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Abstract

Peer-to-peer (P2P) technology allows us to create self-organising and scalable sys-
tems. The distributed nature of these systems requires a solution for finding inter-
esting peers. In the context of P2P file sharing, finding peers who are downloading
the same file is referred to as the swarm discovery problem. In BitTorrent, this
problem is solved using a central server, called a tracker. This central component
hinders the scalability of BitTorrent.

We have designed a distributed swarm discovery algorithm, called 2-Hop Tor-
rentSmell. It is composed of two parts. The first part builds on top of an existing
keyword search system to find peers who have recently downloaded a certain file.
The second part consists of an algorithm called RePEX, which allows a peer to
stay in touch with swarms it is no longer in by periodically recontacting previously
encountered swarm members. Our RePEX algorithm leverages a widely used Bit-
Torrent extension for swarm discovery called PEX. We have conducted a study to
understand the reliability and usability of PEX to optimize the design of our solu-
tion. We have implemented the RePEX part of 2-Hop TorrentSmell as an addition
to the Tribler P2P network.

For the evaluation of our RePEX algorithm, we have tested it on the 10 largest
swarms on a public tracker. In addition, we have deployed the algorithm in a
beta version of Tribler and let it run on swarms the user has downloaded from.
Evaluation results show our algorithm is scalable and effective in popular swarms.
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Chapter 1

Introduction

Peer-to-peer (P2P) applications are becoming increasingly more popular, and rightly
so (Figure 1.1). The distributed nature of P2P technology allows us to easily and
cost-effectively distribute a wealth of content all over the world. Highly popular
content will be requested and downloaded by interested nodes in a P2P network,
resulting in more available replicas. P2P has come a long way and is now even
used for video applications [27, 33, 43].

Unfortunately, building P2P applications to operate in a fully distributed way
is not easy. The past has shown that designers often choose the easy way out
and sacrifice fully distributed operation by introducing central components in their
systems. These central components prevent a P2P system to become fully self-
organising and unboundedly scalable. When a central component becomes over-
loaded, breaks down or is taken down, the whole system suffers. A prime example
is the legal action against Napster, where it was forced to shut down its centralized
search facility [24].

Removing the need for any central component or server is a key aspect of the 4th
Generation of P2P [39] and is the focus of the Tribler research project. Tribler is a
P2P application based on BitTorrent developed by Delft University of Technology
and Vrije Universiteit Amsterdam [38] and is part of the P2P-Next project funded
by the European Union [29]. The goal of of the P2P-Next project is to build a new
platform for P2P television. In this thesis, we will design an initial version of a fast
and scalable distributed solution for finding peers in a swarm for the Tribler client,
that will eventually replace the central tracker component of the underlying BitTor-
rent protocol. We will opt for an incremental approach, where we can evaluate the
simple initial solution and detect possible deficiencies early on.

The remainder of this introductory chapter gives background information on
file sharing in BitTorrent. The BitTorrent protocol is described in Section 1.1.
In Section 1.2 we describe the socially enhanced Tribler BitTorrent client and its
relevant features for this thesis. In Section 1.3 we list our contributions, and finally,
in Section 1.4 we outline the remainder of our thesis.
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Figure 1.1: Global consumer Internet traffic forecast. Source: Cisco, 2008 [11].

1.1 BitTorrent

BitTorrent is a file sharing P2P protocol created by Bram Cohen in 2001 [12]. Un-
like previous P2P systems, BitTorrent peers downloading the same file can benefit
from each other by exchanging pieces of the same file. This is called bartering.
Bartering makes file distribution scalable. More downloaders means more copies
of file pieces are available, and hence, more peers to barter with. Details on barte-
ring can be found in [13].

To download a file through BitTorrent, a peer first needs a torrent file containing
metadata. The metadata consists of the file name, file size, integrity hashes, and the
URL of one or more trackers [13]. A tracker is a central component responsible for
tracking peers in a swarm. A swarm is the total group of downloaders of a certain
file and is identified by a hash derived from the metadata. A peer regularly contacts
the tracker to announce its presence and receive a list of peers for a certain swarm.
It uses this list of peers to find new peers to barter with. An additional way to find
new peers is through the Peer EXchange (PEX) extension, which allows peers to
share lists of swarm members with each other.

1.2 Tribler

Tribler is a BitTorrent client originally based on the open source ABC client [1],
that is enhanced with social features. Tribler adds, amongst others, the notions of
identity, friends and people with similar tastes to BitTorrent. The basic ingredient
for all these social features is memory. Unlike other BitTorrent clients, Tribler uses
a database to carry knowledge from one session to another.

In Tribler, each peer has a secure permanent identifier, or PermID for short [41].
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This identifier can be used to create groups of friends and associate users with
similar download tastes. This identity is needed to create a social network, which
can provide additional services, e.g. cooperative downloading [21].

Tribler peers can discover each other and content using the epidemic gossip
protocol called BuddyCast [31]. Periodically, a Tribler peer chooses another peer
to exchange a BuddyCast message with. A BuddyCast message contains a list
of preferences describing the Tribler peer’s 50 latest downloads, a list of Tribler
peers with similar tastes and a list of random Tribler peers. Tribler peers tend
to connect to users with similar download tastes to form a semantic overlay. A
BuddyCast message also contains a list of discovered torrents, which the peer may
have injected itself into the Tribler network or may have heard of from other Tribler
peers.

Information received via BuddyCast messages are stored in a database, called the
MegaCache [30]. This cache serves as the peer’s memory. A recent feature added
to Tribler is the ability to perform a keyword search that not only searches the peer’s
own memory, but also the MegaCaches of neighbouring Tribler peers [40]. This
allows us to find content that we ourselves have not heard of.

1.3 Research question and contributions

The subject of this thesis is designing a fully distributed solution to the swarm dis-
covery problem, i.e. finding peers in a swarm. In this thesis, we make the following
main contributions:

• We study the behaviour of different implementations of the widely used PEX
BitTorrent extension. This extension solves a large part of the problem cen-
tral to this thesis.

• We present the design of our distributed swarm discovery algorithm called
2-Hop TorrentSmell, relying on existing Tribler features and the widely used
PEX protocol.

• We implement the part of 2-Hop TorrentSmell called RePEX, that is respon-
sible for tracking peers and we evaluate its performance.

These contributions are a first step towards a fast and fully distributed swarm dis-
covery solution. The goal is to eventually replace the central tracker in BitTorrent
altogether.
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1.4 Thesis outline

The remainder of this thesis is organized as follows. We describe the swarm dis-
covery problem and the currently deployed solutions and their drawbacks in Chap-
ter 2. In Chapter 3 we study the behaviour of the PEX protocol in order to un-
derstand its effectiveness and deficiencies. The knowledge gained from this study
is used in the two following chapters. In Chapter 4 we present the design of our
2-Hop TorrentSmell solution to the swarm discovery problem. We have implemen-
ted a part of the 2-Hop TorrentSmell called the RePEX tracking algorithm, which
we evaluate in Chapter 5. Our conclusions and proposed future work is presented
in Chapter 6.
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Chapter 2

Problem Definition

This chapter defines the main subject of this thesis: swarm discovery in a scalable
and effective way. Swarm discovery is the problem of finding peers that are down-
loading the same file, which we describe in Section 2.1. We define the requirements
for a solution in Section 2.2. In Section 2.3 we discuss that none of the currently
deployed solutions meet all the requirements.

2.1 Swarm discovery

In traditional client-server architectures, all content is stored at the server, but in
P2P networks, content is distributed over all peers. Since there is no central loca-
tion in a P2P network to fetch content, a search mechanism must be in place to find
the peers that have the particular content the user is interested in. The dynamics of
a P2P network can complicate the problem of finding these peers.

In work related to this thesis, Roozenburg defines swarm discovery to be the
problem of finding peers in a specific download swarm [32]. In BitTorrent, a swarm
consists of peers downloading the same content. These peers are interested in
locating each other, to allow them to barter file pieces.

In order to barter with a peer, we need its public IP address and listening port.
Hence, this information about swarm peers needs to be found when solving the
swarm discovery problem. We will refer to a list of these network addresses of
peers in a certain swarm as a peer list.

2.2 Design requirements

A quality solution to the swarm discovery problem should adhere to the require-
ments listed below. We will use these requirements to review currently deployed
solutions and to guide the design of our solution presented in Chapter 4.
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Bootstrapping

Bootstrapping is a special startup phase one performs in order to become self-
sustaining. For example, a personal computer boots by loading a special program
from the first sector of a disk. Afterwards, the computer will be able to operate
normally.

In the case of swarm discovery, a peer in the bootstrapping phase searches for a
small number of peers that are in the swarm it wants to join. This search involves
contacting known peers that are not in the swarm, but possibly know who are in it
or know other peers that possibly know this. The initial swarm peers found via this
search can then be used instead for further swarm discovery. If these initial peers
cannot be found, further swarm discovery becomes impossible.

Note that when a centralized solution like a central tracker is used, bootstrapping
is not necessary. The address of the tracker is statically known and thus both initial
and subsequent peers can always be found using the tracker. In a decentralized
setting, however, bootstrapping is always a required and important step.

Scalability

It is desirable that a swarm discovery solution is lightweight and scales well. The
overhead required to solve the swarm discovery problem should be minimal in
order not to hinder the actual downloading of content. This overhead consists of
CPU usage, storage space and bandwidth. The latter resource is the most scarce
and is very valuable in the BitTorrent protocol for bartering purposes. The costs
of running a swarm discovery algorithm should grow slowly with the number of
simultaneous downloads and swarm sizes.

Speed

The speed of the swarm discovery solution should be high, allowing peers to find
others quickly and start downloading right away. This is especially desirable in
applications like P2P video streams [27] where the user wants to watch videos
without much delay. Needless to say, the speed of the solution should scale well as
well.

Security

Security is an important aspect of any distributed solutions. Neglecting security
issues could result in an ineffective, or even worse, exploitable P2P network. One
of the possible attacks on a P2P network is to pollute or poison its indexes, as
described by Liang et al. in [22]. Projecting this type of attack onto the swarm
discovery problem, it basically means that an attacker is spreading false peer lists,
trying to make it harder for other peers to find a valid entry in their lists. To defend
against such attacks, the authors propose a rating system, e.g. to rate the source of
information.
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A much more severe issue is exploiting the vast amount of resources available
in a P2P network to perform a Distributed Denial of Service (DDoS) attack. Since
some P2P networks consist of millions of users,1 harnessing all this power would
wreak havoc on the victim. To avoid such attacks, an attacker must be limited in
its ability to spread false information. One possible, but simple solution is having
peers validate information the moment they receive it. It prevents false information
to be propagated, but can itself be exploited to send unsollicited data packets to a
victim [35].

Effectiveness

Peers discovered through a swarm discovery algorithm should be reachable, other-
wise the algorithm is not effective. To be effective, a good swarm discovery solu-
tion takes connectivity issues and churn into account.

In a perfect system, all peers in a peer list are connectable. In reality, however,
firewalls and NAT routers can reduce the connectivity of a peer. To the outside
world, that peer may not appear to be connectable. Hence, it would be fruitless to
include such a peer in a peer list.

