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Abstract

We consider the game cops and robbers, which is a pursuit-evasion game played on a graph G . The cops
and the robber take turns moving across the vertices of G , where the goal for the cops is to eventually catch
the robber. Specifically, we study the cop number of G , i.e. the minimum number of cops that is needed to
catch the robber on G . We investigate the relation between the cop number of the Erdős-Rényi (ER) random
graph G(n, pn) and compare it to another graph parameter, the domination number. Our goal is to collect
results from previous research and create an overview. Throughout this thesis, we provide some examples of
graphs for which the cop number is equal to the domination number. Furthermore, we provide proofs for
some results on the domination number of the ER random graph. The main takeaway is that the cop number
is asymptotic to the domination number for particular values of pn .
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Layman Abstract

We consider the game cops and robbers. This game is played on a graph, which is a collection of nodes and
links connecting some of these nodes. The cops and the robber take turns moving across the nodes, where
the cops try to capture the robber. We want to know what is the minimum number of cops that we need to
make sure that at some point we catch the robber. This number is called the cop number of the graph. We
are mainly interested in a particular type of graph, the Erdős-Rényi (ER) random graph. This type of graph
has a set of n nodes. For the links we flip a coin for every two nodes: heads meaning we draw a link between
the two nodes, tails meaning we do not. We investigate what the cop number of this ER random graph is
and we compare it to the domination number. The domination number of a graph is the size (i.e. number
of nodes) in the smallest possible dominating set. A dominating set is a set of nodes of the graph, such that
all the nodes in the graph have a neighbor in the set. We collect results from previous research to create an
overview. Throughout this thesis, we provide some examples of graphs for which the cop number is equal to
the domination number. We also give proofs for some results on the domination number and cop number
of the ER random graph. The main takeaway is that the domination number and cop number are strongly
related.
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1
Introduction

When wanting to represent elements and their connections, we use a graph, which is essentially a network
of vertices and edges connecting vertices. Graphs are used constantly in real life. If we for instance want to
represent a set of people and who among them are friends, then we could use a graph. The people are the
vertices and we draw an edge between two people if they are friends. Another example is a road network,
where the vertices are cities and the edges are highways. It is very common to depict a graph using dots for
the vertices and lines for an edge, see for example Figure 1.1. We denote a graph by G = (V ,E), where V is the
set of vertices of the graph and E is the set of edges.

Figure 1.1: Example of a graph

The first paper on graph theory ever published is about the seven bridges in Königsberg and is written by
Leonhard Euler [16]. The problem that was presented is the following. One wants to walk through Königsberg
(which is now Kalinigrad), crossing each of the seven bridges exactly once. Euler showed using graph theory
that this problem has no solution. Such a walk, where one crosses each edge exactly once, is now known as
an Euler walk. Since then, graphs have been studied extensively [11].

1.1. Graph parameters
In order to be able to express characteristics of different graphs, we use graph parameters, such as the inde-
pendence number, clique number or domination number [33]. The latter is a parameter that is used a lot
throughout this thesis. The domination number, together with the dominating set is a concept that was first
introduced in 1962 by O. Ore [25]. We say that S ∈ V is a dominating set of G if all vertices in V are either in
S or a neighbor of a vertex in S. The domination number γ(G) is the size of the smallest possible dominating
set.

Graph theory has applications in many different areas, such as organic chemistry, electrical engineering and
computer science [3], [28], [38]. In this thesis, we consider the subject of graph games. Specifically, we focus
on the game cops and robbers.

1.2. Graph games
In the field of graph games, there are many different types of games that follow different rules. An example
of such a game is Tic-Tac-Toe, which takes place on a grid of 3 by 3 vertices [9]. It is a two player game that
is won by the player that is able to first claim the elements of a winning set (of vertices). Another example of
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2 1. Introduction

a graph game is the matroid secretary problem [17], which goes as follows. A set of n elements, each having
a certain value, is presented to the player of the game. After the presentation of each element, the player has
to decide whether they are satisfied with the value of the element and to stop the process. The goal here is to
maximize the value of the element that the player chooses. The problem is of course, that we do not know the
value of the future elements and thus do not know when to stop.

In this thesis, as mentioned before, we study another type of graph game. We will consider cops and robbers,
which is played on an undirected graph G . The basics of the game are as follows. There exist two teams,
namely one robber and a set of cops. The game starts with the cops taking their position on the vertices of the
graph. It is possible to occupy a vertex with more than one cop. Subsequently, the robber selects their starting
position. Cops and robbers is a perfect information game, meaning that it is assumed that the players know
the current positions of each other constantly. Then the cops and the robber start moving across the vertices
of the graph, alternating turns. They can only move to neighboring vertices. If eventually one of the cops and
the robber end up at the same vertex, the robber is caught and we say that the cops have won the game. If,
however, the robber can evade the cops indefinitely, we say that the robber wins.

One of the main questions this game raises is: how many cops do we at least need in order to catch the
robber? The answer to this question is the cop number, denoted by c(G), which was introduced by Aigner and
Fromme in 1984 [1]. The cop number is equal to the minimum number of cops needed to catch the robber
on the graph G .

The game cops and robbers itself was first introduced by Nowakowski and Winkler [30] and Quilliot [36]
around 1980. Since then, the game has been studied substantially. For previous studies on cops and rob-
bers, see for example [18], [29].

Depending on what rules you set and assumptions you make for the game, there can be many different
variants of cops and robbers. For instance, one could assume that the robber is invisible to the cops [24]. Or
we could consider a variant where the cops have limited visibility, i.e. they can only locate the robber when
the distance between them is at most l [8]. Another rather well-known variant is lazy cops and robbers [34].
Here only one of the cops can make a move during each turn.

