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A Theoretical and Empirical Analysis of Program
Spectra Diagnosability

Alexandre Perez, Member, IEEE, Rui Abreu, Senior Member, IEEE, Arie van Deursen, Member, IEEE

Abstract—Current metrics for assessing the adequacy of a test-suite plainly focus on the number of components (be it lines, branches,
paths) covered by the suite, but do not explicitly check how the tests actually exercise these components and whether they provide
enough information so that spectrum-based fault localization techniques can perform accurate fault isolation. We propose a metric,
called DDU, aimed at complementing adequacy measurements by quantifying a test-suite’s diagnosability, i.e., the effectiveness of
applying spectrum-based fault localization to pinpoint faults in the code in the event of test failures. Our aim is to increase the value
generated by creating thorough test-suites, so they are not only regarded as error detection mechanisms but also as effective
diagnostic aids that help widely-used fault-localization techniques to accurately pinpoint the location of bugs in the system. We have
performed a topology-based simulation of thousands of spectra and have found that DDU can effectively establish an upper bound on
the effort to diagnose faults. Furthermore, our empirical experiments using the Defects4J dataset show that optimizing a test suite with
respect to DDU yields a 34% gain in spectrum-based fault localization report accuracy when compared to the standard
branch-coverage metric.

Index Terms—Testing; Coverage; Diagnosability.

F

1 INTRODUCTION

THIS paper discusses the importance of measuring diag-
nosability of software, i.e., the ability of a program and

its test suite to effectively and accurately locate faults when
errors arise. It proposes DDU, a new metric for evaluating
the diagnosability of a test-suite when applying spectrum-
based fault localization approaches, and provides a thor-
ough theoretical and empirical analysis of its effectiveness.
Aimed at complementing adequacy measurements that fo-
cus on maximizing error detection of a suite, DDU provides
an assessment on the effort required to pinpointing the
root cause of potential failures. The proposed measurement
increases the value of having a thorough test-suite, since
an optimal suite with respect to DDU can not only act as
an error detection tool but also can boost the accuracy of
widely used fault localization approaches.

Current test quality metrics quantitatively describe how
close a test-suite is to thoroughly exercising a system accord-
ing to an adequacy criterion. Such criteria describe what
characteristics of a program must be exercised. Examples
of current metrics include branch and path coverage [1],
modified decision/condition coverage [2], and mutation
coverage [3]. According to Zhu et al., such measurements
can act as generators, meaning that they provide an in-
tuition on what components to exercise to improve the
suite [4]. However, this generator property does not provide
any relevant, actionable information on how to test those
components to improve the diagnosability of the spectrum.
These adequacy measurements abstract away the execution
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information of single test executions to favor an overall
assessment of the suite, and are therefore oblivious to anti-
patterns like the ice-cream cone1. The anti-pattern states that
the vast majority of tests is written at the system level,
with very few tests written at the unit granularity level.
Even though high-coverage test-suites can detect errors in
the system, it is not guaranteed that inspecting failing tests
will yield a straightforward explanation for the cause of
the observed failures, since fault isolation is not a primary
concern. Our hypothesis is that a complementing metric
that takes into account per-test execution information can
provide further insight about the overall quality of a test-
suite. This way, if a regression happens, one would have a
test suite that is not only effective at detecting faults, but also
aids spectrum-based techniques to pinpoint them among the
code.

Previous test-suite diagnosability research has proposed
measurements to assess diagnostic efficiency of spectrum-
based fault localization techniques. One measurement uses
the density (ρ) of a test-coverage matrix — also known
as spectrum [5]: input to all spectrum-based fault localiza-
tion techniques [6], [7] —, which encodes what software
components have been involved in each test. González-
Sanchez et al. have shown that when spectrum density
approaches the optimal value, the effectiveness of spectrum-
based approaches is maximal [8]. Another approach is one
by Baudry et al., that proposed a test for diagnosis criterion
that attempts to reduce the size of dynamic basic blocks to
improve fault localization accuracy [9].

Unfortunately, the existing diagnosability metrics rely
on impractical assumptions that are unlikely to happen
in the real world. The approach by Baudry et al. focuses

1. Ice-cream cone software testing anti-pattern mentioned in Alister
Scott’s blog: http://goo.gl/bhXOrN (accessed January 2019).
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on detection of single-faults in the system. The density
approach assumes that all tests programmers write exercise
a different path through the code and therefore produce
different coverage patterns. In practice, it is common for
tests to cover the same code. If one does not account for
test diversity, it is possible to skew the test-coverage matrix
to have a (supposedly) optimal density by repeating similar
test cases. It also has the assumption that all tests cover, on
average, the same number of code components. In reality,
a test-suite can encompass tests ranging from a targeted,
narrow unit test to a sweeping system test.

We detail the optimal coverage matrix for achieving
accurate spectrum-based fault localization. In this optimal
scenario, the test-suite contains a test case exercising every
possible combination of components in the system, so that
not only single-faults can be pinpointed but also allows for
multiple-faults – which require simultaneous activations of
components for the fault to manifest – can be isolated. Such
a matrix is reached when its entropy is maximal. This is
the theoretically optimal scenario. However, this entropy-
maximization approach is intractable due to the sheer num-
ber of test cases required to exercise every combination of
components in any real-world system.

Nevertheless, the entropy-optimal scenario helps elicit a
set of properties coverage matrices need to exhibit for ac-
curate spectrum-based fault localization. We leverage these
properties in our proposed metric, coined DDU2. This met-
ric addresses the related work assumptions detailed above,
while still ensuring tractability, by combining into a single
measurement the three key properties spectra ought to have
for practical and efficient diagnosability: (1) density (ρ), en-
suring components are frequently involved in tests; (2) test
diversity (G), ensuring components are tested in diverse
combinations; and (3) uniqueness (U ), favoring spectra with
less ambiguity among components and providing a notion
of component distinguishability. The metric addresses the
quality of information gained from the test-suite should
a program require fault-localization activities, and is in-
tended as a complement to adequacy measurements such
as branch-coverage.

To measure the effectiveness of the proposed metric, we
perform theoretical and empirical evaluations. The theoreti-
cal evaluation simulates a vast breadth of software systems
and test suite compositions so that the range of DDU values
can be effectively generated and analyzed in a holistic man-
ner. Our simulation is built upon a tree-based representation
of system structures — which we call topologies — that
are randomly generated following phylogenetic processes.
Topologies then guide the generation of multiple spectra,
which are then fault-injected and diagnosed. This theoretical
analysis reveals that DDU can effectively predict an upper-
bound on the effort required to diagnose. We also empiri-
cally evaluate DDU by generating test suites for real-world
faulty software projects. Test generation, facilitated by the
EVOSUITE tool, is guided to optimize test suites regarding
a specific metric, and oracles are generated from correct
project versions. The first empirical evaluation shows that
generating tests that optimize DDU produces test-suites that
require less diagnostic effort to find the faults compared to

2. DDU is an acronym for Density-Diversity-Uniqueness.

t1 t2 t3 t4 t′

1: def groundDistance():    
2: if underwater():    
3: return surfaceDistance()   
4: else:  
5: return groundAltitude()  
6: def groundAltitude ():    
7: if landed():    
8: return 0  
9: else:  
10: return sub(GND, ALT)  
11: def sub (a,b):   
12: return a - b   

Pass/fail status: 7 3 3 3 3

(a) Per-test coverage of a single-faulted system.

t1 t2 t3 t4 t′

1: def descend(increment):     
2: if landed():     
3: return Status.STOPPED   
4: else:   
5: descendMeters(increment)   
6: return Status.DESCENDING   
7: def ascend(increment):    
8: if landed():    
9: liftoff()  
10: return Status.LIFTOFF  
11: else:   
12: ascendFeet(increment)   
13: return Status.ASCENDING   

Pass/fail status: 3 3 3 3 7

(b) Per-test coverage of a multiple-faulted system.

Fig. 1. Code snippets showing test and coverage information. Test
passes and failures are represented by 3and 7.  indicates that the
component in the respective row was exercised.

the state-of-the-art of diagnosability metrics such as density.
The second empirical evaluation generates test-suites for a
wide range of subjects in the DEFECTS4J collection. We pro-
vide empirical evidence that optimizing a suite regarding
DDU yields an increase of 34% in diagnostic accuracy when
compared to test-suites that only consider branch-coverage
as the optimization criterion and 17% when compared to
optimizing mutation score.

This paper extends our previous work [10] by (1) provid-
ing a generalization to the information-theoretic reasoning
behind targeting a certain optimal spectrum density value,
(2) providing a large-scale evaluation of DDU through a
topology-based program spectra simulation — so that we
are able to generate and analyze a vast breadth of quali-
tatively distinct faulty spectra —, (3) expanding our eval-
uation by comparing the diagnostic effectiveness of DDU
versus mutation coverage, and (4) expanding our discussion
on the implications of using the DDU metric for assessing
diagnosability.

2 MOTIVATION

We present two code snippets along with runtime infor-
mation of several test cases as a motivational example
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demonstrating the need for a new metric that accurately
describes the diagnostic ability of a test-suite3.

