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Distributed Stochastic Model Predictive Control Synthesis for
Large-Scale Uncertain Linear Systems

Vahab Rostampour, and Tamás Keviczky

Abstract— This paper presents an approach to distributed
stochastic model predictive control (SMPC) of large-scale uncer-
tain linear systems with additive disturbances. Typical SMPC
approaches for such problems involve formulating a large-
scale finite-horizon chance-constrained optimization problem
at each sampling time, which is in general non-convex and
difficult to solve. Using an approximation, the so-called scenario
approach, we formulate a large-scale scenario program and
provide a theoretical guarantee to quantify the robustness of
the obtained solution. However, such a reformulation leads to
a computational tractability issue, due to the large number of
required scenarios. To this end, we present two novel ideas in
this paper to address this issue. We first provide a technique
to decompose the large-scale scenario program into distributed
scenario programs that exchange a certain number of scenarios
with each other in order to compute local decisions. We show
the exactness of the decomposition with a-priori probabilistic
guarantees for the desired level of constraint fulfillment. As
our second contribution, we develop an inter-agent soft com-
munication scheme based on a set parametrization technique
together with the notion of probabilistically reliable sets to
reduce the required communication between each subproblem.
We show how to incorporate the probabilistic reliability notion
into existing results and provide new guarantees for the desired
level of constraint violations. A simulation study is presented
to illustrate the advantages of our proposed framework.

I. INTRODUCTION

Distributed model predictive control (MPC) has been an
active research area in the past decades, due to its applicabil-
ity in different domains such as power networks [1], chemical
process control [2], and building automation [3]. For such
large-scale dynamic systems with state and input constraints,
distributed MPC is an attractive control scheme. In dis-
tributed MPC one replaces large-scale optimization problems
stemming from centralized MPC with several smaller-scale
problems that can be solved in parallel. These problems make
use of pieces of information from other subsystems to design
a distributed MPC. In the presence of uncertainties, however,
the main challenge in the formulation of distributed MPC is
how the controllers should exchange pieces of information
through a communication scheme among subsystems (see,
e.g. [4], and references therein). This highlights the necessity
of developing distributed control strategies to cope with
the uncertainties in subsystems while at the same time
minimizing information exchange through a communication
framework.
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ergy Systems (URSES) research program funded by the Dutch organization
for scientific research (NWO) and Shell under the project Aquifer Thermal
Energy Storage Smart Grids (ATES-SG) with grant number 408-13-030.

The authors are with Delft Center for Systems and Control, Delft
University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.
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To handle uncertainties in distributed MPC, some ap-
proaches are based on robust MPC [5]. Assuming that the
uncertainty is bounded, a robust optimization problem is
solved at each sampling time, leading to a control law
that satisfies the constraints for all admissible values of the
uncertainty. The resulting solution using such an approach
tends to be very conservative in many cases. Tube-based
MPC, see for example [6] and the references therein, was
considered in a plug-and-play decentralized setup in [7],
and it has been recently extended to distributed control
systems [8] for a collection of linear stochastic subsystems
with independent dynamics. While in [8] coupled chance
constraints were considered such that the uncertainties are
independent at each time step, in this paper we consider
a chance constraint on the feasibility of trajectories of dy-
namically coupled subsystems with uncertainties that might
be correlated through time steps. Our approach is motivated
by [7] to reduce the conservativeness of the control design.
Other representative approaches for stochastic MPC (SMPC)
of a single stochastic system include affine parametrization
of the control policy [9], the randomized (scenario) approach
[10], and the combined randomized and robust approach [11]
based on [12]. None of these approaches, to the best of
our knowledge, have been considered in distributed control
strategies.

This paper aims to propose a solution for distributed
SMPC by promoting the scenario MPC technique to the
distributed case in a more systematical approach. Scenario
MPC approximates SMPC via the so-called scenario (sam-
ple) approach [13], [14], and if the underlying optimization
problem is convex with respect to the decision variables,
finite sample guarantees can be provided. Following such
an approach, the computation time for a realistic large-scale
system of interest becomes prohibitive, due to the fact that
the number of samples to be extracted tends to be very high,
and consequently leads to a large number of constraints in
the resulting optimization problem. To overcome the com-
putational burden caused by the large number of constraints,
in [15], [16] a heuristic sample-based approach was used in
an iterative distributed fashion via dual decomposition such
that all subsystems collaboratively optimize a global perfor-
mance index. In another interesting work [17], a multi-agent
consensus algorithm was presented to achieve consensus on
a common value of the decision vector subject to random
constraints such that a probabilistic bound on the tails of
the consensus violation was also established. However, in
most of the aforementioned references the aim to reduce
communication among subsystems, which we refer to as
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agents, has not been addressed.
Our work in this paper differs from the aforesaid ref-