The best-known open problem for the game is Meyniel’s conjecture, which states that, if G is a graph on
n vertices, then c(G) ≤ d

p
n, where d > 0 is a constant [2]. Bollobás, Kun and Leader have then investigated

Meyniel’s conjecture for random graphs [5]. Furthermore, in [27], a theorem about the cop number of random
graphs, graphs where vertices are adjacent with a certain probability, is stated. We mention and discuss this
theorem in Chapter 3.

1.3. Random graphs
Another concept that is used throughout this thesis is the random graph, specifically the Erdős-Rényi model.
This model was introduced independently in 1959 by Gilbert [20] and by Erdős and Rényi [13] as an extension
of the probabilistic method, which is a method we can use to prove the existence of certain combinatorial
objects [22]. Erdős and Rényi received credit for the model, considering that with their contribution the
research of the random graph really took off [13],[14],[15].

There are two versions of the Erdős-Rényi model [19]. The first version considers the graph G(n, M), where n
is the number of vertices of the graph and we choose at random M edges from all possible edges. The other
variant, which we will use in this thesis, considers the graph G(n, p), with n again the number of vertices, but
here p is the probability that there exists an edge between two vertices.

Since the introduction several decades ago, the random graph has become an important subject of modern
mathematics. Random graphs are used in areas other than mathematics as well, for instance in computer
science, life sciences or social sciences [23]. A typical aspect of random graphs that is used in different re-
search areas is the phase transition model. This model describes a sudden change in the properties of a large
structure when altering some critical parameter [23]. For example, take the phase transition of a molecular
structure. At low temperatures, the structure is in solid state and the molecules (vertices) interact (edges)
strongly with each other. At high temperatures, i.e. gas state, the molecules hardly interact with each other.
At temperatures in-between, the molecules have some interaction. In this phase transition we thus have two
critical temperatures at which the structure changes. See the figure below for visualizations of the structures.
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(a) Solid (b) Liquid (c) Gas

Figure 1.2: Organization of molecules in different states, visualized using ER random graphs with n = 200 and (a) p = 0,01, (b) p = 0,005
(critical value), (c) p = 0,002.

1.4. Thesis outline
The goal of this thesis is the following. We combine the world of graph games with random graphs and inves-
tigate the relation between the domination number and the cop number of the Erdős-Rényi random graph.
We aim to give an overview of already existing results in this area. Before we get to this, we will study graphs
for which the cop number is equal to the domination number.

Firstly, in Chapter 2, we will define several important concepts, which will be used in the rest of this study.
We will also study the domination number and cop number of a graph and mention graphs for which the
cop number equals the domination number. Chapters 3 and 4 will cover the already available results on the
domination number and cop number of random graphs. Lastly, in Chapter 5 some open problems will be
mentioned and discussed.





2
Graphs and graph parameters

2.1. Basics of graph theory
A graph G = (V ,E) consists of a set of vertices (V ) and a set of edges (E). The elements of E are two-element
subsets of V . For e ∈ E we write e = uv , when e is the two-element subset {u, v} ⊆ V . The edges of G are
undirected, i.e. the cops and robber can move in either direction across an edge e.

It is very common to represent a graph with a drawing, as done in Figure 2.1. Every vertex is represented by a
dot and the edges are represented by a line between the dots.
The number of vertices, i.e. the size of V , is called the order of the graph and is written as |V |. In like manner,
the number of edges of the graph is denoted by |E |. The degree deg (v) of a vertex v ∈G is the number of edges
that share the vertex v , i.e. |E(v)|.

Figure 2.1: Example of a graph G = (V ,E) with |V | = 5 and |E | = 6.

We will now give several definitions, which we will use later.

Definition 2.1.1. Two vertices u, v ∈V are adjacent if e = uv ∈ E. We then say that u and v are neighbors.

Definition 2.1.2. A path between two vertices is a graph P = (V ,E) with
V = {v0, v1, . . . , vk } and E = {v0v1, v1v2, . . . , vk−1vk }.

The length of the path, denoted l en(P ), is equal to |E(P )|. A graph G is connected if there exists a path in G
from every vertex to another vertex of the graph.

Definition 2.1.3. The distance dG (u, v) between two vertices u, v ∈G is the length of the shortest possible path
between u and v. If there is no path between u and v, then we say that dG (u, v) :=∞.

Definition 2.1.4. The diameter of a graph G, denoted by di am(G), is the largest distance between any two
vertices in G.

We will now give some examples of well-known graphs.

Example 2.1.1 (Cycle). The first well-known graph that we consider is the cycle (see Figure 2.2), which is a
path where the vertices at the ends are the same vertex, i.e. v0 = vk . A cycle of length k (a k−cycle) is denoted
by Ck .
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6 2. Graphs and graph parameters

Figure 2.2: The cycle C7.

Example 2.1.2 (Tree). A graph is called a tree if the graph is connected and does not contain any cycles, see
e.g. Figure 2.3. The vertices of a tree that have degree 1 are called the leaves of the tree.

Figure 2.3: Example of a tree.

Example 2.1.3 (Complete graph). We call a graph G complete if all vertices are pairwise adjacent and we
denote a complete graph on n vertices by Kn . See below the complete graph K5.

Figure 2.4: The complete graph on 5 vertices K5.

Example 2.1.4 (Petersen graph). The Petersen graph is shown below in Figure 2.5. In this graph, all vertices
have degree 3.



2.2. The domination number 7

Figure 2.5: The Petersen graph

2.2. The domination number
Before we discuss the cop number and give some examples of it, we first define another important graph
parameter, the domination number. Let G = (V ,E) be a graph and let S ⊆ V . Let us define N (S) as the set of
vertices that are adjacent to a vertex s ∈ S. If N (S)∪S =V , then we say that S is a dominating set of G . The size
of the smallest possible dominating set is called the domination number of G , and is denoted γ(G).

