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Abstract

Due to the growing popularity of viewing media over the Internet, content servers
are suffering from more and more stress every day. This problem is tradition-
ally solved by enhancing the server infrastructure at the content provider, which is
effective but also costly. A more cost effective solution would be to use P2P tech-
nology to distribute the media stream in real-time. For this purpose, the Chainsaw
algorithm has been proposed, which performs very well in simulations. However,
Chainsaw has not been implemented in a real video player yet. We have built
our own version of Chainsaw called Kettingzaag, and we have added someim-
provements and features which make it more resillient to errors, such as multiple
description coding. Kettingzaag is put to the test in our own video player called
Lumberjack, on the DAS-3 supercomputer in Delft. Our experiments show that the
Kettingzaag algorithm performs well for network sizes up to a hundred nodes, and
is likely to perform just as well for larger network sizes.
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Chapter 1

Introduction

Since the introduction of peer-to-peer (P2P) networks, downloading has become
increasingly popular. The first P2P networks were primarily used for music and
compressed video files. Today’s networks allow users to download largefiles such
as DVD and game images within a few hours. The main reason for the popular-
ity of P2P is that the system overcomes bandwidth limitations of a single node at
almost zero cost. This has inspired many people to share their music and video
collections on the Internet. Unfortunately, most of these music and video filesare
copyrighted, and so P2P has become a synonym for illegal downloads. However,
more and more people are willing to watch legal content online, such as the news
and TV programs. A recent development that has become very popular are the so
calledBroadcast Yourself websites, which allow users to share their videos online
with other people. A well known example isyoutube.com, and a less known Dutch
variant is123video.nl. One of the main reasons why these sites are so popular is
the click-and-watch experience. Most P2P systems do not yet provide real-time
streaming, and therefore content providers still use the client/server model. This
means that each client downloads its entire stream from the server, so the band-
width stress and cost at the server grows linearly with the number of clients.Re-
cently, Ellacoya Networks has performed a study [6] on the Internet usage data
of approximately one million north-american broadband subscribers. This study
shows that traffic over HTTP has been increasing in the past years, and now con-
sumes 46% of the total bandwidth, against 37% for P2P. This makes HTTP bigger
than P2P for the first time in four years. The main reason for this shift is real-time
video streaming over HTTP. With the increasing demand of real-time media, server
costs will get even higher in the future. So, the logical next step is to extendP2P
technology with real-time media streaming.

1.1 I-Share

The Universities of Technology in Delft, Twente and Eindhoven, the Vrije Univer-
siteit in Amsterdam, and Philips participate in the I-Share [7] project, which is a
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research project on sharing resources in virtual communities. The underlying idea
is that people participate in a group, and help other group members to benefitfrom
the group’s resources by sharing bandwidth, storage and CPU cycles. Setting up
algorithms for resource sharing is not simple because of three major issues.First,
finding available resources at other nodes is not easy. Second, nodes that have
limited capabilities or do not share their resources degrade overall systemperfor-
mance. And third, it is hard to determine which nodes can be trusted. Therefore,
I-Share research concentrates on mechanisms forresource discovery, willingness,
trust, andresource sharing. One of the major achievements in the I-Share project
is Tribler [9, 22], a BitTorrent-compatible P2P client which implements most of
the above mechanisms. For example, Tribler allows users to setup virtual commu-
nities by adding trusted nodes which may help with a torrent download by sharing
unused bandwidth [9]. Although many more features have been implemented in
the Tribler client, it has no real-time streaming features yet.

1.2 Content Distribution

So, how to setup a P2P system that handles real-time media streaming? The answer
to this question is not trivial. One of the most difficult aspects is to create a good
content distribution algorithm (CDA) for video. Although many CDAs exist, they
can all be categorized into three main categories. The first category consists of tree-
based CDAs [4, 13, 19]. The big advantage of tree-based CDAs is thattheir node
addition and routing schemes are fairly easy. However, tree recovery can be both
difficult and time consuming when multiple nodes in the network fail. Furthermore,
leaf nodes waste bandwidth because they do not upload to any of the othernodes.
The second category is made up by flooding-based CDAs [20, 21]. Theadvantages
and disadvantages of these CDAs are similar to the tree-based versions. Although
failing nodes are less likely to split up the network, flooding-based CDAs suffer
from higher end-to-end delays than tree-based solutions when the number of nodes
becomes large. The final category contains the swarm-based CDAs [12,25, 27].
The main advantage of swarm-based overlays is that they do not enforcea strict
network topology. Since every node connects to multiple neighbours, overlay re-
covery problems are reduced when nodes fail. However, packet routing is far from
trivial. One of the first swarm-based algorithms is Chainsaw [25]. Althoughthere
is not much practical experience with Chainsaw yet, its theory and the first test re-
sults reported in [25] look promising. Therefore, we have chosen to base our own
CDA on the ideas of Chainsaw.

1.3 Modular Player Design

Live P2P video players can be very different in design, but they always share some
common functionality. Every system needs a video encoder module that generates
a stream of packets at the server side. Furthermore, the system needs anetwork
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module that connects nodes to each other and handles messages between them.
The network module should only contain very basic functionality, which means
that the node behaviour and content distribution algorithm must be implemented
in a separate CDA module. This makes it easier to re-use the code with different
kinds of CDAs. Finally, every system needs a video decoder module that displays
the received stream on screen. Optionally, the video en-/decoder can use an error
correction module based on multiple description coding (MDC) [14]. The idea
behind MDC is that the video encoder splits the original video stream in two or
more substreams called descriptions. The video decoder can reproduce the origi-
nal stream from any of the descriptions, but the playback quality depends on the
number of received descriptions. All of these modules (video encoder/decoder,
network, and MDC) have already been implemented within the PDS group in a
similar research project on a tree-based CDA called Orchard [10], andare reused
in the Lumberjack player.

1.4 Problem Statement

In this thesis we will focus on the following research question: How does a Chainsaw-
based implementation perform in a real video player and network, and in particular
does it perform as well in a real environment as it does in simulations? Sincethe
authors of Chainsaw only simulated the distribution algorithm, there is no Chain-
saw implementation freely available. Therefore, we have implemented our own
version, which we callKettingzaag, and embedded it in the Orchard video player
by replacing the Orchard CDA module with Kettingzaag. Since this CDA replace-
ment removes the relationship with trees, we renamed the player toLumberjack.
Additional questions to be answered in this thesis are:

• Do we need changes to the original Chainsaw algorithm to create a working
implementation?

• Which parameters are most important in Kettingzaag, and what are good
settings for various network sizes?

1.5 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 gives a morede-
tailed overview of the categories of CDAs, MDC, and the technology behindKet-
tingzaag. In order to test our Lumberjack player, we need a controlled test environ-
ment and a test plan. Because our goal is to use Lumberjack in a real-life scenario,
we have set up a number of virtual servers on rented hosts all over the globe. Since
these hosts are controlled by Delft University of Technology, and the total number
of hosts was planned to be 37, the network is calledDelft-37. Unfortunately, the
Delft-37 network turned out to be too slow to host multiple Lumberjack instances.
The Delft-37 setup, tests and measurements are discussed in Chapter 3. Because
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Delft-37 turns out to be unsuitable we will run Lumberjack on the DAS-3 [24]su-
percomputer in Delft. Since the DAS-3 nodes are extremely well connected,the
Lumberjack software limits the upload rate at 1 Mbps and simulates round-trip
times between nodes based on the Delft-37 test data. Chapter 4 is about the actual
testing of Lumberjack. The chapter starts with an overview of the Kettingzaagpa-
rameters, and the measurements that we want to perform. This is followed by a
discussion of the first test set that operates on small 10-node networks. These tests
provide good parameter settings for the second test set, which operates on larger
50- and 100-node networks. The second test set shows that Kettingzaag success-
fully reduces stress at the content server, but that further work is needed before it
can be used in a commercial environment. Our conclusions and future workare
presented in Chapter 5.
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Chapter 2

The Design of Kettingzaag

Live video streaming is becoming more and more popular, which means that costs
are rising for content providers. This is inherent to the client/server distribution
model that is used by most content providers. We will show that the peer-to-peer
(P2P) model is the most cost effective on public networks, such as the Internet.
Although many P2P algorithms exist for live video streaming, we have chosenfor
a fairly new swarm-based algorithm called Chainsaw. Chainsaw performs very
well in simulations, but has not yet been implemented in a real video player so
far. We have implemented our own version called Kettingzaag, and added some
features that are not available in the original algorithm. In this chapter we will
present the background of Chainsaw and the design of Kettingzaag.

In Section 2.1 we give an overview of the three approaches that are available for live
video streaming. Section 2.2 explains the idea behind multiple description coding,
and how this is implemented our Lumberjack video player. This is followed by
Section 2.3 which describes the technology behind Chainsaw. We will finish this
chapter with Section 2.4 which discusses the differences between Chainsaw and
our own implementation called Kettingzaag.

2.1 Three Approaches to Live Video Streaming

In this section we will describe the three possible network models that can be
used to stream video to multiple clients [1]. These models are theclient/server
model, thenetwork layer multicast model (NLM) and theapplication layer multi-
cast (ALM) model. Section 2.1.1 points out that the client/server model is unde-
sirable due to high costs. Section 2.1.2 shows that NLM is only possible when all
network devices support it, which is not the case on the Internet [1]. And finally,
Section 2.1.3 explains why ALM is the best solution to distribute video to a large
number of viewers.
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2.1.1 Traditional Approach

The traditional solution to video streaming is to let each user download from a
server of the content provider. This solution has two major drawbacks [3]. First,
this approach is not scaling well. Each content server can serve a limited number of
users, depending on server and network loads. When the user limit is exceeded, the
quality of the stream drops, or the stream cannot be viewed at all. The onlysolution
to this problem is to add more content servers and share the user load. Furthermore,
more users lead to higher bandwidth usage. Since bandwidth is charged per giga-
byte, this solution gets more expensive as the service becomes more popular [2].
The second drawback is that this solution is vulnerable to an abnormal number of
users connecting in a very short period of time. This phenomenon is called aflash
crowd and can happen in case of a big news event. To support flash crowds, the
content provider needs to setup a large number of extra servers, whichare not used
(fully) under normal operation, or deny some users service when the user limit is
reached.

2.1.2 Network Level Multicast

The best solution would be to have the server multicast the stream to all subscribed
clients. This can be done in two different ways. Either network level multicast,
or application level multicast can be used. Network level multicasting lets the net-
work’s routers handle packet duplication where necessary. Nodes subscribe to their
local router for a multicast group, which in turn tries to subscribe to a routerwhich
is closer to the multicast source. Eventually the path to the source is complete
and the node starts receiving the stream. This approach sounds ideal, but has the
following four drawbacks, which are described in detail in [1]. First, themedia
source has no idea which nodes are subscribing to the multicast group, assubscrip-
tions are handled by the network routers. This prevents an easy method ofbilling
customers for content that is not free. Second, not all Internet Service Providers
(ISPs) and Internet routers support network level multicasting, which prevents at
least some users from viewing the stream. Third, the network level multicast pro-
tocol does not guarantee that packets arrive within a certain timespan, orarrive
at all. Finally, when routers crash, they lose their routing tables, which results
in breaking the network topology. These last two problems are very undesirable
in real-time streaming applications, because time constraints are very important.
Since these problems are very hard to tackle without access to the routers,network
level multicast is not a realistic option for any multicast application that uses the
Internet.