erences in two important aspects which have not been,
to the best of our knowledge, considered in literature. A
decomposition technique based on the large-scale system
dynamics is employed to distribute the resulting centralized
scenario optimization problem at each sampling time and
a novel communication scheme is introduced to reduce
communication between the small-scale problems. The main
contributions of this paper are twofold: 1) We provide a
technique to decompose the large-scale scenario program
into distributed scenario programs that exchange a certain
number of scenarios with each other in order to compute
local decisions. We show the exactness of the decompo-
sition with a-priori probabilistic guarantees for the desired
level of constraint fulfillment under some mild conditions.
2) We develop an inter-agent soft communication scheme
based on a set parametrization technique together with the
notion of probabilistically reliable set to reduce the required
communication between each subproblem. We show how to
incorporate the probabilistic reliability notion into existing
results and provide new guarantees for the desired level of
constraint violations. NOTATIONS

R,R+ denote the real and positive real numbers, and
N,N+ the natural and positive natural numbers, respectively.
We operate within the n-dimensional space Rn composed
of column vectors u, v ∈ Rn. The Cartesian product over n
sets X1, · · · ,Xn is given by:

∏n
i=1 Xi = X1 × · · · × Xn =

{(x1, · · · , xn) : xi ∈ Xi}. The cardinality of a set A is
denoted by |A| = A. We denote a block-diagonal matrix
with blocks Xi, i ∈ {1, · · · , n}, by diagi∈{1,··· ,n}(Xi), and
a vector consisting of stacked sub vectors xi, i ∈ {1, · · · , n},
by coli∈{1,··· ,n}(xi). Given a metric space ∆, its Borel σ-
algebra is denoted by B(∆). Throughout the paper, measur-
ability always refers to Borel measurability. In a probability
space (∆,B(∆),P), we denote the N -Cartesian product set
of ∆ by ∆N and the respective product measure by PN .

II. PROBLEM STATEMENT

Consider a discrete-time uncertain linear system with
additive disturbance in a compact form as follows:

xk+1 = A(δk)xk +B(δk)uk + C(δk)wk , (1)

with a fixed initial condition x0 ∈ Rm. Here k ∈ T :=
{0, 1, · · · , T − 1} denotes the time instance, xk ∈ X ⊂ Rm
and uk ∈ U ⊂ Rp correspond to the state and control
input, respectively, and wk ∈ Rn represents an additive
disturbance. The system matrices A(δk) ∈ Rm×m and
B(δk) ∈ Rm×p as well as C(δk) ∈ Rm×n are random, since
they are known functions of an uncertain variable δk that
influences the system parameters at each time step k. w :=
{wk}k∈T and δ := {δk}k∈T are defined on some probability
spaces (W,B(W),Pw) and (∆,B(∆),Pδ), respectively. w
and δ are two independent random processes. The support
sets W and ∆ of w and δ, respectively, together with their
probability measures Pw and Pδ are entirely generic. In fact,
W , ∆ and Pw, Pδ do not need to be known explicitly.

Instead, the only requirement is availability of a "sufficient
number" of samples, which will become concrete in later
parts of the paper. Such samples can be for instance obtained
by a learned model from available historical data [18].

Consider the state and control input constraint sets to be
compact convex in the following form

X := {x ∈ Rm : Gx ≤ g } , U := {u ∈ Rp : H u ≤ h } ,
where G ∈ Rq×m, g ∈ Rq , and H ∈ Rr×p, h ∈ Rr. In order
to find a stabilizing full-information controller that leads to
admissible control inputs u := {uk}k∈T and satisfies the
state constraints, we follow the traditional MPC approach.
The design relies on the standard assumption of the existence
of a suitable pre-stabilizing control law, e.g., [7, Proposition
1]. To cope with the state prediction under uncertainty and
disturbance, we employ a parametrized feedback policy [9]
for (1) and split the control input, uk = Kxk + vk, with
vk ∈ Rp as a free correction input variable to compensate
for disturbances.

The control objective is to minimize a cumulative
quadratic stage cost of a finite horizon cost J(·) : Rm ×
Rp → R that is defined as follows:

J(x,u) = E

[
T−1∑
k=0

(
x>k Qxk + u>k Ruk

)
+ x>T PxT

]
, (2)

Q ∈ Rm×m�0 , and R ∈ Rp×p�0 . Consider x := {xk}k∈T ,
(A,Q

1
2 ) to be detectable and P to be the solution of the

discrete-time Lyapunov equation:

E[Acl(δk)>PAcl(δk) ] +Q+K>RK − P � 0 , (3)

for the closed-loop system, Acl(δk) = A(δk) + B(δk)K.
Each stage cost term is taken in expectation E[·], since the
argument xk is a random variable. Note that two major
difficulties arising in stochastic and distributed MPC, namely
recursive feasibility [19] and stability, are not in the scope of
this paper, and they are subject of our ongoing research work.
Using v = {vk}k∈T , consider now the following stochastic
control problem:

min
v∈RTp

J(x,u) (4a)

s.t. xk+1 = A(δk)xk +B(δk)uk + C(δk)wk , (4b)
P[xk+` ∈ X , ` ∈ N+ ] ≥ 1− ε , (4c)
uk = Kxk + vk ∈ U , ∀k ∈ T , (4d)

where x0 is initialized based on the measured current state,
and ε ∈ (0, 1) is the admissible state constraint violation
parameter of the large-scale system (1). Even though U and
X are compact convex sets, due to the chance constraint
on the state trajectory, the feasible set of the optimization
problem in (4) is a non-convex set, in general.

To handle the chance constraint (4c), we recall a scenario-
based approximation [20]. wk and δk at each sampling
time k ∈ T are not necessarily independent and identically
distributed (i.i.d.). In particular, they may have time-varying
distributions and/or be correlated in time. We assume that
a "sufficient number" of i.i.d. samples of the disturbance

2072

Authorized licensed use limited to: TU Delft Library. Downloaded on January 12,2022 at 13:55:27 UTC from IEEE Xplore.  Restrictions apply. 



w ∈ W and δ ∈ ∆ can be obtained either empirically
or by a random number generator. We denote Sw :=
{w(1), · · · ,w(Ns)} ∈ WNs and Sδ := {δ(1), · · · , δ(Ns)} ∈
∆Ns as sets of given finite samples (scenarios). Following
the approach in [2], we approximate the expected value of the
objective function empirically by averaging the value of its
argument for some number of different scenarios Ns̄, which
plays a tuning parameter role.

We are now in a position to formulate an approximated
version of the proposed stochastic control problem in (4)
using the following finite horizon scenario program:

min
v∈RTp

J(x,u) (5a)

s.t. x
(i)
k+1 = A(δ

(i)
k )x

(i)
k +B(δ

(i)
k )u

(i)
k + C(δ

(i)
k )w

(i)
k , (5b)

x
(i)
k+` ∈ X , ` ∈ N+ , ∀w(i) ∈ Sw , ∀δ(i) ∈ Sδ , (5c)

u
(i)
k = Kx

(i)
k + vk ∈ U , ∀k ∈ T , (5d)

where superscript (i) indicates a particular sample realiza-
tion. The solution of (5) is the optimal control input sequence
v∗ = {v∗k, · · · , v∗k+T−1}. Based on the MPC paradigm,
the current input is implemented as uk := Kxk + v∗k and
we proceed in a receding horizon fashion. Note that new
scenarios are needed at each sampling time k ∈ T .

In the following theorem, we restate the explicit theoret-
ical bound of [14, Theorem 1] which measures the finite
scenarios behavior of (5).

Theorem 1: Let ε , β ∈ (0, 1) and Ns ≥ N(ε, β, Tp),
where

N(ε, β, Tp) := min

{
N ∈ N

∣∣∣ Tp−1∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β

}
.

If the optimizer of problem (5), v∗ ∈ <Tp, is applied to the
discrete time dynamical system (1) for a finite horizon of
length T , then, with at least confidence 1 − β, the original
constraint (4c) is satisfied for all k ∈ T with probability
more than 1− ε.

It was shown in [14] that the above bound is tight. The
interpretation of Theorem 1 is as follows: when applying
v∗ in a finite horizon control problem, the violation of
the feasibility of the state trajectory remains below ε with
confidence 1− β:

PNs
[
Sw ∈ WNs ,Sδ ∈ ∆Ns : Vio(v∗) ≤ ε

]
≥ 1− β ,

with Vio(v∗) := P[w ∈ W, δ ∈ ∆ : xk+` = Acl(δk)xk +
B(δk)v∗k + C(δk)wk /∈ X , ` ∈ N+

∣∣xk = x0 ] , where
Acl(δk) = A(δk) + B(δk)K. It is worth mentioning that
the proposed constraint on the control input in (5d) is also
met in a probabilistic sense, due to the nature of the scenario
approach that appears in (5).

Remark 1: One can obtain an explicit expression for the
desired number of scenarios Ns as in [21], where it is shown
that given ε, β ∈ (0, 1) and e the Euler constant, then
Ns ≥ e

e−1
1
ε

(
Tp+ ln 1

β

)
. It is important to note that Ns

is used to construct the sets of scenarios, Sw, Sδ to obtain
a probabilistic guarantee for the desired level of feasibility,
while the number of scenarios Ns̄ is just a tuning variable
to approximate the objective function empirically.