Example 2.2.1 (Cycle). In Figure 2.6 the smallest possible dominating set of an 8−cycle is shown. We find
that the domination number γ(C8) = 3. For the cycle on n vertices, Cn , we have γ(Cn) = ⌈ n

3

⌉
.

Figure 2.6: Smallest dominating set (red) of an 8−cycle.

Example 2.2.2 (Tree). In a tree, the smallest dominating set can be very large, depending on the composition
of the tree. If the diameter of the tree is large, the domination number will also be large. Several bounds on
the domination number of trees have been established, for example by Desormeaux, Haynes and Henning
[10].

Example 2.2.3 (Complete graph). Since in the complete graph, every vertex is adjacent to every other vertex
in the graph, the smallest dominating set consists of one single vertex. Hence, the domination number of a
complete graph γ(Kn) = 1.

Figure 2.7: Smallest dominating set (red) of the complete graph K4.
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Example 2.2.4 (Petersen graph). The domination number of the Petersen graph is equal to 3, see Figure 2.8
below. Later in this thesis we will see that, for the Petersen graph, the domination number is equal to the cop
number (minimum number of cops needed to catch the robber).

Figure 2.8: Smallest dominating set (red) of the Petersen graph.

2.3. The cop number
The cop number of a graph is the minimum number of cops that is needed to catch the robber on a graph G ,
and is denoted by c(G). We will now give some examples of the cop number of well-known graphs.

Example 2.3.1 (Cycle). When one single cop and a robber are proceeding through a cycle, the cop will con-
tinue to pursue the robber and the robber will continue to move away from the cop. Hence, it is not difficult
to observe that two cops are needed and enough in this case. So c(Ck ) = 2 for all k ≥ 4.

Example 2.3.2 (Tree). If cops and robbers is played on a tree, then one single cop can follow the robber until
arriving at a leaf. The cop has then caught the robber. This will always be the case for a tree, hence we have
c(T ) = 1, for T a tree.

Example 2.3.3 (Complete graph). Placing a robber and one cop on a complete graph causes both players to
always be on adjacent vertices of the graph. Hence, the cop can catch the robber in one single turn. So for a
complete graph Kn we have c(Kn) = 1.

One of the known bounds on the cop number of a graph G is the following.

Theorem 2.3.1. Let G be a graph. Then for the cop number of G we have

c(G) ≤ γ(G) , (2.1)

where γ(G) is the domination number of G.

It is easy to see that this bound holds. If we place the cops on the vertices of a dominating set of G , then there
is always a cop that is on a vertex adjacent to the robber’s position. In many cases, this bound is not very tight.
Take, for example, the cycle Ck , which has γ(Ck ) = ⌈k/3⌉. But the cop number of the cycle, as mentioned in
Example 2.3.1, is c(Ck ) = 2 for all k ≥ 4. However, there exist graphs, for which the bound in Theorem 2.3.1 is
tight, or for which there even is exact equality. It remains an open question [31] whether the following can be
obtained for all k.

Problem 2.3.1. Given a positive integer k, does there exist a connected graph G, such that

c(G) = γ(G) ≥ k? (2.2)

Definition 2.3.1. The girth of a graph G, denoted by g (G), is the minimum length of a cycle contained in G.

A theorem on the lower bound of the cop number, that is important for showing that (2.2) holds for particular
values of k, was found and proved by Aigner and Fromme [1]. The theorem is as follows.

Theorem 2.3.2. Let G be a graph of girth ≥ 5 (no 3- and 4-cycles) with minimum degree δ(G) := min
v∈G

deg (v).

Then
c(G) ≥ δ(G). (2.3)
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Proof. Let G = (V ,E) be a graph of girth ≥ 5 with minimum degree δ(G). We start by showing that the robber
can choose a starting position, where he will not be caught immediately. Assume that the cops take their
starting positions on the vertices v1, v2, . . . , vδ(G)−1. Then, since |V | > δ(G), there exists a u ∈V that has no cop
on it. Using now that G has girth ≥ 5, there is a neighbor of u, say w , that is not a neighbor to any of the cops.
The robber can thus choose w as a starting position and not get caught immediately.

Let us now assume that we have δ(G) − 1 cops. Then at every point in the game there is at least one
neighbor of the robber that is not a neighbor to any cop. This means that the robber can move to such a
vertex and can escape every time (recall that G has girth ≥ 5). Hence we need at least δ(G) cops.

We will now give some examples of graphs that satisfy the property in (2.2) for particular values of k. The
examples that we mention for k = 5 and k = 6 were pointed out to the authors of [31] by Jérémie Turcotte and
my supervisor Anurag Bishnoi pointed them to the example for k = 7.

Example 2.3.4 (Petersen graph). For the Petersen graph P , which is given in Example 2.1.4, the property in
(2.2) is satisfied with k = 3.

Lemma 2.3.1. Let P be the Petersen graph, see Example 2.1.4. Then

c(P ) = γ(P ) = 3. (2.4)

Proof. We showed in Example 2.2.4 that the domination number of the Petersen graph satisfies γ(P ) = 3.
With the use of Theorem 2.3.1 we get that c(P ) ≤ 3. For the lower bound, we use Theorem 2.3.2. Since P does
not contain any 3- or 4-cycles and has minimum degree δ(P ) = 3, we obtain that c(P ) ≥ 3. Taking the two
bounds together results in c(P ) = γ(P ) = 3.

Example 2.3.5 (Wong graph). The Wong graph, see Figure 2.9 below, satisfies the property in (2.2) for k = 5.

