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System Identification using the Multivariate

Simplotope B-Spline∗

T. Visser, † C. C. de Visser ‡ and E. van Kampen §

Delft University of Technology, P.O. Box 5058, 2600 GB Delft, The Netherlands

In recent research efforts the multivariate simplex spline has shown great promise in
system identification applications. It has high approximation power, while its linearity in
the parameters allows for computationally efficient estimation of the coefficients. In this
paper the multivariate simplotope spline is derived from this spline, and compared to its
simplex counterpart in a system identification setting. Contrary to the simplex spline, the
simplotope spline allows the user to incorporate expert knowledge of the system in his
models. Whereas in the first spline all variables are included in a complete polynomial, in
the latter the user can split the variables in decoupled subsets. By fitting models to specif-
ically designed test functions it is shown that this can indeed improve the approximation
performance in terms of both the error metrics and the number of B-coefficients required.
This comes at the price of a higher total degree, and therefore an increased sensitivity to
Runge’s phenomenon in case of poor data distribution. Finally an attempt is made to apply
the proposed methods to a set of flight data of the DelFly II, a flapping wing micro aerial
vehicle. It is found that the used data set is not suitable for global system identification,
as the data in concentrated in low-dimensional clusters in the five-dimensional state space.
Therefore it is advised that a more suitable data set is obtained to validate the simplotope
spline in a system identification setting.

I. Introduction

Due to the introduction of Uninhabited Aerial Vehicles (UAV), the possibilities of testing new flight
concepts have been greatly increased. First the quadrotor was widely implemented to serve as a testbed
for, among others, control and automation schemes. These were quickly followed by a wide range of new
concepts, among which even flapping wing aircraft. At the same time many UAVs were miniaturized, leading
to the Micro Aerial Vehicle (MAV) concept.

Both the miniaturization and the flapping wing lift generation pose new challenges in modeling MAV
behavior. To describe and analyze their flight performance a system identification effort is required. That
is, based on measurement data from flight tests a mathematical model should be made that describes the
behavior of the MAV. For such efforts many different methods have been proposed in the past. Whereas
industry mainly structures the measurements in data tables, many research groups have embraced artificial
neural networks to approximate the underlying dynamics. Recently a new method was introduced which uses
multivariate simplex B-splines instead of neural networks.1–3 These are piecewise polynomials defined on
triangulations of a domain, combined to form a smooth function.4 The main benefit of this new technique is
the fact that these splines are linear in the parameters, allowing for the use of efficient least-squares solvers.5

One of the disadvantages of the simplex spline, however, lies in the triangulation of the state space
on which the spline is based. Although intensively researched in two-dimensional space, optimal ways of
triangulating higher-dimensional spaces are still unknown.6–8 On top of that simplices tend to take on more
star-like shapes as the dimension increases.9 This makes it significantly harder to evenly distribute data
points over these domain elements.

∗An earlier version of this paper was presented at the 2015 AIAA Atmospheric Flight Mechanics Conference, under the title
Quadrotor System Identification using the Multivariate Multiplex B-Spline.
†PhD Candidate, Astrodynamics Department, t.visser-1@tudelft.nl.
‡Assistant Professor, Control and Simulation Department, c.c.devisser@tudelft.nl, AIAA Member.
§Assistant Professor, Control and Simulation Department, e.vankampen@tudelft.nl, AIAA Member.
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Recently a variant of the multivariate simplex spline was proposed by Govindarajan et al. to solve the
Hamilton-Jacobi-Bellman equation, central in reinforcement learning and optimal control.10,11 They use
a univariate spline to approximate the dependence on time of the coefficients of a multivariate spline, to
simplify the expressions for partial derivatives.

In this paper we introduce a new type of spline that generalizes these tensor-product simplex splines.
Effectively this generalization effort comes down to identifying the new domain element. Whereas the
simplex spline is defined on a triangulation consisting of simplices, the resulting multivariate simplotope
spline is defined on a more general tessellation consisting of simplotopes. These are polytopes that result
from geometric products of simplices. In the past they were mainly studied for their role in branches of
game theory and operations research, and as an object for triangulation research.12–14 Due to the difference
in geometric basis, both splines also consist of different types of polynomials.

