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Abstract

An accurate representation of two-dimensional airfoil characteristics measured
in a wind tunnel generally requires the inclusion of corrections for interference
effects that exist due to the presence of the wind tunnel walls. This chapter
discusses the most commonly used correction schemes both for streamlined and
separated flow regimes. The classical correction method based on small velocity
perturbations gives very good results up to angles of attack of about 20 degrees
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for chord-to-tunnel height ratios c/h up to 0.36. Even with separation of the
boundary layer at a chord location of 30% the corrected pressure distribution
matches that of a much smaller model with c/h = 0.15. In the deep-stall range
of angles of attack, where the flow separates from the leading edge, the method
based on the wake analysis by Maskell with a blockage factor of 0.96 seems
to give good results for two-dimensional models up to c/h values of 0.27. A
comparison with measurements corrected with the matrix version of the pressure
signature method, which uses the pressure distribution on the tunnel walls, shows
that the latter leads to slightly larger corrections. Maskell’s method, for which
the blockage parameter of 0.96 apparently is based on a single measurement of
a two-dimensional flat plate, seems to give better results when a value of 1.03 is
used.

Keywords

Wall corrections · Wake blockage · Solid blockage · Wake buoyancy · Lift
interference · Deep stall · Maskell method · Pressure signature method ·
Source-source-sink method

Introduction

The two-dimensional aerodynamic characteristics of dedicated airfoils play a promi-
nent role in the design of wind turbine blades. As long as the flow is attached and
the airfoil surface is smooth, numerical codes are able to predict the airfoil force and
moment coefficients to a satisfying degree of accuracy. However, when the angle of
attack increases beyond the stall angle and boundary layer separation starts to move
forward, or when the leading edge area of the airfoil is contaminated or degraded,
or when flow dynamics play a significant role, these predictions increasingly lose
their accuracy. At this point, wind tunnel measurements are still indispensable to
determine the performance. Due to considerations of energy consumption and flow
quality and stability the great majority of wind tunnel tests is performed in closed
test sections. When a wind tunnel model is placed inside a closed test section the
presence of the wind tunnel walls alters the flow field around the model. The model
and its wake partly block the passage leading to a local increase of the velocity and
the expanding wake induces a pressure gradient in flow direction referred to as wake
buoyancy. In addition, the curvature of the streamlines associated with lift generated
by the model will be affected by the straight walls of the tunnel.

With increasing rotor diameter, blade design requires airfoil performance data at
higher Reynolds numbers. This leads to existing wind tunnel facilities being used
with increasingly larger model chords for two-dimensional testing, giving larger
blockages in the same angle-of-attack range. In the following paragraphs examples
and the applicability of the most common correction schemes for streamlined flow
and for separated flow will be explored, each in their own angle-of-attack range.
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Blockage in Attached Flow

Interference effects in wind tunnel testing have been the subject of a large number
of publications, starting as early as the late 1920s with the work of Lock (1929)
and Glauert (1933). The classical correction equations most commonly used in two-
dimensional sub-sonic wind tunnel testing find their origin in the assumption of
linearized potential flow between the model and the walls. With a (limited) number
of singularities, such as vortices to represent the lift, sources for the wake and
source-sink doublets to represent the model volume, a theoretical model of the
object and its wake is made. The method of images is then used to calculate the
interference effects at the model location. The corrections refer to a situation in
which the thickness and camber of the airfoil are small, the chord is small with
respect to the tunnel height, and the induced velocities everywhere in the test section
are small compared to the undisturbed flow velocity. This justifies the neglect of
higher powers and products of the interference factors and enables the superposition
of interference effects and consequently makes it possible to consider the influence
of camber and thickness and of model and wake blockage separately.

General Form

In a closed test section the presence of the model and its wake gives rise to an
increase at the model location of the undisturbed (apparent) velocity U′:

U = (1 + εb)U
′ (1)

where εb is the total blockage factor. The prime denotes the uncorrected value.
In its simplest form an arbitrary nondimensional force coefficient Ca in an

incompressible flow can be corrected for blockage according to

Ca = C′
a

(1 + εb)2
(2)

For small blockage factors (2) may be written as

Ca = C′
a(1 − 2εb) (3)

However, when the effect of compressibility in the correction is included, the equa-
tions take a slightly different form. The corrected-uncorrected dynamic pressure
ratio is written as:

q

q ′ = ρ

ρ′

(
U

U ′

)2

(4)
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The true density at the model is related to the apparent density ρ′ by the isentropic
relation

ρ

ρ′ =
{
1 − γ − 1

2
M ′2

[(
U

U ′

)2

− 1

]} 1
γ−1

(5)

where M′ is the uncorrected Mach number. With equation 1 and the ratio of specific
heats for air γ = 1.4 we find:

ρ

ρ′ =
{
1 − 0.2M ′2 [

(1 + εb)
2 − 1

]}2.5
(6)

Now the combination of equations (1), (4), and (6) is sufficient to correct an arbitrary
force coefficient ca for blockage including the effect of compressibility using

ca = c′
a

(
q ′

q

)
(7)

Equation (6) can be further simplified by application of the binomial theorem

(a + b)n = an + na(n−1)b + n(n − 1)

2! an−2b2................. (8)

Neglect of higher powers of εb then gives

ρ

ρ′ = 1 − M ′2εb (9)

Combining (1), (4), and (9) we find

q

q ′ =
(
1 − M ′2εb

)
(1 + εb)

2 (10)

and written to the first order of εb we arrive at

q

q ′ =
(
1 + (2 − M ′2)εb

)
(11)

The effect of neglecting higher order terms of the blockage factor on the lift and
drag coefficients for moderate angles of attack and reasonably sized models stays
well below 0.5%.

In the same manner the impact of blockage on the Reynolds number can be found
using

Re = Re′
(

ρ

ρ′

) (
μ′

μ

)(
U

U ′

)
(12)
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According to von Kármán and Tsien (Allen and Vincenti 1947) the ratio of the
coefficients of viscosity is related to the ratio of temperatures by

(
μ

μ′

)
=

(
T

T ′

)0.76

(13)

The isentropic relation for the temperature is

T

T ′ =
{
1 − γ − 1

2
M ′2

[(
U

U ′

)2

− 1

]}
(14)

To the first order this leads to

Re = Re′ (1 + (1 − 0.7M ′2)εb

)
(15)

Likewise the correction of the Mach number is determined, writing

M = M ′
(

U

U ′

) (
a′

a

)
(16)

where a′ is the uncorrected speed of sound. In an ideal gas the speed of sound is
only proportional to the square root of the temperature, which gives

M = M ′
(

U

U ′

) √
T ′
T

(17)

Written to the first order, this leads to

M = M ′ (1 + (1 + 0.2M ′2)εb

)
(18)

Solid andWake Blockage

If it is assumed that the model is small compared to the tunnel test section and that
the lift is not too large, the blockage due to the model (solid blockage) and that due
to the wake (wake blockage) can be treated separately:

εb = εs + εw (19)

Solid Blockage
Solid blockage is the result of the displacement of streamlines in the tunnel due to
the volume of a non-lifting model. In an analysis by Lock the base profile in the
center of the tunnel at zero incidence is modeled by a single doublet. The effect
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of the walls in two dimensions is replaced by an infinite system of doublet images
extending on both sides of the model spaced at a distance equal to the test section
height. By symmetry the velocity component normal to the walls is zero.

The net effect of the tunnel walls upon the flow at the base profile is an increase
in effective axial velocity of magnitude

εs = π2

12

( c

h

)2 (
t

c

)2 1

β3 λ2 (20)

where λ2 is a parameter related to the airfoil thickness t, and the airfoil surface
pressure distribution. β is the Prandtl-Glauert compressibility correction factor√
1 − M ′2, c is the airfoil chord, and h is the effective tunnel height. An approx-

imation for λ2 was given bij Glauert, λ2 = 2A/(πt2), which effectively turns Eq. 20
into

εs = π

6

A

β3h2
(21)

where A is the cross-section area of the airfoil. Thompson (Garner et al. 1966)
suggests a relation in which the thickness of the airfoil is more prominently
accounted for:

εs = π

6

[
1 + 1.2β

(
t

c

)]
A

β3h2
(22)

The airfoil cross-section area A can be written as a combination of a factor and
the product of maximum thickness and chord. For airfoil families resulting from
analytical descriptions of the shape this factor is often a constant. For the old 4-
digit NACA series of airfoils based on the 00xx thickness form, for example, A=
0.69∗t∗c. The cross-section area of the 6-digit NACA 63-series, though strictly
speaking not the result of a prescribed shape but rather of a systematically prescribed
pressure distribution, can be approximated using a factor of 0.62.

Allen and Vincenti found a similar equation as (20) but they use the expression

	 = 4

(
t

c

)2

λ2 (23)

They write:

εs = 	σ

β3 (24)
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with the tunnel blockage factor

σ = π2

48

( c

h

)2
(25)

The body-shape factor 	 is defined as

	 = 16

π

1∫
0

y

c

√√√√(
1 − Cp

) (
1 +

(
dy

dx

)2
)

d
x

c
(26)

in which Cp is the inviscid zero-incidence pressure coefficient at the chord-wise
station x and y is the ordinate of the symmetric (base) profile. Allen and Vincenti
give values for a number of base profiles.

