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A B S T R A C T

As a critical feature of synchromodal transport (ST), service flexibility plays an important role
in improving the utilization of resources to reduce costs, emissions, congestions, and delays.
However, none of the existing studies considered flexible services under the framework of
synchromodality. This paper develops a Mixed Integer Linear Programming (MILP) model to
formulate service flexibility in ST planning. In the MILP model, vehicles with flexible services
as well as fixed services are both considered, and vehicle routes and request routes are planned
simultaneously. Due to the computational complexity, an Adaptive Large Neighborhood Search
heuristic is designed to solve the problem. Several customized operators are designed based on
the characteristics of the studied problem. The proposed model is compared with the models
developed in a highly-cited paper and a newly published paper that do not consider service
flexibility. Case studies on small instances verified that the proposed model with flexibility
performs better on all scenarios, including scenarios with different weights for the individual
objectives, scenarios under congestion,and dynamic optimization scenarios. On large instances
(up to 1600 shipment requests), the proposed model with flexibility reduces the cost by 14%
on average compared with the existing models in the literature.

1. Introduction

International container transportation is facing the challenges of improving efficiency and reliability and reducing cost, delay,
congestion, and emissions due to the pressures from both huge volume of global trade and higher requirements of stakeholders (Am-
bra et al., 2019). Global containerized trade reached 143 million twenty-foot equivalent units (TEUs) in 2019, while the expectations
on transportation are increasing (UNCTAD, 2020). At the same time, greenhouse emissions from transportation reached 1103 million
tons in Europe in 2019 (EEA, 2020). To achieve sustainable freight transportation, European Commission proposes to cut carbon
emissions in transport by 60% by 2050 and shift 50% freight transport from road to rail and waterborne transport (Kallas, 2011).
China also has the ‘‘Carbon Peak and Carbon Neutrality’’ Policy, which measures to achieve a peak in carbon emissions by 2030 and
carbon neutrality by 2060 (Dong et al., 2021). Intermodal transport is a promising solution on the above issues and the modal shift
towards sustainable modes. As an advanced version of intermodal transport, Synchromodal Transport (ST) is proposed to address
these issues further (Zhang and Pel, 2016; Behdani et al., 2014). Synchromodality has been recognized as an innovative solution
for achieving socio-economic and environmental sustainability by utilization of existing capacities and assets (Giusti et al., 2019;
Ambra et al., 2019). As stated by Mes and Iacob (2016), on the corridor from the Netherlands to Italy, synchromodal planning could
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Fig. 1. Routing of vehicles with fixed and flexible services in synchromodal transport.

achieve an average cost reduction of 10.1% and a CO2 reduction of 14.2%. A Rotterdam hinterland container transport case study
shows that ST could increase service line occupancies (by 10%), reduce delivery times (by 8%), facilitate a modal shift from road
transport towards rail transport (by 16%), and reduce CO2 emissions (by 28%) compared with intermodal transport (Zhang and Pel,
2016).

As a distinct feature of synchromodality, service flexibility plays a key role in improving the utilization of resources (Behdani
et al., 2014; Van Riessen et al., 2015; Zhang and Pel, 2016; Giusti et al., 2019; Delbart et al., 2021). The service flexibility means
that the decision-maker can change vehicles’ routes and schedules based on demand and available resources. In other words, flexible
services enable the decision-maker to achieve the objective better by exploiting the benefits of each modal choice in ST. Flexibility
has different functions under different scenarios. Specifically, when the objective is to minimize cost, flexible services can reduce
more costs than predefined services by avoiding empty miles, improving loading factors of low-cost vehicles, minimizing storage
time, etc. Besides, flexible services can provide more alternatives to alleviate impacts of congestions or other unexpected events
than fixed services. Flexibility is also vital to handle transport demand in the most efficient and sustainable way by using different
modes and routes in an integrated network (Giusti et al., 2019; Delbart et al., 2021).

However, the majority of the existing models in ST, e.g., Demir et al. (2016) and Guo et al. (2020), only consider services with
fixed routes and schedules. The flexible services are not considered mainly due to the following reasons: (a) providing flexible
services needs the development of various technologies, such as digital platform, information and communication technologies,
and physical internet (Ambra et al., 2019; Giusti et al., 2019); (b) achieving flexible services needs to consider transshipment and
synchronization of operations (Giusti et al., 2019); (c) tackling the optimization problem with flexible services needs customized,
sophisticated and efficient algorithms due to computational complexity (Wolfinger, 2021). Therefore, existing studies usually assume
that the routes and schedules of services are predefined, which loses the flexibility of trucks and ships. In reality, routes of trucks
and ships can be changed according to demands and weather, and transport operators and shippers are flexible in their negotiations
depending on the circumstances, such as transportation volume and disturbances (Van Riessen et al., 2013). The requirement of
flexibility and the development of modern technologies are driving the transformation from fixed to flexible services in ST.

Fig. 1 illustrates the routing of vehicles with fixed versus flexible services. In the following, vehicles with fixed services and
vehicles with flexible services are abbreviated as fixed vehicles and flexible vehicles, respectively. In Fig. 1, the nodes are ST
terminals, which could be ports or truck/train stations, and these nodes are connected by roads, railways, or inland waterways.
When the vehicle is fixed, it can only run between predefined terminals. In contrast, when it is a flexible vehicle, its transport
network is expanded, and it can go to any terminal if there are suitable routes for it. Assuming the routes are fixed may cause
empty miles and low load factors, which increases the transport cost. Fixed vehicles’ departure and arrival times need to fit in
the predefined open time windows at terminals. Besides, the schedules of different requests are the same when using the same
fixed vehicles. In contrast, the schedules are adjustable when using flexible vehicles because the transport operator can customize
schedules for different requests to avoid unnecessary storage and delay. Although flexible vehicles could bring benefits for ST, fixed
vehicles are still necessary in the current ST. For instance, the schedules of freight trains are usually predefined due to the higher
priority accorded to passenger trains (Wolfinger et al., 2019). Therefore, the mix of fixed and flexible vehicles needs to be considered
in synchromodal transport panning.

Flexible routing and scheduling need a vehicle routing component, which is often addressed by coarse approximations in
the existing models that cannot be applied to ST with flexible services (Drexl, 2012). For example, the links or paths are used
2
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to ‘‘transport’’ containers in the literature (Van Riessen et al., 2013; Demir et al., 2016; Guo et al., 2020). When considering
flexible routing and scheduling at the operational level, the transport operator needs to take the capacity and speed of each
vehicle into account and decide which vehicle will be used to serve requests. Moreover, the schedules of flexible vehicles, such as
arrival/departure time and waiting time, need to be decided by the model. It is more convenient to calculate these times by adding a
vehicle routing component as in the case of Vehicle Routing Problems (VRPs). The request routing is also required due to the possible
transshipment between vehicles. Therefore, request routing and vehicle routing need to be modeled simultaneously. Furthermore,
the transshipments of requests and interdependency between vehicles complicate both routing and scheduling in synchromodal
transport planning (Drexl, 2014; Rais et al., 2014; Zhang and Pel, 2016).

In order to address the above-mentioned modeling requirements for synchromodality, we define the optimization problem
s Synchromodal Transport Planning Problem with Flexible Services (STPP-FS). In STPP-FS, vehicles and requests are planned
imultaneously, which allows the model to keep flexible during operations. The objective is to minimize the total cost, including
ransit cost, transfer cost, storage cost, carbon tax, waiting cost, and delay penalty. Besides typical constraints in the routing
ptimization, such as time windows and capacity constraints, the special constraints for ST are considered in STPP-FS, including
onstraints on transshipments, different modes, fixed and flexible vehicles, and complex schedules. An Adaptive Large Neighborhood
earch (ALNS) heuristic is developed to solve the proposed problem efficiently. The proposed model allows flexible planning based
n transport demands, which improves the utilization of available resources and reduces costs and emissions. To the best of our
nowledge, this is the first paper that formulates the STPP-FS and develops a customized ALNS to solve it.

The remainder of this paper is organized as follows: Section 2 presents a brief literature review about articles related to
ynchromodal transport planning. Section 3 defines the problem in detail. The optimization problem is formulated by Mixed Integer
inear Programming in Section 4. Section 5 presents the solution methodology, i.e., a customized ALNS with a series of operators
nd performance improvement methods. In Section 6, experimental settings and results are provided. Section 7 concludes and gives
uture research directions.

. Literature review

This section presents a review of the literature on the optimization models in synchromodal transport planning and the studies
n the freight transportation domain that considers flexible vehicles and transshipments.

.1. Optimization models in synchromodal transport planning

In the literature, containers in ST are moved by vehicles with fixed schedules (Guo et al., 2020; Agamez-Arias and Moyano-
uentes, 2017; SteadieSeifi et al., 2014). These models can be divided into two groups: Minimum Cost Network Flow model (MCNF)
nd Path-based Network Design model (PBND) (Van Riessen et al., 2013). In MCNF, containers are transported over various links
n the network and each link has capacity constraints. One branch of MCNF is the shipment matching problem, which defines
inks as services and matches these services and requests (Guo et al., 2020; Demir et al., 2016). For PBND models, the possible
aths, i.e., subsequent links, are predetermined. Compared with MCNF, PBND reduces the number of decision variables and is more
fficient. However, PBND loses some potential solutions and may need a higher cost than MCNF. Both MCNF and PBND assume
hat the services (links or paths) are predefined and obey fixed time schedules, which loses flexibility due to the following reasons:

1. These services routes (links or paths) are predefined depending on historical information, such as transport volume and
decision makers’ experience. Because it is not practical to keep all possible service options, some potential routes are neglected
due to historical low demand when designing services, although they can serve current requests in a better way. Therefore,
research on synchromodal routing is mostly limited to commodity flow formulations based on predefined services, and vehicle
routing is usually ignored (Wolfinger et al., 2019).

2. The time schedules are fixed and vehicles’ departure/arrival time may not fit the pickup/delivery time windows of requests,
which may cause unnecessary waiting cost, transshipment cost, storage cost, and delay penalties. Moreover, strictly complying
with predefined time schedules is not realistic because there are uncertainties and disturbances (Van Riessen et al., 2013).

Some scholars allow some flexibility in the model but only allow the flexible due/departure times (Demir et al., 2016; Van Riessen
t al., 2013). They regard the problem as a Service Network Design Problem (SNDP) and uses MCNF, PBND, or a combination of
CNF and PBND to model it. Some papers allow flexible due times and charge delay penalties (Van Riessen et al., 2013; Ghane-
zabadi and Vergara, 2016; Guo et al., 2020). Some other papers assume vehicles’ departure times can be flexible in a defined time
indow (Moccia et al., 2011; Demir et al., 2016; Hrušovskỳ et al., 2018). Wolfinger et al. (2019) introduce a Multimodal Long
aul Routing Problem (MMLHRP) and they assume that the routes of trucks are flexible. Trucks are only used in the first- and

ast-mile and each request may use at most one long haul vehicle (ship or train) in the MMLHRP. Wolfinger et al. (2019) compare
he multimodal and unimodal transport, and the benefits of flexible trucks are not evaluated. Qu et al. (2019) propose a re-planning
odel for ST and integrate shipment rerouting and service rescheduling. The re-planning model in Qu et al. (2019) benefits from

wo types of flexibility, i.e., split of shipments and buffer times on the departure of services. However, their model does not consider
hanging pre-planned service routes.

In practice, transport operators do not strictly follow the schedules because there are always new requests and delays, which
3
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are not always enough requests that make full use of the capacities of vehicles. Therefore, an optimization model with flexible
services for ST is needed. To achieve flexible services, this study adds a vehicle routing component and these vehicles are highly
dependent on each other due to flexibility, which leads to phenomena such as chain reactions that do not occur in MCNF and PBND.
Furthermore, flexibility brings in computational complexity as the number of feasible services increases, and then a powerful and
customized heuristic is needed. Therefore, the distinctions of our study compared with MCNF/PBND lie in having a mixed fleet of
fixed and flexible vehicles in the research problem, a vehicle routing component in modeling, and a customized heuristic in the
solution methodology.

2.2. Optimization models with flexible vehicles and transshipments in freight transport

Optimization models that consider flexible vehicles and transshipments in freight transportation are usually regarded as Pickup
nd Delivery Problem with Transshipment (PDPT). The PDPT is a variant of the Pickup and Delivery Problem (PDP), where requests
an change vehicles at transshipment points during their trips (Shang and Cuff, 1996; Mitrović-Minić and Laporte, 2006; Masson
t al., 2013). Qu and Bard (2012) use a Greedy Randomized Adaptive Search Procedure (GRASP) to generate the initial solution
f PDPT for transport of aircraft and then use ALNS to improve the initial solution. Rais et al. (2014) propose several variants for
DPT, including cases with and without time windows, a heterogeneous fleet of vehicles, variable size fleet, split loads, and a limited
umber of transfer nodes visited by a vehicle. A small instance with seven requests is solved using Gurobi optimization software in
heir paper. Ghilas et al. (2016) integrate freight flows with scheduled public transportation services in short-haul transport, and
he packages can be transferred between trucks and scheduled lines. Danloup et al. (2018) use both Large Neighborhood Search
LNS) and Genetic Algorithm (GA) to solve PDPT, where transport duration limitation is considered for requests and pickup/delivery
ime windows are ignored, therefore there is no time synchronization in their paper. Moreover, a request can be transshipped at
ost once, i.e., it cannot be served by more than two vehicles in their model.

Wolfinger and Salazar-González (2021) propose a branch-and-cut algorithm for solving PDP with split loads and transshipments
PDPSLT), however, the time window is not considered and the time synchronization method is not proposed. In another paper
f Wolfinger (2021), the time window is considered and LNS is used to solve PDPSLT, and some insights regarding the benefits
f combining split loads and transshipments are provided. In Wolfinger (2021)’s model, transshipment is allowed at dedicated
ransshipment locations and not allowed at customer locations.

The key feature of PDPT is the synchronization of activities among different vehicles. These synchronization requirements make
outes interdependent (Drexl, 2013; Hojabri et al., 2018). For example, if a special request is inserted into a route of vehicle 𝑘 and

delayed request 𝑟 served by vehicles 𝑘 and 𝑙, all later requests in the route of vehicle 𝑙 will also be delayed. Then these already
scheduled requests need to be re-planned due to interconnections between routes.

2.3. Summary and contributions

This section compares the model developed in this paper with the existing studies in the literature in Table 1. In Table 1, all
models are divided into three groups, i.e., models in ST (upper part), models in freight transport (lower part), and the proposed
model (the last row). Almost all models consider transshipment but only part of them considers synchronizations among vehicles. The
models in ST include multiple modes and fixed vehicles, while models in freight transport consider more flexibilities. In comparison,
the model developed in this paper has synchronization requirements, flexible routes, and flexible schedules, which include flexible
due time, flexible waiting time, flexible storage time, and flexible departure time.

Regarding the studies in freight transport, Ghilas et al. (2016)’s study seems similar to us. However, we establish models for
different fields, and the sizes of transport networks are also different. They consider trucks and scheduled lines in urban transport.
However, in our paper, services with different modes, including barges, trucks, and trains, are allowed to be used to transport
containers in hinterland transport. Besides, the objectives of our mathematical models are different, which will influence the
solutions significantly. While Ghilas et al. (2016) design more origin and destination nodes but a few transshipment nodes, all
the nodes in our model can be transshipment nodes. These differences make the routes of vehicles in synchromodal transport more
dependent on each other and it also makes the problem in ST more difficult to solve because it causes complicated chain reactions and
heavy burdens on the computation time (see detailed explanations in Section 5.4). Compared with PDPT in the literature (Wolfinger,
2021; Danloup et al., 2018), there are some new characteristics in STPP-FS, such as more than two modes, a mix of fixed and
flexible vehicles, and complex schedules. Moreover, these characteristics influence each other, which makes the transshipment and
synchronization in STPP-FS more complex than PDPT.

In contrast, both Guo et al. (2020) and Demir et al. (2016) solve Synchromodal Transport Planning Problem (STPP) and consider
the same modes with our study, including waterway, railway, and road. Guo et al. (2020) design the same objective function
and Demir et al. (2016) only do not consider the storage cost compared with ours. In their studies, some links between two terminals
are defined as services, and each service has a specific capacity, travel and service times, costs, and CO2 emissions. The requests
need to be picked up/delivered within specific time windows and can be transferred between services. Therefore, the most related
articles are the studies of Guo et al. (2020) and Demir et al. (2016). However, there are still significant differences between the
studies. The services in Guo et al. (2020) and Demir et al. (2016) are fixed and vehicle routing is not considered. In this paper, the
possibility of using transshipments increases a lot due to flexible services, therefore the complexity of STPP-FS grows exponentially.
Moreover, the vehicle routing and request routing need to be considered simultaneously in STPP-FS, which makes the modeling more
4

complicated. Therefore, the modeling approach for STPP-FS is different from both models in synchromodal and freight transport.
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Table 1
Comparison between the proposed model and existing models in the literature.

Article Problem Mode Service Objective Heuristic T S F FR FDue FW FS FDep

Synchromodal transport
Moccia et al. (2011) SNDP Railway, road Link&path c BC � � � �
Van Riessen et al. (2013) SNDP Waterway, railway, road Link&Path c, t, d – � � � �
Ghane-Ezabadi and Vergara (2016) SNDP – Path c DS � � �
Demir et al. (2016) STPP Waterway, railway, road Link c, t, e, w, d – � � � �
Hrušovskỳ et al. (2018) SNDP Waterway, railway, road Link c, t, e, w, d – � � � �
Wolfinger et al. (2019) MMLHRP Waterway, railway, road Vehicle c ILS � � � � � �
Qu et al. (2019) SNDP Waterway, railway, road Link c, t, s, d – � � � �

Guo et al. (2020) STPP Waterway, railway, road Link c, t, s, e, w, d PGFM � � � � �

Freight transport
Qu and Bard (2012) PDPT Road Vehicle c GRASP&ALNS � � � � �
Rais et al. (2014) PDPT Road Vehicle c – � � � � � �
Ghilas et al. (2016) PDPTWSL Metro, road Vehicle c, t ALNS � � � � � � �
Danloup et al. (2018) PDPT Road Vehicle n, dis LNS&GA � � �
Wolfinger and Salazar-González (2021) PDPSLT Road Vehicle c, t – � �
Wolfinger (2021) PDPSLT Road Vehicle c, t LNS � � � � �

Our paper STPP-FS Waterway, railway, road Vehicle c, t, s, e, w, d ALNS � � � � ��� � � �

–: not considered in the related paper.
T: Transshipment operations; S: Synchronization of operations; M: Multiple modes; F: Fixed vehicles; FR: Flexible routing; FDue: Flexible due time; FW: Flexible
waiting time; FS: Flexible storage time; FDep: Flexible departure time; c, t, s, e, w, d, n, dis: transit cost, transfer cost, storage cost, carbon tax, waiting cost,
delay penalty, number of used vehicles, distance; SNDP: Service Network Design Problem; MMLHRP: Multimodal Long Haul Routing Problem; PDPT: PDP with
Transshipment; PDPTWSL: PDP with Time Windows and Scheduled Lines; PDPSLT: PDP with Split Load and Transshipment; STPP: Synchromodal Transport
Planning Problem; STPP-FS: STPP with Flexible Services; BC: Branch-and-cut algorithm; DS: Decomposition-based Search; ILS: Iterated Local Search; PGFM:
preprocessing heuristics of Path Generation and Feasible Matches; GRASP: Greedy Randomized Adaptive Search Procedure; LNS: Large Neighborhood Search;
ALNS: Adaptive LNS; GA: Genetic Algorithm.