The goal of this paper is to introduce the multivariate simplotope spline and its building blocks, and to
investigate its behavior in a system identification setting. For this purpose several test functions are used,
as well as an actual dataset of in-flight measurements of the DelFly, the flapping wing MAV of the Delft
University of Technology. Whereas the first tests are specifically designed to highlight the differences between
the simplex and simplotope splines, the latter is an attempt to for the first time apply the simplotope spline
in a real environment.

To properly compare the simplotope and simplex splines, a major part of this article is devoted to their
mathematical definition. More specifically, in section II the simplotope spline is derived from the simplex
spline in a step-by-step manner. In the process, the simplex spline will be described for those who are
unfamiliar with the concept. In section III the approximation performance of both splines is evaluated and
compared. The system identification effort performed on the DelFly dataset is described in section IV.
Finally in section V the conclusions of the overall process are drawn, and recommendations for further
research are made.

II. The simplotope spline framework

The origin of the simplotope spline lies in the tensor-product simplex spline of Govindarajan.10 That
is, coefficients of one spline are represented by a spline in other variables. The simplotope spline results
when this process is performed on a per-domain-element basis. The process and the effect on the defining
elements of a simplex spline are discussed in this section. First, in subsection II.A the geometric basis of the
simplotope spline is discussed. Then in subsection II.B the polynomials are characterized, followed by the
coefficients in subsection II.C. Finally in subsections II.D and II.E respectively, the methods for defining
continuity conditions and scattered data fitting are presented.

II.A. The geometric basis

Per definition a spline consists of polynomials defined on parts of the total domain. Therefore first a
description is provided of these parts, namely the simplex and the simplotope. In the process the barycentric
coordinates are presented as a way of describing states relative to these domain elements. Finally our
definition of a tessellation in introduced in this subsection.

An n-simplex ∆n is defined as the convex hull of n+ 1 non-degenerate vertices V = {v0, ...,vn},vj ∈ Rn.
Any point in Rn can be uniquely defined using a vector of n+1 barycentric coordinates b := (b0, ..., bn) ∈ Rn+1

relative to this set of vertices, such that
n∑
j=0

bj = 1. For a general point x ∈ Rn we have

x =

n∑
j=0

bjvj . (1)

If bj ≥ 0,∀j ∈ [0, n], then x lies in the simplex described by V.
A ν-simplotope Γν , with ν = (ν1, ..., ν`) ∈ N` a multi-index, is defined as the product of the ` simplices

of dimension νi, i ∈ [1, `]. That is,

Γν = ∆ν1 × · · · ×∆ν` . (2)

The one-norm of the multi-index |ν| = n is equal to the dimension of the simplotope. For clarity the defining
simplices ∆νi are named layers. Note that a single-layer simplotope is a simplex, and therefore the simplex
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is here considered to be a special case of the simplotope.
The product in the definition of the simplotope implies that the resulting polytope has vertices uφ, with

φ ∈ N` again a multi-index, at linear combinations of the vertices wiφi of the layers. Therefore a point x ∈ Rn
can be described, using a collection a = (b1, ..., b`) ∈ Rn+` of barycentric coordinates bi = (bi0, ..., biνi) in
all layers, as

x = (1− `)w0 +
∑̀
i=1

νi∑
j=0

bijwij . (3)

In the above, w0 represents the origin point that is shared by all layers. In a simplotope the barycentric
coordinates sum to `, as bi sums to one for all i ∈ [1, `].

Multiple n-dimensional simplotopes Γνk can be combined to form a tessellation. We define a tessellation
T as the collective of simplotopes, such that

T =

N⋃
k=1

Γνk, Γνk ∩ Γνm ∈ {∅,Γν−ε},∀k 6= m, (4)

where ε is an `-element multi-index for which 0 ≤ εi ≤ νi,∀i ∈ [1, `]. That is, the elements of a tessellation
can share lower-dimensional simplotopic faces, but do not overlap. Note that in this paper we will only
consider homogeneous tessellations, in which ν is equal for all elements. Heterogeneous tessellations (or:
mixed grids) have been studied in the two- and three-dimensional case by Chui and Lai,15–17 and in a
general setting by Visser et al.18

Tessellations can be constructed by taking the product of triangulations in the layers, which comes down
to a tensor product of all domain elements. This is the preferred method in high-dimensional problems, as
it allows for constructing optimal triangulations in the layers.

