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Abstract

Due to the growing popularity of viewing media over the Internet, conteneser

are suffering from more and more stress every day. This problem igidrad

ally solved by enhancing the server infrastructure at the content mowvithich is
effective but also costly. A more cost effective solution would be to @etech-
nology to distribute the media stream in real-time. For this purpose, the Chainsaw
algorithm has been proposed, which performs very well in simulations.ekeny
Chainsaw has not been implemented in a real video player yet. We have built
our own version of Chainsaw called Kettingzaag, and we have added isome
provements and features which make it more resillient to errors, such asleultip
description coding. Kettingzaag is put to the test in our own video playerdcalle
Lumberjack, on the DAS-3 supercomputer in Delft. Our experiments shavhiba
Kettingzaag algorithm performs well for network sizes up to a hundredsiahd

is likely to perform just as well for larger network sizes.
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Chapter 1

| ntroduction

Since the introduction of peer-to-peer (P2P) networks, downloadiadhbeome
increasingly popular. The first P2P networks were primarily used foriararsd
compressed video files. Today’s networks allow users to downloadfilegesuch

as DVD and game images within a few hours. The main reason for the popular-
ity of P2P is that the system overcomes bandwidth limitations of a single node at
almost zero cost. This has inspired many people to share their music and video
collections on the Internet. Unfortunately, most of these music and videafies
copyrighted, and so P2P has become a synonym for illegal downloadgevidn
more and more people are willing to watch legal content online, such as tlee new
and TV programs. A recent development that has become very popeltreaso
calledBroadcast Yourself websites, which allow users to share their videos online
with other people. A well known exampleysutube.com, and a less known Dutch
variant is123video.nl. One of the main reasons why these sites are so popular is
the click-and-watch experience. Most P2P systems do not yet prozaldime
streaming, and therefore content providers still use the client/serverl niblis
means that each client downloads its entire stream from the server, sarttie b
width stress and cost at the server grows linearly with the number of cliBets.
cently, Ellacoya Networks has performed a study [6] on the Internejeudata

of approximately one million north-american broadband subscribers. Tudy s
shows that traffic over HTTP has been increasing in the past yearscancon-
sumes 46% of the total bandwidth, against 37% for P2P. This makes HTgErbig
than P2P for the first time in four years. The main reason for this shift igirea
video streaming over HTTP. With the increasing demand of real-time mediarserv
costs will get even higher in the future. So, the logical next step is to eXx@erd
technology with real-time media streaming.

1.1 |-Share

The Universities of Technology in Delft, Twente and Eindhoven, the Vrijések-
siteit in Amsterdam, and Philips participate in the I-Share [7] project, which is a



research project on sharing resources in virtual communities. Thelyindedea

is that people participate in a group, and help other group members to erafit

the group’s resources by sharing bandwidth, storage and CPU cy&édsng up
algorithms for resource sharing is not simple because of three major i$Ststs.
finding available resources at other nodes is not easy. Seconds ttatehave
limited capabilities or do not share their resources degrade overall spsidar-
mance. And third, it is hard to determine which nodes can be trusted. dheref
I-Share research concentrates on mechanism®s$ource discovery, willingness,

trust, andresource sharing. One of the major achievements in the I-Share project
is Tribler [9, 22], a BitTorrent-compatible P2P client which implements most of
the above mechanisms. For example, Tribler allows users to setup virtual commu
nities by adding trusted nodes which may help with a torrent download binghar
unused bandwidth [9]. Although many more features have been implemented in
the Tribler client, it has no real-time streaming features yet.

1.2 Content Distribution

So, how to setup a P2P system that handles real-time media streaming? The answ
to this question is not trivial. One of the most difficult aspects is to create & goo
content distribution algorithm (CDA) for video. Although many CDAs existythe
can all be categorized into three main categories. The first categorigtsonfdree-
based CDAs [4, 13, 19]. The big advantage of tree-based CDAs ithiiaiode
addition and routing schemes are fairly easy. However, tree recoaarpe both
difficult and time consuming when multiple nodes in the network fail. Furthermore,
leaf nodes waste bandwidth because they do not upload to any of thenottes.
The second category is made up by flooding-based CDAs [20, 21]JadVentages
and disadvantages of these CDAs are similar to the tree-based versitrsigh
failing nodes are less likely to split up the network, flooding-based CDAfsrsu
from higher end-to-end delays than tree-based solutions when the nafmueles
becomes large. The final category contains the swarm-based CDA25,127].

The main advantage of swarm-based overlays is that they do not erfetcet
network topology. Since every node connects to multiple neighbours, guerda
covery problems are reduced when nodes fail. However, packiéngds far from
trivial. One of the first swarm-based algorithms is Chainsaw [25]. Althabghe

is not much practical experience with Chainsaw yet, its theory and the Btsete
sults reported in [25] look promising. Therefore, we have chosen t® dasown
CDA on the ideas of Chainsaw.

1.3 Modular Player Design
Live P2P video players can be very different in design, but theyyaswshare some

common functionality. Every system needs a video encoder module thatgene
a stream of packets at the server side. Furthermore, the system neetigoak
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module that connects nodes to each other and handles messages beemeen th
The network module should only contain very basic functionality, which means
that the node behaviour and content distribution algorithm must be implemented
in a separate CDA module. This makes it easier to re-use the code with wiiffere
kinds of CDAs. Finally, every system needs a video decoder module thdaygks

the received stream on screen. Optionally, the video en-/decodeseamterror
correction module based on multiple description coding (MDC) [14]. The idea
behind MDC is that the video encoder splits the original video stream in two or
more substreams called descriptions. The video decoder can reprodumggih

nal stream from any of the descriptions, but the playback quality depemdhe
number of received descriptions. All of these modules (video encastarder,
network, and MDC) have already been implemented within the PDS group in a
similar research project on a tree-based CDA called Orchard [10Jasnceused

in the Lumberjack player.

1.4 Problem Statement

In this thesis we will focus on the following research question: How dodsaé@nSaw-
based implementation perform in a real video player and network, andtiouar

does it perform as well in a real environment as it does in simulations? 8Siace
authors of Chainsaw only simulated the distribution algorithm, there is no Chain-
saw implementation freely available. Therefore, we have implemented our own
version, which we calKettingzaag, and embedded it in the Orchard video player
by replacing the Orchard CDA module with Kettingzaag. Since this CDA replace
ment removes the relationship with trees, we renamed the plajentoerjack.
Additional questions to be answered in this thesis are:

e Do we need changes to the original Chainsaw algorithm to create a working
implementation?

e Which parameters are most important in Kettingzaag, and what are good
settings for various network sizes?

1.5 ThesisOutline

The remainder of this thesis is organized as follows. Chapter 2 gives adaere
tailed overview of the categories of CDAs, MDC, and the technology belkatd
tingzaag. In order to test our Lumberjack player, we need a controlleerteison-
ment and a test plan. Because our goal is to use Lumberjack in a realdifarsz,

we have set up a number of virtual servers on rented hosts all ovelothe gince
these hosts are controlled by Delft University of Technology, and thertataber

of hosts was planned to be 37, the network is caletft-37. Unfortunately, the
Delft-37 network turned out to be too slow to host multiple Lumberjack instances
The Delft-37 setup, tests and measurements are discussed in Chaptea@sd3ec
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Delft-37 turns out to be unsuitable we will run Lumberjack on the DAS-3 g24]
percomputer in Delft. Since the DAS-3 nodes are extremely well connetied,
Lumberjack software limits the upload rate at 1 Mbps and simulates round-trip
times between nodes based on the Delft-37 test data. Chapter 4 is abattutile a
testing of Lumberjack. The chapter starts with an overview of the Kettinggaag
rameters, and the measurements that we want to perform. This is followed by a
discussion of the first test set that operates on small 10-node netwWindse tests
provide good parameter settings for the second test set, which openataser

50- and 100-node networks. The second test set shows that Ketiingzeeess-
fully reduces stress at the content server, but that further workeidatebefore it

can be used in a commercial environment. Our conclusions and futuream®rk
presented in Chapter 5.



Chapter 2

The Design of Kettingzaag

Live video streaming is becoming more and more popular, which means that cos
are rising for content providers. This is inherent to the client/serverilalision
model that is used by most content providers. We will show that the pgezeo
(P2P) model is the most cost effective on public networks, such as temén.
Although many P2P algorithms exist for live video streaming, we have cHosen

a fairly new swarm-based algorithm called Chainsaw. Chainsaw perfoenys v
well in simulations, but has not yet been implemented in a real video player so
far. We have implemented our own version called Kettingzaag, and addes so
features that are not available in the original algorithm. In this chapter we will
present the background of Chainsaw and the design of Kettingzaag.

In Section 2.1 we give an overview of the three approaches that dladedor live

video streaming. Section 2.2 explains the idea behind multiple description coding,
and how this is implemented our Lumberjack video player. This is followed by
Section 2.3 which describes the technology behind Chainsaw. We will finish th
chapter with Section 2.4 which discusses the differences between Ghainsa

our own implementation called Kettingzaag.

2.1 ThreeApproachesto Live Video Streaming

In this section we will describe the three possible network models that can be
used to stream video to multiple clients [1]. These models areltbat/server
model, thenetwork layer multicast model (NLM) and theapplication layer multi-

cast (ALM) model. Section 2.1.1 points out that the client/server model is unde-
sirable due to high costs. Section 2.1.2 shows that NLM is only possible when a
network devices support it, which is not the case on the Internet [1§l fAally,
Section 2.1.3 explains why ALM is the best solution to distribute video to a large
number of viewers.



2.1.1 Traditional Approach

The traditional solution to video streaming is to let each user download from a
server of the content provider. This solution has two major drawbagdks$-[6st,

this approach is not scaling well. Each content server can serve a limiteoemwf
users, depending on server and network loads. When the user limieisded, the
quality of the stream drops, or the stream cannot be viewed at all. Theaatyon

to this problem is to add more content servers and share the user lottterimore,
more users lead to higher bandwidth usage. Since bandwidth is chanmggidae
byte, this solution gets more expensive as the service becomes more p@pular [
The second drawback is that this solution is vulnerable to an abnormal naibe
users connecting in a very short period of time. This phenomenon is cdlesha
crowd and can happen in case of a big news event. To support flasdsrthe
content provider needs to setup a large number of extra servers, argiclot used
(fully) under normal operation, or deny some users service when #grdinst is
reached.

2.1.2 Network Level Multicast

The best solution would be to have the server multicast the stream to allifelolsc
clients. This can be done in two different ways. Either network level mutticas
or application level multicast can be used. Network level multicasting lets the net-
work’s routers handle packet duplication where necessary. Nodssisbe to their

local router for a multicast group, which in turn tries to subscribe to a ravhérh

is closer to the multicast source. Eventually the path to the source is complete
and the node starts receiving the stream. This approach sounds iddahskthe
following four drawbacks, which are described in detail in [1]. First, thedia
source has no idea which nodes are subscribing to the multicast graynssip-

tions are handled by the network routers. This prevents an easy methdlihof
customers for content that is not free. Second, not all InterneticgeRroviders
(ISPs) and Internet routers support network level multicasting, whiehepts at

least some users from viewing the stream. Third, the network level multicast p
tocol does not guarantee that packets arrive within a certain timespantive

at all. Finally, when routers crash, they lose their routing tables, whialitses

in breaking the network topology. These last two problems are very irabks

in real-time streaming applications, because time constraints are very important.
Since these problems are very hard to tackle without access to the roetsverk

level multicast is not a realistic option for any multicast application that uses the
Internet.

2.1.3 Application Level Multicast

Application Level Multicast (ALM) means that the application sets up and con-
trols its own network. The big advantage is that the application has full dontro
over the network topology, routing decisions, and rules within the netwidk.
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instance, one of the most important rules in the Kettingzaag network is thas nod
should exchange data with each other. Since the application defines akietwo
top of another network, the application’s network is also called an ovenlaty (
work). Many different overlay network solutions exist, but most of thean be
categorized as either flooding-based (e.g., CAN [20]), or tree-bagathy types
(e.g., Scribe [13], NICE [19]). Simplistic versions of the overlay catiegoare
shown in Figure 2.1, wher® represents the content server, and the other nodes the
clients. A fairly new overlay solution, called Chainsaw [25], drops thetstace
relationships that exist in the other categories. Instead, nodes will batteeach
other, similar to the BitTorrent protocol.

dsl. el T 32 i
G T
Sl Ml e I e s s
-+ T é T T ?\ q__,,-?& i .
L& & 2T.Th A/‘/\\)., =
— T __i_ -T= T & é., 6/
Flooding-based Overlay Tree-based Overlay Swarm-based Overlay

Figure 2.1: Flooding-, tree- and swarm-based overlay types.

Although overlay solutions can be very different, they must all meet the/Woilp
three requirements to be successful:

1. the end-to-end delay between source and receiver must be abéson
2. joining and leaving of nodes must be handled quickly and locally.

3. the overlay network must be scalable.

First, keeping the end-to-end delay reasonable is just a matter of keepingrtir

ber of nodes between the content distributor and receiver small. Fudher
nodes that are geographically close can be grouped together into sib Gale
Clusters [5, 15]. Second, the joining and leaving of nhodes must be Ithiodizlly

to prevent stress on the server. Furthermore, it must be handled qtookhsure
continuous playback of the media stream. This may lead to problems in flooding
and tree-based approaches, as a leaving node disconnects a thartnetwork.