The main contributions of this paper are briefly summarized as follows. Firstly, we propose a mathematical model to provide
formulation of the STPP-FS. Fixed vehicles are restricted by predefined routes and time windows at terminals. On the contrary,

lexible vehicles have flexible routes and schedules. Transshipment and synchronization of both fixed and flexible vehicles are
onsidered. Only fixed, only flexible, or hybrid fleets can be handled by the proposed model. The proposed model with flexibilities
ecessitates an efficient solution algorithm as the solution space is large. To address this need, we develop a customized Adaptive
arge Neighborhood Search (ALNS) heuristic algorithm. Therefore, the second contribution is the ALNS with specific adaptations and
mprovements, which include customized operators for ST, feasibility checking methods, and performance improvement approaches.
inally, we provide insights about the added value of flexibility in ST through computational experiments that compare the proposed
pproach to different benchmarks. In a nutshell, we design and validate a model that optimizes routes and schedules for fixed and
lexible vehicles simultaneously in ST and can be used by freight forwarders and carriers for more economic and sustainable transport
perations.

. Problem description

We consider a setting with multiple shippers and a transport operator. The transport operator can be the freight forwarder,
arrier, or transport platform in reality, and makes decisions on the routing and scheduling of vehicles (Li et al., 2015). The shippers
rovide the request information, including pickup and delivery terminals, number of containers, and time windows; and the transport
perator provides transport network information, including terminal information, distances among terminals, vehicle information,
nd cost. The transport operator wants to optimize the transport operations and provide low-cost services to shippers (Di Febbraro
t al., 2016). Moreover, the transport operator is assumed to be able to keep flexible schedules by collaborating with terminal
perators. All travel times between terminals are known beforehand, except trucks’ travel times which are influenced by traffic
ongestion. All costs are in Euros and the unit of containers is Twenty-foot Equivalent Unit (TEU).

The characteristics of the proposed STPP-FS include multiple modes, transshipment, the mix of fixed and flexible vehicles,
omplex schedules, and synchronization, as shown in Fig. 2.

1. Multiple modes. In ST, trucks, barges, and trains are used to serve requests, and one request can be served using any
combination of these modes. Different modes have different parameters on capacity, speed, costs, and emissions. Barges
usually have the lowest emissions and costs but have the slowest travel speed. Trains have a moderate speed and cost. We
assume that a truck service is a truck fleet and each truck can serve requests in the fastest way when containers arrive. Trucks
are the fastest vehicles but the transportation cost is higher than trains and barges.

2. Transshipment. A request can be transferred between vehicles at transshipment terminals, which can provide transshipment
equipment and a yard for the temporary storage of containers. Typically a transshipment terminal has functions of regular
terminals, therefore it can also be pickup/delivery terminals. Different transshipment terminals provide different types of
services, such as transshipments between barges and trucks. Transshipments between vehicles with the same mode but
5
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Fig. 2. Characteristics of the STPP-FS. To illustrate the problem clearly, the real-life transport network (layer A) is decomposed to five layers (a1, a2, a3, 𝑎4,
𝑎5), which are routing and scheduling of five types of vehicles. The main horizontal and vertical axes are routing and scheduling of requests, respectively. The
vehicles and requests are planned simultaneously in this study.

Fig. 3. Transshipment.

different time schedules are also possible. Compared with ST with only fixed vehicles, the flexible services increase the
possibility of transshipments significantly. In Fig. 3, request 𝑟 is transported by a barge firstly and then transferred to a truck
fleet. At the transshipment terminal, the barge should arrive earlier than trucks. When trucks arrive at the transshipment
terminal before the barge completes the unloading, trucks will wait for the barge.

3. The mix of fixed and flexible vehicles. In ST, trucks and barges may be flexible while trains are fixed. Fixed vehicles can
only run between predefined terminals, and the departure time and arrival time are also predefined. Flexible vehicles can go
to any terminal (on available routes, such as waterways for barges) and have no predefined schedules. Therefore, there are
five types of vehicles, i.e., fixed barges, trains, and trucks, and flexible barges and trucks, as shown in Fig. 4. In Fig. 4, there
are three terminals, i.e., terminal A, B, and C, and two requests, i.e., requests 𝑟1 and 𝑟2, which are transported in different
ways by five types of vehicles. Request 𝑟1’s pickup terminal and transshipment terminal are terminals A and B. Request 𝑟2’s
transshipment terminal and delivery terminal are terminals B and C. When requests are transported by the fixed barge, two
barges are needed, i.e. barge 𝑘1 from terminal A to B for request 𝑟1 and barge 𝑘2 from terminal B to C for request 𝑟2. When
the barge is flexible, only one barge 𝑘1 is needed and 𝑘1 starts at A and goes through B to C. Another flexible barge 𝑘2 could
go to other terminals and transport other requests. The case with fixed trains 𝑙1 and 𝑙2 is similar to fixed barges. Regarding
truck fleet, one request is usually served by multiple trucks, and each truck transports one container. The difference between
fixed and flexible truck fleets is similar to barges.

4. Complex schedules. In the scheduling of ST, the waiting time, storage and delay need to be considered. If a vehicle arrives
before containers at the pickup terminal or transshipment terminal, it can wait until containers arrive. If containers arrive
before vehicles, they can be temporarily stored in the terminal with a storage fee until the vehicle arrives. If a vehicle is
delayed at the delivery terminal, it will be charged with a delay penalty. The transshipment makes the waiting time and delay
6
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Fig. 4. Five types of vehicles.

Fig. 5. Complex schedules.

of one vehicle influenced by another vehicle, and the waiting and storage time could be changed to synchronize vehicles.
Moreover, the mix of fixed and flexible vehicles and transshipments between different modes also make the scheduling more
complicated. Fig. 5 shows the schedules of fixed barges 𝑘1 and 𝑘2 in Fig. 4. Containers must be loaded/unloaded in the open
time windows for vehicles at each terminal. At terminal A, the open time window for vehicle 𝑘1 is [1, 3], and request 𝑟1’s
pickup time window is [2, 4]. Therefore, request 𝑟1 will be picked up at time 2. Request 𝑟2 arrives at terminal B at time 5.
However, vehicle 𝑘1 has not arrived and request 𝑟2 needs to wait for vehicle 𝑘1 at terminal B. Therefore, request 𝑟2 is stored
at terminal B until time 7. During the open time window ([7, 8]) at terminal B, 𝑘1 unloads 𝑟1 and 𝑘2 loads 𝑟2. At terminal
C, 𝑘2 arrives later than the delivery time window of request 𝑟2, which causes one hour’s delay. If requests are transported
by flexible vehicles, these unnecessary storage and delay could be avoided, but the overall schedule will be more complex
because the schedule of one vehicle will influence the schedule of another vehicle.

5. Synchronization. Because of the transshipment, changes in a vehicle’s route may affect another vehicle’s route. Such influences
might trigger a chain reaction in all routes, which may make the original plan infeasible. When vehicles influence each other,
synchronization between vehicles is required in ST. Specifically, the synchronization coordinates vehicles and minimizes the
changes to the original plan. The complex schedules also complicate the time synchronization between vehicles. As shown
in Fig. 6, there are three requests (𝑟2, 𝑟3, and 𝑟4) that are served by a flexible barge, a flexible truck fleet, and a train with
fixed services. The requests are transferred between these three services at two transshipment terminals and a vehicle may
transport more than one request at the same time. Request 𝑟2 is transferred twice, i.e., from barge to truck and then to train.
When a new request 𝑟1 is inserted into the barge’s route, not only the barge’s schedule is influenced, but also the train’s
schedule is influenced due to the transshipment of request 𝑟2. Moreover, the barge and train’s schedules are also influenced
by the changes in the truck’s schedule due to the transshipment of requests 𝑟2 and 𝑟4 at another transshipment terminal.

4. Mathematical model

This section presents the mathematical model to formulate the STPP-FS. The notation used in the mathematical model is provided
in Table 2. There are multiple modes 𝑤 ∈ 𝑊 in a transport network. The transport network is defined as a directed graph 𝐺 = (𝑁,𝐴),
where 𝑁 represents the set of terminals (ports and train/truck stations) and 𝐴 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗} represents the set of arcs
7
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Fig. 6. Synchronization.

(roads, railways, and inland waterways). 𝑃 ,𝐷, 𝑇 , 𝑂 ⊆ 𝑁 are sets of pickup terminals, delivery terminals, transshipment terminals,
and depots of vehicles. In ST, the same terminal could belong to all 𝑃 ,𝐷, 𝑇 , 𝑂 sets and be accessed by all transport modes. The
nonnegative travel time 𝜏𝑘𝑖𝑗 equals distance between 𝑖 and 𝑗 divided by speed 𝑣𝑘 of vehicle 𝑘. Note that distances are different for
different modes because different modes use different routes between 𝑖 and 𝑗. Moreover, the travel time 𝜏′𝑘𝑟𝑖𝑗 of trucks is considered
time-dependent, which means travel time at peak periods will be longer than non-peak periods due to traffic congestion (Guo et al.,
2020).

The unit of capacity of vehicles is TEU. Barges and trains have fixed capacities and a truck’s capacity is 1 TEU. We assume that
each truck fleet has an unlimited number of trucks. The pickup and delivery terminals of request 𝑟 ∈ 𝑅 are designated by 𝑝(𝑟) and
𝑑(𝑟). Let 𝑜(𝑘) and 𝑜′(𝑘) represent the starting and the ending depot of vehicle 𝑘 ∈ 𝐾. Some depots may be the same terminals with
pickup/delivery terminals, which makes some constraints of pickup/delivery terminals, such as time window constraints, will also
work on these depots when the related vehicle does not serve the request. Dummy depots 𝑜(𝑘) and 𝑜′(𝑘) are therefore created. Fixed
vehicles can only go to terminals in predefined routes, and there is an open time window at each terminal [𝑎𝑘𝑖 , 𝑏

𝑘
𝑖 ], in which fixed

vehicles can load/unload containers.
A solution of the STPP-FS is a set of |𝐾| routes that serve all requests and route 𝑘 starts and ends at (dummy) depots. At any

moment, the number of containers carried simultaneously by vehicle 𝑘 cannot exceed capacity 𝑢𝑘. For every request 𝑟, terminals 𝑝(𝑟)
and 𝑑(𝑟) can be served by the same vehicle 𝑘, which means 𝑑(𝑟) being served after 𝑝(𝑟). Terminals 𝑝(𝑟) and 𝑑(𝑟) can also be served
by distinct vehicles 𝑘1 ∈ 𝐾 and 𝑘2 ∈ 𝐾, and 𝑟 is transferred from 𝑘1 to 𝑘2, which means vehicle 𝑘2 must start its service at the
transshipment terminal after vehicle 𝑘1 which unloads the containers. Request 𝑟 needs to be picked up in time window [𝑎𝑝(𝑟), 𝑏𝑝(𝑟)]
and delivered in time window [𝑎𝑑(𝑟), 𝑏𝑑(𝑟)], but the delivery time can exceed 𝑏𝑑(𝑟) with a delay penalty. Vehicle 𝑘 is allowed to wait
for containers at terminal 𝑖 and request 𝑟 is allowed to be stored at terminal 𝑖 when the vehicle has not arrived.

The objective of the proposed STPP-FS is minimizing cost (Euros), which consists of transit cost (𝐹1), transfer cost (𝐹2), storage
cost (𝐹3), carbon tax (𝐹4), waiting cost (𝐹5), and delay penalty (𝐹6), as shown in Eqs. (1)–(7) (Guo et al., 2020). The emissions are
calculated using an activity-based method by Demir et al. (2016) and the amount of emissions is related to vehicle type, distance,
and amount of containers.

min 𝐹 = 𝐹1 + 𝐹2 + 𝐹3 + 𝐹4 + 𝐹5 + 𝐹6 (1)

𝐹1 =
∑

𝑘∈𝐾

∑

(𝑖,𝑗)∈𝐴

∑

𝑟∈𝑅
(𝑐1𝑘𝜏

𝑘
𝑖𝑗 + 𝑐

1′
𝑘 𝑑

𝑘
𝑖𝑗 )𝑞𝑟𝑦

𝑘𝑟
𝑖𝑗 (2)

𝐹2 =
∑

𝑘,𝑙∈𝐾,𝑘≠𝑙

∑

𝑟∈𝑅

∑

𝑖∈𝑇
(𝑐2𝑘 + 𝑐

2
𝑙 )𝑞𝑟𝑠

𝑘𝑙
𝑖𝑟 +

∑

𝑘∈𝐾

∑

(𝑖,𝑗)∈𝐴𝑝

∑

𝑟∈𝑅
𝑐2𝑘𝑞𝑟𝑦

𝑘𝑟
𝑖𝑗 +

∑

𝑘∈𝐾

∑

(𝑖,𝑗)∈𝐴𝑑

∑

𝑟∈𝑅
𝑐2𝑘𝑞𝑟𝑦

𝑘𝑟
𝑖𝑗 (3)

𝐹3 =
∑

𝑘,𝑙∈𝐾,𝑘≠𝑙

∑

𝑟∈𝑅

∑

𝑖∈𝑇
𝑐3𝑘𝑞𝑟𝑠

𝑘𝑙
𝑖𝑟 (𝑡

′𝑙𝑟
𝑖 − 𝑡𝑘𝑟𝑖 ) +

∑

𝑘∈𝐾

∑

(𝑖,𝑗)∈𝐴𝑝

∑

𝑟∈𝑅
𝑐3𝑘𝑞𝑟𝑦

𝑘𝑟
𝑖𝑗 (𝑡

′𝑘𝑟
𝑖 − 𝑎𝑝(𝑟)) (4)

𝐹4 =
∑

𝑘∈𝐾

∑

(𝑖,𝑗)∈𝐴

∑

𝑟∈𝑅
𝑐4𝑘𝑒𝑘𝑞𝑟𝑑

𝑘
𝑖𝑗𝑦

𝑘𝑟
𝑖𝑗 (5)

𝐹5 =
∑

𝑘∈𝐾b&t

∑

𝑖∈𝑁
𝑐5𝑘𝑡

wait
𝑘𝑖 (6)

𝐹6 =
∑

𝑟∈𝑅
𝑐delay
𝑟 𝑞𝑟𝑡

delay
𝑟 (7)
8

Constraints (8)–(26) are the spatial constraints and Constraints (27)–(47) are the time-related constraints.
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Table 2
Notation.
Sets:
𝑊 Set of modes indexed by 𝑤.
𝑅 Set of requests indexed by 𝑟.
𝑁 Set of terminals indexed by 𝑖 and 𝑗. 𝑂∕𝑂 ⊆ 𝑁 , set of depots/dummy depots. 𝑃∕𝐷∕𝑇 ⊆ 𝑁 , set of pickup/delivery/transshipment

terminals. 𝑇𝑤2
𝑤1

, set of terminals allowing transshipments between mode 𝑤1 and mode 𝑤2.

𝐾 Set of vehicles indexed by 𝑘 and 𝑙. 𝐾b&t ⊆ 𝐾, set of barges and trains. 𝐾truck ⊆ 𝐾, set of truck fleets. 𝐾𝑤 ⊆ 𝐾, set of vehicles of mode 𝑤.
𝐾fix ⊆ 𝐾, set of fixed vehicles.

𝐴 Set of arcs. For 𝑖, 𝑗 ∈ 𝑁 , the arc from 𝑖 to 𝑗 is denoted by (𝑖, 𝑗) ∈ 𝐴. 𝐴𝑝∕𝐴𝑑 ⊆ 𝐴 represents the set of pickup/delivery arcs. For (𝑖, 𝑗) ∈ 𝐴𝑝,
𝑖 ∈ 𝑃 . For (𝑖, 𝑗) ∈ 𝐴𝑑 , 𝑗 ∈ 𝐷. 𝐴𝑤 ⊆ 𝐴 represents the set of arcs for mode 𝑤. 𝐴𝑘fix ⊆ 𝐴 represents the set of arcs for a fixed vehicle 𝑘 ∈ 𝐾fix.

Parameters:
𝑢𝑘 Capacity (TEU) of vehicle 𝑘.
𝑞𝑟 Quantity (TEU) of request 𝑟.

𝜏𝑘𝑖𝑗 The travel time (in hours) on arc (𝑖, 𝑗) for vehicle 𝑘.
[𝑎𝑝(𝑟) , 𝑏𝑝(𝑟)] The pickup time window for request 𝑟.

[𝑎𝑑(𝑟) , 𝑏𝑑(𝑟)] The delivery time window for request 𝑟.

[𝑎𝑘𝑖 , 𝑏
𝑘
𝑖 ] The open time window for fixed vehicle 𝑘 at terminal 𝑖.

𝑡′′𝑘𝑖 The loading (or unloading) time (in hours) for vehicle 𝑘 at terminal 𝑖.

𝑣𝑘 Speed (km/h) of vehicle 𝑘.

𝑑𝑘𝑖𝑗 Distance (km) between terminals 𝑖 and 𝑗 for vehicle 𝑘.

𝑒𝑘 The CO2 emissions (kg) per container per km of vehicle 𝑘 ∈ 𝐾.

𝑐𝑛𝑘 Unit cost of different terms, 𝑛 ∈ {1, 1′ , 2, 3, 4, 5, 6}. All costs are in Euros. 𝑐1𝑘/𝑐
1′
𝑘 are transport cost per hour/km per container using

vehicle 𝑘 ∈ 𝐾. 𝑐2𝑘 is the loading (or unloading) cost per container. 𝑐3𝑘 is the storage cost per container per hour. 𝑐4𝑘 is the carbon tax
coefficient per ton. 𝑐5𝑘 is the cost per hour of waiting time.

𝑐delay
𝑟 The delay penalty per container per hour of request 𝑟.
𝑡𝑏 The 𝑏𝑡ℎ breakpoint of time-dependent travel time functions of trucks, 𝑏 ∈ {1, 2, ..., 𝐵}, 𝐵 is the number of breakpoints.
𝑇𝑚 The 𝑚𝑡ℎ time period within a day, 𝑇𝑚 = [𝑡𝑚 , 𝑡𝑚+1], 𝑚 ∈ {1, 2, ..., 𝐵 − 1}.
𝜃𝑚 The slope of the travel time function for time period 𝑇𝑚.
𝜂𝑚 The intersection of the travel time function for time period 𝑇𝑚.
𝑀 A large enough positive number.

Variables:
𝑥𝑘𝑖𝑗 Binary variable; 1 if vehicle 𝑘 uses the arc (𝑖, 𝑗), 0 otherwise.

𝑦𝑘𝑟𝑖𝑗 Binary variable; 1 if request 𝑟 transported by vehicle 𝑘 uses arc (𝑖, 𝑗), 0 otherwise.

𝑧𝑘𝑖𝑗 Binary variable; 1 if terminal 𝑖 precedes (not necessarily immediately) terminal 𝑗 in the route of vehicle 𝑘, 0 otherwise.

𝑠𝑘𝑙𝑖𝑟 Binary variable; 1 if request 𝑟 is transferred from vehicle 𝑘 to vehicle 𝑙 ≠ 𝑘 at transshipment terminal 𝑖, 0 otherwise.

𝑡𝑘𝑟𝑖 ∕𝑡′𝑘𝑟𝑖 ∕𝑡𝑘𝑟𝑖 The arrival time/service start time/service finish time of request 𝑟 served by vehicle 𝑘 at terminal 𝑖.

𝑡𝑘𝑖 ∕𝑡
′𝑘
𝑖 ∕𝑡

𝑘
𝑖 The arrival time/last service start time/departure time of vehicle 𝑘 at terminal 𝑖.

