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Abstract

Electrical properties tomography is the quantification of the conductivity and permittivity of different materials.
In an MRI setting this can be used to map the electrical properties of tissue. These values can be used as a
different contrast mechanism, for hyperthermia treatment or the improvement of antenna design for specific
applications. There are different methods used to obtain these electrical properties, however these often use
differential operators on measured data. This leads to reconstructions corrupted by noise, thus in this thesis
the work on contrast source inversion based electrical properties tomography is continued. This method uses
an integral approach and is therefore more robust with respect to noise.
The work presented continues from the two-dimensional Matlab based simulations and extends these to a more
realistic measurement setup. The RF-shield is numerically implemented and an extension is made to the ex-
isting algorithm to handle the transceive phase based on Maxwell’s equations. This is done by implementing a
forward problem into the inverse problem of getting the contrast from the measured radiofrequency field. After
this the algorithm was tested with three-dimensional FDTD simulations and finally a phantom study was done
to test with an MRI scanner.
From the results of the two-dimensional simulations it was seen that this method is indeed very robust when
it comes to a realistic measurement setup. In the three-dimensional simulations it was observed that the elec-
trical properties are underestimated. Nonetheless CSI-EPT is more precise than the standard Helmholtz based
methods. Plus the improvement made to the algorithm makes it possible to map all the RF fields inside the
scanner which has not been done before. The same underestimation was seen with the reconstruction of the
measured data from the phantom study.
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Nomenclature

• Ē denotes the mean of ~E

• Ẽ is a corrupted version of ~E

• E∗ is the complex conjugate of ~E

• G†{·} is the adjoint of G{·}

• µ is the magnetic permeability given by µ0µr. For biological tissue µr ≈ 1.

• ε is the permittivity given by ε0εr

• σ is the conductivity

• c0 is the speed of light in vacuum

• < u, v >V = <
´
u · v∗dV is the definition of the inner product.

• The time convention is defined as ~E(~r, t) = <( ~E(~r)ejωt)
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1 Introduction

This work is started with a small introduction to magnetic resonance imaging (MRI). An MRI scanner consists
of a strong superconducting magnet which is in the order of a few tesla. The most common strength types right
now are 1.5T, 3T and 7T. The first two are most often used for diagnostic purposes whereas 7T is mostly used
for research right now [1].
When an object is not in presence of a magnet the orientation of the magnetic moment of the protons is
random. When this same object is put inside the scanner the magnetic moments are subject to a torque which
is dependent on the strength of the magnet and the magnetic moment [2]. This torque will orient the magnetic
moments to align with the static magnetic field. If the strength of the magnet increases more protons will align
with the magnetic field. Now the orientation of these magnetic moments have a certain expected value (i.e. the
direction of the static magnetic field), this is called the net magnetic vector (NMV).
Further it is known that protons have a spin angular momentum as well, the torque that is applied by the
magnet will make the protons precess around the direction of the static magnetic field. This precession is done
at a certain frequency called the Larmor frequency, this frequency is defined as

fLarmor = γB0, (1.0.1)

where γ is the gyromagnetic ratio and B0 is the magnetic field strength. This ratio depends on the type of
atom for which the proton is in. Since most of the signal in biological tissue comes from the hydrogen atoms,
γ is taken to be 42.58 MHzT−1. However, there are also other atoms used for imaging purposes in MRI, an
example of this is phosphorous which has a gyromagnetic ratio of 17.235MHzT−1 [1].
Before the next part is discussed a distinction has to be made between the magnetization in the direction of the
static magnetic field and that perpendicular to it. Magnetization in the direction of the static magnetic field
is called the longitudinal magnetization whereas the magnetization perpendicular to it is called the transverse
magnetization. Creating transverse magnetization is done by applying energy to the protons by means of a
magnetic field which is perpendicular to the static magnetic field. This results in the NMV to move out of its
equilibrium. When this perpendicular magnetic field is turned off the NMV returns to its equilibrium state
again. The time it takes for the NMV to return to its equilibrium is characterized by the T1 and T2 time, where
the T1 time is called the spin-lattice relaxation time and characterizes the time it takes for the NMV to return
to its equilibrium longitudinal magnetization. The T2 time is the spin-spin relaxation time and characterizes
the decay in transverse magnetization to zero. Different tissue types have different T1 and T2 times, this can
be used to make T1 and T2 weighted images. Note that it says weighted images because the measured T1 times
will always be affected by T2 and vice versa.
As mentioned before, in order to create transverse magnetization energy has to be applied to the protons. This
is done by applying another magnetic field which is perpendicular to the static magnetic field, this is also called
the radio frequency (RF) field. The component that is used for this is a coil. These coils come in a multitude
of different shapes, sizes, and topologies [3]. Most common for whole body MRI scanners is the birdcage coil.
An example of such a coil is shown in Figure 1.

Figure 1: A highpass birdcage coil

This type of coil consists of 2 rings or endrings and a certain amount of legs or rungs. The most common
birdcage coil has 16 legs/rungs. Since this is a coil it has a certain distributed inductance, which results in a
certain frequency response. This frequency response shows that the coil has certain resonant modes, at these
points the transfer function peaks. One of these resonant modes has a favorable characteristic, the current
that runs through the legs is phase shifted by 360◦

nlegs
, where nlegs is the number of legs/rungs. This creates a

circularly polarized RF-field (i.e. the magnitude of the real and imaginary components of the field are equal
and the inproduct between them is zero), more on this will be discussed in Section 2.1.
Turning the birdcage coil on and off is done by the use of an RF-pulse. In order to excite the protons (i.e.
get the energy from the coil to the protons) this pulse must have the same frequency as the precession of the
protons, the Larmor frequency. To get this combined with the correct resonant mode of the coil, the frequency
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response of the coil must be changed. This desired resonant mode must also be at the Larmor frequency. This
is done by tuning the coil with capacitors to get a different frequency response. When this is accomplished the
protons are excited by the RF-pulse and the precession of the transverse magnetization can be measured. The
signal that is measured in MRI is an induced voltage. This voltage is induced in the measuring coil by the
changing magnetization. This can either be the same birdcage coil or a separate coil used for receiving only.

1.1 Electrical Properties Tomography

In 1991 Haacke proposed a way to get electrical properties of tissue by measuring the B+
1 field (i.e. this is

part of the RF-field) [4]. This gave rise to magnetic resonance based Electrical Properties Tomography (EPT).
EPT is a collective name for multiple methods involving the reconstruction of the conductivity (σ) and the
permittivity (ε) of biological tissues. This was the first non-invasive way of measuring them. Before this the
only way to measure the conductivity and permittivity was by means of electrodes and probes, which can be
destructive for the tissue especially at higher frequencies. Since this publication a lot of research has been done
on the subject with new methods arising constantly.
There are multiple reasons why these two characteristics of tissue are very important. The first would be the
Specific Absorption Rate (SAR) which is the amount of energy absorbed by a mass, its unit is Wkg−1. The
higher the quantity of energy absorbed by tissue the warmer it gets. There are safety regulations on the SAR
limit, which is 10 Wkg−1. It is therefore important to be able to measure the SAR distribution during an MRI
scan, for both the safety of the patient and the efficiency of the scan. Because if more power can used for a
scan the quality of the scan increases.
Another application of knowing the SAR distribution can be hyperthermia treatment planning. Hyperthermia
treatment is the heating of tissues in order to destroy it. The temperatures can range anywhere from 40 to 43
◦C [5]. With knowing the electrical properties of tissue, both for healthy and unhealthy, a better treatment can
be given to patients (i.e. more healthy tissue can be saved or unhealthy tissue can be heated more for more
effect). Furthermore the RF-fields produced during a scan are of importance to the insight of the MRI scanner.
Knowing the RF fields enables for better design of the coils and antennas used for scanning.

1.2 Current EPT methods

There are multiple methods developed to reconstruct these electrical properties. The most well known method
is taking a double derivative of the of the measured B+

1 (also known as Helmholtz based EPT). More recently
methods were introduced that only use a first order derivative, gradient EPT [6] and first order induced current
EPT [7]. And even certain workarounds that showed good results have been proposed. These include water
EPT and sodium EPT, where the respectively water and sodium concentrations are measured and linked to
conductivity values.
The advantage of these approaches is the simplicity of the calculations that are done in order to get a recon-
struction. However, the derivative operators that are used in these methods are not robust with respect to
noise. The signal-to-noise ratio (SNR) needed to get good results is not feasible with the MRI. Furthermore
Helmholtz based EPT assumes a piece-wise homogeneous contrast [8]. Of course this is definitely not the case
when scanning patients, sadly these tend to be very inhomogeneous. And then there is the problem that the
derivative has to be implemented with a certain kernel which only increases the amount of errors within the
reconstruction. These different problems have been addressed in [9].
For this work the method that is used is called Contrast Source Inversion (CSI). This method was shown by Van
Den Berg and Kleinman in [10], later a multiplicative regularization was added to this method to handle noisy
input data better [11]. Instead of a derivative approach this is an integral approach. This generalized method
was rewritten for MRI data by Balidemaj et al in [12]. This method is discussed in detail on how it works and
all the equations related to it in Section 3. The reason to choose this method over others is that it is more
robust with handling noisy input data. Plus this method does not assume piece-wise homogeneous contrast. A
disadvantage however is that the reconstruction process is more complex considering the calculations needed.

1.3 Challenges with CSI-EPT

One of the biggest problems with all of these methods is still not discussed. This is that they are based on
having the complex B+

1 field, this includes both amplitude and phase. Now the amplitude is not a problem,
this part of the field can be measured by the MRI with a multitude of sequences these include Actual Flip-
Angle Imaging (AFI) [13], Bloch-Siegert shift [14], double-angle and Dual Refocusing Echo Acquisition Mode
(DREAM)[15] just to name a few. The problem here is that the phase cannot explicitly be measured, what is
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actually measured is what is called the transceive phase. This is explained in Section 2.5. This problem is of
key importance before these methods can be implemented in vivo, especially for higher magnetic field strengths.
Further CSI-EPT has only been tested with simulations in Matlab for noisy input data and not yet been demon-
strated in vivo [12]. The RF-shield present in the MRI scanner has not been taken into account in the CSI-EPT
method. A finite element method to implement the RF-shield is presented in [16]. However, the approach that
is used increases the computation time drastically. Therefore a numerical implementation of the RF-shield is
looked into.

1.4 Research question

The main purpose of this work is to investigate if CSI-EPT can be used for in vivo measured data.
To achieve this first the effect of a numerically implemented RF-shield needs to be tested. Afterwards the
CSI-EPT scheme needs to be rewritten to include the transceive phase. Further the algorithm should be tested
on 3D data to get the most realistic simulation possible. Finally a phantom study should be done to get the in
vivo data.
The second purpose of this work is to see if CSI-EPT shows improvement compared to the standard EPT
methods.
In chapter 2 the background knowledge needed for understanding the MRI and algorithm better is given.
Afterwards all the details on the CSI-EPT algorithm are given as well as the improvement made to it for MRI
data. Then results are shown for different scenarios and different simulation programs. This is done to identify
where certain errors come from. The next logical part is of course the measurements done with the MRI scanner
and their outcomes. This is followed by a conclusion in chapter 7. Finally there is the proposed future research
topics.
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2 Background Knowledge

In this chapter of the thesis some information that is needed for the rest of the work is given. First the RF-fields
present inside the MRI are defined. After this the groundwork for the algorithm is presented, followed by a
numerical implementation for the RF-shield. Further, the SNR in an MRI experiment is discussed and the
transceive phase assumption is explained.

2.1 Electromagnetics in MRI

As mentioned in the subsection above, the protons precess around the static magnetic field. When defining this
in a static frame the components of the magnetization are rotating. This frame is called the laboratory frame
[2]. The magnetic field given in this frame within an MRI is given by

~B(r, t) = B1(r, t) · ~X +B1(r, t) · ~Y +B0(r) · ~Z. (2.1.1)

A frame that is used more often is the rotating reference frame. When this frame is defined to rotate at the
Larmor frequency the precession of the protons are static in the frame. The unit vectors from the laboratory
frame, ~X and ~Y , become

~X ′ = cos(ωLarmort) · ~X + sin(ωLarmort) · ~Y ,
~Y ′ = − sin(ωLarmort) · ~X + cos(ωLarmort) · ~Y .

(2.1.2)

This makes the vector calculus easier, Equation (2.1.1) can now be rewritten as

~B(r) = B1(r) · ~X ′ +B1(r) · ~Y ′ +B0(r) · ~Z, (2.1.3)

here B0(r) defines the static magnetic field and B1(r, t) is the magnetic field due to the RF-pulse. The B1

component of the magnetic field can be disentangled into a field that rotates in clockwise and counterclockwise
direction. One of these fields excites the proton spins, this field is called the B+

1 field. The other field does
not excite the spins and is called the B−1 field. The B+

1 field is also called the transmit field and dictates the
transmit efficiency whereas the B−1 field is called the receive field and dictates the receive sensitivity.
When transmitting in quadrature mode in a birdcage coil the two sources/ports are set to have a phase shift
of 90◦ with respect to each other [3]. This is done to maximize the B+

1 field and thus maximize the amount of
proton spins that are flipped.
When receiving in quadrature mode the phase shift is set to −90◦ to maximize the B−1 field. This results in
two sets of fields

Transmitting = {B+TR
1 , B−TR1 , ETR},

Receiving = {B+RE
1 , B−RE1 , ERE}.

(2.1.4)

For both the B+
1 fields

B+
1 =

B1(r, t) · ~X + jB1(r, t) · ~Y
2

=
Bx + jBy

2
, (2.1.5)

holds. Here Bx = B1(r) · ~X ′ and By = B1(r) · ~Y ′. For both the B−1 fields

B−1 =
(B1(r, t) · ~X − jB1(r, t) · ~Y )∗

2
=

(Bx − jBy)∗

2
, (2.1.6)

holds.