This may lead to problems when many nodes fail within a short timespan. Finally,
an overlay is scalable when the load on the content server does natsackéth

the number of clients in the overlay network. In theory, the server neeifs to
sert its media stream only once when the total upload rate of the clients is higher
than or equal to the download rate. This is easily observed in Figure 2étewh
each client passes the stream to the next client (upload rate equals ddwete).
Note that this figure also shows the worst end-to-end delay possible ethee
source and the last node. Although this requirement is met for all thretapve
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categories, the flooding and tree-based algorithms have a drawbaakrel®, the

leaf nodes are not uploading any data at all. However, they make upxapaitely

50% of the network under normal operation. This is compensated by the inne
nodes, which upload to at least two children. This is no problem if the inmdes
have a fast enough upload. However, our solution aims at a bit rate tlasesto

the maximum upload capacity of the majority of home users in the Netherlands (1
Mbit/s). Because most of the nodes in our network will be home users, the tre
based solution will not work, unless the media stream’s bit rate is decre@ked
disadvantages of flooding overlays are comparable to those of theaseé-bolu-
tions. Although the number of strained inner nodes, and non-uploadtegrmades

is smaller than in a tree-based solution, they still make up a considerable amount
of the network. Furthermore, the end-to-end delay in flooding-badati@ts can
become a problem for a large number of nodes.

-8-3-8-9-8—8

Figure 2.2: Simplistic P2P setup where every client uploads as much as it down-
loads.

Experimental results [25] show that Chainsaw does not suffer frothgtdoss
under normal operation. When half of the nodes in a 10,000 node netaibsk
multaneously, less than 1% of the remaining nodes suffer from packdplasset

loss ranging from 0.1% to 17.5%, with mean 3.74%). These numbers can-be fur
ther improved, since the simulated nodes did not update their neighbor list upo
failures. Chainsaw also provides for quick startup times. New nodestaan s
playback within a few seconds from joining, without suffering from p&dkss.

So, a Chainsaw overlay does not seem to suffer much from a high addeef
rate. Furthermore, the drawback with leaf and outer nodes does nat with
Chainsaw, because all nodes are allowed to barter with each other.

2.2 Multiple Description Coding

Multiple description coding (MDC) is a technique that is used to make the multi-
casting of a video stream more robust to errors. The idea is that the dsgie@am

is split up in two or more sub-streams, called descriptions. The originahsitaa

be reproduced at a node from any number of received sub-streBmesquality

of the reproduced stream depends on the number of sub-streamstheteived,
where a higher number of sub-streams lead to a better quality. When all of the
sub-streams are received, the reproduced stream is exactly the sdra®@aginal
stream. Normally MDC is used as an error correction tool in the video ervdéec
only, meaning that the underlying network is not affected by it. Howevehave
chosen to allow clients to switch to half-quality mode by deliberately ignoring one
of the two video descriptions. This means that bandwidth can be savedtimen

8



network knows which stream to download and which to ignore. Chainsa® ot
provide this functionality, but can be augmented without many problems.

Our Lumberjack player uses a simple form of MDC, which divides the origina
stream in three sub-streams. The first sub-stream is called the evan,sireiah
contains all video packets with an even number. The second stream soritiEn
packets with an odd number, and is called the odd sub-stream. The last strea
contains all of the audio packets. Audio is not divided in two streams. Sirie a

bit rates are small compared to the video bit rate, and also can be givehex hig
download priority, they are less likely to be lost. A schematic overview of the
Lumberjack MDC algorithm for video is shown in figure 2.3. Decoder 1 irspa
the missing odd frames from the received even frames. The decodachsse
called a half quality stream. Decoder 3 is comparable to decoder 1, exedpt th
even and odd frames are switched. Decoder 2 is used when both tharel/edd
frames are received.

Even-Frame Description

,7:
1 Decoder 1 — Half Quality

Video ' ' Decoder 2 [~ Full Quall
gose | oo [ ovcesrz |-+ roncu
Odd-Frame Description @' PR

Figure 2.3: Lumberjack MDC Setup.

More complex MDC solutions exist, and are described in [5]. More sophtstic
MDC schemes exist [5, 26], but they are more difficult to implement and have
more overhead. Since our research aims at network performancevwwelosen

to keep the simple MDC solution for now.

2.3 TheChainsaw Overlay Network

The Chainsaw overlay does not have a strict network topology as isl iounee-

and flooding-based networks. Basically, every new node connectsebadd ran-
dom neighbour nodes. The network does not maintain a global state with nod
information either. This makes the network very resilient to node failuresamd
munication errors. However, since a node cannot easily predict whithreigh-
bours downloaded which packets, data pushing is practically impossibkre-Th
fore, Chainsaw is based on data pulling in combination Vathal state gossipping.
This means that every node maintains both its neighbours’ states and its ¢svn sta
which is gossiped to its neighbours. The fact that nodes make their ovwm afav
decisions raises the following three questions for each node:

1. Which packets are desired by the node?
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2. Which packets are available for upload by the node?

3. Which neighbour(s) can upload the packets that the node desires?

In order to answer these questions, each node maintains three datassiuthe
first data structure is a list of desired packets, calledatimelow of interest. Obvi-
ously, the contents of the window of interest depend on the playing positibie o
node. It seems reasonable to add all future packets that have naegretdbwn-
loaded. However, packets that are very close to the node’s playing positiio
most likely not be downloaded in time. Therefore, the window of interestslide
along somewhat ahead of the node’s playing position. This means thattpauit

are too close to the playing position are removed and considered lost, while ne
packets are augmented at the stream rate. The second data structure & a lis
downloaded packets, called tivndow of availability. The window of availabil-

ity slides along with the playing position as well, providing a fixed length history
of downloaded packets. Since every node’s playing position is closettoftita
neighbours, old packets can be safely dropped. The final data sgustan array

of status lists, one list for each neighbour node. During media streaming, every
node gossips the state of its window of availability to its neighbours. Whene nod
receives this availability information, it is stored into the status list belonging to
that particular neighbour. By searching the array of status lists, a rodele-
termine which neighbour(s) can provide a certain packet. In order ta gebd
understanding of the Chainsaw principles, we will discuss the protocol i® mo
detail below.

The most important job for a node is to acquire new packets. This can either
be realized by the seed node(s) by encoding the media, or by the othes bpd
downloading from neighbours. Both events are handled in the same way. S
when nodeA receives a new packet with numberand dataD,, it removesp
from its window of interest, and adds, to its window of availability. Then node

A gossips the availability of packetto its neighbours, by sending/dOT1FY,,
message. The neighbours that receive this notification message will akelt pa
p to their status list for nodel (statuslist,). Suppose nodd3? is one of the
neighbour nodes of nodé, andB has selected packefrom its window of interest

as the next packet to download. No#ewill try to find a suitable neighbour by
checking all of its status lists for packetlf the packet is available at more than one
neighbour, a random candidate is chosen. For now, supposefhéidds packet
ponly in statuslist 4. S0, nodeB asks noded to upload the packet by sending a
REQU EST, message tol. When nodeA receives this request, it can grant it by
sending packet dat®, back to nodeB. Although the algorithm is fairly simple,
two issues arise when it is implemented exactly as described above.

First, if a node receives a notify message for some packet, it will most lileely r
quest the packet immediately. Since the round-trip time for each neighbéansdif
the fastest neighbour will probably be the first node to request every Bewause

we aim for a stream rate that is close to the upload rate of the nodes in theketwo

10



such behaviour would saturate the upload link of the notifying node. Thetris

that the other neighbours do not get a chance to request packetthiaortifying
node. As a result, packets are not well distributed among the nodesddagyr
network performance significantly. In order to prevent this from hajyge each
node has a maximum number of outstanding requests per neighbour. Wascall th
the maximum parallel request threshold. The second issue arises at the seed node
when it is uploading at its maximum capacity. Since nodes cannot always dete
mine which packets have been uploaded by the seed before, some peitiksds
requested more than once. The downside is that requests for packdtavbaot

yet been uploaded before may be choked due to the seed’s saturaizdl link. To
prevent this from happening, the seed can override a packet tefiquesa node.
What happens is that the seed maintainmeket overriding list which contains

the numbers of the packets that have never been uploaded beforeinticening
request contains a packet number that is not in this list and the list is not ity
seed overrides the request. The oldest packet from the packetiovglist is sent
back to the requesting node, and the packet number is removed from the list.

2.4 TheKettingzaag Overlay Network

Our Kettingzaag algorithm uses the same rules as the Chainsaw algorithm de-
scribed above, with a few additions. First, we have add&®EIECT message

to the protocol, that notifies a requesting node that its request has mogzeeed.
This speeds up decisions in the requesting node, because it doevadb lvaait

for a request timeout. Second, we have added a ping-pong mechartiseebe
nodes, which determines the round-trip time (RTT) between two nodes. This R
value is used to prevent requests for future packets that are knownvie o

late. Third, a notion of MDC has been added to Kettingzaag, allowing us torswitc
a node to half-quality mode by deliberately not requesting one of the two video
streams. This degrades video quality for the client, but also reducesritevioith
usage significantly. Finally, we have added some debug messages tst idguns

to send their logfiles and to shutdown. Technically, these messages aféentt

ing network performance at all, but they do make testing on uncontrollecbrietw
easier. We will describe each of these four additions in more detail below.

Reject Message

In our Kettingzaag network, nodé can deny a request from nodieby sending a
REJECT, message to nodg. This speeds up the network, because nodes do not
have to wait for a timeout before re-requesting pagikiedm another node. Packet
requests can be rejected for five reasons. First, the requested paakdiave
been removed from the window of availability of node Second, the incoming
request at nodd is a re-request from nodg, but the original request has not yet
been processed and is still in queue. Third, the incoming request athizla
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re-request of a packet that has already been, or is being uploadedéd. This
may occur if the timeout at nodB expires at the same time that nodestarts
uploading packet dat,,. Fourth, the request may be coming from a node that has
notified that it is about to disconnect from the network. And finally, wheded

has reached its upload limit, requests frétrare rejected, and nod@ is choked.
This means that nod®& will not request more packets from nodefor a short
period of time. Obviously, when the request is not rejecfegljs sent fromA to

B and the whole sequence starts over again.

Ping-Pong

Kettingzaag usesing-pong mechanism to determine the round-trip time between
a pair of nodes. Each node periodically send/av G message to all of its neigh-
bours. When a neighbour receives a ping message, it immediately repliea with
PONG message to get a good approximation of the round-trip time (RTT) be-
tween the pair of nodes. The RTT between a pair of nodes is used to deteéfmin
future packets should be downloaded or not.

- P
= -

P RTT P+8

Time -

Figure 2.4: Packet download decision based on playback position and-tdp
time.

Figure 2.4 shows the node state of ndglat playback positior?, and is used to
explain how to determine which packets should be downloaded. The blbeked
represents the video stream, where each block represents a singlépfaket
The green packets have already been downloaded by Bpded are available for
future playback. Both the red and yellow packets are unavailable, atitode
downloaded from neighbours. Suppose that nBdeas found neighboud from
which it can download all of the red and yellow packets, and that the laitegt p
pong sequence resulted in a RTT as shown in Figure 2.4 (equal to 7tpadkas
means that by the time node receives a packet from, the playback position
will have shifted 7 packets into the future. Hence the red packet®; cannot
be downloaded in time, and can be discarded for nddeThe packets that can
be downloaded from nodd in time are shown in yellow from positio® + 8.
Naturally, packetd:-D3 may be downloaded from other neighbours with lower
round-trip times.

Multiple Description Coding

As explained in Section 2.2, MDC is normally used as an error correctiorirtool
the video en-/decoder, which means that Kettingzaag should not beedffeg
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its presence. However, we have chosen to allow clients to switch to hdifyqua
mode by deliberately ignoring one of the two video descriptions. Therefloee
Kettingzaag network has been augmented with the notion of MDC streams. Since
the video stream is played at 30 frames per second (fps), both the ederdd
streams play at 15 fps. For simplicity we built the audio stream at 15 fps as well,
and add it in between the odd and even frames of the video stream. Théredah s
consists of three descriptions and its layout is shown in Figure 2.5.

even | odd |audio| even | odd | audio even | odd | audio
0 1 2 3 4 5 n n+1 n+2

Figure 2.5: Kettingzaag media stream layout.

This stream layout allows us to easily identify to which stream number packet
P with packet numbep belongs to by calculating mod 3. The relationship
between the stream number and the stream description is shown in Table 2.1.

Stream Numberymod 3) | Description

0 PacketP belongs to theven video description.
1 PacketP belongs to thedd video description.
2 PacketP belongs to thewudio description.

Table 2.1: Relationship between the stream numbers and the stream des®riptio

Debug M essages

We have implemented two additional debug messages. First, we addétdia DOW N
debug message, which allows the seed to request nodes in the netwartdimain

And second, we added®E' N D — LOGS debug message that allows the seed to
order nodes in the network to send their logs. Although these debug reesdag
not influence Kettingzaag network performance, they may be usefultioris

that are not under our full control.
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Chapter 3

The Delft-37 Testbed

In order to test the Lumberjack player and the Kettingzaag algorithm in ameal
ronment, we have rented some virtual servers on the Internet. All of gexgers
together form a network, which we call the Delft-37 network. In order t&kena
Delft-37 easy to use and manage, we have implemented a program that allows
us to control the network and its contents from a central control point.eShe
Delft-37 nodes may be unreliable, we added a few reliable machines at ithe un
versity network for controlling Delft-37, running the Lumberjack seed stoding

test logs. In this chapter we will present the Delft-37 network, and itsqa&ps a
real-life test environment for our Lumberjack player.