𝑡wait
𝑘𝑖 The waiting time of vehicle 𝑘 at terminal 𝑖.

𝑡delay
𝑟 The delay time of request 𝑟 at delivery terminal.

𝑡𝑘𝑟𝑖 Normalized departure time of truck 𝑘 ∈ 𝐾truck with request 𝑟 at terminal 𝑖, 0 ⩽ 𝑡𝑘𝑟𝑖 ⩽ 24.

𝜏′𝑘𝑟𝑖𝑗 The time-dependent travel time (in hours) on arc (𝑖, 𝑗) for truck 𝑘 ∈ 𝐾truck with request 𝑟.

𝑛𝑘𝑟𝑖 An integer variable used for normalizing departure time of truck 𝑘 ∈ 𝐾truck with request 𝑟 at terminal 𝑖.

𝜁 𝑏𝑖𝑟𝑘 A continuous variable used for linearizing the time-dependent travel time function of truck 𝑘 ∈ 𝐾truck, 0 ⩽ 𝜁 𝑏𝑖𝑟𝑘 ⩽ 1, 𝑟 ∈ 𝑅, 𝑖 ∈ 𝑁 , and 𝑏
means the 𝑏𝑡ℎ breakpoint of time-dependent travel time function.

𝜉𝑚𝑖𝑟𝑘 A binary variable used for linearizing the time-dependent travel time function of truck 𝑘 ∈ 𝐾truck, 𝑟 ∈ 𝑅, 𝑖 ∈ 𝑁 , and 𝑚 means the 𝑚𝑡ℎ
time period within a day.

Constraints (8)–(15) are typical constraints in PDP. Constraints (8) and (9) ensure that a vehicle begins and ends at its begin
nd end depot, respectively. Constraints (8)–(9) are modified from Rais et al. (2014), and these constraints only limit the routes of
arges and trains because each truck service is considered as a fleet of trucks which might have different routes. Constraints (10)–
12) are the subtour elimination constraints and provide tight bounds among several polynomial-size versions of subtour elimination
onstraints (Öncan et al., 2009). Constraints (13) and (14) ensure that containers for each request must be picked and delivered at
ts pickup and delivery terminal, respectively. Constraints (15) are the capacity constraints.

∑

𝑗∈𝑁
𝑥𝑘𝑜(𝑘)𝑗 ⩽ 1 ∀𝑘 ∈ 𝐾b&t (8)

∑

𝑗∈𝑁
𝑥𝑘𝑜(𝑘)𝑗 =

∑

𝑗∈𝑁
𝑥𝑘
𝑗𝑜′(𝑘)

∀𝑘 ∈ 𝐾b&t (9)

𝑥𝑘 ⩽ 𝑧𝑘 ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾 (10)
9

𝑖𝑗 𝑖𝑗 b&t
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t

c
a
v
w
(
a

𝑧𝑘𝑖𝑗 + 𝑧
𝑘
𝑗𝑖 = 1 ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾b&t (11)

𝑧𝑘𝑖𝑗 + 𝑧
𝑘
𝑗𝑝 + 𝑧

𝑘
𝑝𝑖 ⩽ 2 ∀𝑖, 𝑗, 𝑝 ∈ 𝑁, ∀𝑘 ∈ 𝐾b&t (12)

∑

𝑘∈𝐾

∑

𝑗∈𝑁
𝑦𝑘𝑟𝑝(𝑟)𝑗 = 1 ∀𝑟 ∈ 𝑅 (13)

∑

𝑘∈𝐾

∑

𝑖∈𝑁
𝑦𝑘𝑟𝑖𝑑(𝑟) = 1 ∀𝑟 ∈ 𝑅 (14)

∑

𝑟∈𝑅
𝑞𝑟𝑦

𝑘𝑟
𝑖𝑗 ⩽ 𝑢𝑘𝑥

𝑘
𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾 (15)

Constraints (16) and (17) facilitate transshipment. Constraints (16) ensure that the transshipment occurs only once per
ransshipment terminal. Constraints (17) forbid transshipment between the same vehicle 𝑘.

∑

𝑗∈𝑁
𝑦𝑘𝑟𝑗𝑖 +

∑

𝑗∈𝑁
𝑦𝑙𝑟𝑖𝑗 ⩽ 𝑠𝑘𝑙𝑖𝑟 + 1 ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑇 , ∀𝑘, 𝑙 ∈ 𝐾 (16)

𝑠𝑘𝑘𝑖𝑟 = 0 ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑇 , ∀𝑘 ∈ 𝐾 (17)

Flow conservation constraints of both vehicles and requests are handled by Constraints (18)–(23). Constraints (18) represent flow
onservation for vehicle flow and (19)–(22) represent flow conservation for request flow. Constraints (19) are for regular terminals
nd Constraints (20) are for transshipment terminals. Constraints (21) and (22) ensure the flow conservation of requests when
ehicle 𝑘 passes the transshipment terminal but no transfer happens. Constraints (21) and (22) consider a special case in STPP-FS,
here request 𝑟 is not transferred at terminal 𝑖 ∈ 𝑇 but vehicle 𝑘 passes terminal 𝑖 due to operations for other requests. Constraints

23) link 𝑦𝑘𝑟𝑖𝑗 and 𝑥𝑘𝑖𝑗 variables to guarantee that for a request to be transported by a vehicle, that vehicle needs to traverse the
ssociated arc.

∑

𝑗∈𝑁
𝑥𝑘𝑖𝑗 −

∑

𝑗∈𝑁
𝑥𝑘𝑗𝑖 = 0 ∀𝑘 ∈ 𝐾b&t, ∀𝑖 ∈ 𝑁 ⧵ 𝑜(𝑘), 𝑜′(𝑘) (18)

∑

𝑗∈𝑁
𝑦𝑘𝑟𝑖𝑗 −

∑

𝑗∈𝑁
𝑦𝑘𝑟𝑗𝑖 = 0 ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑁 ⧵ 𝑇 , 𝑝(𝑟), 𝑑(𝑟) (19)

∑

𝑘∈𝐾

∑

𝑗∈𝑁
𝑦𝑘𝑟𝑖𝑗 −

∑

𝑘∈𝐾

∑

𝑗∈𝑁
𝑦𝑘𝑟𝑗𝑖 = 0 ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑇 ⧵ 𝑝(𝑟), 𝑑(𝑟) (20)

∑

𝑗∈𝑁
𝑦𝑘𝑟𝑖𝑗 −

∑

𝑗∈𝑁
𝑦𝑘𝑟𝑗𝑖 ⩽

∑

𝑙∈𝐾
𝑠𝑙𝑘𝑖𝑟 ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑇 ⧵ 𝑝(𝑟), 𝑑(𝑟) (21)

∑

𝑗∈𝑁
𝑦𝑘𝑟𝑗𝑖 −

∑

𝑗∈𝑁
𝑦𝑘𝑟𝑖𝑗 ⩽

∑

𝑙∈𝐾
𝑠𝑘𝑙𝑖𝑟 ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑇 ⧵ 𝑝(𝑟), 𝑑(𝑟) (22)

𝑦𝑘𝑟𝑖𝑗 ⩽ 𝑥𝑘𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅 (23)

Characteristics of ST are considered in Constraints (24)–(26). Constraints (24) avoid vehicles running on unsuitable routes, for
example, the truck cannot run on inland waterways. Constraints (25) take care of predefined routes for certain vehicles. Constraints
(26) ensure the transshipment occurs in the right transshipment terminal because some transshipment terminals only allow the
transshipment between two specific modes. When the containers need to be transferred from barges to trucks, terminals that only
allow transshipment between barges and trains will not be considered. Constraints (24)–(26) are unique to this model because they
consider the characteristics of vehicle routing in ST.

𝑥𝑘𝑖𝑗 = 0 ∀𝑘 ∈ 𝐾𝑤, ∀(𝑖, 𝑗) ∈ 𝐴 ⧵ 𝐴𝑤, ∀𝑤 ∈ 𝑊 (24)

𝑥𝑘𝑖𝑗 = 0 ∀𝑘 ∈ 𝐾fix, ∀(𝑖, 𝑗) ∈ 𝐴 ⧵ 𝐴𝑘fix (25)

𝑠𝑘𝑙𝑖𝑟 = 0 ∀𝑘 ∈ 𝐾𝑤1
, ∀𝑙 ∈ 𝐾𝑤2

, ∀𝑖 ∈ 𝑇 ⧵ 𝑇𝑤2
𝑤1
, ∀𝑟 ∈ 𝑅, ∀𝑤1, 𝑤2 ∈ 𝑊 (26)

Constraints (27)–(31) are time constraints related to services, which are necessary for both fixed and flexible services. Constraints
(27) guarantee that service start time is later than the arrival time of containers. Constraints (28) ensure that the service finish time
equals service start time plus service time. Constraints (29) maintain that the departures happen only after all services are completed.
Constraints (30) ensure that the request’s arrival time cannot be earlier than the vehicle’s arrival time. Constraints (31) define the
vehicle’s last service start time.

𝑡𝑘𝑟𝑖 ⩽ 𝑡′𝑘𝑟𝑖 ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅 (27)

𝑡′𝑘𝑟𝑖 + 𝑡′′𝑘𝑟𝑖
∑

𝑗∈𝑁
𝑦𝑘𝑟𝑖𝑗 ⩽ 𝑡𝑘𝑟𝑖 ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾b&t, ∀𝑟 ∈ 𝑅 (28)

𝑡𝑘𝑖 ⩾ 𝑡𝑘𝑟𝑖 ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾b&t, ∀𝑟 ∈ 𝑅 (29)

𝑡𝑘𝑖 ⩽ 𝑡𝑘𝑟𝑖 ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾b&t, ∀𝑟 ∈ 𝑅 (30)

𝑡′𝑘𝑖 ⩾ 𝑡′𝑘𝑟𝑖 ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾b&t, ∀𝑟 ∈ 𝑅 (31)
10
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Constraints (32) and (33) ensure that the time on the route of barges or trains is consistent with the distance traveled and speed.

hen waiting time is not considered, Constraints (32) are enough to take care of arrival time 𝑡𝑘𝑗 . Since vehicles should wait at
terminals in this study, Constraints (33) need to be added to restrict travel time tightly and avoid wrongly adding waiting times to
𝑡𝑘𝑗 (𝑡𝑘𝑗 > 𝑡

𝑘
𝑖 + 𝜏

𝑘
𝑖𝑗). Constraints (34) and (35) take care of the time windows for pickup terminals and fixed terminals, respectively.

𝑡𝑘𝑖 + 𝜏
𝑘
𝑖𝑗 − 𝑡

𝑘
𝑗 ⩽𝑀(1 − 𝑥𝑘𝑖𝑗 ) ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾b&t (32)

𝑡𝑘𝑖 + 𝜏
𝑘
𝑖𝑗 − 𝑡

𝑘
𝑗 ⩾ −𝑀(1 − 𝑥𝑘𝑖𝑗 ) ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾b&t (33)

𝑡′𝑘𝑟𝑝(𝑟) ⩾ 𝑎𝑝(𝑟)𝑦
𝑘𝑟
𝑖𝑗 , 𝑡

𝑘𝑟
𝑝(𝑟) ⩽ 𝑏𝑝(𝑟)(𝑦𝑘𝑟𝑖𝑗 +𝑀(1 − 𝑦𝑘𝑟𝑖𝑗 )) ∀(𝑖, 𝑗) ∈ 𝐴,∀𝑟 ∈ 𝑅, ∀𝑘 ∈ 𝐾 (34)

𝑡𝑘𝑟𝑖 ⩾ 𝑎𝑘𝑖 𝑦
𝑘𝑟
𝑖𝑗 , 𝑡

𝑘𝑟
𝑖 ⩽ 𝑏𝑘𝑖 (𝑦

𝑘𝑟
𝑖𝑗 +𝑀(1 − 𝑦𝑘𝑟𝑖𝑗 )) ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑟 ∈ 𝑅, ∀𝑘 ∈ 𝐾fix (35)

Constraints (36) are time constraints for transshipment. If there is a transshipment from vehicle 𝑘 to vehicle 𝑙, but vehicle 𝑙 arrives
before vehicle 𝑘 departs, vehicle 𝑙 can wait until vehicle 𝑘 completes its unloading. Constraints (37) and (38) calculate waiting time
and delay time, respectively, and these constraints are used to reduce waiting times and delay costs.

𝑡𝑘𝑟𝑖 − 𝑡′𝑙𝑟𝑖 ⩽𝑀(1 − 𝑠𝑘𝑙𝑖𝑟 ) ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑇 , ∀𝑘, 𝑙 ∈ 𝐾, 𝑘 ≠ 𝑙 (36)

𝑡wait
𝑘𝑖 ⩾ 𝑡′𝑘𝑖 − 𝑡

𝑘
𝑖 ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾b&t (37)

𝑡delay
𝑟 ⩾ (𝑡𝑘𝑟𝑑(𝑟) − 𝑏𝑑(𝑟))

∑

𝑖∈𝑁
𝑦𝑘𝑟𝑖𝑑(𝑟) ∀𝑟 ∈ 𝑅, ∀𝑘 ∈ 𝐾 (38)

Constraints (39) to (46) are imposed to linearize the time-dependent travel time functions of trucks and Constraints (47) take
care of the arrival time of trucks (Lin et al., 2013; Guo et al., 2020).

𝑡𝑘𝑟𝑖 = 𝑡𝑘𝑟𝑖 − 24𝑛𝑘𝑟𝑖 ∀𝑘 ∈ 𝐾truck, ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅 (39)

𝑡𝑘𝑟𝑖 =
∑

𝑏∈{1,2...,𝐵}
𝜁𝑏𝑖𝑟𝑘𝑡𝑏 ∀𝑘 ∈ 𝐾truck, ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅 (40)

∑

𝑏∈{1,2...,𝐵}
𝜁𝑏𝑖𝑟𝑘 = 1 ∀𝑘 ∈ 𝐾truck, ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅 (41)

∑

𝑚∈{1,2...,𝐵−1}
𝜉𝑚𝑖𝑟𝑘 = 1 ∀𝑘 ∈ 𝐾truck, ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅 (42)

𝜁1𝑖𝑟𝑘 ⩽ 𝜉1𝑖𝑟𝑘 ∀𝑘 ∈ 𝐾truck, ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅 (43)

𝜁𝐵𝑖𝑟𝑘 ⩽ 𝜉𝐵−1𝑖𝑟𝑘 ∀𝑘 ∈ 𝐾truck, ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅 (44)

𝜁𝑏𝑖𝑟𝑘 ⩽ 𝜉𝑏−1𝑖𝑟𝑘 + 𝜉𝑏𝑖𝑟𝑘 ∀𝑘 ∈ 𝐾truck, ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅, ∀𝑏 ∈ {2, 3..., 𝐵 − 1} (45)

𝜏′𝑘𝑟𝑖𝑗 = 𝜁1𝑖𝑟𝑘(𝜃1𝑡1 + 𝜂1) +
∑

𝑏∈{2...,𝐵}
𝜁𝑏𝑖𝑟𝑘(𝜃𝑏−1𝑡𝑏 + 𝜂𝑏−1) ∀𝑘 ∈ 𝐾truck, ∀𝑟 ∈ 𝑅, ∀(𝑖, 𝑗) ∈ 𝐴 (46)

(𝑡𝑘𝑟𝑗 − 𝑡𝑘𝑟𝑖 )𝑦𝑘𝑟𝑖𝑗 = 𝜏′𝑘𝑟𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾truck, ∀𝑟 ∈ 𝑅 (47)

Compared with studies that model services as links and paths and ignore vehicle routing (Moccia et al., 2011; Van Riessen et al.,
2013; Ghane-Ezabadi and Vergara, 2016; Demir et al., 2016; Hrušovskỳ et al., 2018; Guo et al., 2020), the vehicles and requests
in this study are planned simultaneously by the vehicle routing component (constraints related to 𝑥𝑘𝑖𝑗 variable), requests routing
component (constraints related to 𝑦𝑘𝑟𝑖𝑗 variable), and the relations between these two components (such as constraints related to the
transshipment variable 𝑠𝑘𝑙𝑖𝑟 ). These components enable the proposed model to explore routes that are not defined in advance.

As Constraints (25) and (35) do not work on flexible vehicles, the number of alternatives is significantly larger than the case of
MCNF/PDND models in the literature (Van Riessen et al., 2013; Demir et al., 2016; Guo et al., 2020). It makes the feasible region
of the proposed STPP-FS very large and the problem hard to solve. However, some parts of the feasible region can be cut without
losing any feasible solutions by using so-called valid inequalities (Cornuéjols, 2008). We propose a novel set of valid inequalities
(see Appendix A), which are divided into three categories, i.e., valid inequalities related to requests, vehicles, and transshipments.

5. Adaptive large neighborhood search

Due to the computational complexity, we develop an Adaptive Large Neighborhood Search (ALNS) heuristic to solve the proposed
problem. In the literature, ALNS was proposed to solve PDP based on an extension of the LNS heuristic, which obtains the best
solution by using removal and insertion operators to destroy and repair routes iteratively (Ropke and Pisinger, 2006). To solve
the STPP-FS in this research, we adapt the traditional operators and design new ones in ALNS considering characteristics of ST.
Compared with ALNS for PDPT in the literature (Qu and Bard, 2012; Masson et al., 2013; Wolfinger, 2021), the innovations of
the proposed ALNS are (a) getting the initial solutions by multiple methods (Section 5.1), (b) customizing operators considering
the characteristics of ST (Section 5.2), (c) providing feasibility check methods for fixed and flexible vehicles and synchronization
methods for interdependent vehicles (Section 5.3), and (d) using several performance improvement methods (Appendix C).

The pseudocode of the designed ALNS is shown in Algorithm 1. The adaptive mechanism of ALNS is illustrated in detail in our
previous paper (Zhang et al., 2020, 2022) and not repeated in this paper.
11
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Algorithm 1: ALNS algorithm
Input: 𝐾, 𝑅, 𝑁 , 𝐴, 𝑋current; Output: 𝑋best ; // 𝑋current/𝑋best means the current/best solution.
[𝐾, 𝑅, 𝑁 , 𝐴] = 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔(𝐾,𝑅,𝑁,𝐴);
define the set of unserved requests as 𝑅pool ; // 𝑅pool represents the request pool.
obtain initial solution 𝑋initial; set 𝑇Temp > 0 depending on 𝑋initial;
𝑋last ← 𝑋initial; 𝑋best ← 𝑋last; // 𝑋last means the last solution.
repeat

refresh weights and choose operators depending on weights at the beginning of each segment;
𝑋current ← 𝑋last; [𝑋current, 𝑅pool] = 𝑅𝑒𝑚𝑜𝑣𝑎𝑙𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟(𝑋current, 𝑅pool); 𝑓𝑙𝑎𝑔 = 𝐹𝑎𝑙𝑠𝑒;
while 𝑅pool is not empty do

if 𝑓𝑙𝑎𝑔 == 𝑇 𝑟𝑢𝑒 then
[𝑋current, 𝑅pool] = 𝑅𝑒𝑚𝑜𝑣𝑎𝑙𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟(𝑋current, 𝑅pool)

else
𝑓𝑙𝑎𝑔 = 𝑇 𝑟𝑢𝑒

end
[𝑋current, 𝑅pool] = 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟(𝑋current, 𝑅pool);
if insertion operator is a greedy type then

[𝑋current, 𝑅pool] = 𝐵𝑢𝑛𝑑𝑙𝑒𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛(𝑋current, 𝑅pool)
end

end
[𝑋current, 𝑅pool] = 𝑆𝑤𝑎𝑝𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟(𝑋current, 𝑅pool);
if 𝐹 (𝑋current) < 𝐹 (𝑋last) then

𝑋last ← 𝑋current;
else

𝑋last ← 𝑋current with probability 𝑝 = 𝑒
−(𝐹 (𝑋current )−𝐹 (𝑋last ))

𝑇Temp ; // Update 𝑋last based on the simulated annealing idea
(Ropke and Pisinger, 2006).

end
if 𝐹 (𝑋last) < 𝐹 (𝑋best) then

𝑋best ← 𝑋last;
end
𝑇Temp ← 𝑇Temp ⋅ 𝑐; // 𝑐 is the cooling rate.

until the predefined number of iterations is reached;

5.1. Initial solution

In the literature, the initial solution is usually obtained from insertion operators from scratch (Ropke and Pisinger, 2006; Qu and
ard, 2012; Wolfinger, 2021). However, in ST, planning from scratch may cause significant changes in the predefined schedules. The
ransport operator may not be able to make significant changes due to external factors, such as port schedules and reliable services
equired by shippers. Moreover, the more flexibility the optimization problem has, the harder it is to solve. The optimization based
n fixed schedules may reduce the complexities brought by flexibility. Therefore, the predefined fixed schedules could be taken into
ccount when designing the initial solution. We designed different methods to obtain the initial solution:

1. Method R: By the Regret Insertion operator from scratch. This method does not consider predefined fixed schedules.
2. Method S: Using the best solution of the problem with fewer flexibilities, e.g., the best solution when all vehicles are fixed

is used as an initial solution for the problem with flexible trucks. This method obtains the solution of full flexibility step by
step and the complexity of the problem with flexible vehicles is reduced.