2.2 2D scattering formalism

Most of the background information is a summary from [17].
Naturally the electromagnetic fields inside the MRI are three-dimensional, however if the midplane is taken of
the birdcage coil the field can be seen as two-dimensional and E-polarized in the z-direction. This means that

{Bz, Ex, Ey} = 0,

{Bx, By, Ez} 6= 0,
(2.2.1)
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is true. This assumption does not hold anymore when the region of interest is not in the midplane anymore.
Then a fully 3D scattering problem needs to be solved. But since in the scanner the region of interest can be
placed in the middle of the birdcage coil automatically this should not pose a problem.
The two-dimensional formalism starts with the Maxwell equations

−∂xBy + ∂yBx + µ0J
ind
z = 0,

∂yEz + jωBx = 0,

−∂xEz + jωBy = 0,

(2.2.2)

where J indz , the induced electric current density, is given by

J indz = (σ + jωε)Ez. (2.2.3)

The scattering formalism starts with the idea that one can write the total field as an incident field plus a
scattered field due to an object. For two-dimensional electromagnetic waves this results in

Ez = Eiz + Escz ,

B+
1 = B+i

1 +B+sc
1 ,

B−1 = B−i1 +B−sc1 ,

(2.2.4)

here the incident fields are the fields present due to the source when there is no object in the MRI. The scattered
fields are a result of the interaction between the incident fields and the object in the MRI. This means that for
a certain type of scanner the incident fields will always be the same, but the scattered fields will not.
Now combining Equation (2.2.2) and Equation (2.2.4) results in a set of Maxwell equations for the incident
fields

−∂xBiy + ∂yB
i
x + jωε0µ0E

i
z = −µ0J

ext
z ,

∂yE
i
z + jωBix = 0,

−∂xEiz + jωBiy = 0.

(2.2.5)

The first step now is to multiply the first equation of (2.2.5) with jω and substitute in the other two equations
to obtain

−∂x(jωBiy) + ∂y(jωBix)− ω2ε0µ0E
i
z = −jωµ0J

ext
z ,

−∂2
x(Eiz)− ∂2

y(Eiz)− ω2ε0µ0E
i
z = −jωµ0J

ext
z ,

(∂2
x + ∂2

y + k2
0)Eiz = jωµ0J

ext
z ,

(2.2.6)

here k0 is the wavenumber of the background given by

k0 =
ω

c0
= ω
√
ε0µ0. (2.2.7)

To solve the result of Equation (2.2.6) the Green’s function, Ĝ, is needed. This function is the impulse response
of a differential equation introduced as

(∂2
x + ∂2

y + k2
0)Ĝ = −δ(ρ), (2.2.8)

here ρ is the position vector in the transverse xy-plane. In two-dimensional wave equations the Green’s function
is given by

Ĝ(ρ) = − j
4
H

(2)
0 (k0|ρ|), (2.2.9)

where H
(2)
0 (·) is the zero ordered Hankel function of the second kind. Now the incident field is given by

Eiz = −jωµ0

ˆ
ρ′∈Dsrc

Ĝ(ρ− ρ′)Jextz (ρ′)dV, (2.2.10)

here ρ′ is the location of the source and Dsrc is the source domain. The incident fields for an MRI will be
discussed further on in this chapter. First the scattered fields will be given to complete the set of equations for
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the two-dimensional fields.
The field distributions inside the object are given by the following set of equations

−∂xBy + ∂yBx + µ0(σ + jωε)Ez = 0,

∂yEz + jωBx = 0,

−∂xEz + jωBy = 0.

(2.2.11)

The first of Equation (2.2.11) can be rewritten as

−∂xBy + ∂yBx + jωε0µ0Ez = −µ0(σ + jωε− jωε0)Ez. (2.2.12)

From this the contrast function can be introduced

χ(ρ) = σ(ρ) + jωε(ρ)− jωε0 = εr(ρ)− 1 +
σ(ρ)

jωε0
, ρ ∈ D. (2.2.13)

Further there are the field distributions outside the object, the contrast outside the object is air which is
characterized by σ = 0 and ε = ε0, which are given by

−∂xBy + ∂yBx + jωε0µ0Ez = −Jextz ,

∂yEz + jωBx = 0,

−∂xEz + jωBy = 0.

(2.2.14)

To get the scattered fields from Equation (2.2.11) and Equation (2.2.14) all that needs to be done is subtracting
the incident fields given in Equation (2.2.5). This results in a set of equations for the scattered fields inside and
outside the object

−∂xBscy + ∂yB
sc
x + jωε0µ0E

sc
z = −jωε0µ0χEz,

∂yE
sc
z + jωBscx = 0,

−∂xEscz + jωBscy = 0,

(2.2.15)

and

−∂xBscy + ∂yB
sc
x + jωε0µ0E

sc
z = 0,

∂yE
sc
z + jωBscx = 0,

−∂xEscz + jωBscy = 0.

(2.2.16)

These two sets of equations can be combined into one

−∂xBscy + ∂yB
sc
x + jωε0µ0E

sc
z = −µ0J

sc
z ,

∂yE
sc
z + jωBscx = 0,

−∂xEscz + jωBscy = 0,

(2.2.17)

where Jscz , called the scattering source, is given by

Jscz =

{
jωε0χEz, if ρ ∈ D
0, otherwise

(2.2.18)

From this the contrast source is defined as

w = χEz. (2.2.19)

Now all the ingredients are there to get an explicit expression for Escz . Using the set of equations given by
Equation (2.2.17) the following equation is found

−∂xBscy + ∂yB
sc
x + jωε0µ0E

sc
z = −µ0J

sc
z ,

− 1

jω
∂2
xE

sc
z −

1

jω
∂2
yE

sc
z + jωε0µ0E

sc
z = −µ0J

sc
z ,

(∂2
x + ∂2

y + k2
0)Escz = jωµ0J

sc
z .

(2.2.20)
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Filling in Equation (2.2.18) results in

(∂2
x + ∂2

y + k2
0)Escz = jωµ0 · jωε0χEz. (2.2.21)

Finally applying Equation (2.2.8) provides an explicit equation for Escz

Escz (ρ) = −jωµ0 · jωε0
ˆ
ρ∈D

Ĝ(ρ− ρ′)χ(ρ′)Ez(ρ
′)dV,

= k2
0

ˆ
ρ∈D

Ĝ(ρ− ρ′)χ(ρ′)Ez(ρ
′)dV,

= GD{χ(ρ′)Ez(ρ
′)},

(2.2.22)

where GD{·} is an operator that will be used later on in the algorithm.
The last thing that is left now is giving the explicit formulas for B+sc

1 and B−sc1 . These can easily be obtained
by using the last two equations from (2.2.17) and the definitions given in Equation (2.1.5) and Equation (2.1.6)
and then filling in Equation (2.2.22) for Escz . For B+sc

1 this comes down to

B+sc
1 =

Bscx + jBscy
2

,

=
−∂yEscz + j∂xE

sc
z

2jω
,

=
(∂x + j∂y)Escz

2ω
,

=
k2

0

2ω
(∂x + j∂y)

ˆ
ρ∈D

Ĝ(ρ− ρ′)χ(ρ′)Ez(ρ
′)dV,

=
ω

2c20
(∂x + j∂y)

ˆ
ρ∈D

Ĝ(ρ− ρ′)χ(ρ′)Ez(ρ
′)dV,

= G+
S {χ(ρ′)Ez(ρ

′)}.

(2.2.23)

Doing the same for B−sc1 gives

B−sc
∗

1 =
Bscx − jBscy

2
,

=
−∂yEscz − j∂xEscz

2jω
,

=
(−∂x + j∂y)Escz

2ω
,

= − (∂x − j∂y)Escz
2ω

,

= − k
2
0

2ω
(∂x − j∂y)

ˆ
ρ∈D

Ĝ(ρ− ρ′)χ(ρ′)Ez(ρ
′)dV,

= − ω

2c20
(∂x − j∂y)

ˆ
ρ∈D

Ĝ(ρ− ρ′)χ(ρ′)Ez(ρ
′)dV,

= G−S {χ(ρ′)Ez(ρ
′)},

(2.2.24)

here the operators G+
S {·} and G−S {·} are introduced which again are used in the algorithm further on.

This concludes the scattering formalism. All the fields now have an explicit formula and can be computed. In
the next part the incident fields are given for line sources.

2.3 The incident fields due to line sources

When assuming the fields are two-dimensional the legs of the birdcage coil can be seen as infinite line sources
through which equal current flows. These line sources provide a way to calculate the incident fields for the 2D
antenna setup.
So given that the external current density in Equation (2.2.10) is the line source. Which is characterized by

Jextz = Î(jω)δ(ρ− ρs), (2.3.1)
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here ρs is the position vector of the source and Î(jω) is the current flowing through the line. Now filling in
Equation (2.3.1) in Equation (2.2.10) results in

Eiz = −jωµ0

ˆ
ρ′∈Dsrc

Ĝ(ρ− ρ′)Î(jω)δ(ρ− ρs)dV. (2.3.2)

Using the property of the dirac delta function defined as

ˆ ∞
−∞

f(x)δ(x− a)dx = f(a). (2.3.3)

Plus substituting Equation (2.2.9). The expression for the incident electric field condenses to

Eiz(ρ) = −jωµ0Î(jω)Ĝ(ρ− ρs),

= −jωµ0Î(jω) · − j
4
H

(2)
0 (k0|ρ− ρs|),

= −ωµ0

4
Î(jω)H

(2)
0 (k0|ρ− ρs|).

(2.3.4)

From the incident electric field the incident magnetic fields can be solved for. This goes analogous to the
scattered fields. It starts with finding the expression for Bix

Bix(ρ) = − 1

jω
∂yE

i
z,

=
1

jω
· ωµ0

4
Î(jω)∂yH

(2)
0 (k0|ρ− ρs|),

= −jµ0

4
Î(jω)∂yH

(2)
0 (k0|ρ− ρs|),

(2.3.5)

here only the Hankel function is dependant on the spacial coordinates, the rest can be seen as a constant when
taking the derivative. Using the following identity of the Hankel function [18]

∂H
(2)
0 (z)

∂z
= −H(2)

1 (z), (2.3.6)

the derivative of the Hankel function in Equation (2.3.5) with respect to x and y is given by

∂

∂x
H

(2)
0 (k0|ρ− ρs|) = −k0

x− xs
|ρ− ρs|

H
(2)
1 (k0|ρ− ρs|), (2.3.7)

and

∂

∂y
H

(2)
0 (k0|ρ− ρs|) = −k0

y − ys
|ρ− ρs|

H
(2)
1 (k0|ρ− ρs|). (2.3.8)

Substituting Equation (2.3.8) in Equation (2.3.5) gives

Bix(ρ) = −jµ0

4
Î(jω) · −k0

y − ys
|ρ− ρs|

H
(2)
1 (k0|ρ− ρs|),

=
jµ0k0

4
Î(jω)

y − ys
|ρ− ρs|

H
(2)
1 (k0|ρ− ρs|).

(2.3.9)

Doing the same for Biy shows that

Biy =
1

jω
∂xE

i
z,

=
1

jω
· −ωµ0

4
Î(jω)∂xH

(2)
0 (k0|ρ− ρs|),

=
jµ0

4
Î(jω)∂xH

(2)
0 (k0|ρ− ρs|),

=
jµ0

4
Î(jω) · −k0

x− xs
|ρ− ρs|

H
(2)
1 (k0|ρ− ρs|),

= −jµ0k0

4
Î(jω)

x− xs
|ρ− ρs|

H
(2)
1 (k0|ρ− ρs|).

(2.3.10)
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Now the last step is to substitute Equation (2.3.9) and Equation (2.3.10) into the definitions of B+
1 and B−1

given by Equation (2.1.5) and Equation (2.1.6) respectively. This results in

B+i
1 =

Bix + jBiy
2

,

=
1

2

(
jµ0k0

4
Î(jω)

y − ys
|ρ− ρs|

H
(2)
1 (k0|ρ− ρs|) + j · −jµ0k0

4
Î(jω)

x− xs
|ρ− ρs|

H
(2)
1 (k0|ρ− ρs|)

)
,

=
µ0k0

8
Î(jω)

(x− xs) + j(y − ys)
|ρ− ρs|

H
(2)
1 (k0|ρ− ρs|),

(2.3.11)

and

B−i1 =
Bi
∗

x + jBi
∗

y

2
,

=
1

2

(
−jµ0k0

4
Î∗(jω)

y − ys
|ρ− ρs|

H
(2)∗

1 (k0|ρ− ρs|) + j · jµ0k0

4
Î∗(jω)

x− xs
|ρ− ρs|

H
(2)∗

1 (k0|ρ− ρs|)
)
,

= −µ0k0

8
Î∗(jω)

(x− xs) + j(y − ys)
|ρ− ρs|

H
(2)∗

1 (k0|ρ− ρs|).

(2.3.12)

Now all the equations are there to express the field created by a line source. In an MRI, however, there are
multiple legs in the coil, thus multiple line sources. The total field can easily be obtained by summing all the
fields from all the line sources through the use of superposition. The only thing that changes is the phase shift
in each line source and the place of that line source assuming that there is no coupling from the load to the source.

2.4 Mirror sources method

The mirror source method is used to implement equipotential surfaces in models by the use of a mirror source
[19]. Lets assume that there is a source at location ρs with a charge Q. Further there is an infinite grounded
Perfect Electrical Conductor (PEC) plate at a location x = a that extends to y = ±∞. Then the corresponding
potential on the plate should be 0. Now the mirror source method says that by mirroring the original source in
the plate and changing the sign of the charge (i.e. charge Q becomes −Q) this half plane can be modeled. This
is visualized in Figure 2a. This works because the distance between the original source and the half plane is
equal to the distance between the mirror source and the half plane. Therefor the opposing charges cancel each
other out. The problem can also be described by the Dirichlet boundary conditions as

Ez(ρ) =

{
(∂2
x + ∂2

y + k2
0)Ez(ρ) = jωµ0J

ext
z , ρ > a

0, ρ = a
(2.4.1)

The resulting normalized potential distribution is shown in Figure 2b.
Now the same problem can be posed for a birdcage coil in an MRI because around the coil is an RF-shield.
The RF-shield is there to minimize the field outside of the scanner and to keep external source outside of the
scanner, this is done to minimize interference. The RF-shield can be seen as a Perfect Electrical Conductor
(PEC) which encircles a certain domain DPEC . For such a shield the Dirichlet boundary condition transforms
into

Ez(ρ) =

{
(∂2
x + ∂2

y + k2
0)Ez(ρ) = jωµ0J

ext
z , ρ ∈ DPEC

0, ρ ∈ ∂DPEC
(2.4.2)

What this means is that the fields should be 0 on the boundary of DPEC . However since simply mirroring the
original source into the RF-shield does not make the distance between the shield and the original source equal
to the distance between the shield and the mirror source. In [19] an improvement for the location of the mirror
source is given by

d =
R2
PEC

rcoil
, (2.4.3)

where d is the distance at which the mirrored source needs to be placed with respect to the center of the coil.
RPEC and rcoil are the radii of the PEC and the coil respectively. This is a first order approximation of the
shield. To get the second order approximation the mirror sources have to be mirrored into the shield again. This
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(a) The locations of the original source (green), the
mirror source (red) and the half plate (blue) can be
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(b) The resulting normalized potential distribution
due to both the sources. The value at the location
of the source is set to 1.