Figure 2.9: The Wong graph

Lemma 2.3.2. Let W be the Wong graph, see Figure 2.9. Then

c(W ) = γ(W ) = 5. (2.5)

Proof. Let us first look at an upper bound for c(W ). By Theorem 2.3.1 we have c(W ) ≤ γ(W ) = 5, see
section A.1.1 for how we obtained values of the parameters. For the lower bound we use Theorem 2.3.2. The
Wong graph has minimum degree δ(W ) = 5 and is of girth 5. Hence, using Theorem 2.3.2, we find c(W ) ≥ 5.
Combining now the upper and lower bound on the cop number, we obtain c(W ) = 5.
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Example 2.3.6 (Hoffman-Singleton graph minus star). The graph that has the property in (2.2) for k = 6 is the
Hoffman-Singleton graph minus star. This is the graph that we get if we take the Hoffman-Singleton graph,
see Figure 2.10a, and we remove a star. A star is a vertex with all its neighbors and the edges between them. So,
since in the Hoffman-Singleton graph all vertices have degree 7, we remove a component that has 8 vertices
in total, see Figure 2.10b. The resulting graph is the Hoffman-Singleton graph minus star in Figure 2.10c.

(a) Hoffman-Singleton graph with star in red (b) A star taken out of the graph (c) Hoffman-Singleton graph minus star

Figure 2.10: Removing a star from the Hoffman-Singleton graph, visualized in steps.

Lemma 2.3.3. Let Ĥ be the Hoffman-Singleton graph minus star. Then

c(Ĥ) = γ(Ĥ) = 6. (2.6)

Proof. We will prove this in the same way as we did before. For the upper bound on the cop number of
the Hoffman-Singleton graph minus star we use Theorem 2.3.1. Since the domination number of the graph
is equal to 6, we have that c(Ĥ) ≤ γ(Ĥ) = 6. See section A.1.2 for how we derived the parameters. Since the
Hoffman-Singleton graph minus star has minimum degree δ(Ĥ) = 6 and is of girth 5, by Theorem 2.3.2 we
have that c(Ĥ) ≥ 6. Combining the upper and lower bound on the cop number, we find that c(Ĥ) = 6.



2.3. The cop number 11

Example 2.3.7 (Hoffman-Singleton graph). The Hoffman-Singleton graph H , which is given in Figure 2.11,
also satisfies the property in (2.2), for k = 7.

Figure 2.11: The Hoffman-Singleton graph

Lemma 2.3.4. Let H be the Hoffman-Singleton graph. Then

c(H) = γ(H) = 7. (2.7)

Proof. We will prove the statement in the way as before. The upper bound on the cop number of the
Hoffman-Singleton graph is obtained by Theorem 2.3.1, stating that c(H) ≤ γ(H) = 7. Again, see section A.1.3
for how we obtained values of the parameters. Since the Hoffman-Singleton graph has minimum degree
δ(H) = 7 and has girth 5, by Theorem 2.3.2 we have that c(H) ≥ 7. Again, combining the upper and lower
bound on the cop number, we find that c(H) = 7.

All the proofs of the examples with equal cop number and domination number that we mentioned above
were constructed in the same way. Since all graphs had girth 5, we were able to find a lower bound, using
the minimum degree of the graph. The upper bound followed from the domination number. It could be
interesting to see if we are able to do this for more values of k than those that are mentioned in this section.
We mention this again in Chapter 5.





3
Domination number of Erdős-Rényi

random graphs

In this chapter, we take a look at the domination number of Erdős-Rényi (ER) random graphs. This model for
a random graph was introduced independently by Erdős and Rényi [13] and Gilbert [20], around 1960.

Definition 3.0.1. An Erdős-Rényi (ER) random graph, denoted by G(n, pn), is a graph on n vertices, where two
vertices are adjacent (i.e. form an edge) with probability pn , independently from other edges.

It is important to first establish some notation for these graphs. When p does not depend on n, we write
pn = p. Furthermore, we often express p as a power of n.

np = nα ⇒ p = nα−1. (3.1)

Throughout this thesis, when we write logn (without subscript), we mean the natural logarithm of n. We will
now present some results about the domination number of ER random graphs. The first result is due to Dryer
[12] and describes the case where p is fixed.

3.1. The domination number of ER random graphs for fixed p
Theorem 3.1.1 is a result of the research of Dryer [12].

Definition 3.1.1. We say that an event holds asymptotically almost surely (a.a.s.) if it holds with probability
1−o(1), meaning that the probability of the event happening tends to 1 as n tends to infinity.

Theorem 3.1.1. Consider an ER random graph G(n, pn), as given in Definition 3.0.1, with fixed parameter
pn = p > 0 and the number of vertices n tending to infinity. Then a.a.s. the domination number of G(n, p)
satisfies

γ(G(n, p)) = (1+o(1)) logq n, (3.2)

where q = 1
1−p .

We will now take a close look at the following result, that is mentioned in [37] and provide a proof.

Proposition 3.1.1. Let G(n, p) be the ER random graph with fixed p. Let an be any sequence approaching
infinity. Then

P
(
γ(G(n, p)) ≤ ⌈logq n +an⌉

)→ 1 as n →∞. (3.3)

Proof. Let an be any sequence approaching infinity. Then

P
(
γ(G(n, p)) ≤ ⌈logq n +an⌉

)=P(∃ a dominating set of size r := ⌈logq n +an⌉
)

≥P(
vertices {1,2, . . . ,r } form a dominating set

)
.

(3.4)

We now have a set consisting of r vertices, which we will call Ar . Let Br be the set with the remaining n − r
vertices, as in Figure 3.1 below.

13
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1

2

r

Ar

r

Br

n − r

Figure 3.1: Visualization of the sets Ar and Br , consisting of r and n − r vertices, respectively.