The first example, depicted in Figure 1a, shows a snippet
of code from a sensor array capable of measuring distance
to the ground both when submerged and airborne. The
purpose of groundAltitude is to measure distance to the
ground using the internal altitude sensor (ALT) and the
ground elevation sensor (GND). This method has a bug: it
will produce negative values if ALT is greater than GND.
Line 10 should then read return sub(ALT, GND). Test t1
does indeed detect the error in the system. But the problem
is that no other test also exercises the code path followed
by t1 to exonerate them from suspicion. When considering
the test suite t1 to t4, the developer will have to manually
inspect all components that do not appear in passing tests.
Six lines out of a total of 12 will have to be inspected,
corresponding to nearly 50% of the total code in the snippet.
In this small example, it is feasible to inspect all components,
but component inspection slices can grow to fairly large
numbers in a real world scenario. So, even though test suite
t1 to t4 has 100% branch-coverage, it does not provide many
diagnostic clues. Adding test t′ to the test suite will, in fact,
not result in a change in coverage, but it will positively
impact our proposed metric, as well as further isolate the
fault.

The second example, depicted in Figure 1b, contains a
snippet of code for controlling the ascent and descent of a
drone. The descend method uses meters to quantify the
amount of descent, while the ascend method uses feet.
Assuming there is no explicit check for altitude available,
testing these methods independently will not reveal the fail-
ure. Even though test suite t1 to t4 has reached 100% branch
coverage, this test suite has not managed to expose the fault
in the code. Also note that even satisfying a stronger cover-
age criterion like the modified condition/decision coverage
or even a stronger intra-procedural analysis will not expose
the fault. To expose the fault in this example one would
need to exercise combinations of decisions from different
methods. In fact, only a test that covers both methods’ else
branches may reveal it if, for instance, there is an unexpected
liftoff after a descent, as is depicted in test t′, which also
positively impacts our proposed metric.

3 BACKGROUND

This section describes the background work on which the
metric proposed on this paper is inspired. Namely, we cover
the concept of Spectrum-based Reasoning (SR) — which is
amongst the best performing spectrum-based fault local-
ization approaches [11] —and detail previous attempts to
define a diagnosability metric.

3.1 Spectrum-based Reasoning (SR)
SR reasons about observed system executions and their out-
comes to derive diagnoses that can explain faulty behavior
in software [12]. In SR, the following is given:
• A finite set C = 〈c1, c2, ..., cM 〉 of M system com-

ponents. Components can be any source code artifact

3. We use line of code as the component granularity throughout the
motivation section.

t1 t2 t3 t4
c1 1 0 1 1
c2 1 1 0 0
c3 0 1 0 1
e 1 1 1 0

Fig. 2. Spectrum of a system with 3 components and 4 transactions.

of arbitrary granularity such as a class, a method, a
statement, or a branch [5];

• A finite set T = 〈t1, t2, ..., tN 〉 ofN system transactions,
which can be seen as records of a system execution,
such as, e.g., test cases;

• The outcome of system transactions is encoded in the
error vector e = 〈e1, e2, ..., eN 〉, where ej = 1 if
transaction tj has failed and ej = 0 otherwise;

• A M × N activity matrix A, where Aij encodes the
involvement of component ci in transaction tj .

The pair (A, e) is commonly referred to as spectrum [5].
Several types of spectra exist. The most commonly used is
called hit-spectrum, where the activity matrix is encoded in
terms of binary hit (1) and not hit (0) flags, i.e., Aij = 1 if
ci is involved in tj and Aij = 0 otherwise. An example to
be used throughout this section is shown in Figure 2, which
is analogous to the depiction of spectra from Figure 1. This
spectrum consists of four transactions (i.e., executions) of a
system composed of three components. Transactions t1, t2
and t3 fail, whereas in t4 no error was observed.

Prior approaches using spectra were based on a so-
called similarity coefficient to find a correlation between
a component ci’s activity (i.e., 〈Aij |j ∈ 1..N〉) and the
observed transaction outcomes encoded in error vector e
[6], [7], [11], [13], [14]. SR relies instead on a reasoning
approach that leverages a Bayesian reasoning framework
to diagnose the system. SR was also shown to outperform
similarity-based approaches [12]. The two main steps of SR
are candidate generation and candidate ranking:

3.1.1 Candidate Generation

The first step in SR is to generate a set D = 〈d1, d2, ..., dk〉
of diagnosis candidates. Each diagnosis candidate dk is a
subset of C, and dk is said to be valid if every failed transac-
tion involved at least one component from dk. A candidate
dk is minimal if no valid candidate d′ is contained in dk.
We are only interested in minimal candidates, as they can
subsume others of higher cardinality. Heuristic approaches
to finding these minimal candidates, which is an instance
of the minimal hitting set problem, thus NP-hard, include
STACCATO [15], SAFARI [16] and MHS2 [17].

In our example from Figure 2, the collection of minimal
diagnostic candidates that can explain the erroneous behav-
ior is

• d1 = 〈c1, c2〉
• d2 = 〈c1, c3〉
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3.1.2 Candidate Ranking
For each candidate dk, their fault probability is calculated
using the Naı̈ve Bayes rule

Pr(dk | (A, e)) = Pr(dk) ·
∏

j ∈ 1..N

Pr((Aj , ej) | dk)

Pr(Aj)
(1)

Let Aj be short for 〈Aij |i ∈ 1..M〉 — i.e., the jth column
of matrix A, represented by a set encoding all component
involvements in test tj . The denominator Pr(Aj) is a nor-
malizing term that is identical for all candidates and is not
considered for ranking purposes.

In order to define Pr(dk), let pi denote the prior proba-
bility4 that a component ci is at fault. The prior probability
for a candidate dk is given by

Pr(dk) =
∏
i ∈ dk

pi ·
∏

i ∈ C\dk

(1− pi) (2)

Pr(dk) estimates the probability that a candidate, without
further evidence, is responsible for erroneous behavior.

Pr((Aj , ej) | dk) is used to bias the prior probability
taking observations into account. Let gi (referred to as com-
ponent goodness) denote the probability that a component
ci performs nominally

Pr((Aj , ej) | dk) =


∏

i ∈ (dk∩Aj)

gi if ej = 0

1−
∏

i ∈ (dk∩Aj)

gi otherwise
(3)

In cases where values for gi are not available they can be
estimated by maximizing Pr((A, e) | dk) — i.e., maximum
likelihood estimation (MLE) for the Naı̈ve Bayes classifier
— under parameters {gi | i ∈ dk} [19]. This work uses MLE
to estimate component goodness.

If we consider our example, the probabilities for both
candidates are

Pr(d1 | (A, e)) =

Pr(d)︷ ︸︸ ︷(
1

1000
· 1

1000
·
(

1− 1

1000

))
×

Pr((A,e)|d)︷ ︸︸ ︷
(1− g1 · g2)︸ ︷︷ ︸

t1

× (1− g2)︸ ︷︷ ︸
t2

× (1− g1)︸ ︷︷ ︸
t3

× g1︸︷︷︸
t4

(4)

Pr(d2 | (A, e)) =

Pr(d)︷ ︸︸ ︷(
1

1000
· 1

1000
·
(

1− 1

1000

))
×

Pr((A,e)|d)︷ ︸︸ ︷
(1− g1)︸ ︷︷ ︸

t1

× (1− g3)︸ ︷︷ ︸
t2

× (1− g1)︸ ︷︷ ︸
t3

× g1 · g3︸ ︷︷ ︸
t4

(5)

By performing a MLE for both functions it follows
that Equation (4) is maximized for g1 = 0.47 and g2 = 0.19.
Equation (5) is maximized for g1 = 0.41 and g3 = 0.50.
Applying the goodness values to both expressions, it follows

4. Component prior probabilities depend on the chosen granularity.
For instance, if components are statements, one can approximate pj as
1/1000, i.e., 1 fault for each 1000 lines of code [18].

that Pr(d1 | (A, e)) = 1.9 × 10−9 and Pr(d2 | (A, e)) =
4.0× 10−10. It is customary to normalize fault probabilities
over the set of candidates under consideration, producing:
Pr(d1 | (A, e)) = 0.83 and Pr(d2 | (A, e)) = 0.17, entailing
the ranking5 (d1,d2).

3.2 Measuring Quality of Diagnosis

To measure the accuracy of fault-localization approaches,
the cost of diagnosis Cd metric is often used [11], [12], [20],
[21]. It measures the number of candidates that need to be
inspected until the real faulty candidate is reached, given
that the candidates are being inspected by descending order
of probability6. A value of 0 for Cd indicates an ideal diag-
nostic report where the faulty candidate is at the top of the
ranking and thus no spurious code inspections will occur.
The Wasted Effort metric (or merely Effort) normalizes Cd
over the total number of components in the system so that
the metric ranges from 0 (optimal value – no developer time
wasted chasing wrong leads) to 1 (worst value – states that
the whole system will be inspected until the fault is reached)
in all cases.

Another widely used metric is Recall@N [22] (also re-
ferred to as Top@N [23] or Hit@N [24]), which computes
the percentage of faults among the set of subjects that can
detected by exclusively examining the top N (N=1,2,3,...)
components of the ranked diagnostic report. Good fault
localization techniques should allow developers to find
more faults while inspecting less code, thus the higher the
Recall@N value, the better the diagnostic performance.

Quality of diagnosis measurements assume perfect fault
understanding, meaning that when the real faulty candidate
is inspected, it is correctly identified as such. This assump-
tion may not always hold [25], but there are approaches to
mitigate it (e.g., [26]).