III. DISTRIBUTED SCENARIO MPC

We consider a partitioning of the system dynamics (1)
through a decomposition into M subsystems and let M =
{1, 2, · · · ,M} be the set of subsystem indices. The state
variables xk, control input signals uk and the additive dis-
turbance wk, can be considered as xk = coli∈M(xi,k), uk =
coli∈M(ui,k), and wk = coli∈M(wi,k), respectively, where
xi,k ∈ Rmi , ui,k ∈ Rpi , wi,k ∈ Rni , and

∑
i∈Mmi = m,∑

i∈M pi = p,
∑
i∈M ni = n. The following assumption

is important in order to be able to partition the system
parameters.

Assumption 1: It is assumed that the control input and the
disturbance variables of the subsystems are decoupled,. e.g.
ui,k and wi,k only affect subsystem i ∈ M for all k ∈ T .
The state and control input constraint sets of each subsystem
i ∈M have the following form: Xi := {x ∈ Rmi : Gi x ≤
gi } , Ui := {u ∈ Rpi : Hi u ≤ hi } , such that X =∏
i∈M Xi, U =

∏
i∈M Ui, and G = diagi∈N (Gi), H =

diagi∈N (Hi), g = coli∈N (gi), h = coli∈N (hi).
We are now able to decompose the large-scale system

matrices B(δk) = diagi∈M(Bi(δk)) ∈ Rm×p, C(δk) =
diagi∈M(Ci(δk)) ∈ Rm×n, as well as A(δk) ∈ Rm×m as
follows:

A(δk) =

A11(δk) · · · A1M (δk)
...

. . .
...

AM1(δk) · · · AMM (δk)

 ,
where Aij(δk) ∈ Rmi×mj , Bi(δk) ∈ Rmi×pi , and Ci(δk) ∈
Rmi×ni . Define the set of neighboring subsystems of sub-
system i as follows:

Ni =
{
j ∈M\i

∣∣ Aij(δk) 6= 0
}
, (6)

where 0 denotes a matrix of all zeros with proper dimen-
sion. Note that if subsystems are decoupled, they remain
decoupled regardless of the uncertainties δi,k for all i ∈
N . Consider now a large-scale network that consists of
M interconnected subsystems, and each subsystem can be
described by an uncertain discrete-time linear time-invariant
system with additive disturbance of the form{

xi,k+1 = Aii(δk)xi,k +Bi(δk)ui,k + qi,k

qi,k =
∑
j∈Ni

Aij(δk)xj,k + Ci(δk)wi,k
, (7)

where for each subsystem i, xi,k ∈ Xi ⊆ Rmi , ui,k ∈
Ui ⊆ Rpi , and wi,k ⊆ Rni . Following Assumption 1, one
can consider a linear feedback gain matrix Ki for each
subsystem i ∈ M such that K = diagi∈M(Ki). Using Ki

in each subsystem, we assume that there exists Pi for each
subsystem i ∈ M such that P = diagi∈M(Pi) to preserve
the condition in (3). Consider now the objective function of
each subsystem i ∈M in the following form:

Ji(xi,ui) := E

[
T−1∑
k=0

(
x>i,kQixi,k + u>k Riui,k

)
+ x>i,TPixi,T

]
,

where Qi ∈ Rmi×mi

�0 , Ri ∈ Rpi×pi�0 such that Q =
diagi∈M(Qi), and R = diagi∈M(Ri). Note that xi =
colk∈T (xi,k) and ui = colk∈T (ui,k) such that x =
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coli∈M(xi) and u = coli∈M(ui). For sake of simplicity of
the mathematical notations, a decomposition of multiplica-
tive uncertainty δk is not considered. We however note that
such a decomposition is straightforward by considering δi,k
for each subsystem i ∈M. This leads to Aii(δi,k), Bi(δi,k),
Ci(δi,k), and an effect on the state coupling matrices between
subsystems Aij(δi,k) for all j ∈ Ni of each i ∈M.

Consider vi = colk∈T (vi,k) such that v = coli∈M(vi),
we decompose the proposed formulation in (5) using the
following finite horizon scenario program for each subsystem
i ∈M:

min
vi∈RTpi

Ji(xi,ui) (8a)

s.t. x
(i)
i,k+1 = Aii(δ

(i)
k )x

(i)
i,k +Bi(δ

(i)
k )u

(i)
i,k + q

(i)
i,k , (8b)

x
(i)
i,k+` ∈ Xi , ` ∈ N+ , ∀w(i)

i ∈ Swi , ∀δ
(i) ∈ Sδ (8c)

u
(i)
i,k = Kix

(i)
i,k + vi,k ∈ Ui , ∀k ∈ T , (8d)

where wi = colk∈T (wi,k) ∈ Wi such that W =
∏
i∈MWi.