2.1.3 Application Level Multicast

Application Level Multicast (ALM) means that the application sets up and con-
trols its own network. The big advantage is that the application has full control
over the network topology, routing decisions, and rules within the network.For
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instance, one of the most important rules in the Kettingzaag network is that nodes
should exchange data with each other. Since the application defines a network on
top of another network, the application’s network is also called an overlay (net-
work). Many different overlay network solutions exist, but most of themcan be
categorized as either flooding-based (e.g., CAN [20]), or tree-basedoverlay types
(e.g., Scribe [13], NICE [19]). Simplistic versions of the overlay categories are
shown in Figure 2.1, whereS represents the content server, and the other nodes the
clients. A fairly new overlay solution, called Chainsaw [25], drops the strict node
relationships that exist in the other categories. Instead, nodes will barterwith each
other, similar to the BitTorrent protocol.

Figure 2.1: Flooding-, tree- and swarm-based overlay types.

Although overlay solutions can be very different, they must all meet the following
three requirements to be successful:

1. the end-to-end delay between source and receiver must be reasonable.

2. joining and leaving of nodes must be handled quickly and locally.

3. the overlay network must be scalable.

First, keeping the end-to-end delay reasonable is just a matter of keeping the num-
ber of nodes between the content distributor and receiver small. Furthermore,
nodes that are geographically close can be grouped together into so called Geo-
Clusters [5, 15]. Second, the joining and leaving of nodes must be handled locally
to prevent stress on the server. Furthermore, it must be handled quicklyto ensure
continuous playback of the media stream. This may lead to problems in flooding
and tree-based approaches, as a leaving node disconnects a part ofthe network.
This may lead to problems when many nodes fail within a short timespan. Finally,
an overlay is scalable when the load on the content server does not increase with
the number of clients in the overlay network. In theory, the server needs toin-
sert its media stream only once when the total upload rate of the clients is higher
than or equal to the download rate. This is easily observed in Figure 2.2, where
each client passes the stream to the next client (upload rate equals download rate).
Note that this figure also shows the worst end-to-end delay possible between the
source and the last node. Although this requirement is met for all three overlay
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categories, the flooding and tree-based algorithms have a drawback. Ina tree, the
leaf nodes are not uploading any data at all. However, they make up approximately
50% of the network under normal operation. This is compensated by the inner
nodes, which upload to at least two children. This is no problem if the inner nodes
have a fast enough upload. However, our solution aims at a bit rate that isclose to
the maximum upload capacity of the majority of home users in the Netherlands (1
Mbit/s). Because most of the nodes in our network will be home users, the tree-
based solution will not work, unless the media stream’s bit rate is decreased. The
disadvantages of flooding overlays are comparable to those of the tree-based solu-
tions. Although the number of strained inner nodes, and non-uploading outer nodes
is smaller than in a tree-based solution, they still make up a considerable amount
of the network. Furthermore, the end-to-end delay in flooding-based solutions can
become a problem for a large number of nodes.

Figure 2.2: Simplistic P2P setup where every client uploads as much as it down-
loads.

Experimental results [25] show that Chainsaw does not suffer from packet loss
under normal operation. When half of the nodes in a 10,000 node networkfail si-
multaneously, less than 1% of the remaining nodes suffer from packet loss(packet
loss ranging from 0.1% to 17.5%, with mean 3.74%). These numbers can be fur-
ther improved, since the simulated nodes did not update their neighbor list upon
failures. Chainsaw also provides for quick startup times. New nodes can start
playback within a few seconds from joining, without suffering from packet loss.
So, a Chainsaw overlay does not seem to suffer much from a high node failure
rate. Furthermore, the drawback with leaf and outer nodes does not occur with
Chainsaw, because all nodes are allowed to barter with each other.

2.2 Multiple Description Coding

Multiple description coding (MDC) is a technique that is used to make the multi-
casting of a video stream more robust to errors. The idea is that the original stream
is split up in two or more sub-streams, called descriptions. The original stream can
be reproduced at a node from any number of received sub-streams.The quality
of the reproduced stream depends on the number of sub-streams that are received,
where a higher number of sub-streams lead to a better quality. When all of the
sub-streams are received, the reproduced stream is exactly the same asthe original
stream. Normally MDC is used as an error correction tool in the video en-/decoder
only, meaning that the underlying network is not affected by it. However, we have
chosen to allow clients to switch to half-quality mode by deliberately ignoring one
of the two video descriptions. This means that bandwidth can be saved whenthe
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network knows which stream to download and which to ignore. Chainsaw does not
provide this functionality, but can be augmented without many problems.
Our Lumberjack player uses a simple form of MDC, which divides the original
stream in three sub-streams. The first sub-stream is called the even stream, which
contains all video packets with an even number. The second stream contains video
packets with an odd number, and is called the odd sub-stream. The last stream
contains all of the audio packets. Audio is not divided in two streams. Since audio
bit rates are small compared to the video bit rate, and also can be given a higher
download priority, they are less likely to be lost. A schematic overview of the
Lumberjack MDC algorithm for video is shown in figure 2.3. Decoder 1 repairs
the missing odd frames from the received even frames. The decoded stream is
called a half quality stream. Decoder 3 is comparable to decoder 1, except that
even and odd frames are switched. Decoder 2 is used when both the evenand odd
frames are received.

Figure 2.3: Lumberjack MDC Setup.

More complex MDC solutions exist, and are described in [5]. More sophisticated
MDC schemes exist [5, 26], but they are more difficult to implement and have
more overhead. Since our research aims at network performance, we have chosen
to keep the simple MDC solution for now.

2.3 The Chainsaw Overlay Network

The Chainsaw overlay does not have a strict network topology as is found in tree-
and flooding-based networks. Basically, every new node connects to aset of ran-
dom neighbour nodes. The network does not maintain a global state with node
information either. This makes the network very resilient to node failures andcom-
munication errors. However, since a node cannot easily predict which of its neigh-
bours downloaded which packets, data pushing is practically impossible. There-
fore, Chainsaw is based on data pulling in combination withlocal state gossipping.
This means that every node maintains both its neighbours’ states and its own state
which is gossiped to its neighbours. The fact that nodes make their own download
decisions raises the following three questions for each node:

1. Which packets are desired by the node?
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2. Which packets are available for upload by the node?

3. Which neighbour(s) can upload the packets that the node desires?

In order to answer these questions, each node maintains three data structures. The
first data structure is a list of desired packets, called thewindow of interest. Obvi-
ously, the contents of the window of interest depend on the playing position of the
node. It seems reasonable to add all future packets that have not yet been down-
loaded. However, packets that are very close to the node’s playing position will
most likely not be downloaded in time. Therefore, the window of interest slides
along somewhat ahead of the node’s playing position. This means that packets that
are too close to the playing position are removed and considered lost, while new
packets are augmented at the stream rate. The second data structure is a list of
downloaded packets, called thewindow of availability. The window of availabil-
ity slides along with the playing position as well, providing a fixed length history
of downloaded packets. Since every node’s playing position is close to that of its
neighbours, old packets can be safely dropped. The final data structure is an array
of status lists, one list for each neighbour node. During media streaming, every
node gossips the state of its window of availability to its neighbours. When a node
receives this availability information, it is stored into the status list belonging to
that particular neighbour. By searching the array of status lists, a node can de-
termine which neighbour(s) can provide a certain packet. In order to geta good
understanding of the Chainsaw principles, we will discuss the protocol in more
detail below.
The most important job for a node is to acquire new packets. This can either
be realized by the seed node(s) by encoding the media, or by the other nodes by
downloading from neighbours. Both events are handled in the same way. So,
when nodeA receives a new packet with numberp and dataDp, it removesp
from its window of interest, and addsDp to its window of availability. Then node
A gossips the availability of packetp to its neighbours, by sending aNOTIFYp

message. The neighbours that receive this notification message will add packet
p to their status list for nodeA (statuslistA). Suppose nodeB is one of the
neighbour nodes of nodeA, andB has selected packetp from its window of interest
as the next packet to download. NodeB will try to find a suitable neighbour by
checking all of its status lists for packetp. If the packet is available at more than one
neighbour, a random candidate is chosen. For now, suppose nodeB finds packet
p only in statuslistA. So, nodeB asks nodeA to upload the packet by sending a
REQUESTp message toA. When nodeA receives this request, it can grant it by
sending packet dataDp back to nodeB. Although the algorithm is fairly simple,
two issues arise when it is implemented exactly as described above.
First, if a node receives a notify message for some packet, it will most likely re-
quest the packet immediately. Since the round-trip time for each neighbour differs,
the fastest neighbour will probably be the first node to request every time. Because
we aim for a stream rate that is close to the upload rate of the nodes in the network,
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such behaviour would saturate the upload link of the notifying node. The result is
that the other neighbours do not get a chance to request packets fromthe notifying
node. As a result, packets are not well distributed among the nodes, degrading
network performance significantly. In order to prevent this from happening, each
node has a maximum number of outstanding requests per neighbour. We call this
themaximum parallel request threshold. The second issue arises at the seed node
when it is uploading at its maximum capacity. Since nodes cannot always deter-
mine which packets have been uploaded by the seed before, some packetswill be
requested more than once. The downside is that requests for packets that have not
yet been uploaded before may be choked due to the seed’s saturated upload link. To
prevent this from happening, the seed can override a packet request from a node.
What happens is that the seed maintains apacket overriding list which contains
the numbers of the packets that have never been uploaded before. If an incoming
request contains a packet number that is not in this list and the list is not empty, the
seed overrides the request. The oldest packet from the packet overriding list is sent
back to the requesting node, and the packet number is removed from the list.

2.4 The Kettingzaag Overlay Network

Our Kettingzaag algorithm uses the same rules as the Chainsaw algorithm de-
scribed above, with a few additions. First, we have added aREJECT message
to the protocol, that notifies a requesting node that its request has not been granted.
This speeds up decisions in the requesting node, because it does not have to wait
for a request timeout. Second, we have added a ping-pong mechanism between
nodes, which determines the round-trip time (RTT) between two nodes. This RTT
value is used to prevent requests for future packets that are known to arrive too
late. Third, a notion of MDC has been added to Kettingzaag, allowing us to switch
a node to half-quality mode by deliberately not requesting one of the two video
streams. This degrades video quality for the client, but also reduces the bandwidth
usage significantly. Finally, we have added some debug messages to request clients
to send their logfiles and to shutdown. Technically, these messages are notaffect-
ing network performance at all, but they do make testing on uncontrolled networks
easier. We will describe each of these four additions in more detail below.