II.B. B-form polynomial

Polynomials are defined on a simplex by taking the weighted sum of Bernstein basis polynomials defined in
barycentric coordinates. The B-form of such a polynomial is19

p(b) =
∑
|κ|=d

cκB
d
κ(b), Bdκ(b) :=

d!

κ!
bκ, (5)

where cκ are B-coefficients, discussed in the next subsection, and κ = (κ0, ..., κn) ∈ Nn is a multi-index for
which κ! :=

∏
j κj ! and bκ :=

∏
j b
κj
j . Every possible permutation of κ results in a separate Bernstein basis

polynomial. The complete set forms a basis for the space of all polynomials of degree d in n variables.4

If cκ in Eq. (5) is replaced by a polynomial in the B-form, a tensor-product between the basis polynomials
results. The degree is defined per layer, leading to a degree vector d = (d1, ..., d`). The multi-indices κ from
the layers are renamed and combined to form one multi-index λ = (λ1, ..., λ`), where λi = (λi0, ..., λiνi), with
|λi| = di, is the multi-index in the ith layer. Applying these changes to Eq. (6) we obtain

π(a) =
∑
|λi|=di,
∀i∈[1,`]

cλBdλ(a), Bdλ(a) :=
∏̀
i=1

Bdiλi(bi) =
d!

λ!
aλ. (6)

The tensor-product basis polynomials Bdλ are scaled versions of higher-dimensional, total degree basis poly-
nomials. If only one layers is used, we again end up with the simplex polynomials. Therefore the simplex
polynomials can be seen as a special case of the simplotope polynomials.

To use efficient least squares solvers for estimating the coefficients, the basis polynomials are generally
collected in a vector.

Bd
λ(a(x)) :=

Bdλ(aΓi(x)) if x ∈ Γi

0 otherwise.
(7)
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w11 w0

w12

(a) 2-simplex

w0

w21

(b) 1-simplex

w11 w0

w12

w21

(c) (2,1)-simplotope

Figure 1: B-nets of the 2- and the 1-simplex, and the derivation of the (2,1)-simplotope B-net.

This vector can be obtained directly, or by taking the tensor-product of the vectors in the individual layers.
The vectors can be collected in a matrix B, such that the polynomial in Eq. 6 can be written as the matrix
multiplication π = Bc.

II.C. B-coefficients and the B-net

An important feature of the simplex spline is that the B-coefficients cκ, introduced in Eq. (5) as the weights
of the basis polynomials, have a spatial location in the simplex. They coincide with domain points, such
that cκ lies at qκ ∈ Rn,

qκ =
1

d

n∑
j=0

κjvj . (8)

The collective of B-coefficients at these locations is called the B-net. It plays a central role in the definition
of continuity conditions. Example B-nets in two and one dimension for degrees three and two can be found
in figures 1a and 1b respectively.

The tensor-product in Eq. (6) is reflected in the B-net of the simplotope polynomials. Like the simplotope
vertices, the domain points qλ can be found at the linear combinations of domain points in the layers.

qλ = (1− `)w0 +
∑̀
i=1

1

di

νi∑
j=0

λijwij . (9)

This results in a B-net consisting of parallel copies of the B-net of one layer, translated to the domain points
of the other layers. This is illustrated in figure 1c by the parallel highlighted triangles.

Much like the basis polynomials, the B-coefficients are collected in a vector. We write cΓi = (c
Γi
λ )|λi|=di,∀i,

where the coefficients are ordered according to the multi-index in lexicographical order, and c = (cΓ1 , ..., cΓN ).
The superscript refers to the simplotope the coefficients belong to.