Swi := {w(1)
i , · · · ,w(Nsi

)

i } ∈ WNsi
i denotes a set of given

finite samples (scenarios) of disturbance in each subsystem
i ∈ M, such that Sw =

∏
i∈M Swi

. Note that we use
indices in parenthesis to refer to each scenario of the random
variables, e.g.(i), whereas indices without parenthesis refer
to each subsystem i ∈M.

Remark 2: The proposed constraint (8c) represents an
approximation of the following chance constraint on the state
of each subsystem i ∈M:

P[xi,k+` ∈ Xi , ` ∈ N+ ] ≥ 1− εi , (9)

where εi ∈ (0, 1) is the admissible state constraint violation
parameter of each subsystem (7). One can also consider αi =
1 − εi as the desired level of state feasibility parameter of
each subsystem (7).

In the following proposition, we provide a connection
between the proposed optimization problem in (8) and the
optimization problem in (5).

Proposition 1: Given Assumption 1, the proposed opti-
mization problem in (8) is an exact decomposition of the
optimization problem in (5).

Proof: The reader is referred to the technical report of
this paper in [22] with more details and complete proofs.

The following theorem can be considered as the main
result of this section to quantify the robustness of the
solutions obtained by (8).

Theorem 2: Let εi, βi ∈ (0, 1) be chosen such that ε =∑
i∈M εi ∈ (0, 1), β =

∑
i∈M βi ∈ (0, 1), and Nsi ≥

N(εi, βi, Tpi) for all i ∈ M. If v∗ = coli∈M(v∗i ), the
collection of the optimizers of problem (8) for all subsystem
i ∈M, is applied to the discrete-time dynamical system (1)
for a finite horizon of length T , then, with at least confidence
1 − β, the original constraint (4c) is satisfied for all k ∈ T
with probability more than 1− ε.

Proof: The reader is referred to the technical report of
this paper in [22] with more details and complete proofs.

The interpretation of Theorem 2 is as follows. In the
proposed distributed scenario program (8), each subsystem
i ∈M can have a desired level of constraint violation εi and

a desired level of confidence level βi. To keep the robustness
level of the collection of solutions in a probabilistic sense
(4c) for the discrete-time dynamical system (1), these choices
have to follow a certain design rule, e.g. ε =

∑
i∈M εi ∈

(0, 1) and β =
∑
i∈M βi ∈ (0, 1). This yields a fixed ε , β

for the large-scale system (1) and the individual εi , βi for
each subsystem i ∈ M. It is important to mention that
in order to maintain the violation level for the large-scale
system with many partitions, i.e. |N | = N ↑ , the violation
level of individual agents needs to decrease, i.e. εi ↓ ,
which leads to very conservative results for each subsystem,
since the number required samples needs to increase, i.e.
Nsi ↑. Addressing such a limitation is subject of our ongoing
research work.

An important key feature of the proposed distributed
scenario program in (8) compared to the optimization prob-
lem in (5) is as follows. Using the proposed distributed
framework, we decompose a large-scale scenario program
(5) with Ns number of scenarios into M = |M| small-
scale scenario programs (8) with Nsi number of scenarios.
This yields a significant reduction in the computation time
complexity of scenario programs compared to (5) by using
the proposed distributed scenario program (8). Using the
subsystem dynamics in (7), agent i ∈ N substitutes q(i)

i,k in
the proposed scenario optimization problem (8) with q(i)

i,k =∑
j∈Ni

Aij(δ
(i)
k )x

(i)
j,k +Ci(δ

(i)
k )w

(i)
i,k, where δ(i)

k and w(i)
i,k are

the local scenarios of random variables that are available in
each subsystem by definition w(i)

i ∈ Swi
and δ(i) ∈ Sδ ,

and taking into consideration that the interaction dynamics
model Aij(δ

(i)
k ) by each neighboring agent j ∈ Ni is also

available for agent i ∈ N . Hence, the only information that
subsystem i ∈ M needs is an Nsi number of samples of
the state variable x(i)

j = colk∈T (x
(i)
j,k) ∈ Xj := X Tj from

all its neighboring subsystems j ∈ Ni at each k ∈ T . It is
important to note that even though the proposed distributed
scenario program in (8) yields a reduction of computation
time complexity, it however requires more communication
between each subsystem, since at each k ∈ T all neighboring
agents j ∈ Ni of agent i should send a set of scenarios of
the state variable Sxj ∈ X

Nsi
j to the agent i ∈M.