Reject Message

In our Kettingzaag network, nodeA can deny a request from nodeB by sending a
REJECTp message to nodeB. This speeds up the network, because nodes do not
have to wait for a timeout before re-requesting packetp from another node. Packet
requests can be rejected for five reasons. First, the requested packet may have
been removed from the window of availability of nodeA. Second, the incoming
request at nodeA is a re-request from nodeB, but the original request has not yet
been processed and is still in queue. Third, the incoming request at nodeA is a
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re-request of a packet that has already been, or is being uploaded tonodeB. This
may occur if the timeout at nodeB expires at the same time that nodeA starts
uploading packet dataDp. Fourth, the request may be coming from a node that has
notified that it is about to disconnect from the network. And finally, when nodeA

has reached its upload limit, requests fromB are rejected, and nodeB is choked.
This means that nodeB will not request more packets from nodeA for a short
period of time. Obviously, when the request is not rejected,Dp is sent fromA to
B and the whole sequence starts over again.

Ping-Pong

Kettingzaag uses aping-pong mechanism to determine the round-trip time between
a pair of nodes. Each node periodically sends aPING message to all of its neigh-
bours. When a neighbour receives a ping message, it immediately replies witha
PONG message to get a good approximation of the round-trip time (RTT) be-
tween the pair of nodes. The RTT between a pair of nodes is used to determine if
future packets should be downloaded or not.

Figure 2.4: Packet download decision based on playback position and round-trip
time.

Figure 2.4 shows the node state of nodeB at playback positionP , and is used to
explain how to determine which packets should be downloaded. The blockedbar
represents the video stream, where each block represents a single frame/packet.
The green packets have already been downloaded by nodeB, and are available for
future playback. Both the red and yellow packets are unavailable, and need to be
downloaded from neighbours. Suppose that nodeB has found neighbourA from
which it can download all of the red and yellow packets, and that the latest ping-
pong sequence resulted in a RTT as shown in Figure 2.4 (equal to 7 packets). This
means that by the time nodeB receives a packet fromA, the playback position
will have shifted 7 packets into the future. Hence the red packetsD1-D3 cannot
be downloaded in time, and can be discarded for nodeA. The packets that can
be downloaded from nodeA in time are shown in yellow from positionP + 8.
Naturally, packetsD1-D3 may be downloaded from other neighbours with lower
round-trip times.

Multiple Description Coding

As explained in Section 2.2, MDC is normally used as an error correction toolin
the video en-/decoder, which means that Kettingzaag should not be affected by
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its presence. However, we have chosen to allow clients to switch to half-quality
mode by deliberately ignoring one of the two video descriptions. Therefore, the
Kettingzaag network has been augmented with the notion of MDC streams. Since
the video stream is played at 30 frames per second (fps), both the even and odd
streams play at 15 fps. For simplicity we built the audio stream at 15 fps as well,
and add it in between the odd and even frames of the video stream. The total stream
consists of three descriptions and its layout is shown in Figure 2.5.

Figure 2.5: Kettingzaag media stream layout.

This stream layout allows us to easily identify to which stream number packet
P with packet numberp belongs to by calculatingp mod 3. The relationship
between the stream number and the stream description is shown in Table 2.1.

Stream Number (p mod 3) Description
0 PacketP belongs to theeven video description.
1 PacketP belongs to theodd video description.
2 PacketP belongs to theaudio description.

Table 2.1: Relationship between the stream numbers and the stream descriptions.

Debug Messages

We have implemented two additional debug messages. First, we added aSHUTDOWN

debug message, which allows the seed to request nodes in the network to shutdown.
And second, we added aSEND − LOGS debug message that allows the seed to
order nodes in the network to send their logs. Although these debug messages do
not influence Kettingzaag network performance, they may be useful in networks
that are not under our full control.
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Chapter 3

The Delft-37 Testbed

In order to test the Lumberjack player and the Kettingzaag algorithm in a realenvi-
ronment, we have rented some virtual servers on the Internet. All of theseservers
together form a network, which we call the Delft-37 network. In order to make
Delft-37 easy to use and manage, we have implemented a program that allows
us to control the network and its contents from a central control point. Since the
Delft-37 nodes may be unreliable, we added a few reliable machines at the uni-
versity network for controlling Delft-37, running the Lumberjack seed andstoring
test logs. In this chapter we will present the Delft-37 network, and its purpose as a
real-life test environment for our Lumberjack player.
Section 3.1 gives a more thorough introduction of the Delft-37 network. Section
3.2 explains why a central control point is needed, and how we have implemented
it. Section 3.3 describes the Delft-37 infrastructure at the university network. Sec-
tion 3.4 discusses the Delft-37 network performance. Finally, Section 3.5 con-
cludes why we have decided to use the DAS-3 supercomputer instead of Delft-37
for testing our Lumberjack player.

3.1 Introduction to Delft-37

The Delft-37 network consists of a number of virtual servers, which arerunning
at hosting providers all over the world. The network consists of 6 nodes, which
are listed in Table 3.1. The original goal of 37 nodes (hence Delft-37) has been
abandoned for two reasons. First, a network of 37 virtual hosts is expensive. Sec-
ond, most hosting providers which rent virtual servers are located in Europe and
North America, and it is not useful to place a total of 37 nodes on these continents
alone. Providers in Asia exist, but most of them have placed their serversin Eu-
rope or North America. Acquiring an account at providers that have not placed
their servers abroad is problematic due to language barriers. South American and
African providers do offer hosting, but almost all of them offer web-based accounts
only. This type of account is useless for our purpose, since our overlay implemen-
tations are written in Python, and need to run on a virtual server. Luckily, peer-to-
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peer technology is very popular in the United States and Europe at this moment.
The distribution of nodes in the Delft-37 network reflects this situation.

Figure 3.1: Geographic locations of Delft-37 hosts.

Full Name IP Address Location
vds-355074.amen-pro.com 62.193.219.68 Paris, France
advantagecom.us.peer-2-peer.org 66.29.146.21 Walla Walla, Washington, USA
d80-237-144-205.dds.hosteurope.de80.237.144.205 Köln, Germany
adiungo-phoenix.us.peer-2-peer.org193.192.247.157 Phoenix, Arizona, USA
adiungo-london.uk.peer-2-peer.org 193.192.247.133 London, UK
usonyx.sp.peer-2-peer.org 202.172.255.90 Singapore

Table 3.1: Delft-37 nodes with IP address and location.

Delft-37 can be compared to the PlanetLab [17] network, although PlanetLabis
much bigger in size with over 900 nodes. Also, PlanetLab consists mostly of uni-
versity computers and networks which are far better connected than most of our
virtual servers that form the Delft-37 network. Our virtual servers have differ-
ent connection speeds to the Internet and are heavily used by other users as well.
Furthermore, the underlying network is not always of the high quality found at uni-
versities. These factors introduce a level of uncertainty which is not found on the
PlanetLab network. Since our goal is to test our software in a dynamic environment
where problems can arise now and then, the good network properties of PlanetLab
make it unsuitable for our research.

3.2 The Delft-37 Controller

Having a test environment such as Delft-37 is useless without some form ofman-
agement. Many activities, such as distributing software and starting programs on
the network, are not easy to achieve without a flexible control point. The ssh pro-
tocol accepts authentication by using keys, but this is not very flexible formultiple
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control nodes. This key-based approach has two drawbacks. First,the keys have to
be distributed to all Delft-37 nodes and controlling computers, which is not conve-
nient when multiple control points are available. And second, there is no control
over command execution when ssh is running as a background command execu-
tion process. The key-based approach allows a user to execute multiple commands
on each host, but when a command is finished, the next command will be started
immediately. Since not all hosts have the same processing power, some hosts may
be executing their fourth command, while others are still executing their second.
Furthermore, not all Internet links from the central controller to each ofthe hosts is
equally fast. Hosts with faster links will start their command execution earlier than
hosts with slower links. To tackle these problems, we wrote a control program in
python. This Delft-37 controller makes the authentication transparent to the user,
and allows parallel command execution. The controller monitors and synchronizes
command execution for each host. It does so by checking if all hosts are ready.
When all hosts have finished their last command, the central controller sends the
next command to each of the hosts. The nodes that make up the Delft-37 network
are specified in a file. Adding new nodes is merely a matter of downloading the
latest host file. The Delft-37 controller can be run from any computer with an Inter-
net connection. The computer that is running the controller program is from now
on referred to asthe central controller. The controller program is only distributed
among the people that use the Delft-37 network. All options of the controller are
explained in the next sections.

3.2.1 Executing Commands on Delft-37

The controller program allows the user to control all of the Delft-37 nodesfrom
the central controller simultaneously. The user provides a list of commands tothe
controller program. The central controller tries to login using ssh on all of the
Delft-37 nodes, using some timeout for failing nodes. When all nodes haveeither
responded to be ready or timed out, the central controller sends the first command
from its list to each node. This is done in parallel. Then the central controller
waits for all hosts to reply that they have finished their command execution. When
all hosts are ready again, the second command from the controller’s command
list will be sent. This process continues until all commands have been executed.
An optional buffer-output option determines the way the output of each node is
displayed on the central controller’s screen. If the option is omitted, the output will
be printed to screen as soon as it is received by the central controller. Since the
commands on the Delft-37 nodes are executed in parallel, the output will probably
be mixed up with output of other nodes. When the output is buffered, it is stored in
a separate buffer for each host. These buffers are printed to the controller’s screen
after the last command finishes on all Delft-37 nodes. The buffers are printed one
after the other, preventing output mixups.
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3.2.2 Copying Files to the Delft-37 Network

The controller program allows the user to upload files from the central controller
to all of the nodes in the Delft-37 network. The central controller uploads the
requested files to multiple Delft-37 nodes simultaneously. The reason for mul-
tiple connections is simple. Some Delft-37 nodes may have a lower download
bandwidth than the central controller’s upload bandwidth. In this case the upload
capacity of the central controller is not fully utilized. To utilize the remaining band-
width, another connection will be opened to an available node. The total number of
simultaneous connections can be specified by altering a parameter inside the con-
troller program. When some nodes are not available, an error message is shown on
the central controller’s screen when the controller program terminates.

3.2.3 Copying Files from the Delft-37 Network

The controller program allows the user to download files from the Delft-37 nodes to
the central controller’s hard-drive. This is done using the ssh securecopy program.
The files that are requested are searched for on each Delft-37 node.This means
that the central controller will receive fileFa from nodeHa, but also from node
Hb, nodeHc and so on. It is clear that fileFa will be overwritten if no measures
are taken. This problem is solved by having the controller create a new directory
for each Delft-37 node. Because host names can be the same on different networks,
and URLs can be very long, the directory names chosen are the IP addresses of the
nodes. For easy maintenance, these IP-named directories are stored in aspecial
directory. This directory is used for each download action, so multiple downloads
might overwrite files as well. It is up to the user to rename the special directory
before a new download is started.

3.2.4 Delft-37 Network Measurements

The controller program allows the user to run four tests on the Delft-37 network,
which areping, traceroute, bandwidthTCP andbandwidthUDP. A major problem
of network performance tests is that they can affect each other. Althoughping and
traceroute tests are affected minimally, bandwidth tests can be influenced to a great
extent. When a node is measuring bandwidth speeds with more than one node,it
will have to divide its available bandwidth, resulting in erroneous results. Toavoid
this situation, a scheduling algorithm has been added to the network performance
test routine. The next section elaborates on how these measurements are done, and
presents the test results that were obtained.