3.3 Diagnosability Assessment by Measuring Matrix
Density

Previous work [8] has used matrix density (ρ) as a measure
for diagnosability:

ρ =

∑
i,j Aij

N ×M
(6)

The intuition is to find an optimal matrix density such
that every transaction observed reduces the entropy of the
diagnostic report set R = 〈Pr(dk|(A, e))|dk ∈ D〉. It has
been previously demonstrated that the information gain can
be modeled as:

IG(tg) =− Pr(eg = 1) · log2(Pr(eg = 1))

− Pr(eg = 0) · log2(Pr(eg = 0))
(7)

where Pr(eg = 1) is the probability of observing an error
in transaction tg , conversely Pr(eg = 0) is the probability
of observing nominal behavior. Optimal information gain
(IG(tg) = 1) is achieved when Pr(eg = 1) = Pr(eg =
0) = 0.5. With the assumption that transaction activity is
normally distributed, then it follows that a transaction’s

5. Also known as diagnostic report.
6. Or likelihood score, depending on the fault-localization approach

used.
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average component activation rate equals the overall ma-
trix density. Thus, it can be said that Pr(eg = 1) = ρ,
yielding ρ = 0.5 as the ideal value for diagnosis using
SR approaches [8]. Density was also leveraged by Campos
et al. to guide automated test generation [20]. This work
shows that density-guided test-suites managed to reduce
diagnostic effort when compared to using branch coverage
as the fitness function for the generation.

3.4 Diagnosability Assessment by Measuring Unique-
ness

Baudry et al. propose a diagnosability metric that tracks the
number of dynamic basic blocks in a system [9]. Dynamic basic
blocks, which other authors also call ambiguity groups [27],
correspond to sets of components that exhibit the same
involvement pattern across the entire test-suite. For diagnos-
ing a system, the more ambiguity groups there are, the less
accurate the diagnostic report can be, because one cannot
distinguish among components in a given ambiguity group,
as they all show the same involvement pattern across every
transaction.

This metric, that we call uniqueness, can be used to
ensure that the test-suite is able to break as many ambiguity
groups as possible. A matrix A decomposes the system into
a partition G = g1, g2, ..., gL of subsets of all components
with identical columns in A. Then, measuring the unique-
ness U of a system can be done by

U =
|G|
M

(8)

When U = 1/M all components belong to the same ambi-
guity group. When U = 1, all components can be uniquely
identified.

4 DIAGNOSABILITY METRIC

This section presents the DDU metric. First, we detail a
method for quantifying the exhaustiveness of a test suite
using the notion of entropy, motivated by the optimal diag-
nosability scenario. Although we use SR in our motivation,
the entropy approach can be applied to other spectrum-
based fault localization strategies as well, because it focuses
on isolating diagnostic candidates. We show that entropy
may not be suitable in practice due to the number of transac-
tions needed to reach an ideal spectrum. Finally, we propose
the DDU metric as a relaxed alternative, based on previous
work that uses density as an indicator for diagnosability.

4.1 Activity Matrix Entropy

To maximize the effectiveness of SR approaches, the ideal
activity matrix is one that contains every combination of
component activations — as depicted in Figure 3 —, since it
follows that every possible fault candidate in the system is
exercised.

A metric that accurately captures this exhaustiveness is
entropy – the measure of uncertainty in a random variable.
Shannon Entropy [28] is given by

H(X) = −
∑
i

P (xi) · log2(P (xi)) (9)

t1 t2 t3 · · · t2M−1
c1 1 0 0 · · · 0
c2 0 1 0 · · · 0
c3 0 0 1 · · · 0
c4 0 0 0 · · · 1
c5 1 1 0 · · · 0
...

...
...

...
. . .

...
cM 1 1 1 · · · 1

Fig. 3. Ideal hit-spectra matrix for a system with M components.

in this context,X is the set of unique transaction activities in
the spectrum matrix. P (xi) is the probability of selecting a
transaction t ∈ T and it having the same activity pattern as
xi. When H(X) is maximal, it means that all possible trans-
actions are present in the spectrum. For a system with M
components, maximum entropy is M shannons (i.e., number
of bits required to represent the test suite). Therefore, we can
normalize it to H(X)/M . Matrices with a normalized entropy
of 1.0 would, then, be able to efficiently diagnose any fault
(single or multiple) provided that the error detection oracles
that classify transactions as faulty are sufficiently accurate.

The main downside of using entropy as a measure of
diagnosability is that one would need 2M−1 tests to achieve
this ideal spectrum (and thus a normalized entropy of 1.0).
In practice, some transaction activities are impossible to be
generated, either due to the system’s topology or due to
the existence of ambiguity groups: a set of components that
always exhibit the same activity pattern7.

4.2 DDU

Our DDU is detailed next. Its goal is to capture several
structural properties of the activity matrix that make it ideal
for diagnosing, while avoiding the combinatorial explosion
of the optimal entropy approach. We start by considering
activity matrix density as the basis for our approach, and
then propose the diversity and uniqueness enhancements
so that the impractical assumptions of the base approach
can be lifted.

4.2.1 Density

As discussed in Section 3.3, the ρmetric captures the density
of a system. Figure 4 shows two activity matrices of different
densities. A sparse activity matrix, depicted as a diagonal
matrix in Figure 4a, while achieving a high component
coverage due to the fact that every component is executed
by the test suite, does not exercise components in tandem,
and therefore many potential diagnostic candidates are left
unexercised. Conversely, a dense activity matrix as depicted
in Figure 4b is unable to exonerate diagnostic candidates
from suspicion as all components are active in all trans-
actions. The ideal density value (ρ = 0.5) is in fact in
between the two extremes depicted, as the theoretical work
of González-Sanchez et al. [8] and the empirical work of
Campos et al. [20] show.

7. An example of an ambiguity group is the set of statements in a
basic block.
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t1 t2 t3 t4
c1 1 0 0 0
c2 0 1 0 0
c3 0 0 1 0
c4 0 0 0 1

(a) Sparse activity matrix.
ρ = 0.25

t1 t2 t3 t4
c1 1 1 1 1
c2 1 1 1 1
c3 1 1 1 1
c4 1 1 1 1
(b) Dense activity matrix.

ρ = 1.0

Fig. 4. Sparse and dense activity matrices.

It is also straightforward to show the optimality of the
value of 0.5 for the density measurement by induction,
as depicted in Figure 5. Suppose that we have an activity
matrix A′, which is optimal for diagnosis. Suppose also that
we want to add a new component c′ to our system. To
preserve optimality, we would need to repeat the optimal
sub-matrix A′ both when c′ is active and when it is inactive.
Therefore, the involvement rate of component c′ would be
0.5.

t1 · · · tj t′1 · · · t′j
c1
...
ci
A′ A′

c′ 0 0 0 1 1 1

Fig. 5. Depiction of the optimal density proof.

Note that in the case of dependent faults — ones where
multiple simultaneous components must be involved for the
fault to trigger — the optimal value depends on the fault
cardinality. Suppose that a system contains Nf dependent
faults. The total number of fault candidates can then be
expressed by the binomial coefficient

(
C
Nf

)
. If the system’s

coverage matrix density is ρ, tests that exercise it cover,
on average, ρ · C components, and thus the number of
candidates of cardinality Nf exercised by the test are

(
ρ·C
Nf

)
.

The probability of a test failing is then

Pr(tf ) =

(
ρ·C
Nf

)(
C
Nf

) (10)

A binomial coefficient can be expressed using Pochham-
mer’s falling factorial8

Pr(tf ) =

(ρ·C)Nf

Nf !

(C)Nf

Nf !

=
(ρ · C)Nf

(C)Nf

(11)

As the falling factorial (x)n is equal to
∏n
i=1(x − i + 1),

Equation (11) can be rewritten as

Pr(tf ) =

Nf∏
i=1

ρ · C − i+ 1

C − i+ 1
(12)

And since C � Nf , we can approximate the value of
Pr(tf )

Pr(tf ) ≈ lim
C→+∞

Nf∏
i=1

ρ · C − i+ 1

C − i+ 1
= ρNf (13)

8. http://mathworld.wolfram.com/FallingFactorial.html
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Fig. 6. ρ versus IG for different fault cardinalities.

Then, the information gain from any given test case can be
computed as demonstrated in Equation (7) from Section 3.3

IG = −Pr(tf ) · log2(Pr(tf ))− Pr(tp) · log2(Pr(tp))

= −ρNf · log2(ρNf )− (1− ρNf ) · log2((1− ρNf ))
(14)

The optimal IG = 1 value corresponds to ρNf = 0.5,
which means that the optimal density is

ρ =
1

2
1

Nf

(15)

Figure 6 shows the evolution of IG’s value over the
density for faults of cardinality 1, 2, and 4, where we can
see a skew favoring higher densities the more components
are involved in a fault. The reason for this behavior is
that it is unnecessary to run sparse tests which execute
less components than the number of components needed to
trigger a failure. In the general case, since one does not know
a priori about the cardinality of a failure, targeting a ρ = 0.5
is still the safest action in terms of covering all possible fault
cardinalities. However, if one has a means of deducing the
fault cardinality (for instance, using the defect prediction
methodology as outlined in [29]), then such information can
be exploited — e.g., by turning off sparse tests guaranteed
to not trigger the complex fault and reduce the time to run
the test suite.