IV. INFORMATION EXCHANGE SCHEME

When (8) is applied to the large-scale scenario program
(5), all neighboring agents j ∈ Ni of agent i ∈ M
should send a set of scenarios of the state variable Sxj

:=

{x(1)
j , · · · ,x(Nsi

)

j } to agent i at each sampling time k ∈ T .
It is of interest to address the issue of how an agent j ∈ Ni
can send the contents of Sxj

to agent i ∈M.
We propose the following two schemes: 1) following our

proposed setup in (8) to achieve a probabilistic guarantee
for the obtained solution, agent i ∈ M requests from its
neighboring agents to send the complete set of data Sxj

,
element by element such that the number of required samples
Nsi , is chosen according to Theorem 2 in order to have a
given probabilistic guarantee for the optimizer v∗i . We refer
to this scheme as a hard communication protocol between
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xj

Agent j
xi

Agent i

B̃jyj
uj

Scenario
MPC j

x
(i)
j

Sxj yi ui

Scenario
MPC i

Bj

Fig. 1. Pictorial representation of the proposed inter-agent soft communica-
tion scheme. Sxj is the set of Ñsi scenarios, Bj is the parametrized set used
in the optimization problem (10), and B̃j is the solution of the optimization
problem (10). yi and yj are just to present the state measurements which
are sent to controllers.

agents. Its advantage is that it is simple and transmits exactly
the contents of Sxj

, but due to possibly high values of
Nsi , it may turn out to be too costly in terms of required
communication bandwidth. 2) to address this shortcoming,
we propose another scheme, where agent j ∈ Ni sends
instead a suitable parametrization of a set that contains all
the possible values of data with a desired level of probability
(the level of reliability) α̃j . By considering a simple family
of sets, for instance boxes in Rmj , communication cost
can be kept down at reasonable levels. We refer to this
scheme as a soft communication protocol between agents
(see Figure 1). Such a scheme may be understood as a
cascading scenario scheme similar to the one in [23], where
a sufficient number of scenarios was determined in order
to establish a probabilistic feasibility for two cascading
scenario programs subject to a similar source of uncertainty.
Our soft communication setting however differs from [23],
since each agent is subject to its own uncertainty source.
We aim to incorporate the reliability notion of such a soft
communication scheme into the feasibility bound of each
agent, in addition to determining the number of required
scenarios that can be obtained as a corollary of our results
presented so far.

We now describe the soft communication protocol in more
detail. The neighboring agent j ∈ Ni has to first generate
Ñsi samples of xj in order to build the set Sxj . It is
important to notice that in the soft communication protocol
the number Ñsi of samples generated by agent j may be
different than the one needed by agent i, which is Nsi , as
will be remarked later. Let us then introduce Bj ⊂ Rmj as a
bounded set containing all the elements of Sxj . We assume
for simplicity that Bj is an axis-aligned hyper-rectangular
set [12]. This is not a restrictive assumption and any convex
set, e.g. ellipsoids and polytopes, could have been chosen
instead as described in [24]. We can define Bj := [−bj , bj ]
as an interval, where the vector bj ∈ Rmj defines the hyper-
rectangle bounds.

Consider now the following optimization problem that
aims to determine the set Bj with minimal volume:

min
bj∈Rmj

‖bj‖1
s.t. x

(l)
j ∈ [−bj , bj ] , ∀x(l)

j ∈ Sxj

l = 1, · · · , Ñsi

, (10)

where Ñsi is the number of samples xj ∈ Sxj
that

neighboring agent j has to take into account in order to

determine Bj . If we denote by B̃j = [−b̃j , b̃j ], the optimal
solution of (10) computed by the neighbor agent j, then
for implementing the soft communication protocol, agent j
needs to communicate only the vector b̃j along with the level
of reliability α̃j to the agent i.

Definition 1: A set B̃j is called α̃j−reliable if

P
[
xj ∈ Xj : xj /∈ [−b̃j , b̃j ]

]
≤ 1− α̃j , (11)

and we refer to α̃j as the level of reliability of the set B̃j .
We now provide the following theorem to determine α̃j

as the level of reliability of the set B̃j .
Theorem 3: Fix β̃j ∈ (0, 1) and let

α̃j = Ñsi
−mj

√√√√ β̃j(
Ñsi
mj

) . (12)

We then have PÑsi

[
{x1

j , · · · ,x
Ñsi
j } ∈ XÑsi

j : P
[
xj ∈ Xj :

xj /∈ [−b̃j , b̃j ]
]
≤ 1− α̃j

]
≥ 1− β̃j .

Proof: The proof is a direct result of [13, Theorem 1]
with some algebraic manipulations. We refer the reader to
[22] for a complete proof.

Theorem 3 implies that given an hypothetical new sample
xj ∈ Xj , agent j ∈ Ni has a confidence of at least 1 − β̃j
that the probability of xj ∈ B̃j = [−b̃j , b̃j ] is at least α̃j .
Therefore, one can rely on B̃j up to α̃j probability. The
number of samples Ñsj in the proposed formulation (10) is
a design parameter chosen by the neighboring agent j ∈ Ni.
We however remark that one can also set a given α̃j as the
desired level of reliability and obtain from (12) the required
number of samples Ñsi .