3.3 Delft-37 Infrastructure

Although any Delft-37 node can act as the central controller, we would liketo
assign this job to a few machines that are not only more reliable than the Delft-

18



37 nodes, but also have more computing power and storage space. Therefore we
have setup three superstorage machines in Delft with a total disk capacity of10
terabytes. These superstorage machines have four roles. First, they act as the Delft-
37 controllers for uploading new Lumberjack versions and starting tests. Second,
they are used as a central gathering point for downloading test logs from each Delft-
37 node. Third, they will encode video streams which can be either distributed in
real-time, or saved to disk for later distribution. And finally, they inject a lot of
legal torrents which can be downloaded with the Tribler BitTorrent-based client.
Each superstorage machine contains 14 hard drives of 320 GB in a RAID-5 array
(3,8 TB storage for each machine). Since the motherboard can only store two serial
ata (SATA) drives, we added 3 SATA controllers to the PCI bus, which connect the
other 12 drives. Although we are aware of commercial storage solutions,we choose
to implement our own solution for two reasons. First, the above setup will most
likely lead to interesting problems, because it runs on the edge of the hardware’s
capabilities. And second, setting up a system with hardware from a local computer
shop is much cheaper than a commercial solution. The super storage machines run
the latest 64-bit version of Debian Linux.

Figure 3.2: Partitioning scheme for each super storage machine.

Each machine uses the partitioning scheme that is displayed in Figure 3.2. The
boot and swap partitions are setup as a RAID-1 array (mirrored). The root and data
partitions are setup as a RAID-5 array. This setup ensures that the machine can
keep on running when at most one drive fails. In case of a failure, the machine
needs to be shut down to replace the failed disk, after which the broken arrays can
be repaired.

3.3.1 Problems

The first problems were discovered soon after installation and setup of theLinux
operating system. Some of the drives were (partially) broken on arrivaland failed
during RAID-5 initialization of the data partition. After replacing the bad disks and
reinstalling the system everything seemed to work fine. However, when the disks
were put under heavy load, the RAID-5 array of the data partition would break
down within an hour (and sometimes even during RAID-5 initialization). Most of
the time one or two disks would fail with a ’DriveReady Seek Complete Error’.
Testing the failed drive(s) one by one in another system would not lead to errors,
and also the hard drive’s built-in monitoring system (SMART) did not discover
any errors. So with all of the drives being healthy, we needed to solve a different
problem. A quick search on the Internet showed some ideas that might lead toa
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solution for this problem.

Cable Interference

Although cable interference is no issue under normal circumstances, it can be a
problem in our machine. Since there are 14 disks, there are also 14 cables, which
makes it almost impossible to prevent them from crossing each other. This could
possibly lead to some interference on the data lines, causing the DriveReady error.
To make sure that interference is reduced to a minimum level, the drives were
removed from their casing and laid out in a star shaped setup. Although this did
not solve the problem, it increased overall stability. The DriveReady error still
occurred under heavy load, but at a later point in time (mostly after a coupleof
hours). Since the star shaped layout does make a difference, this setupis used in
the rest of our tests.

Power Supply Lines

The Linux kernel mailing list suggested that the power supply lines should be
checked, because the DriveSeek error is sometimes caused by bad power supplies.
Although the power supply is a high quality 680W unit, we did check the power
lines. Although the power supply manual did mention that the unit divided its
power to two power lines, it did not mention that the lines were not equally strong.
So, some of the disks were transferred from the weaker line to the stronger line.
Unfortunately, this did not improve the stability of the machine. Still, the new setup
is maintained to be on the safe side.

Replacing SATA Cables

The Fedora Linux forums showed an issue where the SeekComplete errorwas
caused by bad cabling between the SATA drives and its controller. We started
replacing cables for every drive that raised the error, but this did notlead to better
stability. In fact, testing the replaced cables in another system would not leadto
any errors, as long as the number of disks was small. This lead us to the idea that
the PCI bus might be saturated during extensive usage of the 14-disk RAID array.

Saturated PCI Bus

So, with the cables seemingly correct in small setups, we tried setups with 8, 9 and
10 drives, where the drives were connected to only 2, 3 or all controllers (including
motherboard). The controller setup did not seem to have any influence onthe
problem, but the number of disks did. All setups with more than 8 disks would fail
within a day. The motherboard’s PCI bus (32 bits) has a bandwidth of 127.2MB/s.
The sequential write speed of our drives is measured somewhere between 16 and
17 MB/s, which comes close to the PCI bus speed in case of 8 drives. Although
an 8 drive setup should be able to saturate the PCI bus, this will only happenfor a
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short period of time. Fortunately, the kernel driver for our SATA controller had an
option to slow it down. After slowing down the kernel driver, a 9 drive setup could
not saturate the PCI bus anymore. However, such a setup would still raiseerrors.

Changing Kernel

Initially the machine was running an unpatched 2.6.15.3 kernel from kernel.org.
We decided to try out the newest 2.4 kernel to see what would happen. So, the
entire machine was reinstalled with a Debian Linux 2.4 installation disk, and the
kernel was patched to 2.4.32. The raid setup was running smoothly, but thesame
errors occurred during long time write tests. The kernel change had no influence
on the stability of our setup.

Replacing the Hard Drives

As a last resort we replaced the Western Digital hard disks with Maxtor drives. The
RAID array was built up successfully, and surprisingly the write tests executed for
more than a day. We kept stressing the RAID array with extensive write testsfor
over a week without errors. With one of the super storage systems finally running
stable, it is time to investigate the capabilities of the Delft-37 network. Meanwhile
the hard drives of the other two machines are interchanged at our suppliers.

3.4 Delft-37 Network Performance

We have executed some network tests to determine the Delft-37 network perfor-
mance. The I-Share project aims at real-time video streaming, which can be done
in different ways. Two popular solutions are multicast trees and the Chainsaw
method. Multicast trees are used when a small number of senders must serve a
large number of clients. The idea is that the sender(s) serve a small numberof
clients. Each served client serves a small number of yet unserved clients, and so
on. This method allows a server to distribute its data to a much larger audience
than would be possible by directly uploading to each client. The resulting tree is
called a multicast tree, which becomes deeper as the number of clients increases.
Our performance tests are focused on two important network link properties. The
first is the delay between sending a packet from a source node and the receiving of
that packet at the destination node. This delay is called the ping time. The second
important link property is the bandwidth. The link bandwidth is defined as the
total number of bits that can be transferred per second between the source node
and the destination node. The ping time is important, as it determines the response
time of nodes and the total delay between the source and leaf nodes in multicast
trees. When the multicast tree gets deeper, the media stream must traverse more
network links. When these links have a high delay, the leaf nodes of the treewill
receive the stream at a later point in time. Bandwidth is important because video
streams are distributed at a certain speed called the stream rate. Nodes thatcannot
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keep up with the stream rate will not be able to download some packets, which
results in a degraded playback quality of the stream. The available bandwidthfor
a certain node also determines how many child nodes can be served by that node.
Ping times and bandwidth measurements between nodes can vary in time. This
is mostly due to the fact that the Delft-37 nodes are used by other users whotake
away bandwidth. However, it is also possible that the network near the source or
destination is suffering from congestion.

3.4.1 Ping Tests on Delft-37

The ping tests show that the link quality between two nodes is almost constant. The
time of day does not seem to affect the time that is needed to send and receive a ping
request. This is probably because of the small size of a ping requests (compared to
other packets) and the rate at which they are sent (once per second).The slowest
node by far is Singapore, with a ping time of around 400 ms from (and to) anyof
the other nodes. The second slowest node is Washington, which has a ping time of
around 190 ms. All of the other nodes have ping times less than 100 ms (mostly
around 50 ms), which is quite fast. All results are displayed in Figure 3.3, which
shows the minimum, mean and maximum times that were obtained by executing a
ping from the host in the left column to the host in the top row. All ping times are
in milliseconds.

Figure 3.3: Delft-37 nodes with their minimum, mean and maximum ping times in
ms.

3.4.2 Bandwidth Tests on Delft-37

The bandwidth tests give some insight in the link capacity that is available between
the Delft-37 nodes. Two bandwidth tests were run for each node. First aTCP
bandwidth test is executed, directly followed by an UDP bandwidth test. This is
done to make the comparison between both tests as fair as possible. Bandwidth
tests are executed by a program calledIPerf [8]. IPerf tests the TCP bandwidth by
setting up a connection between two nodes. One of the nodes sends as muchdata
as it can for a specified period of time. When the test finishes, the total number of
bits sent is divided by the length of the period to obtain the bandwidth speed. In our
tests the TCP time period is set to 3 seconds. The UDP bandwidth test is treated
differently by IPerf. The program generates a stream at the specifiedrate for a
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specified time period. When the test finishes, the receiver of the stream reports to
the sender how many packets it received. From this information IPerf calculates
the packet loss. Our tests use a time period of 3 seconds, with a stream rate of
1 Mbit per second. In a normal situation, where enough bandwidth is available
and no network congestion occurs, the packet loss should be (close to)zero. In
case of insufficient bandwidth, the number of datagrams lost per secondshould be
close to the difference between the UDP stream rate and the previously measured
TCP bandwidth. If the values differ too much, either other users are usingup more
(or less) bandwidth, or the network between the two nodes is congested. Network
congestion can be investigated by comparing TCP bandwidth with UDP bandwidth
(minus datagram loss) speeds.
The test results are shown in Figures A.1-A.6 for all nodes in Delft-37. Alltest
runs started at 12:00 on Friday the21st of April 2006, which is represented by
the first test number, and ended at 12:00 on Wednesday the26th of April 2006,
which is represented by the last test number. Successive tests are 6 hours apart,
meaning that the second test is at 18:00 on Friday the21st of April, and so on. The
same timestamp on the next day is found by adding 4 to the selected test number.
In our tests, UDP datagram loss is normally well within a 10% range, with most
tests not exceeding a 5% datagram loss. Bandwidth tests from other nodesto node
London failed from test number 1 to 13 due to a crash in the IPerf server on this
node. Bandwidth tests from any node to node Paris always fail, but tests done from
this node to other nodes are successful. The test results lead to the following three
conclusions.
First, the UDP datagram loss in test five (Figure A.5) for host London is extremely
high, with numbers between 14% and 22%. The TCP bandwidth in this interval is
also low. At this point in time, the network was probably suffering from congestion.
It is a pity that this assumption cannot be proven with the results from the otherhost
on the same subnet (due to its IPerf crash). Even so, the time interval for acertain
test number to all other hosts is about 5 to 7 minutes, and it seems unlikely that
other users take up that much bandwidth for such a long time; especially whenthe
tests at other points in time do not show the same behaviour.
Second, some UDP bandwidth tests show strange results, like test 2 for host Paris
(Figure A.1). The UDP bandwidth is 404 Kbit/s, with a packet loss of only 1.9%!
Further investigation shows that the bandwidth tester, IPerf, waits for a last ACK
packet to finish the test. If this packet arrives very late, for example three seconds
after the test, IPerf takes a test time interval of 6 seconds, instead of 3. The result
is that the measured bandwidth is divided by 6, instead of 3, which means thatthe
actual bandwidth is halved. All UDP bandwidth dips below 700 Kbit/s are due to
this phenomenon. Actual packet loss in these cases is always below 10%.
Third and last, in about 20% of the tests, the UDP bandwidth exceeds the TCP
bandwidth. The fact that UDP bandwidth measurements are exceeding TCPband-
width measurements is unexpected and may be explained by fluctuations in the
bandwidth usage of other users. Another explanation can be that TCP congestion
prevention algorithms might have a significant impact on these measurements for
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short time intervals, like our 3 second tests. It may be a good idea to increasethe
TCP bandwidth test interval to 10 seconds, and see if this percentage of 20% drops
significantly.

