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Abstract—This paper aims at developing low-complexity so-
lutions for super-resolution two-dimensional (2D) harmonic re-
trieval via covariance reconstruction. Given the collected sam-
ple covariance, a novel gridless compressed sensing approach
is designed based on the atomic norm minimization (ANM)
technique. The key is to perform a redundancy reduction (RR)
transformation that effectively reduces the large problem size
at hand, without loss of useful frequency information. For
uncorrelated sources, the transformed 2D covariance matrices
in the RR domain retain a salient structure, which permits a
sparse representation over a matrix-form atom set with decoupled
1D frequency components. Accordingly, the decoupled ANM (D-
ANM) framework can be applied for super-resolution 2D fre-
quency estimation, at low computational complexity on the same
order of the 1D case. An analysis of the complexity reduction of
the proposed RR-D-ANM compared with benchmark methods is
provided as well, which is verified by our simulation results.

Index Terms—Low complexity, 2D harmonic retrieval, covari-
ance reconstruction, D-ANM, RR transformation,

I. INTRODUCTION

Two-dimensional (2D) harmonic retrieval has broad appli-
cations, e.g., speech processing [1], wireless communications
[2], radar systems [3], etc. In the case of multiple measurement
vectors (MMV), a number of high-resolution covariance-based
methods have been proposed, with computational complexities
that are independent of the number of MMV. However, classi-
cal covariance-based methods based on a statistical analysis of
the sample covariance [4]–[7], may not work well for applica-
tions with limited sampling resources, such as, short sensing
time and compressive measurements. Although methods based
on compressive sensing (CS) techniques can address these
issues [8]–[11], they critically rely on an on-grid assumption
and hence suffer from the basis mismatch problem [12].

Recently, to overcome this problem, two super-resolution
gridless CS approaches are proposed for the MMV case based
on low-rank structured covariance reconstruction (LRSCR)
[13] and vectorization-based atomic norm minimization (V-
ANM) [14], [15], respectively. Unfortunately, the computa-
tional complexities of both techniques scale exponentially
with the dimensionality, and will become unacceptable for

This work was supported in part by the US National Science Foundation
grants #1527396 and #1547364, and the National Science Foundation of
China grants #61871218, #61801211 and #61471191. This work was partly
carried out in the frame of the ASPIRE project (project 14926 within the OTP
program of NWO-TTW).

practical implementations. In contrast, the decoupled ANM
(D-ANM) [16], [17], by virtue of its frequency decoupling
strategy, effectively reduces the computational complexity to
be comparable to that of a 1D ANM solution, at no loss of
optimality [18]. However, the D-ANM only applies to the
single measurement vector (SMV) case. To the best of our
knowledge, there is still a lack of computationally efficient
covariance-based gridless 2D harmonic retrieval techniques.

To fill this gap, by exploiting the structural information of
the sample covariance matrix, we propose a novel covariance-
based gridless method for 2D harmonic retrieval with low
computational complexity, termed redundancy-reduction (RR)
transformation based D-ANM (RR-D-ANM). Specifically,
given the inherent two-level Toeplitz structure of the covari-
ance matrix in the uncorrelated case, we propose an RR
transformation to concisely express the vectorized covariance
matrix as an RR vector via a linear projection. Then, by
exploiting the sparsity of the RR vector which can be sparsely
represented by a decoupled atom set, we propose an efficient
gridless 2D harmonic retrieval solution via RR-enabled D-
ANM with MMV. Further, to make the problem tractable, we
equivalently reformulate the original formulation as a solvable
convex form based on the uniqueness of the existence of
the generalized Vandermonde decomposition of the covari-
ance matrix. Simulation results verify the advantages of the
proposed RR-D-ANM in terms of reduced complexity at no
significant loss of performance.

Notations: a, a, A and A denote a scalar, a vector, a
matrix, and a atom set, respectively. (·)T , (·)∗, and (·)H are
the transpose, conjugate, and conjugate transpose operation,
respectively. ‖a‖1 and ‖a‖2 denote the `1 and `2 norm of
a, respectively. diag(a) generates a diagonal matrix with the
diagonal elements constructed from a. T(a) is a Hermitian
Toeplitz matrix with first column being a. Tr(A) is the trace
of A. I denotes the identity matrix. The operation vec(·)
stacks all the columns of a matrix into a vector and vec−1(·)
is the inverse operation of vec(·). E{·} denotes expectation.
⊗ calculates the Kronecker product of matrices or vectors. �
computes the Khatri-Rao product of matrices.