With relation (26) the shape factor for the NACA 63-0xx series of airfoils has
been calculated using the inviscid pressure coefficients at 300 chord stations. The
present 	-values for the NACA 63 series in the thickness range of interest to wind
turbine blades are represented by equation 27:

	NACA63 = 1.4890

(
t

c

)2

+ 1.6143

(
t

c

)
+ 0.0023 (27)

The parameter t /c is the maximum relative thickness of the airfoil in fractions
of the chord. Figure 1 gives a comparison with the values presented by Allen and
Vincenti. Their lower values can be attributed to the much lower number of pressure
stations taken for the integration.

0

0.1

0.2

0.3

0.4

0.5

0 0.05 0.1 0.15 0.2 0.25t/c 

Allen & Vincenti 

Present calculations

Λ

Fig. 1 The body shape factor 	 for the Naca 63 series of airfoils
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Equations (22) and (24) do not differ very much in their calculation of the solid
blockage factor. For an 18% thick laminar airfoil like NACA 633-418 and a typical
Mach number of 0.2 the factor by Allen and Vincenti is 1% lower. When using
a 30% thick airfoil such as DU 97-W-300 the difference increases to -1.6%. The
differences go up with decreasing Mach number and are around zero close to M =
0.4.

The solid blockage equations were essentially derived with the assumption that
the blockage is independent of lift. Based on the work of Batchelor (Garner et al.
1966), it is suggested that the simple theory expressed in equations (22) or (24) can
be adapted to deal with the solid blockage of an airfoil at an angle of attack α by
writing:

εs(α) = εs

[
1 + β

1.1

(t/c)
α2

]
(28)

with α expressed in radians.

Wake Blockage
The wake effect is simulated by a system of source images. Source strength
is related to the measured drag coefficient using conservation laws with the
boundary condition that the flow field far upstream remains unchanged. Under these
assumptions the wake blockage at the tunnel center can be determined (Garner et al.
1966) from:

εw = 1

4
(
c

h
)
1 + 0.4M ′2

β2
C′

d (29)

The Total Blockage Factor
The total blockage factor can now be composed from the contributions of the solid
and the wake blockages. Using the notation of Allen and Vincenti this gives:

εb = 	σ

β3

[
1 + 1.1β

α2

(t/c)

]
+ 1

4
(
c

h
)
1 + 0.4M ′2

β2
C′

d (30)

The two-dimensional approach of the derivations essentially implies a rectangular
test section. However, many wind tunnels have working sections with corner fillets,
which raises the question what value of the tunnel height h should be used. From
considerations of continuity an effective height he can be derived from the test
section area divided by the span of the model.

Insertion of Eq. (30) into Eq. (10) or (11) yields the change of the dynamic
pressure due to the blockage inside the test section, which can be used with Eq. (7)
to correct the force and moment coefficients for blockage. For small values of the
blockage factor we may use
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q ′

q
= 1(

1 + (2 − M ′2)εb

) ≈
(
1 − (2 − M ′2)εb

)
(31)

To correct forces and moments for blockage using Eq. 31 we may write

Ca = C′
a

q ′

q
= C′

a

(
1 − (2 − M ′2)εb

)
(32)

Note that for incompressible flow (M′ = 0) this equation equals (3).

Wake Buoyancy

Apart from a blockage effect, the developing wake induces a velocity increase in
flow direction and consequently, applying Bernoulli’s equation, also gives rise to a
pressure gradient along the model which would not exist in free air. This pressure
gradient is felt by the model as buoyancy and the associated increase in drag follows
from a derivation by Allen and Vincenti based on the work of Glauert:

�D = D′
(
1 + 0.4M ′2

β3 	σ

)
(33)

The true drag in free air is given by

D = D′ − �D = D′
(
1 − 1 + 0.4M ′2

β3
	σ

)
(34)

With the definition of the drag coefficients we find

D = cdqc = c′
dq ′c

(
1 − 1 + 0.4M ′2

β3 	σ

)
(35)

The drag coefficient in free air, with reference to the true dynamic pressure follows
from

cd = c′
d

(
1 − 1 + 0.4M ′2

β3 	σ

)
q ′

q
(36)

Combined with Eq. (31) and written to the first order the corrected drag coefficient
is given by

cd = c′
d

[
1 − 1 + 0.4M ′2

β3 	σ −
(
2 − M ′2) εb

]
(37)

with εb given by Eq. (30).
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There is some debate about the applicability of the buoyancy correction if the
drag is derived from the pressures in the wake, reduced in the usual way. Allen and
Vincenti state that the correction equations are primarily derived for drag measured
with a balance, but that for normal chord-to-height ratio’s values differ by less
than 0.5%. Rogers (Garner et al. 1966) argues that in particular the wake buoyancy
equation should not be applied when the drag is measured with a wake rake. It is
indeed questionable whether the impact of the drag increase due to the wake-wall
interference is captured by the wake rake data reduction, since the speed-up due to
the expanding wake for reasons of continuity mainly takes place outside the wake,
which is discarded if the wake survey method is used in the conventional way. It can
be argued that the wake buoyancy correction should only be applied if the drag is
derived from balance measurements or from the model pressure distribution.

