
Quantum interference and manipulation of entanglement in silicon wire waveguide quantum

circuits

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2012 New J. Phys. 14 045003

(http://iopscience.iop.org/1367-2630/14/4/045003)

Download details:

IP Address: 131.180.130.112

The article was downloaded on 14/05/2013 at 13:26

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/14/4
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Quantum interference and manipulation of
entanglement in silicon wire waveguide
quantum circuits

D Bonneau1, E Engin1, K Ohira2, N Suzuki2, H Yoshida2,
N Iizuka2, M Ezaki2, C M Natarajan3, M G Tanner3,
R H Hadfield3, S N Dorenbos4, V Zwiller4, J L O’Brien1

and M G Thompson1,5

1 Centre for Quantum Photonics, H H Wills Physics Laboratory and Department
of Electrical and Electronic Engineering, University of Bristol,
Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, UK
2 Corporate Research and Development Center, Toshiba Corporation, 1,
Komukai Toshiba-cho, Saiwai-ku, Kawasaki 212-8582, Japan
3 Scottish Universities Physics Alliance and School of Engineering and Physical
Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
4 Kavli Institute of Nanoscience, TU Delft, 2628CJ Delft, The Netherlands
E-mail: mark.thompson@bristol.ac.uk

New Journal of Physics 14 (2012) 045003 (12pp)
Received 31 January 2012
Published 4 April 2012
Online at http://www.njp.org/
doi:10.1088/1367-2630/14/4/045003

Abstract. Integrated quantum photonic waveguide circuits are a promising
approach to realizing future photonic quantum technologies. Here, we present
an integrated photonic quantum technology platform utilizing the silicon-on-
insulator material system, where quantum interference and the manipulation of
quantum states of light are demonstrated in components orders of magnitude
smaller than previous implementations. Two-photon quantum interference is
presented in a multi-mode interference coupler, and the manipulation of
entanglement is demonstrated in a Mach–Zehnder interferometer, opening the
way to an all-silicon photonic quantum technology platform.
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1. Introduction

Quantum information technologies offer completely new approaches to encoding, processing
and transmitting information. By harnessing the properties of quantum mechanics, such as
superposition and entanglement, it has been shown possible to realize fundamentally new
modes of computation [1, 2], simulation [3, 4] and communication [5], as well as enhanced
measurements and sensing [6]. Of the many prospective physical systems in which to encode
quantum information, photons are a particularly promising approach owing to their properties
of low noise, easy manipulation and low transmission losses. To date, quantum photonic
integrated circuits have been realized in low-index-contrast waveguide material systems, such
as silica [7, 8] and silicon oxy-nitride [9]. Such technologies offer benefits in terms of low
propagation losses, but their associated large bend radii limits the scalability and usefulness of
this technology.

Here, we present silicon quantum photonic waveguide circuits utilizing the silicon-on-
insulator (SOI) material system, where quantum interference and the manipulation of quantum
states of light were demonstrated in components orders of magnitude smaller than previous
implementations. Quantum interference of indistinguishable photons was realized in multi-
mode interference (MMI) couplers, and manipulation of multi-photon entanglement was
demonstrated in a Mach–Zehnder interferometer (MZI).