3. Method M: Using the optimal solution of a predefined fixed schedule and the optimal solution is obtained by the matching
model proposed by Guo et al. (2020). There are two differences between method M and method S: (a) method M always uses
the solution without flexible vehicle as the initial solution for different flexibility levels, while method S uses the solution
of fewer flexibilities which may have some flexible vehicles; (b) method S’s initial solution is obtained by ALNS itself and it
may be sub-optimal, while method M uses the optimal solution of a predefined fixed schedule.

.2. Operators in ALNS

There are many different operators in the literature (Grangier et al., 2016; Sarasola and Doerner, 2020; Qu and Bard, 2012;
iu et al., 2019; Wolfinger, 2021). Choosing the insertion and removal operators not only needs to consider features of the studied
roblem but also the balance between exploitation and exploration. How to use the historical experience and predict the future
eward also need to be considered. In this work, Transshipment Insertion and Node Removal operators consider the transshipments
nd specific modes (waterway and railway) in ST. The Greedy Insertion, Most Constrained First insertion, and Worst Removal
perators are used for exploiting. Random Insertion, Random Removal, Route Removal, and Related Removal (also called Shaw
emoval) operators are responsible for exploring. History Removal and Regret Insertion operators use the historical experience and
12
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predict future situations, respectively. Besides insertion and removal operators, a novel Swap operator is proposed to make up for
the disadvantages of using an insertion operator or a removal operator alone.

Some operators have been reported in our previous paper (Zhang et al., 2020, 2022), including Greedy Insertion, Transshipment
nsertion, Random Insertion, Worst Removal and Random Removal. Related Removal operator is widely discussed in the litera-
ure (Ropke and Pisinger, 2006; Danloup et al., 2018). The following sections introduce customized operators in detail and the
thers are introduced briefly.

.2.1. Insertion operators

All insertion operators have two basic operations, i.e., inserting one request to one route or multiple routes. When a request is
nserted into one route of vehicle 𝑘, 𝑘 will finish both pickup and delivery and there is no transshipment. When a request is inserted

into multiple routes, firstly the request is segmented into multiple by potential transshipment terminals and then each will be served
by one vehicle, and containers are transferred between vehicles.

Greedy Insertion operator tries all possible solutions using one vehicle and more than one vehicle and inserts the request into
the best route(s) (Ghilas et al., 2016; Wolfinger, 2021).

Transshipment Insertion operator also inserts requests greedily, but it only tries solutions using more than one vehicle and
transshipment (Masson et al., 2013; Wolfinger, 2021).

Random Insertion operator chooses vehicles and positions randomly and inserts the request once the solution is feasible (Qu
and Bard, 2012; Danloup et al., 2018).

Regret Insertion operator inserts a request into the route based on regret values. This operator first tries all possibilities of
inserting request 𝑟 into all routes, then determines the regret value for every alternative:

𝑐𝑟 =▵ 𝐹
𝑘𝑡ℎ
𝑟 − ▵ 𝐹 lowest

𝑟 (48)

where 𝑐𝑟 is the regret value; ▵ 𝐹𝑟 is the insertion cost of 𝑟; ▵ 𝐹 𝑘𝑡ℎ𝑟 is the 𝑘𝑡ℎ lowest insertion cost and ▵ 𝐹 lowest
𝑟 is the lowest insertion

cost. If now the alternative with ▵ 𝐹 lowest
𝑟 not be chosen, then it may use a higher cost to insert 𝑟 in future iterations, therefore 𝑐𝑟

can represent a kind of look-ahead information.
In the literature, usually the 𝑟 with the highest 𝑐𝑟 is inserted in one construction step (Ropke and Pisinger, 2006; Qu and Bard,

2012), therefore 𝑛 (the number of requests in the request pool) steps are needed to insert all requests. In each step, this operator
tries all possible routes and positions for all requests in the requests pool. However, it will cause unnecessary computation when
trying to insert requests into the other unchanged routes in the next step (experiments are provided in Section 6.6). To avoid such
repetitive computation, multiple requests will be tried to be inserted into routes in one construction step. When only inserting one
request in one step, at the next step the requests can choose new alternatives based on changed route(s) in this step. When inserting
multiple requests, we may lose such alternatives. But these alternatives may be found using other operators and many vehicles have
fixed schedules that will not be changed in ST. Therefore, we choose to insert multiple requests in each step to save the computation
time.

Because these requests may use the same vehicle in the alternatives, they cannot be inserted into routes one by one depending
on the sort of regret values. The possible inserted requests are divided into two groups, (a) requests which have no conflict with
other requests, and (b) requests which have conflicts with other requests. Two requests have conflicts when both requests use the
same vehicle(s). Notice that if the vehicle is fixed, there is no conflict because the route and schedule of the fixed vehicle will not
be changed. The requests in the group (a) are inserted into routes directly. For requests in the group (b), the requests which tried to
be inserted into the same vehicle 𝑘 will be sorted depending on regret values. Let 𝑟regret

𝑘 and 𝑟second
𝑘 (if exist) represent the request

with the highest and second-highest regret value among all requests which are tending to be inserted into route 𝑘. If 𝑟regret
𝑘 only

uses vehicle 𝑘, then it can be inserted. If 𝑟regret
𝑘 uses multiple vehicles, for example 𝑘 and 𝑙, the operator will check whether there

are other requests that intend to use 𝑙. If only 𝑟regret
𝑘 intends to use 𝑙, 𝑟regret

𝑘 can be inserted. Otherwise, if the regret values of 𝑟regret
𝑘

bigger than or equal to regret values of 𝑟regret
𝑙 , 𝑟regret

𝑘 will be inserted; if smaller, 𝑟second
𝑘 (if exist) will be inserted when 𝑟second

𝑘 only
use 𝑘. Other requests will not be inserted in this step.

Most Constrained First Insertion operator sorts the requests depending on the following weighted function of the distance
between pickup and delivery terminal when using trucks (𝑑truck𝑝(𝑟)𝑑(𝑟)), load, and time windows:

𝐶𝑟 = 𝜛1𝑑
truck
𝑝(𝑟)𝑑(𝑟) +𝜛2∕(|𝑏𝑝(𝑟) − 𝑎𝑝(𝑟)| + |𝑏𝑑(𝑟) − 𝑎𝑑(𝑟)|) +𝜛3𝑞𝑟 (49)

where 𝜛1, 𝜛2, and 𝜛3 are the corresponding weights (Danloup et al., 2018; Qu and Bard, 2012). Note that each component needs
to be normalized by dividing the largest value of all requests. The larger the value of 𝐶𝑟, the harder request 𝑟 fits into a route.
Therefore, this operator considers the 𝑟 with a larger 𝐶𝑟 first.

5.2.2. Removal operators

All removal operators have a basic operation, i.e., removing one request. It means removing the pickup, transshipment, and
delivery of this request from routes, and then recalculating the times of relevant routes. The main difference between these removal
operators is that the chosen requests are different.
13

Worst Removal operator removes the requests with the highest cost in each route (Ghilas et al., 2016; Wolfinger, 2021).
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Fig. 7. Difference between removing a request and a terminal in ALNS.

Random Removal operator selects part of vehicles and removes one request from each vehicle randomly (Qu and Bard, 2012;
Danloup et al., 2018).

Related Removal operator removes a request 𝑟 randomly and then removes part of similar requests 𝑟′ according to distance,
time, load, and vehicles which can serve 𝑟 and 𝑟′ (Ropke and Pisinger, 2006; Danloup et al., 2018).

History Removal operator uses historical information to remove requests which may be in the wrong position and guides
insertion operators to insert requests which may be inserted at a lower cost.

All insertion operators record all insertion costs, and reserve the lowest insertion cost 𝑐lowest
𝑟 for each 𝑟. History Removal operator

calculates the gap 𝛥𝑐𝑟 between current insertion cost 𝑐current
𝑟 and 𝑐lowest

𝑟 and sorts the requests in descending order according to 𝛥𝑐𝑟.
If there is no request whose 𝛥𝑐𝑟 > 0, then the algorithm goes to next iteration directly. If there are 𝑛 requests whose 𝛥𝑐𝑟 > 0, this
operator removes 𝑚𝑎𝑥{𝜎𝑛, 1} (𝜎 is the removal proportion) requests from these 𝑛 requests. Requests which are not inserted at the
lowest-cost position may also make it possible for other requests to be inserted cheap, and thus allow an overall cheaper solution.
Therefore a removal proportion of 𝜎 is used in this operator.

Route Removal Insertion operators may not be able to find feasible solutions based on a small number of removals in a short
time. In this case, the route needs to be cleared, which means all requests in a route are removed to the request pool. Another
idea behind this operator is to guide the search in the direction of minimizing the number of used vehicles and making full use of
capacity.

First, this operator obtains a random number 𝑛 with a given numerical distribution [𝑥1, 𝑥2,… , 𝑥3] for [1, 2,… , 𝑚], where 𝑚 is the
number of routes which served requests, 𝑥1 = 1∕𝜉 and 𝑥𝑖 = 𝑥𝑖−1∕𝜉 when 𝑖 > 1. Then, it chooses 𝑛 vehicles according to a probability
𝜓 = 𝑢ava

𝑘 ∕(
∑

𝑘∈𝐾serve
𝑢ava
𝑘 ), where 𝑢ava

𝑘 is available capacity and 𝐾serve is a set of vehicles which have served requests. The vehicle
whose capacity has not been fully made use of will have a higher probability to be cleared. In an extreme case, all routes will be
cleared and all requests fill the request pool. In this case, this operator may change the search direction from the beginning and
thus provide a larger neighborhood for insertion operators.

Node Removal In most times, barges and trains in ST carry multiple requests, therefore removing part of the requests may
not change the routes of vehicles, as shown in Fig. 7(a). However, the cost-savings are usually obtained from minimizing distance,
i.e., changing the routes of vehicles. To obtain better solutions quicker, the Node Removal operator is designed, which deletes visited
terminals in the routes, as shown in Fig. 7(c). Similar to the Route Removal operator, this operator chooses 𝑛 vehicles based on
a distribution and probability 𝜓 . One terminal of each route is randomly chosen and all requests which visit this terminal will be
removed.

5.2.3. Swap operator

In the following cases, the requests will be wrongly placed in routes and it is difficult for the operators in Sections 5.2.1 and
5.2.2 to find the optimal solution:

1. When vehicle 𝑘 is out of capacity but the served requests of vehicle 𝑘 are not the most appropriate. For example, requests
1 and 2 should be served by vehicle 𝑘 in the optimal solution, but vehicle 𝑘 is occupied by requests 3 and 4 in the current
solution. However, operators in Sections 5.2.1 and 5.2.2 cannot remove requests 3 and 4 and insert 1 and 2 precisely.

2. When vehicle 𝑘 has available capacity but requests cannot be served by vehicle 𝑘 due to other constraints. For example,
vehicle 𝑘 goes to pickup terminal A of request 1 at time 20 and arrives at the delivery terminal B at time 30. If request 2’s
due time is 20 at delivery terminal B, then it cannot be served by vehicle 𝑘 because vehicle 𝑘 needs to go to terminal A first.
When there are more requests (requests 3–5) with a similar situation, the best solution should use vehicle 𝑘 to serve requests
2–5 rather than only request 1 to make full use of its capacity.
14
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Fig. 8. Three steps in the Swap operator.

The reason behind it is that Greedy Insertion and Worst Removal operators only care about whether the solution is the best one for
the individual request, rather than overall requests. Regret Insertion considers that inserting which request will let us most regret,
but it still cannot find the best solution precisely. The Historical Removal operator removes the requests that are not in the historical
best position, which may remove requests 1 and 2 in case 1. But it will not remove requests 3 and 4 because they are in their best
position. Therefore, requests 1 and 2 still cannot be inserted into vehicle 𝑘 because 𝑘’s capacity is full. It is difficult to solve this
problem using Random Insertion/Removal operators because they change routes randomly.

To make up for the shortcomings of existing operators, a Swap operator is designed. The Swap operator is a combination of
History Removal and Greedy Insertion operators. It uses the History Removal operator to find the requests 𝑅swap that are not served
by the historical best vehicles 𝐾swap, but only records them rather than removing them directly. As shown in Fig. 8, for all requests
𝑟 ∈ 𝑅swap, the following steps will be iterated:

1. Identification: The Swap operator identifies requests 𝑅′𝑟
swap that may be swapped with 𝑟. Let 𝐾𝑟

swap ⊆ 𝐾swap represents
historical best vehicles which serve request 𝑟. For each 𝑘𝑟swap ∈ 𝐾𝑟

swap, if it is case 1, all requests served by vehicle 𝑘𝑟swap
belong to 𝑅′𝑟

swap; if it is case 2 and vehicle 𝑘𝑟swap is not a fixed vehicle or truck, all requests served by vehicle 𝑘𝑟swap also
belong to 𝑅′𝑟

swap. No request belongs to 𝑅′𝑟
swap when vehicle 𝑘𝑟swap is a truck or fixed vehicle because requests served by truck

fleet or using fixed schedule will not influence each other.
2. Attempt: All 𝑟′ ∈ 𝑅′𝑟

swap will be tried to be swapped with 𝑟 one by one. In every attempt, firstly, the Swap operator removes
request 𝑟 and one possible request 𝑟′ ∈ 𝑅′𝑟

swap; then, Greedy Insertion operator is used to insert request 𝑟/𝑟′ into vehicle
𝑘𝑟swap/𝑘′ ∈ 𝐾 ⧵ 𝑘𝑟swap; finally, the overall cost after the swap attempt is recorded and routes are restored as before.

3. Swap: If the lowest overall cost of all possible swaps is lower than the overall cost without swap, request 𝑟′ with the lowest
overall cost will be swapped with request 𝑟.

5.3. Feasibility check and synchronization

The insertion may cause infeasible solutions, e.g., the capacity constraints may be violated after an insertion. Both insertion and
removal will change the times of the operated route and also relevant routes. After the insertion of each request or segment, (a)
the times of the operated route will be updated, (b) vehicles that influence each other will be synchronized, and (c) the feasibility
of the current solution will be checked. After the removal of each request, the (a) and (b) will be executed but (c) is not required
because removal will not cause infeasible solutions. In this section, feasibility check and synchronization in ALNS are highlighted,
and how to achieve flexible routing and schedule are illustrated in detail.

Same with the mathematical model, the following constraints will be checked in ALNS:

1. Subtour elimination constraints (10)–(12);
2. Capacity constraints (15);
3. Suitable routes constraints (24);
15

4. Time constraints (27)–(47).
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Fig. 9. Chain reaction.

Other constraints are satisfied automatically in the construction of routes, such as flow conservation (18)–(23), or preprocessing
procedure, such as fixed routes constraints (25). The subtour elimination constraints can be guaranteed by checking whether there
are duplicate terminals on the route. When picking up/delivering requests, the current load will increase/decrease by the quantity
𝑞𝑟. If the current load exceeds the capacity of the vehicle, the capacity constraints will be violated. The suitable routes constraints
are ensured by checking whether the adjacent terminals in the routes are the same as unsuitable routes.

The difficulty lies in satisfying the time constraints. The times in the proposed model include time windows of requests, open
time windows of terminals for fixed vehicles, loading/unloading time, waiting time, storage time, delay time, fixed travel time
of barges and trains, and time-dependent travel time of trucks. Detailed feasibility checking on time constraints is shown in flow
charts in Appendix B. In this section, some key points are listed, including waiting time and infeasible cases for barges and trains,
time-dependent travel time for trucks, and time synchronization.

The vehicle will wait when it departs earlier than the fixed departure time (𝑡𝑘𝑗 < 𝑏𝑘𝑗 ), arrives before pickup time window
(𝑡′𝑘𝑗 < 𝑎𝑝(𝑟)), and arrives earlier than the containers at transshipment terminal (𝑡′𝑘𝑗 < 𝑇𝑑𝑟𝑗). If the vehicle’s departure time is later
than open time window (𝑡𝑘𝑗 > 𝑏

𝑘
𝑗 ) or pickup time window (𝑡𝑘𝑗 > 𝑏𝑝(𝑟)), the route of vehicle 𝑘 is infeasible.

At peak period, the travel time of trucks 𝜏′𝑘𝑟𝑖𝑗 will be longer than normal due to congestions, i.e., 𝜏′𝑘𝑟𝑖𝑗 is time-dependent. When the
truck deliveries request at the transshipment terminal or delivery terminal, the time-dependent travel time 𝜏′𝑘𝑟𝑖𝑗 will be calculated
depending on the departure time at the last terminal 𝑡𝑘𝑟𝑖 by function 𝑓truck:

𝜏′𝑘𝑟𝑖𝑗 = 𝜃𝑚𝑡
𝑘𝑟
𝑖 + 𝜂𝑚 (50)

where 𝜃𝑚 and 𝜂𝑚 are the slope and intersection of 𝑓truck and can be calculated based on specific time period 𝑚 within a day, 𝑡𝑘𝑟𝑖 ,
and travel time at non-peak period 𝜏𝑘𝑖𝑗 (Guo et al., 2020).

In ST with flexible services, vehicles are highly dependent on each other and synchronization is needed. The synchronization
means that when a vehicle influences other vehicles, these vehicles’ schedules will be re-planned and vehicles could cooperate to
obtain the best solution. Such cooperation could be changing pickup/delivery time or extending/shortening the waiting or storage
time. For example, at the transshipment terminal, if the pickup vehicle 𝑘 arrives later than the planned time, the route plan of the
delivery vehicle 𝑙 needs to be synchronized to find a suitable arrival time. The route of vehicle 𝑙 is called the relevant route of
vehicle 𝑘. As shown in Fig. 9, a chain reaction may be caused by a small change of one route, and all relevant routes need to be
synchronized. Algorithm 2 shows the synchronization on relevant routes, in which the initial input is the original changed route.
To check all relevant routes shown in Fig. 9, this function is a recursion function. Only when all relevant routes meet the time
constraints, the current solution is feasible, otherwise, the synchronization will stop and return ‘‘infeasible’’.