II. SIGNAL MODEL

Consider a 2D harmonic retrieval problem where the signal
of interest x(t) ∈ CNM×1 is a linear mixture of K 2D
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sinusoidal components in the form of

x(t) =

K∑
i=1

si(t) [aN (f1,i)⊗ aM (f2,i)] =

K∑
i=1

si(t)a2D
(f i)

= (AN �AM )s(t), t = 1, . . . , L, (1)

where si(t) is the complex amplitude of the i-th source,
f i = (f1,i, f2,i)

T ∈ [−0.5, 0.5)2 consists of its digital
frequencies along the two orthogonal dimensions, and L
is the number of measurement vectors. The 2D manifold
vector a

2D
(f i) = aN (f1,i) ⊗ aM (f2,i) is composed of

two Vandermonde-structured manifold vectors aN (f1,i) and
aM (f2,i) of size N and M respectively, of the form1

aN (f1,i) =[1, exp(j2πf1,i), . . . , exp(j2π(N − 1)f1,i)]
T ,

aM (f2,i) =[1, exp(j2πf2,i), . . . , exp(j2π(M − 1)f2,i)]
T .
(2)

Further, s(t) = [s1(t), . . . , sK(t)]T , fn = [fn,1, . . . , fn,K ] for
n = 1, 2, AN = AN (f1) = [aN (f1,1), . . . ,aN (f1,K)], and
AM = AM (f2) = [aM (f2,1), . . . ,aM (f2,K)].

In many applications, x(t) is not observed directly, but
through subsampling or linear compression via a measurement
matrix J ∈ CM ′×NM with M ′ ≤ NM . Inflicted by an
additive Gaussian noise n(t), the SMV y(t) ∈ CM ′

is given
by y(t) = Jx(t) + n(t). Given random s(t), the desired
frequency information lies in the covariance of y(t), defined
by

Ry =E{y(t)y(t)H} = JRxJ
H +Rn, (3)

where Rx and Rn are the covariance of x(t) and n(t),
respectively. Denoting Rs = E{s(t)s(t)H}, we have

Rx = E{x(t)x(t)H} = (AN �AM )Rs(AN �AM )H .
(4)

This paper considers uncorrelated signal sources, that is,
E{si(t)s∗j (t)} = riδij , ∀1 ≤ i, j ≤ K. Since ri ≥ 0, ∀i, Rs

is a positive semidefinite (PSD) diagonal matrix:

Rs = diag(r) � 0, where r = [r1, . . . , rK ]T . (5)

In practice, Ry is approximated by its sample covariance

R̂y =
1

L

L∑
t=1

y(t)yH(t). (6)

The goal of the 2D harmonic retrieval in this paper is to
recover the unknown frequency pairs {f i}i from R̂y .

III. REDUNDANCY-REDUCTION BASED D-ANM FOR
HARMONIC RETRIEVAL

This section develops a super-resolution 2D frequency esti-
mation scheme based on the D-ANM scheme, in the presence
of MMV case. A redundancy-reduction transformation of the
signal covariance is introduced, which effectively reduces the
computational cost to be comparable to that of a 1D problem.

1In this paper, we mainly focus on uniform sampling scenarios. When
non-ideal geometries are encountered, for example antenna systems with
perturbation due to array mismatch, array manifold separation techniques can
be applied to retrieve the Vandermonde structure through a Bessel or Fourier
approximation [19], [20].

A. Redundancy-reduction Transformation
To take advantage of the low complexity of the D-ANM

which can only be employed for the SMV case, we turn
to rx = vec(Rx) ∈ C(NM)2 as the structured signal vec-
tor of interest. This single vector can be approximated by
vec
(

1
L

∑L
t=1 x(t)x

H(t)
)

, which retains the useful frequency
information of all {x(t)}t. Hence, an MMV problem based on
{x(t)}t can be alternatively solved as an SMV problem based
on rx, which makes it amenable to the D-ANM scheme.

However, the benefit of adopting rx as the signal of interest
comes at the expense of a much enlarged signal length of
(NM)2, which may incur a high computational cost. To
circumvent this issue, we propose a RR transformation to
concisely express rx, by removing the redundancy in the
entries of rx. The basic idea is to establish a linear mapping
that projects the vectorized covariance matrix rx with repeated
entries onto an RR vector z with no repeated entries. A similar
thought can be found in our previous work where we establish
a the linear mapping between the covariance matrices in the
compressed and uncompressed domains for compressive cyclic
feature detection [21], [22] and DOA estimation [23].