2. Integrated quantum photonics

Traditionally, photonic quantum information experiments have been implemented using
bulk optical elements, with photons propagating in free space. Although many proof-of-
principle experiments have been reported, such an approach rapidly becomes impractical as
the complexity of the quantum optical circuits increases, thereby making them inherently
unscalable and confining them to research laboratory optical tables. In addition, sub-wavelength
stability is critical for the reliable operation of many quantum circuits owing to the need
for often complex networks of nested interferometers. However, developments over the last
few years have overcome these bottlenecks through the implementation of integrated quantum
circuits, allowing quantum information science experiments to be realized that are inherently
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stable and orders of magnitude smaller than their equivalent bulk optic implementations.
Integrated quantum photonic circuits have been demonstrated in a host of different material
systems, including silica-on-silicon [8, 10], direct write silica [7, 11], silicon oxy-nitride [9],
lithium niobate [12] and gallium nitride [13], all realized in low-index-contrast waveguide
structures. Two-photon quantum interference has been reported in both silica and gallium nitride
[10, 13], while manipulation of quantum states of light has been demonstrated using silica-on-
silicon [8, 14] and lithium niobate [12], the later being also a promising material for photon pair
generation [15]. The SOI wire waveguide technologies offer a further level of control, stability
and miniaturization and also allow routes for on-chip generation and detection of photons. The
high refractive index contrast provides compactness unrivalled by any other photonic material
system, allowing a dramatic reduction in the footprint of quantum circuits and the integration of
complex circuits on a single chip. Thermo-optic heaters, p–n junction modulators and induced
χ2 nonlinearities [16] allow for dynamically reconfigurable circuits with the possibility of
fast phase control. The high third-order nonlinearity of silicon enables on-chip generation of
quantum states of light via spontaneous four-wave mixing [17], thus allowing the integration of
single-photon sources and waveguide circuits on the same chip. In recent years, high-efficiency
on-chip single-photon detectors integrated with silicon waveguides have been reported [18].
Demonstration of quantum interference and manipulation of quantum states of light in a silicon
waveguide circuit are the next critical step for realizing photonic quantum technologies in
silicon. In this paper, we report on quantum interference and phase manipulation of one- and
two-photon states using thermo-optic phase shifters and MMI devices on a silicon chip, opening
up the way to a CMOS-compatible silicon-based photonic quantum technology platform where
sources, detectors and circuits can all be realized monolithically on the same integrated chip for
applications in communication, computing and metrology.

3. Experimental details

The silicon integrated waveguide circuits were fabricated from an SOI substrate with a silicon
thickness of 220 nm. The single-mode optical waveguides had a width of 450 nm and a top
cladding of silicon dioxide. Input and output coupling to lensed fiber was achieved using spot-
size converters (SSC) comprising a 300 µm long inverse-taper with a 200 nm tip width and
a 4 × 4 µm2 polymer waveguide. The silicon waveguiding structures were defined by 248 nm
lithography and formed by dry etch processing. Typical propagation losses of 3.5 dB cm−1 and
SSC losses of 2 dB per facet were observed, leading to device losses in the range of 6–10 dB. To
realize the beam-splitter-like operation required for quantum interference, a 2 × 2 MMI coupler
was designed (using finite-difference time-domain (FDTD) simulations) and implemented with
dimensions of 2.8 µm × 27 µm and input tapers of length 3 µm and width 1 µm (figure 1(a)).
MZIs were formed from two MMI couplers and a 200 µm long thermo-optic phase shifter,
shown in figure 1(b). By varying the voltage across the phase shifter it was possible to tune
the internal phase delay of the MZI. Pairs of indistinguishable single photons at a wavelength of
1550 nm were generated from a type-I spontaneous parametric down conversion source (SPDC).
A bismuth borate BiB3O6 (BiBO) nonlinear crystal was pumped by a 775 nm, 150 fs pulsed
Ti-sapphire laser, and degenerate photon pairs were collected from two diametrically opposite
points on the SPDC cone using single-mode fibers, and coupled into the chip using lensed fibers.
One arm of the collection system was on a motorized delay stage to provide a tunable delay
between the photon pair. The 1550 nm photons were coupled out of the chip using single-mode
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Figure 1. MMI and MZI. (a) SEM image of an MMI device. (b) Schematic
diagram of a waveguide circuit with a voltage-controlled phase shifter.
(c) Illustration of the cross-section of the single-mode waveguide.

lensed fiber and detected using two superconducting single-photon detectors (SSPDs), having
system detector efficiencies of 5 and 15% [19, 20]. Coincidence detection between the two
output ports of the device was performed using a custom made (field-programmable gate array
(FPGA)-based) counting logic with a 5 ns coincidence window.