Figure 2: A demonstration of the mirror source method. On the left is the setup of the sources and half plane.
On the right is the resulting field distribution.

can be done infinitely many times to get a higher order approximation. However as will be shown in Section 4
a first order approximation is good enough to get a good quantitatively and qualitatively approximation of the
incident fields of the MRI.

2.5 The transceive phase

Most of the existing MR-EPT schemes need either the complex B+
1 field or the at least the true B+

1 phase.
Now the problem with this is that this phase cannot be measured by the scanner. The signal that is measured
by the scanner for low flip angles is given by [20],[21],[22].

S(r) ≈ ρ(r) ·B∗−RE1 (r)
B+TR

1 (r)

|B+TR
1 (r)|

f, (2.5.1)

where ρ is the proton density of the object and f is a function that includes scaling of the amplitude and phase
contributions due to relaxation and B0 effects. From this equation it is seen that the measured phase of the
signal depends on the B+

1 in transmit and the complex conjugate of B−1 in receive. The measured phase is thus
given by

φ± = φ+ + φ−, (2.5.2)

where φ+ is the phase due to B+TR
1 and φ− is the phase due to B∗−RE1 . It is now obvious that this poses a

problem for the existing methods, since the separate phase contributions cannot be measured. A way to get
around this problem is to use what is called the transceive phase assumption (TPA).
This assumption states that φ+ and φ− are equal and thus taking half of the measured phase results in the
transmit phase, as seen by

φ±
2

=
φ+ + φ−

2
,

=
2φ+

2
,

= φ+.

(2.5.3)

This assumption holds for a homogeneous cylinder or if the scattered fields due to the two ports cancel each
other. This is shown in [20]. In the next chapter a way to get the transmit phase which is incorporated in the
CSI-EPT scheme is given.

2.6 Signal-to-Noise Ratio

In the past there have been misunderstandings about how the SNR is defined in MRI experiments. And more
importantly what scale to use. In the world of electrical engineering it is accustomed to use decibels (dB) for
the scale of the SNR. However, in the bio-imaging world the SNR is seen as a factor. To avoid any confusion
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further on, the definition of the SNR is stated below.
For this thesis the SNR is seen as a factor. Meaning an SNR of 20 states that the amplitude of the signal is 20
times larger than the amplitude of the noise.
As for how it is incorporated into the simulations in MATLAB and Sim4Life is shown below. This is also
described in [2].
First the complex B+

1 map is split into its real and imaginary parts

R = <{B+
1 } = |B+

1 | · cos(φ),

I = ={B+
1 } = |B+

1 | · sin(φ),
(2.6.1)

where φ is the phase of the complex B+
1 .

Both R and I are duplicated to obtain two sets, R1,R2,I1 and I2. The first set of the real and imaginary part
is used to obtain the amplitude of the complex B+

1 map and the second set is used to obtain the phase.
This is done because in an MRI measurement the magnitude and phase are measured separately and both with
a different SNR. The phase is measured with two spin echo sequences and the magnitude is measured with two
repeated gradient echos.
The noise in an MRI measurement comes from black body radiation, a typical curve can be seen in Figure 3.
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Figure 3: The black-body radiation curve for according to Planck’s law at a temperature of 293 Kelvin.

The wavelength in an MRI is in the order of meters. When looking back at Figure 3 it is clearly seen that the
curve becomes flat at larger wavelengths. Therefore the noise in an MRI measurement can be modeled as white
Gaussian noise.
Thus four different sets of white Gaussian noise need to be constructed to obtain a realistic SNR. The corrupted
maps are made by

R̃1 = R1 + η1,

Ĩ1 = I1 + η2,

R̃2 = R2 + η3,

Ĩ2 = I2 + η4,

(2.6.2)

here η is the Gaussian noise, where η1 and η2 are related but independent of each other. The same holds for the
η3 and η4. For η1,2 the standard deviation is given by σmag and for η3,4 the standard deviation is given by σphase

σmag =
r̄

SNRmag
,

σphase =
r̄

SNRphase
,

(2.6.3)

here SNRmag and SNRphase denote the SNR of the magnitude measurement and phase measurement respec-
tively. While r̄ denotes the mean magnitude of the amplitude of the complex B+

1 map. This amplitude is taken
in the area where the object is located in the field of view (FoV) , because only this can be measured in an
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MRI scanner whereas in Matlab and Sim4Life the complete electric and magnetic field distributions can be
simulated.
Since the real and imaginary parts are corrupted separately, the corrupted magnitude and phase are obtained
by

|B̃+
1 | =

√
R̃2

1 + Ĩ2
1 , (2.6.4)

6 B̃+
1 = atan2(Ĩ2, R̃2). (2.6.5)

Combining Equation (2.6.4) and Equation (2.6.5) the corrupted complex B+
1 map is acquired by

B̃+
1 = |B̃+

1 |ei
6 B̃+

1 . (2.6.6)
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3 The Contrast Source Inversion Method

This chapter begins with the idea of standard CSI for MRI purposes. The problems of this method are discussed
and an improved update scheme is given.
To compute the scattered fields a discrete Green’s function needs to be computed. For this the weak Green’s
function from [23] was used.

3.1 Contrast Source Inversion in an MRI setting

3.1.1 Cost Functional

From [11] the generalized cost functional that needs to be minimized is defined as

F (wj , χ) = ηSΣj ||fj −G+
S {wj}||

2
S + ηDΣj ||χuincj − wj + χGD{wj}||2D, (3.1.1)

here fj is the measured data where j are the different antenna settings and wj is the corresponding contrast
source which in the generalized form is

wj = χuj . (3.1.2)

Further in this equation ηs and ηD are the normalization factors defined as

ηS =
(
Σj ||fj ||2S

)−1
,

ηD =
(
Σj ||χuincj ||2D

)−1
.

(3.1.3)

Now in an ideal MRI setting, with ideal meaning the measured data being the complex B+TR
1 , Equation (3.1.1)

transforms to

F (wTRj , χ) = ηSΣj ||B+sc,TR
1,j −G+

S {w
TR
j }||2S + ηDΣj ||χEinc,TRz,j − wTRj + χGD{wTRj }||2D, (3.1.4)

with

ηS =
(

Σj ||B+sc,TR
1,j ||2S

)−1

,

ηD =
(

Σj ||χEinc,TRz,j ||2D
)−1

.

(3.1.5)

The cost function in Equation (3.1.4) is minimized using a nonlinear Polak-Ribière updating scheme.
The first thing to do is defining the cost function at each iteration

Fn(wTRj , χ) = ηSΣj ||B+sc,TR
1,j −G+

S {w
TR
j }||2S + ηD,nΣj ||χEinc,TRz,j − wTRj + χGD{wTRj }||2D, (3.1.6)

with

ηS =
(

Σj ||B+sc,TR
1,j ||2S

)−1

,

ηD,n =
(

Σj ||χn−1E
inc,TR
z,j ||2D

)−1

.

(3.1.7)

Equation (3.1.6) consists of two separate parts, the first is called the data cost functional and the other the
object cost functional. These are given by

FS(wTRj ) = ηSΣj ||B+sc,TR
1,j −G+

S {w
TR
j }||2S ,

FD,n(wTRj , χ) = ηD,nΣj ||χEinc,TRz,j − wTRj + χGD{wTRj }||2D.
(3.1.8)

Now that the cost functional is known the algorithm can be started by defining the residuals, the error of the
estimation compared to the measured data. Again there is a data and an object variant. The data residual is
given by

ρj,n = B+sc,TR
1,j −G+

S {w
TR
j,n } (3.1.9)
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and the object residual is given by

rj,n = χnE
inc,TR
z,j − wTRj,n + χnGD{wTRj,n }. (3.1.10)

The to be minimized cost function and the corresponding residuals are known. How these residuals are minimized
is in the next section.

3.1.2 Update scheme contrast source

The update formula for the contrast source is defined as

wTRj,n = wTRj,n−1 + αw
TR

n vj,n, (3.1.11)

here αw
TR

n is the stepsize and vj,n is the update direction. The stepsize that minimizes the cost function can
be found by solving

αw
TR

n = argmin
<α
{Fn(wTRj,n−1 + αvj,n, χn−1)}. (3.1.12)

The update direction is given by

vj,n =


0, n = 0

g
wTRj
j,n +

Σj<g
wTRj
j,n ,g

wTRj
j,n −g

wTRj
j,n−1>D

Σj ||g
wTR
j

j,n−1||2D
vj,n−1, n ≥ 1

(3.1.13)

In Equation (3.1.13) gw
TR

j,n is the gradient of the cost functional in Equation (3.1.4) with respect to wTR. This
gradient can easily be found by using Taylor’s theorem [24]

Fn(wTRj,n−1 + αvj,n, χn−1) = Fn(wTRj,n−1, χn−1) + α < gw
TR

j,n , vj,n >D +o(α). (3.1.14)

Applying this definition to Equation (3.1.4) gives the following result

Fn(wTRj,n−1 + αvj,n, χn−1) = FS(wTRj,n−1 + αvj,n) + FDn(wTRj,n−1 + αvj,n, χn−1). (3.1.15)

For the data cost functional this results in

FS(wTRj,n−1 + αvj,n) = ηSΣj ||B+sc,TR
1,j −G+

S {w
TR
j,n + αvj,n}||2S ,

= ηSΣj ||B+sc,TR
1,j −G+

S {w
TR
j,n } − αG+

S {vj,n}||
2
S ,

= ηSΣj ||ρj,n−1 − αG+
S {vj,n}||

2
S ,

= ηSΣj
(
||ρj,n−1||2S − 2α < ρj,n−1, G

+
S {vj,n} >D +α2||G+

S {vj,n}||
2
S

)
,

= ηSΣj

(
||ρj,n−1||2S − 2α < G+,†

S {ρj,n−1}, vj,n >D +α2||G+
S {vj,n}||

2
S

)
(3.1.16)

and for the object cost functional

FDn(wTRj,n−1 + αvj,n, χn−1) = ηD,nΣj ||χn−1E
inc,TR
z,j − wTRj,n−1 − αvj,n + χn−1GD{wTRj,n−1 + αvj,n}||2D,

= ηD,nΣj ||χn−1E
inc,TR
z,j − wTRj,n−1 − αvj,n + χn−1GD{wTRj,n−1}+ αχn−1GD{vj,n}||2D,

= ηD,nΣj ||rj,n − αvj,n + αχn−1GD{vj,n}||2D,
= ηD,nΣj ||rj,n + α(χn−1GD{vj,n} − vj,n)||2D,
= ηD,nΣj

(
||rj,n||2D + 2α < rj,n, (χn−1GD{vj,n} − vj,n) >D +α2||χn−1GD{vj,n} − vj,n||2D

)
,

= ηD,nΣj

(
||rj,n||2D + 2α < G†D{χ

∗
n−1rj,n} − rj,n, vj,n >D +α2||χn−1GD{vj,n} − vj,n||2D

)
.

(3.1.17)

Finally filling in Equation (3.1.16) and Equation (3.1.17) in (3.1.14) gives the explicit expression for the gradient
as

gw
TR

j,n = −2Σj

(
ηSG

+,†
S {ρj,n−1}+ ηD,n

(
rn,j −G†D{χ

∗
n−1rn,j}

))
. (3.1.18)
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From the definition in Equation (3.1.14) the stepsize is also easily obtained by taking the derivative with respect
to α and setting the result to zero, thus finding a minimum.

∂Fn(wTRj,n−1 + αvj,n, χn−1)

∂α
= 0

∂FS(wTRj,n−1 + αvj,n)

∂α
+
∂FDn(wTRj,n−1 + αvj,n, χn−1)

∂α
= 0

(3.1.19)

Filling in the results from (3.1.16) and (3.1.17) gives an analytical solution to Equation (3.1.12). Given by

ηSΣj

(
−2 < G+,†

S {ρj,n−1}, vj,n >D +2α||G+
S {vj,n}||

2
S

)
...

+ηD,nΣj

(
2 < (G†Dχ

∗
n−1 − I)rn,j , vj,n >D +2α||(χn−1GD − I)vj,n||2D

)
= 0,

Σj
(
2ηSα||G+

S {vj,n}||
2
S + 2ηD,nα||(χn−1GD − I)vj,n||2D

)
= ...

−Σj

(
−2ηS < G+,†

S {ρj,n−1}, vj,n >D +2ηD,n < (G†Dχ
∗
n−1 − I)rn,j , vj,n >D

)
,

αΣj
(
2ηS ||G+

S {vj,n}||
2
S + 2ηD,n||(χn−1GD − I)vj,n||2D

)
= −Σj < gw

TR

j,n , vj,n >D,

α = −1

2

Σj < gw
TR

j,n , vj,n >D

Σj
(
ηS ||G+

S {vj,n}||2S + ηD,n||(χn−1GD − I)vj,n||2D
) ,

(3.1.20)

with the stepsize and update direction known it is possible to update the contrast source by substituting
Equation (3.1.13) and Equation (3.1.20) in Equation (3.1.11).

3.1.3 Updating the total electric field

Now that the contrast source is updated Equation (2.2.22) can be solved to get the scattered electric field. This
together with the incident electric field can then be substituted into

ETRz,j,n = Einc,TRz,j +GD{wTRj,n }. (3.1.21)

This single equation concludes the updating of the total electric field.

3.1.4 Update scheme contrast

It is clearly seen that the data cost functional is not dependent on the contrast and only the object cost functional
is. Plus using Equation (3.1.21) the object cost functional in Equation (3.1.8) can be rewritten to

FD,n = ηD,nΣj ||χETRz,j − wTRj }||2D. (3.1.22)

Minimizing the object cost functional is now as easy as using the least squares solution which is given by

χn =
Σjw

TR
j,nE

∗TR
z,j,n

Σj |ETRz,j,n|
2 . (3.1.23)

Of course the contrast can be updated using again the Polak-Ribière update directions, however this doesn’t
yield better results since they boil down to the same result.

3.1.5 Starting the algorithm

Now that the update scheme is known the algorithm needs to be initialized by a first guess. For this two options
can be used, the first is simply using back propagation, which is defined as [11]

wTRj,0 =
||G+,†

S {fj}||2D
||G+

S {G
+,†
S {fj}}||2S

G+,†
S {fj}. (3.1.24)

Substituting the result in (3.1.21) and finally in (3.1.23) will yield ETRz,j,0 and χ0 respectively.
This is a decent start for the algorithm to work with, however with a priori information about the object that
is scanned a much better initial guess can be made. In an MRI setting T1 or T2 weighted images are made
very quickly, these can be used as a mask to which a certain conductivity and permittivity can be coupled. For
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example the literature values for muscle. Or taking it a step further and identifying the tissue types present
and linking the correct contrast values to that will result in a very accurate initial guess.
With this first guess for a contrast Equation (3.1.21) needs to be solved for the total electric field and using
(2.2.19) the initial guess for the contrast sources can be acquired.