II.D. Continuity conditions

Two simplex polynomials defined on n-simplices ∆n and ∆̃n that share an (n− 1)-edge can be joined with
arbitrary continuity order r < d. The conditions to enforce this continuity are well-known from the simplex
spline literature.1,4 From the work of Visser et al. it is concluded that continuity between two polynomials
π and π̃ on simplotopes Γν and Γ̃ν can be defined per layer.18 This implies that the continuity conditions
for simplex splines can be reused. By finding the conditions in each layer and then copying them for each
parallel copy of the B-net (illustrated in Fig. 2), the total set of conditions is found. Rewriting the simplex
continuity conditions, we find for the simplotope spline

c̃(m,λ11,...λiνi )
=

∑
|γ|=m

c(0,λ11,...λiνi )+γ
Bmγ (aΓ(w̃10)), ∀d : |λi| = di, and ∀m ∈ [0, r], (10)
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where it is assumed that w̃10 is the out-of-edge vertex. A unique set of conditions is generated by the
permutations of λ1, whereas the parallel copies of these conditions are generated by the different permutations
of λi, i ∈ [2, `].

w11 w0, w̃0

w12, w̃12

w21, w̃21

w̃11

Figure 2: Continuity conditions between two (2,1)-
simplotopes. All conditions on the foreground are
shown, parallel copies only of the middle condition.

Note that γ = (γ1, ..., γ`) in Eq. (10) contains
many zeros by default, because any adjustment to λ
that violates |λi + γi| = di results in a non-existent
B-coefficient. In other words, the degree cannot be
changed in other layers than the one containing the
out-of-edge vertex. In the case that the out-of-edge
vertex lies in the first layer, we therefore have γ =
(γ1, 0, ..., 0).

The conditions in Eq. 10 are linear in the B-
coefficients, and can therefore be written as the ma-
trix multiplication of the smoothness matrix H and
the vector of B-coefficients c.

Hc = 0. (11)

H contains the same conditions as the ones in
Eq. (10). It is a sparse matrix, because each row describes a single constraint between two simplices.

That is, in each row a maximum of 1 + (d+n−1)!
(d−1)!n! elements are nonzero.1

II.E. Fitting scattered data

The above can be combined into a single equality constrained least squares problem.

min ||y − B(a(X))c||
subject to: Hc = 0.

(12)

In the above, || • || is the 2-norm, X is a matrix containing the input data, and B is the matrix of basis
polynomials. The output vector is given as y.

The solution of Eq. (12) can be found using the method of Lagrange multipliers. This is discussed in detail
by De Visser et al.5 Because the basis polynomial matrix B is block diagonal and H is sparse, distributed
solvers can be employed.

III. Approximation performance

From the previous discussion it is clear that the simplotope spline has a different structure than the
simplex spline. In this section these differences will be described (in subsection III.A), and their effect on
function approximation performance will be illustrated using test functions (in subsection III.B).

III.A. Simplotope spline characteristics

The two most striking differences between the simplotope and the simplex spline are their geometric basis
and their polynomial structure, collectively referred to as the model structure. In practical applications these
two properties can only be changed simultaneously, namely by changing the subdivision of variables over the
layers. The consequences on approximation performance may however be conflicting. Therefore both effects
are discussed in more detail below.

The most important difference between the simplex and the simplotope lies in the distribution of its
content. With increasing dimension, the content of a simplex moves away from the center towards the
corners. Therefore the polytope becomes less spherical and more star-like, making it more difficult to
properly, uniformly fill a simplex with data points as the dimension increases. To be more precise, the
corners extend far from the center of the simplex, where most of the data points lie. The lack of data near
the corners and edges leaves the polynomials free to oscillate. Especially in system identification efforts
where four or more variables are involved this has a detrimental effect on the approximation performance
near the bounds of the domain.
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Figure 3: The ratio of the content of the inscribed sphere to that of the n-simplex and the n-cube as a function
of dimension n.

The simplotope in general has a more spherical shape, making it less sensitive to this effect. This can be
illustrated by plotting the content ratio of the inscribed sphere to the total content.9 The most spherical of
simplotopes, according to this metric, is the hypercube. Therefore it is compared to the simplex in Fig. 3.
Clearly the content remains more focused in the center of simplotopes than in that of a simplex. Therefore
the simplotopes in general will be less sensitive to data distribution issues. However, it is clear from the
comparison that this effect is quickly reduced as dimension increases. On top of that it will be less significant
when fewer, higher-dimensional layers are chosen. Therefore, given a number of variables, this effect puts a
lower bound on the amount of layers to use.

The difference in polynomial structure is clear from the definition in Eq. (6). Whereas a simplex polyno-
mial is a complete multivariate polynomial, the simplotope polynomial consists only of tensor-product terms.
The latter therefore allows for excluding high-degree terms of single variables, while allowing cross-terms of
the same degree to occur. This can be beneficial if the states of the system are related to the output in
fundamentally different ways.