5.4. Comparison with (A)LNS for PDPT in the literature

A detailed comparison between the developed ALNS and the existing (A)LNS for PDPT in the literature is presented in Table 3.
When an operator is used in only one paper, it is called the special operator of this paper. Although some operators proposed in
the literature have similar functions to the operators designed in this paper, there are still some differences. For example, the Route
Removal operator used by Danloup et al. (2018) chooses a route randomly or depending on the number of visited nodes, while in
this paper, it chooses a route depending on available capacity. Besides, in this paper, we developed a Swap operator to enhance
the local search, and the experiments (Section 6.6) show that the solution quality is improved by using this new operator. Several
16
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Algorithm 2: Synchronization
Input: relevant_routes; Output: feasibility ;
for route ∈ relevant_routes do

update pickup/delivery time and extend/shorten the waiting or storage time of influenced requests;
if route does not satisfy time constraints then

return infeasible
else

obtain relevant_routes of route;
Synchronization(relevant_routes)

end
end
return feasible;

Table 3
Comparison between the proposed ALNS and existing (A)LNS for PDPT in the literature.

Article Qu and Bard (2012) Ghilas et al. (2016) Danloup et al.
(2018)

Wolfinger (2021) Our paper

Removal operator Worst – � � � �
Random � � � � �
Route � � � – �
History – � – – �
Related � � � � �
Special – Late-arrival,

Worst-distance
Cluster, Many-split – Node

Insertion operator Greedy � � – � �
Random � – � � �
Regret � – – � �
Most constrained � – � � �
Transshipment – � – � �
Special – Second best, Best 𝜆

feasible
– – –

Swap operator – – – – �

Choosing operator Adaptive Adaptive Random Random Adaptive

Acceptance criterion Best solution only Simulated annealing Fixed percentage of
degradation allowed

Fixed percentage of
degradation allowed

Simulated annealing

Performance
improvement

Hash table – – – Preprocessing, hash
table, bundle
insertion

Transshipment
location

Dedicated location Dedicated location Dedicated location Dedicated location Transshipment
terminals

Instance size N – 108 100 55 10
T 1 5 5 5 10
R 25 100 50 100 1600
K 3 24 Unlimited 6 116

Max. # of
transshipments

Once Allow twice Once Allow twice Allow twice

–: not considered or stated in the related paper; N/T/R/K: maximum number of nodes/transshipment nodes/requests/vehicles.

performance improvement methods are also used in this paper, including preprocessing heuristics, hash table, and bundle insertion,
and they are illustrated in Appendix C.

In freight transport, such as urban freight transport, all customer nodes are usually distinct, while many requests in ST share
he same terminal. Therefore the maximum number of nodes in this study is fewer than others. Moreover, there are usually several
edicated transfer nodes in freight transport, which cannot be customer nodes. In comparison, almost all terminals are transshipment
erminals in ST, which also have functions as pickup/delivery terminals. It increases the possibility of transshipments and the
onnections between vehicles. The number of requests in ST is also bigger than the number in freight transport. In Table 3, the
aximum number of requests is 100 in the literature, while there are up to 1600 requests in the case studies of this paper. A large
roportion of transshipment terminals together with a large number of requests make the routes of vehicles in ST highly dependent
n each other. In an extreme case, a small change in one route may cause changes in several dozens of vehicles because this change
ill influence subsequent terminals in this route and each terminal may cause a chain reaction as in Fig. 9. Therefore, ST brings
ore complexity to freight transport when there are many requests. To address this issue, we propose the synchronization algorithm
17

Algorithm 2), swap operator, and performance improvement methods.
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Table 4
The comparison between exact approach and ALNS.

T R L Avg. Cost (EUR) Avg. CPU (s)

Exact approach ALNS Exact approach ALNS

2 1 𝐿0 3585 3585 343.26 0.18
2 1 𝐿1 3585 3585 461.56 0.18
2 1 𝐿2 1315 994 43 200.00a 0.12

2 3 𝐿0 8935 8935 3790.64 0.36
2 3 𝐿1 8935 8935 4383.69 2.68
2 3 𝐿2 8851 6074 43 200.00a 2.26

2 5 𝐿0 16 491 16 491 12 921.26 0.37
2 5 𝐿1 16 491 16 491 15 941.14 3.15
2 5 𝐿2 – 12 986 43 200.00a 2.62

5 1 𝐿0 2098 2098 385.46 0.13
5 1 𝐿1 2098 2098 431.34 0.14
5 1 𝐿2 3775 994 43 200.00a 0.06

5 3 𝐿0 5828 5828 5793.62 0.35
5 3 𝐿1 6859 5828 43 200.00a 1.24
5 3 𝐿2 11 226 5828 43 200.00a 1.23

5 5 𝐿0 13 383 13 383 11 050.79 0.59
5 5 𝐿1 13 738 13 383 43 200.00a 1.70
5 5 𝐿2 – 11 345 43 200.00a 2.37

T: number of transshipment terminals; R: number of requests; L: flexibility level.
– no solution is found due to time limitation.
aTime limit reached (12 h).

6. Numerical experiments

The proposed ALNS as shown in Algorithm 1 is compared with the developed MILP model and two benchmark methods from the
iterature that do not consider flexible services, namely Demir et al. (2016) and Guo et al. (2020). The transport network information
nd request data can be found in these two papers. In the comparison with the MILP model, we compared the exact approach by
he commercial solver (Gurobi) and ALNS in terms of quality of solutions and computation time. In the benchmarking on small
nstances, firstly we compared with results in Demir et al. (2016) under different weights for the individual objectives, then we
esigned a scenario using transport network of Guo et al. (2020) to illustrate the function of flexible vehicles under congestion.
n the benchmarking on large instances, we compared with the model in Guo et al. (2020) with up to 10 terminals, 116 services
vehicles), and 1600 requests. All instances are available at a research data website.1 All experiments are implemented in Python

3.7 and run on Linux with 62 GB of memory and an Intel Xeon E5 CPU with a 2.40 GHz core.
We consider three levels of flexibility with an increasing degree:

1. Level 0 (𝐿0): all vehicles are fixed except the flexibilities considered by Demir et al. (2016) and Guo et al. (2020) when
compared with them;

2. Level 1 (𝐿1): trucks have flexible routes and schedules, including flexible due time, waiting time, storage time, and departure
time;

3. Level 2 (𝐿2): both trucks and barges have flexible routes and schedules.

t Level 0, the initial solution is obtained by the Regret Insertion operator. Except for Level 0, the initial solution is obtained in
hree different ways, as mentioned in Section 5.1. It is worth mentioning that the proposed model allows more specific flexibility
evels, e.g., only part of barges can be flexible. This paper mainly shows the potential of flexibility and specific flexibility levels are
ot considered. The maximum number of segments of a request is also adjustable in the proposed model and it is set to three in the
ase studies.

.1. Comparison with the exact approach

Table 4 shows the comparison between the exact approach (by Gurobi) and ALNS. All instances are based on the transport
etwork with 116 vehicles published in Guo et al. (2020). There are ten terminals in the lower Rhine-Alpine corridor, and two or
ive of them are selected as transshipment terminals randomly. One, three, and five request(s) are randomly chosen from instances
n Guo et al. (2020) and tested under different flexibility levels. All experiments are repeated three times to obtain the average
alues of costs and computation time. For all instances in Table 4, there are significant differences in both costs and computation
ime. ALNS gets the best solution in few seconds, while the exact approach needs 5 min for the smallest instance. When the numbers

1 https://figshare.com/s/2bbc4c63fd9a7200594f.
18
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Table 5
Comparison on results with flexibility (the proposed model) and without flexibility (Demir et al., 2016).

Case Weights Services/Vehicles Total service Total penalty Total emissions Total

𝑤1 𝑤2 𝑤3 1 2 3 4 5 costs (EUR) costs (EUR) costs (EUR) costs (EUR)

1a 1 0 0 1,2,3 1,2,3 31,5 2,3 21 17 179 6720 782 24 681
1 1 0 0 1,2,3 1,2,3 31,5 2,3 21 17 179 (0%) 6720 (0%) 782 (0%) 24 681 (0%)

2a 0 1 0 22 22 22,26 23 28,30 32 284 0 1634 33 919
2 0 1 0 1,2,3 1,2,3 23 2,3 25 24 152 (25%) 0 (0%) 1287 (21%) 25 439 (25%)

3a 0 0 1 31,5,25 31,6,25 31,7 2,3 21 22 435 12 200 594 35 229
3 0 0 1 31,5,25 31,6,25 31,7 2,3 21 22 435 (0%) 11 900 (2%) 594 (0%) 34 929 (1%)

4a 0.4 0.4 0.2 1,2,3 1,2,3 31,5 2,3 28,30 19 171 3220 894 23 285
4 0.4 0.4 0.2 1,2,3 1,2,3 31,5 2,3 27 18 543 (3%) 3220 (0%) 865 (3%) 22 629 (3%)

5a 0.2 0.6 0.2 1,2,3 1,2,3 22,26 2,3 28,30 24 707 0 1303 26 010
5 0.2 0.6 0.2 1,2,3 1,2,3 1,22 2,3 27 22 739 (8%) 0 (0%) 1248 (4%) 23 987 (8%)

6a 0.6 0.3 0.1 1,2,3 1,2,3 31,5 2,3 21 17 179 6720 782 24 681
6 0.6 0.3 0.1 1,2,3 1,2,3 31,5 2,3 27 18 543 (−8%) 3220 (52%) 865 (−11%) 22 628 (8%)

7a 0.1 0.8 0.1 1,2,3 1,2,3 22,26 2,3 28,30 24 707 0 1303 26 010
7 0.1 0.8 0.1 1,2,3 1,2,3 1,22 2,3 27 22 739 (8%) 0 (0%) 1248 (4%) 23 987 (8%)

8a 1 1 1 1,2,3 1,2,3 31,5 2,3 28,30 19 171 3220 894 23 285
8 1 1 1 1,2,3 1,2,3 31,5 2,3 27 18 543 (3%) 3220 (0%) 865 (3%) 22 628 (3%)

9a 1 10 10 1,2,3 1,2,3 31,8,27,26 2,3 28,30 25 081 0 1098 26 179
9 1 10 10 1,2,3 1,2,3 1,22 2,3 27 22 739 (9%) 0 (0%) 1248 (−14%) 23 987 (8%)

aMeans benchmark by Demir et al. (2016), in which all vehicles follow fixed routes and schedules except the truck’s departure time is flexible.

of requests and transshipment terminals increase, the computation time of the exact approach increases dramatically and no solution
is obtained in a limited time (12 h) when there are five requests at 𝐿2. Increasing the number of transshipment terminals decreases
the costs of ALNS, while costs of the exact approach may be higher because it cannot find the optimal solution in the limited time.
Moreover, at 𝐿0, both the exact approach and ALNS can find the optimal solution, although the exact approach needs an obviously
longer time. At 𝐿1, the exact approach cannot find the optimal solution within 12 h when there are five transshipment terminals
nd more than three requests. At 𝐿2, the exact approach cannot find the optimal solution for all instances in Table 4, while ALNS
inds solutions with significantly lower costs.

.2. Optimization with and without flexibility under different weight combinations

The transport network studied by Demir et al. (2016) is located in the Danube region between Hungary and Germany, which
onsists of 10 terminals including inland waterway ports and railway terminals and 3 barge, 18 train, and 11 truck services. Demir
t al. (2016) assume trucks can depart with a flexible time and they also consider storage time but storage cost is not included
n the objective, i.e., 𝐹3 = 0 in their model. To make a fair comparison, we do not consider storage cost in the objective function
hen comparing with Demir et al. (2016). Moreover, they compare results under different weights for service cost, penalty cost,
nd emissions cost. Therefore, the objective is as follows:

𝐹 = 𝑤1(𝐹1 + 𝐹2 + 𝐹5) +𝑤2𝐹6 +𝑤3𝐹4 (51)

The weights enable the reflection of individual preferences regarding different costs. The impact of preferences can also be analyzed
with different weights.

ALNS finds all best solutions reported by Demir et al. (2016) under the same setting and hence not reported in this paper. The
barge services in Demir et al. (2016) are three consecutive services operated by one barge, therefore the route of the barge is fixed
and barges’ timetables and truck services could be flexible. In Table 5, results with and without flexibility are compared under cases
with different weight combinations for multiple objectives. There are 32 services (vehicles) and 5 requests, and their numbers are
the same with Demir et al. (2016). All used services/vehicles of five requests and costs of objectives are listed and the cost saving is
shown in brackets. Table 5 shows that ALNS with flexibility finds better solutions on all cases except case 1, where it finds the same
solution. The differences are marginal in some cases because the solution found in the case without flexibility is also optimal under
flexibility. Although in some cases the differences between sub-costs are 0%, the differences in the total cost are always larger than
0% except for case 1, where our approach finds the same solution with Demir et al. (2016). In case 3, routes for requests are the
same but the delay penalty is lower due to the flexible schedule. Sometimes the proposed model sacrifices part of the objectives for
a better overall solution, such as case 6. In all other cases, by using flexible vehicles, the proposed model provides better solutions
from the perspectives of all objectives under different weight combinations. Moreover, all the best solutions can be found in few
seconds by ALNS.

The results are always in line with the preferences (weights) on the objectives. For example, in case 3, the decision-maker
prioritizes the minimization of emissions, and the electric trains (services 4–21) are chosen as much as possible, which causes
19

a delay for request 3 and more waiting time for request 5. In this case, the total emissions cost is the lowest, but the service and



Transportation Research Part C 140 (2022) 103711Y. Zhang et al.
Fig. 10. Time-dependent travel times of truck services.
Source: Guo et al. (2020)

penalty costs are higher than case 8 when there are no preferences (all weights equal to 1). When the decision-maker has preferences
on service cost (cases 1, 4, 6, and 8) and penalty cost (cases 2, 5, and 7), the cheaper modes (barges and trains, i.e., services 1–21)
and faster modes (trucks, i.e., services 22–32) are chosen, respectively. The preferred costs usually are compensated by other higher
costs, but the flexibility make the compensation as low as possible compared with the cases without flexibility.

6.3. Optimization with and without flexibility under congestion

The flexibility considered in this paper is helpful for mitigating congestions in ST. Two types of congestions are considered:
arc congestion and node congestion, which are concerned with the limited capacities of roads and terminals, respectively. For arc
congestion, we consider the congestions in peak periods on roads. As shown in Fig. 10, there are several time breakpoints in one
day, i.e., 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6, 𝑏7, 𝑏8, 𝑏9, 𝑏10 = 0, 5, 7, 9, 13, 13, 17, 19, 21, 24. Between 𝑏2 and 𝑏9, there are congestions adjusted by
coefficients 𝛼 and 𝛽, which represent multiples of time spent in peak period compared with the travel time in normal period (𝜏𝑘𝑖𝑗).
According to Guo et al. (2020), when 𝛼 is 2, double travel time will be needed on the road when departing at 5 pm. More congestion
will cause higher costs when we take the time-dependent travel time into account by replacing Eq. (2) with:

𝐹1 =
∑

𝑘∈𝐾

∑

(𝑖,𝑗)∈𝐴

∑

𝑟∈𝑅
(𝑐1𝑘(𝑡

𝑘𝑟
𝑖 − 𝑡𝑘𝑟𝑖 ) + 𝑐1

′

𝑘 𝑑
𝑘
𝑖𝑗 )𝑞𝑟𝑦

𝑘𝑟
𝑖𝑗 (52)

For node congestion, terminal 𝑎 will be unavailable for vehicles when the served vehicles/containers exceed its capacity, i.e., the
following constraints are added:

∑

𝑗∈𝑁
𝑥𝑘𝑎𝑗 = 0 ∀𝑘 ∈ 𝐾 (53)

∑

𝑖∈𝑁
𝑥𝑘𝑖𝑎 = 0 ∀𝑘 ∈ 𝐾 (54)

Because the time horizon of the synchromodal transport planning is usually longer than one day, we use hours beginning from
0 to represent the time. For example, time 25 means 1 am on the second day. A simple but illustrative scenario using the data
in Guo et al. (2020) is designed to show the function of flexibility under congestions. There are three terminals, two services, and
one request:

• Terminals A, B, and C, and all terminals are connected with roads and waterways. The road/waterway distances between A
and B, A and C, and B and C are 15 km/15 km, 270 km/262.5 km, 262.5 km/255 km, respectively.

• A truck fleet service with begin and end depots of terminals B and C respectively and a speed of 75 km/h.
• A barge service, whose begin depot is terminal A (fixed departure time is 66), end depot is terminal C (fixed arrival time is

83.5), speed is 15 km/h, and capacity is 160 TEU.
• A request, whose pickup terminal is B (pickup time is 63), delivery terminal is C (due time is 85), and load is 12 TEU.

There is no fixed service on other roads/waterways because the demand is low. As shown in Fig. 11(a), at 𝐿0, the only solution
is using the truck to serve this request because both truck and barge routes are fixed. However, because the pickup is at 3 pm
(normalized by time 63), the truck will depart at peak time and there will be congestion on road. At 𝐿1, the best solution uses the
combination of the truck and barge (Fig. 11(b)), which means the request is picked up by the truck, transferred from truck to barge
at terminal A, and delivered by barge. This solution can mitigate the impact of congestion by using inland waterways. Table 6 shows
the comparison between costs of 𝐿0 and 𝐿1 at different congestion levels. When the congestion level increases, the cost increase of
𝐿0 is much greater than the increase of 𝐿1. When 𝛼 = 14, the road is disrupted due to severe congestion and there is no feasible
solution at 𝐿 .
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Table 6
Costs under congestions.

Congestion level 𝛼 Cost of 𝐿0 (EUR) Cost of 𝐿1 (EUR)

2 3240 906
6 5842 1050
10 8444 1194
14 – 1338

– means there is no feasible solution.

Fig. 11. Optimal routes under congestions on road and at the terminal.

Furthermore, if the truck and barge cannot use terminal A to transfer containers because too many containers are piled up at the
terminal or no crane is available at the terminal (node congestion), we can only use the truck to serve the request at 𝐿0 and 𝐿1, as
shown in Fig. 11(a) and (c). However, at 𝐿2, we can use the barge to serve this request even though terminal A is unavailable. As
shown in Fig. 11(d), The barge will go to terminal B to pick up containers firstly and then deliver the request to terminal C directly
with a cost of only 628e.

6.4. Dynamic re-planning with and without flexible services

The attributes of requests may change during the operations, such as changes of pickup and delivery terminals, time windows,
and loads, and it may make the original solution infeasible. To solve this problem, the proposed model can be extended to a dynamic
setting for re-planning the routes and schedules. The original plan will be adjusted when the information of requests changes, as
shown in Algorithm 3.

Algorithm 3: Dynamic re-planning
Input: 𝐾, 𝑅, 𝑁 , 𝐴; Output: 𝑋best;
set 𝑋current as empty routes of 𝐾;
𝑋best = 𝐴𝐿𝑁𝑆(𝐾, 𝑅, 𝑁 , 𝐴, 𝑋current) ; // obtain the original solution.
for time in time_horizon do

𝑋current ← 𝑋best;
if new information of requests is revealed then

define the set of changed requests as 𝑅change;
remove unfinished parts of changed 𝑟 ∈ 𝑅change from 𝑋current, and set this new current solution as 𝑋′

current;
𝑋best = 𝐴𝐿𝑁𝑆(𝐾, 𝑅change, 𝑁 , 𝐴, 𝑋′

current)
end

end
return 𝑋best;

To avoid a huge impact on other requests and reach the real-time requirement of synchromodal transport, only the changed
requests will be re-planned. The ALNS algorithm plans all requests only at the beginning of the planning horizon to obtain an
original plan. The initial solution of the original plan could be obtained by Method R, S, or M. When new information of requests
is revealed, the current solution is updated with ALNS. In this case, the initial solution of ALNS is the current solution 𝑋′

current
in Algorithm 3. If changes are announced before the pickup, the original route will be removed from current solution and the
optimization is based on new revealed information. If changes are announced after the pickup, the following constraints will be
added to guarantee that request 𝑟 is still transported by vehicle 𝑘:

∑

𝑦𝑘𝑟𝑝(𝑟)𝑗 = 1 (55)
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Fig. 12. Dynamic re-planning with and without flexible services.