4. Quantum interference in a 2 × 2 multi-mode interference coupler

Quantum interference lies at the heart of linear quantum photonics and is fundamental to the
implementation of any photonic quantum technology, describing at its most basic level the
interaction of indistinguishable photons incident at a beamsplitter. In the case of two identical
photons, each entering separate ports of a 50 : 50 beamsplitter device, the amplitude probabilities
of both photons exiting different ports are zero—giving a superposition state of either both
photons exiting one output port or both photons exiting the other output port. This quantum
interference occurs for any physical implementation of a two-port beamsplitter device, and for
an integrated waveguide circuit two typical implementations are the directional coupler and the
MMI coupler.

MMI devices are based on the self-imaging principle, and when compared with directional
couplers they have improved tolerances to fabrication and a wider spectral bandwidth of
operation and can be extended to realize N × N multi-port devices with several input and output
ports [21]. To demonstrate quantum operation of the SOI 2 × 2 MMI coupler, indistinguishable
photon pairs were launched into each of the two input waveguides. At the two output ports,
the two-photon coincidence counts were monitored. By varying the temporal delay between
the two input photons, the indistinguishability of the input state could be controlled and the
Hong–Ou–Mandel (HOM) dip [22] could be observed (see the inset of figure 3). A maximum
dip raw visibility of 80 ± 3% was observed, demonstrating quantum interference.

A limited visibility of 80% was achieved in part due to multi-photon events generated
by the pulsed source, in part due to intrinsic losses within the MMI device and also due to
residual distinguishability of the generated photon pairs. The indistinguishability of the SPDC-
generated photon pairs was characterized by performing a HOM experiment with a bulk-optic
beamsplitter, giving a maximum visibility of 95.5 ± 1.5% for low pump power. Due to the
chip insertion losses (a total of 9 dB including input/output coupling) and detector efficiencies
(5 and 15%), it was necessary to pump the SPDC source in a regime where high count rates
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could be achieved, which gave rise to multi-photon events that reduced the raw visibility of the
dip. In order to quantify the effect of these multi-photon events, the raw visibility at different
pump powers was measured (see figure 3), clearly demonstrating improved visibility for reduced
photon pairs per pulse. By fitting to a model that accounts for multi-pair generation and system
losses (see the appendix), an extrapolated nominal visibility of 88 ± 3% at low pump power was
demonstrated.

The 7.5% discrepancy between the measured beamsplitter visibility of 95.5 ± 1.5% and the
nominal MMI visibility of 88 ± 3% can be accounted for by the intrinsic losses within the MMI
device. These losses do not enforce a ϕ = π phase shift between the probability amplitudes for
both the photons being reflected and both the photons being transmitted. A perfectly balanced
2 × 2 MMI should operate in exactly the same way as a perfect beamsplitter with the following
scattering matrix:

1
√

2

[
1 1
1 −1

]
=

1
√

2

[
1 1
1 eiπ

]
. (1)

In the presence of losses, we account for the loss modes by embedding the scattering matrix
of the MMI in a larger 4 × 4 unitary transfer matrix written as

(ηα)
1
2 (ηα)

1
2 (ηα)

1
2 (ηα)

1
2

(ηα)
1
2 eiϕ (ηα)

1
2 eiθ (ηα)

1
2 eiβ (ηα)

1
2

(ηα)
1
2 eiθ (ηα)

1
2 · · · · · ·

(ηα)
1
2 eiβ (ηα)

1
2 · · · · · ·

 , (2)

where the upper left 2 × 2 sub-matrix represents the transfer matrix from the two input channels
to the two output channels of the MMI, and the last two modes are losses. 06 η 6 1 is the
reflectivity of the MMI, 06 α 6 1 is the loss parameter, η = 1 − η, α = 1 − α, ϕ is the internal
phase of the MMI and θ and β are the phases of the loss modes. Consequently, the phase
between the probability amplitude for both photons being reflected and both photons being
transmitted is not necessarily π anymore. The unitary condition gives a boundary on the internal
phase ϕ as a function of the loss α:∣∣∣cos

(ϕ

2

)∣∣∣6 α

1 − α
. (3)