When connectivity issues are not taken into account, any algorithm to find peers
becomes less effective, as the following anecdote illustrates. An early version of
Tribler’s epidemic gossip protocol called BuddyCast did not check whether a peer
was connectable. As a result, nearly 60% of the messages were unreliable, contai-
ning peer addresses of which over 80% were either offline or unconnectable [31].
A simple mechanism that was added to a later version allowed a peer to check
its own connectability through a dial back message. Information acquired from
such a test allowed unconnectable peers to inform others not to propagate their IP
addresses, resulting in more reliable BuddyCast messages.

While connectivity issues cause peers not be reachable to begin with, churn
causes peers to no longer appear reachable while they once were. Churn is the
dynamics of peer participation in a P2P network, i.e. the independent arrivals and
departures of peers. It has a great effect on the operation of a P2P network. In
structured networks, churn complicates maintaining the network topology. In P2P
networks in general, it causes information to become outdated: peers said to be
online may actually have left the system in the meantime. In the swarm discovery
problem, this means that it is important to know how old your information is. Peers
in a received peer list may no longer be online and trying to connect to them may
not work.

2.3 Existing solutions

No solution exists which fully meets all the requirements. The currently deployed
solutions are:

1For example, Azureus’ DHT consists of more than 1 million nodes [18].
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• One or multiple central trackers
• Distributed Hash Table (DHT)
• Peer Exchange (PEX)

The first version of the BitTorrent protocol used a single central tracker to solve
the swarm discovery problem. Support for multiple trackers was added later [8].
To decentralize BitTorrent, two distributed solutions based on a Distributed Hash
Table were independently developed [5, 9]. Two different Peer Exchange protocols
were developed to minimize the load on the trackers and the DHT [6, 28]. Both the
two DHTs and the two PEX protocols are incompatible.

We will now describe the three deployed solutions in more detail and discuss
why they do not fulfill all mentioned requirements. For PEX, we will only focus
on the widely supported ut pex implementation [28, 37] developed by the µTorrent
developers [42] in this thesis.

Central trackers

Central trackers have been used since the first version of BitTorrent. The role of a
tracker is to maintain peer lists for swarms. Peers contact a tracker that is known
to track the swarm they are interested in to discover other peers in that swarm, but
also to announce their own presence [13]. Communication with the tracker is done
using HTTP GET requests. When a peer has not announced its own presence for
a while, the tracker removes that peer from the peer list. An example scenario of a
new peer joining a swarm is shown in Figure 2.1.

Download Swarm

New Peer

Central Tracker
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…   ...
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3: connect

2
: p

e
e
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p
ly

Figure 2.1: A new peer joining a swarm using a central tracker.

The peers know which tracker to contact since its address is stored in the torrent
file, which also contains other swarm metadata like the file name and integrity
hashes. As mentioned in the previous section, a centralized solution obviously
does not need a bootstrap step.
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However, a centralized solution is not scalable. While the cost of servicing a
single peer list request is low, the bandwidth costs of running a tracker grow li-
nearly with the number of peers. A measurement in [32] shows that a tracker under
a high load can take a few minutes to respond, or may not even respond at all half
the time.

From a security point of view, the central tracker listed in a swarm’s metadata
file is trusted by the peers. They have no reason to believe the tracker will behave
maliciously. The tracker is, however, susceptible to attacks. An attacker can an-
nounce its presence for a targeted swarm while not running the BitTorrent protocol
in order to poison the tracker’s peer list. Peers that discover the attacker via the
tracker will waste time and bandwidth trying to connect to the attacker’s address.
For this poison attack to be effective, the attacker must perform many announces
using different source ports and optionally from multiple hosts with different IP ad-
dresses. Since peers attempt to contact the attacker, this attack requires sufficient
bandwidth.

Certain trackers that allow a peer to specify a public IP address in an announce
are more susceptible [36]. Attackers can abuse this feature and send announces
with fake IP addresses using a single machine. This variation of the poisoning
attack is cheap as it does not require much downstream bandwidth, unlike the pre-
viously described attack. The ability to specify a public IP address also allows
attackers to announce the address of a targeted host that is not in the swarm. If
sufficient peers in the swarm discover this victim’s address, the victim’s host will
be overwhelmed by connection attempts.

Churn is handled by trackers by having peers announce themselves periodically.
Peers that have not announced their presence recently are removed from the peer
list. While it is not listed in the BitTorrent protocol specification [10], peers usually
send an announce every 30 minutes [14]. The default timeout used by the original
BitTorrent tracker implementation is 45 minutes [7]. This means that information
received from a tracker can be up to 45 minutes old.

While not specified in the BitTorrent protocol, there are trackers –e.g. Mainline’s
tracker implementation [7]– that take connectivity issues into account and perform
a check whether an announcing peer is connectible. Such checks increase the load
of the tracker, but have the benefits of having a higher quality peer list and being
less susceptible to poisoning attacks.

Distributed Hash Table

Instead of using a central server to store a swarm’s peer list, the peer list for a
swarm can also be stored in a Distributed Hash Table. Like normal hash tables, a
DHT stores key-value pairs. To avoid confusion, we will use “node” to mean a host
that is part of the DHT and “peer” to mean a BitTorrent client in a swarm. Each
node is responsible for storing the values for the keys that are closest to its own
node identifier. In the BitTorrent DHT, a peer list is stored under the corresponding
swarm’s infohash, i.e. the swarm identifier stored in the swarm’s torrent file.
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Figure 2.2: A new peer joining a swarm using a DHT.

Assuming a peer has already joined the DHT, it can solve the swarm discovery
problem for a certain swarm as follows. First it uses the swarm’s infohash as a key
to look up. The lookup message will be routed through the DHT until it hits one
or multiple nodes responsible for this key. The peer can then query these nodes
for a peer list for the particular swarm it is interested in. Afterwards it will also
announces its own presence to these nodes, such that they can update their peer
lists. If the peer wants to be discoverable via the DHT by other peers, it should
periodically lookup the responsible nodes and announce its presence. An example
scenario of a new peer joining a swarm using the DHT is shown in Figure 2.2.

The hard part in this whole process is to actually join the DHT. For this, a peer
has to bootstrap on an existing node in the DHT. This node can supply the peer
with the required information to build a routing table needed to join the DHT net-
work and operate normally. The way BitTorrent clients find an initial DHT node
varies. The Mainline client only uses the DHT for swarms without a central tracker
and finds the inital nodes’ addresses in a special field of the corresponding torrent
file [9]. Azureus and Mainline-compatible clients use peers encountered in swarms
as initial DHT nodes [14]. As a backup, some clients use a list of hardcoded known
DHT nodes.

An apparent advantage of a DHT is the ability to share the load over many nodes,
making it scalable. It is, however, possible that a node with limited resources
is responsible for a fairly popular key. To mitigate this problem, peer lists are
replicated among the k closest nodes. The value of k is 3 for the Mainline DHT
and 20 for the Azureus DHT. The Azureus DHT also has additional means for
dealing with sudden load increases by migrating stored values for a popular key to
10 alternate locations when needed [14].

Unfortunately, this also illustrates a weakness of the DHT. A DHT node is only
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related to a swarm by its own node identifier being close to the swarm’s infohash.
Although possible, it is generally not the case that it is a downloader in that swarm.
Since it has no semantic relation with the swarm, it can only observe its own load
and react to it. Load balancing would be easier if there was a semantic relation, as
it would mean that popular swarms would automatically give rise to more nodes
tracking them.

The rigid structure of DHTs also poses some security issues. Malicious nodes
can join the DHT and respond maliciously. For example, when a malicious node
M receives a lookup message from a normal node A, it can reply that the requested
key is available at a victim’s host V . This is called a redirection attack and can be
used to perform a DDoS attack on a victim. According to the authors of [35], this
technique is not sufficient on its own to make the attack effective. The magnitude
of the DDoS attack can be magnified using two techniques:

1. Attraction: A malicious node can proactively push information about itself
to a large number of nodes. This will force the contacted nodes to include
the malicious node in their routing tables and thereby attracting more traffic
to him.

2. Multifake: While attraction allows more nodes to be redirected to the victim,
better amplification can be achieved by including the victim’s IP address
multiple times through the use of different logical identifiers, e.g. by using
different port numbers.

These amplifications techniques can be used in the BitTorrent DHTs. For example,
Mainline 5.2.2 unconditionally includes the sender of a DHT ping message in its
routing table [7].

To make DHTs more resistant, it is necessary that an attacker’s ability to redi-
rect or infect a large number of nodes is severely limited. A pull-based design is a
possible solution to reduce the effectiveness of the attraction technique. The multi-
fake technique can be rendered less effective by bounding the communication from
a node to a single physical address, but this may give rise to a disconnection at-
tack [35]. It is also hard to prevent redirection attacks. It is important to validate
whether a node C is actually part of the DHT, but doing so through a connection
attempt is vulnerable for DDoSes as we have described. Delaying the membership
validation until we have heard about node C from several other nodes seems like a
good idea, but this is susceptible to Sybil attacks [17]. Luckily, the index poisoning
attack described in [22] is ineffective. The BitTorrent DHTs only allow peers to
announce themselves and thus can only store their own IP under a key.

Since the two deployed DHTs do not do any checking, they also do not check
whether a node is connectable. A study by Crosby and Wallach [14] suggests that
10-15% of BitTorrent users have significant connectivity problems, likely resulting
from firewalls or NATs. They found that certain hosts suffer from one-way connec-
tivity. These hosts were contacting the authors’ host multiple times, yet the authors
were unable to reach them.
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(a) (b)

Figure 2.3: (a) Recursive versus (b) Iterative routing [14].

To cope with churn, the Kademlia DHT algorithm on which the two BitTorrent
DHTs requires nodes to periodically republish keys by design [25]. In the BitTor-
rent DHTs, this means peers are required to periodically announce that they are
still active in certain swarms if they do not want to be removed from the stored
peer lists.

How messages are routed in a DHT also influences the capabilities to cope with
churn. Messages can be either routed recursively or iteratively. Under a recursive
routing scheme, the queried node is responsible for forwarding the messages to
the next node, while under an iterative scheme the querying node is responsible for
sending and receiving all messages (Figure 2.3a versus 2.3b). In the two BitTorrent
DHTs, which both use iterative routing, 20% of the nodes contacted in a single
lookup are no longer alive in 95% of the lookups. Overall, about 40% of the
encountered nodes are dead. These dead nodes cause an increase in lookup latency
since each dead node incurs timeout overhead. As a result, lookups can take over
1 minute to complete [14]. If the BitTorrent DHTs were to use a recursive routing
scheme, each node along the lookup path would have the opportunity to discover
dead nodes in its routing tables.

Peer Exchange

Peer EXchange (PEX) is a BitTorrent extension designed to speed up swarm dis-
covery. Instead of relying on peers supplied by a central tracker or the DHT, peers
can share their own neighbourhood set with their neighbours, as shown graphically
in Figure 2.4. After a peer has exchanged lists with another peer, it may connect to
the newly discovered peers.