When an agent i ∈M and its neighbor j ∈ Ni adopt the
soft communication scheme, there is an important effect on
the probabilistic feasibility of agent i, following Remark 2.
Such a scheme introduces some level of stochasticity on
the probabilistic feasibility of agent i, due to the fact that
the neighboring information is only probabilistically reliable.
This will affect the local probabilistic robustness guarantee of
feasibility as it was discussed in Theorem 2 and consequently
in Theorem 1. To accommodate the level of reliability of
neighboring information, we need to marginalize a joint
cumulative distribution function (cdf) probability of xi and
the generic sample xj ∈ Xj appearing in Theorem 3. We
thus have the following theorem, which can be regarded as
the main theoretical result of this section.

Theorem 4: Given α̃j ∈ (0, 1) and a fixed αi ∈ (0, 1), the
state trajectory of a generic agent i ∈M is probabilistically
ᾱi–feasible for all wi ∈ Wi , δ ∈ ∆, i.e.,

P [xi,k+` ∈ Xi , ` ∈ N+] ≥ ᾱi , (13)

where ᾱi = 1− 1−αi

α̃i
such that α̃i =

∏
j∈Ni

(α̃j).
Sketch of Proof : The proof consists of two important

steps. Given αi as the lower bound on the joint cdf(xi,xj),
one needs to marginalize it to obtain the cdf(xi) using the
results in Theorem 3, and then, proceeding with the fact
that the information of neighboring agents are conditionally
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independent, one can obtain the above assertion. We refer
the reader to [22] for a complete proof and details. �

Following the statement of Theorem 4, it is straightforward
to observe that if for all j ∈ Ni, α̃j → 1 then ᾱi → αi.
This means that if the level of reliability of the neighboring
information is one, P

[
xj ∈ B̃j : ∀j ∈ Ni

]
= 1, then, the

state feasibility of agent i will have the same probabilistic
level of robustness as the hard communication scheme,
P
[
xi ∈ Xi

]
≥ αi. Combining this result with the statement

of Theorem 2, the proposed soft communication scheme
introduces some level of stochasticity on the feasibility of
the large-scale system as in (4c). In particular, εi ∈ (0, 1)
the level of constraint violation in each agent i ∈ M
will increase, since it is proportional with the inverse of∏
j∈Ni

(α̃j) ∈ (0, 1), and therefore, ε =
∑
i∈M εi ∈ (0, 1)

will also increase. After receiving the parametrization of B̃j
and the level of reliability α̃j , agent i ∈M should immunize
itself against all possible variation of xj ∈ B̃j by taking
the worst-case of B̃j , similar to the worst-case reformulation
proposed in [11, Propostion 1]. It is important to notice that
in this way, we decoupled the sample generation of agent
j ∈ Ni from agent i ∈M.

V. PROPOSED DISTRIBUTED SCENARIO MPC

We summarize our proposed distributed scenario MPC
in Algorithm 1 such that agents communicate with each
other by using our proposed soft inter-agent communication
scheme. Note that in case of the hard communication scheme,
each agent needs to generate Nsi scenarios and send exactly
all of them to all its neighboring agents j ∈ Ni. In
other words, the following changes have to be made in
Algorithm 1. Ñsi will be substituted by Nsi in Step 9 and
Step 10 will be removed. Steps 11 and 12 will send and
receive exactly Nsi samples, respectively.

In Algorithm 1 it is assumed that the feedback control
gain matrices Ki for all agent i ∈ M are given (3), and
the coupling terms Aij(δk) are known between each agent
i ∈ M and its neighboring agents j ∈ Ni. It is important
to note that Step 5 of Algorithm 1, initializes B̃j for all
neighboring agents j ∈ Ni to be used for the initial iteration
in Step 8, and then, at each iteration all agent i ∈ M will
send and receive B̃j from all its neighboring agents j ∈ Ni
as in Steps 11 and 12, respectively.

VI. NUMERICAL STUDY

To numerically illustrate the functionality of our proposed
approach, we simulate a building climate comfort system
with three rooms. Following the system dynamics in (1), we
define the system parameters as follows:

A =

0.2 0.3 0
0.2 0.1 0.1
0.2 0 0.4

 , B =

0.01 0 0
0 0.01 0
0 0 0.01

 , C =

0.02
0.02
0.02

 ,
such that A(δk) = A + δk and B(δk) = B + δk as
well as C(δk) = C + δk, where δk ∈ R is generated
from a normal distribution with a mean value 0, variance
1 and a maximal magnitude of 0.01 at each sampling time.
The system matrices are a simplified model of three-room