If request 𝑟 has been transferred from vehicle 𝑘 to 𝑙, transshipment terminal 𝑖 needs to be unchanged:

𝑠𝑘𝑙𝑖𝑟 = 1 (56)
∑

𝑗∈𝑁
𝑦𝑙𝑟𝑖𝑗 = 1 (57)

In ALNS, only the untraveled part will be removed from current routes, and the insertion operators will optimize the routes and
schedules following the original itinerary. When the vehicle is flexible, the routes, departure time, waiting time, and storage time
could be modified to cooperate with the changes of requests.

We still use the instance in Section 6.3, and a new terminal D is added, as shown in Fig. 12. The distance between D and A/B/C
is 240/247.5/37.5 km (the same for road and waterway). The request’s original pickup/delivery terminal is B/C, and the delivery
terminal is changed from C to D at time 60. Fig. 12(a), (b), and (c) show the original plan at different flexibility levels, and they
are the same with the results in Section 6.3. At time 60, the request’s delivery terminal is changed and the re-planning procedure
is activated. However, there is no solution under 𝐿0 and the request can only be served by an external vehicle with a high price or
rejected, as shown in Fig. 12(d). At 𝐿1 (Fig. 12(e)), only the truck service is flexible and can be used to transport the request with
2669e. When the barge is flexible (Fig. 12(f)), the barge is used and the cost is only 678e. The best solution of the above instance
can be found in less than 3 s. Other unexpected events, such as delays, new requests, and changes of time windows and loads,
can be handled in a similar way by Algorithm 3. For example, when there are new requests, 𝑅change in Algorithm 3 will contain
information of these new requests and ALNS will insert them to the current solution 𝑋′

current. Therefore, the proposed model can
react to the changes of the request dynamically and the service flexibility is helpful to handle unexpected events.

6.5. Benchmarking on large instances

Guo et al. (2020)’s instances are based on a transport network operated by European Gateway Services2, which offers a wide
variety of synchromodal transport services between the ports of Rotterdam and Antwerp and the leading economic centers of Western
and Central Europe. The instances contain 116 vehicles (49 barges, 33 trains, and 34 trucks), 10 terminals (3 deep-sea terminals in
Port of Rotterdam and 7 inland terminals in the Netherlands, Belgium, and Germany), and 10 transshipment terminals. The origins
and destinations of requests are independently and identically distributed among deep-sea terminals 1, 2, 3 with probabilities 0.66,
0.2, 0.14 and inland terminals 4, 5, 6, 7, 8, 9, 10 with probabilities 0.306, 0.317, 0.153, 0.076, 0.071, 0.034, 0.043, respectively. The
container volumes of requests are drawn independently from a uniform distribution with range [10, 30] and the average container
volume is 20 TEU. The earliest pickup time 𝑎𝑝(𝑟) of requests is drawn independently from a uniform distribution with range [1,
120]; the latest delivery time 𝑏𝑑(𝑟) of requests is generated based on its 𝑎𝑝(𝑟) and lead time 𝐿𝐷𝑟, i.e., 𝑏𝑑(𝑟) = 𝑎𝑝(𝑟) + 𝐿𝐷𝑟, and the
lead time of requests is independently and identically distributed among 24, 48, 72 (unit: hours) with probabilities 0.15, 0.6, 0.25.
Since Guo et al. (2020) do not use time windows, we set 𝑏𝑝(𝑟) and 𝑎𝑑(𝑟) equal to 𝑏𝑑(𝑟) and 𝑎𝑝(𝑟), respectively. The objective in Guo et al.
(2020) is as same as the objective in this paper. Guo et al. (2020) assume that there are unlimited storage spaces at terminals and
loading/unloading infrastructure is always available for multiple vehicles. In the original paper, Guo et al. (2020) provide results
with 5–30 requests and 700–1600 requests. To obtain a complete comparison, we asked the authors to run their model again, and
then we got the results with 50–400 requests.

Tables 7 and 9 show the results of different levels of flexibility with different methods to obtain the initial solution. In each table,
the number of requests increases from 5 to 1600, and results of different levels of flexibility are obtained for each instance. At 𝐿⋆0

2 https://www.europeangatewayservices.com/en.
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Table 7
Comparison of results with different levels of flexibility (obtain the initial solution by method R).

R L Avg. Costs (EUR) # of Avg. Mode share (%) Avg. CPU (s) Cost

𝐹 𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 𝐹6 vehicles Barge Train Truck Initial Best savings (%)

5 𝐿⋆0 4386 1532 2562 269 23 0 0 5 60 0 40 – – –
5 𝐿0 4385 1531 2562 269 23 0 0 5 60 0 40 0.2 0.0(0%) 0
5 𝐿1 4270 967 2994 290 18 0 0 6 66 0 33 0.4 0.0(0%) 2
5 𝐿2 3808 482 3312 0 14 0 0 4 100 0 0 0.9 0.0(0%) 13

10 𝐿⋆0 25 988 14 560 6990 2158 186 0 0 14 50 29 21 – – –
10 𝐿0 25 988 14 559 9084 2158 186 0 0 14 50 28 21 0.6 0.0(0%) 0
10 𝐿1 25 985 14 559 9084 2155 186 0 0 14 50 28 21 1.6 0.3(32%) 0
10 𝐿2 24 838 15 847 8304 450 211 25 0 12 69 7 23 2.9 23.7(1%) 4

20 𝐿⋆0 44 198 20 870 16 218 5003 287 0 1820 23 57 18 25 – – –
20 𝐿0 44 221 20 604 15 990 5527 279 0 1820 22 57 23 19 1.1 0.0(0%) 0
20 𝐿1 42 786 22 342 15 210 4940 293 0 0 21 53 23 23 4.5 0.0(53%) 3
20 𝐿2 36 737 19 757 15 324 1270 276 108 0 20 70 16 12 8.5 105.5(0%) 16

30 𝐿⋆0 65 126 36 953 22 896 4794 483 0 0 35 50 11 39 – – –
30 𝐿0 65 126 36 953 22 896 4794 482 0 0 35 50 11 38 1.5 0.4(0%) 0
30 𝐿1 64 905 35 873 23 712 4845 473 0 0 33 51 11 37 7.8 18.2(68%) 0
30 𝐿2 51 665 26 691 24 258 15 415 285 0 29 74 2 23 11.8 419.5(15%) 20

50 𝐿⋆0 135 679 88 930 23 919 9350 1069 0 0 46 42 14 44 – – –
50 𝐿0 139 819 96 241 33 396 9050 1131 0 0 47 41 15 42 2.9 2.1(0%) −3
50 𝐿1 131 605 84 662 35 357 10 568 1017 0 0 37 41 16 41 19.7 50.9(69%) 2
50 𝐿2 106 728 64 815 38 058 2493 885 476 0 40 75 6 18 25.0 639.1(17%) 20

100 𝐿⋆0 181 204 92 873 53 580 15 838 1297 0 0 56 56 12 32 – – –
100 𝐿0 183 818 97 853 68 880 15 748 1337 0 0 56 56 12 30 6.9 60.8(1%) −1
100 𝐿1 176 074 89 282 69 852 15 688 1251 0 0 49 55 14 30 45.3 258.4(69%) 2
100 𝐿2 142 721 68 150 71 016 1812 1115 614 13 57 79 5 15 72.7 3507.9(46%) 20

200 𝐿⋆0 497 380 316 980 97 149 29 648 3950 0 0 70 45 12 43 – – –
200 𝐿0 502 851 325 703 142 016 30 880 4002 0 248 72 44 13 41 13.8 1824.2(11%) −1
200 𝐿1 481 192 298 941 146 606 31 694 3741 0 210 69 45 15 38 130.7 2620.3(67%) 3
200 𝐿2 374 768 216 237 146 145 7683 3194 934 574 73 71 4 24 138.6 7351.4(70%) 24

400 𝐿⋆0 1 100 758 754 771 194 634 62 051 8848 0 0 95 40 19 41 – – –
400 𝐿0 1 115 227 777 999 265 497 61 787 9066 2 875 96 39 18 42 47.4 14 492.7(64%) −1
400 𝐿1 1 117 930 773 891 270 943 61 765 9023 0 2308 89 40 18 41 427.2 9695.9(80%) −1
400 𝐿2 925 230 623 500 268 031 22 206 8109 1399 1984 82 63 6 29 855.8 29 465.0(77%) 15

700 𝐿⋆0 1 060 077 723 033 197 406 57 334 8483 0 1815 104 39 18 43 – – –
700 𝐿0 1 070 117 740 118 261 762 57 451 8647 0 2138 102 39 17 43 102.6 48 788.1(76%) −1
700 𝐿1 1 071 214 735 499 267 561 57 209 8613 0 2330 98 40 17 41 1293.7 27 376.0(82%) −1
700 𝐿2 943 710 654 660 249 363 25 799 8242 1530 4115 90 60 7 31 2448.5 99 186.4(85%) 10

1000 𝐿⋆0 1 017 669 692 260 189 822 62 025 8146 0 850 101 41 16 43 – – –
1000 𝐿0 1 028 469 713 238 245 619 59 702 8327 0 1581 100 39 15 45 140.7 95 235.4(75%) −1
1000 𝐿1 1 024 973 704 195 251 533 59 992 8257 0 996 93 40 15 44 1318.5 60 259.9(79%) −1
1000 𝐿2 934 731 630 058 255 919 35 646 7427 1213 4465 99 59 7 32 4788.3 159 355.5(72%) 7

1300 𝐿⋆0 1 042 481 704 457 196 548 58 404 8336 0 1974 103 42 16 41 – – –
1300 𝐿0 1 057 118 721 333 262 740 62 029 8486 0 2528 102 41 17 41 629.1 111 229.6(63%) −1
1300 𝐿1 1 052 389 707 281 270 223 63 145 8357 0 3380 94 42 17 40 3019.4 111 889.8(84%) −1
1300 𝐿2 985 232 689 334 236 429 34 801 8471 1304 14 891 97 55 8 36 7610.4 135 318.0(82%) 5

1600 𝐿⋆0 1 020 075 671 262 201 825 62 765 7961 0 408 100 43 21 37 – – –
1600 𝐿0 1 031 499 687 488 269 642 65 989 8110 0 269 101 42 20 37 294.5 146 337.4(83%) −1
1600 𝐿1 1 036 620 690 889 269 330 67 511 8156 0 735 95 43 19 37 6522.0 126 142.0(83%) −1
1600 𝐿2 991 122 705 891 229 860 33 201 8482 1023 12 663 99 52 11 36 6763.0 140 737.1(84%) 3

R: number of requests; L: flexibility level; 𝐿⋆0 : benchmark; 𝐿0: flexibility Level 0, i.e., same with benchmark; 𝐿1: flexibility Level 1, i.e., trucks are flexible;
𝐿2: flexibility Level 2, i.e., trucks and barges are flexible; 𝐹 : total cost, 𝐹1: transit cost, 𝐹2: transfer cost, 𝐹3: storage cost, 𝐹4: carbon tax, 𝐹5: waiting cost, 𝐹6:
delay penalty, barge: proportion of requests served by barge, train: proportion of requests served by barge, truck: proportion of requests served by barge, initial:
running time of the initial solution, best: running time of the best solution, and the percentage in bracket equals the running time of the best solution divided
by the total running time;
size of segment: 20 iterations; cooling rate 𝑐 = 0.99; 200 iterations; time limit: 48 h.

(benchmark) and 𝐿0, the delay penalty is charged when vehicles deliver containers later than the due time, while other flexibilities,
such as flexible routing and flexible waiting time, are not considered. In Table 8, there is no results under 𝐿0 because the initial
solution given by matching model is optimal under 𝐿0. All experiments are repeated 10 times and Tables 7 to 9 show average values
of results. The time limitation for all experiments is 48 h. The computation time of the benchmark is not provided because we use
different computers and software with Guo et al. (2020). The Cost Savings column shows the gap in percentage between the cost
of ALNS’s solution and cost of solutions in Guo et al. (2020).
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Table 8
Comparison of results with different levels of flexibility (obtain the initial solution by method M).

R L Avg. Costs (EUR) # of Avg. Mode share (%) Avg. CPU (s) Cost

𝐹 𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 𝐹6 vehicles Barge Train Truck Initial Best savings (%)

5 𝐿⋆0 4386 1532 2562 269 23 0 0 5 60 0 40 – – –
5 𝐿1 4266 967 2994 286 18 0 0 6 66 0 33 0.3 0.9(10%) 2
5 𝐿2 3792 782 2993 0 16 0 0 5 84 0 16 0.3 0.8(6%) 13

10 𝐿⋆0 25 988 14 560 6990 2158 186 0 0 14 50 29 21 – – –
10 𝐿1 25 988 14 559 9084 2158 186 0 0 14 50 28 21 0.8 0.0(0%) 0
10 𝐿2 22 912 13 458 8801 436 184 32 0 11 64 19 16 0.8 14.7(29%) 11

20 𝐿⋆0 44 198 20 870 16 218 5003 287 0 1820 23 57 18 25 – – –
20 𝐿1 42 751 22 450 15 301 4703 296 0 0 21 53 21 25 0.6 16.2(34%) 3
20 𝐿2 36 604 20 099 14 969 1256 278 0 0 22 66 16 16 0.6 35.0(38%) 17

30 𝐿⋆0 65 126 36 953 22 896 4794 483 0 0 35 50 11 39 – – –
30 𝐿1 64 938 35 862 23 724 4877 473 0 0 34 51 11 37 0.9 13.1(12%) 0
30 𝐿2 50 111 25 233 24 356 29 398 94 0 30 72 4 22 0.9 264.0(62%) 22

50 𝐿⋆0 135 679 88 930 23 919 9350 1069 0 0 46 42 14 44 – – –
50 𝐿1 131 171 84 358 35 309 10 486 1017 0 0 40 42 15 42 2.8 83.9(54%) 2
50 𝐿2 106 530 65 774 37 017 2515 888 336 0 42 71 8 20 2.8 401.3(55%) 21

100 𝐿⋆0 181 204 92 873 53 580 15 838 1297 0 0 56 56 12 32 – – –
100 𝐿1 175 830 88 962 70 025 15 594 1249 0 0 52 55 14 30 4.1 435.4(55%) 2
100 𝐿2 135 866 59 862 72 136 2273 1031 563 0 60 78 6 14 4.1 2164.2(76%) 24

200 𝐿⋆0 497 380 316 980 97 149 29 648 3950 0 0 70 45 12 43 – – –
200 𝐿1 480 191 298 177 148 325 29 863 3750 0 74 72 45 14 40 9.1 1373.4(62%) 3
200 𝐿2 375 251 215 376 147 082 8383 3175 848 387 73 70 5 24 9.1 11 530.6(76%) 24

400 𝐿⋆0 1 100 758 754 771 194 634 62 051 8848 0 0 95 40 19 41 – – –
400 𝐿1 1 094 750 744 197 280 991 60 806 8755 0 0 97 40 18 40 29.1 7950.8(68%) 0
400 𝐿2 921 991 616 403 272 201 23 052 7991 1226 1117 88 61 8 29 29.1 31 958.4(81%) 15

700 𝐿⋆0 1 060 077 723 033 197 406 57 334 8483 0 1815 104 39 18 43 – – –
700 𝐿1 1 054 526 714 839 273 176 56 286 8409 0 1815 104 40 17 42 38.4 17 466.6(75%) 0
700 𝐿2 921 924 617 128 262 654 28 483 7896 1230 4532 101 56 11 31 38.4 97 319.8(82%) 12

1000 𝐿⋆0 1 017 669 692 260 189 822 62 025 8146 0 850 101 41 16 43 – – –
1000 𝐿1 1 010 503 679 957 261 160 60 443 8045 0 898 101 41 15 42 78.9 32 804.0(75%) 0
1000 𝐿2 919 037 621 175 253 311 33 110 7700 1098 2640 104 52 12 35 78.9 151 032.2(86%) 9

1300 𝐿⋆0 1 042 481 704 457 196 548 58 404 8336 0 1974 103 42 16 41 – – –
1300 𝐿1 1 038 067 693 346 276 066 58 614 8241 0 1798 105 42 16 40 158.6 89 314.2(65%) 0
1300 𝐿2 971 182 661 358 258 441 37 425 8147 1041 4768 109 50 13 35 158.6 129 940.4(73%) 6

1600 𝐿⋆0 1 020 075 671 262 201 825 62 765 7961 0 408 100 43 21 37 – – –
1600 𝐿1 1 017 824 666 952 280 231 62 303 7929 0 407 102 43 20 36 302.4 142 784.8(82%) 0
1600 𝐿2 961 277 651 516 258 086 39 327 7965 905 3477 111 50 17 32 302.4 132 404.6(74%) 5

R: number of requests; L: flexibility level; 𝐿⋆0 : benchmark; 𝐿0: flexibility Level 0, i.e., same with benchmark; 𝐿1: flexibility Level 1, i.e., trucks are flexible;
𝐿2: flexibility Level 2, i.e., trucks and barges are flexible; 𝐹 : total cost, 𝐹1: transit cost, 𝐹2: transfer cost, 𝐹3: storage cost, 𝐹4: carbon tax, 𝐹5: waiting cost, 𝐹6:
delay penalty, barge: proportion of requests served by barge, train: proportion of requests served by barge, truck: proportion of requests served by barge, initial:
running time of the initial solution, best: running time of the best solution, and the percentage in bracket equals the running time of the best solution divided
by the total running time;
size of segment: 20 iterations; cooling rate 𝑐 = 0.99; 200 iterations; time limit: 48 h.

Based on the results, we obtain the following insights:

1. Initial solution:

(a) When using the best solution of the predefined schedule (method M) as the initial solution, the costs are lower than
other ways in most cases. Therefore, adjusting the plan based on a predefined schedule is the most appropriate way
for transport operators because there will be no significant changes and better solutions can be found quicker than
optimization from scratch.

(b) For small instances (less than 50 requests), optimization based on an initial solution provided by method S is better
than other methods because method S can find the (near) optimal solution under 𝐿1. However, for instances with more
than 50 requests, method S performs worse than method M because the initial solution obtained by method S may be
worse than the optimal solution under 𝐿0, which is the initial solution of method M.

2. Costs:

(a) Higher degree of flexibility usually leads to more cost savings, but sometimes ALNS at 𝐿1 cannot find better solutions
than ALNS at 𝐿0 when the solution space is larger but the better solution is harder to find, as in the cases with 400,
700, and 1600 requests in Table 7.
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Table 9
Comparison of results with different levels of flexibility (obtain the initial solution by method S).