3.5 Conclusion

The test results in this chapter show that most nodes in the Delft-37 network have
a bandwidth capacity that is below 2 Mbit/s. Since the bit rate of the video stream
will be close to 1 Mbit/s, most of the Delft-37 nodes cannot support more thanone
Lumberjack instance without saturating their Internet link. Taking the difficulties
into account of acquiring nodes on different continents, we have decided to aban-
don the Delft-37 network. Instead, we will run tests on the DAS supercomputer in
Delft.
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Chapter 4

Testing Lumberjack

The Delft-37 network turned out to be unsuitable as a testbed for our Lumberjack
player, so we will use the DAS-3 supercomputer and implement delays basedon
the Delft-37 test data. In order to get meaningful test results, we have identified the
most important parameters in the Kettingzaag algorithm and defined the measure-
ments that we want to perform during live streaming. Since the Chainsaw authors
do not elaborate on many of the system parameters that we have defined, we start
our tests with small networks and a variety of parameter settings. This will give
us a good insight in network behaviour, which is needed for selecting parameters
for larger networks. In this chapter we present the Lumberjack tests andthe test
results obtained on the DAS-3 supercomputer.

Section 4.1 describes the system parameters in the Kettingzaag algorithm. Section
4.2 gives an overview of the measurements that we perform during live streaming
with Lumberjack. This is followed by Section 4.3 which explains which measure-
ments we will discuss in our tests, and why we will omit some others. Section 4.4
discusses our first test set, which is used to get a good idea of the Kettingzaag net-
work behaviour. Section 4.5 discusses our second test set, which dealswith larger
networks. We finish this chapter with conclusions about the two test sets in Section
4.6.

4.1 System Parameters

This section gives an overview of the parameters that play an important rolein
the Kettingzaag network. We can distinguish five parameters, which are the server
seeding ratio, the stream’s bit rate, the total number of outgoing connectionsfor a
node, the maximum number of parallel requests a node can make, and finally the
size of the play buffer. Each of these parameters is discussed in more detailbelow.
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Server Seeding Ratio

The Server Seeding Ratio (SSR) is defined as the total number of times the content
server will upload the media stream. The ideal SSR would be 1.0, since that would
mean that the server only inserts the media stream into the network once, after
which it is completely distributed by the clients. However, people want to view
media at the best possible quality. As a result, the media stream rate will be close
to the upload capacity of the individual nodes in the network. This makes such a
low SSR very challenging to meet. A higher SSR is not necessarily bad, as long as
the SSR does not grow (much) as the number of nodes in the network increases.

Video and Audio Bit Rate

One of the most obvious settings is the total bit rate of the media stream, which is
the sum of the video and audio bit rates. As long as the total bit rate remains below
the maximum upload capacity of the majority of the nodes, the nodes should be
able to distribute the stream amongst themselves. When the stream rate exceeds
this threshold, the server needs to augment the missing capacity. In this case, the
SSR will be growing linearly with the number of nodes in the network.

Number of Neighbours

We defineN as the total number of initiated connections to other nodes. When a
node receives a connect request, it adds the requesting node to its ownneighbour
list as well, making the connection a two way communication line. So, each node
connects toN neighbours and on average receivesN incoming connections from
other neighbours. This means that on average each node will be connected to2N

neighbour nodes.

Maximum Parallel Requests

In order to enforce a good distribution of packets in the network, nodes are not
allowed to request all of their packets at a single neighbour. To preventthis, each
node can only request a certain amount of packets from each of its neighbours. We
call this threshold the maximum parallel requests (MPR) threshold. Although itis
important to set the MPR threshold to a low value, a too low value will also prevent
a good network operation. The problem is that when the threshold is set toostrict,
nodes with little neighbours cannot request their packets fast enough. Basically,
the MPR threshold can be decreased whenN is increased.

Play Buffer Size

The play buffer is a block of memory that acts as a buffer between the network
module and the video playing module. Its purpose is to prevent disturbancesin
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video playback due to small dips in network speed. When the network is some-
what slower for a short period of time, the buffer will slowly empty. So, it seems
reasonable to choose a high play buffer size. However, the play buffer must be
filled before playback can start at the startup of a node. So, in order to guarantee a
good response time on startup, we would like a small buffer size.

4.2 Measurements

The Lumberjack software will do measurements in four categories. Each ofthese
four categories deals with some measurements which are discussed in detail below.
First, the basic functionality category will be discussed in Section 4.2.1. Second,
the user behaviour category is outlined in Section 4.2.2. This is followed by theba-
sic P2P behaviour category in Section 4.2.3. Finally, the video behaviour category
is discussed in Section 4.2.4.

4.2.1 Basic Functionality

The basic functionality holds two measurements, which are the frame rate and the
number of program crashes. These are discussed in the following two subsections.

Frame Rate

The frame rate specifies the number of frames that the video playback module
plays per second. This number depends on the CPU speed of the machine and
its video graphics adapter. Slower machines might lose frames which have been
received by the network, just because they are lagging behind during playback. Al-
though the DAS-3 supercomputer consists of multiple nodes, we still run more than
one Lumberjack instance on a single computing node. This allows us to simulate
more nodes, but at the same time prevents the software from actually displaying
the video feed. Therefore we have implemented a fake video decoder which just
decodes frames at the exact rate of the stream. So, the frame rate measurement is
not interesting for our DAS-3 tests.

Number of Program Crashes

The total number of program crashes are recorded and sent back to our data collec-
tion machine. It gives us insight in the stability of the Lumberjack player.

4.2.2 User Behaviour

The user behaviour can be divided in two subcategories, which are the timeof
connect/disconnect, and the video quality of the stream.
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Time of Connect/Disconnect

The moment at which a client connects is recorded, as well as the moment it dis-
connects. This measurement gives us insight in how many users try the software
once, how many users try it more than once, and how long a user stays connected.
Obviously, this measurement is not very useful for our tests on the DAS-3super-
computer.

Video Quality

The video quality depends on the download speed of the client. The contentdistrib-
utor splits up the video in two separate streams. One stream consists of the video’s
even frames and the other of the odd frames. When a client is suffering from band-
width problems for a longer period of time, the software switches to half-quality
mode by dropping one of the streams. The user can also manually switch between
half-quality and full-quality mode. During our DAS-3 simulations, all clients will
run at full quality.

4.2.3 Basic P2P Behaviour

The basic P2P behaviour category holds three measurements. First the neighbour
failure rate will be discussed. Then the latency to neighbours is explained,and
finally the up/down bandwidth usage is outlined.

Neighbour Failure Rate

The neighbour failure rate (NFR) is defined as the number of neighbour nodes that
fail within a certain test time interval. For example, when a node is connected with
23 other nodes (neighbours), of which 3 fail in a test time interval of 2 seconds,
then the NFR for that two second time interval is 1.5 per second. The NFR gives
insight in how quickly nodes are losing neighbours. Our first DAS-3 simulations
will not include failing nodes.

Latency to Neighbours

The latency to a neighbour is defined as the time that is needed to get a TCP packet
from one node to the other. Lower latencies are better, because video frames that
are about to be played are more likely to arrive in time. Furthermore, latency to
neighbours gives an indication of the geographical distance between twonodes.
When the Chainsaw overlay network is full of high latency links, it is probably
badly mapped on the Internet. Since the DAS-3 nodes are extremely well con-
nected, we simulate latency between neighbours by delaying incoming packetsat
the nodes.
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Upload Rate

The upload rate is defined as the number of bits that a node uploads per second
to all of its neighbours. The upload rate is specified as either Kbits/s (Kbps), or
Mbit/s (Mbps).

Download Rate

The download rate is defined as the number of bits that a node downloads per
second to all of its neighbours. The download rate is specified as either Kbits/s
(Kbps), or Mbit/s (Mbps).

4.2.4 Video Behaviour

The video behaviour category can be divided in 5 subcategories, whichare the
actual video bit rate, frame loss, number of frame re-requests, timing of frames
and the number of frame repairs.

Actual Video Bit Rate

The actual bit rate at a client is recorded, because a truly fixed bit rate isan illusion.
The client’s bit rate will fluctuate around the bit rate on which the stream is multi-
cast. These fluctuations are important to monitor, because the mean bit rate should
be close to the actual bit rate. Furthermore, a very good network performance can
be caused by a lower bit rate at a certain point in time (e.g. during black screens).

Frame Loss

The number of frames that are lost because a frame has not been downloaded in
time. Nodes with a slow connection are more likely to suffer from frame loss than
faster clients. This measurement also gives insight in network problems when fast
connected clients are suffering high frame loss.

Number of Frame Re-requests

Whenever a frame is requested from a neighbour, but is not receivedwithin a
certain time interval, it is requested from another neighbour. The number ofre-
requests can give an insight into problems or high stress at some neighbour node.

Timing of Frames

We store the following frame times for a low level insight of the network:

• Frame Availability Time

• Frame Request Time
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• Frame Receipt Time

• Frame Playback Time

The frame availability time specifies the moment at which a node is notified by
a neighbour that the neighbour has a new frame available for download. From
that time a node may decide to download that particular frame from the neighbour.
When it decides to do so, it requests the frame at the neighbour and storesthis
moment as the frame request time. As the neighbour receives the request, itdecides
if it will upload the frame of not. When it does, the requesting node stores thetime
at which the frame is received as the receipt time. Every time a frame is played on
the client, the node stores this time as the playback time. Getting to know these
times gives insight in the delay between availability notifications, requests, receipts
and finally playback.

Number of Frame Repairs

Every time a node fails to download a frame from the network in time, it has to
repair it during playback. Repaired frames are generated using the previous and
the next frame. This results in a frame with degraded quality, but at least thevideo
will not show a black frame (or stop) for a short period of time. Frame repairs are
done constantly when the client is set to half-quality mode (see above).

4.3 Performance Metrics

From the measurements that we described in the last paragraph, we definethe
following four as performance metrics for our tests:

• Frame rate in frames per second

• Frame loss in frames per second

• Upload rate in Kbits per second

• Download rate in Kbits per second

The measurements that will not be discussed are the Number of program crashes,
the connect/disconnect time of nodes, the quality mode, the neighbour failure rate,
the round-trip time to neighbours, the number of packet re-requests, the timing of
frames and the number of frame repairs. The reasons are that some are low level
debug information (number of packet re-requests, and timing of frames),others are
non-existent (program crashes, and neighbour failure rate), and the rest is set to a
fixed value. We will discuss these fixed values in the next paragraph.
We run all our tests at full quality with a round-trip time of 150 ms between any
pair of nodes. In each test, all clients start roughly at the same time and stay con-
nected during the entire test run. This makes the (dis)connect time and neighbour
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failure rate measurements obsolete for our tests. Since the DAS-3 nodes can only
be accessed by a command-line interface, we are unable to show the video feed.
Therefore, the feed is handled by a fake decoder which just pops 30 frames per
second from the frame stack. This means that the number of frame repairs cannot
be measured, but this should not be a problem as long as the frame rate does not
drop too much.