The inherent redundancy in rx is due to the uncorrelated
sources, which yields Rs = diag(r) with only K nonzero
entries. By vectorizing both sides of (4), it follows that

rx =

K∑
i=1

ri (aN (f1,i)⊗aM (f2,i))
∗ ⊗ (aN (f1,i)⊗aM (f2,i)) .

(7)

Concerning each summand in (7), an important equality arises:

(aN (f1,i)⊗ aM (f2,i))
∗ ⊗ (aN (f1,i)⊗ aM (f2,i))

=Ψ(a′N (f1,i)⊗ a′M (f2,i)),
(8)

where a′N (f1,i) ∈ C2N−1 and a′M (f2,i) ∈ C2M−1 are given
by

a′N(f1,i)

=[e−j2π(N−1)f1,i,. . .,e−j2πf1,i, 1,ej2πf1,i,. . .,ej2π(N−1)f1,i ]
T

,

a′M(f2,i)

=[e−j2π(M−1)f2,i,. . .,e−j2πf2,i, 1,ej2πf2,i,. . .,ej2π(M−1)f2,i ]
T

.
(9)

The matrix Ψ = (IN ⊗ E ⊗ IM )(GN ⊗ GM ) is the
redundancy-reduction (RR) transformation matrix that is deter-
mined by N and M only, where E =

∑M
j=1(e

T
j ⊗IN ⊗ej) ∈

CNM×NM is the commutation matrix, GN is defined as

GN =
[
GT
N,1, . . . ,G

T
N,N

]T ∈ CN
2×(2N−1), (10)

with the i-th block matrix GN,i = [0N×(N−i), IN ,0N×(i−1)],
i = 1, . . . , N , and GM ∈CM

2×(2M−1) is defined similarly as
(10).

Defining a′
2D

(f) = a′N(f1)⊗ a′M(f2), we have

rx = Ψz, with z =

K∑
i=1

ria
′
2D

(f i) = (A′N �A′M )r,

(11)
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where A′N = A′N (f1) = [a′N (f1,1), . . . ,a
′
N (f1,K)] and

A′M = A′M (f2) = [a′M (f2,1), . . . ,a
′
M (f2,K)]. Moreover, we

have

z = vec(A′MRsA
′T
N ) = vec(Z), (12)

where Z = A′MRsA
′T
N .

Apparently, z in (12) can be observed through ry by noting

ry = vec(Ry) = vec(JRxJ
H +Rn)

= (J∗ ⊗ J)Ψz + rn = Γz + rn,
(13)

where Γ = (J∗⊗J)Ψ ∈ CM ′2×c with c = (2N−1)(2M−1),
and rn = vec(Rn) is the noise term.

It is worth noting the importance of (11) and (13) as the
equivalent signal and measurement models in the RR domain.
Noticeably, the RR vector z, or its matrix form Z, contains
all the harmonic information. It is the RR transformation
matrix Ψ that linearly maps the original rx of a large size
N2M2 to a much smaller vector z of size (2N−1)(2M−1),
without loss of any useful information. More importantly, the
dimensionality is reduced as well. As indicated in (8), rx
in the original domain is structurally complex consisting of
four nested Vandermonde vectors, which is difficult to tackle.
In contract, the RR vector z is modeled to retain the two-
level Vandermonde structure in its manifold vector a′

2D
(f i),

parameterized by the unknown frequencies of interest. Note
that r̂y = vec(R̂y) is linearly related to the RR vector z
with (13). Now, the task boils down to reconstructing the 2D
structure of z or Z in the RR domain from r̂y , which is
presented next.

B. Harmonic Retrieval via D-ANM

In the RR domain, the model of z in (11) bears a similar
form as that of x in (1). An intricate difference is that the
coefficients r = [r1, . . . , rK ]T in z are nonnegative, whereas
x has complex-valued coefficients. Since all the gridless
CS techniques for the simple SMV case, including the V-
ANM and D-ANM, can be applied with the measurement
y(t) to retrieval x(t), these techniques can be applied for z
reconstruction, only with an extra care on the nonnegativeness
of r.