It becomes clear that the vertices {1,2, . . . ,r } forming a dominating set is equivalent to every vertex in Br

having at least one neighbor in Ar , as illustrated in Figure 3.1. This is because in that case Ar ∪ N (Ar ) =
V (G(n, p)). So we obtain the following.

P
(
γ(G(n, p)) ≤ ⌈logq n +an⌉

)≥P(∀vertex in Br is adjacent to ≥ 1 vertex in Ar
)

=
n−r∏
i=1

P
(
vertex v in Br is adjacent to u in Ar

)
=P(

vertex v in Br is adjacent to u in Ar
)n−r .

(3.5)

Where we use the fact that the probability of vertices forming an edge is independent. Next, we use the
probability of a vertex v in Br not having any neighbors in Ar for determining P(vertex v in Br is adjacent to
u in Ar ), as follows.

P
(
γ(G(n, p)) ≤ ⌈logq n +an⌉

)≥ (
1−P(vertex v in Br has no neighbor in Ar )

)n−r

= (
1− (1−p)r )n−r .

(3.6)

Where the last step is due to the fact that an edge from a vertex v in Br to a vertex u in Ar is non-existent
with probability 1−p, and we have r possibilities for vertices u in Ar . Next, we use that (1−x)a ≥ 1−ax, with
a = n − r and x = (1−p)r , to obtain the following.

P
(
γ(G(n, p)) ≤ ⌈logq n +an⌉

)≥ 1− (n − r )(1−p)r

= 1−n(1−p)r + r (1−p)r

≥ 1−n(1−p)r .

(3.7)

Substituting r := ⌈logq n +an⌉ back in yields:

P
(
γ(G(n, p)) ≤ ⌈logq n +an⌉

)≥ 1−n(1−p)⌈logq n+an⌉

≥ 1−n(1−p)
logn

− log(1−p) +an

= 1−n
(
e

log(1−p) logn
− log(1−p) +an log(1−p)

)
.

(3.8)

Where we used that 1−p = e log(1−p) and ea+b = eaeb . Rewriting the statement gives:

P
(
γ(G(n, p)) ≤ ⌈logq n +an⌉

)≥ 1−n
(
e− lognean log(1−p))

= 1−nn−1(1−p)an

= 1− (1−p)an .

(3.9)
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Previously, we assumed that an → ∞ as n → ∞ and since p > 0, we have that 1 − p < 1. This results in
(1−p) → 0 as n →∞. Hence we get:

P
(
γ(G(n, p)) ≤ ⌈logq n +an⌉

)≥ 1− (1−p)an → 1−0 = 1. (3.10)

So logq n +an vertices is sufficient for any an tending to infinity.

Let us now see why logq n −an vertices is not enough. This is a result from [12], where the proof is left out, so
we will give it here. It is a nice result that we can use to prove Theorem 3.1.1. In order to do this, we will prove
the following proposition.

Proposition 3.1.2. Let G(n, p) be the ER random graph with fixed p. Then

P
(
γ(G(n, p)) ≥ ⌈logq n −an⌉

)→ 1 as n →∞ (3.11)

for all an = 2log(logn)−log(| log(1−p)|)
| log(1−p)| + g (n), where g (n) =ω(1).

Proof.

P
(
γ(G(n, p)) ≥ ⌈logq n −an⌉

)=P(
no set of size r := ⌈logq n −an⌉ is dominating

)
= 1−P(∃ a dominating set of size r

)
.

(3.12)

In order to prove the statement in (3.11), we need to show that the probability that there exists a dominating
set of size r tends to 0. Since there are

(n
r

)
possibilities of a set of size r and every set could be a dominating

set, using the same reasoning as before, we have:

P
(∃ a dominating set of size r

)= (
n

r

)
P
(
vertices {1,2, . . . ,r } form a dominating set

)
=

(
n

r

)
n−r∏
i=1

P
(∀ vertex in Br has a neighbor in Ar

)
=

(
n

r

)(
P
(∀ vertex in Br has a neighbor in Ar

))n−r
.

(3.13)

Again, an edge from a vertex v in Br to a vertex u in Ar is non-existent with probability 1−p, and there are r
possible neighbors in Ar for vertices in Br . Furthermore, we use that 1−x ≤ e−x to obtain the following.

P(∃ a dominating set of size r ) =
(

n

r

)(
1− (1−p)r )n−r

≤
(

n

r

)
e−(n−r )(1−p)r

≤ nr e−(n−r )(1−p)logq n−an
.

(3.14)

Where in the last step we used that
(n

r

)≤ nr and we substituted r := ⌈logq n−an⌉ back in. Rewriting so that we
lose the logarithm in the e-power gives the following.

P
(∃ a dominating set of size r

)≤ nr e−(n−r ) 1
n (1−p)−an

= er logn−(n−r ) 1
n (1−p)−an

. (3.15)

If we look at (3.15), we see that r logn tends to infinity as n tends to infinity, (n − r ) 1
n tends to 1 as n tends to

infinity. Furthermore, (1−p)−an will tend to infinity as n tends to infinity. Taking all this together, we see that,
in order for the whole e-power to tend to 0, we need that (1−p)−an ≫ r logn.

It is elementary computation to check that (1−p)−an ≫ r logn is equivalent to requiring an ≫ 2log(logn)
| log(1−p)| +C (p),

where C (p) is a constant. In order for an to meet this requirement, we can take an = 2log(logn)−log(| log(1−p)|)
| log(1−p)| +

g (n) , where we take g (n) =ω(1), which is any function tending to infinity.
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So now we have shown that P
(∃ a dominating set of size r := ⌈logq n −an⌉

)→ 0 , for all

an = 2log(logn)−log(| log(1−p)|)
| log(1−p)| +g (n). This is, if we look at the beginning of our proof, equivalent to the following

statement.