Since ρ = 0.5 is our optimal target value, we propose
a normalized metric ρ′ where its upper bound (1.0) is the
actual target

ρ′ = 1− |1− 2 · ρ| (16)

and the lower bound 0 means that every cell in the matrix
contains the same value. However, this optimal target is
only valid assuming that all transactions in the activity
matrix are distinct. Such assumption is not encoded in the
metric itself (see Equation (6)). This means that a matrix
with no diversity (depicted in the example from Figure 7a)
is able to reach the ideal value for the ρ′ metric.
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4.2.2 Diversity

The first enhancement we propose to the ρ′ analysis is to
encode a check for test diversity. In a diagnostic sense, the
advantage of having considerable variety in the recorded
transactions is related to the fact that each diagnostic can-
didate’s posterior probabilities of being faulty are updated
with each observed transaction. If a given transaction is
failing, it means that the diagnostic candidates whose com-
ponents are active in that transaction are further indicted
as being faulty – so their fault probability will increase.
Conversely, if the transaction is passing, then it means
that the candidates that are active in the transaction will
be further exonerated from being faulty – and their fault
probability will decrease. Ensuring diversity is also prone
to minimize the impact of coincidental correctness – when a
fault is executed but no failure is detected – as shown in the
work by Masri and Assi, which remove passing tests which
exhibit the same coverage pattern as failing tests, resulting
in improved diagnostic accuracy [30]. Having such diversity
means that more diagnostic candidates will have their fault
probabilities updated so that they are consistent with the
observations, leading to a more accurate representation of
the state of the system.

t1 t2 t3 t4
c1 1 1 1 1
c2 1 1 1 1
c3 0 0 0 0
c4 0 0 0 0

(a) No Test Diversity.
ρ′ = 1.0 G = 0.0

t1 t2 t3 t4
c1 1 0 1 0
c2 1 0 1 0
c3 0 1 1 0
c4 0 1 0 1

(b) Test Diversity.
ρ′ = 1.0 G = 1.0

Fig. 7. Impact of diversity on ρ′ and G.

We use the Gini-Simpson index to measure diversity
(G) [31]. The G metric computes the probability of two
elements selected at random being of different kinds:

G = 1−
∑
n× (n− 1)

N × (N − 1)
(17)

where n is the number of tests that share the same activity.
When G = 1, every test has a different activity pattern.
When G = 0, all tests have equal activity. Figures 7a
and 7b depict examples of repeated and diverse test cases,
respectively. We can see that the ρ′ metric by itself cannot
distinguish between the two matrices, as they have the same
density. If we also account for diversity, the two matrices can
be distinguished.

4.2.3 Uniqueness

The second extension we propose has to do with checking
for ambiguity in component activity patterns. If two or more
components are ambiguous, like components c1 and c2 from
the example in Figure 8a, then they form an ambiguity group
(see Section 3.4), and it is impossible to distinguish between
these components to provide a minimal diagnosis if tests
t1 and t3 fail. As finding potential diagnostic candidates
can be reduced to a set-cover/minimal-hitting-set problem,
then two things may happen as a result of breaking an
ambiguity group and having those components being tested

independently. One is that some diagnostic candidates con-
taining components from that ambiguity group can be-
come inconsistent with the observations and thus would
be removed from the set of possible diagnostic candidates,
improving the tractability of the bayesian update step of
the SR approach. The other is that diagnostic candidates
will be of lower cardinality, thus improving our confidence
in the accuracy of diagnosis. This happens because, as faults
are considered to be independent, then the probability of
having multiple faults as the explanation for the system’s
behavior is generally several orders of magnitude lower
when compared to low-cardinality candidates.9

t1 t2 t3 t4
c1 1 0 1 0
c2 1 0 1 0
c3 0 1 1 0
c4 0 1 0 1

(a) Component Ambiguity.
ρ′ = 1.0 G = 1.0
U = 0.75

t1 t2 t3 t4
c1 1 0 1 0
c2 1 1 0 0
c3 0 1 1 0
c4 0 0 1 1

(b) No Component Ambiguity.
ρ′ = 1.0 G = 1.0

U = 1.0

Fig. 8. Impact of component ambiguity on ρ′, G and U .

We use a check for uniqueness (U ) as described in Equa-
tion (8) to quantify ambiguity. Uniqueness is also used by
Baudry et al. to measure diagnosability [9]. However, we
argue that uniqueness alone does not provide sufficient
insight into the suite’s diagnostic ability. Particularly, it does
not guarantee that component activations are combined
in different ways to further exonerate or indict multiple-
fault candidates. In that aspect, information regarding the
diversity of a suite provides further insight.

4.2.4 Combining Diagnostic Predictors
Our last step is to provide a relaxed version of entropy
(which we call DDU) by combining the three aforemen-
tioned metrics that assess the key properties (i.e., necessary
and sufficient) a coverage matrix ought to have to ensure
proper diagnosability:

DDU = ρ′ × G × U (18)

and its ideal value is 1.0. We reduce ρ′, G and U into a
single value by means of multiplication. The reason being
that since in each term the value of 0.0 corresponds to the
worst-case and 1.0 to the ideal case, we are able to leverage
properties of multiplication such as multiplicative identity
and the zero property.

5 THEORETICAL EVALUATION

A simulation approach to spectra generation enables us to
consider an otherwise infeasible breadth of scenarios, so that
the metric’s diagnosability performance can be analyzed
from a holistic, theoretical standpoint — akin to related
work on spectrum based fault localization [8], [12], [32].
Therefore, we first evaluate the DDU metric by generating a
multitude of program spectra via simulation to further con-
firm the claims we make while devising the DDU metric in

9. Thus having to be supported by many observations for our confi-
dence on that diagnosis to increase.
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Fig. 9. Process followed by the spectra simulator.

the previous section. This section (1) describes the topology-
based spectra simulator and fault injector we created for
this theoretical analysis; (2) details the experimental setup,
where thousands of qualitatively distinct spectra were au-
tomatically generated by the simulator; and (3) presents
an assessment on the correlation of DDU — and coverage
— with diagnostic effort, as well as an assessment on
the influence of a system’s topology on its diagnosability,
based on the simulated data. Afterwards, in Section 6, we
empirically evaluate the DDU metric.

5.1 Spectra Simulator
The spectra simulator we built for this theoretical assess-
ment is able to generate a breadth of qualitatively distinct
coverage matrices. It uses topology-based10 policies to select
which components are active on each test, and relies on
component goodnesses — as described in Section 3.1.2
— to inject test failures. Figure 9 depicts the overall process
followed by the simulator to generate a set of faulty pro-
gram spectra and their respective diagnoses. The following
subsections detail each step of the simulation process.

5.1.1 Topology Generation
The first step in the simulation process is to generate a
random tree with as many leaves as components to be
simulated. Tree generation follows a uniform birth-death
process, commonly used to simulate phylogenetic trees [33], in
which lineages (or tree paths) have a constant probability of
speciating (splitting into multiple branches), and a constant
probability of going extinct, per time unit. The generated tree
acts as the system topology, and is predicated on the fact that,
in most programming paradigms, source code is structured
in a hierarchical fashion — especially in the case of object-
oriented languages. Specifically, tree leaves correspond to
the components in the spectrum abstraction — the units

10. The use of topologies to generate spectra is inspired by SERG-
Delft’s simulator: https://github.com/SERG-Delft/sfl-simulator

of computation used to diagnose the system, which can be
branches, statements, etc — , and inner nodes correspond to
hierarchical source code artifacts of coarser granularity such
as methods, classes and subclasses, and package folders. We
note that, much like system topologies, our generated trees
are not necessarily balanced.

5.1.2 Component Activation

After generating a topology, the component activation step
generates a vast amount of test cases by activating compo-
nents and propagating these activations through the topol-
ogy. This step starts with the selection of a component
(which we call the anchor) and setting it as active in a
newly created test-case. Anchor components are shown as
red tree nodes in the Component Activation step depicted
in Figure 9. With the selection of an anchor, we randomly
activate other components based on their distance to the
anchor — following the assumption that the farther away
two components are, the less related they are and hence less
likely to be covered in the current test-case being generated.
To confirm our assumption, we have constructed a topol-
ogy tree for each subject in the Defects4J catalog (further
described in Section 6.1) and measured the frequency with
which distances11 between any two covered components
appear in test cases. Figure 10 depicts these findings, which
indicate that, indeed, the further two components are from
each other, the less frequently both of them are covered in
the same execution.

It is worth noting that coverage density of a test can be
manipulated by multiplying the activation probability by
a density term. If this term is < 1, then sparse test cases
are generated. Conversely, a value > 1 yields denser test
cases. We generate test cases using a wide spectrum of
density terms. This component activation process is repeated
numerous times for each component in the system, so that a

11. I.e., the minimal number of edges one needs to traverse to go from
a given node in the tree to another given node.
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Fig. 10. Frequency of component distances in test cases for each
Defects4J subject.

large collection of test cases is available to the next steps in
the simulation.

5.1.3 Test Selection
This step consists of selecting a set of test cases out of the test
case pool generated in the previous step. We have chosen to
select as many tests as there are components in the system
— yielding square coverage matrices. Having the test suite
depend on the number of components allows it to grow with
program size, with the assumption that the larger the code
base is, the more tests are created.

5.1.4 Fault Injection
For each matrix that the previous step produces, we inject it
with: (1) a single fault, (2) multiple independent faults, and
(3) multiple dependent faults. In the first case, we randomly
assign a component from the system as the faulty one, and
set each test which covers the faulty component as having
a failing outcome. In scenario (2), multiple components are
considered as being faulty, and thus tests that cover any
non-empty subset of faulty components are set to failing. In
the last scenario, only tests that cover the conjunction of all
failing components are set to failing.We include multiple-
faulted scenarios in our analysis since, as studied in pre-
vious work [34], such scenarios account for a non-trivial
portion (20%) of bug-fixing tasks in open-source projects.