4.4 Test Set 1

With our first test set we will try to get an understanding of the effects thatthe server
seeding ratio (SSR) and the number of neighbours have on the frame loss/frame
rate of the nodes. Since the SSR becomes more important at the mean upload
rate of the clients, we start our first test with 10 nodes and a total bit rate of800
Kbit/s. This is close to the 1 Mbit/s upload limit that most home users have in
the Netherlands. So, under perfect operation all nodes should be ableto upload
enough to support each other. Even though all nodes will upload, we donot expect
perfect network behaviour. This will probably result in frame loss for lower SSR
values. In Chainsaw, a SSR of 2.0 works well, so we have chosen to keepour SSR
values close to 2. We will gradually increase the SSR values in our tests from1.1
to 1.5, 2.0, 2.5 and finally 3.0. Hopefully, frame loss will decrease rapidly for SSR
values of 2 and higher. We do not assume a fully connected network in real-life
streaming situations, so we keep the number of initiated neighbour connections
(N ) low. Since we expect that lower settings forN have a negative impact on
network performance, we vary the values forN from 2 to 4. This leads us totest
set 1, which is summarized in Table 4.1.

4.4.1 Test Setup

Although Table 4.1 shows 15 different test types, we only perform threetest runs
in which we run five test types each. This means that we dynamically change the
SSR value (from 1.1, 1.5, 2.0, 2.5 to 3.0) in each test run to accommodate eachtest
type. So, test run 1 contains test types 1-5 (N=2), test run 2 contains test types 6-10
(N=3), and test run 3 contains test types 11-15 (N=4). The seed will start with an
SSR of 1.1, and change it to the next higher setting every 60 seconds. So, each of
these three test runs lasts 300 seconds and contains 60 timestamps per SSR setting.
Since we have 10 nodes in each test run, there are 10 data points per timestamp.
In order to keep our figures organized, we only keep track of the minimum (red
data points), mean (green data points) and maximum (blue data points) values for
each of these timestamps. We execute test run 1 (test types 1-5), 2 (test types 6-10)
and 3 (test types 11-15) ten times to filter out anomalies in the results, so we can
get a good insight of the tendencies in the network. We start our tests with ten
executions of each of the three test runs without limiting the upload rate for client
nodes. This allows us to determine if Table 4.1 provides realistic values for more
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Test Test Video Audio # of SSR N

Run Type Rate (Kbps) Rate (Kbps) Peers
1 1 704 96 10 1.1 2

2 704 96 10 1.5 2
3 704 96 10 2.0 2
4 704 96 10 2.5 2
5 704 96 10 3.0 2

2 6 704 96 10 1.1 3
7 704 96 10 1.5 3
8 704 96 10 2.0 3
9 704 96 10 2.5 3

10 704 96 10 3.0 3
3 11 704 96 10 1.1 4

12 704 96 10 1.5 4
13 704 96 10 2.0 4
14 704 96 10 2.5 4
15 704 96 10 3.0 4

Table 4.1: Tests of test set 1.

common upload boundaries.

4.4.2 Unlimited Upload Results

The unlimited client upload results for each of the four performance metrics (frame
rate, frame loss, upload rate, download rate) are shown per test run in Section
B.1. The four performance metrics of test run 1 are shown in Figures B.1-B.4,
the metrics of test run 2 are shown in Figures B.5-B.8, and the metrics of test
run 3 are shown in Figures B.9-B.12. Since every test run is executed tentimes,
each of the mentioned figures contains 10 graphs. Considering that the results for
all performance metrics are recorded simultaneously, graphs that are in the same
position correspond to the same execution of a test run.
Remarkably, the test results for the frame rate with 2, 3 and 4 outgoing neighbour
connections are almost the same (Figures B.1, B.5, B.9). We show the resultsfor
N=3 in Figure 4.1 (a), because these summarize the otherN settings well. The
frame rate at an SSR of 1.1 is unacceptable for any value ofN , but stabilizes at
SSR values of 1.5 and up. Almost all test runs have a dip in the frame rate in SSR
intervals 1.5 and 2.0. It is remarkable that the frame rate drop is worse in the higher
SSR interval for all values ofN . These drops are somewhat less deep for higher
values ofN , which is normal because nodes have more neighbours to download
missing packets from. This also holds for higher SSR values where we noticesmall
dips in the minimum frame rate forN values 2 and 3, while the frame rate is stable
for 4 outgoing connections.
When we compare the node upload speed for different values ofN (Figures B.3,
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Figure 4.1: Minimum, mean and maximum frame rate and upload rate for test
runs with 3 neighbours, an no upload limit. (Test Run: 2,SSR=1.1-3.0,N=3,
UploadLimit=unlimited)

B.7, B.11), we notice that the mean upload is about the same in all figures and
decreases for higher SSR values. This behaviour is shown in Figure 4.1(b) and
is expected, as the nodes can obtain more packets from the server at higher SSR
values, and thus exchange less packets amongst themselves. The biggest difference
in upload speeds is noticeable in the maximum upload which peaks higher for
smaller values ofN . Apparently, when the network is less connected, packets are
only available at a select number of nodes, whereas packet availability is more
balanced for higher values ofN . With an unlimited upload speed, this is not much
of a problem since the nodes just upload a bit more. This is probably the reason
why the test results for the three test runs look so similar. Therefore, we will run
the same test runs again, but with a more realistic upload limit of 1 Mbit/s for each
of the nodes.

4.4.3 Limited Upload Results

The results with a client upload limit of 1 Mbit/s are shown in Section B.2 in
Figures B.13-B.24. Naturally, the frame rates at SSR value 1.1 are even worse
than in the test runs with an unlimited upload. This time there is a huge difference
between test run 1 withN=2 and test runs 2 and 3 (withN=3 and 4). This is
shown in Figure 4.2 which contains two representative graphs from the appendix.
As expected, the upload limit causes the frame rate to drop significantly forN=2.
This is proven by the results in Figure B.15, which show that the maximum upload
is at a steady value of 1 Mbit/s for SSR values of 2.0 and below. From SSR 2.5
and up, the maximum upload rate starts to fluctuate below its maximum value,
indicating that the upload limit is not the bottleneck anymore. As a result, the
mean frame rate value quickly stabilizes close to the desired value of 30 framesper
second (fps). However, small frame rate dips are still common at higher SSR rates,
especially for the worst performing node. The situation becomes better as the value
of N increases, although the frame rate dips at SSR values of 2.0 and below are
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Figure 4.2: Minimum, mean and maximum frame rate for test runs with 2 (a) and 3
(b) neighbours, with a 1 Mbit/s upload limit. (Test Run: 1 (a) and 2 (b),SSR=1.1-
3.0,N=2 (a) andN=3 (b),UploadLimit=1 Mbit/s)

still deep enough to be noticed by viewers. The frame rate does seem to stabilize
in the second half of the SSR=2.0 interval, so we run some extended tests forthis
interval. For each value ofN we will run three extended tests which each lasts
for 10 minutes at an SSR of 2.0. This will give some insight in the behaviour of
the network after the frame rate has stabilized. The extended test results for N=3
are shown in Figure 4.3. The results of the tests with 4 neighbours are practically
identical to theN=3 values. ForN=2 one of the tests failed with a mean frame
rate below 10 fps. In order to check if this is coincidental, we ran another three test
runs of which two failed.

4.5 Test Set 2

The goal in our second test is to find out if the SSR and number of neighbours de-
pend on the total number of nodes in the network. The original authors of Chainsaw
performed successful simulations with very large networks at low SSR settings, but
they do not elaborate on the number of neighbour connections.

4.5.1 Test Setup

In test set 1 we have seen that an SSR value of 3.0 is working well, and therefore
this SSR setting will be maintained in test set 2. In order to get an idea of the
influence of the number of neighbours in larger networks, the total numberof nodes
is increased to 50. The total number of neighbours will be set to three different
values.
First, N is set to 5, which is an almost constant value in comparison with theN

settings in the 10-node networks from test set 1. Second,N is set to 10 (20% of the
total number of nodes), which yields the same neighbour percentage asN=2 in the
10-node network tests. Finally,N is set to 20 (40% of the total number of nodes)
and can be compared to theN=4 setting in the 10-node network tests. Second, we
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Figure 4.3: Minimum, mean and maximum frame rate for 10-minute test runs at
800 Kbit/s with 3 neighbours and 1 Mbit/s upload limit. (Test Type: 8,SSR=2.0,
N=3,UploadLimit=1 Mbit/s)

Test Video Audio # of SSR N

Type Rate (Kbps) Rate (Kbps) Peers
1 704 96 50 3.0 5
2 704 96 50 3.0 10
3 704 96 50 3.0 20
4 704 96 100 3.0 5
5 704 96 100 3.0 10
6 704 96 100 3.0 20

Table 4.2: The tests of test set 2.

will increase the total number of nodes to 100 while maintaining the number of
neighbours at 5, 10, and 20. This leads to 6 tests which are described byTable 4.2.
Each of these tests is performed with a client upload limit of 1 Mbit/s and lasts 10
minutes.

4.5.2 Test Results

The results from test types 1, 2 and 3 look promising, and are summarized in Figure
4.4. Since the test results for 5 and 10 neighbours (tests 1 and 2) are similar, we
summarize them both in one graph.
The networks with 20 outgoing connections (test type 3) show a slightly better
performance than the networks from test 1 and 2. Note that theN=20 networks
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Figure 4.4: Minimum, mean and maximum frame rate for test runs with 50 nodes
and 5, 10 (a), and 20 (b) neighbours, with a 1 Mbit/s upload limit. (Test Type: 1,2
(a) and 3 (b),SSR=3.0,N=5,10 (a) andN=20 (b),UploadLimit=1 Mbit/s)

have an average of 40 (=2N ) neighbours, meaning that the network is almost fully
connected. Therefore, a node can almost always find the packets thatit is missing,
since each node knows about almost every other node in the network. This is
consistent with the results for theN=4 setting in the 10-node networks of Test Set
1. More interesting are the results of tests 1 and 2. Especially test 1 shows that
larger networks can operate well with a small number of neighbours. When we
examine the theory this is not completely unexpected. We know that each nodein
test 1 is connected to 10 (=2N ) other nodes on average, and has a maximum of 5
outstanding packet requests per neighbour. This means that each nodecan request
a maximum of 10*5=50 packets at a time, which represents just over a second of
media playtime. The round-trip time between nodes is set to be a random number
between 130 ms and 170 ms, which means that a node is able to request data
roughly 6 times faster than it needs to. We therefore expect no problems when we
extend the network size to 100 nodes, while keeping the neighbour settings at the
same values. Unfortunately, the results from tests 4 to 6 are all equally terrible, and
are summarized by Figure 4.5 (a).