Algorithm 1 Distributed Scenario MPC
1: Decompose the large-scale dynamical system (1) into M agents

as the proposed form in (7)
2: Determine the index set of neighboring agents Ni for each

agent i ∈M
3: For each agent i ∈M do
4: fix initial state xi,0 ∈ Xi, εi ∈ (0, 1), and βi ∈ (0, 1)

such that ε =
∑

i∈M εi ∈ (0, 1) , β =
∑

i∈M βi ∈ (0, 1)

5: initialize B̃j for all neighboring agents j ∈ Ni

6: determine Ns̄i ∈ (0,+∞) to approximate the objective
function, and Nsi following Theorem 2 to approximate
the chance constraint (9) in an equivalent sense

7: generate Ns̄i , Nsi scenarios of wi, δ to determine the sets
of S̄wi , S̄δ and Swi , Sδ

8: solve the proposed optimization problem in (8) by taking
into account the worst-case of B̃j and determine v∗i

9: generate Ñsi scenarios of xi using the dynamical system
of agent i in form of (7) and v∗i together with Swi , Sδ

10: determine set B̃i by solving the optimization problem (10)
11: send the set B̃i to all neighboring agents j ∈ Ni

12: receive the sets B̃j from all neighboring agents j ∈ Ni

13: apply the first input of solution u∗i,k = Kixi,k + v∗i,k into
the uncertain subsystem (7)

14: measure the state and substitute it as the initial state of
the next step xi,0

15: set k ← k + 1 and goto Step (7)
16: End for

Fig. 2. A-posteriori feasibility validation of the obtained results.

building such that the states xi,k for i = 1, 2, 3, denote the
temperature of rooms. δk represents the modeling errors,
losses through windows, and wk ∈ R can be realized
as the outside weather temperatures such that it can vary
within 10% of its nominal scenario at each sampling time.
The initial states are [21 19 23]> and the objective is
to keep the temperature of rooms with our desired lower
[20.5 18.5 22.5]> and [21.5 19.5 23.5]> upper bounds at
the minimum control unit production uk. The control input
uk are also constrained to be within −1.5 [kWh] and 1.5
[kWh] for all three rooms, due to actuator saturation. The
initialization of the B̃j for all neighboring agents j ∈ Ni
as in Step 5 in Algorithm 1 can be done for instance by
assuming the initial temperature of the neighboring rooms
are known.
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We simulate four different problem formulations in Fig. 2.
The "blue" line shows the results obtained via centralized
SMPC (CSMPC) using (5), the "magenta" presents the
results obtained by using distributed SMPC (DSMPC) via
(8), the "dark green" and "light green" lines show the results
obtained via DSMPC with the proposed soft communication
scheme with 0.85−reliability (DSMPCS−0.85) as described
in Definition 1 and DSMPCS−0.50 both following Algo-
rithm 1, respectively, in a closed-loop control system frame-
work. For comparison purposes, we also present the results
obtained via decoupled SMPC (DeSMPC) using the "red"
line, where the impact of coupling neighboring dynamics in
(7) are relaxed. The "black" lines indicate the bounds of the
three dynamically coupled systems.

Figure 2 illustrates our other two main contributions
more precisely: 1) the obtained results via CSMPC (blue
line) and DSMPC (magenta line) are practically equivalent
throughout the simulation; this is due to Proposition 1 and
Theorem 2. Actually, the solutions via DSMPC are slightly
more conservative compared to the results via CSMPC,
and this is a direct consequence of Theorem 2. In fact
the level of violation in CSMPC is considered to be ε =
0.05 and leading to εi = 0.0167 for all agents due to
Theorem 2, which is more restrictive. 2) the proposed soft
communication scheme yields less conservative solutions as
explicitly derived in Theorem 4, and can be clearly seen
in Figure 2 with the obtained results via DSMPCS−0.85
(dark green) and DSMPCS−0.50 (light green). Following
Theorem 4 the new violation level using DSMPCS−0.85 is
ε̄i = 0.0231, and using DSMPCS−0.50 is ε̄i = 0.0668. It is
important to notice that the violation level of global chance
constraint will increase to ε̄ = 0.0702 and ε̄ = 0.2004 using
DSMPCS−0.85 and DSMPCS−0.50, respectively.

VII. CONCLUSIONS

In this paper we presented a rigorous approach to dis-
tributed stochastic model predictive control (SMPC) using
the scenario-based approximation. We then provided a novel
inter-agent soft communication scheme to minimize the
amount of information exchange between each subsystem.
Using a set-based parametrization technique, we introduced
a reliability notion and quantified the level of feasibility of
obtained solutions via the distributed SMPC integrated with
the so-called soft communication scheme in a probabilistic
sense. The theoretical guarantees of the proposed distributed
SMPC framework coincide with its centralized counterpart.
Our current research direction concentrates on extending the
proposed framework to cope with the case of a common
uncertainty source and to formally address the recursive
feasibility and stability of the closed-loop.
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