3.1.6 Total variation

In principal the algorithm described above would give solutions that are close to the true contrast. However
in practice the measured data is corrupted with noise. The pleasant thing about this update scheme is that
corrections can be done at each iteration rather than having a certain corrupted input and thus a corrupted
output as is the case with many of the EPT schemes out there.
To handle the noise in this algorithm a new cost functional is introduced that incorporates a total variation
denoising term [25]. First a small introduction to Total Variation (TV) is given and after that the new cost
functional and update scheme are presented.

Total variation in a general sense
Let u0 be the noise free image and ũ the corrupted image given by

ũ = u0 + η, (3.1.25)

where η is white Gaussian noise. One property that is known about white Gaussian noise is that the mean
value is 0

η̄ = 0. (3.1.26)

With this property it is directly visible that the mean value of the true image and the corrupted image should
be equal shown by

¯̃u = u0 + η,

= ū0 + η̄,

= ū0.

(3.1.27)

The next property of noise that is known is that it fluctuates, or in mathematical terms the norm of the gradient
of noise is high thus

||∇ũ||p > ||∇u0||p (3.1.28)

where p denotes either the 1 or 2 norm.
In order to get the true image back from the corrupted image the gradient of has to be minimized while the
mean value is kept the same. A cost functional that goes with this is given by

F (x) = ||ũ− x||22 + δ||∇x||2p, (3.1.29)

here the parameter δ is a steering parameter, it depicts the importance of minimizing the gradient compared
to keeping the mean value the same. It is difficult to make an absolute choice for this parameter as it depends
heavily on the kind of reconstruction that is done. For every reconstruction the steering parameter can be
different.
Choosing to minimize the 2-norm will result in a smoothed image, whereas minimizing the 1-norm gives a more
blocky image.

Total variation in CSI-EPT
Now that the basic idea for total variation is known it can be introduced into the existing algorithm. The choice
was made to have a multiplicative TV term instead of an additive one. This choice was made on the basis that
with the additive TV term a certain weight/importance has to be given to minimizing the gradient. With the
multiplicative TV term this weighing is done automatically [11]. This gives rise to the cost functional

FRn (wTRj , χ) =
(
FS(wTRj ) + FD,n(wTRj , χ)

)
FTVn (χ). (3.1.30)

A desirable property for FTVn is

FTVn (χn−1) = 1, (3.1.31)
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because if this is true then with updating the contrast source the old cost functional is kept as

FRn (wTRj,n−1 + αVj,n, χn−1) =
(
FS(wTRj,n−1) + FD,n(wTRj,n−1, χn−1)

)
FTVn (χn−1),

= FS(wTRj,n−1) + FD,n(wTRj,n−1, χn−1).
(3.1.32)

Because of this the update scheme for the contrast source as well as updating the total electric field is kept the
same as before. The only thing that changes is the update scheme for the contrast. This is no longer a least
squares solution.
The update formula for the contrast is now given by

χn = χn−1 + βdn, (3.1.33)

where again β is the stepsize and dn is the Polak-Ribière update direction as given by

dn =

{
0, n = 0

gχn +
<gχn,g

χ
n−g

χ
n−1>D

||gχn−1||2D
dn−1, n ≥ 1

(3.1.34)

Again using Taylor’s theorem the gradient can be found relatively easy

FRn (wTRj,n , χn−1 + βdn) = FRn (wTRj,n , χn−1) + β < gχn , dn >D +o(β). (3.1.35)

From the property given in Equation (3.1.31) it can directly be seen that

FRn (wTRj,n , χn−1) = Fn(wTRj,n , χn−1). (3.1.36)

Working out equation (3.1.35)

FRn (wTRj,n , χn−1 + βdn) = Fn(wTRj,n , χn−1 + βdn)FTVn (, χn−1 + βdn),

= (Fn(wj,n, χn−1) + β < gn, dn >D +o(β)) ·
(
FTVn (χn−1) + β < gTVn , dn >D +o(β)

)
,

(3.1.37)

where gn and gTVn are the gradient of Fn and FTVn respectively. These are evaluated at the points wj = wj,n
and χ = χn−1.
Continuing with Equation (3.1.37)

FRn (wTRj,n , χn−1 + βdn) = FRn (wTRj,n , χn−1) + β
(
Fn(wj,n, χn−1) < gTVn , dn >D +FTVn (χn−1) < gn, dn >D

)
+ o(β),

= FRn (wTRj,n , χn−1) + β < Fn(wj,n, χn−1)gTVn + gn, dn >D +o(β).

(3.1.38)

From this an expression for the gradient is given by

gχn = Fn(wj,n, χn−1)gTVn + gn. (3.1.39)

The only thing left to do to get the update direction is to get an expression for gTVn and gn. First up is the gn
term, as was done before to get this gradient Taylor’s theorem is used as

Fn(wj,n, χn−1 + βdn) = FS(wj,n) + FD,n(wj,n, χn−1 + βdn)

= FS(wj,n) + ηD,nΣj < χn−1E
TR
z,j,n − wj,n + βdnE

TR
z,j,n, χn−1E

TR
z,j,n − wj,n + βdnE

TR
z,j,n >D,

= FS(wj,n) + FD,n(wj,n, χn−1) + 2βηD,nΣj < χn−1E
TR
z,j,n − wj,n, ETRz,j,ndn >D +β2ηD,nΣj ||ETRz,j,ndn||2D,

= Fn(wj,n, χn−1) + 2βηD,nΣj < (χn−1E
TR
z,j,n − wj,n)E∗TRz,j,n, dn >D +β2ηD,nΣj ||ETRz,j,ndn||2D.

(3.1.40)

From Equation (3.1.40) it can be seen that

gn = 2ηD,nΣj(χn−1E
TR
z,j,n − wj,n)E∗TRz,j,n (3.1.41)

Now for the second gradient gTVn an explicit expression for FTVn is needed, this factor is introduced as

FTVn (χ) =

´
D

(|∇χ|2 + δ2
n−1dV )p/2´

D
(|∇χn−1|2 + δ2

n−1dV )p/2
, (3.1.42)
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here p denotes the norm that needs to be minimized, if p = 1 the 1-norm is minimized. This gives more piecewise
constant areas whereas p = 2 the 2-norm minimizes and results in a more smoothed contrast. In the algorithm
that is used for the rest of this work a weighted 2-norm variant is chosen for the TV factor, this is given by

FTVn (χ) =
1

V

ˆ
D

(|∇χ|2 + δ2
n−1dV )

(|∇χn−1|2 + δ2
n−1dV )

, (3.1.43)

where V is the 2-D volume of the object domain. The biggest benefit of choosing the 2-norm variant is that the
stepsize can be expressed analytically which is not the case with the 1-norm variant. This is due to the stepsize
being inside the square root of the integral.
The term δ2

n−1 is a steering parameter. From Equation (3.1.42) it can be seen that when this parameter is very
large then FTVn ≈ 1 and the cost functional returns to Equation (3.1.4). The same holds when

|∇χn−1|2 ≈ |∇χ|2. (3.1.44)

In both cases the TV term plays no role, thus choosing an appropriate δ2
n−1 becomes a real art. This decision

depends heavily on what the user of the algorithm wants as an output. Results can be achieved where the
reconstruction correctly shows all the boundaries and gets the small spots where the contrast has a certain value
for only a few pixels. However in those cases the contrast is not constant where it should be. Choosing the
steering parameter differently might result in better piecewise constant reconstructions but then the boundaries
are not as clear and small peaks in the contrast can be filtered out. A few different steering parameters will be
shown in the results section of this work.
Continuing with the task at hand, which was getting the gradient gTVn . To make writing this down somewhat
simpler the following variable is introduced as

bn−1 =
1√

V (|∇χn−1|2 + δ2
n−1)

. (3.1.45)

Equation (3.1.43) then becomes

FTVn (χ) =

ˆ
D

b2n−1(|∇χ|2 + δ2
n−1dV ),

= ||bn−1∇χ||2D + δ2
n−1||bn−1||2D.

(3.1.46)

Again Taylor’s theorem is used to get the gradient from this cost functional

FTVn (χn−1 + βdn) = ||bn−1∇χn−1 + β∇dn||2D + δ2
n−1||bn−1||2D,

=< bn−1∇χn−1 + β∇dn, bn−1∇χn−1 + β∇dn >D +δ2
n−1||bn−1||2D,

= FTVn (χn−1) + 2β < bn−1∇dn, bn−1∇χn−1 >D +β2||bn−1∇dn||2D.
(3.1.47)

From the definition of the inner product the following equation results

< bn−1∇dn, bn−1∇χn−1 >D = <
ˆ
D

bn−1∇dn · (bn−1∇χn−1)∗dV,

= <
ˆ
D

∇dn · b2n−1∇χ∗n−1dV.

(3.1.48)

Now this last term can be rewritten to

∇dn · b2n−1∇χ∗n−1 = ∇ · (dn · b2n−1∇χ∗n−1)− dn∇ · (b2n−1∇χ∗n−1). (3.1.49)

Substituting this into Equation (3.1.48) results in

<
ˆ
D

∇dn · b2n−1∇χ∗n−1dV = <
ˆ
D

∇ · (dn · b2n−1∇χ∗n−1)dV −<
ˆ
D

dn∇ · (b2n−1∇χ∗n−1)dV. (3.1.50)

It can be shown that the first term on the right-hand side of Equation (3.1.50) vanishes [17]. This leaves

<
ˆ
D

∇dn · b2n−1∇χ∗n−1dV = −<
ˆ
D

dn∇ · (b2n−1∇χ∗n−1)dV. (3.1.51)
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Finally substituting this back into Equation (3.1.48) results in

< bn−1∇dn, bn−1∇χn−1 >D = −<
ˆ
D

dn∇ · (b2n−1∇χ∗n−1)dV,

= − < dn,∇ · (b2n−1∇χn−1) >D .

(3.1.52)

When this outcome is substituted in Equation (3.1.47) it reveals the gradient to be

gTVn = −2∇ · (b2n−1∇χn−1). (3.1.53)

Now all the pieces for the total gradient are known and can be filled into Equation (3.1.39) to obtain

gχn = −2Fn(wj,n, χn−1)∇ · (b2n−1∇χn−1) + 2ηD,nΣj(χn−1E
TR
z,j,n − wj,n)E∗TRz,j,n. (3.1.54)

The only unknown at this point is the stepsize. Since the choice was made to minimize the 2-norm the stepsize
can be found explicitly by taking the derivative of Equation (3.1.38) with respect to the stepsize and setting
the result to zero

∂FRn (wTRj,n , χn−1 + βdn)

∂β
= 0. (3.1.55)

Filling in the results from (3.1.40), (3.1.47) and (3.1.52) results in

∂

((
Fn(wj,n, χn−1) + 2βηD,nΣj < (χn−1E

TR
z,j,n − wj,n)E∗TRz,j,n, dn >D +β2ηD,nΣj ||ETRz,j,ndn||2D

)
·
(
FTVn (χn−1)− 2β < dn,∇ · (b2n−1∇χn−1) >D +β2||bn−1∇dn||2D

))
∂β

= 0.

(3.1.56)
To make this more readable the following variables are introduced

a = Fn(wj,n, χn−1), b = 2ηD,nΣj < (χn−1E
TR
z,j,n − wj,n)E∗TRz,j,n, dn >D,

c = ηD,nΣj ||ETRz,j,ndn||2D, d = FTVn (χn−1) = 1,
e = −2 < dn,∇ · (b2n−1∇χn−1) >D, f = ||bn−1∇dn||2D.

(3.1.57)

With this in place Equation (3.1.56) transforms into

∂
((
a+ bβ + cβ2

)
·
(
d+ eβ + fβ2

))
∂β

= 0,

∂
(
ad+ aeβ + afβ2 + bdβ + beβ2 + bfβ3 + cdβ2 + ceβ3 + cfβ4

)
∂β

= 0,

ae+ 2afβ + bd+ 2beβ + 3bfβ2 + 2cdβ + 3ceβ2 + 4cfβ3 = 0,

ae+ b+ 2(af + be+ c)β + 3(ce+ bf)β2 + 4cfβ3 = 0.

(3.1.58)

This third order polynomial has three roots, two which are complex and one that is real [11]. The real root is
the one that will minimize the cost functional and thus should be computed. In [26] a different update scheme
is given for the contrast which is very similar to the one that has been shown here. The difference with this
method of updating is that there first the contrast is updated according to Equation (3.1.23). Then after that
a TV regularisation step is taken in the form of

χTVn = χn + αTV vTVn , (3.1.59)

where again αTV is the stepsize and vTVn is the Polak-Ribière update direction. The overall idea of the update
is the same as discussed above. This version was implemented in the CSI method.

3.2 Improving the algorithm for an MRI setting

So far the algorithm assumes that the true complex B+sc,TR
1 is known. However, as discussed in 2.5 this is not

the case. The MRI scanner measures the total B+
1 amplitude and the transceive phase. Going from the total

field to the scattered field not a big problem, simply subtracting the incident field from the total field as shown
in (2.2.4) will give the scattered field.
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The problem is the transceive phase, in the results section a reconstruction with the standard CSI-EPT scheme
with the transceive phase as input will be shown. The measured data is thus given by

fj = |B+TR
1,j |e

iφ± ,

= |B+TR
1,j |e

i(φ++φ−),

= |B+TR
1,j |e

iφ+eiφ− .

(3.2.1)

The data cost functional from Equation (3.1.8) changes to

FS(wTRj ) = ηSΣj |||B+TR
1,j |e

iφ+eiφ− −G+
S {w

TR
j }||2S . (3.2.2)

Correcting for the total field gives rise to

FS(wTRj ) = ηSΣj |||B+TR
1,j |e

iφ+eiφ− −G+
S {w

TR
j } −B

+i,TR
1,j ||2S ,

= ηSΣj ||B+TR
1,j eiφ− −G+

S {w
TR
j } −B

+i,TR
1,j ||2S .