Section 3.1 gives a more thorough introduction of the Delft-37 networktidec
3.2 explains why a central control point is needed, and how we have imptethe

it. Section 3.3 describes the Delft-37 infrastructure at the university mehvéec-

tion 3.4 discusses the Delft-37 network performance. Finally, Section 3i5 co
cludes why we have decided to use the DAS-3 supercomputer insteadfs8De

for testing our Lumberjack player.

3.1 Introduction to Delft-37

The Delft-37 network consists of a number of virtual servers, whichrameing
at hosting providers all over the world. The network consists of 6 nadbikh
are listed in Table 3.1. The original goal of 37 nodes (hence Delft-33)olean
abandoned for two reasons. First, a network of 37 virtual hosts isnekge Sec-
ond, most hosting providers which rent virtual servers are located riop€uand
North America, and it is not useful to place a total of 37 nodes on thegaearts
alone. Providers in Asia exist, but most of them have placed their sarvéns
rope or North America. Acquiring an account at providers that haveplazed
their servers abroad is problematic due to language barriers. South Amarid
African providers do offer hosting, but almost all of them offer wedséd accounts
only. This type of account is useless for our purpose, since outagvienplemen-
tations are written in Python, and need to run on a virtual server. Luclabt-fo-
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peer technology is very popular in the United States and Europe at this moment.
The distribution of nodes in the Delft-37 network reflects this situation.

Figure 3.1: Geographic locations of Delft-37 hosts.

Full Name IP Address Location
vds-355074.amen-pro.com 62.193.219.68 Paris, France
advantagecom.us.peer-2-peer.org| 66.29.146.21 Walla Walla, Washington, USA
d80-237-144-205.dds.hosteurope.dé€0.237.144.205 | Koln, Germany
adiungo-phoenix.us.peer-2-peer.0rg193.192.247.157 Phoenix, Arizona, USA
adiungo-london.uk.peer-2-peer.org 193.192.247.133 London, UK
usonyx.sp.peer-2-peer.org 202.172.255.90 | Singapore

Table 3.1: Delft-37 nodes with IP address and location.

Delft-37 can be compared to the PlanetLab [17] network, although PlanélLab
much bigger in size with over 900 nodes. Also, PlanetLab consists mostlyi-of un
versity computers and networks which are far better connected than most o
virtual servers that form the Delft-37 network. Our virtual servergehdiffer-

ent connection speeds to the Internet and are heavily used by otheragseell.
Furthermore, the underlying network is not always of the high qualitydaitruni-
versities. These factors introduce a level of uncertainty which is netdfaun the
PlanetLab network. Since our goal is to test our software in a dynamicament
where problems can arise now and then, the good network properti¢enetPab
make it unsuitable for our research.

3.2 TheDdft-37 Controller

Having a test environment such as Delft-37 is useless without some fommarof
agement. Many activities, such as distributing software and starting pnsgra
the network, are not easy to achieve without a flexible control point. Ttherss
tocol accepts authentication by using keys, but this is not very flexiblefdtiple
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control nodes. This key-based approach has two drawbacks.tresieys have to

be distributed to all Delft-37 nodes and controlling computers, which is rmotezo
nient when multiple control points are available. And second, there is niboton
over command execution when ssh is running as a background command exe
tion process. The key-based approach allows a user to execute multiplearws

on each host, but when a command is finished, the next command will be started
immediately. Since not all hosts have the same processing power, some hgsts ma
be executing their fourth command, while others are still executing their decon
Furthermore, not all Internet links from the central controller to eachehosts is
equally fast. Hosts with faster links will start their command execution earlier tha
hosts with slower links. To tackle these problems, we wrote a control progra
python. This Delft-37 controller makes the authentication transparent tcstre u
and allows parallel command execution. The controller monitors and symzbso
command execution for each host. It does so by checking if all hosteads.r
When all hosts have finished their last command, the central controlles sleed
next command to each of the hosts. The nodes that make up the Delft-3tketwo
are specified in a file. Adding new nodes is merely a matter of downloading the
latest host file. The Delft-37 controller can be run from any computer witinizr-

net connection. The computer that is running the controller programrs rfi@y

on referred to athe central controller. The controller program is only distributed
among the people that use the Delft-37 network. All options of the contraker a
explained in the next sections.

3.2.1 Executing Commandson Delft-37

The controller program allows the user to control all of the Delft-37 nddmas

the central controller simultaneously. The user provides a list of commartds to
controller program. The central controller tries to login using ssh on all ®f th
Delft-37 nodes, using some timeout for failing nodes. When all nodesdither
responded to be ready or timed out, the central controller sends theofinstand
from its list to each node. This is done in parallel. Then the central controller
waits for all hosts to reply that they have finished their command executioenWh
all hosts are ready again, the second command from the controller’s camman
list will be sent. This process continues until all commands have beentexecu
An optional buffer-output option determines the way the output of eacle i®
displayed on the central controller’s screen. If the option is omitted, theibwip

be printed to screen as soon as it is received by the central controilere the
commands on the Delft-37 nodes are executed in parallel, the output willlgyoba
be mixed up with output of other nodes. When the output is buffered, itiiedin

a separate buffer for each host. These buffers are printed to th®lters screen
after the last command finishes on all Delft-37 nodes. The buffers amegone
after the other, preventing output mixups.
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3.2.2 Copying Filesto the Delft-37 Networ k

The controller program allows the user to upload files from the centrafaltar

to all of the nodes in the Delft-37 network. The central controller uploads th
requested files to multiple Delft-37 nodes simultaneously. The reason for mul-
tiple connections is simple. Some Delft-37 nodes may have a lower download
bandwidth than the central controller's upload bandwidth. In this caseptioad
capacity of the central controller is not fully utilized. To utilize the remainingban
width, another connection will be opened to an available node. The totalenohb
simultaneous connections can be specified by altering a parameter insiadathe c
troller program. When some nodes are not available, an error messagevis sn

the central controller's screen when the controller program terminates.

3.2.3 Copying Filesfrom the Delft-37 Networ k

The controller program allows the user to download files from the Delftegl2a to
the central controller’s hard-drive. This is done using the ssh seocpieprogram.
The files that are requested are searched for on each Delft-37 fibteemeans
that the central controller will receive filg, from nodeH,, but also from node
H,, nodeH, and so on. lItis clear that fil€, will be overwritten if no measures
are taken. This problem is solved by having the controller create a newtatiye
for each Delft-37 node. Because host names can be the same omdiffefieorks,
and URLs can be very long, the directory names chosen are the |IPsadgdi@ the
nodes. For easy maintenance, these IP-named directories are storspecial
directory. This directory is used for each download action, so multiple tals
might overwrite files as well. It is up to the user to rename the special directory
before a new download is started.

3.2.4 Ddft-37 Network M easurements

The controller program allows the user to run four tests on the Delft-37amnkfw
which areping, traceroute, bandwidthTCP andbandwidthUDP. A major problem

of network performance tests is that they can affect each other. Althmingrand
traceroute tests are affected minimally, bandwidth tests can be influencedstata g
extent. When a node is measuring bandwidth speeds with more than ondtnode,
will have to divide its available bandwidth, resulting in erroneous resultswoa

this situation, a scheduling algorithm has been added to the network penfcgma
test routine. The next section elaborates on how these measuremerdaarardi
presents the test results that were obtained.

3.3 Ddft-37 Infrastructure

Although any Delft-37 node can act as the central controller, we wouldttike
assign this job to a few machines that are not only more reliable than the Delft-
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37 nodes, but also have more computing power and storage spaceforbeve
have setup three superstorage machines in Delft with a total disk capadi/ of
terabytes. These superstorage machines have four roles. Firstctiasytiae Delft-

37 controllers for uploading new Lumberjack versions and starting testond,
they are used as a central gathering point for downloading test lapsfach Delft-

37 node. Third, they will encode video streams which can be either distdilute
real-time, or saved to disk for later distribution. And finally, they inject a lot of
legal torrents which can be downloaded with the Tribler BitTorrent-babextc
Each superstorage machine contains 14 hard drives of 320 GB in a-RAltay
(3,8 TB storage for each machine). Since the motherboard can only stosetial
ata (SATA) drives, we added 3 SATA controllers to the PCI bus, whictmeot the
other 12 drives. Although we are aware of commercial storage solutienshoose

to implement our own solution for two reasons. First, the above setup will most
likely lead to interesting problems, because it runs on the edge of the ha'slwa
capabilities. And second, setting up a system with hardware from a locglder
shop is much cheaper than a commercial solution. The super storage nsacimne
the latest 64-bit version of Debian Linux.

parion. D" | [sdb [sdc [sdd [sde [sof [sdy [sdh [sdi [sdi [sdk [sdl [sdm|sdn

1 boot boot|swap swap|root root root root root root root root root root
2 data data data data data data data data data data data data data data

Figure 3.2: Partitioning scheme for each super storage machine.

Each machine uses the partitioning scheme that is displayed in Figure 3.2. The
boot and swap partitions are setup as a RAID-1 array (mirrored). ddteand data
partitions are setup as a RAID-5 array. This setup ensures that the maciin
keep on running when at most one drive fails. In case of a failure, trehima
needs to be shut down to replace the failed disk, after which the brokaysaran

be repaired.

3.3.1 Problems

The first problems were discovered soon after installation and setup afrtbhe
operating system. Some of the drives were (partially) broken on aemndfailed
during RAID-5 initialization of the data partition. After replacing the bad disks a
reinstalling the system everything seemed to work fine. However, wherigke d
were put under heavy load, the RAID-5 array of the data partition wowddkor
down within an hour (and sometimes even during RAID-5 initialization). Most of
the time one or two disks would fail with a 'DriveReady Seek Complete Error’.
Testing the failed drive(s) one by one in another system would not leaddsge
and also the hard drive’s built-in monitoring system (SMART) did not discov
any errors. So with all of the drives being healthy, we needed to solféeactht
problem. A quick search on the Internet showed some ideas that might l@ad to
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solution for this problem.

CableInterference

Although cable interference is no issue under normal circumstances) lieca
problem in our machine. Since there are 14 disks, there are also 14,cabiels
makes it almost impossible to prevent them from crossing each other. Tl co
possibly lead to some interference on the data lines, causing the DriveBead

To make sure that interference is reduced to a minimum level, the drives were
removed from their casing and laid out in a star shaped setup. Althoughidhis d
not solve the problem, it increased overall stability. The DriveReadyr estill
occurred under heavy load, but at a later point in time (mostly after a catdiple
hours). Since the star shaped layout does make a difference, thisserga in

the rest of our tests.

Power Supply Lines

The Linux kernel mailing list suggested that the power supply lines should be
checked, because the DriveSeek error is sometimes caused by badsppplies.
Although the power supply is a high quality 680W unit, we did check the power
lines. Although the power supply manual did mention that the unit divided its
power to two power lines, it did not mention that the lines were not equallygtron
So, some of the disks were transferred from the weaker line to the stringe
Unfortunately, this did not improve the stability of the machine. Still, the new setup
is maintained to be on the safe side.

Replacing SATA Cables

The Fedora Linux forums showed an issue where the SeekCompletenarsor
caused by bad cabling between the SATA drives and its controller. Wedtar
replacing cables for every drive that raised the error, but this dideaotto better
stability. In fact, testing the replaced cables in another system would notdead
any errors, as long as the number of disks was small. This lead us to theadea th
the PCI bus might be saturated during extensive usage of the 14-dik &#dy.

Saturated PCI Bus

So, with the cables seemingly correct in small setups, we tried setups witm8, 9 a
10 drives, where the drives were connected to only 2, 3 or all contsditecluding
motherboard). The controller setup did not seem to have any influentieeon
problem, but the number of disks did. All setups with more than 8 disks woilld fa
within a day. The motherboard’s PCI bus (32 bits) has a bandwidth of M2B/&.
The sequential write speed of our drives is measured somewhere beltévead

17 MB/s, which comes close to the PCI bus speed in case of 8 drives. ghihou
an 8 drive setup should be able to saturate the PCI bus, this will only h&ppan
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short period of time. Fortunately, the kernel driver for our SATA colfeér had an
option to slow it down. After slowing down the kernel driver, a 9 driveupecould
not saturate the PCI bus anymore. However, such a setup would stileraiss.

Changing Kernel

Initially the machine was running an unpatched 2.6.15.3 kernel from kergel.o
We decided to try out the newest 2.4 kernel to see what would happertheso
entire machine was reinstalled with a Debian Linux 2.4 installation disk, and the
kernel was patched to 2.4.32. The raid setup was running smoothly, bserte
errors occurred during long time write tests. The kernel change hadlnernne

on the stability of our setup.