A pitfall of the tensor-product polynomials however is the implicit total degree. When the diagonal of a
simplotope is considered, the polynomials have a degree dt = |d|. This total degree can quickly rise when
more layers are defined, leading to unwanted oscillations such as Runge’s phenomenon near the corners of
the simplotope. For example, in a four-dimensional hypercube with quadratic polynomials in all layers, the
total degree is eight. This effect therefore puts an upper bound on the amount of layers to use.

Combining the above described characteristics, it is clear that deciding on the model structure is not
straightforward. In general we can say however that high-dimensional models can benefit from a larger
amount of layers. In such cases however, the total degree should be kept low by using low-degree polynomials
in all layers.

III.B. Function approximation performance

The simplotope spline characteristics described in the previous subsection can be illustrated by approximating
test functions. To show the relevance of choosing a polynomial structure, splines will be fitted to a dedicated
test function. After that the effect of data distribution is investigated by changing the shape of the data set
beneath two comparable splines.

To test the effect of different polynomial structures, the following test function is used to generate a
uniformly, yet randomly distributed data set.

y = x2
3 sin(1.4πx4)F(2x1 − 1, 2x2 − 1), ∀k : xk ∈ [0, 1] (13)

In equation (13), F(x, y) is the Franke function. No noise was added to the generated data sets. Within the
indicated domain the function values lie in the range −1 ≤ y ≤ 1.4.

In Eq. (13) three layers can easily be identified, namely the Franke function in (x1, x2), a parabola in x3,
and a sine in x4. Based on this structure, the following splines will be investigated: 4-simplex splines, (2,1,1)-
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Figure 4: The approximation performance of four different types of splines for a wide range of tessellation
densities and polynomial degrees.

simplotope splines, (2,2)-simplotope splines, and 4-cube (or: (1,1,1,1)-simplotope) splines. For each type of
spline a wide range of degrees, continuity orders and tessellation densities is used to model the test function,
bounded by high computation times at more than 4000 B-coefficients. To quantify the approximation
performance of each of the splines, the RMSE (Root Mean Square Error) is computed based on a separately
generated verification data set. This is done 10 times for different splits of the data set to verify a constant
result. Because of the omission of noise, the RMSE can be seen as a measure of approximation power.

The mean absolute RMSE values are plotted against the number of degrees of freedom (DoF, the difference
between the number of B-coefficients and the rank of the smoothness matrix H) in Fig. 4a. As an overall
trend, all splines but the (2,2)-simplotope spline show the familiar quadratic trend of approximation within
the plotted range. First the added DoF improve the fit, then at too high polynomial degrees overfitting
occurs. The projected optimal performance lies around the same amount of DoF for all splines but the (2,2)-
simplotope spline. This implies that more than the polynomial structure, the number of degrees of freedom
defines the approximation performance. At the same time however, the simplex spline is outperformed by
all the other splines at almost all DoF counts.

Plotting the RMSE against the amount of B-coefficients, as in Fig. 4b, similar trends can be observed.
Most striking however is the small size of most simplotope splines. It is likely that smaller simplex splines
would have even worse performance than the ones plotted, as the degree would have to be decreased to
two. The (2,1,1)-simplotope and 4-cube spline on the other hand reach adequate RMSE values below 1000
B-coefficients, with the optimum for the latter already at 1200 B-coefficients. The locations of the optima
in this case clearly indicate a benefit for splines with more layers. This is most likely caused by the fact
that with increasing dimension the continuity conditions become more intertwined. Referring to Fig. 2, each
two-dimensional condition overlaps with the next condition in the same layer, but the parallel copies in the
direction of the second layer are completely separate.

To test the effect of the data distribution on the approximation performance, the following test function
is used.

y = sin(2πx1) + ex2 , x1, x2 ∈ [0, 1]. (14)

A simple function is used, so as to not favor one of the polynomial structures. By using a single square as
the basis for the bicubic (1,1)-simplotope, and two triangles as a basis for the cubic 2-simplex spline, both
splines have the same amount of DoF when zeroth order continuity is enforced.