R L Avg. Costs (EUR) # of Avg. Mode Share (%) Avg. CPU (s) Cost

𝐹 𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 𝐹6 vehicles Barge Train Truck Initial Best savings (%)

5 𝐿⋆0 4386 1532 2562 269 23 0 0 5 60 0 40 – – –
5 𝐿0 4385 1531 2562 269 23 0 0 5 60 0 40 0.2 0.0(0%) 0
5 𝐿1 4269 967 2994 289 18 0 0 6 66 0 33 0.2 2.1(14%) 2
5 𝐿2 3793 757 3020 0 16 0 0 5 85 0 15 2.3 1.9(10%) 13

10 𝐿⋆0 25 988 14 560 6990 2158 186 0 0 14 50 29 21 – – –
10 𝐿0 25 988 14 559 9084 2158 186 0 0 14 50 28 21 0.7 0.0(0%) 0
10 𝐿1 25 988 14 559 9084 2158 186 0 0 14 50 28 21 0.7 0.0(0%) 0
10 𝐿2 21 907 12 389 8854 456 175 32 0 11 67 16 16 0.7 34.6(55%) 15

20 𝐿⋆0 44 198 20 870 16 218 5003 287 0 1820 23 57 18 25 – – –
20 𝐿0 44 221 20 604 15 990 5527 279 0 1820 22 57 23 19 1.6 0.0(0%) 0
20 𝐿1 42 776 22 344 15 210 4929 293 0 0 20 53 23 23 1.6 10.2(14%) 3
20 𝐿2 36 603 20 119 14 934 1270 278 0 0 23 66 16 16 11.8 41.4(38%) 17

30 𝐿⋆0 65 126 36 953 22 896 4794 483 0 0 35 50 11 39 – – –
30 𝐿0 65 126 36 953 22 896 4794 482 0 0 35 50 11 38 2.4 0.8(0%) 0
30 𝐿1 64 938 35 862 23 724 4877 473 0 0 34 51 11 37 3.0 16.8(17%) 0
30 𝐿2 50 468 25 638 24 307 11 402 109 0 29 73 4 23 19.9 304.5(71%) 21

50 𝐿⋆0 135 679 88 930 23 919 9350 1069 0 0 46 42 14 44 – – –
50 𝐿0 139 796 96 241 33 396 9027 1131 0 0 47 41 15 42 3.6 11.4(8%) −3
50 𝐿1 131 556 84 339 35 596 10 607 1013 0 0 39 41 16 42 15.1 149.8(57%) 2
50 𝐿2 104 722 64 172 37 027 2306 870 346 0 42 69 9 21 164.8 622.4(68%) 22

100 𝐿⋆0 181 204 92 873 53 580 15 838 1297 0 0 56 56 12 32 – – –
100 𝐿0 183 818 97 853 68 880 15 748 1337 0 0 56 56 12 30 7.6 63.0(11%) −1
100 𝐿1 176 277 89 606 69 740 15 677 1253 0 0 51 55 14 30 65.1 273.3(49%) 2
100 𝐿2 136 570 60 699 72 043 2251 1041 534 0 60 78 6 14 338.4 2571.0(67%) 24

200 𝐿⋆0 497 380 316 980 97 149 29 648 3950 0 0 70 45 12 43 – – –
200 𝐿0 503 213 326 231 141 763 30 962 4008 0 248 72 44 13 41 16.6 1744.5(57%) −1
200 𝐿1 480 447 298 048 146 909 31 575 3735 0 180 73 45 15 39 1761.1 2212.3(70%) 3
200 𝐿2 375 011 216 329 145 604 8830 3184 847 217 72 69 5 24 3973.4 9941.7(76%) 24

400 𝐿⋆0 1 100 758 754 771 194 634 62 051 8848 0 0 95 40 19 41 – – –
400 𝐿0 1 116 016 778 088 265 674 62 092 9056 0 1105 96 39 18 41 55.9 18 595.5(79%) −1
400 𝐿1 1 109 777 765 050 273 158 61 491 8947 2 1128 94 40 18 41 14 840.2 11 397.8(65%) −1
400 𝐿2 927 872 621 526 271 452 23 902 8022 1189 1780 87 62 8 28 21 199.0 32 510.2(84%) 15

700 𝐿⋆0 1 060 077 723 033 197 406 57 334 8483 0 1815 104 39 18 43 – – –
700 𝐿0 1 069 477 738 691 261 757 58 154 8643 2 2230 102 39 17 42 117.0 40 557.4(79%) −1
700 𝐿1 1 064 366 726 571 269 101 57 923 8539 2 2229 101 40 17 41 33 041.7 20 013.7(67%) −1
700 𝐿2 933 777 636 168 256 529 27 271 8038 1347 4423 96 58 9 31 29 483.4 45 423.0(77%) 11

1000 𝐿⋆0 1 017 669 692 260 189 822 62 025 8146 0 850 101 41 16 43 – – –
1000 𝐿0 1 028 896 713 804 245 254 60 155 8333 0 1349 101 39 15 45 136.3 43 698.0(74%) −1
1000 𝐿1 1 021 288 697 265 253 339 61 216 8192 0 1275 101 40 15 44 39 740.6 39 115.2(68%) 0
1000 𝐿2 931 311 643 213 243 915 32 493 7892 1202 2595 104 50 12 37 82 678.7 49 847.9(84%) 7

1300 𝐿⋆0 1 042 481 704 457 196 548 58 404 8336 0 1974 103 42 16 41 – – –
1300 𝐿0 1 057 678 722 566 262 007 62 183 8494 0 2426 102 41 17 41 232.6 30 366.8(51%) −1
1300 𝐿1 1 053 422 711 026 268 448 62 944 8392 0 2611 100 42 17 40 25 422.0 35 414.2(60%) −1
1300 𝐿2 1 016 902 690 033 244 096 39 575 8410 1214 33 572 102 52 10 37 25 292.9 41 472.2(68%) 2

1600 𝐿⋆0 1 020 075 671 262 201 825 62 765 7961 0 408 100 43 21 37 – – –
1600 𝐿0 1 032 359 689 402 268 823 65 788 8129 0 217 100 42 20 37 345.0 47 730.8(78%) −1
1600 𝐿1 1 031 410 686 880 270 284 65 872 8112 0 260 100 42 19 37 45 326.4 32 501.3(54%) −1
1600 𝐿2 1 009 904 706 790 237 215 40 799 8449 898 15 752 103 48 13 37 29 850.2 49 071.6(78%) 0

R: number of requests; L: flexibility level; 𝐿⋆0 : benchmark; 𝐿0: flexibility Level 0, i.e., same with benchmark; 𝐿1: flexibility Level 1, i.e., trucks are flexible;
𝐿2: flexibility Level 2, i.e., trucks and barges are flexible; 𝐹 : total cost, 𝐹1: transit cost, 𝐹2: transfer cost, 𝐹3: storage cost, 𝐹4: carbon tax, 𝐹5: waiting cost, 𝐹6:
delay penalty, barge: proportion of requests served by barge, train: proportion of requests served by barge, truck: proportion of requests served by barge, initial:
running time of the initial solution, best: running time of the best solution, and the percentage in bracket equals the running time of the best solution divided
by the total running time;
size of segment: 20 iterations; cooling rate 𝑐 = 0.99; 200 iterations; time limit: 48 h.

(b) The cost savings increase when the number of requests increases from 5 to 200 requests. When there are more than

200 requests, the cost savings decrease because of two reasons: (i) the solutions are tighter due to limited capacities;

(ii) ALNS cannot find (near) optimal solutions in limited time due to the complexity of larger size instances.
(c) By using flexible vehicles, cost savings of up to 24% (200 requests at 𝐿2) and 170,000e (400 requests at 𝐿2) are

obtained compared with the cost without flexible vehicles. On average, the proposed model at 𝐿 reduces the cost
25
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by 14% compared with the best solutions without flexibility. It is worth noting that the cost savings are related to
parameters and may differ from one instance to the other.

(d) The cost savings mainly come from the reduction in transit cost, storage cost, and carbon tax. The transfer cost, waiting
cost, and delay penalty usually increase slightly when the total cost decreases because more transshipments and more
barges are used.

(e) The carbon tax decreases when there are more flexibilities because more barges are used. This insight is obtained when
there is no restriction on the schedules of barges. If the schedules were very restricted we would not be able to have
emissions reductions as we would be stuck with trucks in many cases.

3. Number of vehicles and mode share:

(a) At Level 1, trucks are flexible but the mode share of trucks will decrease and the mode share of trains and barges will
increase in most cases. Using more trucks will not reduce cost, but flexible trucks increase the possibilities of using
more trains and barges by intermodal transport. The number of used vehicles may decrease because fewer trucks are
used.

(b) At Level 2, the requests will be shifted from trucks to barges. However, the number of used vehicles sometimes increases
compared with Level 1, especially for instances with 1000 to 1600 requests, because more barges and transshipments
are used.

(c) Using more barges may cause more waiting time and a little delay, but will reduce costs significantly.

4. Computation time:

(a) For instances with 5–30 requests, the best solution is found in 3 s, 30 s, and 8 min at 𝐿0, 𝐿1, 𝐿2, respectively. For
instances with 50–400 requests, the best solution is found in 5 h, 3 h, and 10 h at 𝐿0, 𝐿1, 𝐿2, respectively. This time is
41 h, 40 h, and 39 h for instances with 700–1600 requests. Therefore, for small instances, a higher degree of flexibility
means longer computation time. For large instances, using limited resources to serve a large number of requests in
the most appropriate way is difficult when no flexibility is considered. More alternatives are provided when more
flexibility is considered, therefore the best solution may be found in a shorter time compared with the lower degree
of flexibility.

(b) When using the best solution of the problem with fewer flexibilities as the initial solution, the total computation time
is obviously longer than the other ways because it spends significant time to obtain the initial solution. However, the
running time of the best solution (time after the initial solution is found) is less than other methods for large instances,
although the best solution may not be better than other methods.

(c) For small instances, the best solution is found in the early iterations of ALNS. When the instance size increases, more
iterations are needed.

(d) The computation time of large instances reflects the real-time optimization ability of the proposed model. Take the
instance with 50 requests as an example, the best solution can be found in less than 15 min, which means the proposed
model is able to handle 50 changed requests every 15 min under the same hardware used in this paper.

At 𝐿0 and 𝐿1, ALNS is stable and the differences among multiple optimization runs of ALNS are usually less than 1%. At 𝐿2, the
differences of runs are bigger due to larger solution space and limited running time. Fig. 13 shows the box plots of different numbers
of requests at 𝐿2. The cost savings compared with the benchmark is calculated and different methods for the initial solution are
compared. The proposed model provides better solutions on all instances at 𝐿2 when using methods R and M to obtain the initial
solution. When using method S, all solutions are better except for the instance with 1300 requests. When there are 5 to 400 requests,
the proposed model with flexible vehicles reaches at least 4% and up to 24% cost savings. When there are 700 to 1600 requests,
the cost savings are between 0% and 16% except for the instance with 1300 requests and the S method. From the perspective of
overall performance, method M performs better than the other two methods in cost savings. For instances with 10 and 50 requests,
method S is the best one. For instances with less than 100 requests, method R has very stable performance, although it performs
worst. For instances with 200 requests to 1000 requests, methods S and R have similar performances. When there are more than
1300 requests, method R performs better than method S but not stable. According to the results, adjusting the original plan (method
M) is more appropriate than making a plan from scratch (methods R and S) for transport operators who consider flexible services.

6.6. Evaluations on the customized operators

As illustrated in Section 5.2, a new Swap operator is proposed and some operators are customized depending on the characteristics
of ST. Using instances with 5–100 requests in Section 6.5, Fig. 14 shows the comparison on the (a) results with and without Swap
operator and (b) results of inserting one/multiple request(s) in one construction step in Regret Insertion operator. In Fig. 14(a), the
cost and computation time of the optimal solution are compared. In Fig. 14, solutions are obtained by the Regret Insertion operator
from scratch and only results of the initial solution are presented to avoid influences from other operators. Fig. 14(a) shows that
the cost with Swap operator is always lower than without Swap operator, except the instance with 5 requests, where the costs are
the same. Moreover, the cost gap is increasing with the number of requests and reaches 35% on the instance with 100 requests. The
reason behind it is that the Swap operator inserts more requests into better positions for a larger instance. Therefore, it is shown
that the Swap operator has an important role in obtaining superior solutions, although it slightly increases the computation time.
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Fig. 13. Box plots of different numbers of requests at 𝐿2. The 𝑦-axis is the cost savings compared with the benchmark.

Fig. 14. Evaluations on the customized operators. (a) Comparison on results with and without Swap operator; (b) Comparison on inserting one/multiple request(s)
in Regret Insertion operator.

Fig. 14(b) shows that inserting one request in Regret Insertion operator does not always obtain a lower cost than inserting multiple
requests, such as instances with 10 requests and 30 requests. In contrast, the computation time is decreased dramatically by inserting
multiple requests in one step, especially on large instances. For example, the computation time is reduced by 92% on the instance
with 100 requests.

6.7. Summary

By comparing with the exact approach, the results verify that ALNS reduces computation time significantly. Compared with
existing models in the literature (Demir et al., 2016; Guo et al., 2020), the proposed model provides considerable cost savings
by using flexible vehicles. When allowing flexibility, the requests will be shifted to low-cost and low-emission modes, especially
inland waterways. The cost savings are mainly due to the better utilization of capacities of low-cost vehicles, such as trains and
barges. Additional cost savings for small instances are usually obtained by avoiding unnecessary trips and transshipments. For large
instances, reducing storage costs by flexible vehicles is another important source of cost savings.

The proposed model performs well under different weights for the individual objectives and generates better solutions compared
with solutions in the literature (Demir et al., 2016). When there are congestions, the proposed model can mitigate the impact of
congestions by using flexible vehicles. In large instances, solutions with lower costs (benchmark by Guo et al. (2020)) can always be
found when allowing flexibility. Moreover, the proposed model performs consistently well on different transport networks published
in the literature.
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In addition, the results show that the ALNS with customized operators performs better than without these operators.

. Conclusions and future directions

In order to exploit the service flexibility in synchromodal transport planning, a novel MILP model is formulated and a customized
daptive Large Neighborhood Search (ALNS) is proposed to solve the problem efficiently. The features of synchromodal transport,
uch as multiple modes, transshipment, the mix of fixed and flexible vehicles, complex schedules, and synchronization are considered
n the proposed model. To achieve flexible synchromodal transport, vehicle and request routes are planned simultaneously. In
rder to benefit from the proposed model for realistic size instances, several customized operators are designed and performance
mprovement methods are proposed in ALNS. The proposed model performs well under different weights for the individual objectives
nd can mitigate congestions by using flexible vehicles. When attributes of requests change, the proposed model can also switch
ransport modes flexibly in (near) real-time according to the latest information. By comparing with models published in the
iterature, the results demonstrate that the proposed model can reduce cost by 14% on average when using flexible vehicles.
oreover, the proposed model performs consistently well on large instances and different transport networks. Mode share of barges

ncreases obviously and the carbon tax is reduced when using flexible vehicles, therefore the proposed model is promising for green
ransportation.

The proposed model provides an optimization framework for synchromodal transport with flexible services and shows promising
otential for cost savings and emissions reduction by exploiting the flexibility. The transport operators can use the proposed model
o make schedules for the mix of fixed and flexible vehicles and achieve economic and sustainable transport operations. Based on
he experimental results, the following managerial insights are obtained:

1. Utilizing service flexibility can reduce costs under given resources and enables the transport operator to be more competitive.
More cost savings need a higher degree of flexibility, which allows containers to be shifted to low-cost modes by utilizing the
capacity of barges and trains. However, blindly pursuing low cost will cause delays and longer waiting times. The proposed
model can be used to make decisions taking into account the trade-off between costs, emissions, delays and waiting times.

2. Flexible services facilitate the modal shift in synchromodal transport. When trucks are flexible, the mode share of trucks will
decrease because it increases the possibilities of using more trains and barges by transshipments. Moreover, flexible barges
are necessary for reducing emissions because many requests are still stuck with trucks when only trucks are flexible.

3. Considering the types of cargoes and the characteristics of companies, different transport operators have different preferences
about transportation. Many of them consider multiple objectives to optimize, yet, the importance of different objective terms
may be different. Satisfying one sub-objective is often detrimental to other sub-objectives, while flexible services make the
detriment as low as possible.

4. When there are congestions, especially severe congestions, the impacts can be alleviated more with a higher level of flexibility
because more options are provided.

5. Flexible services provide more alternatives in case of changes in the request and react to unexpected events in (near) real-time
more efficiently. Service flexibility also plays an important role even when demand is known beforehand and there are no
dynamics. Namely, demand might be different every day, thus services need to be flexible to avoid empty miles, delay, and
low load factors. Furthermore, flexible services are able to reduce cost and shift towards sustainable modes.

6. Compared with planning from scratch, adjusting the transport plan with predefined schedules is the best way for transport
operators to adopt flexible services, which will not change the original plan significantly and provide more cost savings.

It is worth noting that managerial insights 2 and 4 have been provided by the existing literature (Ambra et al., 2019; Guo et al.,
020) and confirmed by this study.

We suggest the following topics for further research:

1. In reality, it may not always be easy to achieve full flexibility because flexible routing and scheduling need the collaboration
of terminal operators. In the numerical experiments, we assume all trucks/barges are flexible and the situations that only
some specific vehicles can be flexible are not considered, although specific flexible vehicles are possible in the proposed
model. To build a more practical model, future research should look into what is the best strategy to use flexible vehicles
and (a) which vehicle can be flexible? (b) how much flexibility is allowed for a flexible vehicle?

2. When transport operators have different preferences on the components of the objective function, different flexible transport
operations are needed. Although this study considers preferences as weights, the conflicts between objectives are not studied.
Approaches in multi-objective optimization, such as Pareto Optimality, can represent different trade-offs of conflict objectives.
Therefore, a preference-based multi-objective optimization model is an interesting research direction.

3. Multiple transport operators may want to collaborate to reduce costs, time, or emissions. It is worth studying whether flexible
vehicles can contribute to collaborative planning. In the same terminal, multiple transport operators may have conflicts due
to limited capacity and resources, hence the terminal operator needs to allocate storage resources, schedule vehicles of the
same type, and arrange transshipments. Therefore, another potential direction is to study how the terminal operator makes
plans with transport operators cooperatively.

4. Uncertainties exist in operations of synchromodal transport. Transport operators might be able to handle uncertainties in a
better way by allowing flexibility. For example, a spot market releases some new requests, which cannot be served or only
be served at high costs by predefined schedules but can be served when considering flexible routes of vehicles. Therefore, it
is interesting to research optimization under flexibility and uncertainty.
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ppendix A. Valid inequalities for mathematical model

The valid inequalities are divided into three categories and the reduced variables are indicated in brackets.

1. Valid inequalities related to requests (𝑦𝑘𝑟𝑖𝑗 ):

(a) Terminal 𝑖 or 𝑗 cannot be dummy depot.

𝑦𝑘𝑟𝑖𝑗 = 0 ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑂, ∀𝑗 ∈ 𝑁 (58)

𝑦𝑘𝑟𝑖𝑗 = 0 ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑂 (59)

(b) 𝐾𝑟
small ⊆ 𝐾 represents set of vehicles with a capacity that cannot accommodate request 𝑟, i.e., violate capacity

constraints (15).

𝑦𝑘𝑟𝑖𝑗 = 0 ∀𝑘 ∈ 𝐾𝑟
small, ∀𝑟 ∈ 𝑅, ∀(𝑖, 𝑗) ∈ 𝐴 (60)

(c) 𝐾𝑟
early ⊆ 𝐾fix represents set of fixed vehicles whose latest departure time 𝑏𝑘𝑖 is earlier than request 𝑟’s earliest pickup

time 𝑎𝑝(𝑟), i.e., violate Constraints (34).