The nominal visibility of 88% is obtained using a source exhibiting a residual
distinguishability, with a measured visibility of 95.5% obtained with a bulk beamsplitter.
Assuming a perfect photon pair source (with ideal indistinguishable photons) the MMI visibility
would be 92%. This non-unit visibility can be explained by an intrinsic MMI loss of 0.8 dB or
greater (where figure 2 shows the lower bound on the MMI visibility) and yields an internal
phase shift of ϕ = 2.74 instead of π phase shift. Indeed, FDTD simulations predict an intrinsic
device loss of 0.5 dB, which is within the experimental error of the 0.8 dB calculated by the
model. By reducing the intrinsic loss of the MMI to 0.2 dB (through improved device design and
fabrication), the lower bound on the visibility would improve to 99.5%. It is worth mentioning
that mode propagation simulation shows that the distortion of the single-photon wavepacket
(∼100 µm coherence length in free space) is insignificant in this experiment and does not
contribute to a reduction of the visibility.
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Figure 2. Lower bound on the visibility as a function of the MMI internal loss.
This graph shows how the lower bound on the visibility of a HOM dip, performed
on an MMI with perfect single-photon sources, evolves as a function of the MMI
internal losses.

Figure 3. Visibility as a function of the probability of obtaining a photon pair.
Visibility of the HOM experiment is plotted as a function of the probability
per pulse of generating a photon pair. The solid line is a theoretical fit using
a model that accounts for multi-photon events and losses before and after the
MMI. The inset shows the two-photon interference plot for the highest visibility
measurement.
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5. Two-photon entangled state manipulation

The ability to actively prepare and measure arbitrary quantum states is crucial for the
implementation of many quantum information processing experiments. Manipulation of
dual rail-encoded qubits—a single photon in an arbitrary superposition of two optical
channels—requires the control of the relative phase and amplitude between the two optical
paths. Arbitrary single-qubit operations can be implemented using just two Hadamard gates
(beamsplitter) and phase shifters, with the simple MZI considered to be the most basic
fundamental building block required to realize any arbitary N -mode linear quantum photonic
circuit [23].

To demonstrate the operation of this fundamental building block, an SOI MZI was formed
from two 2 × 2 MMI couplers and a thermo-optic phase shifter (see figure 1(b)). The MZI on its
own can apply only a subset of single-qubit operations, but any arbitrary single-qubit operation
can be achieved by simply adding another phase-shifter element before and after the MZI [14].
This device was characterized in both the single-photon and two-photon regimes.

In the first instance, single photons were input into port a (see figure 1(b)), and as the
internal phase of the MZI was changed, by applying a voltage across the thermo-optic phase
shifter, the probability of detecting photons at the output port c varied sinusoidally as Pc =
1
2 [1 − cos(φ)], with a periodicity of 2π . The observation of this classical interference fringe
represents the ability to transform a single-photon input in mode a into a superposition state
across modes c and d, given by the transformation |10〉 → cos(φ/2) |10〉 + sin(φ/2) |01〉, where
φ represents the phase shift within the interferometer. In the second instance, the two-photon
|11〉 state was used, with one photon injected into port a and the other into port b. This input
state leads to quantum interference at the first MMI couplers and, after propagating through the
phase shifter, transforms to the two-photon entangled state 1

√
2
(|2〉 |0〉 + exp2iφ |0〉 |2〉). Quantum

interference at the second MMI coupler enables the analysis of this quantum state, giving the
probability output of coincidence detections Pc−d =

1
2 [1 − cos(2φ)], with a periodicity π -half

that of the single-photon case.
The measured single-photon and two-photon fringes are shown in figure 4 for an applied

voltage change from 0 to 4.5 V, resolving 1.5 fringes for the single-photon case, and 3
fringes for the two-photon case. The two-photon fringe had a raw visibility of V = 81.8 ±

1.3%, which is greater than the threshold Vth = 1/
√

2 required to beat the standard quantum
limit, demonstrating quantum metrology and the ability to achieve sub-shot noise-limited
measurement.