(3.2.3)

Now the problem that is left is correcting the cost functional for the transceive phase. The term G+
S {wTRj } in

the cost functional above is the B+sc,TR
1 field, thus the only difference with that and the measured data is the

term eiφ− which is dependent on the B−,RE1 . Note that there is no ’j’ in the subscript, this is because it would
make no sense to receive the signal with a lower receive sensitivity. As this would only lower the SNR of the
measurement. Thus receiving is only done in reverse quadrature.
From Equation (2.2.4) it can be seen again that

B−,RE1 = B−i,RE1 +B−sc,RE1 . (3.2.4)

Luckily in section 2.3 not only an expression for the B+i
1 field was derived but for the B−i1 field as well. To get

the B−i,RE1 the correct phase shift has to be given to each line source. Further an expression for the scattered
field can be deduced from (2.2.24)

B−sc,RE1 = G−S {χE
RE
z }. (3.2.5)

To solve (3.2.5) the total electric field during receiving is needed. Again going back to Equation (2.2.4) and
substituting the outcome of (2.2.22) this field can be written as

EREz = Ei,REz + Esc,REz ,

= Ei,REz +GD{χEREz }.
(3.2.6)

The same way B−i,RE1 is obtained Ei,REz can be acquired and since the algorithm is approximating the contrast
at every iteration the equation above can be solved for the total electric field during the receive state of the
MRI. Thus at every iteration a better approximation of the receive phase,ϕ−,n, can be acquired, under the
condition that the algorithm converges to the true contrast.
The next step is to implement this into the cost functional and thus into the algorithm. The cost functional as
seen in Equation (3.2.3) is updated to

FS,n(wTRj , ϕ) = ηS,nΣj |||B+TR
1,j |e

iφ+eiφ−eiϕ−,n −G+
S {w

TR
j } −B

+i,TR
1,j ||2S . (3.2.7)

When χn → χ converges the cost functional above converges to

FS,n(wTRj ) = ηS,nΣj |||B+TR
1,j |e

iφ+ −G+
S {w

TR
j } −B

+i,TR
1,j ||2S ,

= ηS,nΣj ||B+TR
1,j −G+

S {w
TR
j } −B

+i,TR
1,j ||2S .

(3.2.8)

Which resembles the data cost functional in Equation (3.1.8) again. Further an extra benefit from this correction
is that the approximated phase ϕ−,n is dependent on wREj,n , the contrast source during the receive state, and not

on the wTRj,n . This means that the update scheme from above stays exactly the same and the only new addition
is after each update of the contrast the new ϕ−,n should be computed.

3.3 Overview of all the inputs and outputs

In Table 1 all the inputs needed to run the CSI algorithm are given. Instead of the back propagation as an initial
guess, Equation (3.1.24), another initial guess for the contrast can be supplied. This can help the algorithm
to converge in less iterations. Further the outputs of the algorithm are given as well. These include all the
RF-fields during the transmit and receive state of the MRI scanner.
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Table 1: In- and outputs of the algorithm

Inputs (name) Inputs (symbol) Outputs (name) Outputs (symbol)

Measured data B+,TR
1,j eφ− Complex transmit magnetic field in transmit B+,TR

1

Incident electric field in transmit ETRz,j Complex receive magnetic field during in receive B−,RE1

Incident electric field in receive EREz,j Total electric field in transmit ETRz

Incident transmit magnetic field in transmit B+,TR
1,j Total electric field in receive EREz

Incident receive magnetic field in receive B−,RE1,j The conductivity σ

The number of antenna settings j The relative permittivity εr

The spacing between data points dx & dy Complex transmit magnetic field in receive∗∗ B+,RE
1

The radius of the birdcage coil rcoil Complex receive magnetic field during in transmit∗∗ B−,TR1

The radius of the RF-shield RPEC SAR distribution∗∗ SAR

The location of the antennas ρs

The magnitude of the static magnetic field |B0|

Initial guess for the contrast∗ χ0

A mask of the object∗ Dobj

* are optional inputs that might improve the reconstruction.
** are the optional outputs that are acquired through straightforward calculations.

3.4 Pseudo code

In this section a pseudo code is given to show how the algorithm will look like, this can be seen as an extension
of the pseudo code in [12].

Algorithm 1: Transceive phase corrected CSI-EPT

- Compute w0 and χ0

for n = 1 to maxIterations do
Step 1:Update the contrast sources

- Compute gw
TR

n for FRn (wn−1, χn−1, ϕn−1)
- Compute the Polak-Ribière update direction
- Compute the stepsize
- Update the contrast source

Step 2:Update ETRz
Step 3:Update the contrast

- Compute gχn for FRn (wn, χn−1, ϕn−1)
- Compute the Polak-Ribière update direction
- Compute the stepsize
- Update the contrast

Step 4:Update the receive phase
- Solve for EREz with χn
- Compute B−,RE1

- Extract the receive phase
Step 5:Update the residuals and normalization factors
if Fn ≤ tolerance then

Stop
end

end
- Compute remaining outputs
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4 Matlab Simulations

Now that all the equations and algorithms are known it is time to put the CSI-EPT algoritm to the test and see
how it performs. In this section the input data is generated by Matlab. In the section afterwards the input data
will be generated by an FDTD solver called Sim4Life. This will also be used to validate the Matlab generated
data. The main difference between the two simulations is that the data from Matlab is 2D and E polarized and
the data from Sim4Life is 3D.
The Matlab simulation is used to test how the algorithm handles noise, truncation of k-space and different voxel
sizes. This is done step by step in order to see where certain artifacts in the reconstruction come from. In the
section of the Sim4Life results the same procedure of testing is done. This will give the most realistic scenario
of data that comes from the scanner.

4.1 The contrasts

In addition to the different kind of tests a multitude of test objects are used. For both Matlab and Sim4Life
these include a simple phantom as seen in Figure 4, a more complicated phantom as seen in Figure 5 and the
head of a human model called Ella which is seen in Figure 6. This model is from the virtual family [27].
The simple phantom is used to show that the algorithm can reconstruct this the transceive phase input because
the asymmetry of the phantom leads to the TPA to be invalid.
The values for the different compartments are shown in Table 2.
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Figure 4: The structure of the simple phantom. On the left is the conductivity profile and on the right is the
permittivity map.

Table 2: Conductivity and relative permittivity values for the first phantom at 128 MHz.

Conductivity [S/m] Relative permittivity Radius [cm]

Inner Compartment 1 80 2
Outer Compartment 0.5 70 6.5

The more complicated phantom shows better how the algorithm handles multiple structures with different
conductivities and permittivities and how well it reconstructs boundaries that are close together. The values
for the different compartments of the second phantom are shown in Table 3. And since this reconstruction
method needs to work on human tissue, a 2D slice of Ella’s brain is used to test how the final result will look
like. Finally, the electrical property values of Ella are given in Table 4.
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Figure 5: The structure of a more complicated phantom. On the left is the conductivity profile and on the right
is the permittivity map.

Table 3: Conductivity and relative permittivity values for the second phantom at 128 MHz.

Conductivity [S/m] Relative permittivity Radius [cm]

Top Compartment 0.5 60 2
Left Compartment 1 70 2

Middle Compartment 1 80 2
Right Compartment 1 60 2

Bottom Compartment 0.5 70 2
Background 0.1 78 6.5
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Figure 6: A slice of Ella’s brain. On the left is the conductivity profile and on the right is the permittivity map.

Table 4: Conductivity and relative permittivity values for Ella at 128 MHz.

Conductivity [S/m] Relative permittivity

White matter 0.342 52.53
Gray matter 0.587 73.52

CSF 2.14 84.04
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4.2 2D antenna setup

With the three different contrasts known the next thing that is looked at is the geometry of the MRI. For both
the Matlab and Sim4Life simulations the same antenna setup is used. The specifications of these are given in
Table 5.

Table 5: 2D antenna setup parameters

Parameter Value Unit

Coil radius 35.2 [cm]
RF-shield radius 37.15 [cm]
Number of legs 16

In Figure 7 the resulting 2D antenna setup can be seen, including the mirror sources that are used to numerically
implement the RF-shield.

x 

y
 

2D antenna setup

Figure 7: The simulated 2D antenna setup. The blue crosses indicate the true line sources whereas the red
crosses show the locations of the mirror sources. The location of the RF-shield is indicated by the orange circle.

4.3 The incident fields

The first thing that can be tested is how the incident fields look like with this setup. This can be shown for
all three modes, quadrature and two linear modes. For the electric fields the expected outcome would be a
minimum in the center of the coil, and no field where the RF-shield is located. In the quadrature mode the
field should be circularly polarized and for the linear modes the fields, as the name suggests, should be linearly
polarized. The resulting incident electric fields can be seen in Figure 8.
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Figure 8: The magnitude of the incident electric fields |Ei,TRz |. On the left is the quadrature mode, then in the
middle and on the right are the two linear modes.

It can clearly be seen that the field goes to zero where the RF-shield is implemented. There are a few advantages
to implementing such an RF-shield, the first is of course that this is more realistic. As there is a shield in the
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physical MRI as well, this improves the qualitative aspect of the fields (i.e. the field lines represent a more
realistic case). This is especially the case when the object is not precisely in the center of the coil.
However, also the quantitative aspect of the fields are improved. For a certain current running through the line
sources the corresponding fields match the physical MRI better. This is relevant for the reconstruction because
the MRI measures the total magnetic fields, whereas the algorithm is based on the scattered fields.
A zoomed in version of the incident electric fields is given in Figure 9. The zoomed in versions are given in
order to compare them with the incident magnetic fields B+i,TR

1 . For these fields it is beneficial if they are as
homogeneous as possible. The results of this are seen in Figure 10.
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Figure 9: The magnitude of the incident electric fields |Ei,TRz | zoomed in. On the left is the quadrature mode,
then in the middle and on the right are the two linear modes.
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Figure 10: The magnitude of the incident magnetic fields |B+i,TR
1 | zoomed in. On the left is the quadrature

mode, then in the middle and on the right are the two linear modes.

4.4 Standard CSI-EPT reconstructions

With all the fields constructed it is time to see how well the algorithm can reconstruct the contrast. The first
thing that needs to be checked is if the algorithm without the transceive phase correction is able to output good
results. This has of course been shown in [12] but is still good to check.
In the following figures the conductivity and permittivity are take separately to be compared with different
reconstruction settings. For the algorithm without the transceive phase correction the figures are ordered
according to Table 6.

Table 6: Order of figures for the algorithm without transceive phase correction

The original Perfect input reconstruction Noisy input reconstruction

Noisy input reconstruction
with TV reconstruction (Haffinger)

The wrong incident fields
amplitude is halved

The wrong incident fields
a global phase shift is added

Here the original means just that, the original conductivity and permittivity maps as shown in Section 4.1.
With perfect input it is meant that there is no noise added to the input data and the full k-space is supplied,
this is just used to test the algorithm and check if there are no bugs in the code. For noisy input an SNR of 70
is chosen for both the amplitude and phase. This will show how the algorithm handles noise and how the SNR
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of the input propagates through to the reconstructed contrast.
Now there are two different TV regularization options, this has to do with the steering parameter from equation
(3.1.43). A steering parameter was proposed in [28].

δ2
n = (

ˆ
x

dx)−1

ˆ
x

|∇χn−1|2dx. (4.4.1)

Whereas one for data from an MRI scanner was proposed as [17]

δ2
n =

Fs
FD,n

42, (4.4.2)

here 42 is the reciprocal of the meshsize. Of course there are many more choices possible here, as explained
before it really depends on the kind of problem that is being minimized. For the reconstructions with Matlab
data the steering parameter from Equation (4.4.1) was chosen, for the Sim4Life data and the measured data in
the next chapters the steering parameter from Equation (4.4.2) gave better results.
As for the last two reconstruction they were done by supplying the wrong incident fields to the algorithm to see
how sensitive it is to this. First the amplitude was halved and the second reconstruction was done by giving a
global phase shift to the incident fields. The results are shown in Figure 11 and Figure 12.
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Figure 11: Conductivity profiles of the simple phantom. In the top row are from left to right the original
profile,the reconstruction with perfect input and the noisy reconstruction. In the bottom row are the TV
regularized noisy reconstruction and two reconstruction with the wrong incident fields.
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Original permittivity
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Figure 12: Permittivity profiles of the simple phantom. In the top row are from left to right the original
profile,the reconstruction with perfect input and the noisy reconstruction. In the bottom row are the TV
regularized noisy reconstruction and two reconstruction with the wrong incident fields.

The first thing to notice from the reconstruction in Figure 11 and Figure 12 is that when the perfect input
is given to the algorithm it works very well. The next phenomenon is that the noise added to the input has
a larger effect on the permittivity reconstruction compared with the conductivity reconstruction. This makes
reconstruction the permittivity more difficult. However, the precision of the reconstructed conductivity scales
linearly with the transmit frequency whereas the precision of the reconstructed permittivity scales quadratically
[29]. Thus when a reconstruction is done with a static magnetic field strength of 7T instead of 3T the permit-
tivity reconstruction will benefit more than the conductivity reconstruction.
The TV regularization improves the reconstruction significantly, especially the permittivity resembles the orig-
inal a lot better.
Finally from the last two figures it is seen that supplying the algorithm with the wrong incident fields ruins
the reconstruction. The conductivity reconstruction is slightly less sensitive to the wrong amplitude than the
permittivity, however for both the global phase shift does not give good results. This is because the global phase
shift comes back into the contrast and part of the conductivity is translated to permittivity and the other way
around.
The reconstructions of the second phantom and Ella are in the appendix. Here the same order of figures hold
as shown in Table 6.
From the results in Figure A.1 and Figure A.2 the same conclusion can be drawn with respect to the simple
phantom. The only object left is Ella’s brain, again the same order of figures is in place.
In these set of reconstructions, Figure A.3 and Figure A.4, again similar conclusions can be drawn as with the
simple phantom. The aspect to notice here however is that noise makes it more difficult to reconstruct the fine
structures in the brain. What can be seen is that the structures are smoothed out more than one would like
them to be.
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4.5 Transceive phase assumption compared to transceive phase corrected

In this section the effect on the reconstructions of the TPA is tested and compared to the reconstructions when
using the transceive phase correction algorithm. First the error between the transmit phase and the TPA for
different static magnetic field strengths for the first phantom are quantified as seen in Figure 13. The error is
defined as

εTPA = φ+ −
φ±
2
. (4.5.1)

Transceive phase assumption error

at 1.5T

20 40 60

x 

10

20

30

40

50

60

70

 y

-4

-2

0

2

4

10
-3

Transceive phase assumption error

at 3T

20 40 60

x 

10

20

30

40

50

60

70

 y

-0.015

-0.01

-0.005

0

0.005

0.01

Transceive phase assumption error

at 7T

20 40 60

x 

10

20

30

40

50

60

70

 y

-0.2

-0.1

0

0.1

0.2

Figure 13: The error between the transmit phase and the TPA at different static magnetic field strengths for
the first phantom. On the left is 1.5T in the centre is 3T and on the right is 7T.