1−P(∃ a dominating set of size r
)→ 1 , for all an = 2log

(
logn

)− log
(| log(1−p)|)

| log(1−p)| + g (n) , with g (n) =ω(1)

Hence, we see that for particular an , having logq n−an vertices is enough, but not for all an , which is what we
wanted to show.

Proof of Theorem 3.1.1. From Proposition 3.1.1 and Proposition 3.1.2 it easily follows that a.a.s. we have

γ(G(n, p)) = (1+o(1)) logq n, (3.16)

where q = 1
1−p .

3.2. The domination number of ER random graphs for p depending on n
In the previous section we explained a result for the domination number of ER random graphs for fixed p.
In this section we look at the case where p is not fixed, so p depends on n. Glebov, Liebenau and Szabó [21]
established the following result on the domination number of G(n, pn).

Theorem 3.2.1. Let pn be such that log2 np
n

≪ pn < 1. Then there exists an r̂ , see (3.17), such that γ(G(n, pn)) =
⌊r̂ ⌋+1 or γ(G(n, pn)) = ⌊r̂ ⌋+2, with

r̂ = logq

(
n log q

log2 npn
(1+o(1))

)
and q = 1

1−pn
. (3.17)



4
Cop number of Erdős-Rényi random

graphs

In this chapter we will discuss important results established by Łuczak and Prałat [27] on the cop number of
the ER random graph. We divide this chapter into two parts, one where we discuss the case that p is fixed and
one for p depending on n.

4.1. Fixed p
For fixed p, it has been shown [6] that for the cop number of ER random graphs we have the following.

Theorem 4.1.1. Let G(n, p) be the ER random graph with fixed p. Then

c(G(n, p)) = (1+o(1)) logq n, (4.1)

where q = 1
1−p .

Proof. The proof of the upper bound follows from the result of the previous chapter. We namely showed
that γ(G(n, p)) = (1+ o(1)) logq n, which is Theorem 3.1.1. Combining this with Theorem 2.3.1, we obtain
c(G(n, p)) ≤ (1+o(1)) logq n. We will now show that the lower bound also holds, as Bonato, Hahn and Wang
did [6].

First, let us state the following. If k is a positive integer, we say that a graph is (1,k)− e.c. if for each subset
S ⊆V , with |S| = k, and vertex u, there exists a vertex z ∉ S, not joined to any vertex in S and joined to u.

If G is (1,k)− e.c., then we need ≥ k cops. Write k = ⌊
(1−o(1)) logq n

⌋
, with q = 1

1−p . In order to show that
c(G(n, p)) ≥ (1−o(1)) logq n, we will determine the probability that G is not (1,k)− e.c.. This is done in the
following way.

Let S ⊆V such that |S| = k, let u ∉ S. Then take z ∈V \S , z ̸= u. Then

P
(
z is not adjacent to u or z is not adjacent to ≥ 1 element of S.

)
= 1−P(

z is adjacent to u and z is non-adjacent to each element of S.
)

= 1−p(1−p)k .

(4.2)

Where the last step is due to S having k elements. Since there are n −k −1 possibilities for z, the probability

that G is not (1,k)− e.c. for this particular choice of S and k, is equal to
(
1−p(1−p)k

)n−k−1. The probability
of having ≥ 1 such S and k is then

P
(
G is not (1,k)−e.c.

)≤ (
n

k +1

)(
1−p(1−p)k)n−k−1

≤ nk+1(1−p(1−p)k)n−k−1 = f (n).

(4.3)

17



18 4. Cop number of Erdős-Rényi random graphs

From Lemma 3.5 of [6] it then follows that

lim
n→∞ f (n) = 0.

So, with probability tending to 1, we find that c(G(n, p)) ≥ (1+o(1)) logq n, as desired.

4.2. Zigzag theorem
We will now consider the case where p is not fixed, so p = pn . The cop number in this case is more compli-
cated than having a fixed p. The goal of this section is to summarize the result of Łuczak and Prałat [27]. The
main result that they proved is in the following theorem.

Theorem 4.2.1. Let 0 <α< 1 (see (3.1) for notation) and let d(n) = npn = nα+o(1), i.e. pn = nα−1+o(1).

(i) If
1

k +1
<α< 1

k
for an even integer k(α), then

c(G(n, pn)) =Θ(
d(n) j (α)) ,

where j (α) = k(α)

2
.

(ii) If
1

k +1
<α< 1

k
for an odd integer k(α), then

Ω

(
n

d(n) j (α)

)
= c(G(n, pn)) =O

(
n logn

d(n) j (α)

)
,

where j (α) = k(α)+1

2
.

(4.4)

We will now explore how Theorem 4.2.1 leads to the zigzag function in Figure 4.1. Let us first study the case
where k(α) is even. For k(α) = 2 j (α) we have

c(G(n, pn)) =Θ(
d(n) j (α))

=Θ(
n(α+o(1)) j (α))

=Θ(
nα j (α)+o(1) j (α)).

(4.5)

For αwe have the following.

1

2 j (α)+1
<α< 1

2 j (α)
. (4.6)

Multiplying with j (α) gives

j (α)

2 j (α)+1
<α j (α) < 1

2
. (4.7)

But when α= 1
2 j (α) , i.e. when α= 1

2·2m , where m is an integer, then α j (α) = 1
2 . So we obtain the following for

the cop number

c(G(n, pn)) = c
(
G(n,nα−1+o(1))

)= n
1
2 +o(1) j (α). (4.8)

For the case where k(α) is odd we have that

c(G(n, pn)) =O

(
n logn

d(n) j (α)

)
=O

(
n logn

nα j (α)+o(1) j (α)

)
≤O

(
n1−α j (α)−o(1) j (α)

)
.