In more detail, PEXing is done as follows. For each PEX-capable link, i.e. a link
for which both endpoints support PEX, a peer maintains a set of peer addresses
it has already sent to the other party. When a peer decides to send a new PEX
message, it sends the difference between its current neighbourhood set and its set
of peers already sent, or a subset hereof if the resulting set is too large. Computed
using these same two sets, the same PEX message also contains a set of previously
sent peers which the peer is no longer connected to since the last PEX message.
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Figure 2.4: (a) Peer A and peer B are exchanging peer information. (b) Afterwards,
peer A and peer B can connect to the newly discovered peers. Note: The two
exchanged peer lists do not have to be sent in tandem.

Since PEX was not designed to be used stand-alone, no attention was paid to the
bootstrapping problem. Furthermore, the cost of running PEX is low and grows
only with the size of the peer’s neighbourhood set (which is usually bounded).
Churn is not an issue since the data in a PEX message is fresh. Only when you save
received PEX messages for later use, it will become a problem as data becomes
stale.

Security is not a large problem in PEX. While attackers can push fake peer lists
via PEX, the information will not be propagated by good peers. The only possible
security issue is that fake peer lists can be used for a DDoS attack with the multi-
fake technique. Certain BitTorrent clients, e.g. Tribler [38], only use a small fixed
number of addresses from a PEX message to connect to, mitigating the problem.

Connectivity issues are not necessarily taken into account. BitTorrent clients
could only include neighbouring peers that are known to be connectable in PEX
messages they send, but the protocol does not mandate it.
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Chapter 3

PEX Behaviour Study

We have conducted a study to understand the reliability and usability of PEX mes-
sages. Our motivation is that PEX is already a critical and widely used technique
for swarm discovery. We have found that there are significant inefficiencies in the
currently used implementations. In this chapter we will discuss and quantify these
inefficiencies.

Section 3.1 describes the crawler software we have developed and in which Bit-
Torrent swarms we have conducted our experiments. In Section 3.2 we visualize
the crawled swarms in order to find peculiarities in the topologies. Next, we focus
on the diverse PEX implementations and the quality of the received PEX messages
in Section 3.3. In Section 3.4 we discuss churn and the impact on the freshness of
PEX messages.

3.1 Crawl experiment

PEX is not properly specified in any BitTorrent Enhancement Proposal (BEP).1

This gives implementers a lot of freedom and as a result real world behaviour of
PEX varies in how often and quickly PEX messages are sent and how many peer
addresses they contain.

We study these behavioural apects of PEX by contacting peers in BitTorrent
swarms and recording information about the messages received as follows. Our
crawler software connects to a peer in a BitTorrent swarm and waits idly for an
incoming PEX message for at most 2 minutes. When our crawler receives a PEX
message or the time is up, it closes the connection. If a peer does not support PEX
messages we immediately close the connection, since it would be pointless to wait
for any. For each contacted peer, our crawler logs the following information:

• The start and end timestamps of the connection.
• The version of the peer’s client.
• The timestamp of the first PEX message, if received.

1http://www.bittorrent.org/beps/bep 0000.html
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Figure 3.1: Number of peers found and connected to in the public tracker crawl.

• The peer addresses stored in this PEX message, if any.

Our crawler uses the tracker to find a set of initial peers to contact. Peers disco-
vered through PEX are also contacted by the crawler. For each peer a connection
is attempted at most once.

In addition to crawling through the swarm and recording PEX behaviour, our
crawler continues to check the reachability of each peer it has contacted every 10
minutes until the end of the experiment. The first –as we dub it– “online check”
is performed 5 minutes after the connection has been closed. This information is
also logged and should give use an idea of the churn in a swarm and how quickly
information received via PEX decays.

We have performed two experiments. We crawled three Linux distribution swarms
(Ubuntu, Gentoo and Fedora) in early September 2009 and the ten largest swarms
of a large public tracker in late September 2009. In the first experiment, we let the
crawler run for two hours. It completed the crawl in 12 minutes, i.e. the crawler
found and attempted to connect to all discovered peers in these 12 minutes. Note
that peers that arrived in the swarms after these 12 minutes are not included in the
crawl, since the trackers are only queried once at the start of the experiment and at
most one PEX message is received from each discovered peer. In the remainder of
the experiment the crawler was only checking the reachability of contacted peers.
In the second experiment, the crawler ran for 20 hours and completed the crawl
within 10 hours. However, we noticed that the crawler failed to crawl one of the
ten swarms because none of the reachable initial peers supported PEX.

Figure 3.1 shows the number of peers crawled over time of the latter experiment.
On average, the crawler connected to 1.6 peers per second during the run. It disco-
vered peers at much higher rate, but never managed to connect to them all. Since
time constraints were not an issue, we must conclude that a large fraction of dis-
covered peers was unresponsive. We investigate this matter in the subsequent sec-
tions.
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3.2 Visualization of swarms

In this section we use two visualization techniques. We visualize the Gentoo and
Ubuntu swarm as undirected graphs, where a link between two peers means that
they are neighbours according to a PEX message. We have omitted the Fedora
swarm as its graph resembled the graph of the Gentoo swarm. The public tracker
swarms were too large to be visualized as undirected graphs. Instead, we use these
swarms to determine the popularity of different BitTorrent implementations in use
and we visualize the connectivity through adjacency matrices.

Undirected graphs

J
JJ]

Responsive peer

Unresponsive peer

Tracker

Figure 3.2: Crawl of the Gentoo swarm.

The graph of the Gentoo swarm (Figure 3.2) shows that a significant number of
peers received from the tracker are not responding to a BitTorrent handshake.
These peers may have gone offline, yet have recently announced their presence to
the tracker, or they are behind a NAT. For a few peers, the latter is clearly the case,
e.g. the peer marked by an arrow in the figure. This particular unresponsive peer
was not only known by the tracker, but was also mentioned by three other peers via
PEX. Assuming peers do not lie about who their neighbours are, this indicates the
unresponsive peer is firewalled or behind a NAT. In general, the quality of a tracker
response seemed to be mediocre. In the public tracker swarms, between 30% and
56% of the peers were reachable, with a median of 39%. The Fedora swarm had
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the worst tracker response: only 1 out of 44 peers received from the tracker were
reachable.

The quality of the tracker response for the Ubuntu swarm was exceptional, as
48 of the initial 50 peers were responsive. The graph of this swarm is shown in
Figure 3.3. We can see that a large central cluster exists, consisting of a mix of
responsive and unresponsive peers. Remarkable are two smaller seperated groups
of peers left and below this cluster with a high number of unresponsive peers.

The crawl logs tell us that the left cluster (Figure 3.4a) consists of Transmission
BitTorrent clients. They claim to be connected to unresponsive peers that all have
an IP in the 0.x.x.x, 1.x.x.x, or 2.x.x.x range.2 These address ranges were either
private or unallocated at the time of the crawls [3] and are useless for other peers.
This means the PEX implementation of certain Transmission versions is faulty.
The crawl logs indicate that at least versions 1.74 and 1.75b2 seem to be affected.

The bottom cluster (Figure 3.4b) consists of Deluge clients. Contrary to the
unresponsive peers in the Transmission cluster, these unresponsive peers do have
valid public IP addresses and reside in various subnets. So in theory, if these peers
are not firewalled, they should be connectable. Looking at the source code of
Deluge [16], we see that it binds to the libtorrent library [23]. This BitTorrent
implementation only includes peers in PEX messages that are found to be connec-
table and hence are very unlikely to be firewalled. Even if these peers were fi-
rewalled, they should at least be able to connect to other peers in the swarm and
eventually show up in PEX messages sent by non-Deluge peers. Oddly enough,
these peers are only reported in PEX messages sent by these Deluge peers. We can
only conclude that these peers may run a modified version of Deluge.

Whether the faulty PEX implementation of the Transmission clients and the pe-
culiar behaviour of these Deluge clients have a large impact depends on the popu-
larity of these clients. According to the top 10 popular clients shown in Figure 3.5
the impact should be small. Transmission has a small market share and Deluge is
not even in the top 10 (it is ranked #19).

Perhaps more worryingly is the existence of clients that report to support PEX,
yet never seem to send any PEX messages. These clients leech in a sense on other
PEX supporting clients. They can freely use received PEX messages without ever
having to reciprocate. Azureus’ behaviour, however, is caused by a bug. The
code responsible for creating PEX messages is unreachable due to uninitialized
fields [4].

Adjacency matrices

The connectivity in a graph can be visualized by taking the graph’s adjacency ma-
trix and plotting the non-zero elements of that matrix. We will discuss a single
swarm of the public tracker crawl as the other swarms exhibit similar visual fea-
tures. The adjacency matrix of this swarm is shown in Figure 3.6. The peers are

2Peers with a 0.x.x.x IP address were not drawn to reduce visual clutter.
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Figure 3.4a

Figure 3.4b

Responsive peer

Unresponsive peer

Tracker

Figure 3.3: Crawl of the Ubuntu swarm. Details in Figure 3.4.

19



(a) Transmission cluster (b) Deluge cluster

Figure 3.4: Unresponsive peers in the Transmission cluster have addresses in pri-
vate or unallocated IP ranges. The unresponsive peers in the Deluge cluster do not
belong to a particular IP range.
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Figure 3.6: The connectivity matrix of responsive peers in public swarm #10. A
dot at (i, j) means that i and j are claimed to be neighbours.

ranked by connection timestamp, i.e. a peer A has a lower index than peer B when
our crawler connected to peer A before peer B.

We have tried to compare this matrix to connectivity matrices found in other
works [2, 15], but we were unable to do a valid comparison. The peers in other
works are ranked by the time at which they join a swarm. Since in our experiment
we do not know when a peer has joined a swarm, we cannot rearrange the peers in
our adjacency matrix in a similar way. Even if we could rank the peers similarly, a
valid comparison would still be difficult:

• The matrices found in other works are a result from simulations with mostly
homogeneous peers, while our matrix is the result of crawling real world
swarms of heterogeneous peers.

• The matrices found in other works are static snapshots taken at a single point
of time. Our crawl inevitably spans a longer time frame.

• Matrices found in other works are true adjacency matrices, while our ma-
trices are constructed using PEX messages under the assumption that peers
only list other peers that they are actually connected with, but that they do
not list peers they have only heard of. This assumption is valid for major
open source clients, but we will see it does not hold in general.

Still, our matrices display visual patterns that resemble the ones that can be
found in [15], albeit less prominently. The authors of [15] run a simulation with
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Figure 3.7: The connectivity of the first 450 encountered peers in the same public
swarm as in Figure 3.6.

a modified tracker that assigns each peer to a certain clique. This modified tra-
cker creates swarm topologies that consist of many clusters with good inter-cluster
connectivity. These clusters appear in adjacency matrices as tight boxes. Inter-
cluster connectivity appears as dots outside these boxes, indicating two peers from
different clusters are connected.

We can see that our connectivity matrix in Figure 3.6 contains box patterns,
indicating the existence of clusters. The existence of these clusters, but also of
inter-cluster connections, is important for faster swarm discovery as the path length
between any two peers is greatly reduced when there are peers in a cluster with
connections to other clusters. Such peers serve as a gateway to other clusters.
The path length between any two peers in two connected clusters would be at
most 3 hops: the path consists of at most two cluster-gateway peers, and the final
destination.