From Figure 13 it is clear that the stronger the static magnetic field the larger the error becomes. This is
also what follows from Section 2.5, because as the static magnetic field strength goes up the amplitude of the
scattered fields will grow too [30]. This makes the TPA less valid [20].
In Figure 14 and Figure 15 the error can be seen that is due to the TPA at 3T. On the right of the figure the
transceive phase corrected reconstruction is shown.
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Figure 14: On the left is the original conductivity. In the top middle figure the reconstructed conductivity is
shown by using the TPA, with underneath that the error compared to the original. On the right is the transceive
phase corrected reconstructed conductivity, with underneath it the error compared to the original. The static
magnetic field strength is 3T.
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Figure 15: On the left is the original permittivity. In the top middle figure the reconstructed permittivity is
shown by using the TPA, with underneath that the error compared to the original. On the right is the transceive
phase corrected reconstructed permittivity, with underneath it the error compared to the original. The static
magnetic field strength is 3T.
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Figure 16: On the left is the original conductivity. In the top middle figure the reconstructed conductivity is
shown by using the TPA, with underneath that the error compared to the original. On the right is the transceive
phase corrected reconstructed conductivity, with underneath it the error compared to the original. The static
magnetic field strength is 7T.
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Figure 17: On the left is the original permittivity. In the top middle figure the reconstructed permittivity is
shown by using the TPA, with underneath that the error compared to the original. On the right is the transceive
phase corrected reconstructed permittivity, with underneath it the error compared to the original. The static
magnetic field strength is 7T.

From Figure 14 and Figure 15 it can be seen that the transceive phase correction shows some small improvement
with respect to using the TPA. The same reconstructions were also done with a static magnetic field strength
of 7T, these are shown in Figure 16 and Figure 17.
From Figure 16 and Figure 17 it can be concluded that at higher static magnetic field strengths the TPA is not
accurate enough and the transceive phase correction must be done to get better results. In the appendix are
the 7T reconstructions for the other phantom, Figure A.5 and Figure A.6, and Ella, Figure A.7 and Figure A.8.
In Figure 18 the mean absolute error is plotted against the field strength, for both the conductivity and per-
mittivity, with and without noise. The noisy reconstructions were done with SNR 70. Normally the higher the
static magnetic field strength is the better the SNR becomes (i.e. there is more signal compared to the same
amount of noise), this was not taken into account in this reconstruction.

From Figure 18 it can be seen that at higher fields strengths the TPA is the main contributor to the error in
the reconstruction. This error disappears when the transceive phase correction is done. Furthermore, at higher
field strengths the conductivity and permittivity are reconstructed better. This is due to the higher curvature
of the measured field at higher field strengths (i.e. the conductivity and permittivity have a bigger influence on
the measured field) [29],[30]. The noise added also has less effect on the reconstructions at higher field strengths
for the same reason. From the top right plot it can thus clearly be seen that at lower field strengths the noise
is the dominant contributor of the error in the reconstruction and at the higher field strength the error is due
to the TPA.
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Figure 18: On the left the area is indicated by the black box over which the error is calculated. In the top row
are the errors plotted for the TPA, the left is without noise and the right is with SNR 70. In the bottom row
are the errors plotted for the transceive phase correction (TPC),the left is without noise and the right is with
SNR 70. The blue line is the conductivity and the red line is the permittivity.

4.6 Transceive phase corrected CSI-EPT reconstructions at 3T

From the previous section it is clear that the reconstructions with the transceive phase correction show a
significant improvement, especially for the higher static magnetic field strengths. For the reconstructions in the
following figures the order is as seen in Table 7.

Table 7: Order of figures for the algorithm without transceive phase correction

The original Noisy input reconstruction
Noisy input reconstruction

with TV reconstruction (Haffinger)

Voxels resized to 3mm by 3mm Truncated k-space input
Noisy input

with voxels resized to 3mm by 3mm and truncated k-space
with TV reconstruction (Haffinger)

All reconstructions from here on out are done with the transceive phase as input, because this is a more realistic
scenario. Plus it would not make sense to test a transceive phase correcting algorithm without the transceive
phase in there. Here the first three reconstructions were already discussed with the previous algorithm, thus
the attention is focused on the fourth reconstruction. This reconstruction tests the algorithm when the data
is resized to another grid. This will force the boundaries of the contrast to be inside the voxels rather than in
between the voxels. To acquire this input data the B+,TR

1 with transceive phase is upscaled to a finer grid size
and then downscaled again to the desired voxel size. For all these the new voxel size becomes 3mm by 3mm.
After this the k-space is truncated to see the effect of the sampling that is done inside the MRI. In a realistic
situation the object would be continuous and then discretized by the MRI measurement. To mimic this effect
the input that is again scaled up to a very fine grid. It is then Fourier transformed to get the k-space. Here the
higher frequencies are set to zero.
Finally the last reconstruction is as close as the 2D Matlab simulation will get compared to the actual measure-
ments. All the previous tests are put into one, meaning noise is added as well as the voxel size being set to 3mm
by 3mm and the k-space is truncated. The order of the operations is as follows: first the k-space is truncated
and afterwards the noise is added, otherwise the noise would be truncated which would beat that purpose of the
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simulation. Furthermore, in a normal MRI measurement the SNR would go up if larger voxels were sampled
because there would be more signal and the same amount of noise. This was not taken into account in these
simulations.
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Figure 19: Conductivity profiles of the simple phantom, all reconstructed with the transceive phase. In the
top row from left to right are the original profile, the noisy input reconstruction and the TV regularized
reconstruction. In the bottom row are the reconstructions with the resized voxels, k-space truncation and the
most realistic scenario
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Figure 20: Permittivity profiles of the simple phantom, all reconstructed with the transceive phase. In the
top row from left to right are the original profile, the noisy input reconstruction and the TV regularized
reconstruction. In the bottom row are the reconstructions with the resized voxels, k-space truncation and the
most realistic scenario.
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From Figure 19 and Figure 20 similar conclusions can be drawn with respect to the noisy input and the TV
regularization reconstructions as without the transceive phase correction algorithm. From the bottom left
reconstruction it is seen that resizing of voxels is not a problem. The truncation of k-space does have a small
impact at the boundary of the two compartments and at the edge of the phantom. This is because the higher
frequencies that are now truncated are needed for sharper edges. The most realistic reconstruction shows that
putting everything together is still not a problem for the algorithm.
Again the reconstruction for the second phantom and Ella are found in the appendix. The results from Figure A.9
and Figure A.10 show similar results as the simple phantom did. A thing to notice in both reconstructions is
that often the voxels in the center are incorrect. This is due to the fact that in Equation (3.1.23) the total
electric field is in the numerator of the equation. When looking back at Figure 8 the center of the incident
electric field is a minimum that goes to zero. This causes an instability in those few voxels in the center.
With the TV regularization however it can happen that when the 2-norm is minimized that this part of the
contrast gets smoothed out resulting in either a correct reconstruction when the surrounding voxels have the
same conductivity and permittivity as the center voxels. Or it causes the structure in the center to be smoothed
out, this can be seen in the reconstructions of Ella’s brain, Figure A.3 and Figure A.4 are good examples of
this.
In Figure A.11 and Figure A.12 Ella’s brain is reconstructed and again due to noise and smoothing of the TV
regularization the boundaries get smoothed out and a lot of fine details are lost in the process.
Until now only the complete maps have been shown, to get an idea about the difference between the two different
TV regularization parameters a line profile can give a better feeling on how it behaves. These profiles are only
shown for the last scenario from Figure 19,20 and Figure A.9 to Figure A.12. Plus the line profile is shown when
there is no TV regularization, to see the full scale effect it has on the reconstruction. In Figure 21, Figure A.13
and Figure A.14 these line profiles are visible.
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Figure 21: The line profiles of the simple phantom. The red line in the original images show where the profile
was examined.

From these line profiles it can be concluded that the TV regularization does help with reducing the noise on
the reconstruction. However as can be seen in Figure 21 and Figure A.13 the reconstruction does not jump
from one value to another instantly at the boundary. It takes 2 or 3 voxels to get to the desired value. This
results in fine structures to be either skipped or underestimated as can be seen in Figure A.14. This is due to
the minimization of the 2-norm which smooths the contrast. And one last thing to keep in mind with these line
profiles is that the reconstructions were on a 3mm by 3mm grid whereas their originals are not. This can make
it so that the jump at the boundary happens a voxel too early or too late.
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4.7 B−,RE
1 reconstruction

With all the reconstructions of the contrast done it is also interesting to look at how well the algorithm
reconstructs the B−,RE1 , since this has never been done before. The reconstruction is shown for the two
phantoms and Ella in the most realistic simulation setting. The results can be seen in Figure 22 and in the
Appendix in Figure A.15 and Figure A.16.
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Figure 22: The B−,RE1 reconstruction for the simple phantom. In the top row are the input phase and amplitude.
In the middle are the reconstructed phase and amplitude and in the bottom row are the line profiles taken at
the location of the red line.

From these figures it is clear that the input B−,RE1 field is in line with the reconstructed one. This accounts
for both qualitatively and quantitatively as seen by the line profiles. In the next chapter of this work the
reconstructions from Sim4Life are discussed.

35



5 Sim4Life Simulations

In this chapter the main goal is to get a step closer to the real measurements. The Matlab reconstructions shown
before are all for 2D data, whereas Sim4Life is a 3D FDTD simulation program. The first thing that will be done
is comparing the field distributions that come from the Matlab simulation with those that Sim4Life outputs.
After this comparison the reconstructions will be shown for the same objects as in the previous chapter, except
for Ella, a simulation was done with Duke instead. However, the true conductivity and permittivity profiles
were not available thus these results were omitted from this report.

5.1 Setup Sim4Life

In Sim4Life the birdcage coil in Figure 23 was tuned to 128MHz, the Larmor frequency for hydrogen atoms at
3T. Around the birdcage coil is the RF-shield and inside the coil is the bore. The bore is a plastic encapsulation
of the coil. The objects that were simulated in this coil setup were placed in the centre of the coil (i.e. the
centre of the object coincided with the centre of the coil). The reconstructions were also done with the data
from the centre slice, unless otherwise stated.

Figure 23: The coil setup in Sim4Life. This setup includes a tuned birdcage coil, an RF-shield and a bore.

The parameters that were used for the geometry of the setup are shown in Table 8.

Table 8: Geometry parameters of the setup in Sim4Life.

Parameter Value Unit

Coil radius 35.2 [cm]
RF shield radius 37.15 [cm]

Bore radius 35 [cm]
Coil length 44 [cm]

Number of legs 16

Finally, the simulations were run until Sim4Life stopped them, which it does if the difference between iterations
is smaller than -30dB. This was done to be sure that the simulation was converged.

5.2 Field distributions in Sim4Life

The first assumption that needs to be substantiated is the assumption that the electromagnetic field is two-
dimensional and E-polarized in the z-direction in the centre plane of MRI. This can be seen in Figure 24.
As can be seen in Figure 24 the z component of the magnetic field is negligible compared to the x and y
components. The same holds for the x and y components of the electric field with respect to the z component.
Thus the assumption in Equation (2.2.1) seems to be valid, the only problematic point is the middle of the
electric field. Here the amplitude of the z component has a comparable amplitude as the x and y components
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Figure 24: In the top row are the amplitudes of the electric field in the x,y and z-direction all on the same color
scale. In the bottom row are the amplitudes of the magnetic field in the x,y and z-direction all on the same
color scale. This is that data from the centre slice of the MRI.

of the electric field.
The following thing to verify is how well the 2D simulation from Matlab corresponds with the 3D simulation
from Sim4Life. For this the field distributions of the second phantom are shown, because the second phantom
has a larger scattered field and thus a more complex field distribution. In Figure 25 the B+

1 amplitudes are
shown for the quadrature and the linear settings.
As can be seen in Figure 25 the amplitudes of the Matlab simulation correspond to those from Sim4Life, the
only difference is that the amplitude of the Matlab simulation diminishes slightly faster. In Figure 26 the phase
maps are shown for the quadrature and the linear settings.
From Figure 26 a clear mismatch can be seen between the Matlab and the Sim4Life phase profiles. The profiles
have a similar curve, however the gradient of the Matlab phase profiles is larger. In the following section the
effect this has on the reconstruction will be shown.
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Figure 25: Portrayed are the B+
1 amplitudes for equal power settings in Matlab and Sim4Life. In the top row

from left to right are the quadrature, the left linear and the right linear B+
1 amplitude maps from Matlab. In

the bottom row are the corresponding Sim4Life maps.
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Figure 26: Portrayed are the B+
1 phases for equal power settings in Matlab and Sim4Life. In the top row from

left to right are the quadrature, the left linear and the right linear B+
1 phase maps from Matlab. In the bottom

row are the corresponding Sim4Life maps.
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5.3 Reconstructions Sim4Life

This section is started with the reconstruction of the simple phantom with the Sim4Life data. The same values
as in Table 2 were simulated. The first permutation of the reconstruction is supplying the algorithm with
the perfect B+

1 data. The next reconstruction is by feeding the algorithm with the TPA data. After this the
transceive phase correction algorithm is used with noise and TV regularization. The last reconstruction is the
realistic scenario (i.e. transceive phase, noise, truncation of k-space and TV regularisation). In Figure 27 and
Figure 28 these reconstructions are shown.
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Figure 27: The reconstructed conductivity profiles. On the left is the original profile. In the middle on top is
the reconstruction using perfect input. Next to it on the right is the reconstruction with the TPA as input.
In the middle on the bottom is the transceive phase corrected with noise on top. On the right of that is the
realistic input.

From Figure 28 it can be seen that these reconstructions do not match the original permittivity. The recon-
structions from Figure 27 represent the original conductivity better, however the values of the reconstructed
conductivity are underestimated. This underestimation is about 15% of the original value. This is most likely
the result of the difference in the phase that was seen in Figure 26, which showed the mismatch between the
2D and 3D simulations. To further explore this effect reconstructions were done where not the center slice was
taken but slices out of the center of the MRI. This is shown in Figure 29.
From Figure 29 it can seen that taking a slice out of the middle of the centre of the MRI results in a bigger
underestimation of the conductivity. This is due to the x and y components of the electric field grow in
amplitude, thus the assumption in Equation (2.2.1) is not valid anymore. This can be seen in Figure 30, which
can be compared to Figure 24.
To get better reconstructions out of the centre slice a 3D CSI-EPT code needs to be implemented. This has
been done in [31]
Furthermore the middle of the phantom is again a problem because the low electric field in the middle creates
an instability due to Equation (3.1.23) and because the x and y components of the electric field are in the same
order of magnitude as the z component. This results in Equation (2.2.1) to be invalid in this point.
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Figure 28: The reconstructed permittivity profiles. On the left is the original profile. In the middle on top is
the reconstruction using perfect input. Next to it on the right is the reconstruction with the TPA as input.
In the middle on the bottom is the transceive phase corrected with noise on top. On the right of that is the
realistic input.
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Figure 29: From left to right are the reconstructions of the conductivity out of the center slice, 1cm more per
reconstruction. On the bottom is a line plot with in orange the original value of the conductivity at the voxel
indicated with the red cross and the blue line is the same voxel plotted for the different reconstructions.
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Figure 30: In the top row are the amplitudes of the electric field in the x,y and z-direction all on the same color
scale. In the bottom row are the amplitudes of the magnetic field in the x,y and z-direction all on the same
color scale. These slices are 5cm out of the centre of the MRI.
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5.4 B−,RE
1 reconstruction

In Sim4Life the B−,RE1 field is created by simulating the linear excitation and adding the Hx and Hy to get
their respective B−1 fields, as seen in Equation (2.1.6). These are then added with a 90◦ phase shift to get the
correct field. This field is then used to create the transceive phase which is reconstructed with the new CSI
algorithm. The result for the simple phantom is shown in Figure 31.
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Figure 31: In the top row are the input B−,RE1 phase and amplitude for the simple phantom. In the middle

row are the reconstructed B−,RE1 phase and amplitude. The bottom row consists of a line profile of both the
phase and amplitude. These line profiles are taken at the location indicated by the red line.