(4.9)

For the other side of the equation we have
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c(G(n, pn)) =Ω
(

n

d(n) j (α)

)
=Ω

(
n

nα j (α)+o(1) j (α)

)
=Ω

(
n1−α j (α)−o(1) j (α)

)
.

(4.10)

Taking together (4.9) and (4.10) gives us the following for odd k(α).

c(G(n, pn)) = n1−α j (α)−o(1) j (α). (4.11)

Putting together everything for both cases yields

c
(
G(n,nα−1+o(1))

)={
nα j (α)−o(1) j (α) , if k(α) is even

n1−α j (α)−o(1) j (α), if k(α) is odd.
(4.12)

Next, we take the logarithm of both sides of (4.12). For the even case this gives

log
(
c
(
G(n,nα−1+o(1))

))= log
(
nα j (α)−o(1) j (α))

= (
α j (α)−o(1) j (α)

)
logn.

(4.13)

This gives that

α j (α)−o(1) j (α) = log
(
c
(
G(n,nα−1+o(1))

))
logn

. (4.14)

For the odd case we can do the same, to obtain

1−α j (α)−o(1) j (α) = log
(
c
(
G(n,nα−1+o(1))

))
logn

. (4.15)

So let the function f : (0,1) →R be defined as follows.

f (x) = log c̄(G(n,nx−1))

logn
, (4.16)

where c̄(G(n,nx−1)) denotes the median of the cop number of G(n,nx−1). From our calculations above, see
(4.14) and (4.15), it then follows that

f (x) =
{
α j (α) , if k(α) is even

1−α j (α), if k(α) is odd,
(4.17)

resulting in the zigzag function, shown in Figure 4.1 below.

Figure 4.1: The zigzag function

This zigzag shape is caused by k(α) being an integer (odd or even) and the cops and robber taking turns,
where the cops take the first turn. Having an odd k(α) is beneficial, in the sense that we need less cops.
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4.3. Comparison of domination number and cop number of ER random
graphs

In this section we will compare chapters 3 and 4, to see how the domination number and cop number of the
Erdős-Rényi random graph are related. We will look at the case where p is fixed an where p depends on n
separately.

Let us first look at the case where p is fixed. From section 3.1 we have that the domination number sat-
isfies γ(G(n, p)) = (1 + o(1)) logq n, where q = 1

1−p . Section 4.1 tells us that the cop number c(G(n, p)) =
(1+ o(1)) logq n. So, when p is fixed, the cop number asymptotically equals the domination number, with
probability tending to 1.

Next, we consider the other case, p depends on n. In section 3.2 we mentioned a theorem from Glebov,
Liebenau and Szabó [21] on the domination number, see Theorem 3.2.1. For the cop number, we discussed
in section 4.2 the zigzag theorem by Łuczak and Prałat, see Theorem 4.2.1. What we take from these sections
is the following: The cop number of G(n, pn) is determined by the zigzag function, see Figure 4.1. From this it
follows that the cop number is asymptotically equal to the domination number for pn = nα−1, whenα ∈ ( 1

2 ,1
)
.

For other values of α, it is not.



5
Open problems

In this chapter we will mention some open problems that exist in the area of cops and robbers on graphs. The
first open problem that is worth mentioning is Meyniel’s conjecture, which is as follows.

Problem 5.0.1 (Meyniel’s conjecture). If G is a graph of order n, then

c(G) =O(
p

n) (5.1)

For n sufficiently large, this is equivalent to saying that there exists a constant d > 0 such that

c(G) ≤ d
p

n (5.2)

In this thesis we have explored the cop number of ER random graphs, which gives an example of a graph
sequence that achieves an almost sharp approximation of the conjecture. Because, if we let pn = nα−1+o(1)

and we take α= 0 or α= 1
2 , then c(G(n, pn)) = n

1
2 +o(1) asymptotically almost surely.

In 2011 Lu and Peng [26] proved that Meyniel’s Conjecture holds for diameter 2 graphs and for bibartite
graphs of diameter 3. However, the conjecture has not yet been proved for general graphs.

The next problem that we want to address is about graphs that have equal domination number and cop
number, as mentioned before in chapter 2, see Problem 2.3.1. In chapter 2 we already explored the problem
and we mentioned some specific cases where (2.2) holds. However we would like to know if it is also true
for all k, as Petr, Portier and Versteegen mentioned in their survey on cops and robbers [31]. My supervisor
Anurag Bishnoi pointed out to me the following: If we combine Theorem 1.1 and 2.1 from [32], then we see
that for every k ∈Z+ there exists a graph such that c(G) = γ(G) = k. This would be an answer to Question 4.2
from [31]. It remains a question what other sequences of such graphs there are.

A natural weaker case of Problem 2.3.1, which could be interesting to look at, would be the following.

Problem 5.0.2. Can we find a sequence of graphs Gn with c(Gn) = γ(Gn)(1−o(1))?

Looking at Chapter 4, we can conclude that this holds for the ER random graph with fixed parameter p.

In section 2.3 of Chapter 2 we looked at some examples of graphs with equal domination number and cop
number. For all examples we had that the graphs had girth 5. For k = 3,5,6,7 we had that if the graph is
k-regular (all vertices have degree k), then c(G) = γ(G) = k. So it would be natural to wonder if we can do this
for more values of k.

Problem 5.0.3. Can we find an infinite sequence of k’s, for which there exists a k-regular graph G of girth 5
with γ(G) = k?
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6
Conclusion

The goal of this thesis was twofold. Firstly, we wanted to investigate how the domination number and the cop
number of Erdős-Rényi random graphs are related. Secondly, we aimed to provide an overview of the so far
existing results.