We can find the number of paths of length k or less between peers i and j by ta-
king the adjacency matrix to the kth power. Figure 3.7 shows the adjacency matrix
A for the first 450 encountered peers in the crawled swarm and the corresponding
A2 matrix. The dense scatter plot of A2 suggests most of these 450 peers are within
a 2 hops distance. However, if we use d(i, j) to denote the distance between peers
i and j, then for this swarm it actually holds that

P (d(i, j) ≤ 2 | i, j ≤ 450) =
91, 891

4502
= 45%,

where 91,891 is the number of nonzero elements in A2. We computed this metric
for nine of the ten public swarms3 for values of k up to 5 (Table 3.1). Swarms
with more paths of length 3 or shorter, i.e. a higher probability P (d(i, j) ≤ 3),
show the tight-boxes pattern more clearly in their connectivity matrices, with the
notable exception of swarm #3. Instead of clusters, there seem to be two peers

3The crawler failed to thoroughly crawl Swarm #5 as discussed in Section 3.1.
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which claim they are connected to nearly all other peers. These two peers run an
Opera BitTorrent client and will be discussed in the next section. While not every
swarm shows signs of strong clustering, we do see that in at least 89% of the cases
the path between two random peers consists of at most 5 hops in the swarm graph
constructed by crawling, and hence, the majority of the swarm can be discovered
using few PEX messages.

3.3 Poor quality of PEX messages

During the experiments we found significant differences in the behaviour and the
quality of information in PEX messages. This observation has never been publi-
shed before. The variation can be attributed to PEX not being properly specified
in any BitTorrent Enhancement Proposal and thus implementers are free to decide
when and how often they send PEX messages, and how many and which peers they
include in these messages. In this section we will use data from our largest crawl,
i.e. the public tracker swarms. In the subsequent probability density figures, we
only include the data of the 4 most widely used, PEX supporting clients to reduce
visual clutter: µTorrent, Mainline, Transmission, and µTorrent Mac.4

Arrival and size

The first significant difference in behaviour is how quickly a BitTorrent client sends
a PEX message after the connection has been established (Figure 3.8). Transmis-
sion tends to send its first PEX message almost immediately after the handshake:
75% of the messages arrives within 4.5 seconds. The time it takes for the other
clients to send the first PEX message appears to be more or less uniformly dis-
tributed. As a result, 75% of the messages from e.g. µTorrent arrives after 19.5
seconds, with an average arrival time of 35.0 seconds. A possible explanation for
this “uniform distribution” could be that these clients use a global timer to send
periodical PEX messages, and therefore the time it takes to receive the first PEX
message depends on the time at which you connect to them. Since most messages
arrive within a minute (for e.g. Mainline, 95% of the messages), it is likely that this
global timer ticks every minute. The small fraction of the messages that arrives
after more than a minute are possibly delayed by congested uplinks.

There also seem to be two different kinds of behaviour when it comes to the
number of peers listed in a PEX message. Figure 3.9 shows the distribution for
Transmission and µTorrent. The Mac version of µTorrent and Mainline behave
quite similarly to the latter. Transmission appears to enforce a strict upper bound
of 50 peers in a PEX message, with the exception of version 1.11 and older. The
older versions of Transmission constitute less than 0.5% and the largest message
encountered contained 81 peers.

4Azureus is not included as it does not send PEX messages as discussed in Section 3.2.
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Figure 3.8: Empirical density function of the arrival of the first PEX message.
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Figure 3.10: Number of peer stored in a PEX message versus the number of bytes
received and sent to communicate with the PEX message’s sender.

The distribution of the PEX size for µTorrent varied much more. Obviously it
uses a higher size limit, if any. With a higher limit, the variation is natural as the
size of a peer’s neighbourhood set becomes a more influencing factor. Unfortu-
nately, it is hard to determine what size limit µTorrent uses. While 95% of the
messages contained at most 177 peers, we did find (albeit a few) larger messages.
Less than half a percent of the messages was larger than 362 peers, with the lar-
gest message containing 1332 peers. This largest message was sent by a more
recent version of µTorrent (version 1.9) compared to the older most common ver-
sion (1.8.3). Small PEX messages fortunately rarely occur. Less than half a percent
contain less than 5 peers. The same holds for Transmission.

Communication cost

We also found that the total amount of network traffic that was generated while
waiting for a PEX message to arrive varied. This communication cost is of interest
when you start a BitTorrent connection for swarm discovery purposes and not for
bartering. Since this communication cost certainly depends on the size of a PEX
message, we plotted the communication cost against the size of the received PEX
message in Figure 3.10. This should give us an overview of traffic generated by
non-PEX messages.

In this figure we have omitted PEX messages received from Opera clients. We
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found that these messages were extremely large compared to other messages re-
ceived from other implementations. They contained tens of thousands of peers,
with the largest received message listing 91,145 peers costing us 638,708 bytes of
downstream traffic. It is not likely that Opera sends its full neighbourhood set in
its first PEX message, since not many hosts would be capable of maintaining tens
of thousands of TCP/IP connections. Perhaps it sends a list of all the peers it has
seen before. If this is the case, a large portion of the peers are very likely to be
offline. Another explanation is that it may send a list of peers it has heard of and
this would be a serious security flaw. The connectivity matrices of the swarms in
which we encountered Opera clients tell us that the clients claim to be connected
to nearly all other responsive peers.

Omitting Opera, Figure 3.10 shows that it costs us at most 4 KB of data to
receive a PEX message in 95% of the cases. The great variance in the number
of bytes used for communication can be attributed to other BitTorrent messages
being sent by a peer. For example, if a peer is downloading a file quite rapidly, it
may send a lot of HAVE messages, informing others that it has new pieces of the
file. Transmission shows this variance clearly for its messages of size 50. When
we compare Transmission to µTorrent, we find that the latter is generally more
bandwidth efficient. 95% of the PEX messages sent by µTorrent costs us at most 4
KB, while Transmission needs at most 5 KB.

Responsive fraction

In Section 3.2 we already discovered that not all discovered peers were not res-
ponsive. Since the tracker was only used initially, most unresponsive peers were
reported in PEX messages. Figure 3.11 shows rather unsatisfying results. On ave-
rage, between 19.5% and 21.7% of the peers listed in a PEX message is responsive
depending on the client version. At most 48% of the peers listed in 95% of the mes-
sages sent by µTorrent and Transmission is reachable. The peak in the probability
distribution gets narrower and moves to the left if we consider how many peers
also report to support PEX. It gets even worse if we also consider whether they
actualy send a PEX message which is important for swarm discovery. On average,
only 14% of the peers in messages sent by µTorrent are useful for discovering more
peers, i.e. they are connectable and would send us a PEX message. For Transmis-
sion this percentage is 11%. More shockingly, 18.6% of the PEX messages sent
by Transmission are completely useless: none of the peers are reachable or send a
PEX message within 2 minutes. For µTorrent, this percentage is only 7.2%. The
large difference can be attributed to the existence of Transmission clients with a
buggy PEX implementation discussed in Section 3.2.

Assuming peers do not lie about their neighbourhood set, there are two reasons
a peer may not respond. It either could be firewalled, or it could be congested.
If a peer is congested, it is likely to have many neighbouring peers and likely to
be mentioned often in other PEX messages. Figure 3.12, however, shows that
only 5% of the unresponsive peers are mentioned more than 22 times. This might
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Figure 3.11: Quality of PEX messages.

indicate that most of the peers are firewalled, but keep in mind that our crawler
only collected at most 1 PEX message from each peer, which could have skewed
the distribution. Additionally, peers that are only mentioned a few times may still
be congested if they were active in other swarms we have not crawled. Therefore,
we cannot deduce anything about a peer’s reachability based on the number of
times it is mentioned.

Nevertheless, BitTorrent clients could improve their PEX messages by speci-
fying whether they are connected to the listed peers via an incoming or an outgoing
connection. These peers are often called remote peers and local peers, respectively.
Peers you are connected to via an outgoing connection are more likely to be also
connectable for others than peers you are connected with via an incoming connec-
tion. As mentioned before, the libtorrent library [23] chooses to only include local
peers in its PEX messages.

3.4 Remaining uptime of peers

For improved swarm discovery, we need to determine how quickly information re-
ceived from PEX messages decays. Since our crawler attempted to contact each
peer it saw in a PEX message and regularly checked their reachability, we can com-
pute the decay rate. Note that the crawler also continued to check the reachability
of a peer after an unsuccessful online check. We will, however, only consider the
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successful checks up to that first unsuccessful check. This means we underestimate
the remaining uptime of a peer. For example, it is possible that a peer was online
during 10 checks, but failed the 6th check for some reason. In this case, we would
estimate its uptime to be 5 periods instead of 10. We justify this underestimation:
When you want to join a swarm, you want a swarm peer to be reachable right now,
not several minutes into the future.

Hence, we define the remaining uptime of a peer to be the difference between
the timestamp of the last successful online check not preceded by an unsuccessful
check, and the timestamp of when we closed the connection. If there is no such
successful online check, we define the remaining uptime to be 0. Additionally, we
only consider the uptimes of peers we have connected to in the first half of the
measurement. This provides equal opportunity to observe remaining uptimes less
than τ

2 , where τ is the length of the measurement [34].
Figure 3.13 shows the overall remaining uptime. We can see that a quarter of

the peers no longer responds after 25 minutes and that after 105 minutes only half
remains. This means that if we want to know at least n responsive peers 25 minutes
in the future, we should at least now know (1− 1

4)
−1n = 4

3n responsive peers.
The shape of the plot suggests an exponential distribution at first sight. Unfor-

tunately, we were unable to find a suitable value for the rate parameter λ. Only
for uptimes larger than 20.000 seconds (5 hours and 33 minutes), the plot seems to
follow an exponential distribtution with λ = ln 2

8000 , i.e. a median of 8000 seconds
or 133 minutes. However, empirical data shows that the median is actually 105
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minutes, and hence, using Exp( ln 2
8000) as a model would be too optimistic. Instead

of finding a suitable distribution, we have outlined the uptime percentages up to
two hours in Table 3.2. This table will be used later in Section 5.4.
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Figure 3.13: Overall remaining uptime of peers in the public tracker crawl. Inset
shows a close-up of the first 2 hours.

Uptime larger than t (min) Fraction of peers
0 92.7%

10 85.7%
20 80.0%
30 75.0%
40 70.6%
50 66.7%
60 63.1%
70 59.8%
80 56.7%
90 53.8%

100 51.1%
110 48.7%
120 46.4%

Table 3.2: Uptime lookup table for the first 2 hours of Figure 3.13.
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Chapter 4

2-Hop TorrentSmell Design

In this chapter we present our swarm discovery algorithm called 2-Hop TorrentS-
mell based on our findings from the previous chapter. The algorithm consists of
two parts and an overview of the algorithm is given in Section 4.1. The first part is
the extended keyword search for finding the distributed trackers via Tribler’s over-
lay network and is described in more detail in Section 4.2. The second and core
part of the algorithm is the actual tracking of swarms via our pull-based RePEX
tracking algorithm and is described in Section 4.3. We discuss which of the design
requirements from Chapter 2 our algorithm meets in Section 4.4.