Replacing theHard Drives

As alast resort we replaced the Western Digital hard disks with MaxteeslriThe
RAID array was built up successfully, and surprisingly the write testsugeel for
more than a day. We kept stressing the RAID array with extensive writeftasts
over a week without errors. With one of the super storage systems finaltyrg
stable, it is time to investigate the capabilities of the Delft-37 network. Meanwhile
the hard drives of the other two machines are interchanged at our ggpplie

3.4 Ddft-37 Network Performance

We have executed some network tests to determine the Delft-37 network-perfo
mance. The I-Share project aims at real-time video streaming, which camnie d

in different ways. Two popular solutions are multicast trees and the Giwains
method. Multicast trees are used when a small number of senders muestaserv
large number of clients. The idea is that the sender(s) serve a small nofmber
clients. Each served client serves a small number of yet unserved chewtso

on. This method allows a server to distribute its data to a much larger audience
than would be possible by directly uploading to each client. The resulting tree is
called a multicast tree, which becomes deeper as the number of clients @xreas
Our performance tests are focused on two important network link propefiiee

first is the delay between sending a packet from a source node aret#ieing of

that packet at the destination node. This delay is called the ping time. Thedseco
important link property is the bandwidth. The link bandwidth is defined as the
total number of bits that can be transferred per second between thee stde

and the destination node. The ping time is important, as it determines the response
time of nodes and the total delay between the source and leaf nodes in multicast
trees. When the multicast tree gets deeper, the media stream must travegse mor
network links. When these links have a high delay, the leaf nodes of theviliee
receive the stream at a later point in time. Bandwidth is important because vide
streams are distributed at a certain speed called the stream rate. Nodestiwit
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keep up with the stream rate will not be able to download some packets, which
results in a degraded playback quality of the stream. The available bandaidth

a certain node also determines how many child nodes can be served bgdkat n
Ping times and bandwidth measurements between nodes can vary in time. This
is mostly due to the fact that the Delft-37 nodes are used by other usergaiéo
away bandwidth. However, it is also possible that the network near theesou
destination is suffering from congestion.

3.4.1 Ping Testson Delft-37

The ping tests show that the link quality between two nodes is almost constant. Th
time of day does not seem to affect the time that is needed to send aner&péig
request. This is probably because of the small size of a ping requestpdoed to
other packets) and the rate at which they are sent (once per seddred¥lowest
node by far is Singapore, with a ping time of around 400 ms from (and topfiny
the other nodes. The second slowest node is Washington, which hastanperof
around 190 ms. All of the other nodes have ping times less than 100 ms (mostly
around 50 ms), which is quite fast. All results are displayed in Figure 3.&hwh
shows the minimum, mean and maximum times that were obtained by executing a
ping from the host in the left column to the host in the top row. All ping times are
in milliseconds.

Walla Walla |Kéln Phoenix London Singapore

168 168 170 35 38 45| 35 42 55|384 391 398
173 181 192|177 1868 197 (228 231 233
35 39 49| 35 38 46|366 369 378
1 3 375 388 407
375 401 419

Paris
Walla Walla |168
Koln 25
Pheosnix 35 36 39
35 39 54
384 357 391

171
34

175
4é

1 2 Z4
374 398 430

London

Singapore

Figure 3.3: Delft-37 nodes with their minimum, mean and maximum ping times in
ms.

3.4.2 Bandwidth Tests on Delft-37

The bandwidth tests give some insight in the link capacity that is available betwee
the Delft-37 nodes. Two bandwidth tests were run for each node. FiF§tRa
bandwidth test is executed, directly followed by an UDP bandwidth test. This is
done to make the comparison between both tests as fair as possible. Bandwidth
tests are executed by a program calleetf [8]. IPerf tests the TCP bandwidth by
setting up a connection between two nodes. One of the nodes sends adataich

as it can for a specified period of time. When the test finishes, the total muhbe

bits sent is divided by the length of the period to obtain the bandwidth speedr |

tests the TCP time period is set to 3 seconds. The UDP bandwidth test is treated
differently by IPerf. The program generates a stream at the spec#iedor a
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specified time period. When the test finishes, the receiver of the stremms¢o

the sender how many packets it received. From this information IPenilatds

the packet loss. Our tests use a time period of 3 seconds, with a streanfi rate o
1 Mbit per second. In a normal situation, where enough bandwidth is alailab
and no network congestion occurs, the packet loss should be (closerto) In

case of insufficient bandwidth, the number of datagrams lost per sat@udd be
close to the difference between the UDP stream rate and the previouslynettas
TCP bandwidth. If the values differ too much, either other users are ugimgore

(or less) bandwidth, or the network between the two nodes is congesttaiork
congestion can be investigated by comparing TCP bandwidth with UDP battdwid
(minus datagram loss) speeds.

The test results are shown in Figures A.1-A.6 for all nodes in Delft-37.teSH

runs started at 12:00 on Friday thes’ of April 2006, which is represented by
the first test number, and ended at 12:00 on Wednesdag6theof April 2006,
which is represented by the last test number. Successive tests aresGapatt,
meaning that the second test is at 18:00 on Fridaptteof April, and so on. The
same timestamp on the next day is found by adding 4 to the selected test number.
In our tests, UDP datagram loss is normally well within a 10% range, with most
tests not exceeding a 5% datagram loss. Bandwidth tests from othertnoutte
London failed from test number 1 to 13 due to a crash in the IPerf senvéri®
node. Bandwidth tests from any node to node Paris always fail, but @s¢sfiom

this node to other nodes are successful. The test results lead to the fglkbnee
conclusions.

First, the UDP datagram loss in test five (Figure A.5) for host Londontigmely

high, with numbers between 14% and 22%. The TCP bandwidth in this interval is
also low. At this pointin time, the network was probably suffering from astigpn.

Itis a pity that this assumption cannot be proven with the results from thelotiser

on the same subnet (due to its IPerf crash). Even so, the time intervatéotain

test number to all other hosts is about 5 to 7 minutes, and it seems unlikely that
other users take up that much bandwidth for such a long time; especiallytiviaen
tests at other points in time do not show the same behaviour.

Second, some UDP bandwidth tests show strange results, like test 2 fétanss
(Figure A.1). The UDP bandwidth is 404 Kbit/s, with a packet loss of only 1.9%
Further investigation shows that the bandwidth tester, IPerf, waits fot AGIS
packet to finish the test. If this packet arrives very late, for example ttweonds
after the test, IPerf takes a test time interval of 6 seconds, instead oe3eslt

is that the measured bandwidth is divided by 6, instead of 3, which mearth¢hat
actual bandwidth is halved. All UDP bandwidth dips below 700 Kbit/s are due to
this phenomenon. Actual packet loss in these cases is always below 10%.

Third and last, in about 20% of the tests, the UDP bandwidth exceeds the TCP
bandwidth. The fact that UDP bandwidth measurements are exceedinbar@pP
width measurements is unexpected and may be explained by fluctuations in the
bandwidth usage of other users. Another explanation can be that Tii¢fe st@mn
prevention algorithms might have a significant impact on these measurements fo
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short time intervals, like our 3 second tests. It may be a good idea to indrease
TCP bandwidth test interval to 10 seconds, and see if this percentag&af®ps
significantly.

3.5 Conclusion

The test results in this chapter show that most nodes in the Delft-37 netaeek h

a bandwidth capacity that is below 2 Mbit/s. Since the bit rate of the video stream
will be close to 1 Mbit/s, most of the Delft-37 nodes cannot support moredghan
Lumberjack instance without saturating their Internet link. Taking the diffesu

into account of acquiring nodes on different continents, we have eeéc¢alaban-

don the Delft-37 network. Instead, we will run tests on the DAS superctenpu
Delft.
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Chapter 4

Testing Lumberjack

The Delft-37 network turned out to be unsuitable as a testbed for our Lijecke
player, so we will use the DAS-3 supercomputer and implement delays based
the Delft-37 test data. In order to get meaningful test results, we hanéfidd the

most important parameters in the Kettingzaag algorithm and defined the measure
ments that we want to perform during live streaming. Since the Chainsawarauth
do not elaborate on many of the system parameters that we have defesthriv

our tests with small networks and a variety of parameter settings. This will give
us a good insight in network behaviour, which is needed for selectiraypers

for larger networks. In this chapter we present the Lumberjack testshangst
results obtained on the DAS-3 supercomputer.

Section 4.1 describes the system parameters in the Kettingzaag algorithmn Sectio
4.2 gives an overview of the measurements that we perform during |eamsing

with Lumberjack. This is followed by Section 4.3 which explains which measure-
ments we will discuss in our tests, and why we will omit some others. Section 4.4
discusses our first test set, which is used to get a good idea of the Katinget-
work behaviour. Section 4.5 discusses our second test set, whichadéralarger
networks. We finish this chapter with conclusions about the two test setsiiose

4.6.

4.1 System Parameters

This section gives an overview of the parameters that play an importaninrole
the Kettingzaag network. We can distinguish five parameters, which areryer s
seeding ratio, the stream'’s bit rate, the total number of outgoing connetioas
node, the maximum number of parallel requests a node can make, and fieally th
size of the play buffer. Each of these parameters is discussed in morebeébail
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Server Seeding Ratio

The Server Seeding Ratio (SSR) is defined as the total number of times teatcon
server will upload the media stream. The ideal SSR would be 1.0, since thlt wo
mean that the server only inserts the media stream into the network once, after
which it is completely distributed by the clients. However, people want to view
media at the best possible quality. As a result, the media stream rate will be close
to the upload capacity of the individual nodes in the network. This makédsauc
low SSR very challenging to meet. A higher SSR is not necessarily bad,@a$on

the SSR does not grow (much) as the number of nodes in the networkdasrea

Video and Audio Bit Rate

One of the most obvious settings is the total bit rate of the media stream, which is
the sum of the video and audio bit rates. As long as the total bit rate remaiwg be

the maximum upload capacity of the majority of the nodes, the nodes should be
able to distribute the stream amongst themselves. When the stream ratesexceed
this threshold, the server needs to augment the missing capacity. In thishmase
SSR will be growing linearly with the number of nodes in the network.

Number of Neighbours

We defineN as the total number of initiated connections to other nodes. When a
node receives a connect request, it adds the requesting node to iteeaybour

list as well, making the connection a two way communication line. So, each node
connects taV neighbours and on average receivésncoming connections from
other neighbours. This means that on average each node will be tedne2N
neighbour nodes.

Maximum Parallel Requests

In order to enforce a good distribution of packets in the network, nodesa
allowed to request all of their packets at a single neighbour. To prévsnteach
node can only request a certain amount of packets from each of itdooeigh We

call this threshold the maximum parallel requests (MPR) threshold. Although it
important to set the MPR threshold to a low value, a too low value will also pteven
a good network operation. The problem is that when the threshold is sstricto
nodes with little neighbours cannot request their packets fast enouagicaly,

the MPR threshold can be decreased wheis increased.

Play Buffer Size

The play buffer is a block of memory that acts as a buffer between the retwo
module and the video playing module. Its purpose is to prevent disturbances
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video playback due to small dips in network speed. When the network is some-
what slower for a short period of time, the buffer will slowly empty. So, érss
reasonable to choose a high play buffer size. However, the playrbufist be
filled before playback can start at the startup of a node. So, in ordelat@gtee a
good response time on startup, we would like a small buffer size.

4.2 Measurements

The Lumberjack software will do measurements in four categories. Eatlesd
four categories deals with some measurements which are discussed ineletail b
First, the basic functionality category will be discussed in Section 4.2.1.n8eco
the user behaviour category is outlined in Section 4.2.2. This is followed yathe
sic P2P behaviour category in Section 4.2.3. Finally, the video behavitagars

is discussed in Section 4.2.4.

4.2.1 Basic Functionality

The basic functionality holds two measurements, which are the frame rateeand th
number of program crashes. These are discussed in the following bsedions.

Frame Rate

The frame rate specifies the number of frames that the video playback module
plays per second. This number depends on the CPU speed of the magtiine a
its video graphics adapter. Slower machines might lose frames which hawme be
received by the network, just because they are lagging behind duaylggek. Al-
though the DAS-3 supercomputer consists of multiple nodes, we still run mame th
one Lumberjack instance on a single computing node. This allows us to simulate
more nodes, but at the same time prevents the software from actually digplayin
the video feed. Therefore we have implemented a fake video decodén juisic
decodes frames at the exact rate of the stream. So, the frame rate measuse

not interesting for our DAS-3 tests.

Number of Program Crashes

The total number of program crashes are recorded and sent backdata collec-
tion machine. It gives us insight in the stability of the Lumberjack player.
4.2.2 User Behaviour

The user behaviour can be divided in two subcategories, which are theofime
connect/disconnect, and the video quality of the stream.
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Time of Connect/Disconnect

The moment at which a client connects is recorded, as well as the moment it dis
connects. This measurement gives us insight in how many users try tiveusof
once, how many users try it more than once, and how long a user staysoted.
Obviously, this measurement is not very useful for our tests on the DAIg8r-
computer.

Video Quality

The video quality depends on the download speed of the client. The cdiggiti-

utor splits up the video in two separate streams. One stream consists of this vide
even frames and the other of the odd frames. When a client is suffeoimgdfand-
width problems for a longer period of time, the software switches to half-quality
mode by dropping one of the streams. The user can also manually switchebetwe
half-quality and full-quality mode. During our DAS-3 simulations, all clients will
run at full quality.

4.2.3 Basic P2P Behaviour

The basic P2P behaviour category holds three measurements. Firsighleaus
failure rate will be discussed. Then the latency to neighbours is explaamed,
finally the up/down bandwidth usage is outlined.

Neighbour Failure Rate

The neighbour failure rate (NFR) is defined as the number of neighlmmlesthat

fail within a certain test time interval. For example, when a node is connected with
23 other nodes (neighbours), of which 3 fail in a test time interval of 2regs,

then the NFR for that two second time interval is 1.5 per second. The NFR giv
insight in how quickly nodes are losing neighbours. Our first DAS-3 sitinria

will not include failing nodes.

L atency to Neighbours

The latency to a neighbour is defined as the time that is needed to get a TK&® pac
from one node to the other. Lower latencies are better, because vataedithat

are about to be played are more likely to arrive in time. Furthermore, latency to
neighbours gives an indication of the geographical distance betweendues.
When the Chainsaw overlay network is full of high latency links, it is prdpab
badly mapped on the Internet. Since the DAS-3 nodes are extremely well con
nected, we simulate latency between neighbours by delaying incoming patkets
the nodes.
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Upload Rate

The upload rate is defined as the number of bits that a node uploads pedseco
to all of its neighbours. The upload rate is specified as either Kbits/s (Kbps)
Mbit/s (Mbps).