The fault injection step is also able to consider com-
ponent goodnesses, which, as described in Section 3.1.2,
describe the probability of a faulty component exhibiting
nominal behavior (and thus not triggering a test failure).
For instance, in a single-faulted scenario modeled with 0.25
goodness, a test case that covers the fault has a 75% chance
to be labeled as failing. Such a component goodness mod-
eling therefore allows us to replicate coincidentally correct
scenarios.

5.1.5 Diagnosis
We diagnose the faulty spectra generated in the previous
step using the reasoning-based fault-localization technique
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Fig. 11. Robinson-Foulds metric values for every generated topology.

described in Section 3.1.

5.2 Setup

We have run our simulation 40 times so that 40 distinct
topologies ranging from 100 to 500 components were con-
sidered. To assess if we generate distinct topologies, we
measure the Robinson-Foulds distance metric [35], [36] for
every pair of generated topology topologies. Robinson-
Foulds measures the minimal number of operations (such
as adding or removing nodes and edges) that are required
to transform a given tree A into tree B. The metric’s lower
bound is zero and it corresponds to the case when the two
trees under consideration are identical. The upper bound is
equal to the sum of all edges among both trees, and it means
that the entirety of tree A has to be reconstructed to obtain
tree B, thus the two trees do not share any similar structure.
Since the upper bound depends on the sizes of the two trees
under consideration, the metric’s value can be normalized
(dividing by the upper bound value) such that it ranges
between 0 and 1. Figure 11 shows the normalized Robinson-
Foulds metric values for every pair of topology trees we
generate. Results show that any tree exhibits high Robinson-
Foulds values when compared to all other generated trees,
which leads us to conclude that all our generated topologies
are different and qualitatively distinct from each other.

For each topology, all components acted as anchors, gen-
erating a test-case pool using several density terms. Each test-
case pool produced 100 matrices, which were fault-injected
— with a single fault, two/three independent faults, and
two/three dependent faults. We have used the following
goodness values for our simulation: 0.0, 0.25, 0.50, and
0.75. Regarding metrics, we have gathered coverage, DDU,
entropy, and effort to diagnose for every faulty spectra
generated by the simulator.

To ensure reproducibility, our spectra simulator, and
its respective configuration file describing this experiment,
are made available12. In total, more than half a million

12. Available at https://github.com/aperez/sfl-simulator.
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Fig. 12. Relation between diagnostic effort and coverage.
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Fig. 13. Relation between diagnostic effort and DDU.

spectra were simulated, fault injected, and diagnosed in this
experiment.

5.3 Results

Below we present and discuss the spectra simulation results
by (1) evaluating the diagnostic quality using the effort
metric as described in Section 3.2, and by (2) evaluating the
simulated spectra’s propensity for error detection.

5.3.1 Diagnostic Quality
Diagnostic effort results for every spectrum generated in
this experiment are shown in Figures 12 to 15. Each figure
shows a scatter plot portraying the relation of diagnostic
effort13 with different metrics — namely coverage, DDU, en-
tropy, and the average of density, diversity and uniqueness.
Points in the scatter plot represent simulated spectra. Beside
each scatter plot are three two-dimensional histograms de-
picting the distribution of spectra containing each fault type
described in Section 5.1.4.

13. Normalized over the number of components, so that spectra of
systems with a different number of components can effectively be
compared.

Figure 12 portrays the relation between coverage and
diagnostic effort for all simulated spectra. Regarding spectra
that were injected with a single fault, their diagnosability
improves by increasing coverage. Note that single-faulted
spectra seem to form several downward lines in the scat-
ter plot — each of these lines corresponds to a different
topology used as the basis for emulating software structure.
We can therefore make two observations. The first is that,
for a given topology, the selection and composition of the
test suite influences not only coverage but also the effort to
diagnose. The second is that the choice of base topology also
influences diagnostic quality.

While single-fault diagnostic effort mostly decreases
with coverage, the same cannot be said for scenarios with
multiple faults, especially ones where dependent faults
were injected, since several spectrum instances with high
coverage are not in the bottom-right of the plot. For these
scenarios, high coverage is not a good indicator of diag-
nosability. An illustrative example of such phenomenon is
as follows. Consider a spectrum that resembles a diagonal
matrix, where each test exercises a single distinct compo-
nent. Such a spectrum has high coverage — because every
component is exercised — and, at the same, is sparse — since
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Fig. 14. Relation between diagnostic effort and entropy.
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Fig. 15. Relation between diagnostic effort and the average of density, diversity and uniqueness.

all tests contain a single component activation. In effect,
this is analogous to a high-coverage unit test suite with no
integration tests exercising multiple components. For single
fault scenarios, this suite is very likely to find and accurately
isolate faults. However, in cases where a fault requires set
of component activations for an error to be triggered, this
suite cannot provide enough evidence for fault localization
algorithms to pinpoint faults.

Figure 13 depicts the relation between DDU and effort.
We can tell that this metric upper bounds the effort to
diagnose — the higher the DDU, the lower the maximal
diagnostic effort — providing a more accurate expectation of
diagnosability when compared with coverage. As opposed
to coverage, multiple faults do not negatively influence the
DDU’s diagnostic accuracy.

Figure 14 shows test entropy — as described in Sec-
tion 4.1 — in the x-axis. Note that entropy values range
from 0 to 1, but to improve legibility, we are showing a
partial range of entropy values up to 0.08 as no spectra in
our simulation exceeded this value. In effect, the number of
test cases generated by the simulator (set to be the same as
the number of components in every generated spectra) is in-
sufficient to significantly explore the entire range of entropy

values. Limiting the number of tests was an intentional way
to model how developers test in practice, and therefore it
leads us to conclude that optimizing for entropy is infeasible
with a reasonable number of tests.

We discuss in Section 4.2.4 the reasons for choosing
multiplication as a way of reducing the composing terms
of DDU (namely density, diversity and uniqueness) into
a single value that represents the system’s diagnosability.
While we explain why each term is important for the
overall diagnosability, it might be the case that there is a
better way to reduce them into a one-dimensional value.
Figure 15 depicts using the average of density, diversity
and uniqueness values as the measure for diagnosability
— as opposed to their multiplication, which is depicted
in Figure 13. We can conclude that the multiplication of
density, diversity and uniqueness more accurately predicts
the diagnostic performance of the test suite.

5.3.2 Error Detection
Besides investigating diagnostic quality, which relates to the
actual effort bugs take to be located, we have also recorded
the error detection rate. This evaluates the propensity for
faults in a given coverage matrix to induce test errors, and
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Fig. 16. Two-dimensional histograms depicting the number of simulated matrices along with the relation between error detection and several metrics.

is achieved by keeping track of the frequency in which
errors are detected in faulty spectra. As readers may recall
from Section 5.1.4, each coverage matrix we generate is
subject to multiple rounds of fault injection. As a result, we
generate a sets of spectra that exhibit the same coverage
matrix and different error vectors. Error detection rate is
then the frequency by which these sets of spectra exhibit
failing error vectors.

Figures 16a and 16b show two-dimensional histograms
depicting the error detection frequency of coverage matrices
along coverage values and DDU values, respectively. Fig-
ure 16a tells us that the majority of high coverage spectra
are able to produce test failures when faults are injected,
as portrayed by the intensity of the top-right portion of the
histogram. However, we still observe a significant portion
of cases with low error detection despite their coverage
value, as evidenced by the intensity of the bottom row in
the histogram. Such spectra do not have adequate test cases
that detect the injected faults. In contrast, we see that when
DDU is considered — Figure 16b —, there are considerably
less cases of high-DDU spectra yielding low error detection
rates. This is initial evidence that DDU may be suited
for measuring the adequacy of test suites, besides simply
measuring diagnosability.

6 EMPIRICAL EVALUATION

Results obtained by simulating a breadth of program spec-
tra seem to indicate that, from a theoretical standpoint,
DDU effectively estimates the diagnostic effort required
to pinpoint bugs, regardless of fault type. However, these
promising results do not exclude the need to evaluate the
metric against real-world subjects. This section details our
following experiment, in which we empirically evaluate the
proposed metric in regard to its ability to assess diagnostic
quality. We aim to address the following research questions:

RQ1: Is the DDU metric more accurate than the state-
of-the-art in diagnosability assessment?

RQ2: How close does the DDU metric come to the (ideal
yet intractable) full entropy?

RQ3: Does optimizing a test-suite with regard to DDU
result in better diagnosability than optimizing ade-
quacy metrics?

RQ1 asks if there is a benefit in utilizing the proposed ap-
proach as opposed to density and uniqueness – which have
been used in related work. RQ2 is concerned with assessing
if DDU shares a statistical relationship with entropy – the
measurement whose maximal value describes an optimal
(yet intractable and impractical) coverage matrix. RQ3 asks
if using DDU as an indicator of the diagnostic ability of a
test-suite is more accurate than using standard adequacy
measurements like branch-coverage in a setting with real
faults.