𝑦𝑘𝑟𝑖𝑗 = 0 ∀𝑘 ∈ 𝐾𝑟
early, ∀𝑟 ∈ 𝑅, ∀(𝑖, 𝑗) ∈ 𝐴 (61)

(d) 𝐾𝑟
late ⊆ 𝐾 represents set of vehicles whose earliest departure time at pickup terminal, i.e., the time from begin depot to

pickup terminal plus loading time, later than request 𝑟’s latest pickup time 𝑏𝑝(𝑟). 𝐾𝑟
late will be removed due to Constraints

(34).

𝑦𝑘𝑟𝑖𝑗 = 0 ∀𝑘 ∈ 𝐾𝑟
late, ∀𝑟 ∈ 𝑅, ∀(𝑖, 𝑗) ∈ 𝐴 (62)

2. Valid inequalities related to vehicles (𝑥𝑘𝑖𝑗):

(a) A vehicle 𝑘 ∈ 𝐾 cannot go to other vehicles’ dummy depots.

𝑥𝑘𝑖𝑗 = 0 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑂 ⧵ 𝑜(𝑘),∀𝑗 ∈ 𝑁 (63)

𝑥𝑘𝑖𝑗 = 0 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁,∀𝑗 ∈ 𝑂 ⧵ 𝑜′(𝑘) (64)

(b) If there is a dummy depot in 𝑥𝑘𝑖𝑗 , it must be together with a depot.

𝑥𝑘𝑜(𝑘)𝑗 = 0 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝑁 ⧵ 𝑜(𝑘) (65)

𝑥𝑘
𝑖𝑜′(𝑘)

= 0 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁 ⧵ 𝑜′(𝑘) (66)

(c) Begin depot cannot be 𝑗 when 𝑖 is not dummy begin depot; end depot cannot be 𝑖 when 𝑗 is not dummy end depot.

𝑥𝑘𝑖𝑜(𝑘) = 0 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁 ⧵ 𝑜(𝑘) (67)

𝑥𝑘𝑜′(𝑘)𝑗 = 0 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝑁 ⧵ 𝑜′(𝑘) (68)

(d) Dummy begin depot cannot be 𝑗 in 𝑥𝑘𝑖𝑗 ; dummy end depot cannot be 𝑖 in 𝑥𝑘𝑖𝑗 .

𝑥𝑘𝑖𝑜(𝑘) = 0 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁 (69)

𝑥𝑘 = 0 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝑁 (70)
29
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(e) Remove 𝑥𝑘𝑖𝑗 when there is no compatible 𝑦𝑘𝑟𝑖𝑗 .

𝑥𝑘𝑖𝑗 ⩽
∑

𝑟∈𝑅
𝑦𝑘𝑟𝑖𝑗 ∀𝑘 ∈ 𝐾, ∀(𝑖, 𝑗) ∈ 𝐴 (71)

3. Valid inequalities related to transshipment (𝑠𝑘𝑙𝑖𝑟 ):

(a) A transshipment only happens when request 𝑟 can be transported by both vehicles 𝑘 and 𝑙 at transshipment terminal
𝑖.

𝑠𝑘𝑙𝑖𝑟 ⩽
∑

𝑗∈𝑁
𝑦𝑘𝑟𝑗𝑖 ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑇 , ∀𝑘, 𝑙 ∈ 𝐾 (72)

𝑠𝑘𝑙𝑖𝑟 ⩽
∑

𝑗∈𝑁
𝑦𝑙𝑟𝑖𝑗 ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑇 , ∀𝑘, 𝑙 ∈ 𝐾 (73)

(b) Request 𝑟’s pickup/delivery terminal cannot be transshipment terminal 𝑖.

𝑠𝑘𝑙𝑝(𝑟)𝑟 = 0 ∀𝑟 ∈ 𝑅, ∀𝑘, 𝑙 ∈ 𝐾 (74)

𝑠𝑘𝑙𝑑(𝑟)𝑟 = 0 ∀𝑟 ∈ 𝑅, ∀𝑘, 𝑙 ∈ 𝐾 (75)

(c) For a fixed vehicle 𝑘, the terminals in the predefined route should contain transshipment terminal 𝑖 when 𝑘 is used to
transfer a request. 𝐾𝑟

noT represents set in which vehicles cannot meet the mentioned requirements.

𝑠𝑘𝑙𝑖𝑟 = 0 ∀𝑟 ∈ 𝑅, ∀𝑘 ∈ 𝐾𝑟
noT, ∀𝑙 ∈ 𝐾, ∀𝑖 ∈ 𝑇 (76)

𝑠𝑘𝑙𝑖𝑟 = 0 ∀𝑟 ∈ 𝑅, ∀𝑘 ∈ 𝐾, ∀𝑙 ∈ 𝐾𝑟
noT, ∀𝑖 ∈ 𝑇 (77)

(d) When request 𝑟 is transferred from vehicle 𝑘 to vehicle 𝑙 trough transshipment terminal 𝑖, vehicle 𝑘’s begin depot and
𝑙’s end depot cannot be 𝑖.

𝑠𝑘𝑙𝑜(𝑘)𝑟 = 0 ∀𝑟 ∈ 𝑅, ∀𝑘, 𝑙 ∈ 𝐾 (78)

𝑠𝑘𝑙𝑜′(𝑙)𝑟 = 0 ∀𝑟 ∈ 𝑅, ∀𝑘, 𝑙 ∈ 𝐾 (79)

(e) When request 𝑟 is transferred from vehicles 𝑘 to vehicle 𝑙 trough transshipment terminal 𝑖 and both vehicles 𝑘 and 𝑙
have fixed time schedules, 𝑙’s departure time cannot be earlier than 𝑘’s arrival time at 𝑖. 𝐾earlyT represents set in which
vehicle combinations violate this rule.

𝑠𝑘𝑙𝑖𝑟 = 0 ∀𝑟 ∈ 𝑅, ∀(𝑘, 𝑙) ∈ 𝐾 𝑖
earlyT, ∀𝑖 ∈ 𝑇 (80)

Moreover, the other variables, such as 𝑧𝑘𝑖𝑗 and 𝑡𝑘𝑟𝑖 , are reduced when there is no compatible variables 𝑥𝑘𝑖𝑗 , 𝑦
𝑘𝑟
𝑖𝑗 , or 𝑠𝑘𝑙𝑖𝑟 .

ppendix B. Feasibility checking on time constraints

Before calculating times, the vehicle’s start time needs to be defined. If the vehicle is a fixed vehicle and not truck, its start
ime at begin depot is 𝑎𝑘𝑜(𝑘). Otherwise, there are two situations: (a) if 𝑜(𝑘) is pickup terminal 𝑝𝑟1 , assign 𝑎𝑝(𝑟1) to 𝑡𝑘𝑜(𝑘); (b) if 𝑜(𝑘) is
ransshipment terminal 𝑇𝑟1 of the first served request, assign delivery time at transshipment terminal 𝑇𝑑𝑟1𝑜(𝑘) to 𝑡𝑘𝑜(𝑘). If it not belongs
o any above situations, the vehicle will start from begin depot at time 0.

Flow Chart 15 shows the flexibility check for barge (or train) 𝑘 when it at terminal 𝑗. The different situations of fixed/flexible
vehicles and transshipments are also distinguished. Flow Chart 16 shows how to assign time to the truck fleet. 𝑢𝑠𝑒𝑇 means the
request is transferred before and 𝑇 𝑝𝑟𝑖 means request 𝑟’s pickup time at transshipment terminal 𝑖. There are no waiting times and
infeasible situations when using trucks because trucks can serve requests immediately and delay is allowed.

Appendix C. Performance improvement

Although the ALNS is a powerful heuristic, it is still hard to solve the proposed problem efficiently on real-life instances due to
the complexity brought by characteristics mentioned in Section 3. Therefore, several methods are used to improve the performance
of ALNS, in which preprocessing heuristics are used to reduce the solution space before the optimization and both hash table and
30

bundle insertion are used to speed up the search process during the optimization.
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Fig. 15. Barge and train’s time at pickup/delivery/transshipment terminal in ALNS.

C.1. Preprocessing heuristics

Similar to the valid inequalities in Appendix A, we designed some preprocessing heuristics to reduce the solution space of ALNS.
Some new sets are used in ALNS. 𝐾𝑛𝑘

𝑟 represents vehicle combinations that can serve the same request 𝑟. The 𝐾1𝑘
𝑟 is the set of

vehicles that can serve request 𝑟 by itself. 𝐾𝑝
𝑟 represents vehicles that can pick up request 𝑟. 𝐾 𝑖

𝑟 (𝑖 ∈ 𝑇 ) represents vehicles that
serve request 𝑟 with specific transshipment terminal 𝑖. In ALNS, these sets are used when the related type of vehicles is needed to
serve requests. The preprocessing heuristics are divided into two categories and the reduced sets in ALNS are indicated in brackets.
The reference to valid inequalities in Appendix A will be given if the meaning of the preprocessing heuristic is as same as the valid
inequalities.

1. Preprocessing heuristics related to requests (𝐾1𝑘
𝑟 , 𝐾𝑛𝑘

𝑟 and 𝐾𝑝
𝑟 ):

(a) 𝑘 in Appendix A 1b, 1c, and 1d will be removed from related 𝐾1𝑘
𝑟 , 𝐾𝑛𝑘

𝑟 , and 𝐾𝑝
𝑟 .

(b) For 𝑘 ∈ 𝐾fix∩𝐾1𝑘
𝑟 ∩𝐾𝑝

𝑟 , its route should contain arc (𝑝(𝑟), 𝑑(𝑟)). For 𝑘 ∈ 𝐾fix∩𝐾𝑛𝑘
𝑟 ∩𝐾𝑝

𝑟 , its route should contain 𝑝(𝑟)/𝑑(𝑟)
if it is used to pick up/deliver 𝑟. Moreover, when two fixed vehicles serving the same request 𝑟 in succession, their
routes should contain the same transshipment terminal. Vehicles which violate the above rules will be removed from

1𝑘 𝑛𝑘 𝑝
31

related 𝐾𝑟 , 𝐾𝑟 , and 𝐾𝑟 .
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Fig. 16. Truck’s time at pickup/delivery/transshipment terminal in ALNS.

Fig. 17. Reducing transshipment terminals.

2. Preprocessing heuristics related to transshipment (𝐾 𝑖
𝑟):

(a) 𝑘 in Appendix A 3b, 3c, 3d, and 3e will be removed from 𝐾 𝑖
𝑟.

(b) Vehicles that use transshipment terminal 𝑖 will be removed from 𝐾 𝑖
𝑟 when using terminal 𝑖 increases too much distance,

i.e., 𝑑𝑘𝑝(𝑟)𝑖 + 𝑑
𝑘
𝑖𝑑(𝑟) > 𝜑𝑑

𝑘
𝑝(𝑟)𝑑(𝑟), where 𝜑 is a coefficient set according to the specific transportation network. As shown in

Fig. 17(a), three transshipment terminals are considered for request 1, and vehicles that use transshipment terminal
C will be removed from 𝐾 𝑖

𝑟. However, vehicles that use transshipment terminal C will be added to 𝐾 𝑖
𝑟 during the

optimization of ALNS if the vehicle goes to nearby terminals, which is illustrated in Fig. 17(b) with request 2 that is
nearby transshipment terminal C.

(c) The vehicle combinations which are not in 𝐾𝑛𝑘
𝑟 will be removed from 𝐾 𝑖

𝑟.
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Table 10
The keys and values in hash tables of successful insertion.

Name Keys Value

𝐴𝑙𝑙1𝑘 (𝑟, 𝑟𝑜𝑢𝑡𝑒), 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛1𝑘 𝑣𝑎𝑙𝑢𝑒1𝑘
𝐵𝑒𝑠𝑡1𝑘 (𝑟, 𝑟𝑜𝑢𝑡𝑒), 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛best

1𝑘 𝑣𝑎𝑙𝑢𝑒best
1𝑘

𝐴𝑙𝑙2𝑘 (𝑟, 𝑟𝑜𝑢𝑡𝑒1 , 𝑟𝑜𝑢𝑡𝑒2), 𝑇 , 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛best
2𝑘 𝑣𝑎𝑙𝑢𝑒2𝑘

𝐵𝑒𝑠𝑡2𝑘 (𝑟, 𝑟𝑜𝑢𝑡𝑒1 , 𝑟𝑜𝑢𝑡𝑒2), 𝑇 best, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛best
2𝑘 𝑣𝑎𝑙𝑢𝑒best

2𝑘

Table 11
The components in keys and values.

Name Components

𝑟 (𝑝(𝑟), 𝑑(𝑟), 𝑎𝑝(𝑟) , 𝑏𝑝(𝑟) , 𝑎𝑑(𝑟) , 𝑏𝑑(𝑟) , 𝑞𝑟)

𝑟𝑜𝑢𝑡𝑒 (𝑖, 𝑣𝑘 , 𝑢𝑘 , 𝑡𝑘𝑖 , 𝑡
′𝑘
𝑖 , 𝑡

𝑘
𝑖 , 𝑙𝑎𝑏𝑒𝑙𝑖), 𝑖 ∈ 𝑁𝑘

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑚, 𝑛)

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛best
2𝑘 ((𝑚1 , 𝑛1), (𝑚2 , 𝑛2))

𝑣𝑎𝑙𝑢𝑒1𝑘 (𝑟𝑜𝑢𝑡𝑒𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑 , 𝑐𝑜𝑠𝑡𝑟)

𝑣𝑎𝑙𝑢𝑒2𝑘 (𝑟𝑜𝑢𝑡𝑒𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑1 , 𝑟𝑜𝑢𝑡𝑒𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑2 , 𝑐𝑜𝑠𝑡𝑟 , 𝑘1 , 𝑘2)

C.2. Hash table

When using insertion operators, it is typically necessary to evaluate the same move repeatedly during the optimization. Avoiding
hese repetitive computations can significantly reduce computation time, especially for large instances. Inspired by the idea proposed
n Qu and Bard (2012), a cache structure that uses hash tables is implemented. Specifically, the hash table holds the best insertion
ositions and infeasible insertion positions for a given request and route.

Tables 10 and 11 give an example and illustrate how to establish hash tables with and without transshipment. The keys and
alues of hash tables of successful insertion are shown in Table 10. Table 11 shows the components in keys and values. The first
wo hash tables are for insertions without transshipment, which include all possible positions (𝐴𝑙𝑙1𝑘) and the best position (𝐵𝑒𝑠𝑡1𝑘)

during the search separately. Both of them have two keys and therefore have three layers. The first layer is key (𝑟, 𝑟𝑜𝑢𝑡𝑒), which
includes the inserted request and route. 𝑟 includes all information of the request except index to avoid unnecessary storage when
there is the same request in the hash table. 𝑟𝑜𝑢𝑡𝑒 includes all visited terminals 𝑖 ∈ 𝑁𝑘, speed, capacity, time, and the label 𝑙𝑎𝑏𝑒𝑙𝑖 of
the visited terminal, e.g., delivery request 1. The second layer is key 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛1𝑘, which is the inserted position (𝑚, 𝑛) of pickup and
delivery. The third layer is the value, which includes the route after insertion and the cost of the inserted request. The other two
hash tables are for insertion with transshipment and they have four layers due to a new key 𝑇 , which is the transshipment terminal.
𝑇 divides the request into two sub-requests, therefore 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛2𝑘 has two position tuples at two routes. Correspondingly, 𝑣𝑎𝑙𝑢𝑒2𝑘 also
has two routes and names of two vehicles. 𝑐𝑜𝑠𝑡𝑟 in 𝑣𝑎𝑙𝑢𝑒2𝑘 is the cost of inserted request at both routes.

Similarly, the hash tables for failed insertion include the same keys but they do not have values because the solution is infeasible.

C.3. Bundle insertion

The requests with the same pickup and delivery terminals are called bundle requests. The basic cost of request 𝑟 includes request
cost, loading/unloading cost and carbon tax, which are not dependent on time, as the following equation shows:

𝐹𝑏𝑎𝑠𝑖𝑐 =
∑

𝑘∈𝐾

∑

(𝑖,𝑗)∈𝐴
(𝑐1𝑘𝜏𝑖𝑗 + 𝑐

1′
𝑘 𝑑

𝑘
𝑖𝑗 )𝑞𝑟𝑦

𝑘𝑟
𝑖𝑗 +

∑

𝑘,𝑙∈𝐾,𝑘≠𝑙

∑

𝑖∈𝑇
(𝑐2𝑘 + 𝑐

2
𝑙 )𝑞𝑟𝑠

𝑘𝑙
𝑖𝑟+

∑

𝑘∈𝐾

∑

(𝑖,𝑗)∈𝐴𝑝

𝑐2𝑘𝑞𝑟𝑦
𝑘𝑟
𝑖𝑗 +

∑

𝑘∈𝐾

∑

(𝑖,𝑗)∈𝐴𝑑

𝑐2𝑘𝑞𝑟𝑦
𝑘𝑟
𝑖𝑗 +

∑

𝑘∈𝐾

∑

(𝑖,𝑗)∈𝐴
𝑐4𝑘𝑒𝑘𝑞𝑟𝑑

𝑘
𝑖𝑗𝑦

𝑘𝑟
𝑖𝑗

(81)

If there are no other costs, such as delay penalty, storage cost, and waiting cost, the insertion cost of bundle requests will be the
same for the same route(s). If the best position of a request is found greedily, then it is also the best position for bundle requests
when there is only basic cost. After each insertion, the bundle requests will be inserted into the same positions when it passes the
feasibility check and there is only a basic cost. In this way, the computation time can be saved by not considering other possible
positions. However, maybe there are other requests more suitable for this vehicle. Therefore, not all bundle requests will be inserted,
which will avoid occupying too much capacity of this vehicle. The number of inserted requests in the bundle is randomly chosen
based on distribution [𝑥1, 𝑥2,… , 𝑥3] for [1, 2,… , 𝑚], where 𝑚 is the number of requests in the bundle, 𝑥1 = 1∕𝜍 and 𝑥𝑖 = 𝑥𝑖−1∕𝜍 when
𝑖 > 1, where 𝜍 is a parameter for adjusting the distribution.
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Table 12
Parameters used in the paper.

Parameter Value Parameter Value Parameter Value

𝑐1truck 30.98 𝑐1train 7.54 𝑐1barge 0.6122

𝑐1′truck 0.2758 𝑐1′train 0.0635 𝑐1′barge 0.0213

𝑐2truck 3 𝑐2train 18 𝑐2barge 18

𝑐3truck 1 𝑐3train 1 𝑐3barge 1

𝑐4truck 8 𝑐4train 8 𝑐4barge 8

𝑐5truck 1 𝑐5train 1 𝑐5barge 1

𝑒truck 0.8866 𝑒train 0.3146 𝑒barge 0.2288
𝛾1−4 0.25 𝜉 1.3 𝜎 0.5
𝜍 1.1 𝜚 0.2 𝜑 1.3
𝑡1 0 𝑡2 5 𝑡3 7
𝑡4 9 𝑡5 13 𝑡6 13
𝑡7 17 𝑡8 19 𝑡9 21
𝑡10 24 𝛼 2 𝛽 1.5
𝜛1 0.5 𝜛2 0.2 𝜛3 0.3

Appendix D. Parameters used in this paper

Most parameters are derived from Guo et al. (2020) and Demir et al. (2016), and the rest parameters are defined by tuning
LNS. Part of parameters are shown in Table 12.

Note that the cost parameters in Table 12 are used in the comparison with results of Guo et al. (2020). Demir et al. (2016) use
ifferent cost parameters for different vehicles/terminals. The values of other parameters which have different values for different
ehicles/requests/terminals can be found at a research data website.3
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