Download Rate

The download rate is defined as the number of bits that a node downloads pe
second to all of its neighbours. The download rate is specified as eithtrKb
(Kbps), or Mbit/s (Mbps).

4.2.4 Video Behaviour

The video behaviour category can be divided in 5 subcategories, wanickhe
actual video bit rate, frame loss, number of frame re-requests, timinguotefs
and the number of frame repairs.

Actual Video Bit Rate

The actual bit rate at a client is recorded, because a truly fixed bit ratgllsision.

The client’s bit rate will fluctuate around the bit rate on which the stream is multi-
cast. These fluctuations are important to monitor, because the mean bitoalig sh
be close to the actual bit rate. Furthermore, a very good network peafare can

be caused by a lower bit rate at a certain point in time (e.g. during blackrsjre

Frame L oss

The number of frames that are lost because a frame has not been ddeaahlio
time. Nodes with a slow connection are more likely to suffer from frame loss than
faster clients. This measurement also gives insight in network problents fabie
connected clients are suffering high frame loss.

Number of Frame Re-requests

Whenever a frame is requested from a neighbour, but is not receiithth a
certain time interval, it is requested from another neighbour. The number- of
requests can give an insight into problems or high stress at some neigidutzu

Timing of Frames

We store the following frame times for a low level insight of the network:
e Frame Availability Time

e Frame Request Time
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e Frame Receipt Time
e Frame Playback Time

The frame availability time specifies the moment at which a node is notified by
a neighbour that the neighbour has a new frame available for downlogmm F
that time a node may decide to download that particular frame from the neighbou
When it decides to do so, it requests the frame at the neighbour and #iisres
moment as the frame request time. As the neighbour receives the reqdesigés

if it will upload the frame of not. When it does, the requesting node storetintiee

at which the frame is received as the receipt time. Every time a frame is played o
the client, the node stores this time as the playback time. Getting to know these
times gives insight in the delay between availability notifications, requestsptec

and finally playback.

Number of Frame Repairs

Every time a node fails to download a frame from the network in time, it has to
repair it during playback. Repaired frames are generated using thieysend

the next frame. This results in a frame with degraded quality, but at leagitthe

will not show a black frame (or stop) for a short period of time. Frameirspae
done constantly when the client is set to half-quality mode (see above).

4.3 Performance Metrics

From the measurements that we described in the last paragraph, we tiefine
following four as performance metrics for our tests:

e Frame rate in frames per second
e Frame loss in frames per second
e Upload rate in Kbits per second

e Download rate in Kbits per second

The measurements that will not be discussed are the Number of progaahesr
the connect/disconnect time of nodes, the quality mode, the neighbour fatare r
the round-trip time to neighbours, the number of packet re-requests, the tiin
frames and the number of frame repairs. The reasons are that somev degdb
debug information (number of packet re-requests, and timing of framthexs are
non-existent (program crashes, and neighbour failure rate), aneshis set to a
fixed value. We will discuss these fixed values in the next paragraph.

We run all our tests at full quality with a round-trip time of 150 ms between any
pair of nodes. In each test, all clients start roughly at the same time andostay ¢
nected during the entire test run. This makes the (dis)connect time andaeigh
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failure rate measurements obsolete for our tests. Since the DAS-3 nadeslga
be accessed by a command-line interface, we are unable to show the exdko f
Therefore, the feed is handled by a fake decoder which just popsaBte$ per
second from the frame stack. This means that the number of frame repairstc
be measured, but this should not be a problem as long as the frame rateaioe
drop too much.

44 Test Setl

With our first test set we will try to get an understanding of the effectdligegerver
seeding ratio (SSR) and the number of neighbours have on the framedoss/f
rate of the nodes. Since the SSR becomes more important at the mean upload
rate of the clients, we start our first test with 10 nodes and a total bit ra880f
Kbit/s. This is close to the 1 Mbit/s upload limit that most home users have in
the Netherlands. So, under perfect operation all nodes should bé¢oalyxoad
enough to support each other. Even though all nodes will upload, wetdexpect
perfect network behaviour. This will probably result in frame loss fardo SSR
values. In Chainsaw, a SSR of 2.0 works well, so we have chosen toke&SR
values close to 2. We will gradually increase the SSR values in our testslffiom

to 1.5, 2.0, 2.5 and finally 3.0. Hopefully, frame loss will decrease rapidl&R
values of 2 and higher. We do not assume a fully connected network liifeesa
streaming situations, so we keep the number of initiated neighbour connections
(N) low. Since we expect that lower settings fr have a negative impact on
network performance, we vary the values férfrom 2 to 4. This leads us tiest

set 1, which is summarized in Table 4.1.

441 Test Setup

Although Table 4.1 shows 15 different test types, we only perform ttasteruns

in which we run five test types each. This means that we dynamically chaage th
SSRvalue (from 1.1, 1.5, 2.0, 2.5 to 3.0) in each test run to accommodateestich
type. So, testrun 1 contains test types IM=@), test run 2 contains test types 6-10
(N=3), and test run 3 contains test types 11-454). The seed will start with an
SSR of 1.1, and change it to the next higher setting every 60 secondsa@oof
these three test runs lasts 300 seconds and contains 60 timestamps petti@§R s
Since we have 10 nodes in each test run, there are 10 data points perrtimesta
In order to keep our figures organized, we only keep track of the mininmach (
data points), mean (green data points) and maximum (blue data points) values f
each of these timestamps. We execute test run 1 (test types 1-5), 2 (&=sbtyp)

and 3 (test types 11-15) ten times to filter out anomalies in the results, so we can
get a good insight of the tendencies in the network. We start our tests with ten
executions of each of the three test runs without limiting the upload rate faoit clie
nodes. This allows us to determine if Table 4.1 provides realistic values fa mor
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Test| Test Video Audio | #of | SSR| N
Run | Type | Rate (Kbps)| Rate (Kbps)| Peers

1 1 704 96 10| 11| 2

2 704 96 10| 15| 2

3 704 96 10| 20| 2

4 704 96 10| 25| 2

5 704 96 10| 30| 2

2 6 704 96 10| 11| 3

7 704 96 10| 15| 3

8 704 96 10| 20| 3

9 704 96 10| 25| 3

10 704 96 10| 30| 3

3 11 704 96 10| 11| 4

12 704 96 10| 15| 4

13 704 96 10| 20| 4

14 704 96 10| 25| 4

15 704 96 10| 30| 4

Table 4.1: Tests of test set 1.

common upload boundaries.

4.4.2 Unlimited Upload Results

The unlimited client upload results for each of the four performance metraoa¢

rate, frame loss, upload rate, download rate) are shown per test rueciiors

B.1. The four performance metrics of test run 1 are shown in FigureBB.1-

the metrics of test run 2 are shown in Figures B.5-B.8, and the metrics of test
run 3 are shown in Figures B.9-B.12. Since every test run is executddahrtes,

each of the mentioned figures contains 10 graphs. Considering thasthits fer

all performance metrics are recorded simultaneously, graphs that are $autine
position correspond to the same execution of a test run.

Remarkably, the test results for the frame rate with 2, 3 and 4 outgoing neighbo
connections are almost the same (Figures B.1, B.5, B.9). We show the fesults
N=3 in Figure 4.1 (a), because these summarize the dthsettings well. The
frame rate at an SSR of 1.1 is unacceptable for any valug,dfut stabilizes at
SSR values of 1.5 and up. Almost all test runs have a dip in the frame ratdlin SS
intervals 1.5 and 2.0. Itis remarkable that the frame rate drop is worse iigterh
SSR interval for all values aN. These drops are somewhat less deep for higher
values of N, which is normal because nodes have more neighbours to download
missing packets from. This also holds for higher SSR values where we soiale

dips in the minimum frame rate fa¥ values 2 and 3, while the frame rate is stable
for 4 outgoing connections.

When we compare the node upload speed for different valu@s @figures B.3,
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Figure 4.1: Minimum, mean and maximum frame rate and upload rate for test
runs with 3 neighbours, an no upload limit. (Test Run:S&R=1.1-3.0,N=3,
UploadLimit=unlimited)

B.7, B.11), we notice that the mean upload is about the same in all figures and
decreases for higher SSR values. This behaviour is shown in Figuie)ahd

is expected, as the nodes can obtain more packets from the serverext B8R
values, and thus exchange less packets amongst themselves. Thediftgresce

in upload speeds is noticeable in the maximum upload which peaks higher for
smaller values ofV. Apparently, when the network is less connected, packets are
only available at a select number of nodes, whereas packet availabilityriss mo
balanced for higher values &f. With an unlimited upload speed, this is not much

of a problem since the nodes just upload a bit more. This is probably teerrea
why the test results for the three test runs look so similar. Therefore,ilveuw

the same test runs again, but with a more realistic upload limit of 1 Mbit/s for each
of the nodes.

4.4.3 Limited Upload Results

The results with a client upload limit of 1 Mbit/s are shown in Section B.2 in
Figures B.13-B.24. Naturally, the frame rates at SSR value 1.1 are evee wo
than in the test runs with an unlimited upload. This time there is a huge difference
between test run 1 witlv=2 and test runs 2 and 3 (witN=3 and 4). This is
shown in Figure 4.2 which contains two representative graphs from trendjx.

As expected, the upload limit causes the frame rate to drop significantly+@r

This is proven by the results in Figure B.15, which show that the maximum upload
is at a steady value of 1 Mbit/s for SSR values of 2.0 and below. From SSR 2.5
and up, the maximum upload rate starts to fluctuate below its maximum value,
indicating that the upload limit is not the bottleneck anymore. As a result, the
mean frame rate value quickly stabilizes close to the desired value of 30 fpmEmes
second (fps). However, small frame rate dips are still common at highHRer&ss,
especially for the worst performing node. The situation becomes bettes aaltle

of N increases, although the frame rate dips at SSR values of 2.0 and below are
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Figure 4.2: Minimum, mean and maximum frame rate for test runs with 2 (a) and 3
(b) neighbours, with a 1 Mbit/s upload limit. (Test Run: 1 (a) and 2 §$)R=1.1-
3.0, N=2 (a) andN=3 (b), UploadLimit=1 Mbit/s)

still deep enough to be noticed by viewers. The frame rate does seemitzstab
in the second half of the SSR=2.0 interval, so we run some extended tesissfor
interval. For each value oWV we will run three extended tests which each lasts
for 10 minutes at an SSR of 2.0. This will give some insight in the behaviour of
the network after the frame rate has stabilized. The extended test resufs&

are shown in Figure 4.3. The results of the tests with 4 neighbours aricphgc
identical to theN=3 values. ForN=2 one of the tests failed with a mean frame
rate below 10 fps. In order to check if this is coincidental, we ran anothee tiest
runs of which two failed.

45 Test Set 2

The goal in our second test is to find out if the SSR and number of neighlex
pend on the total number of nodes in the network. The original authorsaih€aw
performed successful simulations with very large networks at low SSRg®thnt
they do not elaborate on the number of neighbour connections.

451 Test Setup

In test set 1 we have seen that an SSR value of 3.0 is working well, arefdresr
this SSR setting will be maintained in test set 2. In order to get an idea of the
influence of the number of neighbours in larger networks, the total nuailbedes

is increased to 50. The total number of neighbours will be set to thregatiffe
values.

First, NV is set to 5, which is an almost constant value in comparison with\the
settings in the 10-node networks from test set 1. Secdnd,set to 10 (20% of the
total number of nodes), which yields the same neighbour percentage2s the
10-node network tests. Finallyy is set to 20 (40% of the total number of nodes)
and can be compared to tié=4 setting in the 10-node network tests. Second, we
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800 Kbit/s with 3 neighbours and 1 Mbit/s upload limit. (Test TypeS8,R=2.0,
N=3, UploadLimit=1 Mbit/s)

Test Video Audio | #of | SSR| N

Type | Rate (Kbps)| Rate (Kbps)| Peers
1 704 96 50| 3.0| 5
2 704 96 50| 3.0] 10
3 704 96 50| 3.0] 20
4 704 96| 100| 3.0| 5
5 704 96| 100| 3.0| 10
6 704 96| 100| 3.0| 20

Table 4.2: The tests of test set 2.

will increase the total number of nodes to 100 while maintaining the number of
neighbours at 5, 10, and 20. This leads to 6 tests which are descriliedbley4.2.
Each of these tests is performed with a client upload limit of 1 Mbit/s and lasts 10
minutes.

452 Test Results

The results from test types 1, 2 and 3 look promising, and are summarizegiie F
4.4. Since the test results for 5 and 10 neighbours (tests 1 and 2) are ,simailar
summarize them both in one graph.