In Fig. 5 the approximation performance of these two splines on the test function is plotted for different
data sets. On the x-axis the RMSE on a verification set inside the indicated data set range is plotted. The y-
axis represents the same metric on a data set outside this range; that is, inside the inverse set. We can identify
the uniform set, the diamond (leaving the vertices of the domain open), the inscribed circle, the inscribed
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Figure 5: The approximation performance of the simplotope and simplex spline on the indicated data sets.
Data sets in the legend to the right are highlighted in gray, the inverse datasets are white, and the dashed line
indicates the hypotenuse of the simplices.

ring (with the inner radius half the outer radius), and the triangle (with the hypotenuse perpendicular to
that of the simplices). These sets are displayed next to the plot in Fig. 5 for reference. The marks in the
plot with a cross reflect the spline performance on the inverse set, where the notion of inside and outside the
data range is inverted. Note that the performance on the uniform set is equal for both splines, as intended.

First of all we may note that all splines fit data better that lies inside the data range used for estimating
the coefficients. The simplotope spline in this sense results in a smaller RMSE than the simplex spline.
Considering data points outside this range however, the simplex spline in general performs better. This is
especially clear in the estimation sets that keep the vertices open (diamond, circle, and ring). This is caused
by the high total degree of the simplotope spline, introducing oscillations outside of the convex hull of the
data set. These extremities are used to make a better fit inside the estimation domain, yet are not penalized
for poor local estimation performance.

Second the performance on the inverse data sets clearly shows the importance of data being available near
the edges of the domain. Especially the inverse diamond and ring domain show much better performance
overall than their original counterparts.

IV. DelFly system identification

In the previous section it was shown that the simplotope spline may have several advantages over the
simplex spline in system identification applications. To see up to what extent these advantages occur in
real applications, a system identification effort is undertaken for a flapping wing MAV, the DelFly. In
subsection IV.A the DelFly itself and its flight data are described. Then in subsection IV.B the approach
and results of making spline models based on this data set are discussed.

IV.A. DelFly flight data

The DelFly II is a 16 gram, 28 centimeter span flapping wing aircraft with four wings and a conventional tail.
Control is provided through a conventional elevator on the horizontal tail surface, a rudder on the vertical
tail, and the flap frequency of the main wings. Depending on the center of gravity position the aircraft is
capable of a slow forward and backward flight with an almost vertical attitude, and a fast forward flight
with horizontal attitude.

The flight data of the DelFly is recorded by an optical tracking system in a test chamber of the Micro
Air Vehicle Integration and Application Research Institute (µAVIARI) test chamber, part of the US Air
Force Research Laboratories. A system of cameras tracks the position of markers on the test subject at a
frequency of 200Hz. The relative position of the markers is used to derive the attitude, whereas a three point
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Figure 6: Projection of the DelFly data set onto the (w,Z)-plane. The local density of data is indicated by the
color of the dots, regions of equal state are indicated with thick borders.

difference method is used to arrive at the velocities and accelerations.20

The data set was intended for linear system identification.21 Therefore it consists of a large number of
instances of the same elevator induced maneuver, in which the DelFly pitches up, stalls, falls in a near-
vertical orientation, and then recovers. To reduce the dimensionality of the system, all episodes of lateral
motion such as turns were removed from the data set. The remaining longitudinal motion will be described
using the velocity components u and w, the pitch angle θ and rate q, and the flap phase ζ. The flap rate
was found to be one-to-one related to the phase, so it is excluded from the analysis. As outputs the body
forces X and Z are investigated. In the slow, almost hovering flight performed in the tests, the body x-axis,
aligned with the body from tail to nose, is almost vertical. The z-axis points primarily in the direction of
flight, perpendicular to the body.

A plot of the data density, projected onto the (w,Z)-plane, is shown in Fig. 6. A set of similar plots was
used to analyze the distribution of data over the state space. From this analysis it was found that due to the
performed maneuvers, the data distribution is highly non-uniform. For example, in Fig. 6 regions are marked
with borders in which all data points reflect essentially the same state. That is, all data points in one of
the highlighted regions in this projection, will also comprise a separate region in the entire, five-dimensional
state space.