4.1 Overview

For swarm discovery it is important that you are able to find someone who has
information about the swarm you are interested in, in order to connect to the peers
in that swarm. In the case of central trackers, that someone is statically known. In
the case of the DHT, there is a lookup mechanism to find a node responsible for
maintaining the peer list.

For both the central tracker and the DHT nodes, it is important that they can
track a swarm. This is done by push-based system, where members of the swarm
announce their presence to the tracker or the corresponding DHT node.

Similarly, our 2-Hop TorrentSmell algorithm can be divided into two important
parts. Finding a peer who has information about a swarm is done using an extended
version of Tribler’s fast zero-server keyword search (Section 4.2) and tracking a
swarm is done using our RePEX algorithm (Section 4.3). The key idea in 2-Hop
TorrentSmell is that peers that have recently downloaded a file most likely have
more information about that file. Contacting those peers would be a good idea to
get closer to the swarm and resembles how ants follow a smell gradient.

Luckily, in Tribler this information is already available. Tribler Peers perio-
dically share their preferences, i.e. a list of their latest 50 downloads, using the
BuddyCast protocol [31]. Information received via BuddyCast is stored in a peer’s
MegaCache [30]. With just a few modifications, the existing keyword search [40]
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can be used to find peers who have recently downloaded a file by including them
in the search results. In our 2-Hop TorrentSmell algorithm, Tribler peers who have
downloaded a file will remember who were in the swarm. Since this informa-
tion will become old, they periodically refresh this information using the RePEX
tracking algorithm.

When the extended keyword search and the RePEX algorithm are in place, we
can join a swarm using 2 hops:

1. Perform a keyword search and select a file to download from the search
results.

2. Hop 1: Contact the peers listed for the swarm of the selected search result.
They should have recently downloaded that file and should be tracking the
swarm. Contacting them should give us a list of swarm peers.

3. Hop 2: Connect to the peers in the received list of swarm peers.

A pictorial overview of the 2-Hop TorrentSmell algorithm is given in Figure 4.1.

4.2 Extending Tribler’s keyword search

The 2-Hop TorrentSmell mechanism of finding tracking peers is integrated with
the existing keyword search. Our rationale is that when a user is searching for
content and selects a file to download, that download should start immediately. It
helps when a list of tracking peers is included with each search result, such that
when a user chooses a file to download, it does not first have to find a tracker. This
reduction of response time is especially needed in applications like video streaming
for improved user experience.

The current version of keyword search in Tribler uses two messages. The query
message is simple and only contains a string of keywords. The query reply message
contains a dictionary mapping infohashes to various metadata, including the torrent
name and classified category [20]. Upon receiving a search query, Tribler peers
currently look for content in their MegaCache that match the keywords and simply
send the results back.

In the extended keyword search for 2-Hop TorrentSmell, the metadata stored in
the dictionary of a query reply message is extended with two fields: “peer type”
and “peers”. Upon receiving a search query, we still look for matching content in
the MegaCache, but now will do the following for each search result:

• If we are not tracking this swarm, find all peers that have downloaded this
file according to our MegaCache. Use this list of peers for the “peers” field
and set the “peer type” field to “RePEX”.

• If we are tracking or are still seeding this swarm, set the “peer type” field to
“Swarm” and the “peers” field to our peer list (set K1 from the algorithm in
Section 4.3).

34



(a) Tribler peers track the swarms of their last 50 downloads using RePEX. A peer’s last
50 downloads are gossiped through BuddyCast.

“obama”

“obama” “obama”

“obama”

(b) A Tribler peer issues a keyword search for “obama” to its neighbouring peers in the
Tribler overlay.

Swarm “Obama 2008.avi”

RePEX peers: Peer1, Peer4, ...

No result

Swarm “Obama 2008.avi”

Swarm peers: Peer5, Peer7, ...

Swarm “Obama 2007.avi”

RePEX peers: Peer13, Peer44, ...

(c) The neighbours reply with peers found in their databases of stored BuddyCast mes-
sages and which are known to be tracking swarms that match the keywords. In case a
neighbour is tracking a matched swarm, it will reply with swarm peers instead.

Figure 4.1: Overview of 2-Hop TorrentSmell.
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By having tracking peers reply with swarm peers instead of itself as a tracker peer,
we save an extra roundtrip. This also saves us from having to introduce a new
message for querying tracking peers for a peer list.

4.3 Tracking the swarm using RePEX

As mentioned in Section 4.1, the tracker and peers stay in touch using a push-based
design. Hence, it is the peer who is responsible for regularly informing the tracker
of its presence. As discussed in Chapter 2, the tracker does not know whether
the peer is connectible and whether it is actually a member of the swarm without
performing a check. The same situation applies to the DHT solution.

We instead propose an algorithm, called RePEX, that puts the responsibility on
the tracker to contact the peers. This idea is not new. For example, in [19] so called
entry points are continously exploring the swarm. These entry points, however, are
also member of the swarm themselves. Peers running our RePEX algorithm on the
other hand are not continuously available in the swarm they are tracking.

In our RePEX algorithm, whose name is a contraction of the words ‘reconnect’
and ‘PEX’, a tracking peer maintains a cache of previously encountered swarm
peers that support PEX, for each of its last 50 downloads (the same number of
downloads as is gossiped via BuddyCast), and periodically reconnects to these
peers to check whether they are still reachable. During the check, the tracking peer
waits for a PEX message to build a list of secondary peers. These secondary peers
will be checked in the event one of the primary peers no longer seems reachable.

Algorithm details

For a given swarm, the RePEX algorithm creates and maintains a SwarmCache:
a set K1 of primary peers we know directly, and the sets K2p of secondary peers
we know indirectly through these peers, but are directly known by peer p ∈ K1

(Figure 4.2). These sets are restricted in size by configurable parameters S1 and
S2:

|K1| ≤ S1

|K2p| ≤ S2, ∀p ∈ K1

We use K to denote the set of both directly and indirectly known peers, i.e.

K = K1 ∪

 ∪
p∈K1

K2p

 .

To maintain the sets of peers, we will perform PEX pings. A PEX ping is the act of
connecting to a peer and waiting for the first PEX message to arrive. A PEX ping
is considered to be successful when the peer was connectable and replied with a
PEX message within reasonable time.
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K1

K2p

p

q

r

K2q

K2r

Figure 4.2: A SwarmCache consists of directly known primary peers (K1) and
indirectly known secondary peers (K2p for each p ∈ K1).

Let A(p) denote the predicate whether peer p seemed to be alive, i.e. whether a
PEX ping to peer p was successful, and let R(p) denote the received PEX reply.
For convenience, we will also use A as a filter on sets, where A(X) denotes:

{x | x ∈ X ∧A(x)}.

To determine whether we have checked whether a peer is alive, we will use C to
denote the set of peers to which we have sent a PEX ping.

The algorithm then proceeds as follows:

Input: K1

K2p for each p ∈ K1.

Output: K ′
1

K ′
2p for each p ∈ K ′

1

1. Perform a PEX ping on each peer p ∈ K1.

2. If |A(K1)| < S1, try PEX pinging peers q ∈ (K −K1) until we have found
(at least) S1 peers that are alive or until we have checked all known peers,
i.e. until the following condition holds:

|A(C)| ≥ S1 ∨ C = K.

3. If we have not found enough peers, i.e. C = K and |A(K)| < S1, use
a bootstrap mechanism, e.g. some form of distributed tracking (e.g. 2-Hop
TorrentSmell itself) or a central tracker, to get a set of peers B. PEX ping

37



the newly discovered peers minus the ones we have already pinged (B \K)
until we have found sufficient peers or have checked all known peers, i.e.
until the following condition holds:

|A(C)| ≥ S1 ∨ C = K ∪B

4. Construct a new set K ′
1 of connectable PEX supporting peers using all peers

known to be alive, preferring peers from K1. That is, for some chosen set Ĉ,
K ′

1 = A(K1) ∪ Ĉ, where

Ĉ ⊆ A(C \K1),∣∣∣Ĉ∣∣∣ = min(S1 − |A(K1)| , |A(C)|).

5. Each new set K ′
2p of secondary peers is constructed by choosing a subset

of peers received during the PEX ping. Formally, for each p ∈ K ′
1 and for

some R̂p, K ′
2p = R̂p, where

R̂p ⊆ R(p),∣∣∣R̂p

∣∣∣ = min(S2, |R(p)|).

4.4 Requirements discussion

Our proposed swarm discovery solution meets most of the requirements from Sec-
tion 4.4. It fails to meet the security requirement, but we will discuss how our
algorithm can be made more secure.

Since 2-Hop TorrentSmell algorithm is designed for Tribler, we will ignore the
bootstrapping required to join the Tribler overlay network,1 but note that it is re-
quired to be in the Tribler overlay for the keyword search to work. For executing
the RePEX algorithm for the first time, no bootstrapping is needed. Since a Tribler
peer executes this algorithm after it has downloaded a file and left the swarm, it
can use the peers in its neighbourhood set from when it was still in the swarm.

Our algorithm is scalable. Since each Tribler peer will start tracking a swarm
using the RePEX algorithm after it is done downloading, popular swarms will au-
tomatically give rise to more distributed trackers over which the load can be dis-
tributed. Lookups in our algorithm are also fast. Existing keyword search queries
already have a median response time of 325 milliseconds [40]. We expect that re-
trieving a peer list for a swarm should take less than a second, depending on the
number of search queries required, but further work is needed to implement and
test the extended keyword search component.

Still, there is room for improvement. Consider the scenario of a new, but popular
swarm. Since it is a new swarm, not many people have completed downloading the

1Bootstrapping in Tribler is discussed in [30].
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file, and hence, there are not many distributed trackers yet. As a result, the few
trackers can receive many peer list requests. The Tribler peers that are currently
in that new swarm, however, could perfectly well act as distributed trackers as
well. Unfortunately, it is not known by others that these downloading Tribler peers
are in that swarm. Since they are not known, they will not receive any peer list
queries. A possible solution could be to introduce a new gossip message, such that
the downloading Tribler peers can announce that they are downloading a particular
file.

Our algorithm does not take security directly into account. However, if there is a
reputation function that can rank peers on their perceived trustworthiness, then we
can make 2-Hop TorrentSmell more secure by preferring more trustworthy peers
to query. An example of a reputation system is BarterCast, which is based on
bandwidth contribution. BarterCast is used to effectively prevent freeriding beha-
viour [26].

Unlike current solutions, our algorithm is effective and takes connectivity issues
into account. The pull-based RePEX algorithm only keeps reachable, and hence,
connectable peers in the SwarmCache. Whether churn is effectively dealt with,
depends on how often the SwarmCache is refreshed, but also on the chosen para-
meters S1 and S2. We will investigate this in the next chapter.

A pull-based design, in addition to being useful for checking reachability, also
has a deployability advantage. The central tracker and DHT solutions work be-
cause there are sufficient BitTorrent clients supporting it and are announcing their
presence. Since RePEX peers are using the widely deployed PEX protocol to track
a swarm, our solution does not require that other BitTorrent clients support 2-Hop
TorrentSmell.
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Chapter 5

Implementation and Evaluation

We have implemented the RePEX algorithm discussed in the previous chapter and
added it to the main development branch of Tribler. An instrumented implemen-
tation was deployed with the beta release of Tribler 5.2 in late February 2010. In
Section 5.1 we describe the current implementation and how it fits in the current
architecture of Tribler. We discuss the performance of our RePEX algorithm in
Section 5.2 using the top 10 swarms of a popular BitTorrent tracker and the Ubuntu
swarm. To see how well the algorithm would perform in other swarms, we have
collected measurement data from users who were running Tribler 5.2b. The results
of the deployed algorithm is discussed in Section 5.3. In Section 5.4, we evaluate
the algorithm and consider possible improvements.