As can be seen in Figure 31 the reconstructed B−,RE1 corresponds very well with the field given as input. The
mismatch in the line profiles is due to the minimum in the electric field that is located at exactly the centre of
the phantom. For the complicated phantom the result is shown in Figure 32.
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Figure 32: In the top row are the input B−,RE1 phase and amplitude for the complicated phantom. In the

middle row are the reconstructed B−,RE1 phase and amplitude. The bottom row consists of a line profile of both
the phase and amplitude. These line profiles are taken at the location indicated by the red line.

5.5 Comparison between CSI-EPT and phase only EPT

In this section the current implementation of CSI-EPT will be compared to one of the standard EPT schemes,
the phase only EPT method [20]. The magnitude is omitted because it does not improve the reconstruction
much and when noise is added it will often make the reconstruction worse. This will give some perspective to
the differences between the two methods. For this comparison the Sim4Life data is used and a noiseless case
is tested as well as one with SNR 70. For the phase only EPT a kernel of 7 is used to compute the gradients.
This kernel is more robust with respect to noise but has a bigger boundary error [9]. The results can be seen
in Figure 33, for the phase only reconstruction the absolute values were plotted.

From Figure 33 it can be seen that CSI-EPT has less boundary issues compared to the phase only reconstruction.
However the conductivity values of the phase only reconstruction show a better result than the CSI-EPT. This
is again because CSI-EPT is underestimating the conductivity value. For a quantitative analysis the mean and
variance are calculated for the three different conductivity values. Voxels near a boundary were not taken into
account because it is already clear from the images in Figure 33 that CSI-EPT reconstructs these correctly
whereas the phase only EPT method does not. The masks that were used are shown in Figure 34.

The values of the mean and variance or shown in table Table 9. In Figure 35 the normal distributions are
plotted to visualize these results better.

From Figure 35 it can be concluded that CSI-EPT is more precise than the phase only EPT, except for the
noiseless case for 0.1 S/m. This is because CSI-EPT has difficulty with reconstruction very small conductivities
precisely. Further it is seen that in all the conductivity values that were reconstructed with noise that CSI-EPT
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Figure 33: On the left is the original conductivity. In the top row are the CSI-EPT reconstructions, first the
noiseless case and then the noisy case. In the bottom row are the phase only EPT reconstructions, first the
noiseless case and then the noisy case. For the phase only reconstruction the absolute values were plotted.

Table 9: The mean and variance for the four different reconstructions. Without the boundaries regions.

Reconstruction method Mean at 1 S/m Variance at 1 S/m Mean at 0.5 S/m Variance at 0.5 S/m Mean at 0.1 S/m Variance at 0.1 S/m

CSI-EPT without noise 0.7932 0.0882 0.4124 0.00034 0.0752 0.0148
CSI-EPT with noise 0.7979 0.0589 0.4020 0.0051 0.0560 0.0292

Phase only EPT without noise 0.8705 0.1304 0.4353 0.0534 0.0848 0.0066
Phase only EPT with noise 0.8649 0.2405 0.4910 0.2402 0.0679 0.1586

is significantly more precise than phase only EPT. On the other hand the mean value of phase only EPT is
slightly better a reason for this is that the noise in the simulation is white Gaussian noise, as has been explained
in Section 2.6. The mean of this noise is zero and thus has no influence on the mean value of the reconstructed
conductivity. Finally for the left plot of Figure 35 the noisy CSI-EPT reconstruction is more precise than its
noiseless counterpart. This can be explained by the fact that the centre voxels are not reconstructed into a
smooth profile, but when TV regularization is applied on noisy data the middle is smoothed out and thus the
variance decreases.
The results shown were without the boundaries taken into account because here the phase only EPT does not
work well. However, when reconstructing an object the location of the boundaries are not known. Therefore it
is not known where the phase only EPT is accurate, thus the mean values and the variance when the boundary
regions are taken into account are shown in Table 10. The results are plotted as normal distributions in
Figure 36.

Table 10: The mean and variance for the four different reconstructions. With the boundaries regions included.

Reconstruction method Mean at 1 S/m Variance at 1 S/m Mean at 0.5 S/m Variance at 0.5 S/m Mean at 0.1 S/m Variance at 0.1 S/m

CSI-EPT without noise 0.7353 0.0756 0.3702 0.0085 0.2405 0.2460
CSI-EPT with noise 0.7512 0.0641 0.3710 0.0111 0.0142 0.0466

Phase only EPT without noise 0.4755 1.0636 0.2514 0.4074 -0.0250 0.1134
Phase only EPT with noise 0.4534 1.1721 0.2839 0.5388 -0.0297 0.2634

From Table 10 and Figure 36 it can be seen that the CSI-EPT reconstruction is more accurate and more precise
when the boundaries are included.
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Figure 34: The top left figure is the original conductivity map. The rop right shows the mask that was used for
the conductivity compartments with a value of 1 S/m. The bottom left shows the mask for 0.5 S/m and the
bottom right the mask for 0.1 S/m. These masks exclude the biggest part of the boundary in the phase only
EPT approach.

Figure 35: The normal distributions from Table 9.The left plot shows the distribution for the compartments
with conductivity value of 1 S/m. The middle plot for the compartments with conductivity value 0.5 S/m. In
the right plot the distributions for 0.1 S/m are shown.
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Figure 36: The normal distributions from Table 10.The left plot shows the distribution for the compartments
with conductivity value of 1 S/m. The middle plot for the compartments with conductivity value 0.5 S/m. In
the right plot the distributions for 0.1 S/m are shown.
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6 MRI Measurements

The goal for this thesis is to show an experimental result of CSI-EPT and that is what this section will cover.
First the setup of the experiment is discussed. After this the measurements are compared to the simulated
fields. And finally the results of the reconstruction are shown.

6.1 Materials and methods

The scanner that was used is a Philips ingenia 3T which is located in UMC Utrecht. To measure the RF phase
two single Spin Echo sequences were used, this sequence is described in [32]. Two measurements are used to
compensate for the artifacts that arise due to the eddy currents. The parameters of the sequence are shown in
Table 11.

Table 11: The Spin Echo sequence parameters.

Parameter Value

FoV 200 by 200 by 2.5 mm3

Resolution 2.5 by 2.5 by 2.5 mm3

Repetition time (TR) 1000 ms

Echo time (TE) quadrature mode acquisition 5 ms

Echo time linear mode acquisition 9 ms

Water-fat shift/Bandwidth 0.3
1400 pixels Hz−1

For the B+
1 magnitude a dual TR AFI(3D - FFE) sequence was used [13]. The parameters for this scan are

shown in Table 12.

Table 12: The AFI sequence parameters.

Parameter Value

FoV 200 by 200 by 9 mm3

Resolution 2.5 by 2.5 by 3 mm3

TR1 50 ms

TR2 250 ms

TE 2.7 ms

Water-fat shift/Bandwidth 0.9
480 pixels Hz−1

Flip angle 65◦

Both sequences were done with both NSA 10 and NSA 2 with the same parameters. Further the FoV was set
to (0,0,0).
An 1.5% agar based phantom was made for testing, this phantom can be seen in Figure 37.
The conductivity values and the size of the phantom are given in Table 13.

Table 13: The conductivity values and the size of the constructed phantom.

Conductivity [S/m] Diameter [cm]

Inner compartment 0.45 4
Outer compartment 0.95 11.5

For the measurements the phantom was placed in the centre of the MRI in order to satisfy the 2D assumption in
Equation (2.2.1) the best. Further a body coil was used for transmitting and a head coil was used for receiving
the signal. The CLEAR setting on the scanner was on. By setting this option on the measured signal in the
head coil is post processed to output the results that would be acquired when using the body coil for both
transmitting and receiving.
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Figure 37: The constructed phantom with one compartment inside. It should resemble the conductivity profile
of the simple phantom used in simulations.

6.2 Comparison measured data with Sim4Life simulation

An interesting comparison to make is how the B+
1 amplitudes and transceive phase maps from Sim4Life and

the MRI scanner differ from each other. The maps from Sim4Life do not contain noise whereas the measured
data does. The measured data is from a scanning session with NSA 2. The result of the amplitude and phase
maps are shown in Figure 38 and Figure 39. respectively.
From Figure 38 it can be seen that the quadrature and the second linear excitation do not match the simulation
very well, especially the second linear excitation. This can be due to the fact that the permittivity of the
constructed phantom is not know and therefore does not match the one simulated in Sim4Life. From Figure 39
it can be concluded that the phase patterns do look very similar. In the following section the reconstructions
are shown.
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Figure 38: The top row are the B+
1 maps for the simple phantom from Sim4Life. From left to right are the

quadrature excitation and then the two linear excitations. On the bottom are the B+
1 maps from the scanner.
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Figure 39: The top row are the transceive phase maps for the simple phantom from Sim4Life. From left to
right are the quadrature excitation and then the two linear excitations. On the bottom are the transceive phase
maps from the scanner.
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6.3 Reconstructions measured data

For the reconstruction both the NSA 10 measurements and the NSA 2 measurements were used, to see the
difference the SNR of the measurement has on the reconstruction. Further for the reconstruction only the
quadrature excitation maps were taken because the linear excitation maps did not help the reconstruction at
all. This can be due to the fact that in Figure 38 the linear excitation do not match very well. Or it can be
because some of the parameters of the scanner are not known exactly. For example the RF-shield and coil radius,
it is known that they are larger than 35 cm and smaller than 40 cm and there are more of these parameters
that should be known in order to get the best possible reconstruction. These parameters are necessary for the
construction of the incident fields. What has been done to verify that the parameters were correct was by taking
the first order induced current method from [7] and sweep each parameter until an optimal reconstruction was
acquired. This method uses the incident fields as well but is much faster in reconstructing the contrast compared
to CSI-EPT (i.e. a few milliseconds compared to 1 minute).
The reconstructed conductivity can be seen in Figure 40. For the phase only EPT kernel 7 was used for the
reconstruction.
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Figure 40: The top left image is the reconstruction of the conductivity with NSA 10 and the top right is the
reconstruction with NSA 2. The bottom left is the phase only EPT reconstruction with NSA 10 and the bottom
right is the phase only EPT reconstruction with NSA2.

From Figure 40 it can be seen that the CSI-EPT reconstruction resembles the constructed phantom very well.
There are no boundary issues in the CSI-EPT reconstruction compared to the phase only EPT reconstruction.
However, there is still an underestimation present in the CSI-EPT reconstruction. Further the outer compart-
ment shows as slope in the conductivity this is most likely because only the quadrature map has been used

50



B
1
-RE phase from Sim4Life

20 40 60

x-position (  1.9 mm)

10

20

30

40

50

60

70

y
-p

o
s
it
io

n
 (

 1
.9

 m
m

)
Reconstructed B

1
-RE phase MRI data

20 40 60 80

x-position (  2.5 mm)

10

20

30

40

50

60

70

80

y
-p

o
s
it
io

n
 (

 2
.5

 m
m

)

-0.8

-0.6

-0.4

-0.2

0

Figure 41: On the left is the receive phase from Sim4Life, on the right is the reconstructed receive phase.

for reconstruction. Normally the extra data from the linear excitations helps the reconstruction to get a more
uniform profile, this is what is used in the simulations. In [12] the effect of only using the quadrature map is
shown. Finally the effect of a lower SNR can be seen near the centre of the phantom at the boundary between
the two compartments. This is the point where the electric field is at a minimum and the algorithm sometimes
has difficulty reconstructing this.
Again the receive phase is reconstructed this can be seen in Figure 41.
From this reconstruction it can be seen that the phase profile is very similar compared to the simulated phase
from Sim4Life. There is however no way to check if this is actually correct other than comparing it to simulations
since this has never been done before. But the profiles are comparable and that should give some confidence
that this is indeed the receive phase from the scanner.
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7 Conclusion

The main goal of this thesis was to investigate if CSI-EPT can be used on measured MRI data. The 2D
Matlab simulations showed that the algorithm works well for 2D data and can handle a variety of realistic
situations. One of the limitations is that the incident fields need to be known, this posed a problem with the
processing of the measurements. However the numerically implemented RF-shield made the incident fields that
are computed more realistic. A first order approximation was enough to match the constructed incident fields
with those present in the MRI scanner, since the value for the current in the log file of the scanner resulted in
a good reconstruction.
In the Sim4Life reconstructions it was concluded that the step from 2D to 3D introduced an underestimation of
the conductivity profiles. This is due to the difference in the phase profiles between the 2D simulation and the
3D simulation. As of now the underestimation seems to be about 15%. However, it is not known if for different
objects this underestimation is different. As for the permittivity profile, it is still very difficult to reconstruct
this at a static magnetic field strength of 3T. For higher field strengths this reconstruction should improve
significantly because of the higher curvature of the magnetic field. The receive phase reconstruction that was
implemented showed good results in both the 2D and 3D simulations. Only in 3D the minimum of the electric
field had a larger effect on both the reconstruction of the receive phase and the reconstruction of the contrast.
Finally the reconstructions done with the measured data showed that the conductivity profile matched the
constructed phantom values, however again with the same underestimation as with the Sim4Life reconstructions.
This indicates that the simulations are close to the reality except for the linear excitations, where the phase
maps did match but the simulated and measured amplitude maps did not. This is most likely due to the fact
that scanner wants to optimize the homogeneity of the B+