IV.B. Multivariate spline models

The data analysis described in the previous subsection suggests that constructing a global model using the
provided data set will be difficult. This can be illustrated with a lower-dimensional analogy. Consider the
situation of having a two-dimensional data set, clustered along a line through a two-dimensional state space.
In fitting a surface to such a data set, one can expect a good approximation of the dynamics of the system
along the line. Perpendicular to the line however, it is likely that little dynamics are present in the data to
actually model system behavior. Therefore it is unclear what is being modeled in that direction. On top of
this, the surface will be unconstrained away from the line, increasing the risks of overfitting to noise.

To test the above hypothesis, several simplex and simplotope splines were fitted to the described data
set, both to model the X- and the Z-force. Here only the latter will be discussed in detail, as the conclusions
for the first are similar. Because little is known of the optimal model structure for flapping wing aircraft, a
large variety of splines was fitted to the data. The best splines in terms of RMSE are collected in table 1.
Note that the data set is split in two: one to estimate the coefficients and one to assess the approximation
quality. This is done for 10 different subdivisions of the data for each spline, resulting in a mean and standard
deviation of the RMSE values.

Comparing the range of the actual force (nominally −0.2 ≤ Z ≤ 0.2N) to the RMSE, it must be concluded
that all splines poorly approximate the data. As the 1σ confidence intervals of most splines overlap, it is also
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Table 1: Approximation performance in terms of error metrics and number of coefficients and degrees of
freedom of the spline models of the DelFly Z-force. The IDs refer to simplotope (T), simplified simplotope
(S), simplex spline (X) and polynomial (P) models.

ID Layers Degrees Coefficients DoF RMSE

T1 (u,w), (θ, q), ζ (1,1,2) 702 140 0.144± 0.005

T2 (u,w), θ, q, ζ (1,1,1,2) 540 142 0.141± 0.004

T3 u,w, (θ, q), ζ (1,1,1,2) 576 144 0.143± 0.004

T4 u,w, θ, q, ζ (1,1,1,1,2) 384 144 0.142± 0.004

S5 w, θ, q, ζ (1,1,1,2) 192 72 0.147± 0.005

S6 w, (θ, q), ζ (1,1,2) 288 72 0.148± 0.003

S7 (w, q), ζ (1,2) 72 24 0.157± 0.004

S8 (u,w), ζ (1,2) 72 24 0.157± 0.004

X1 (u,w, θ, q, ζ) 1 564 28 0.167± 0.006

X2 (u,w, θ, q, ζ) 2 1554 192 0.148± 0.005

P1 (u,w, θ, q, ζ) 1 6 6 0.184± 0.005

P2 (u,w, θ, q, ζ) 2 21 21 0.162± 0.004

P3 (u,w, θ, q, ζ) 5 252 252 0.140± 0.004

impossible to compare the performance of the different types of splines. It is however clear that having more
layers reduces the number of B-coefficients without affecting the DoF, as was found before in subsection III.B.

V. Conclusion

In this paper the multivariate simplotope spline was presented and introduced as a system identification
tool. It has a different geometric basis than the more established simplex spline, and consequently a different
polynomial structure. Still, continuity conditions ensuring smooth joins between domain elements can be
derived from those defined in the simplex spline framework, and the same constrained least squares problem
must be solved to estimate the B-coefficients. Like in the simplex spline, the basis polynomials of the
simplotope spline provide a stable local basis.

A series of tests was performed to investigate the behavior of the simplotope spline, and compare it
to the simplex spline. It was found that the simplotope in general has a better content distribution for
data encapsulation than simplices, especially in high-dimensional space. This may reduce the risk of having
insufficient data points in domain elements, causing the problem to become singular. On the other hand
the introduction of multiple layers often increases the total degree of the polynomial, making the simplotope
spline more sensitive to Runge’s phenomenon. Future efforts will focus on applying differential constraints
on the boundaries of the domain, and on using mixed tessellations to combine the best of both domain
elements. Finally the increased flexibility in choosing the polynomial structure allows for a better integration
of knowledge of the system dynamics into the model structure, although this remains to be proven in a
practical application.

The attempt at constructing a global model for the DelFly II has proven the importance of proper flight
test design. Although the data set has proven its value in the past in linear system identification efforts, a
more complete data set is required for the estimation of a multivariate spline model. Only by performing a
varied set of maneuvers designed specifically to excite coupled modes can lead to such a data set. Recent
research into the accelerometer data of ESA’s GOCE satellite suggests that this mission may provide such
a data set.
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