6.1 Experimental Setup

Our empirical evaluation compares DDU to several metrics
in use today. To effectively compare the diagnosability of
test-suites of a given program that maximize a specific
metric, we leverage a test-generation approach. EVOSUITE14

is a tool that employs Search-based Software Testing (SST)
approaches to create new test cases. It applies Genetic
Algorithms (GAs) to minimize a fitness function which de-
scribes the distance to an optimal solution. The metrics
to be compared are DDU – our proposed measurement;
density and uniqueness to be able to answer RQ1; entropy
to answer RQ2 and lastly branch-coverage for RQ3. These
metrics were encoded as fitness functions in the EVOSUITE
framework. As the GA in EVOSUITE tries to minimize the
value of a function over a test suite TS, the fitness functions
for each metricM are as follows

fM(TS) = |OM −M(TS)| (19)

14. EVOSUITE tool is available at http://www.evosuite.org. Version
1.0.2 was used for experiments (accessed January 2019).
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where OM is the optimal value of metric M (e.g., 1.0 for the
case of branch-coverage, and 0.5 for density), and M(TS)
is the result of applying metric M to test suite TS. To
account for the randomness of EVOSUITE’s GA, we repeated
each test-suite generation experiment 10 times. EVOSUITE’s
maximum search time budget was set to 600 seconds, which
follows the setup of previous studies also using the tool [20].

EVOSUITE by itself does not generate fault-finding oracles
– otherwise, a model of correct behavior would have to
be provided. Instead, it creates assertions based on static
and dynamic analyses of the project’s source code. This
means that if we run the generated test-suite against the
same source code used for said generation, all tests will
pass (provided the code is deterministic15). Thus, if the
source code submitted for test-generation contains faults,
no generated test oracle will expose them.

For the experiments comparing with the state-of-the-
art and the idealistic approach (to answer RQ1 and RQ2,
respectively), we need a controlled environment so that
oracle quality (which in itself is an orthogonal factor)
does not affect results. Therefore, the experiment described
in Section 6.2 mutates the program spectrum of generated
test-suites to contain seeded faults and seeded failing tests.
In each experiment a set of components were considered
as faulty, and tests that exercise them were set as failing
according to an oracle quality probability – in our experiments,
the oracle quality is 0.75, meaning that whenever a faulty
component is involved in a test, there is a 75% chance
that the test will be set as failing. The chosen value is
a compromise between perfect error detection (i.e., oracle
quality of 1) and essentially random error detection (oracle
quality of 0.5) This fault injection approach is common prac-
tice among controlled, theoretical evaluations of spectrum-
based diagnosis [8], [19].

For assessing the applicability in real world scenarios
and to answer RQ3, we need real life bugs and fixes.
Therefore, in Section 6.3 we make use of DEFECTS4J16 – a
software fault catalog – to generate test-suites from fixed
versions of a program and then gather program spectra by
testing the corresponding faulty version.

Spectrum gathering was performed at the branch gran-
ularity for both experiments, so every component in our
subjects’ coverage matrices corresponds to a method branch
– this way we can fairly compare our approach to branch
coverage. Each program spectrum gathered in the previ-
ous step is then diagnosed using the automated diagnosis
tool CROWBAR17. This tool implements the Spectrum-based
Reasoning approach described in Section 3.1, and generates
a ranked list of diagnostic candidates for the observed
failures.

For a given subject program, to compare the diagnosabil-
ity of a test-suite generated by the DDU criterion with the

15. EVOSUITE also tries to replicate the state of the environment at
each test-run so that even some non-deterministic functionality such as
random number generation can be tested.

16. DEFECTS4J tool is available at https://github.com/rjust/
defects4j. Version 1.0.1 was used for experiments (accessed January
2019).

17. CROWBAR tool is available at https://github.com/TQRG/
crowbar-maven-plugin (accessed January 2019).

one generated by a criterion C , we use the following metric

∆Effort(C) = EffortC − EffortDDU (20)

where EffortDDU is the effort to diagnose using the test-suite
generated with the DDU criterion and EffortC is the effort to
diagnose with the test suite by maximizing some criterion
C . Effort takes as input the ranked list of diagnostic candi-
dates from CROWBAR and estimates quality of diagnosis as
described in Section 3.2. The ∆Effort(C) metric ranges from
−1 to 1. Positive values of ∆Effort(C) mean that the bug is
found faster in diagnoses that use the DDU generated test
suite. Negative values mean that the faulty component is
ranked higher in the C-generated test-suite than the DDU
one, thus requiring less spurious diagnostic inspections.
∆Effort(C) of value 0 means that the faulty component is
ranked with the same priority in both test generations. We
consider that the use of the normalized effort to create the
paired ∆Effort(C) provides an adequate means of comparing
diagnostic quality that captures the magnitude of effort dif-
ferences over distinct subjects. Conversely, such magnitude
could be incorrectly measured using other quality of diagno-
sis metrics described in Section 3.2, such as Recall@N — due
to the N threshold —, or Cd — due to different program
sizes among subjects.

We make use of kernel density estimation plots to show
the ∆Effort(C) values in Figures 17 and 18. Such plots es-
timate the probability density function of a variable, i.e.,
they describe the relative likelihood (y-axis) for a random
variable (∆Effort(C) in our case) to take on a given value
(x-axis). Thus, these plots help visualize the distribution of
data over a continuous interval and can be considered as
smoothed, continuous histograms. In our experiments, the
higher the density value at a certain value in the x-axis,
the more instances with ∆Effort(C) near that value were
observed. Note that the observed data is shown as a rug plot,
with tick marks along the x-axis (reminiscent of the tassels
on a rug). Also, the dashed vertical line at ∆Effort(C) = 0 is
present to aid the interpretation of results. ∆Effort(C) = 0 is
an important landmark to take into consideration because
for positive values of ∆Effort(C) it means that the test gener-
ation using the DDU yielded better diagnostic reports that
the C criterion. Vice versa for negative values of ∆Effort(C).

It is worth noting that the setup of our empirical eval-
uation differs from that of the theoretical evaluation. In the
theoretical evaluation we simulate a multitude of qualita-
tively distinct spectra ranging the entire range of DDU and
coverage values to observe how changing these variables
impacts diagnosability. Repeating that evaluation on an
empirical setting would mean devising a (reasonably small)
windowed stopping criterion so that the test generation
process could be ran across the entire metric range. In prac-
tice, such an approach is not guaranteed to ever terminate,
because of, e.g., local maxima near the stopping window.
Instead, in this empirical experiment, we are generating test
cases to maximize a given metric and comparing test suites
generated by distinct test generation strategies.

6.2 Diagnosing Seeded Faults

Our first experiment attempts to answer RQ1 and RQ2 by
generating test-suites and seeding faults in their spectra in
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Fig. 17. Kernel density estimation of seeded fault experiment. Entropy generation criterion shows similar diagnostic accuracy when compared DDU.
The remaining generation criteria exhibit worse diagnostic performance than DDU.

a controlled way. We use the same set of subjects as em-
pirical evaluations from related work [20]. Namely, we use
the open-source projects Apache Commons-Codec, Apache
Commons-Compress, Apache Commons-Math and Joda-
Time. For each subject, we generate test-suites that optimize
DDU, branch-coverage, entropy, density, and uniqueness. In
total, 1050 program spectra were generated and diagnosed.

Experimental results are shown in Figure 17. When we
consider the entropy generation, we can say that the result-
ing test-suites are very similar in terms of diagnosability
compared to DDU, since ∆Effort(H) is denser at the origin.
For the remaining generation criteria, their respective ∆Effort
probability masses are shifted to ∆Effort > 0, so their diag-
nostic reports perform worse at diagnosing the faults than
when DDU is utilized. In fact, our inspection of experimen-
tal results reveals that, when optimizing branch-coverage,
78% of scenarios showed lower diagnostic accuracy when
compared to DDU. For both the density-optimized and
uniqueness-optimized test generations – which are the state-
of-the-art measurements for test-suite diagnosability – this
figure rises to 100% of scenarios.

We show in Table 1 the dominant metric median values
for each generation criterion along with the median number
of tests generated. By dominant metric we mean the metric
which that particular test generation was trying to opti-
mize. Along with the median value we also show (where
available) the metric’s Pearson correlation with entropy
(denoted by rH ) and the p-value of the correlation. With 95%
confidence, we can say that the correlation values shown
are statistically significant. DDU exhibits a high correlation
with entropy, having rH > 0.95 for all subjects. In all other
generation criteria, the correlation with entropy fluctuates
considerably between subjects. Also, note that for both ρ
and branch-coverage criteria, their dominant mean values
approach the theoretical optima (at 0.5 and 1.0, respectively)
while ∆Effort still shows that DDU test generation was able
to produce suites with better diagnostic accuracy.

Revisiting the first research question:

TABLE 1
Metric results for the seeded faults experiment.

Median / Size / Correlation / Correlation p-value
Subject

H DDU ρ U BC

2.65×10−2 0.620 0.476 0.669 0.910

177 170 126 81 177

N.A. 0.957 0.658 0.902 0.793

Apache

Commons-

Codec
N.A. 2.71×10−3 1.98×10−2 3.58×10−2 2.08×10−3

4.66×10−2 0.962 0.510 0.669 0.825

108 108 30.5 29.5 126

N.A. 0.999 0.999 0.873 0.968

Apache

Commons-

Compress
N.A. 1.08×10−6 7.51×10−7 1.47×10−3 9.62×10−4

4.36×10−2 0.818 0.424 0.659 0.922

497 467 402 246 528.5

N.A. 0.989 0.905 0.725 0.885

Apache

Commons-

Math
N.A. 4.68×10−4 1.85×10−2 4.79×10−2 2.31×10−2

1.580×10−2 0.582 0.369 0.417 0.790

265 265 267 171 267

N.A. 0.976 0.674 0.921 0.654
JodaTime

N.A. 8.54×10−4 1.60×10−2 2.59×10−2 2.09×10−2

RQ1: Is the DDU metric more accurate than the state-
of-the-art in diagnosability assessment?