These results defy the expectations based on the previous results from the 50-node
networks. This could indicate a problem with the distribution algorithm in larger
networks. If the problems are caused by the Kettingzaag algorithm itself, wewould
expect better results when the node bandwidth is increased. Therefore, we decided
to rerun the tests without limiting the upload of both the clients and the server,
giving each node over 50 Mbit/s of bandwidth. Fortunately these results are just as
bad, which means that it is unlikely that the distribution algorithm is the cause of
these problems.

Further investigation shows that the server node is suffering from an extremely high
CPU load in larger networks. When the server encodes the media stream without
any nodes connected, the CPU load ranges from 35% to 40%. The remaining
resources are used by a python timer system that allows delayed code execution.
These timers are mainly used to play video and audio frames at the correct time,
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Figure 4.5: Minimum, mean and maximum frame rate for test runs with 100 nodes
and 5 neighbours, with a 1 Mbit/s upload limit and 150 (a) or 0 (b) ms round-trip
time between nodes. (Test Type: 3, 4 and 5,SSR=3.0, N=3, UploadLimit=1
Mbit/s, RTT=150 ms (a) and 0 ms (b))

and to delay network packet delivery to simulate round-trip times between nodes.
When the number of nodes increases, so does the number of network packets that
have to be processed (and delayed) at the server. This leads to a largenumber of
timers, which eventually causes high CPU loads. This prevents the server from
inserting new media packets into the network in time. We rerun theN=5 tests with
the packet delay system disabled. Since the number of active timers are reduced
greatly, we expect better network performance due to less CPU load spikes.

The results of this 0 ms delay test are shown in Figure 4.5 (b). Although CPU
spikes still influence network performance, the results are much better thanthe
previous results with packet delaying enabled. In fact, the network performs well
from the3rd to the5th minute and from the6th to the10th minute. In these inter-
vals the server CPU load never reached 100%, which leads us to believe that further
optimizations would yield to results equal to those of the 50-node networks. How-
ever, we will not further optimize the software for two reasons. First, we are close
to the maximum number of nodes that we can simulate on the Delft cluster of the
DAS-3 supercomputer. So even if the server could handle more nodes, we would
not be able to simulate them on the Delft cluster. Using other DAS-3 cluster sites
is possible, but starting them at about the same time is extremely difficult (if not
impossible) due to job scheduling on each cluster. The second reason is that our
research is superseded by a similar research project in the PDS group that uses a
give-to-get overlay closely related to the BitTorrent protocol [23], just like [16].
The biggest advantage of this give-to-get overlay is that it implements protection
against free-riding (nodes that download packets, but not upload any), something
which is not present in our current implementation of Kettingzaag. Since the P2P
principle is based on nodes exchanging packets amongst each other, thisis an im-
portant feature [18]. When too many free-riders enter the network, Kettingzaag
performance will drop because the well behaving nodes (the ones that do upload)
cannot provide enough upload bandwidth to compensate the free-riding nodes [11].
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4.6 Conclusion

The system works quite well for a 10-node network for SSR values of 2.5and up.
Even forN=2, the frame rate rarely drops below 25 fps. For SSR values below
2.0, the results are too unstable to be used in a real environment. Although the
initial tests showed bad results for an SSR setting of 2.0, the extended tests show
that this is the lowest reasonable SSR value for longer runs. However, the startup
time needs to be much improved before an SSR setting of 2.0 can be used in a real
situation. We have to conclude that the system does not work well for a 10-node
network withN=2 at this setting. The question if this is a result of the low number
of outgoing connections, or if a value ofN equivalent to 20% of the total number
of nodes is a too low setting forN is answered by Test Set 2.
The goal in our second test was to find out if the SSR and neighbour settings should
depend on the total number of nodes in the network. According to the test results
of both the 50-node and the optimized 100-node tests, we can conclude thatit
is very unlikely that such a dependency exists. Even though we have nottested
beyond network sizes of 100 nodes, we know that withN=5 and RTT=150 ms,
nodes can request packets up to 6 times faster than required. We therefore do not
expect problems with much bigger network sizes, as long as the client nodeskeep
uploading. Of course, higher values for the SSR andN will smoothen the occa-
sional frame rate drop, and make the network more resilient against node failures.
Unfortunately, we cannot simulate large enough networks to make any meaningful
statements about network performance during node failures.
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Chapter 5

Conclusions and Future Work

Content providers are becoming more and more aware of the high server costs that
are inherent to the client/server model for live video streaming. The solutionto
this problem lies in peer-to-peer technology. The reason is that clients distribute
the stream amongst each other, which reduces the amount of data that is down-
loaded from the content servers. Many P2P solutions exist, but we havechosen to
implement our own algorithm called Kettingzaag, which is based on the Chainsaw
algorithm [25] because of its simplicity and excellent simulation results.
Chainsaw is a fairly new swarm-based content distribution algorithm that makes
use of local state gossipping and data pulling. The main advantage of swarm-based
overlay networks over their tree- and flooding-based counterparts is that they do
not enforce a strict network topology. This makes them very resilient to errors. We
have added some improvements to our Kettingzaag algorithm, such asREJECT

messages, ping-pong messages and multiple description coding. We intendedto
test Kettingzaag in our own video player called Lumberjack on Delft-37, a collec-
tion of virtual hosts on the Internet.
Delft-37 consists of 6 hosts and was intended to grow to 37 hosts. In orderto make
Delft-37 easy to use and manage, we have implemented a program that allows us
to control the network and its contents from a central control point. We alsoadded
a few reliable machines to the university network to host Lumberjack seeds and
to store test logs. Unfortunately, Delft-37 performance tests show that thenodes
do not have enough bandwidth and processing power available to host multiple
Lumberjack instance. Therefore, the idea has been abandoned and wehave moved
our tests to the DAS-3 supercomputer.

5.1 Conclusions

We started our thesis with the following research question: How does a Chainsaw-
based implementation perform in a real video player and network, and in particular
does it perform as well in a real environment as it does in simulations? We can
conclude that our Kettingzaag implementation performs quite well for relatively
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small networks. Under normal operation, Kettingzaag manages to deliver the video
stream with minimal packet loss at low server seeding rates. However, the first
minute after network startup remains problematic for Kettingzaag. If this is also
the case in the Chainsaw simulations remains unclear, because its designers state
that their network gets time to initialize, without specifying further information.
We do believe that Chainsaw still has better network startup times, which is most
likely caused by the fact that new Chainsaw nodes can only request packets from
neighbours. In Kettingzaag, new nodes can also request packets from the seed,
which results in new nodes receiving very new packets due to the seed’spacket
overriding mechanism.
The second question we asked ourselves in the problem statement is: Do weneed
changes to the original Chainsaw algorithm to create a working implementation?
We found that the Chainsaw description explained in [25] performs alright.How-
ever, implementing theREJECT message as described in Chapter 2 improved
Kettingzaag performance significantly. Although the Chainsaw designers do not
discuss aREJECT message or another hold-off mechanism, we cannot imagine
that they just silently drop requests.
The final question in our problem statement is: Which parameters are the most
important in Kettingzaag, and what are good settings for various network sizes?
We can conclude that the video bitrate and the mean upload rate in the network are
the most important parameters. The video bitrate should not exceed 80% of the
mean upload rate in the network. We have shown that the server seeding ratio and
the number of initiated neighbour connections do not have to depend on the total
number of nodes in small networks. Although the implementation of Lumberjack
prevents us from testing networks larger than a hundred nodes, we arefairly certain
that a server seeding ratio of 3.0 and 20 initiated neighbour connections are enough
for large networks as well.

5.2 Future Work

One of the most important issues with our implementation is the fact that it uses a
lot of CPU resources, which prevents us from testing network sizes larger than a
hundred nodes. In fact, the 100-node network tests failed at first. To address this
issue, the python timer implementation should be redesigned and real-time MDC
video encoding should be replaced by a pre-encoded stream saved ondisk. These
changes will allow an increase of the maximum network size and of the number of
different videos that can be seeded on a single node.
We have noticed that the most prominent difference between Chainsaw andour
Kettingzaag implementation is the startup time. Although the Chainsaw simula-
tion results were taken after the network had time to initialize, we do believe that
Chainsaw performs better than Kettingzaag in terms of startup time. In the Chain-
saw algorithm, new nodes are encouraged to request packets from neighbours only.
This prevents new nodes from receiving overrided packets from the server, which
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are most likely to be far away from the playback position. Since Kettingzaag does
not do this, new nodes will download the newest packets from the serveras well,
wasting bandwidth for the packets that they really need.
Another important issue is that we assumed that all nodes donate upload bandwidth
to the network. In reality however, many nodes will not do this (free-riding), which
negatively affects network performance. In order to minimize the negativeeffects
of free-riding, measures must be implemented that penalize free-riding nodes when
the total bandwidth demand exceeds the total bandwidth supply.
In order to improve the performance of Kettingzaag even more, we suggest two
changes. First, the mechanism that determines which packets should be down-
loaded is now based on random selection. This could lead to packet loss when a
very new packet is chosen instead of a packet that is about to be played. A more in-
telligent solution would be to implement an algorithm that prioritizes packets that
are within a certain range from the playback position. Second, the maximum num-
ber of parallel requests from a node to a single neighbour could be implemented
in a better way. For Chainsaw, the authors suggest that the requesting node keeps
track of the maximum number of outstanding requests per neighbour. Since our
software is open source, everyone can change this parameter at will, which would
result in altered nodes that request many packets at the same time. Instead,the max-
imum number of parallel requests should be implemented in the nodes receiving
the requests, for this allows the receiver to choke modified nodes when necessary.
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Appendix A

Delft-37 Test Results

This appendix shows the Delft-37 bandwidth results that we described in Chapter
3. Every figure contains both the TCP and UDP bandwidth results from onenode
in the network to all of the other nodes. The top graphs represent the download
speed obtained using the TCP protocol, and the bottom graphs show the download
speed obtained using the UDP protocol. For UDP we have chosen to createa
stream of 1 Mbit/s. The UDP graphs show how many kbits arrive each second at
the downloading node. Note that the same symbols in the legend of the graphs do
not always represent the same nodes. Table A.1 contains the nodes thatare present
in the Delft-37 network.