1 and thus introduces a phase shift between the two
ports. Nonetheless the measured data could be reconstructed, thus giving an answer to the research question
that CSI-EPT can indeed be practically implemented.
When compared to the phase only EPT reconstructions, CSI-EPT showed much better precision plus the
boundary regions between compartments are reconstructed properly. This was both seen for the 3D simulations
and the measured data.
Further by rewriting the algorithm to include the transceive phase additional outputs of the algorithm can be
computed. These are all the RF-fields present in the scanner, both during the transmitting and receiving state
of the MRI. On top of that it enables CSI-EPT to have potential at reconstructing the electrical properties at
higher static magnetic field strengths. The benefits from these higher field strength is that the SNR increases
and since noise is not a problem for CSI-EPT a higher resolution image can be made of the object in the scanner.
Plus the higher curvature of the magnetic field helps the reconstruction of the permittivity. Which at 3T still
is not feasible.
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8 Future Research

In this section a few new ideas are opted that can be researched. There are two problems at hand that should
be tackled to get a better reconstruction. The first is the electric field that has a minimum in the centre of the
coil. This can be done by for example adding dielectric pads to the scanned object, this can shift the minimum
of the electric field out of the object and thus circumvent the problem. What changes in the code is the incident
fields need to be calculated with the dielectric pad in the scanner. This however is a forward problem and can
be computed easily. Another way this problem can be solved is by changing the measurement setup, by instead
of using a body coil a dipole antenna array is used. These dipoles create a different incident electric field that
has no minimum in the centre. The difficulty with this however is finding a well designed dipole antenna array,
plus the coupling of the dipoles needs to be kept in mind when computing the incident fields.
The second problem with the algorithm right now is the 2D assumption. In [31] a 3D implementation of the
CSI-EPT algorithm is presented. A logical next step is to combine the transceive phase correction presented
in this work with the 3D algorithm. Further the free space Green’s function can be changed to include the
RF-shield, which is now implemented numerically. This has been shown in [16], however the free space Green’s
function does not show any problems as of yet and implementing this new Green’s function will slow down the
algorithm tremendously. The combination of a 3D algorithm, the Green’s function with the RF-shield included
and the presented transceive phase correction method should result in an algorithm without assumptions.
Something that has been tried during this project is changing the update direction, nonlinear conjugate gradient
method, to a quasi newton method (i.e. Broyden–Fletcher–Goldfarb–Shanno, or its memory limited variant).
This should give superlinear convergence, thus less iterations are needed. A downside is that each iteration
will take longer, especially when not using the memory limited variant. This is because the inverse Hessian
matrix needs to be updated which is n by n matrix, where n is that number of variables to be solved. The
problem I encountered with using this method was that exact stepsize given in Equation (3.1.20) together with
the new update direction does not fulfill the secant equations that are imposed for superlinear convergence.
Thus to make this work an inexact line search must be done which seems very counter intuitive and was thus
not pursued.
Further from Figure 18 it is apparent that a higher field strength results in better reconstructions. This is due
higher curvature of the measured fields. Plus the signal strength is higher than at 3T thus the SNR goes up for
these scans. However, the SNR is not a problem for CSI-EPT thus the resolution can be increased. By taking
smaller voxels the SNR goes down again but the resolution goes up.
Finally the most interesting advancement this transceive phase correction algorithm enables is the improvement
of antenna designs for MRI. Using this algorithm on measured data will output the B−1 fields in both transmit
and receive. This information was always corrupted by the transceive phase. With the current antenna design
done on 7T systems this algorithm can help with giving more insight on the efficiency of those designs.

53



References

[1] C. Westbrook, C. Roth, and J. Talbot, MRI in Practice. Wiley, 2011.

[2] E. Haacke, R. Brown, M. Thompson, and R. Venkatesan, Magnetic Resonance Imaging: Physical Principles
and Sequence Design. Wiley, 1999.

[3] A. G. Webb, Ed., Magnetic Resonance Technology, ser. New Developments in NMR. The Royal Society
of Chemistry, 2016.

[4] E. M. Haacke, L. Petropoulost, E. Nilges, and D. Wu, “Extraction of conductivity and permittivity using
magnetic resonance imaging,” Physics in Medicine and Biology, vol. 36, no. 6, pp. 723–734, 1991.

[5] E. Balidemaj, H. P. Kok, G. Schooneveldt, A. L. van Lier, R. F. Remis, L. J. Stalpers, H. Westerveld,
A. J. Nederveen, C. A. van den Berg, and J. Crezee, “Hyperthermia treatment planning for cervical cancer
patients based on electrical conductivity tissue properties acquired in vivo with ept at 3 t mri,” International
Journal of Hyperthermia, vol. 32, no. 5, pp. 558–568, 2016.

[6] J. Liu, X. Zhang, S. Schmitter, P.-F. V. de Moortele, and B. He, “Gradient-based Electrical Properties
Tomography (gEPT): a Robust Method for Mapping Electrical Properties of Biological Tissues In Vivo
Using Magnetic Resonance Imaging,” Magnetic Resonance Med., vol. 28, no. 10, pp. 1304–1314, 2016.

[7] P. Fuchs, “Mri based electrical properties tomography: Electromagnetic inversion,” 2016.

[8] X. Zhang, J. Liu, and B. He, “Magnetic-resonance-based electrical properties tomography: a review,” IEEE
reviews in biomedical engineering, vol. 7, pp. 87–96, 2014.

[9] S. Mandija, A. Sbrizzi, P. Luijten, and C. van den Berg, “Error analysis of helmholtz based mr electric
property tomography,” To be submitted, 2017.

[10] P. van den Berg and R. Kleinman, “A contrast source inversion method,” Inverse Problems, vol. 13, no. 6,
p. 1607, 1999.

[11] A. Abubaker and P. Van Den Berg, “Total variation as a multiplicative constraint for solving inverse
problems,” IEEE Transactions on Image Processing, vol. 10, no. 9, pp. 1384–1392, 2001.

[12] E. Balidemaj, C. A. T. Van Den Berg, J. Trinks, A. L. H. M. W. Van Lier, A. J. Nederveen, L. J. A.
Stalpers, H. Crezee, and R. F. Remis, “CSI-EPT: A Contrast Source Inversion Approach for Improved
MRI-Based Electric Properties Tomography,” IEEE Transactions on Medical Imaging, vol. 34, no. 9, pp.
1788–1796, 2015.

[13] V. L. Yarnykh, “Actual flip-angle imaging in the pulsed steady state: A method for rapid three-dimensional
mapping of the transmitted radiofrequency field,” Magnetic Resonance in Medicine, vol. 57, no. 1, pp. 192–
200, 2007.

[14] L. Sacolick, F. Wiesinger, I. Hancu, and M. W. Vogel, “B1 Mapping by Bloch-Siegert Shift,” Magnetic
Resonance Med., vol. 21, no. 2, pp. 146–154, 2011.

[15] K. Nehrke and P. Börnert, “DREAM-a novel approach for robust, ultrafast, multislice B1 mapping,”
Magnetic Resonance in Medicine, vol. 68, no. 5, pp. 1517–1526, 2012.

[16] A. Arduino, L. Zilberti, M. Chiampi, and O. Bottauscio, “CSI-EPT in presence of rf-shield for mr-coils,”
Transactions on Medical Imaging., 2017.

[17] R.F.Remis, “Lecture notes Wavefield Imaging,” 2016.

[18] M. Abramowitz and I. Stegun, Handbook of mathematical Functions With Formulas, Graphs, and Mathe-
matical Tables, ser. Applied Mathematics Series. National Bureau of Standards, 1964.

[19] J. Jin, Electromagnetic Analysis and Design in Magnetic Resonance Imaging, ser. Biomedical Engineering.
Taylor & Francis, 1998.

[20] A. L. Van Lier, D. O. Brunner, K. P. Pruessmann, D. W. J. Klomp, P. R. Luijten, J. J. W. Lagendijk, and
C. A. T. Van Den Berg, “B 1+ phase mapping at 7 T and its application for in vivo electrical conductivity
mapping,” Magnetic Resonance in Medicine, vol. 67, no. 2, pp. 552–561, 2012.

[21] P. F. Van De Moortele, C. Akgun, G. Adriany, S. Moeller, J. Ritter, C. M. Collins, M. B. Smith, J. T.
Vaughan, and K. agurbil, “B1 destructive interferences and spatial phase patterns at 7 T with a head
transceiver array coil,” Magnetic Resonance in Medicine, vol. 54, no. 6, pp. 1503–1518, 2005.

54



[22] T. Voigt, U. Katscher, and O. Doessel, “Quantitative conductivity and permittivity imaging of the human
brain using electric properties tomography,” Magnetic Resonance in Medicine, vol. 66, no. 2, pp. 456–466,
2011.

[23] R. Remis and E.Charbon, “An Electric Field Volume Integral Equation Approach to Simulate Surface
Plasmon Polaritons,” Advanced Electromagnetics, vol. I, pp. 16–19, 2012.

[24] J. Nocedal and S. J. Wright, Numerical optimization. Springer, 1999.

[25] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica
D, vol. 60, pp. 259–268, 1992.

[26] P. M. van den Berg, A. Abubakar, and J. T. Fokkema, “Multiplicative regularization for contrast profile
inversion,” Radion Science, vol. 38, no. 2, 2003.

[27] A. Christ, W. Kainz, E. G. Hahn, K. Honegger, M. Zefferer, E. Neufeld, W. Rascher, R. Janka, W. Bautz,
J. Chen, B. Kiefer, P. Schmitt, H.-P. Hollenbach, J. Shen, M. Oberle, D. Szczerba, A. Kam, J. W. Guag,
and N. Kuster, “The virtual family—development of surface-based anatomical models of two adults and
two children for dosimetric simulations,” Physics in Medicine & Biology, vol. 55, no. 2, p. N23, 2010.

[28] P. R. Haffinger, “Seismic Broadband Full Waveform Inversion by shot / receiver refocusing door,” pp. 4–7,
2013.

[29] S. K. Lee, S. Bulumulla, and I. Hancu, “Theoretical Investigation of Random Noise-Limited Signal-to-Noise
Ratio in MR-Based Electrical Properties Tomography,” IEEE Transactions on Medical Imaging, vol. 34,
no. 11, pp. 2220–2232, 2015.

[30] V. Vaidya, C. Collins, D. Sodickons, R. Brown, G. Wiggins, and R. Lattanzi, “Dependence of b+1 and b−1
field patterns of surface coils on the electrical properties of the sample and the MR operating frequency,”
Concepts in Magnetic Resonance Part B, vol. 46B, pp. 25–40, 2016.

[31] R. Leijsen, “Three-dimensional contrast source inversion-electrical properties tomography: 3D csi-ept,”
2016.

[32] A. L. Van Lier, A. Raaijmakers, T. Voigt, J. J. W. Lagendijk, P. R. Luijten, U. Katscher, and C. A. T. Van
Den Berg, “Electrical properties tomography in the human brain at 1.5, 3, and 7T: A comparison study,”
Magnetic Resonance in Medicine, vol. 71, no. 1, pp. 354–363, 2014.

55



Appendix A Extra figures

In this section are the reconstructions that were done on the second phantom and on Ella’s brain slice. These
were done to see the effect more (complicated) structures has on the reconstruction. First are the same re-
constructions as Figure 11 and Figure 12. After this the TPA is compared to the transceive phase correction.
These are followed by the same reconstructions from Figure 19 and Figure 20. Then the line profiles of the
second phantom and Ella are given. Finally the B−,RE1 reconstruction for a realistic scenario is shown.
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Figure A.1: Conductivity profiles of the complicated phantom. In the top row are from left to right the original
profile,the reconstruction with perfect input and the noisy reconstruction. In the bottom row are the TV
regularized noisy reconstruction and two reconstruction with the wrong incident fields.
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Figure A.2: Permittivity profiles of the complicated phantom. In the top row are from left to right the original
profile,the reconstruction with perfect input and the noisy reconstruction. In the bottom row are the TV
regularized noisy reconstruction and two reconstruction with the wrong incident fields.
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Figure A.3: Conductivity profiles of Ella’s brain slice. In the top row are from left to right the original profile,the
reconstruction with perfect input and the noisy reconstruction. In the bottom row are the TV regularized noisy
reconstruction and two reconstruction with the wrong incident fields.
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Figure A.4: Permittivity profiles of Ella’s brain slice. In the top row are from left to right the original profile,the
reconstruction with perfect input and the noisy reconstruction. In the bottom row are the TV regularized noisy
reconstruction and two reconstruction with the wrong incident fields.
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Figure A.5: On the left is the original conductivity. In the top middle figure the reconstructed conductivity is
shown by using the TPA, with underneath that the error compared to the original. On the right is the transceive
phase corrected reconstructed conductivity, with underneath it the error compared to the original. The static
magnetic field strength is 7T.
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Figure A.6: On the left is the original permittivity. In the top middle figure the reconstructed permittivity is
shown by using the TPA, with underneath that the error compared to the original. On the right is the transceive
phase corrected reconstructed permittivity, with underneath it the error compared to the original. The static
magnetic field strength is 7T.
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Figure A.7: On the left is the original conductivity. In the top middle figure the reconstructed conductivity is
shown by using the TPA, with underneath that the error compared to the original. On the right is the transceive
phase corrected reconstructed conductivity, with underneath it the error compared to the original. The static
magnetic field strength is 7T.
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Figure A.8: On the left is the original permittivity. In the top middle figure the reconstructed permittivity is
shown by using the TPA, with underneath that the error compared to the original. On the right is the transceive
phase corrected reconstructed permittivity, with underneath it the error compared to the original. The static
magnetic field strength is 7T.
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Figure A.9: Conductivity profiles of the complicated phantom, all reconstructed with the transceive phase. In
the top row from left to right are the original profile, the noisy input reconstruction and the TV regularized
reconstruction. In the bottom row are the rereconstructions with the resized voxels, k-space truncation and the
most realistic scenario.
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Figure A.10: Permittivity profiles of the complicated phantom, all reconstructed with the transceive phase. In
the top row from left to right are the original profile, the noisy input reconstruction and the TV regularized
reconstruction. In the bottom row are the rereconstructions with the resized voxels, k-space truncation and the
most realistic scenario.
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Figure A.11: Conductivity profiles of Ella’s brain slice, all reconstructed with the transceive phase. In the
top row from left to right are the original profile, the noisy input reconstruction and the TV regularized
reconstruction. In the bottom row are the rereconstructions with the resized voxels, k-space truncation and the
most realistic scenario.
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Figure A.12: Permittivity profiles of Ella’s brain slice, all reconstructed with the transceive phase. In the top row
from left to right are the original profile, the noisy input reconstruction and the TV regularized reconstruction.
In the bottom row are the rereconstructions with the resized voxels, k-space truncation and the most realistic
scenario.
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Figure A.13: The line profiles of the complicated phantom. The red line in the original images show where the
profile was examined.
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Figure A.14: The line profiles of Ella. The red line in the original images show where the profile was examined.
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Figure A.15: The B−,RE1 reconstruction for the complicated phantom.
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Figure A.16: The B−,RE1 reconstruction for Ella.
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