6. Discussion

This work is the first demonstration of the interference and manipulation of quantum states
of light in silicon integrated quantum circuits, and is a fundamental step toward further
miniaturization of photonic quantum circuits. All previous integrated waveguide quantum
circuits have relied on weakly guided waveguide structures, with a typical index contrast for
the silica-on-silicon waveguide technologies of 0.5%, resulting in a bend radius of greater than
10 mm [14]. This low-index contrast and large bend radius result in physically large circuits
and components, making future implementations of complex quantum circuit architectures
impractical. Due to the high index contrast of the SOI material systems, it is possible to achieve
bend radii of below 10 µm—three orders of magnitude smaller than the silica material system.
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Figure 4. Single-photon and two-photon fringes. (a) Single-photon count rate as
a function of voltage applied to the thermo-optic phase-shifter for the input state
|10〉. (b) Two-photon coincidence count rate as a function of applied voltage for
the input state |11〉. The x-axis represents the applied voltage across the thermo-
optic phase shifter. The top figure shows the single-photon fringe. The y-axis
represents the number of single photons recorded at one output of the MZI. The
bottom figure shows the two-photon fringe. The y-axis represents the number of
coincidence counts obtained for the two-photon fringe.

Individual components can be dramatically reduced in size, such as the 2 × 2 MMI coupler
presented here that is 40 times smaller in length (27 µm) compared to the 1.1 mm length of the
equivalent device in silica [24]. This enables circuits of significantly greater complexity to be
realized while still maintaining a small chip size, but potentially at the cost of higher waveguide
losses.

The key functions required to realize a fully integrated linear-optic quantum technology
are the generation, detection, interference and manipulation of quantum states of light, all
on a single optical on-chip. The generation and detection of single-photon states in silicon
wire waveguide devices have been demonstrated previously [17, 18], and in this paper we
demonstrate the feasibility of on-chip interference and manipulation of quantum states of
light in silicon wire waveguide circuits. The high χ3 nonlinearity of silicon and the high
modal confinement of the silicon wire waveguide enable efficient photon pair generation via
spontaneous four-wave mixing, with a recent demonstration showing indistinguishable photon
pair generation from two independent silicon wire waveguides with an external HOM dip
visibility of 73% [25]. High-efficiency detection of single photons has also recently been
demonstrated in silicon wire waveguide incorporating superconducting nanowire detectors, with
an internal detector efficiency of 94% [18]. These recent demonstrations along with the study
presented here represent the basic building blocks required to realize an integrated photonic
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quantum technology platform where quantum states can be generated, manipulated, interfered
and detected all on the same circuits, opening up new possibilities in quantum information
science and applications. Ultimately this CMOS compatible technology could be integrated
with conventional microelectronic circuits, providing on-chip driver circuits and fast logic.

7. Conclusion

Quantum interference and manipulation of quantum states of light in silicon wire waveguide
circuits has been demonstrated in this paper. A maximum HOM dip visibility of 80 ± 3% was
observed for a 2 × 2 MMI coupler, and a nominal visibility in the absence of multi-photon terms
of 88 ± 3% was calculated. Internal MMI losses were shown to be the dominant mechanism for
the reduced nominal visibility. An integrated MZI with a thermal phase shifter demonstrated
on-chip entangled state manipulation with a two-photon fringe visibility of 81.8 ± 1.3%. These
results pave the way for the realization of fully integrated photonic quantum technologies in
silicon.
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Appendix

This appendix describes the details of the model used to give the fit in figure 3.

A.1. Multiphoton treatment of quantum interference

The state produced by the SPDC source is assumed to be a non-degenerate squeezed state and
can be written as

|9〉 =

√
1 − ξ 2

∞∑
n=0

ξ n
|n〉 |n〉 (A.1)

with 06 ξ < 1, where ξ is the squeezing parameter, n is the number of photon pairs generated
and |n〉 |n〉 is the number of photons in the two spatial modes of the source. We label as PC1,
PC2 and PCC the probabilities of detecting per pulse, respectively, a single photon at detector 1,
a single photon at detector 2 and a coincidental event between the two detectors C1 and C2.