A: There is a clear benefit in optimizing a suite with regard
to DDU compared to density if we consider the effort of
finding faults in a system. This is evidenced by the fact
that 100% of scenarios in our seeded fault experiment
show improved diagnostic accuracy when using DDU when
compared to the state-of-the-art density and uniqueness
measurements.

If we look at the second research question:

RQ2: How close does the DDU metric come to the (ideal
yet intractable) full entropy?

A: Table 1 shows a strong correlation between entropy and
DDU, with a Pearson correlation value above 0.95 for all
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Fig. 18. Kernel density estimation of the ∆Effort(BC) metric for DEFECTS4J subjects. 77% of instances have a positive ∆Effort(BC), meaning that
branch-coverage generations perform worse than DDU generations.

subjects. Correlation of other metrics is much lower and
varies greatly across subjects. Thus, we can conclude that
DDU closely captures the characteristics of entropy.

The reader might then pose the question: if maximal
entropy does indeed correspond to the optimal coverage
matrix, why should one avoid using it as the diagnosability
metric? While we agree that in automated test generation
settings entropy can be plugged as the fitness function to
optimize18, for manual test generation entropy will yield
very small values for any complex system, as one can see
from Table 1. In fact, for a system composed of only 30
components, the number of tests needed to reach entropy
of 1.0 surpasses the billion mark. This makes it difficult
for developers to leverage information out of their test-
suite’s entropy value to gauge when can one confidently
stop writing further tests.

6.3 Diagnosing Real Faults
We used the DEFECTS4J database [37] for sourcing the
experimental subjects. DEFECTS4J is a database and frame-
work that contains 357 real software bugs from 5 open
source projects. For each bug, the framework provides faulty
and fixed versions of the program, a test suite exposing the
bug, and the fault location in the code. The idea behind
DEFECTS4J is to allow for reproducible research in software
testing using real-world examples of bugs, rather than using
the more common hand-seeded faults or mutants. In our
evaluation, we generate test suites for each of DEFECTS4J’s
357 catalogued bugs, using both branch-coverage and DDU
as EVOSUITE’s fitness functions, and then compare the two
generated suites with regard to their diagnosability and
adequacy. The experiments’ methodology is as follows. For
every bug in DEFECTS4J’s catalog, we use EVOSUITE to
generate test suites for the fixed version of the program. The
test suites are executed against the faulty program versions.
This means that any test failure is due to the bug – which is
the delta between the faulty and fixed program versions.

18. Because tools like EVOSUITE can be configured with a time
budget as another stopping criteria.

TABLE 2
DEFECTS4J Projects.

Identifier Project Name # Scenarios Considered
1, 4, 6, 8–11, 13–15, 18, 20,Chart JFreechart 26
22, 24, 26

3, 4, 7, 9, 12, 14–17, 19, 20–28, 30

33–35, 39, 43, 44, 46–49, 51, 52

54–56, 58, 63, 65, 66, 67, 69, 71–74

76–78, 82, 85, 87, 107, 108, 110–113

115, 116, 118, 119, 124, 126, 127,

Closure Closure
Compiler 133

129–132

1–7, 9–14, 16, 17, 19, 21, 22,

24–28, 30, 31, 33, 36, 38–42,Lang Apache
Commons-Lang 65

46, 47, 49, 50–57, 59–61, 65

1–10, 14–16, 18–20, 24–27, 29,

30, 32, 34, 35, 37–42, 44–46,Math Apache
Commons-Math 106

48–56, 100, 101, 103, 105, 106

Time JodaTime 27 6, 8, 12, 15, 21, 22, 26, 27

Out of the 357 catalogued bugs in DEFECTS4J, not all
were considered for analysis. Scenarios were discarded due
to the following reasons:
• EVOSUITE returned an empty suite;
• The generated suite did not compile or produced a

runtime error;
• No failing tests were present in either DDU or branch-

coverage criteria for generating test suites.
In total, 171 scenarios were filtered out. The remaining 186
listed in Table 2 are fit for analysis and their results are used
throughout this section.

Experimental results are shown in Figure 18. Results are
shown per-subject. We can see that for every subject in the
DEFECTS4J catalog, all their estimated probability density
funtions are shifted towards ∆Effort(BC) > 0, meaning that
the majority of instances have better diagnostic accuracy
when test generation optimizes DDU. In fact, our exper-
iments reveal that 77% of scenarios (144 in total) yield a
positive ∆Effort(BC).

We performed several measurements and statistical tests
to assess whether the gathered metrics yielded statistically
significant results. Table 3 shows the relevant statistics.
The first three rows show the median values for branch-
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TABLE 3
Measurements and statistical tests comparing Coverage and DDU test

generations.

Branch-Coverage DDU
Generation Generation

Branch
Coverage

0.85 0.75

DDU 0.10 0.42

Suite
Size

291 374

Recall@1 6.3% 26.3%

Recall@10 23.7% 46.2%

Recall@25 35.6% 58.3%

Effort 0.31 0.10

W = 0.92 W = 0.85
Shapiro-Wilk

p-value = 1.70×10−8 p-value = 1.05×10−12
Wilcoxon Z = 2335.0

Signed-rank p-value = 3.50×10−13

TABLE 4
Measurements and statistical tests comparing Strong Mutation and

DDU test generations.

Strong Mutation DDU
Generation Generation

Branch
Coverage

0.68 0.75

DDU 0.08 0.42

Suite
Size

71 374

Recall@1 18.0% 26.3%

Recall@10 32.6% 46.2%

Recall@25 50.0% 58.3%

Effort 0.26 0.10

W = 0.93 W = 0.85
Shapiro-Wilk

p-value = 5.82×10−7 p-value = 1.05×10−12
Wilcoxon Z = 3227.5

Signed-rank p-value = 4.03×10−3

coverage, DDU, generated suite size and diagnosis effort
for both EVOSUITE test generations. As to be expected, the
median branch-coverage is higher in the branch-coverage-
maximizing generation. Conversely, the DDU criterion
yields the higher DDU. The following three rows display
Recall@N figures for N=1, N=10 and N=25, respectively,
which show that the DDU criterion is more effective at
prioritizing the inspection of the real fault even for small
(and practical) values for N. Results in the effort row cor-
roborate our observations from Figure 18 – the test suites
optimizing DDU take on average less effort to diagnose the
fault. In fact, our results show that the effort reduction when

considering DDU over branch-coverage is 34% on average.
However, this fact alone does not guarantee that the results
are significant, which prompted us to perform statistical
tests. The first test performed was the Shapiro-Wilk test for
normality of effort data for both generations. The results,
which can be seen in the fourth row of Table 3, tell us that
the distributions are not normal, with confidence of 99%.

Given that the effort data is not normally distributed and
that each observation is paired, we use the non-parametrical
statistical hypothesis test Wilcoxon signed-rank. Our null-
hypothesis is that the median difference between the two
observations (i.e., ∆Effort) is zero. The fifth row in Table 3
shows the resulting Z statistic and p-value. With 99% confi-
dence, we can refute the null-hypothesis.

We have also repeated this experiment using EVOSUITE’s
strong mutation criterion for test generation. For the same
set of DEFECTS4J subjects in Table 2, we generate, using
each subject’s fixed version, a test suite that maximizes strong
mutation score. This EVOSUITE criterion creates a set of
program mutations by applying mutation operators such
as statement deletion, negation of conditions, unary oper-
ator insertion, operator replacement, variable replacement,
among others. Subsequently, it generates test cases that
not only cover the mutants, but also that yield different
outcomes between the original program instance and its
mutated counterpart. We have run the generated test suites
against the faulty DEFECTS4J subjects, and obtained the
results depicted in Table 4. Our results show a median effort
of 0.26 using the strong mutation, and an effort reduction of
17% when considering DDU over strong mutation. Results
also show that the mutation criterion yields better Recall@N
performance compared to coverage, but they also show
that this criterion is not as effective as the DDU criterion
at prioritizing the real fault. Furthermore, we show that
the effort distributions are not normal (with a confidence
of 99%) by performing the Shapiro-Wilk test. Again, by
performing the Wilcoxon signed-rank test, we can, with 99%
confidence, refute the null-hypothesis which stated that the
median difference between the to observations is zero.

Revisiting RQ3:

RQ3: Does optimizing a test-suite with regard to DDU
result in better diagnosability than optimizing ade-
quacy metrics?

A: Since the median effort in the DDU generation is lower
we can say that optimizing for DDU produces better, statis-
tically significant, diagnoses when compared to test suites
that optimize for branch-coverage or mutation score.

6.4 Threats to Validity

The main threats to validity of this study are related to
external validity. When choosing the projects for our study,
our aim was to opt for projects that resemble a general
large-sized application being worked on by several people.
To reduce selection bias and facilitate the comparison of
our results, we decided to use the real-world scenarios
described in the DEFECTS4J database. Another threat to
external validity relates to the choice of test suites generated
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by EVOSUITE. Additional research is needed to see how the
metric behaves both with different test-generation frame-
works (such as RANDOOP [38]) and with hand-written test
cases.