The networks with 20 outgoing connections (test type 3) show a slightly better
performance than the networks from test 1 and 2. Note thaith20 networks
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Figure 4.4. Minimum, mean and maximum frame rate for test runs with 50 nodes
and 5, 10 (a), and 20 (b) neighbours, with a 1 Mbit/s upload limit. (Test Ty
(a) and 3 (b),SSR=3.0,N=5,10 (a) andV=20 (b),UploadLimit=1 Mbit/s)

5

have an average of 40%&7) neighbours, meaning that the network is almost fully
connected. Therefore, a node can almost always find the packeitsishatssing,

since each node knows about almost every other node in the netwoik.isTh
consistent with the results for thé=4 setting in the 10-node networks of Test Set

1. More interesting are the results of tests 1 and 2. Especially test 1 shatvs th
larger networks can operate well with a small number of neighbours. Wigen w
examine the theory this is not completely unexpected. We know that eachmode
test 1 is connected to 10%#) other nodes on average, and has a maximum of 5
outstanding packet requests per neighbour. This means that eacbamojuest

a maximum of 10*5=50 packets at a time, which represents just over aceton
media playtime. The round-trip time between nodes is set to be a random number
between 130 ms and 170 ms, which means that a node is able to request data
roughly 6 times faster than it needs to. We therefore expect no probleers widn
extend the network size to 100 nodes, while keeping the neighbour settitigs a
same values. Unfortunately, the results from tests 4 to 6 are all equallye¢eeaniial

are summarized by Figure 4.5 (a).

These results defy the expectations based on the previous results &&+tiode
networks. This could indicate a problem with the distribution algorithm in larger
networks. If the problems are caused by the Kettingzaag algorithm itselfpowiel
expect better results when the node bandwidth is increased. Thenwsédecided

to rerun the tests without limiting the upload of both the clients and the server,
giving each node over 50 Mbit/s of bandwidth. Fortunately these reselijssiras

bad, which means that it is unlikely that the distribution algorithm is the cause of
these problems.

Further investigation shows that the server node is suffering fromteeregly high

CPU load in larger networks. When the server encodes the media streamutwith
any nodes connected, the CPU load ranges from 35% to 40%. The regnainin
resources are used by a python timer system that allows delayed cangi@xe
These timers are mainly used to play video and audio frames at the correct time,
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Figure 4.5: Minimum, mean and maximum frame rate for test runs with 100 nodes
and 5 neighbours, with a 1 Mbit/s upload limit and 150 (a) or 0 (b) ms round-trip
time between nodes. (Test Type: 3, 4 andS5,R=3.0, N=3, UploadLimit=1
Mbit/s, RT'T=150 ms (a) and 0 ms (b))

and to delay network packet delivery to simulate round-trip times betweegsnod
When the number of nodes increases, so does the number of netwketptmat
have to be processed (and delayed) at the server. This leads to alanger of
timers, which eventually causes high CPU loads. This prevents the seower f
inserting new media packets into the network in time. We rerum\k8 tests with
the packet delay system disabled. Since the number of active timers aceded
greatly, we expect better network performance due to less CPU loadspike

The results of this 0 ms delay test are shown in Figure 4.5 (b). Although CPU
spikes still influence network performance, the results are much bettethiban
previous results with packet delaying enabled. In fact, the networkmasfwell

from the3"? to the5** minute and from thé'* to the10** minute. In these inter-
vals the server CPU load never reached 100%, which leads us to beb¢farther
optimizations would yield to results equal to those of the 50-node networks- Ho
ever, we will not further optimize the software for two reasons. First, igeckbse

to the maximum number of nodes that we can simulate on the Delft cluster of the
DAS-3 supercomputer. So even if the server could handle more nodespuld

not be able to simulate them on the Delft cluster. Using other DAS-3 cluster sites
is possible, but starting them at about the same time is extremely difficult (if not
impossible) due to job scheduling on each cluster. The second reasoh ésitha
research is superseded by a similar research project in the PDS gaiws#s a
give-to-get overlay closely related to the BitTorrent protocol [23]t Jike [16].

The biggest advantage of this give-to-get overlay is that it implementsqpiarie
against free-riding (nodes that download packets, but not uplogd samething
which is not present in our current implementation of Kettingzaag. SinceZRe P
principle is based on nodes exchanging packets amongst each othisratiisn-
portant feature [18]. When too many free-riders enter the networkjngeaag
performance will drop because the well behaving nodes (the onesahgtioad)
cannot provide enough upload bandwidth to compensate the free-riofiteg il 1].
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4.6 Conclusion

The system works quite well for a 10-node network for SSR values cdradsup.
Even for N=2, the frame rate rarely drops below 25 fps. For SSR values below
2.0, the results are too unstable to be used in a real environment. Although the
initial tests showed bad results for an SSR setting of 2.0, the extended tests sh
that this is the lowest reasonable SSR value for longer runs. Howeeestathup
time needs to be much improved before an SSR setting of 2.0 can be usedlin area
situation. We have to conclude that the system does not work well forraod8-
network with N=2 at this setting. The question if this is a result of the low number
of outgoing connections, or if a value &f equivalent to 20% of the total number

of nodes is a too low setting fa¥ is answered by Test Set 2.

The goal in our second test was to find out if the SSR and neighbour settiogld
depend on the total number of nodes in the network. According to the sdtse

of both the 50-node and the optimized 100-node tests, we can concludi¢ that
is very unlikely that such a dependency exists. Even though we haviested
beyond network sizes of 100 nodes, we know that wN\th5 and RTT=150 ms,
nodes can request packets up to 6 times faster than required. We tbeatefoot
expect problems with much bigger network sizes, as long as the client keeps
uploading. Of course, higher values for the SSR Anhavill smoothen the occa-
sional frame rate drop, and make the network more resilient against aitate$.
Unfortunately, we cannot simulate large enough networks to make any mgéanin
statements about network performance during node failures.
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Chapter 5

Conclusions and Future Wor k

Content providers are becoming more and more aware of the high sestsiticat

are inherent to the client/server model for live video streaming. The soltdion
this problem lies in peer-to-peer technology. The reason is that clientidistr
the stream amongst each other, which reduces the amount of data thamis do
loaded from the content servers. Many P2P solutions exist, but wechagen to
implement our own algorithm called Kettingzaag, which is based on the Chainsaw
algorithm [25] because of its simplicity and excellent simulation results.
Chainsaw is a fairly new swarm-based content distribution algorithm thatsnake
use of local state gossipping and data pulling. The main advantage of dvesed-
overlay networks over their tree- and flooding-based counterpartatishtey do

not enforce a strict network topology. This makes them very resilienttoserWe
have added some improvements to our Kettingzaag algorithm, sued€.CT
messages, ping-pong messages and multiple description coding. We intended
test Kettingzaag in our own video player called Lumberjack on Delft-37}laco
tion of virtual hosts on the Internet.

Delft-37 consists of 6 hosts and was intended to grow to 37 hosts. Intordeake
Delft-37 easy to use and manage, we have implemented a program that alows u
to control the network and its contents from a central control point. Weaalded

a few reliable machines to the university network to host Lumberjack salls a
to store test logs. Unfortunately, Delft-37 performance tests show thatotthes

do not have enough bandwidth and processing power available to hdtgilenu
Lumberjack instance. Therefore, the idea has been abandoned dadeveoved
our tests to the DAS-3 supercomputer.

5.1 Conclusions

We started our thesis with the following research question: How does a<zhiain
based implementation perform in a real video player and network, andtioyar
does it perform as well in a real environment as it does in simulations? We ca
conclude that our Kettingzaag implementation performs quite well for relatively
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small networks. Under normal operation, Kettingzaag manages to delkeveidio
stream with minimal packet loss at low server seeding rates. Howeverfshe fi
minute after network startup remains problematic for Kettingzaag. If this is also
the case in the Chainsaw simulations remains unclear, because its dedigieers s
that their network gets time to initialize, without specifying further information.
We do believe that Chainsaw still has better network startup times, which is most
likely caused by the fact that new Chainsaw nodes can only requdgtpdoom
neighbours. In Kettingzaag, new nodes can also request packetgieoseed,
which results in new nodes receiving very new packets due to the gesmcket
overriding mechanism.

The second question we asked ourselves in the problem statement is: ixede
changes to the original Chainsaw algorithm to create a working implementation?
We found that the Chainsaw description explained in [25] performs alriginv-

ever, implementing thé&?£J ECT message as described in Chapter 2 improved
Kettingzaag performance significantly. Although the Chainsaw desigrero
discuss aREJECT message or another hold-off mechanism, we cannot imagine
that they just silently drop requests.

The final question in our problem statement is: Which parameters are the most
important in Kettingzaag, and what are good settings for various netvizeks

We can conclude that the video bitrate and the mean upload rate in the nete/ork a
the most important parameters. The video bitrate should not exceed 80% of th
mean upload rate in the network. We have shown that the server seetitinar

the number of initiated neighbour connections do not have to depend ortahe to
number of nodes in small networks. Although the implementation of Lumberjack
prevents us from testing networks larger than a hundred nodes, Warreertain

that a server seeding ratio of 3.0 and 20 initiated neighbour connectersangh

for large networks as well.

5.2 FutureWork

One of the most important issues with our implementation is the fact that it uses a
lot of CPU resources, which prevents us from testing network sizesrléingn a
hundred nodes. In fact, the 100-node network tests failed at firstddiess this
issue, the python timer implementation should be redesigned and real-time MDC
video encoding should be replaced by a pre-encoded stream sadéskohese
changes will allow an increase of the maximum network size and of the nurhber o
different videos that can be seeded on a single node.

We have noticed that the most prominent difference between Chainsaauand
Kettingzaag implementation is the startup time. Although the Chainsaw simula-
tion results were taken after the network had time to initialize, we do believe that
Chainsaw performs better than Kettingzaag in terms of startup time. In the Chain-
saw algorithm, new nodes are encouraged to request packets framboeig only.

This prevents new nodes from receiving overrided packets fromettveis which
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are most likely to be far away from the playback position. Since Kettingzaag d
not do this, new nodes will download the newest packets from the sasvweell,
wasting bandwidth for the packets that they really need.

Another important issue is that we assumed that all nodes donate uplahaititm

to the network. In reality however, many nodes will not do this (free-rigimdpich
negatively affects network performance. In order to minimize the negetigets

of free-riding, measures must be implemented that penalize free-ridireg ndten

the total bandwidth demand exceeds the total bandwidth supply.

In order to improve the performance of Kettingzaag even more, we sutyges
changes. First, the mechanism that determines which packets should he dow
loaded is now based on random selection. This could lead to packet lessavh
very new packet is chosen instead of a packet that is about to be playealre in-
telligent solution would be to implement an algorithm that prioritizes packets that
are within a certain range from the playback position. Second, the maximom nu
ber of parallel requests from a node to a single neighbour could be impiedhen
in a better way. For Chainsaw, the authors suggest that the requestiadc@®ps
track of the maximum number of outstanding requests per neighbour. Since o
software is open source, everyone can change this parameter at viéh, wbuld
resultin altered nodes that request many packets at the same time. Itietaadx-
imum number of parallel requests should be implemented in the nodes receiving
the requests, for this allows the receiver to choke modified nodes witessay.
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Appendix A

Delft-37 Test Results

This appendix shows the Delft-37 bandwidth results that we describedapt&h

3. Every figure contains both the TCP and UDP bandwidth results frormode

in the network to all of the other nodes. The top graphs represent thelakmwlv
speed obtained using the TCP protocol, and the bottom graphs show thiwddw
speed obtained using the UDP protocol. For UDP we have chosen to ereate
stream of 1 Mbit/s. The UDP graphs show how many kbits arrive eacidesto

the downloading node. Note that the same symbols in the legend of the g@phs d
not always represent the same nodes. Table A.1 contains the nodaethegsent

in the Delft-37 network.

Full Name IP Address Location
vds-355074.amen-pro.com 62.193.219.68 Paris, France
advantagecom.us.peer-2-peer.org| 66.29.146.21 Walla Walla, Washington, USA
d80-237-144-205.dds.hosteurope.d&€0.237.144.205 | Koln, Germany
adiungo-phoenix.us.peer-2-peer.org193.192.247.157 Phoenix, Arizona, USA
adiungo-london.uk.peer-2-peer.org 193.192.247.133 London, UK
uUsonyx.sp.peer-2-peer.org 202.172.255.90 | Singapore

Table A.1: Delft-37 nodes with IP address and location.
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Appendix B

Lumberjack Test Results

In this appendix we present the test results of test set 1, which is deddrib
Chapter 4. The tests in test set 1 are summarized once more in Table B.1.ghlthou
the table contains 15 different test types, they are all performed in thstautes

in which we run five test types each. This means that we dynamically chaage th
SSR value (from 1.1, 1.5, 2.0, 2.5 to 3.0) in each test run to accommodatet all tes
types. All graphs in this appendix represent an execution of a complételtes
which means that the horizontal axis holds all of the possible SSR valuesofEth
duration of a test run is 300 seconds, which means that every SSR Inesitge60
seconds. We have defined four performance metrics, which are tne frate,

the frame loss, the upload rate and the download rate. Each test runuseskem
times, and all of these executions are shown in a single figure for eacnpance
metric. Hence, the results of every test run is presented in four figaresfor
each metric), which each contain 10 graphs (one for each executies).sét 1

is performed with both unlimited and limited upload settings for the client nodes
in the network. The unlimited results are shown in Section B.1, and the limited
results are shown in Section B.2.

The test runs are executed on 10-node networks, which means thafiguee in

this appendix should contain 10 data points for each timestamp. We havenchose
to keep the figures organized by only showing the minimum, mean and maximum
values of the ten nodes for each of the 300 timestamps (60 secondstiarfebe

five SSR settings). Table B.2 shows that the minimum node value is reprebgnted
the red data points, the mean node value by the green data points, and the maximu
node value by the blue data points.