Considering the computational efficiency of D-ANM over
V-ANM, we aim to develop a D-ANM solution to extract the
structural information of the RR vector z. To this end, we
inspect its matrix form Z in (12):

Z = vec−1(z) =
K∑
i=1

ria
′
M (f2,i)a

′T
N (f1,i) =

K∑
i=1

riA
′(f i),

where A′(f i) = a′M (f2,i)a
′T
N (f1,i). Apparently, Z has a

sparse linear atomic representation over the following matrix-
form atom set of infinite size:

A′d =
{
A′(f), ∀f ∈ (− 1

2 ,
1
2 ]× (− 1

2 ,
1
2 ]
}
. (14)

We introduce a new matrix-form atomic norm

‖Z‖+A′
d
= (15)

inf

{∑
k

rk

∣∣∣∣∣ ∑
k

rkA
′(fk), A′(fk) ∈ A′d; rk ≥ 0,∀k

}
,

which differs from the standard D-ANM ‖Z‖A′
d

in [18],
because of the extra constraint r ≥ 0.

Given Z, it is possible to retrieve the components {rk,fk}
of its sparest representation by calculating its atomic norm,
which results in a line spectrum estimation. In the presence of
noise, it boils down to

Z̃ = argmin
Z
‖Z‖+A′

d
s.t. ‖ry − Γvec(Z)‖22 ≤ β, (16)

where β indicates the noise tolerance threshold. To approach
the standard D-ANM technique, we re-write (16) into the
following equivalent form:

min
Z(r,f1,f2),r

‖Z‖A′
d
= ‖r‖1 (17a)

s.t. ‖ry − Γvec(Z)‖22 ≤ β (17b)

Z = A′M (f2)diag(r)A′TN (f1) (17c)
r ≥ 0. (17d)

Here (17c) is implicit in the objective function of (16), but
becomes an explicit constraint because of the new nonnegative
constraint (17d). Without (17d), the semidefinite programming
(SDP) implementation of the D-ANM proposed in [18] can
be used to reformulate (17) into a convex problem. However,
because of the extra constraint on r in (17d), this problem
becomes intractable, because r is intertwined with the other
variable Z in the form of (17c).

To solve (17) in a tractable manner, we seek to reformulate
r ≥ 0 to an equivalent form with respect to Z. To this end, we
note that Z = vec−1(z) in the RR domain is linearly related
to Rx = vec−1(rx) , via

Rx = vec−1(rx) = vec−1(Ψz) = vec−1 (Ψvec(Z)) . (18)

When there exists a unique generalized Vandermonde decom-
position of Rx, it holds that r ≥ 0 if and only if Rx � 0.
Fortunately, thanks to the specific structure of Z in (17c), the
decomposition property of Rx represented in the form of (18)
can be guaranteed. Moreover, Rx � 0 can be expressed by
the following PSD constraint parameterized by Z:

vec−1 (Ψvec(Z)) � 0. (19)

Adopting (19) to replace (17d), and reformulating (17a)-(17c)
into the decoupled SDP form proposed in [18], we reach the
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following equivalent SDP problem for (16)2 :

{Z̃, ũN ,ũM} (20a)

= arg min
Z,uN
uM

1

2
√
c
(Tr(T(uN )) + Tr(T(uM ))) (20b)

s.t.
∥∥∥vec(R̂y)− Γvec(Z)

∥∥∥2
2
≤ β, (20c)[

T(uM ) Z
ZH T(uN )

]
� 0, (20d)

vec−1(Ψvec(Z)) � 0. (20e)

With the obtained Z̃, we can sequentially obtain the signal
covariance matrix estimation R̃x from (18) and then, the
Matrix Pencil and Pairing (MaPP) proposed in [14] can be
employed for harmonic retrieval.

Remark 1: (20) is the SDP-based D-ANM solution for
covariance reconstruction in the RR domain, which we term
as RR-D-ANM. It lumps all the measurements {y(t)}t into a
single vector r̂y in order to decouple the frequency-dependent
variables into 1D without loss of optimality. Because of this
decoupling, the PSD matrix in (20d) is of size 2(2M − 1)×
2(2N − 1). However, the extra PSD constraint in (20e) is of
size MN × MN , which raises the complexity order to be
comparable to V-ANM [14] and LRSCR [13]. Fortunately,
when L is reasonable large, this covariance-based constraint
is mostly satisfied, and hence can be removed leading to a
truncated version termed RR-D-ANM-w/o3, to balance the
computational cost and performance. Simulation results verify
this balance.