Those probabilities can be expressed as

PC1 =

√
(1 − ξ 2)

∞∑
n=1

ξ 2n (1 − (1 − η1)
n) , (A.2)

PC2 =

√
(1 − ξ 2)

∞∑
n=1

ξ 2n (1 − (1 − η2)
n) , (A.3)
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Figure A.1. Input and output losses modeling of a 2 × 2 MMI coupler.

PCC =

√
(1 − ξ 2)

∞∑
n=1

ξ 2n (1 − (1 − η1)
n) (1 − (1 − η2)

n) (A.4)

with η1 and η2 being the overall efficiencies (including collection, transmission and detection)
of, respectively, channels 1 and 2.

We measured the quantities C1 (the number of detection events per second at detector 1),
C2 (the number of detection events per second at detector 2) and CC (the number of coincidental
detection events per second at detectors 1 and 2) for different pump powers.

From those datasets, we ran minimization methods to relate the different count rates
C1, C2, CC obtained from pump powers Ik to channel efficiencies η1 and η2 and the ξ 2(Ik)

parameter using the following equations:

C1(I ) = f × PC1(I ), (A.5)

C2(I ) = f × PC2(I ), (A.6)

CC(I ) = f × PCC(I ), (A.7)

where f = 80 MHz is the repetition rate of the pulsed laser and I is the intensity of the pump.
We then launched the state |9〉 for different pump powers into the MMI coupler, and

recorded quantum interference patterns with visibilities V (I ). In order to infer the visibility at
low intensity, we applied the model described below.

A.2. Theoretical visibility

The theoretical visibility is expressed as 1 −
PI
PD

, where PI is the probability of getting a
coincidental event when the photons generated in the two modes are indistinguishable, and
PD is the probability of getting a coincidental event when the two photons are distinguishable.
If we used a true single-photon source in an ideal lossless circuit, PI = 0, PD = 0.5 and V = 1.
However, we used a squeezed state |9〉 as the input state, and the setup exhibits collection
losses, propagation losses and non-unitary detection efficiencies. We modeled those losses by
adding a virtual beamsplitter at each input and output port of the MMI coupler with reflectivities
ηA, ηB and ηC , ηD, as shown in figure A.1. We trace over the loss modes L A, L B , LC , L D. All
that is needed is to compute PI and PD by taking into account these losses.
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We start with a pure squeezed state with a density matrix ρ̂ = |9〉 〈9|; we first propagate
the state through the two input beamsplitters and then trace over the loss modes L A and L B . We
further propagate the obtained reduced density matrix through the MMI coupler, assuming a
50/50 splitting ratio. We finally propagate the output state through the last two loss beamsplitters
and trace over the modes LC and L D.

By writing ρ̂Iout as the final density matrix, we compute the probability of getting a
coincidence by calculating

PI =

∞∑
n=1

∞∑
m=1

〈n| 〈m| ρ̂Iout |n〉 |m〉 . (A.8)

We implemented an algorithm to compute this probability to an arbitrary precision and
found that computing terms up to n, m = 9 was accurate for the different pump powers we
used. Adding higher-order terms did not change significantly the results.

For the case when the photons are distinguishable, we start with |9dist〉 defined below and
assume that the photons are orthogonal. In practice, one arm is delayed with respect to the other
and we consider the photons launched in mode a at time t1 and the photons launched in mode b
at time t2, giving

|9dist〉 =

√
1 − ξ 2

∞∑
n=0

ξ n
|n〉t1 |n〉t2 . (A.9)

Then, applying the same evolution as previously for the indistinguishable photon case, we
compute the probability PD of getting a coincidence when the photons are distinguishable.

A.3. Fit of the experimental data

We recorded the visibility as a function of the pump power. For each intensity, we compute
the associated squeezing parameter (ξ ). The collection and detector efficiencies and the device
losses are known. The only free parameter over which we need to minimize is the visibility. We
therefore use an equation of the form

V (ξ) = 1 −
αPI (ξ) + (1 − α) PD (ξ)

PD (ξ)
, (A.10)

where α is the parameter that quantifies the overlap between the photons that includes residual
spectral entanglement from the source and imperfections in the MMI coupler. Using this model,
we extrapolate the nominal visibility that would be expected at very low pump power.
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