A potential threat to construct validity relates to the
choice of effort as indicator for diagnosability. However,
as argued in Section 3.2 this choice reflects the effort that
a programmer with minimal knowledge about the system
would require to effectively pinpoint all the faults that
explain the observed failures.

The main threat to internal validity lies in the complexity
of several of the tools used in our experiments, most notably
the EVOSUITE test generator and our diagnosis tool.

7 DISCUSSION

DDU was shown to be useful for evaluating the quality of
a test-suite. But what are the practical implications of this
finding? We outline such assessments next.

7.1 Composition of a Test Suite

We argue that the DDU analysis can suggest an ideal balance
between unit tests and system tests (i.e., when DDU reaches
its optimal value) due to its density term. We are then able to
compare the balanced suites to ones created following test-
ing practices currently established at software development
companies. For instance, Google suggests a 70%/20%/10%
split between unit, system and end-to-end tests in a suite19.
Is this split indeed ideal in terms of diagnostic accuracy? We
believe a DDU analysis can provide guidance as to what the
answer is, as evidenced in the theoretical evaluation. Our
simulation of spectra shows that changing the composition
of a test suite through test selection does impact the diag-
nostic effectiveness for a given base topology, and as such,
an optimal selection can be achieved through minimization
of the DDU metric.

7.2 Test Design Strategy

We expect the DDU analysis to be used as the first step
of a test design strategy that aims to increase diagnostic
accuracy of a suite. For that, we envision that new test
patterns that focus on optimizing diagnosability will need to
be researched and incorporated in established test strategy
corpora such as [39].

Additionally, an ensemble of strategies that individually
improve DDU’s density, diversity, and uniqueness terms
could also be considered. Density-based test strategies
would focus on selecting the optimal test scope. Diversity-
based strategies would focus on identifying and exercising
untested code paths. Uniqueness-based strategies would
focus on decoupling component executions. Tying into
genetic-algorithm-based automated test generation tools
such as the one used in our evaluation, these three strategies
could serve as the cornerstone for a multi-objective ap-
proach to test generation, that maximizes the ability of a test
suite to further isolate faults, similar to test suite amplification
strategies [9], [40].

19. Google Testing blog: Just Say No to More End-to-End Tests.
http://goo.gl/S5HhZ7 (accessed January 2019).

At a broader scope, our simulation experiment also tells
us that system structure or architecture — which we call
topology — also has an influence on diagnosability. Test
design strategies will necessarily need to utilize such struc-
tural information to provide better assessments as to what
tests should be performed to improve diagnostic quality.
Conversely, it is also not unreasonable to expect that a
change in the structure could yield considerable gains in
diagnosability.

7.3 Visualization

In coverage metrics, it is straightforward to visualize the
analysis of a system so that users know what code compo-
nents were left untested, highlighting where to focus when
writing new test cases. Is there a way to visualize DDU
analysis in a similar way? In our opinion, the challenge
for creating such visualization would be conveying the
three diferent properties that the DDU metric captures in
such a way that would elucidate the user regarding what
his/hers best next action is in order to increase the system’s
diagnosability. We envision that visualization approaches
for program comprehension, such as EXTRAVIS [41] and
PANGOLIN [42], will constitute a solid starting point for a
study on visual, interactive and actionable ways to improve
the system.

7.4 Generalization to Other Debugging Techniques

We show that DDU depicts the diagnosability of spectrum-
based fault localization approaches. However, our intuition
is that DDU is general and applies to any diagnosis tech-
nique that uses a failing test suite as the basis for locating
faults. For example, program repair approaches that require
a diagnostic report to guide the program synthesis process,
such as SemFix [43], will benefit from the fact that there is
less wasted effort in highly diagnosable test suites.

We plan to investigate the hypothesis that DDU ap-
plies to other runtime-based diagnostic techniques as future
work.

7.5 Adequacy Assessment

DDU provides an assessment of the diagnostic effectiveness
of a given test suite. It remains to be seen if that can also
be said for evaluating the fault finding effectiveness. Thus,
gathering more empirical data on the development of real
systems and expanding previous assessments on the useful-
ness of the DDU metric [10], [44] is a particularly interesting
avenue for future work. In the meantime we consider our
metric to be a complement to adequacy metrics, and envi-
sion that testers will employ a hybrid approach that relies
on branch coverage and DDU to assess adequacy and diag-
nosability, respectively. Namely, we argue that developers,
when writing new test cases that either exercise uncovered
branches or live mutants within the code, should do so with
the understanding that test suite diagnosability is of critical
importance to ensure an effortless debugging experience in
the event that a failure is detected in the system, and should
therefore follow a test design strategy that also takes into
account the DDU measurement.
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8 RELATED WORK

Related work in the assessment of the diagnosability of a test
suite has focused on three key areas: test-suite minimization
and generation strategies, and assessing oracle quality.

The topic of test-suite minimization is a prime candi-
date for our approach, since it has been shown that there
is a tradeoff between reducing tests and the suite’s fault
localization effectiveness [45]. In minimization settings, one
tries to reduce the number of tests (and thus its overall
running time) while still ensuring that an adequacy criterion
– usually branch coverage – is not greatly affected. Current
minimization strategies can often improve the diversity
score of a coverage matrix by removing tests with identical
coverage patterns [46] at the cost of overlooking density and
uniqueness, which we argue are of key importance to assess
diagnosability.

The uniqueness property is also exploited by Xuan et
al., with a test-case purification approach that separates a
test-case into multiple smaller tests [47]. This approach,
since it separates tests into small fractions, has the potential
to optimize component uniqueness and therefore can be
a crucial tool to minimize ambiguity grouping. As new
(qualitatively distinct) tests are added, this approach also
has the potential to improve test diversity. However, since it
will create several test cases which cover small portions of
code, resulting in a decrease in overall density, it potentially
overlooks the case where a specific combination of compo-
nents need to be involved in a test for a failure to occur,
much like in the second example of our motivation. Never-
theless, we believe that a combination of test-case purification
and test-case amplification approaches, that break tests into
smaller fragments, and then generate combinations of such
fragments can be a way to extend the approach proposed by
Xuan et al., in such a way that improves DDU.

Current test-suite minimization frameworks that take
adequacy criteria into account could also benefit from our
approach to preserve diagnostic accuracy if a multi-objective
optimization (such as, e.g., [48], [49]) to also account for
DDU is employed. This paves an interesting avenue for
future work.

On the test-suite generation front, previous work has
also started considering diagnosability as a generation cri-
terion. The work of Campos et al., which generated tests
that would converge towards coverage matrix densities of
0.5 [20], has paved the way for creating improved measure-
ments like DDU. Checks for diversity and uniqueness were
not explicitly added, and we show when we answer RQ1
in Section 6 that the density criterion produces results that
are less diagnostically accurate. Another approach to suite
generation is one by Artzi et al., that proposes an online
approach that leverages concolic analysis to generate tests
that are similar to existing failing tests in a system [50].

Lastly, we highlight some of the work targeting di-
agnosability by improving test oracle accuracy. Schuler et
al. propose checked coverage as a way of assessing oracle
quality [51], [52]. Checked coverage tries to gauge whether the
computed results from a test are actually being checked by
the oracle. Wang et al. have proposed a way of addressing
coincidental correctness by analyzing data and control-flow
patterns [53]. Just et al. investigated the use of mutants to

estimate oracle quality, and compared their performance
against the use of real faults [54]. Their results suggest that a
suite’s mutation score is a better predictor of fault detection
than code coverage. We consider this topic of assessing and
improving oracle quality of critical importance towards test-
suite diagnosability, but also orthogonal to DDU in that the
two would complement each other.

9 CONCLUSION

This paper highlights the importance of diagnosabil-
ity — the ability to effectively locate potential faults in the
code — as a criterion for assessing the quality of a test
suite, and proposes DDU as a measurement of program
spectra diagnosability. Ideal diagnostic ability can be proved
to exist when a suite reaches maximum entropy, however,
the number of tests required to achieve that is impractical
as the number of components in the system increases. DDU
focuses on three particular properties of entropy: a) ensures
that test cases are diverse; b) ensures that there are no am-
biguous components; c) ensures that there is a proportional
number of tests of distinct granularity; while still ensuring
tractability. As opposed to adequacy measurements such as
coverage which mainly tackle the issue of error detection, a
diagnosability measurement like DDU analyses how combi-
nations of components are exercised in tandem in order to
maximize the usefulness of fault localization techniques at
pinpointing the cause of any error that may occur.

Our topology-based simulation of program spectra was
able to reveal that DDU effectively establishes an upper-
bound on the maximal effort required to diagnose faults,
regardless of fault type or cardinality. We also performed
an empirical evaluation to assess DDU as a metric for
diagnosability. It used the EVOSUITE tool to generate test
suites for faulty programs from the DEFECTS4J catalog that
would optimize different metrics. We observed a statisti-
cally significant increase in diagnostic performance of about
34% when locating faults by optimizing DDU compared to
branch-coverage.

Besides paving the way for a more comprehensive use of
test-suites, we also consider this study on the diagnosability
of software to have broader implications. Namely, that the
relative amount of system tests, unit tests and end-to-end
tests that compose a test-suite is critical for its diagnostic
effectiveness and that the structure of systems directly in-
fluences their diagnosability.
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