Full Name IP Address Location
vds-355074.amen-pro.com 62.193.219.68 Paris, France
advantagecom.us.peer-2-peer.org 66.29.146.21 Walla Walla, Washington, USA
d80-237-144-205.dds.hosteurope.de80.237.144.205 Köln, Germany
adiungo-phoenix.us.peer-2-peer.org193.192.247.157 Phoenix, Arizona, USA
adiungo-london.uk.peer-2-peer.org 193.192.247.133 London, UK
usonyx.sp.peer-2-peer.org 202.172.255.90 Singapore

Table A.1: Delft-37 nodes with IP address and location.
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Figure A.1: TCP (top) and UDP (bottom) bandwidth test results for Paris.
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Figure A.2: TCP (top) and UDP (bottom) bandwidth test results for Walla Walla.
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Figure A.3: TCP (top) and UDP (bottom) bandwidth test results for Köln.
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Figure A.4: TCP (top) and UDP (bottom) bandwidth test results for Phoenix.
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Figure A.5: TCP (top) and UDP (bottom) bandwidth test results for London.
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Figure A.6: TCP (top) and UDP (bottom) bandwidth test results for Singapore.
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Appendix B

Lumberjack Test Results

In this appendix we present the test results of test set 1, which is described in
Chapter 4. The tests in test set 1 are summarized once more in Table B.1. Although
the table contains 15 different test types, they are all performed in three test runs
in which we run five test types each. This means that we dynamically change the
SSR value (from 1.1, 1.5, 2.0, 2.5 to 3.0) in each test run to accommodate all test
types. All graphs in this appendix represent an execution of a complete test run,
which means that the horizontal axis holds all of the possible SSR values. The total
duration of a test run is 300 seconds, which means that every SSR interval lasts 60
seconds. We have defined four performance metrics, which are the frame rate,
the frame loss, the upload rate and the download rate. Each test run is executed ten
times, and all of these executions are shown in a single figure for each performance
metric. Hence, the results of every test run is presented in four figures (one for
each metric), which each contain 10 graphs (one for each execution). Test set 1
is performed with both unlimited and limited upload settings for the client nodes
in the network. The unlimited results are shown in Section B.1, and the limited
results are shown in Section B.2.
The test runs are executed on 10-node networks, which means that every figure in
this appendix should contain 10 data points for each timestamp. We have chosen
to keep the figures organized by only showing the minimum, mean and maximum
values of the ten nodes for each of the 300 timestamps (60 seconds for each of the
five SSR settings). Table B.2 shows that the minimum node value is representedby
the red data points, the mean node value by the green data points, and the maximum
node value by the blue data points.

B.1 Lumberjack Unlimited Client Upload Results

This section contains the twelve (three test runs multiplied by four performance
metrics) figures belonging to the three test runs described by Table B.1. The upload
rate of the client nodes is not limited in these tests.
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Test Test Video Audio # of SSR N

Run Type Rate (Kbps) Rate (Kbps) Peers
1 1 704 96 10 1.1 2

2 704 96 10 1.5 2
3 704 96 10 2.0 2
4 704 96 10 2.5 2
5 704 96 10 3.0 2

2 6 704 96 10 1.1 3
7 704 96 10 1.5 3
8 704 96 10 2.0 3
9 704 96 10 2.5 3

10 704 96 10 3.0 3
3 11 704 96 10 1.1 4

12 704 96 10 1.5 4
13 704 96 10 2.0 4
14 704 96 10 2.5 4
15 704 96 10 3.0 4

Table B.1: Tests of test set 1.

Maximum data value across all nodes
Mean data value across all nodes
Minimum data value across all nodes

Table B.2: Legend of the data point colors in this appendix.

54



 5

 10

 15

 20

 25

 30

 35

3.02.52.01.51.1
F

ra
m

es
/s

SSR

 5

 10

 15

 20

 25

 30

 35

3.02.52.01.51.1

F
ra

m
es

/s

SSR

 5

 10

 15

 20

 25

 30

 35

3.02.52.01.51.1

F
ra

m
es

/s

SSR

 5

 10

 15

 20

 25

 30

 35

3.02.52.01.51.1

F
ra

m
es

/s

SSR

 5

 10

 15

 20

 25

 30

 35

3.02.52.01.51.1

F
ra

m
es

/s

SSR

 5

 10

 15

 20

 25

 30

 35

3.02.52.01.51.1

F
ra

m
es

/s

SSR

 5

 10

 15

 20

 25

 30

 35

3.02.52.01.51.1

F
ra

m
es

/s

SSR

 5

 10

 15

 20

 25

 30

 35

3.02.52.01.51.1

F
ra

m
es

/s

SSR

 5

 10

 15

 20

 25

 30

 35

3.02.52.01.51.1

F
ra

m
es

/s

SSR

 10

 15

 20

 25

 30

 35

3.02.52.01.51.1

F
ra

m
es

/s

SSR

Figure B.1: Minimum, mean and maximumframe rate for ten executions of
test run 1 at 800 Kbps with two neighbours and no upload limit. (Test Run: 1,
SSR=1.1-3.0,N=2,UploadLimit=unlimited)
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Figure B.2: Minimum, mean and maximumframe loss for ten executions of test run
1 at 800 Kbps with two neighbours and no upload limit. (Test Run: 1,SSR=1.1-
3.0,N=2,UploadLimit=unlimited)
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Figure B.3: Minimum, mean and maximumupload rate for ten executions of
test run 1 at 800 Kbps with two neighbours and no upload limit. (Test Run: 1,
SSR=1.1-3.0,N=2,UploadLimit=unlimited)
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Figure B.4: Minimum, mean and maximumdownload rate for ten executions of
test run 1 at 800 Kbps with two neighbours and no upload limit. (Test Run: 1,
SSR=1.1-3.0,N=2,UploadLimit=unlimited)
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Figure B.5: Minimum, mean and maximumframe rate for ten executions of test
run 2 at 800 Kbps with three neighbours and no upload limit. (Test Run: 2,
SSR=1.1-3.0,N=3,UploadLimit=unlimited)
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Figure B.6: Minimum, mean and maximumframe loss for ten executions of test run
2 at 800 Kbps with three neighbours and no upload limit. (Test Run: 2,SSR=1.1-
3.0,N=3,UploadLimit=unlimited)
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Figure B.7: Minimum, mean and maximumupload rate for ten executions of
test run 2 at 800 Kbps with three neighbours and no upload limit. (Test Run:
2, SSR=1.1-3.0,N=3,UploadLimit=unlimited)
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Figure B.8: Minimum, mean and maximumdownload rate for ten executions of
test run 2 at 800 Kbps with three neighbours and no upload limit. (Test Run:2,
SSR=1.1-3.0,N=3,UploadLimit=unlimited)
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Figure B.9: Minimum, mean and maximumframe rate for ten executions of test
run 3 at 800 Kbps with four neighbours and no upload limit. (Test Run: 3,
SSR=1.1-3.0,N=4,UploadLimit=unlimited)
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Figure B.10: Minimum, mean and maximumframe loss for ten executions of
test run 3 at 800 Kbps with four neighbours and no upload limit. (Test Run:3,
SSR=1.1-3.0,N=4,UploadLimit=unlimited)
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Figure B.11: Minimum, mean and maximumupload rate for ten executions of
test run 3 at 800 Kbps with four neighbours and no upload limit. (Test Run:3,
SSR=1.1-3.0,N=4,UploadLimit=unlimited)
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Figure B.12: Minimum, mean and maximumdownload rate for ten executions of
test run 3 at 800 Kbps with four neighbours and no upload limit. (Test Run:3,
SSR=1.1-3.0,N=4,UploadLimit=unlimited)



B.2 Lumberjack Limited Client Upload Results

This section contains the twelve (three test runs multiplied by four performance
metrics) figures belonging to the three test runs described by Table B.1. The upload
rate of the client nodes is limited to 1 Mbit/s in these tests, which is a representative
upload limit for home users in the Netherlands.
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Figure B.13: Minimum, mean and maximumframe rate for ten executions of test
run 1 at 800 Kbps with two neighbours and an upload limit of 1 Mbit/s. (Test Run:
1, SSR=1.1-3.0,N=2,UploadLimit=1 Mbit/s)
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Figure B.14: Minimum, mean and maximumframe loss for ten executions of test
run 1 at 800 Kbps with two neighbours and an upload limit of 1 Mbit/s. (Test Run:
1, SSR=1.1-3.0,N=2,UploadLimit=1 Mbit/s)



 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

3.02.52.01.51.1
kb

it/
s

SSR

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

3.02.52.01.51.1

kb
it/

s

SSR

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

3.02.52.01.51.1

kb
it/

s

SSR

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

3.02.52.01.51.1

kb
it/

s

SSR

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

3.02.52.01.51.1

kb
it/

s

SSR

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

3.02.52.01.51.1

kb
it/

s

SSR

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

3.02.52.01.51.1

kb
it/

s

SSR

 0

 500

 1000

 1500

 2000

 2500

3.02.52.01.51.1

kb
it/

s

SSR

 0

 500

 1000

 1500

 2000

 2500

 3000

3.02.52.01.51.1

kb
it/

s

SSR

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

3.02.52.01.51.1

kb
it/

s

SSR

Figure B.15: Minimum, mean and maximumupload rate for ten executions of test
run 1 at 800 Kbps with two neighbours and an upload limit of 1 Mbit/s. (Test Run:
1, SSR=1.1-3.0,N=2,UploadLimit=1 Mbit/s)
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Figure B.16: Minimum, mean and maximumdownload rate for ten executions of
test run 1 at 800 Kbps with two neighbours and an upload limit of 1 Mbit/s. (Test
Run: 1,SSR=1.1-3.0,N=2,UploadLimit=1 Mbit/s)
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Figure B.17: Minimum, mean and maximumframe rate for ten executions of test
run 2 at 800 Kbps with three neighbours and an upload limit of 1 Mbit/s. (Test
Run: 2,SSR=1.1-3.0,N=3,UploadLimit=1 Mbit/s)
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Figure B.18: Minimum, mean and maximumframe loss for ten executions of test
run 2 at 800 Kbps with three neighbours and an upload limit of 1 Mbit/s. (Test
Run: 2,SSR=1.1-3.0,N=3,UploadLimit=1 Mbit/s)
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Figure B.19: Minimum, mean and maximumupload rate for ten executions of test
run 2 at 800 Kbps with three neighbours and an upload limit of 1 Mbit/s. (Test
Run: 2,SSR=1.1-3.0,N=3,UploadLimit=1 Mbit/s)
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Figure B.20: Minimum, mean and maximumdownload rate for ten executions of
test run 2 at 800 Kbps with three neighbours and an upload limit of 1 Mbit/s. (Test
Run: 2,SSR=1.1-3.0,N=3,UploadLimit=1 Mbit/s)
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Figure B.21: Minimum, mean and maximumframe rate for ten executions of test
run 3 at 800 Kbps with four neighbours and an upload limit of 1 Mbit/s. (TestRun:
3, SSR=1.1-3.0,N=4,UploadLimit=1 Mbit/s)
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Figure B.22: Minimum, mean and maximumframe loss for ten executions of test
run 3 at 800 Kbps with four neighbours and an upload limit of 1 Mbit/s. (TestRun:
3, SSR=1.1-3.0,N=4,UploadLimit=1 Mbit/s)
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Figure B.23: Minimum, mean and maximumupload rate for ten executions of test
run 3 at 800 Kbps with four neighbours and an upload limit of 1 Mbit/s. (TestRun:
3, SSR=1.1-3.0,N=4,UploadLimit=1 Mbit/s)
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Figure B.24: Minimum, mean and maximumdownload rate for ten executions of
test run 3 at 800 Kbps with four neighbours and an upload limit of 1 Mbit/s. (Test
Run: 3,SSR=1.1-3.0,N=4,UploadLimit=1 Mbit/s)