IV. COMPUTATIONAL COMPLEXITY

According to Vandenberghe and Boyd [25], the compu-
tational complexity of solving our RR-D-ANM in (20) is
O((NM)4.5), which remains the same as that of the LRSCR,
due to their comparable problem scales dominated by the
same largest-size PSD constraints. Fortunately, as claimed in
Remark 1, since the strong structure of the covariance matrix is
captured via D-ANM, the largest PSD constraint of (20e) can
be omitted to balance the computational cost and performance.
Accordingly, with the remaining smaller-size PSD constraint
of (20d), the complexity of the resulting RR-D-ANM-w/o3
drops down to O((NM)2(N +M)2.5), which is 2.5 orders
lower than that of the RR-D-ANM, as well as the LRSCR,
when N =M . Moreover, to further reduce the computational
complexity, the proposed method can be fast implemented
via the alternating direction method of multipliers (ADMM)
technique [26].

V. SIMULATION RESULTS

This section presents numerical results to evaluate the
performance and the complexity of the RR-D-ANM solutions,
while the LRSCR [13], the conventional MUSIC algorithm

2In this paper, we consider sufficient separated frequencies to match the
minimum frequenc separation requirement [18]. Moreover, the reweighted
ANM technique inspired by [24] can be utilized to enhance sparsity and
resolution when unknown frequencies are spaced closely.
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Fig. 1: Estimation accuracy for RR-D-ANM, RR-D-ANM-
w/o3, LRSCR, MUSIC and CRB, when M = N = 5,
M ′ = 15 and K = 3.

[4] and the CRB for full observation [27] are considered
as benchmark. All simulations run on a computer with a 4-
core Intel i7-6500U 2.60GHz CPU and 8GB memory. The
root mean squared error (RMSE) is measured to evaluate the
estimation accuracy of 2D harmonic retrieval as RMSE =

1
K

∑K
i=1

(
1
Mt

∑Mt

n=1

(
(f̃n1,i−f1,i)2 + (f̃n2,i−f2,i)2

)) 1
2

, where

Mt, f̃n1,i and f̃n2,i denote the number of Monte-Carlo trials,
and the estimates of f1,i and f2,i in the n-th trial, respectively.
In the simulations, the noise is considered as Gaussian white
noise satisfying n(t) ∼ (0, σ2I), the measurement matrix J
is randomly generated, and then, the user-specified parameter
β is determined via the covariance matrix fitting criterion [23].

We first evaluate the estimation performance of the proposed
methods. For a fair comparison, all methods incorporate with
the MaPP for harmonic retrieval. As shown in Fig. 1, the
conventional MUSIC can not achieve a desired performance
under the randomly compressed scenario. The proposed RR-D-
ANM obtains the same performance as that of the benchmark
LRSCR. While the proposed RR-D-ANM slightly outperforms
the RR-D-ANM-w/o3, the gap between them becomes small
and diminishes as the SNR or the number of measurement
vectors increase. Moreover, the simulation results indicate that
the performance gap within the whole evaluation range is less
than 10−3, which means such a performance loss is negligible.

Further, the computational complexity is tested and com-
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pared, where all methods use the off-the-shelf SDP-based
solver [28]. As shown in Fig. 2, the complexity of the proposed
RR-D-ANM remains the same order as that of the LRSCR.
On the other hand, the complexity of the RR-D-ANM-w/o3
is reduced dramatically. In this sense, the RR-D-ANM-w/o3
can achieve huge computational savings with a negligible
performance loss compared with the RR-D-ANM and the
LRSCR. Therefore, it provides an excellent tradeoff to balance
the performance and the complexity for 2D harmonic retrieval,
especially when N and/or M go large.

VI. CONCLUSION

In this paper, we proposed a gridless compressed sensing
framework based on the D-ANM technique, to efficiently
perform super-resolution 2D harmonic estimation with the
sample covariance collected from MMV. Specifically, we first
established an RR transformation to linearly map the originally
large-size covariance matrix to a small-size RR vector. Then,
the sparse representation of the transformed RR vector enables
to reformulate the originally complex 2D MMV harmonic
retrieval problem as an RR-based D-ANM problem, which
can be resolved efficiently at a much reduced computational
complexity. Simulation results demonstrate such an advantage
of our solutions over the existing ones.
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