5.1 RePEX implementation

The part of the Tribler Core responsible for BitTorrent downloads/uploads can
conceptually be split into two components: Download and BT Engine. A Down-
load is the representation of a single running BitTorrent download/upload and is
responsible for starting and stopping the BT Engine. The BT Engine is responsible
for connecting to peers and tasks like requesting file pieces.

Download

BT 
Engine RePEXer

RePEX
Scheduler

State

Figure 5.1: Simplified overview of the RePEX implementation.
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For the implementation of the RePEX algorithm, we first added the RePEXer
component and wired it to the Download and BT Engine components (Figure 5.1).
When a Download is asked to run the RePEX algorithm, it pauses the BT Engine
and creates and sets up an instance of a RePEXer. The RePEXer then supplies the
BT Engine with instructions –as opposed to the BT Engine running autonomously–
and the BT Engine in return reports back. The SwarmCache is stored in the cor-
responding Download State.

To run the RePEX algorithm periodically, we have implemented the RePEX
Scheduler component that scans all Downloads for outdated SwarmCaches. When
it finds an old SwarmCache, it instructs the Download to start the RePEX algo-
rithm. After the algorithm has been executed, the scheduler continues scanning for
other outdated SwarmCaches.

Key Value

(IP,port)

Key Value
‘last seen’ Timestamp when this peer was last seen alive.

‘pex’ [((IP,port), PEX flags)]; Represents K2p.
‘prev’ Optional flag value, indicating this peer was also in

the previous version of the SwarmCache.

Figure 5.2: The SwarmCache data structure.

In order to determine the freshness of a SwarmCache, we record a last-seen
timestamp for each peer in the SwarmCache data structure (Figure 5.2). The
SwarmCache is a dictionary representing the set K1 from the algorithm. It asso-
ciates the address of a peer p in K1 with another dictionary containing the last-seen
timestamp and a list of peers representing the set K2p from the algorithm. This list
of peers stored under the ‘pex’ key also contains so called PEX flags. The PEX
flags are stored in a single byte as described in [37], but are not used anywhere in
the current implementation of our algorithm. Future versions can use these flags to
add bias to the selection of peers. Optionally, the SwarmCache may contain a flag
indicating whether a peer in K1 was also in the previous version of the Swarm-
Cache. This flag is currently only used for measurement purposes.

The cost of storing the SwarmCache data structure is as follows. Storing a pri-
mary peer costs 6 bytes for the IP address and port, 8 bytes for the timestamp, op-
tionally 1 byte for the ‘prev’ flag, plus the bytes needed to store secondary peers.
Storing a secondary peer costs 6 bytes for the IP address and port and 1 bytes
for the PEX flags. Given parameters S1 and S2, the upper bound of storage costs
would be S1(15 + 7S2) bytes per SwarmCache.

To refresh a SwarmCache quickly, the implementation checks several peers in
parallel. Currently, the implementation is configured to use a limit of 4 TCP sockets
initially. When one of the peers failed to respond, it is allowed to use 8 TCP sockets
to check secondary peers. As discussed in Chapter 3, a large fraction of these
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peers (received via PEX) are likely unreachable. Using more sockets allows us to
mitigate multiple timeouts accumulating in the algorithm’s runtime.

The current implementation also performs filtering on the PEX messages when
refreshing the SwarmCache. As we have seen in Chapter 3, certain Transmission
clients send PEX messages with private or unallocated IP addresses. These IP
addresses are removed from the PEX messages. The current implementation also
only considers PEX messages that contain at least one IP address after filtering. If
a received PEX message is empty after filtering, the peer that sent the message is
not deemed to be “alive”, since that peer would be useless for discovering other
swarm members.

The initial SwarmCache for a swarm is constructed when we are still bartering.
The existing Download component already keeps track of the current neighbourhood
set. We have slightly modified this data structure and added for each peer in the
neighbourhood set a PEX message counter and a flag indicating whether it is a
local or a remote peer. The PEX message counter is used to tell whether a peer
in the neighbourhood set has sent a PEX message. Note that only local peers are
known to be connectable. Upon leaving the swarm, i.e. when the Download stops,
we select local peers that have sent a PEX message from the neighbourhood set
and store it in the SwarmCache.

5.2 RePEX performance

We conducted a small experiment to analyse the performance of the implementa-
tion. In January 2010, over the course of 57 hours and 23 minutes, we ran the
RePEX algorithm on a single client and let it create and maintain a SwarmCache
for the 10 largest swarms on a public tracker and the Ubuntu swarm. We configured
the implementation to store S1 = 4 peers in the SwarmCache, and S2 = 10 peers
received via PEX for each peer in the SwarmCache. SwarmCaches were refreshed
when they became older than 10 minutes.

Refresh costs

Figure 5.3 shows the performance of the RePEX algorithm for one of the swarms.
For this particular swarm we can see in the first plot that each refresh of the Swarm-
Cache cost less than 20 KB (bootstrap costs excluded). This was not the case for
all swarms. We recorded 4 refreshes that required more than 100 KB of network
traffic. These incidental high costs are caused by certain clients sending enormous
PEX messages.

The variation in network traffic is caused by the degradation of the SwarmCache.
The second plot in Figure 5.3 shows the size of the SwarmCache, how many peers
are replaced each refresh, and the number of peers received via PEX divided by the
SwarmCache size. When a peer no longer responds, more connections are made
and more network traffic is generated to find a replacement.
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Figure 5.3: Performance of successive RePEX refreshes every 10 minutes.
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In the third plot of Figure 5.3 we can see how often the RePEX algorithm has to
fall back to a bootstrap mechanism –which is in this case the central tracker– and
how many peers it receives. Since the experiment started with empty SwarmCaches
for each swarm, the first bootstrap is always required. The subsequent tracker calls,
however, are caused when a replacement needs to be found, but none of the peers
received via PEX earlier are responsive. Table 5.1 shows the number of times a
bootstrap was needed for all the swarms. In all instances, the tracker fallback rate
is less than once per hour. Since a tracker call is nothing more than a simple HTTP
GET request [36], these costs are negligible. When a tracker does not support
compact peer lists, it needs about 73 bytes per peer [32]. Since a tracker response
usually contains 50 peer addresses, 4 KB would be a safe upper bound for the costs
of a tracker call.

Swarm #Refreshes #Bootstraps Bootstrap rate (1/h)
#1 266 13 0.23
#2 266 12 0.21
#3 266 38 0.66
#4 266 50 0.87
#5 266 23 0.40
#6 265 27 0.47
#7 265 24 0.42
#8 265 6 0.10
#9 265 7 0.12
#10 266 22 0.38

Ubuntu 265 47 0.82

Table 5.1: The number of refreshes and bootstraps per swarm.

The number of connection attemps, connections made and the amount of ge-
nerated network traffic are obviously correlated. Figure 5.4 shows that they are
approximately linearly related. Furthermore, 95% of the refreshes require 13 KB
or less. On average, a refresh costs 8.5 KB.

Quality of the SwarmCache

To determine the quality of the SwarmCache, we need to consider the scena-
rio where some Tribler peer queries our SwarmCache via the extended keyword
search. The quality of the SwarmCache is then the fraction of responsive peers. A
query can arrive between any two refreshes, at time ti < t < ti+1. Let Kti denote
the SwarmCache at time t. We assume that all peers replaced at time ti+1 are not
responsive during the interval. The quality of a SwarmCache Kti then is

Q(Kti) = 1−
∣∣Kti \Kti+1

∣∣
|Kti |

.
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Figure 5.4: Network traffic versus the number of (a) connection attempts and (b)
connections made.
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Note that the interval between two refreshes is not necessarily constant as refreshes
are scheduled sequentially by the scheduler, not concurrently. Therefore, when
computing the distribution of the SwarmCache quality for a specific swarm, we use
the length of the intervals as the weight for each Q. The quartiles of the distribution
of Q for each swarm are shown in Figure 5.5. We can see that at least in 75% of
the time at least half of the cache is responsive for swarms #5, #6 and #8, and at
least 75% of the cache for the other swarms.

The box plot also shows that the quality of the SwarmCache sometimes drops
to 0. This means that if someone would query the cache at these times, he would
not be able to use the contents of this cache to join the swarm. Table 5.2 lists the
number of intervals in which the quality dropped to 0.

Swarm #Refreshes #Intervals where Q = 0

#3 266 1
#4 266 1
#5 266 2
#6 265 5

#10 266 1

Table 5.2: The number of intervals in which the quality of the SwarmCache was 0
for popular swarms.
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Figure 5.5: SwarmCache quality for popular swarms.
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5.3 Deployment

We have deployed the current implementation of our RePEX algorithm with the
beta version of Tribler 5.2. The configuration was similar to the setup used in
Section 5.2, except SwarmCaches were refreshed every 20 minutes instead of every
10 minutes.1 Additionally, the implementation recorded performance data to a
log file. From March 9th to March 30th, 2010, we crawled the Tribler overlay
network to retrieve these logs. During this crawl, we have encountered 149 Tribler
PermIDs [41] with the deployed algorithm, but only 34 of them actually performed
the RePEX algorithm on swarms. In total, 200 unique swarms were tracked, of
which two swarms were each tracked by two Tribler peers. Seven of the 34 Tribler
peers tracked 10 or more swarms. For half of the tracked swarms, the SwarmCache
was refreshed at most 9 times.

A first look at the collected performance data shows unexpected results. Many of
the SwarmCache refreshes failed and resulted in an empty SwarmCache. Compu-
ting the fraction of failed refreshes for each swarm, i.e. the quotient of the number
of failed refreshes and the total number of refreshes for a swarm, reveals two peaks
in its distribution (Figure 5.6). For a small portion of swarms tracked by the Tri-
bler beta users, the RePEX algorithm manages to find peers for in the SwarmCache
most of the time, but for the majority of the tracked swarms, it seems to fail nearly

1The SwarmCache refresh rate parameter was not set to 10 minutes for the beta release of 5.2 due
to a forgotten commit.
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constantly.
To investigate this matter, we have picked a swarm with a high failure ratio.

The peer tracking this particular swarm attempted to refresh the SwarmCache 306
times. Of the 306 attempts, 294 failed. For each failed refresh, however, connec-
tion attempts to swarm peers were made. In 276 of the failed refreshes, between
1 and 28 BitTorrent connections were actually established, but not a single useful
PEX message was received. For each of the 18 remaining failed attempts, 6 peers
were tried in vain. We can see that this was a rather small swarm. Since no PEX
messages were received, we conjecture that, under the assumption each swarm
peer actually supported PEX, the swarm mainly consisted of seeders. Seeders are
normally not connected to each other, and hence, in a seeders-only swarm, seeders
do not have any neighbours. That means that a PEX message from a seeder in a
seeders-only swarm would be empty, if sent at all. Since our current implementa-
tion does not consider empty PEX messages, none of the seeders in a seeders-only
swarm would be included in the SwarmCache.

