistische verstoringen) is.

Ten eerste zijn de methodieken voor capaciteitsbenutting beoordeeld en zijn de bestaande
modellen voor het bepalen van deze benutting op baanvak en netwerk niveau bespro-
ken. Daarnaast is een nieuw max-plus model voor capaciteitsbenutting ontwikkeld.
Dit model volgt de compressiemethodiek die beschreven staat in de UIC 406 standaard.
Als stabiliteitsmaat wordt capaciteitsbenutting gehanteerd, waarbij de resterende beschik-
bare capaciteit een indicatie geeft hoeveel vertragingen opgevangen kan worden binnen
redelijke tijd. Als de capaciteitsbenutting voldoet aan de voorgedefinieerde grenswaar-
den dan, is de dienstregeling stabiel.

Ten tweede is een conceptueel drie-fase model voor het dienstregelingsontwerppro-
ces voorgesteld waarin dienstregelingsontwerp en evaluatie geı̈ntegreerd zijn. Een vo-
ordeel van deze aanpak is dat er tijdens het ontwerpproces rekening wordt gehouden
met de prestatie-indicatoren als efficiëntie, haalbaarheid, stabiliteit en robuustheid. Hi-
erdoor zijn geen tijdrovende simulaties nodig om een ontwikkelde dienstregeling te
toetsen op bijvoorbeeld conflicten, stabiliteit en robuustheid.

Ten derde zijn er microscopische modellen voor de berekening van betrouwbare rijti-
jden en minimale opvolgtijden als invoer voor macroscopische dienstregelingsmod-
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ellen. Daarnaast is er microscopisch modellen ontworpen die de haalbaarheid en
stabiliteit van macroscopische dienstregelingen toetst. De rijtijden worden berekend
door integratie van de bewegingsvergelijkingen van Newton en de opvolgtijden wor-
den berekend met behulp van de bloktijdtheorie. De haalbaarheid van de dienstregeling
wordt getoetst door een efficiënt conflictdetectie- en oplossingsmodel gebaseerd op de
bloktijdtheorie. Indien er conflicten zijn, worden er automatisch nieuwe rijtijden en
minimale opvolgtijden berekend.

Ten vierde is een twee-fase model gepresenteerd die de stabiliteit en robuustheid van de
dienstregeling optimaliseerd. Dit is het eerste dienstregelingsoptimalisatie model dat
rekening houdt met de belangrijkste prestatie-indicatoren voor dienstregelingsontwerp,
te weten: efficiëntie, stabiliteit en robuustheid. De eerste fase richt zich op stabiliteit,
terwijl de tweede fase gericht is op robuustheid. Bovendien wordt in beide fases reken-
ing gehouden met de efficiëntie van de dienstregeling. Vijf doelfuncties zijn opgesteld
om alternatieve dienstregelingen te kunnen genereren. De resultaten laten zien dat de
methodiek in staat is om stabiele en robuuste dienstregelingen te berekenen, die veelal
beter zijn dan de bestaande dienstregelingsmodellen. Bovendien is de rekensnelheid
van het model sneller dan de bestaande modellen.

Ten vijfde is het microscopische model met het macroscopische model geı̈ntegreerd
in een prestatie-gericht micro-macro dienstregelingsraamwerk. De ontworpen dien-
stregeling wordt opgesteld aan de hand van de prestatie-indicatoren, waaraan voldaan
dient te worden of die geoptimaliseerd worden, wat afhankelijk is van de vereiste on-
twerpcriteria. Deze geı̈ntegreerde macro-micro ontwerpmethodiek zorgt ervoor dat de
resulterende dienstregeling haalbaar, efficiënt, stabiel en robuust is, , waarbij gebruik
wordt gemaakt van consistente data transformaties tussen de verschillende niveaus.
Dit zorgt voor een efficiënt raamwerk waarin microscopische details worden gecombi-
neerde met macroscopische optimalisatie, inclusief stochastische modellen voor robu-
ustheidevaluatie. De toepassing van de methodiek toont aan dat hoge kwaliteit di-
enstregelingen worden berekend in een beperkt aantal iteratieslagen, waarbij de ca-
paciteitsbenutting beneden een acceptabel niveau blijft.

Ten zesde is een simulatie gebaseerd optimalisatiemodel ontwikkeld dat op basis van
realisatiedata de meest waarschijnlijke snelheidsprofielen van de gerealiseerde treinrit-
ten geneert. Het treingedrag (zoals trekkracht, treinweerstand en remkracht) is geijkt
met behulp van een genetisch algoritme dat de fout tussen de rijtijden van de simulatie
en realisatie minimaliseert. De resultaten laten een verschil zien tussen de gegeven
materieel parameters en het echte rijgedrag. Dit kan dienen als verbeterde input voor
de ontworpen methodiek om tot een betere planning en uitvoering te komen.

Samengevat laat dit proefschrift zien dat optimalisatie, simulatie en data-analyse suc-
cesvol toegepast kunnen worden om de planning van dienstregelingen te verbeteren,
met als gevolg een betere capaciteitsbenutting van de infrastructuur en serviceniveau
voor reizigers.
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3. Yan, F., Goverde, R.M.P., Bešinović, N., (2015). Line planning problem in a
dense high-speed rail corridor, In Conference on Advanced Systems in Public
Transport (CASPT 2015), Rotterdam, The Netherlands, 19-23 July 2015.
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