In order to make a comparison of the domination and cop number of ER random graphs, we first presented
some basic notions on graph theory. We then looked at both the domination number and cop number of
graphs and provided some examples. We also mentioned graphs that have γ(G) = c(G) = k and provided
proofs for k = 3,5,6 and 7.

Subsequently, we studied the ER random graph and we gathered results from Dreyer [12] and from Glebov,
Liebenau and Szabó [21] to get a clear view of what the domination number of an ER random graph looks like,
when p is fixed and when p depends on n, respectively.

Afterwards, we studied the cop number of the ER random graph and used results from Łuczak and Prałat
[27] to establish what the cop number roughly looks like. From chapters 3 and 4 it becomes clear that the
domination number and cop number of the ER random graph are strongly related. To be precise, for fixed p
the aforementioned graph parameters are a.a.s. equal.

However, for p = pn the result is more complicated. For pn = nα−1, with α ∈ ( 1
2 ,1

)
, the cop number is

asymptotically equal to the domination number. For other values, we use the zigzag function to obtain the
cop number.

To be able to provide an overview of the so far existing results, we took the results and delivered proofs to
some theorems, see sections 3.1 and 4.2 in particular.

Altogether, we can conclude that, when considering the ER random graph G(n, pn), the domination number
and cop number are strongly related. For fixed p they are even asymptotically equal, which is interesting to
see. There still are a lot of open questions and areas of research about this subject, partially because cops
and robbers is quite a recent research field. For some open problems, see section 5. An interesting possible
following study would be to look into the relation between the cop number and other graph parameters than
the domination number. Another possible area of research lies in comparing cop number and other graph
parameters for different types of random graphs [19].
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A
Graphs with equal domination number

and cop number

A.1. Sagemath code for determining graph parameters and plotting graphs
A.1.1. Wong graph
from sage.graphs.graph_plot import GraphPlot

###Creating the Wong graph with its adjacency matrix
A_w = [[0,1,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1],\
[1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0],\
[0,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0],\
[0,0,1,0,1,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0],\
[1,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0],\
[0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0],\
[0,0,0,0,0,1,0,1,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0],\
[0,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0],\
[1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0],\
[0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0],\
[0,1,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0],\
[0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1],\
[0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0],\
[0,0,0,0,1,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0],\
[0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0],\
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,1,0,0,0,0,0,0],\
[0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0],\
[0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,1],\
[0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,1,0,0,0],\
[0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,1,0],\
[0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0],\
[0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,1],\
[0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0],\
[0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0],\
[0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0],\
[0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,1,0,0,0],\
[0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0],\
[0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0],\
[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,1],\
[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0]]
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26 A. Graphs with equal domination number and cop number

rows = len(A_w)
columns = rows
W = graphs.EmptyGraph()
for i in range(rows):

for j in range(columns):
if A_w[i][j] == 1:

W.add_edge(i,j)

###Plotting the Wong graph
options = {'layout':'circular','vertex_size': 100, 'vertex_labels': True,

'vertex_color':'royalblue', 'edge_thickness': 0.5}
GP = GraphPlot(W, options)
GP.show()

A.1.2. Hoffman-Singleton graph minus star
from sage.graphs.graph_plot import GraphPlot

###Starting off with the Hoffman-Singleton graph
HS = graphs.HoffmanSingletonGraph()

###Taking a vertex from the HS graph and defining its star
s = 5
star_center = HS.vertices()[s]; star_center
star_endpoints = HS.neighbors(s); star_endpoints
star = HS.subgraph([star_center]+star_endpoints)

###Plotting the star
star.show(edge_thickness = 1, vertex_labels = False, vertex_color='red',

edge_color = 'red', vertex_size= 50)

###Plotting the Hoffman-Singleton graph with a star highlighted in red
HS.show(edge_thickness = 0.7, vertex_labels = False, vertex_color={'royalblue':

HS.vertices(),'red':star.vertices()}, edge_colors={'red':star.edges()},
vertex_size= 50)

star.show(edge_thickness = 1, vertex_labels = False, vertex_color='red',
edge_color='red', vertex_size= 50)

###Removing the star from the Hoffman-Singleton graph
HS_min_star = HS.copy()
HS_min_star.delete_vertex(star_center)
HS_min_star.delete_vertices(star_endpoints)

###Plotting the Hoffman-Singleton graph minus star
options = {'vertex_size': 50, 'vertex_labels': False,

'vertex_color':'royalblue', 'edge_thickness': 0.7}
GP = GraphPlot(HS_min_star, options)
GP.show()

###Studying graph parameters in order to find the cop number
dom_HS_min_star = HS_min_star.dominating_set(value_only = True); dom_HS_min_star
min_degree = min(HS_min_star.degree_sequence()); min_degree
girth = len(min(HS_min_star.minimum_cycle_basis())); girth
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A.1.3. Hoffman-Singleton graph
from sage.graphs.graph_plot import GraphPlot

###Importing the Hoffman-Singleton graph
HS = graphs.HoffmanSingletonGraph()

###Plotting the Hoffman-Singleton graph
options = {'vertex_size': 50, 'vertex_labels': False, 'vertex_color':'royalblue',

'edge_thickness': 0.5}
GP = GraphPlot(HS, options)
GP.show()

###Studying graph parameters in order to find the cop number
dom_HS = HS.dominating_set(value_only = True); dom_HS
min_degree = min(HS.degree_sequence()); min_degree
girth = len(min(HS.minimum_cycle_basis())); girth
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[14] P. Erdős, A. Rényi. (1960). On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. 5,
17–61.
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