Our algorithm also performed worse in the wild when it comes to bootstrapping.
For 192 SwarmCaches, a central tracker or the DHT had to be contacted in more
than 90% of the refresh attempts. Part of this is due to seeders-only swarms we just
discussed and part of this is due to the larger refresh interval. However, we also
observed that the time between two refreshes was sometimes much longer than the
configured refresh interval. The much longer intervals were simply caused by users
logging off and restarting Tribler at a later time. One extreme example can be seen
in Figure 5.7 where a user was offline for two days.

Unsurprisingly, in cases where our RePEX algorithm did not constantly fail, we
observed that the larger refresh interval reduced the quality of the SwarmCaches.
Figure 5.8 shows the SwarmCache quality for swarms tracked by a particular Tri-
bler client. We will ignore the swarms with a median quality of 0 as these are
instances with a high fail ratio. We see that the lower quartile even hits 0 for
swarms #4, #5, #13, and #15. For these swarms, there were a significant number
of intervals where the SwarmCache quality was 0 as shown in Table 5.3, with the
exception of swarm #5. For swarm #5, the quality distribution is skewed because
the Tribler peer apparently went offline for 7 hours and 47 minutes between two
refreshes. For swarms #3, #7, and #14, the RePEX algorithm did relatively well.
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Figure 5.7: Performance of RePEX with a refresh interval of 20 minutes.
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Swarm #Refreshes #Intervals where Q = 0

#3 73 8
#4 28 9
#5 71 4
#7 30 2

#13 27 12
#14 62 0
#15 36 18

Table 5.3: The number of intervals in which the quality of the SwarmCache was 0
for swarms tracked by PermID #40.
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5.4 Evaluation

We have seen that 95% of the time the cost of our RePEX algorithm is 13 KB
or less per refresh. For a refresh interval of 10 minutes and the tracking of 50
swarms, the RePEX algorithm costs 65 KB/min or 1.1 KB/s. Compared to running
a Kademlia DHT node, this cost is rather high. Running a Kademlia DHT node
only costs 12.10 KB/min [32]. However, 1.1 KB/s is still within a reasonable range
for today’s broadband connections.

The challenge is to tweak the configuration parameters, such that we can de-
crease the costs, yet increase the quality of refreshed SwarmCaches, and reduce the
number of times the algorithm relies on a bootstrapping mechanism, i.e. currently,
how many times central tracker is called. Using a simple binomial probability mo-
del, we can model the probability that the quality of a SwarmCache becomes 0 as
follows:

P (Q = 0) = (1− p(t))S1 ,

where p(t) is the probability that a peer is still online after t minutes. We will use
Table 3.2 to estimate p(t). Increasing the refresh interval from 10 minutes to 20
minutes, would increase P (Q = 0) with a factor of

P (Q = 0 | S1 = 4, p(20min) = 0.800)

P (Q = 0 | S1 = 4, p(10min) = 0.857)
= 3.83.

If we do not want this probability to grow when increasing the refresh interval to
20 minutes, then we need to store S1 ≥ 7 peers in the SwarmCache instead. This,
however, would also mean we need to make more successful connections each
refresh, which would increase the bandwidth cost. Assuming linear growth, the
gain would be minimal:

100% · (1− 10min
20min

· 7peers
4peers

) = 12.5%.

If we want to effectively reduce the number of times the algorithm has to rely on
the central tracker, we must know the effect of the chosen parameters. We can
model the chance that the tracker is contacted as follows:

P (bootstrap) = b(S1, S2) =

S1∑
i=0

P (X = i | X ∼ Bin(S1, p1)) · P (Y ≤ S1 − i− 1 | Y ∼ Bin(S1 · S2, p2)),

where p1 = p(10min) = 0.857 and p2 = 0.14p1. This model assumes the Swarm-
Cache contains S1 primary peers and for each primary peer S2 secondary peers.
The tracker is contacted when not enough secondary peers are alive to replace the
non-responding primary peers. The factor 0.14 in p2 represents the useful fraction
of a PEX message.
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Using this model, we can compute the value of b for our previously chosen
values of S1 and S2:

b(4, 5) = 6.00%

Comparing this with Table 5.1, we notice it underestimates the probability. This
can be attributed to the fact that this model assumes each SwarmCache refresh is
independent. Nevertheless, we can use this model to predict the effects of changing
the parameters S1 and S2.

Doubling S1 results in a b(2S1, S2) = 2.62%. These are slightly better odds,
but as previously argued, this will cost more bandwidth. Doubling S2 on the other
hand results in b(S1, 2S2) = 0.71%. This is a much better improvement, but
at the expense of disk storage. Fortunately, disk space is much less scarce than
bandwidth.

A more effective way to reduce the chance of contacting the tracker would be to
improve the chance a secondary peer is reachable and supports PEX. However, it
is hard to improve p2 = 0.14p1. Improving the factor 0.14 would mean we would
have to improve existing PEX implementations and deploy them. Improving p1
means we would have to incent peers to stay online longer. Instead, we can improve
the algorithm by not relying on old secondary peers in the current SwarmCache,
but by preferring fresh secondary peers we may already know for the refreshed
SwarmCache. Assuming a PEX message contains on average 50 peers, our new
function b′ becomes:

b′(S1, S2) =

S1∑
i=0

P (X = i | X ∼ Bin(S1, p1))

50i∑
j=0

P (Z = j | Z ∼ Bin(50i, 0.14))·

P (Y ≤ S1 − i− j − 1 | Y ∼ Bin(S1 · S2, p2)).

The new model predicts this improvement would be quite effective, as the chance
that the algorithm has to bootstrap drops below one percent:

b′(4, 5) = 0.04%

We have also seen that our RePEX algorithm has some shortcomings. In small
and seeders-only swarms it fails to create an updated SwarmCache. Only consi-
dering useful PEX messages, i.e. PEX messages with at least one IP, is backfiring
on us in this situation. We will have to study small and seeders-only swarms in
more detail. We will also have to consider when the RePEX algorithm is allowed
to include peers in a SwarmCache that are reachable, but did not send a non-empty
PEX message.

Another deficiency of our algorithm is that it does not consider the phenome-
non of peers going offline for hours or even days. In such circumstances, it is
often pointless trying to check whether the peers in the SwarmCache are still alive.
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Instead, it would be better to immediately use e.g. a distributed tracker found via
2-Hop TorrentSmell and use that to bootstrap the SwarmCache.
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Chapter 6

Conclusions and Future Work

In this chapter, we give a summary of the problem we have solved and state our
conclusions. We then propose future work that can be done to improve our current
solution.

6.1 Summary and Conclusions

Swarm discovery is the problem of finding peers that are downloading the same
file. The current main solution in BitTorrent is to use a central tracker which tracks
all peers in a swarm. The centralized approach of this solution, however, is not
scalable at all. Other currently deployed solutions are the DHT and the PEX ex-
tension protocol. The DHT does not provide workable scalability and is known
to be slow, something that is unacceptable for highly demanding applications such
as P2P television. PEX itself was designed to speed up the existing swarm disco-
very solutions, but was not designed to be used standalone. We have shown that
the current PEX implementations are not efficient. Only a small fraction of peers
discovered through PEX are actually reachable.

In order to solve the swarm discovery problem more effectively, we have designed
2-Hop TorrentSmell on top of Tribler’s keyword search and the PEX protocol. We
have implemented the RePEX algorithm that relies on PEX, which is one of the
two parts of 2-Hop TorrentSmell. From analysis and measurements, we can state
our most important conclusions.

• 2-Hop TorrentSmell is based on a fast infrastructure. By leveraging the exis-
ting zero-server keyword search mechanism of Tribler featuring a median
response time of 325 milliseconds, we expect that finding peers for a swarm
would take less than a second.

• 2-Hop TorrentSmell is scalable. Popular download swarms give rise to more
distributed trackers, over which the load can be distributed.

• 2-Hop TorrentSmell is effective. The pull-based design of RePEX checks
the connectability of primary peers in the SwarmCache. In large swarms
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the median fraction of responsive peers in the SwarmCache is at least 0.75,
which is almost twice as high as the median fraction of responsive peers in
a tracker response and more than 3 times the median fraction of responsive
peers in a PEX message.

• 2-Hop TorrentSmell has a deployability advantage. Tracking of swarms is
done by leveraging existing protocol features. This means that members of
the swarm are not required to implement 2-Hop TorrentSmell. Only a few
will suffice as they will track the swarm using the widely deployed PEX
protocol.

• 2-Hop TorrentSmell can be made secure using a reputation system. Such a
system would provide a reputation function that can be used to rank Tribler
peers, so we can send queries to peers we perceive as most trustworthy.

We believe that 2-Hop TorrentSmell is a simple, yet effective solution for tracking
large BitTorrent swarms and can be tweaked and extended to support smaller swarms
as well. By leveraging existing protocols, we can incrementally work our way to a
fully, distributed P2P network, devoid of any central components.

6.2 Future Work

The evaluation of our RePEX implementation showed that the current version of
2-Hop TorrentSmell will only work for large swarms. The shortcomings of our
algorithm and the possible improvements are as follows:

• The current implementation does not work for small and seeders-only swarms.
We need to study the behaviour of BitTorrent clients in these small swarms
if we want to effectively track these swarms. We also have to consider a
more lenient RePEX algorithm that stores peers that are reachable, but did
not send a useful PEX message.

• The current implementation will indiscriminately try to refresh a Swarm-
Cache, regardless of how old it is. Peers that were offline for an extended
period of time should not try to refresh an ancient SwarmCache when they
come back online. Instead, they should bootstrap right away.

• The scalability of our solution can be improved by introducing new Tribler
overlay messages to disseminate information of current downloaders. In the
current solution, only peers that have finished downloading are known to be
tracking. However, there is no reason why a Tribler peer that is currently
downloading a file cannot also serve as a distributed tracker.

• The current implementation only uses secondary peers stored in the Swarm-
Cache for backup. We can greatly reduce the number of times the RePEX
algorithm needs to bootstrap by preferring new secondary peers found during

56



a refresh over the older stored secondary peers. The current implementation
does not consult newly found secondary peers at all during a refresh.

Addtionally, we have not fully implemented 2-Hop TorrentSmell yet. We should
implement the missing extended keyword search mechanism and subject it to ex-
tensive measurements. Furthermore, research on distributed reputation systems
should be of use to make Tribler’s keyword search more secure.
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Appendix A

RePEX Specifications

This document presents the specifications of the RePEX module for Tribler. In Sec-
tion A.1 we give an overview of the RePEX source code. In Section A.2, we give an
overview of the original architecture of Tribler’s download engine. In Section A.3,
we describe the integration of the RePEX module and the interaction with the exis-
ting components. In Section A.4, we explain the storage of the SwarmCache data
structure and its API. In Section A.5, we list the configuration parameters of the
RePEX module.

A.1 RePEX source code

SVN: http://svn.tribler.org/abc/branches/mainbranch/
Revision: 32289

Tribler/Core/DecentralizedTracking/repex.py The main file of RePEX. This
file contains:

• Configuration parameters (Section A.5).