B.1 Lumberjack Unlimited Client Upload Results

This section contains the twelve (three test runs multiplied by four perforenanc
metrics) figures belonging to the three test runs described by Table Beluplbad
rate of the client nodes is not limited in these tests.
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Test| Test Video Audio | #of | SSR| N
Run | Type | Rate (Kbps)| Rate (Kbps)| Peers

1 1 704 96 10| 11| 2

2 704 96 10| 15| 2

3 704 96 10| 20| 2

4 704 96 10| 25| 2

5 704 96 10| 30| 2

2 6 704 96 10| 11| 3

7 704 96 10| 15| 3

8 704 96 10| 20| 3

9 704 96 10| 25| 3

10 704 96 10| 30| 3

3 11 704 96 10| 11| 4

12 704 96 10| 15| 4

13 704 96 10| 20| 4

14 704 96 10| 25| 4

15 704 96 10| 30| 4

Table B.1: Tests of test set 1.

Mean data value across all nodes
Minimum data value across all nodes

I Maximum data value across all nodeés

Table B.2: Legend of the data point colors in this appendix.

54



SSR

. , ¥
1 }
o o -y o ¥ o o
| 3 ™ ™ . 1o r ™ 1o
0 »w 0 o) o) )
N o 4 . o x [ L 1T o [ I x 1
5
W .. 7)) ’ ) A ) . )
A ] %] A% * %] v %]
ﬁ»f!w L+ F o o A, o Ko o T o
3 o w B = **45 * E* yﬂ -
N N w N £ 3V * I3V
i ',
N .
ot 0 0 - |0 | n ) 10
— - « Tk ﬁml 5 - - —
3 LR v & .
e T L et Rk st 4
R L - L N NP P T LA I P T R
L O 1 O 1 o " To) l L O 1 O W O 1 W O 1w o 1w o ;™ LW o 1w o w o
M ® N N o o ™ M ® N N o o M ®m® N & A o M ® N & «H o+
s/sswel s/sswel s/sswelo s/sswel s/seswel
3 *3
E Lm,
i o S S | o 1 e
" ™ ™ ™ k ™ ™
0 0 0 L3 L3
N N N r N 1
) s ) ) " 7 L%
73 5 o %) et %) S
< < o | N ) - lo
N N 1 N w N N
#
£3
- %
o 0 0 L 0 : 0
— e g — — [ — —
At Wt o R T S T SN
* K x KD + M o " ) x JRK Ky %ﬁ . xx % T S #
o e xRt v R R
ITe) o ™ L 9O 1 O | O - L 9O 1 O | O - W O 1 o 1 o ;v W O 1 O 1 o w"
™ =1 M ® N & o o m ® N & o o M ® N & A - M ® N & -
S/sawel S/sawelH S/sawelH S/sawel S/sawelH

SSR

Figure B.1: Minimum, mean and maximuframe rate for ten executions of

test run 1 at 800 Kbps with two neighbours and no upload limit. (Test Run: 1,

unlimited)

2, UploadLimit=

1.1-3.0,N=

SSR=



Frames/s

Frames/s

Frames/s

Frames/s

Frames/s

Figure B.2: Minimum, mean and maximuname lossfor ten executions of test run

35
30

25 -

20+

15+
10 |

35
30
25

20
15 +
10 ¢

35
30

*
*
*
* *
=%
£
* %
o
*
*
* + 4
*
e *

*
*
*
o
*
*
woox
=
+ o
* *
*
® K%

£x x
PR T
x %

%

3.0

e
boe s 3w %
B
o xe
%
Koo ok
*
* * x
*
* * % %
* %
+ x %
*
* *
*
e
* * *
*% * * *
* P
KK %
* *
* % %
* * * *
* R LROKK K
* * M- *
o % *% x
* * * o or *
+ KKK P x

3.0

25+

20 +
15 +
10 ¢

35
30

25
20 ¢
15}
10 ¢

35
30

25} -
20 ¢
15+
10

SSR

3.0

= *x

* % *

3.0

Frames/s

Frames/s

Frames/s

Frames/s

Frames/s

35

30 [:»

<30

25t -

20 ¢
15 ¢
10 ¢

35

30
25
20t
15 -
10 +

35
30

25¢

%
e
%
* * * *
X %
»
* *
W%
* * % * *
x x X <% *
% x ¥ R
* * %
o E e X MK KO X * *

* * *
* ox
* *
* % 4%
x %
X % % %
*  x x x *
+ *
* o *
* 0+
X%t x
* <
R RAK * *
W *
ok % 2

20 ~

15 ¢
10 +

35
30

25¢1

20

15+
10 r

35
30
25

20 r
15+
10 +

o x % %
R W X X
+ *
+ % *
*
*
x4+ x
X *%
* *
* * *
» %
* *
x * x
*
* * * *
*
* * *
* O oEx % * % * *
+ * * *
+ * 4R *
* X o=
+ * * o
X ok ox XKL KK *%
o x % % K OB XX ¥ ow %
e
o sex
pess %
*
*
*
=
3 *
* %
* *
X %%
* % * %
% %
* * e
* * *
* x
= * *
ox
* * *
* e * x ok x
x % sectoas * *

SSR

-
e
o %
e+
+ox
*
+ ol
* »
*
3
*
*
*
*
* =
X ® >

1 at 800 Kbps with two neighbours and no upload limit. (Test Rur§ 4Rk=1.1-
3.0, N=2, Upload Limit=unlimited)




3000 w w w w 10000

. 9000
2500 . . ] 8000 |
%
2000f % & ] 7000
P o y o 6000
2 15001% L. % = £ 2 5000
1000f.% ¥ UL T 3000/ .
o ¥ M. .
3 ¥ ] 2000 %3 i
007 - : x&?’*‘ 1000 | *%}WM%“
0 s&&m‘”‘w‘ W"WM‘ i 0 5 P %
11 15 20 25 30 11 15 20 25 30
SSR SSR
12000 : : : : 9000
10000 gggg:
8000 | ] 6000 |
(2] (2] *
2 | £ 5000 .
g 600 £ 4000(: -~
4000 |, 1 3000+ {%‘&*
* & T S
: : 2000 wAL Y W LA ]
2000 | -3 e : TN AN
i*%wﬂm ™ 1000 % .% # ]
0 i MW 0 — e P
11 15 20 25 30 11 15 20 25 30
SSR SSR
4500 ——— : : : 9000
4000 ] 8000+
3500 | ] 7000 |
3000 | ] 6000 * .
L 2500t £ 50001 * .
£ 2000t £ 4000 i%
1500} ™% ] 3000 5% 3 e ]
% * ¥ M Y.
1000 4 A 20003 5.8 WA VL
500 | F \W ’\1 1000 [+ W W
0 i g S e B 0 L "
11 15 20 25 30 11 15 20 25 30
SSR SSR
16000 [ 4500
14000 + 1 4000 -
12000 ] 3500
,  10000( " iggg’*
g 8000p £ 2000} . o
6000 |, 1 1500 &% % 3 .
4000 [ 5% ey A ] 1000 | g%ﬁ wo o ATma
2000 %@ A 1 500 | * s g“w
0 b x Pl ¥ P O T N
11 15 20 25 30 11 15 20 25 30
SSR SSR
10000 : : : : 8000
9000 +* ] 7000 | *
8000 | ]
000 | ] 6000 |
w 6000t ] w D000
2 5000}t 2 4000} .
X * X
4000 % ] 3000 Y oA
30001 : ] 2000] -5 27 5 z
2000—31*,; ﬁﬁm ] AT
1000 ¥R \_,J\f\».,% 1000 ol '\'v
0 PV ™ 4 O .
11 15 20 25 30 11 15 20 25 30
SSR SSR

Figure B.3: Minimum, mean and maximuaopload rate for ten executions of
test run 1 at 800 Kbps with two neighbours and no upload limit. (Test Run: 1,
SSR=1.1-3.0,N=2, Upload Limit=unlimited)



2500 6000
2000 " 5000¢
4000 |
o 1500 - & x
= % = L
3 . 3 g 3000
1000 ¢ Y o
*w,@'ﬁﬂyg* Wt 2000 -
0L hadiia 10003 %W
¢ \!
ol : 0 : : : :
11 15 20 25 30 11 20 25 30
SSR SSR
3500 2500
3000 2000 .
2500
- 1500+ *.
2 2000 2 \
o * o
~ 1500, » 2 lo00| i fm ~ ]
* 23
1000+, o L
La5e W d ‘Mw 500 %z}‘i x \j@' #\V'W
500 ) B by :
g L
0 : : : 0= : :
11 15 20 25 30 11 20 25 30
SSR SSR
2500 3000
2000 2500
2000 |-
« 1500F, 0 "
3 . g 1500
x = x % *
1000} * 1 : £
A 1000, -3 v
Y a A, ;\j T ; M
50013 %% WV e 5004 % ™ ¥
+ o
0 1 1 1 1 O 1 1
11 15 20 25 30 11 20 25 30
SSR SSR
4500 6000
4000 | -
2500 | 5000
3000 4000 |
(2] (2]
L 2500, 2 | -
£ 2000f g 30007
15001 .. . . 2000
1000 § ] o
k& W 1000 %+ ]
500 &7 ; {W
olb—— : : : oLb—— : : :
11 15 20 25 30 11 25 30
SSR SSR
2500 4000
3500 -
2000 3000|
g 1500 . 1 g 2500 1
5 ;‘g ;{% 5 2000 |
100015 p 1 1500 | # |
AW 10001 * 1
5004 L% wj“w\ L
%!m 500 ’EMM
olb—— : : : ol—— : : :
11 15 20 25 30 11 25 30
SSR SSR

Figure B.4: Minimum, mean and maximudownload rate for ten executions of
test run 1 at 800 Kbps with two neighbours and no upload limit. (Test Run: 1,
SSR=1.1-3.0,N=2, Upload Limit=unlimited)



35
30r, m— o ———————————
o Pt g
o 25 LFN T ¥
@ e i
§ 20p:%; -
T “*;t
15 i
A
10 pL8°
5 L L
1.1 15 2.0 2.5 3.0
SSR
35
2
@
)
1S
o
L
5 L L L L
1.1 15 2.0 2.5 3.0
SSR
35
- i L
g 25 }t i ks
() .
g 20 g;‘
T L
L5
10 ¥
5 ! ! ! !
1.1 15 2.0 2.5 3.0
SSR
35
@ /R F ¢ T 1
A % A |
Q Yax T B
g 20 g &
T
*x
10 (=%
5 ! !
1.1 15 2.0 2.5 3.0
SSR
35
@
]
)
€
o
[
5 ! ! ! !
11 15 2.0 2.5 3.0

SSR

Frames/s

Frames/s

Frames/s

Frames/s

Frames/s

32
30

28 1
26|
24 1
22 |
20t
18
16 |

14

35
30
25

20 r
15 (#)
10 +

35
30

25
20 ¢

15

10 +

35
30

25 |
20
15 |
10 |

35
30
25
20

15+
10 +°

A 15 2.0 25 3.0

A 15 2.0 2.5 3.0
SSR

*

J

*+

«
o x
HERE o ok e

*

*
R——

11 15 2.0 2.5 3.0

SSR

¥ ®
¥

-y

1.1 15 2.0 2.5 3.0

SSR

Figure B.5: Minimum, mean and maximuirame rate for ten executions of test

run 2 at 800 Kbps with three neighbours and no upload limit.
SSR=1.1-3.0,N=3, Upload Limit=unlimited)

(Test Run: 2,



x %
* * %
* *
XXMy x H
-
WX X
N voxoxow -
H*H*ﬁﬂ % X
KRt * *
WoE oy
* K x h T, %k
n O 1L O 1 O 1 o
™M M N N « <
S/saswel
*
* XE ¥
* gt " *
PR £¥
*
g%
w2
o E o o
*¥x M
w*ﬁ * *4 Iu* : o
LEN + M -
Mgt Y . U .
n o nw o . O 1 o
™M M N N « -
S/sawel

2.0 25 3.0

15

11

15 2.0 25 3.0

11

SSR

SSR

* * *
x x
*x
* * *
* Fyx
x x
X % X agr ¥
x
R R
x
*
xxg X
¥
¥ o= *H*w *t
M *
ogi el ad e T
] I
‘w«w *
Ll " C
n o mw o 1n O 1 o
M M N N « <
sS/sswel
*
* v«**
¥
%
*ox o ox X
*
®X KX * Hw*
* kt +
xx Hw gk
oxox Txog
* x
X Hm* m
[ELIRI- S iy
*x x XK
® % Xx Ko X
[ S
R I
n O I O 1N O 1 o
M M N N I -
s/sswel

3.0

25

2.0

15

1.1

15 2.0 2.5 3.0

11

SSR

SSR

* kX

o
[
*
*

35

30
25¢
20 -

s/sawel

LEN
Byt

35

o
™ N

S/sawel

2.0 2.5 3.0

15

15 2.0 25 3.0

11

SSR

SSR

L 0. *
o ™ -
L n
N
x
x 7] x *x
L (7] x wx X
x oK ogr o WX K ¥ ¥
L My 2 * X
* * ¥
* *x M***
Ll
* xg+ ¥ :& % *y s
[ -

I R g T Lﬂﬁ& ’
LITN . . RN L3 EFFS Low % Y
L O W O 1 O 1w o L O 0 O 1 O I O

(42] (97] N N i - ™ o™ N N i -
s/salel s/sawel
* * ¥ T
. x
.
o <
[ ™
* * *
.
* **
L . *
N
%
* * ¥ +¥
. o n o e S
* *v«** wv *M. 0 * ¥ *M * E ¥
L . R K *f_ N %
.
* ¥ * L
S
*} O * K xX fH
r L )+
¥ *w "
*mm ok W ok * % **w* * *,W
T N LIS . . RGN
OWwowowouwo" L O b O 1D O In o
<t MO M NN A A (40) o™ (V] N — —
S/sawel S/sawelH

2.0 2.5 3.0

15

15 2.0 2.5 3.0

11

SSR

SSR

Figure B.6: Minimum, mean and maximuname lossfor ten executions of test run

2 at 800 Kbps with three neighbours and no upload limit. (Test RuSSR

1.1-

unlimited)

3, UploadLimit=

3.0,N



kbit/s

4500

T
* ox

*

15 2

.0 2 5
SSR

4000 |
3500 ¢
3000 r
2500 |
2000 |
1500
1000 r »
500 |

kbit/s

*
*

*

L **%f .