• RePEXerInterface interface – Defines the public methods that Tribler’s down-
load engine can call.

• RePEXer class – Implements RePEXerInterface. Responsible for running
the RePEX algorithm, i.e. updating the SwarmCache for a Download. For
each Download in RePEX state, an instance is made.

• RePEXerStatusCallback interface – Defines the required methods to observe
RePEXer instances.

• RePEXScheduler class – Implements RePEXerStatusCallback and is a sin-
gleton. Responsible for starting Downloads in RePEX state and observes all
RePEXer instances.
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• RePEXLogger class – Implements RePEXerStatusCallback and is a single-
ton. Logs information about SwarmCache refreshes for measurement pur-
poses.

• RePEXLogDB class – Singleton class. Contains logs on SwarmCache re-
freshes.

Tribler/Core/Statistics/RepexCrawler.py Crawler used in Section 5.3 to retrieve
logs on SwarmCache refreshes.

Modified files:

Tribler/Core/API.py Documents RePEX additions to the Tribler API.

Tribler/Core/simpledefs.py Introduces DLSTATUS REPEXING as a new Down-
load status.

Tribler/Core/DownloadState.py Modified to handle the new Download status.
Provides a new public API method called get swarmcache().

Tribler/Core/Session.py Downloads can now be created and started with some
initial download status.

Tribler/Core/APIImplementation/DownloadImpl.py Propagates initial down-
load status to SingleDownload. Responsible for loading and storing a SwarmCache
from and to the Download’s persistent state (pstate).

Tribler/Core/APIImplementation/SingleDownload.py Responsible for instan-
tiating and hooking up a RePEXer when started in DLSTATUS REPEXING. Is
now also notified when a Download is restarted.

Tribler/Core/BitTornado/download bt1.py Refactored the startRerequester() me-
thod into createRerequester() and startRerequester().

Tribler/Core/BitTornado/SocketHandler.py Contains network traffic counters
for measurement purposes.

Tribler/Core/BitTornado/Encrypter.py Informs a RePEXer instance on events
triggered by a BitTorrent connection.

Tribler/Core/BitTornado/Connecter.py Informs a RePEXer instance on events
triggered by a BitTorrent connection. Counts received PEX messages.

Tribler/Core/BitTornado/DownloaderFeedback.py Exposes the PEX message
counter for each peer in the neighbourhood set.
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Tribler/Core/BitTornado/Choker.py The connection lost() method was made
more robust to work with the RePEX code.

Tribler/Core/BitTornado/MessageID.py Defines message IDs for the crawler
used in Section 5.3 to retrieve logs on SwarmCache refreshes.

Tribler/Core/Overlay/OverlayApps.py Registers the crawler used in Section 5.3
to retrieve logs on SwarmCache refreshes.

Tribler/Main/tribler.py Starts the RePEXScheduler and RePEXLogger.

Tribler/Main/vwxGUI/LibraryItemPanel.py Handles the new Download sta-
tus.

Tribler/Policies/RateManager.py Handles the new Download status.

A.2 Original architecture of Tribler’s download engine

restart()
stop()
setup()
set_state_callback()

Download

SingleDownload BT1Download

Rerequester

Downloader

PiecePicker

Choker

Connecter

Encoder

Session *

DownloadState
BitTorrent engine

Figure A.1: Original architecture.

A simplified version of Tribler’s architecture containing the relevant classes prior to
the addition of the RePEX module is shown in Figure A.1. In Tribler, a download
is represented by an instance of the Download class. All Downloads are managed
by the Session singleton. The state of a Download is represented by an instance
of the DownloadState class. A Download does not own an instance of Download-
State, but it instead creates a new instance everytime its state is queried through the
set state callback() method.

When a Download is created or restarted, an instance of SingleDownload is crea-
ted, which represents the internal classes of the BitTorrent engine. SingleDown-
load creates an instance of the BitTorrent engine by instantiating BT1Download
and then calling BT1Download.startRerequester(). This method creates an ins-
tance of Rerequester (the only class BT1Download does not instantiate on its own)
and starts it. The Rerequester is responsible for periodically contacting the tracker.
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When it receives a peer list from the tracker, it sends it to the Encoder by calling
Encoder.start connections().

The other classes of the BitTorrent engine are notified when a successful connec-
tion has been made, such that e.g. PiecePicker can start sending piece requests. For
more details on the BitTorrent engine, please consult “How BitTornado Works” by
Arno Bakker.1

A.3 Integration of the RePEX module

BitTorrent engine

restart(in initialdlstatus =None)
stop()
setup()
set_state_callback ()

Download

restart(in initialdlstatus )
get_swarmcache()

SingleDownload
BT1Download

Rerequester

Downloader

PiecePicker

Choker

Encoder

repex_ready(in infohash, in connecter, in encoder, in rerequester)
repex_aborted(in infohash, in dlstatus)
rerequester_peers(in peers)
connection_timeout(in connection)
connection_closed(in connection)
connection_made(in connection, in ext_support)
got_extend_handshake(in connection, in version)
got_ut_pex(in connection, in d)

RePEXerInterface

__init__(in infohash, in swarmcache)
connect(in dns, in id)
bootstrap()
get_swarmcache()
attach_observer()
detach_observer()

RePEXer

RePEXScheduler

Session *

*repex_abort(in repexer, in dlstatus)
repex_done(in repexer, in swarmcache, in shufflecount, in bootstrapcount, in datacost)

RePEXerStatusCallback

RePEXLogger RePEXLogDB

get_swarmcache()

DownloadState

Connecter

RePEX module

Figure A.2: Integration of the RePEX module.

Figure A.2 depicts the integration of the RePEX module. In order to run the Re-
PEX algorithm for a particular swarm, the RePEXer class needs to be able to start
connections, get notified on connection events, and be able to bootstrap. For this
it needs an instance of the Encoder, Connecter and Rerequester classes. Single-

1http://www.tribler.org/trac/attachment/wiki/
TriblerArchitecture/BitTornado-operation-20050916.pdf?format=raw
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Download provides these instances by calling the RePEXer’s repex ready() me-
thod. SingleDownload is also responsible for creating a RePEXer instance when
the Download is started in the RePEX state.

A Download can be started in the RePEX state by calling the restart() method on
a Download in the stopped state with the initialdlstatus argument set to DLSTA-
TUS REPEXING. Since the Download was not running, it creates a new instance
of SingleDownload and passes the initialdlstatus through the download configu-
ration dictionary. Prior to instantiating the BitTorrent engine, SingleDownload
creates an instance of the RePEXer class. It continues with hooking the RePEXer
into the BitTorrent engine by pausing the engine, creating the Rerequester without
starting it, and adding the RePEXer to the Encoder and Connecter (see Single-
Download.hook repexer()). Finally, it informs the RePEXer it is ready to start the
RePEX algorithm by calling repex ready().

Originally Download’s restart() method was a no-op for a running download.
Now that a Download can be in an additional state, this is no longer the case. A
call to Download.restart() is now always delegated to SingleDownload. If the Re-
PEX algorithm is running and initialdlstatus is not set to DLSTATUS REPEXING,
SingleDownload will interpret this command as a request to abort the RePEX al-
gorithm and to continue normally, i.e. seeding the swarm. When requested to stop
RePEXing or when being shutdown, SingleDownload unhooks the RePEXer (see
SingleDownload.unhook repexer()) and informs the RePEXer it has to abort by
calling its repex aborted() method.

Stopped Downloads are periodically scheduled to refresh their SwarmCache.
The RePEXScheduler achieves this by periodically requesting a list of Download-
States from Session using Session’s set download states callback() method and
scanning for a Download in the stopped state with an outdated SwarmCache. When
it has found a suitable Download, it stops requesting a list of DownloadStates from
the Session and starts the Download in the RePEX state. When a Download is done
RePEXing or is aborted, the scheduler is notified via the RePEXerStatusCallback
interface and continues to periodically request and check a list of DownloadStates.

To receive notifications from all RePEXer instances, the RePEXScheduler re-
gisters itself on startup using RePEXer’s attach observer class method. The Re-
PEXScheduler is instantiated and started in ABCApp.startAPI(), which is located
in Tribler’s main script, tribler.py. In the same location, the RePEXLogger gets
started.

A.4 The SwarmCache data structure

The SwarmCache data structure is discussed in Section 5.1 and shown in Figure 5.2.
The SwarmCache is stored in the persistent state (pstate) of a Download. This per-
sistent state is automatically loaded and stored by Tribler’s Session and Launch-
ManyCore classes.

A Download’s SwarmCache is accessible through its DownloadState. Depen-
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ding on the Download’s status, DownloadState can return one of the following:

• If the Download is running, i.e. downloading or seeding, a sample of the
current neighbourhood is returned. This sample only includes local and PEX
supporting peers.

• If the Download is not running, i.e. its status is stopped, the last stored
SwarmCache in the Download’s pstate is returned. If there is none, an empty
SwarmCache is returned.

A Download will store a SwarmCache to its pstate when it is being stopped. If it
was running the RePEX algorithm, it will query the associated RePEXer instance
(via SingleDownload) for an updated SwarmCache and store the result. Otherwise,
it will query its DownloadState for a possibly updated SwarmCache instead.

A.5 Configuration parameters

The current implementation is configurable by changing the configuration para-
meters. The parameters themselves are currently module variables, but should
probably be moved to the Session config in the future. Below we describe each
parameter and its current (arbitrarily chosen) value.

REPEX SWARMCACHE SIZE = 4
The preferred size of the SwarmCache. This parameter corresponds with S1

in Section 4.3 of this thesis.

REPEX STORED PEX SIZE = 5
The number of peers to sample from a PEX message. This parameter cor-
responds with S2 in Section 4.3 of this thesis. The sampling currently takes
place right after receiving and filtering the PEX message.

REPEX PEX MINSIZE = 1
This parameter acts as a filter. If a received PEX message is too small, we
do not consider the PEX ping to be successful. Note that this parameter is
dangerous for small swarms.

REPEX INTERVAL = 20*60
How often a SwarmCache needs to be refreshed in seconds. The algorithm
is executed for a SwarmCache if its age is larger than this parameter’s value.

REPEX MIN INTERVAL = 5*60
The minimum number of seconds between RePEX attempts. In case run-
ning the RePEX algorithm fails for a certain swarm and produces an empty
SwarmCache, we do not want to start another attempt immediately. Doing
so might result in starvation.

REPEX PEX MSG MAX PEERS = 200
PEX messages containing more peers than this parameter are truncated.
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REPEX LISTEN TIME = 50
The number of seconds within a PEX message must arrive after a successful
BitTorrent connection is made for a PEX ping. If a PEX message did not
arrive in time, the PEX ping is considered not to be successful.

REPEX INITIAL SOCKETS = 4
The maximum number of sockets used initially when executing the RePEX
algorithm.

REPEX MAX SOCKETS = 8
The maximum number of sockets used when executing the RePEX algorithm
after a certain condition has been met: Either a PEX ping failed for a peer in
K1 or all peers in K1 have been checked.

REPEX SCAN INTERVAL = 1*60
How often the RePEX scheduler scans for outdated SwarmCaches in se-
conds.
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