’Sﬁ*

e

& tgﬁ

%,

% %

*

,M"’“‘«*\ e »/\% 1
0 R Mm»%wmawwwmw

%‘ &
o ‘j%ﬁ‘sf\' ’i;g/

1.1

8000

15

2.0

2.5
SSR

3.0

7000 -

6000 |
5000 |
4000 r
3000 r
2000
1000

0

kbit/s

*

%

%

: Kw@ o M"'\___,

%W»WWM% h

x**

1.1

6000

1.5

2.0

25
SSR

3.0

5000 |,

4000 r
3000 r

kbit/s

2000 |
1000 -

* %

*

*
“*
*
*
X

£,

« %

k-
Ko

/”W\Vp

g ﬁi% #
‘\an. %’www“gm%

*

x

0
1.1

14000

12000 |
10000 |
8000 r
6000 r
4000 -
2000 r

kbit/s

0

1.5

2.0

2.5
SSR

3.0

11

kbit/s

kbit/s

kbit/s

kbit/s

kbit/s

4500

4000 -
3500 ¢
3000 r
2500 ¢
2000 r
1500 |
1000 |
500 r
0

W k X Wl
Nt N T e

11

5000

15 2.0 25
SSR

3.0

4500 -
4000 -
3500 r
3000 r
2500 ¢
2000 r
1500 |
1000 |

500 r

25000

20000
15000 -
10000 -

5000 r

12000

10000
8000 r
6000 |
4000 r
2000 |

2.0 2.5

SSR

*

2.5
SSR

15 20

Figure B.7: Minimum, mean and maximuaopload rate for ten executions of

test run 2 at 800 Kbps with three neighbours and no upload limit.
2,SSR=1.1-3.0,N=3, UploadLimit=unlimited)

(Test Run:



3500 2200
. 2000} -
3000 1800 |
2500 | 1600 t.
1400
£ 2000¢ 2 1200 ..
2 ; 5 BT ]
~ 1500 & * ] = 1000 g *%
Lo é 800 |+:it- W W 3%%%§$, .
1000+ | - ] 600 | * 3} u# Ly ¥ 1
500 %%:?WW MN\ﬂ 4003 &% N
e *e‘* 200 q ; J
0 3 N N L 0 L L L L
11 15 20 25 30 11 15 20 25 3.0
SSR SSR
3000 3000
2500 | 2500 |
2000 | 2000 "
2 1500 - 2 1s00! -
e} Qo +
1000 f .- . 1000} . s ] ]
R .Y ET i '
500 J;‘ g Y %QJWM 500 gw Mﬂfh‘l\\
oL 0Lt—r ‘ ‘
11 15 20 25 30 11 15 20 25 3.0
SSR SSR
3500 7000
3000 | 6000 |
2500 5000 |
2 2000+ @ 4000
£ 1500}, . 1 2 3000t
1000} 5’\}“ F \JW\ 2000 ¢ : ]
SOONE ‘ 1 10008 S A A
0 ¥ 0 |
11 15 20 25 30 11 15 20 25 3.0
SSR SSR
4000 7000 =
3500 1 1 6000 f
3000 ] 5000 |
Q2 25001 | @ 4000}
3 2000 - B
~ ~ L
1500 | 5. ] 3000,
- 2000 ]
1000} ] '
% 4 ¥
ol ‘ ‘ ‘ o ‘ ‘
11 15 20 25 30 1.1 1.5 20 25 3.0
SSR SSR
6000 : : : : 7000
5000 ] 6000 | -
4000 | 50001
0 - © 4000}
2 3000t * 2 .
2 . X 3000}
200072* ] 2000+ |
1000 \%‘WM 1000 '{W% i w
(o Las— ‘ ‘ ‘ (o2 S ‘ ‘
11 15 20 25 30 1.1 15 20 25 30
SSR SSR

Figure B.8: Minimum, mean and maximudownload rate for ten executions of
test run 2 at 800 Kbps with three neighbours and no upload limit. (Test Run:
SSR=1.1-3.0,N=3, Upload Limit=unlimited)



Frames/s

Frames/s

Frames/s

Frames/s

Frames/s

35
30
25
20

15+

10

26
24

22
20 -
18 ¢
16 -

1

Ao
&.*

N P

14

12

11

35
30
25

20 ¢

3.0

15 b

10 +

35
30
25

20 r
15 7
10 fu

2.0

SSR

2.5

3.0

Frames/s

Frames/s

Frames/s

Frames/s

Frames/s

35
30
25

20 |
15 -
10 +

32
30

28 1
26 ¢
24 ¢
22 |
20 ¢
18 ¢
16 .
14 ¢

12

1.1

35

10 =

2.0

2.5 3.0
SSR

2.0

2.5 3.0
SSR

Figure B.9: Minimum, mean and maximuirame rate for ten executions of test

run 3 at 800 Kbps with four neighbours and no upload limit.

SSR=1.1-3.0,N=4, Upload Limit=unlimited)

(Test Run: 3,



35

2.5 3.0
SSR

2.0

15

1.1

35

unlimited)

20 25 30
SSR
4, UploadLimit

15

**
P
o o o o
* * * . |-
™ ™ ™ ™
*% *
1]
o 0 0 | o
o o N N
@ [a [a @
o ) ) . ) )
W %) x x 0 - 0 7]
* xE vy % o LT =] xxxf it O o
L N LA e PR LE N r L N X% % Rt
« .
3x wox wxx X *X g% Xtk
L gt
P Xxx gxX
x R BT W0 RN T )
® K % H * Frs r ¥ ¥ i
e — kil PR f“i* A 1 - ; R
x * % X XrE x x4 X x x KK XXX x xR
R M " M * \ . X P . WRe %n ¥ % .. .
TR . * WX % * * *E x * * WE K * WEr
(1] . « 1 Wike *iy X, - WRgREL ¥ - LIS EE = WEE .
O W o w o 1 o L O W O 1 O v o L O W o 1 O 1w o L O W O 1 O 1w o N O 1 O 1 O
™ N N - - ™ (30) N N i - [e0] ™ N N i - ™M ™M N N i - ™m ™M N N i -
s/sswel s/sswel s/sswelo s/sswel s/seswel
m**xwm
¥ *
.
e e S . s
™ ™ (%2} i A )
P
-
0 10 10 I 10
N N N N KN
x 04 04 N
0 0 *x n x WX %}
%) ) ) . en g 7))
o % x¥ x i o * .f/\* i O * ¥ xxf O x ok ¥xo X
. ¥ * . > ¥+ H F * * H
3 o oax ty TR R w, 3 e T ffﬁ? ~ - g N
. e B X et « ¥
RxRE E . ¥k x *x JHRK
x kTR x Xy wn o o
RIS d ¥ W - « i* X w*w — VW x5k *MM — r M R *H* -
x *¥+ **
- X ‘i .
oy X X X ¥ * x x o * x * + X x w0k * wx T g e b
] b . Wt * e * x x x * * Kook § % * * ¥yt s
Byd P iEe* oy B x ¥t x X B L EE R B TSR
o w o w o 1 o LW O B O 1B O b o LW O B O D © b o L O b O 1D © 1 o L O b O 1B O
m® N & = A M ® N N o o M ® N N o o M m® N N A o M ® N N o o
S/sawel S/sawelH S/sawelH S/sawel S/sawelH

11
1.1-3.0,N

Figure B.10: Minimum, mean and maximuframe loss for ten executions of

test run 3 at 800 Kbps with four neighbours and no upload limit. (Test RBun:

SSR



7000
6000 |
5000 r
4000~ "
3000 ~
2000 |
1000 |

kbit/s

2.0 25
SSR

15

kbit/s
o
S
S
S

5000 [~

4500 r
4000 r
3500 ¢
3000 r
2500 "
2000 |
1500 -
1000 |
500 ¢

0

kbit/s

,zis k"

ﬁ%

e a
" ;f’w W“&“Mﬁmam ‘

e

%@ 5

1.1

9000

2.0 25 3.0

SSR

1.5

*

8000
7000 | -
6000 |
5000 |
4000
3000} "
2000}

kbit/s

0 Pt

* % x
x ¥ X
wox %

1000} a&%ssé”*§*§

‘\«,/"'

Mﬁm

1.1

14000

15 2.0 2.5 3.0

SSR

12000 -~
10000 |
8000 r
6000 r

kbit/s

4000 =

2000 r
0

kbit/s

kbit/s

kbit/s

kbit/s

kbit/s

[{e]
o
o
o
x

12000
10000 -~
8000 r
6000 |
4000 r
2000 |

12000
10000 -
8000 r
6000 |
4000 r
2000 |

2500 | .
2000f * %

*x

1500 (==, ¥%

&*” ”““‘\,.* *

*

i‘

. %
%
: .

vlw ,:‘\

A
;‘Mf&

:é‘.z‘z 5

15

6000

2.0

25 3.0
SSR

5000 r
4000 -
3000 r~
2000 r
1000**

11 15

20

2.5
SSR

30

Figure B.11: Minimum, mean and maximuapload rate for ten executions of
test run 3 at 800 Kbps with four neighbours and no upload limit. (Test Run:

SSR=1.1-3.0,N=4, UploadLimit=unlimited)



3500

3000 f
2500
2000
1500 | -
1000} :
500 3 § .

kbit/s

2500

2000 |

kbit/s

500

1600

1400 ¢
1200 ¢
1000 ¢

800

kbit/s

600 f
400
200 [

3500

3000
2500 |
2000 |
1500
1000+ ;

kbit/s

500

3000

2500 |
2000 |

kbit/s

1000 r =

500
0

1.1

1500 ¢

1000 § -

1500*

*

%Js“ w %M

LS 20 25

SSR

30

kbit/s

kbit/s

kbit/s

kbit/s

kbit/s

4000
3500 f
3000 f
2500 1
2000
1500
1000

500

3000 ;
2500 ¢
2000 r
1500 |

1000
500

1800 [~
1600
1400
1200
1000}

800

600§

400
200

1200

1000 |
800 ¢
600 f

400
200

5000

4500 |
4000 |
3500 |
3000
2500 f
2000 "
1500 |

1000

500 |

x %

”R‘Wx* *

SSR

*

g

2.0 2.5

SSR

3.0

Figure B.12: Minimum, mean and maximutownload rate for ten executions of
test run 3 at 800 Kbps with four neighbours and no upload limit. (Test RBun:

SSR=1.1-3.0,N=4, UploadLimit=unlimited)



B.2 Lumberjack Limited Client Upload Results

This section contains the twelve (three test runs multiplied by four perforenanc
metrics) figures belonging to the three test runs described by Table Beupltad

rate of the client nodes is limited to 1 Mbit/s in these tests, which is a representative
upload limit for home users in the Netherlands.
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Figure B.15: Minimum, mean and maximuwmpload rate for ten executions of test
run 1 at 800 Kbps with two neighbours and an upload limit of 1 Mbit/s. (Test Ru

1, SSR=1.1-3.0,N=2, UploadLimit=1 Mbit/s)
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Figure B.16: Minimum, mean and maximutownload rate for ten executions of
test run 1 at 800 Kbps with two neighbours and an upload limit of 1 Mbit/s.t(Tes
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Figure B.17: Minimum, mean and maximuiname rate for ten executions of test

run 2 at 800 Kbps with three neighbours and an upload limit of 1 Mbit/s. (Test

Run: 2,SSR
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Figure B.19: Minimum, mean and maximuwmpload rate for ten executions of test
run 2 at 800 Kbps with three neighbours and an upload limit of 1 Mbit/s. (Test
Run: 2,55R=1.1-3.0,N=3, Upload Limit=1 Mbit/s)
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Figure B.20: Minimum, mean and maximutownload rate for ten executions of
test run 2 at 800 Kbps with three neighbours and an upload limit of 1 Mbitést (T
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Figure B.21: Minimum, mean and maximuiname rate for ten executions of test
run 3 at 800 Kbps with four neighbours and an upload limit of 1 Mbit/s. (Rest:
3,55R=1.1-3.0,N=4, Upload Limit=1 Mbit/s)
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Figure B.22: Minimum, mean and maximuiname loss for ten executions of test

run 3 at 800 Kbps with four neighbours and an upload limit of 1 Mbit/s. (Rest:

3,SSR

1.1-3.0,N=4, Upload Limit=1 Mbit/s)
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Figure B.23: Minimum, mean and maximuwmpload rate for ten executions of test
run 3 at 800 Kbps with four neighbours and an upload limit of 1 Mbit/s. (Rest:

3, 85R=1.1-3.0,N=4, Upload Limit=1 Mbit/s)
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Figure B.24: Minimum, mean and maximutiownload rate for ten executions of
test run 3 at 800 Kbps with four neighbours and an upload limit of 1 Mbit/sst(T
Run: 3,5SR=1.1-3.0,N=4, Upload Limit=1 Mbit/s)