Lift Interference

A straight walled closed test section prevents the normal curvature of the flow
around an airfoil producing lift since the streamlines along the walls are straight. As
a result the model appears to have more camber showing increased lift and moment
coefficients and an induced upwash, changing the angle of attack.

This problem of lift interference (streamline curvature) is evaluated o.a. by Allen
and Vincenti for a thin airfoil with its chord on the tunnel center line. They approx-
imate the load on the airfoil by distributed vorticity along the chord. Vortex theory
is used on a system of images with alternating signs to mimic the tunnel walls.

With the requirement that the distribution of lift along the chord and especially
the magnitude of the lift component near the leading edge of the airfoil shall be the
same both in free air and in the tunnel, their evaluation leads to a set of relations in
the form of

α = α′ + �α

cl = (
c′
l + �cl

) q ′

q
(38)

cm = (
c′
m + �cm

) q ′

q

where the increments quantify the effect of the lift interference to the order (c/h)2

and are defined as

�α = σ

2πβ

(
C′

l + 4C′
m

)

�Cl = −C′
l

σ

β2 (39)
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�Cm = C′
l

σ

4β2

and q′/q can be derived from Eq. (11). The angle of attack is in radians. According to
Garner et al. (1966) the applicability of these relations is restricted to c<0.4βh. Based
on the work of Havelock (Garner et al. 1966) the equations of (39) are expanded to
the order (c/h)4

�α = σ

2πβ

(
C′

l + 4C′
m

) − 0.525
σ 2

πβ3C′
l (40)

�Cl = C′
l

(
− σ

β2
+ 5.25

σ 2

β4

)
(41)

�Cm = C′
l

(
σ

4β2
− 1.05

σ 2

β4

)
(42)

Overview of Corrections on Coefficients for Streamlined Flow

A combination of the correction relations in the foregoing chapters for lift inter-
ference, blockage, and wake buoyancy leads to the following set of correction
equations

α = α′ + σ

2πβ

(
C′

l + 4C′
m

)
(43)

Cl = C′
l

[
1 − σ

β2 + 5.25
σ 2

β4 − (2 − M ′2)
β3 	σ

(
1 + 1.1β

(t/c)
α2

)

− (2 − M ′2)(1 + 0.4M ′2)
4β2

(
c

h
)C′

d

]
(44)

Cd = C′
d

[
1 − �C∗

d − (2 − M ′2)
β3

	σ

(
1 + 1.1β

(t/c)
α2

)

− (2 − M ′2)(1 + 0.4M ′2)
4β2 (

c

h
)C′

d

]
(45)

The wake buoyancy correction �C∗
d = 0 for wake rake measurements and �C∗

d =
	σ 1+0.4M ′2

β2 for drag measured with a balance or calculated from the pressure
distribution.
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Cm = C′
m

[
1 − (2 − M ′2)

β3
	σ

(
1+ 1.1β

(t/c)
α2

)
− (2 − M ′2)(1 + 0.4M ′2)

4β2
(
c

h
)C′

d

]
+

+ C′
l (

σ

4β2
− 1.05

σ 2

β4
) (46)

q = q ′
[
1 + (2 − M ′2)

β3
	σ

(
1 + 1.1β

(t/c)
α2

)
+ (2 − M ′2)(1 + 0.4M ′2)

4β2
(
c

h
)C′

d

]

(47)

Re = Re′
[
1 + (1 − 0.7M ′2)

β3 	σ

(
1 + 1.1β

(t/c)
α2

)

+ (1 − 0.7M ′2)(1 + 0.4M ′2)
4β2 (

c

h
)C′

d

]
(48)

The angle of attack in the equations is expressed in radians. In equation (43) the
term dealing with (c/h)4 is omitted because it is negligibly small. For the angle of
attack expressed in degrees we write:

α = α′ + 57.3σ

2πβ

(
C′

l + 4C′
m

)
(49)

Correction of the Pressure Distribution

The solid and wake blockage and the lift interference correction should obviously
also appear in the correction of the pressure distribution. The most straightforward
equations often used are:

Cpu = (C′
pu

+ �Cp)
q ′

q
(50)

Cpl = (C′
pl

− �Cp)
q ′

q
(51)

in which the indices u and l denote the upper and lower surface, respectively. The
ratio of the uncorrected and corrected dynamic pressures is given by equation (31).
The correction for lift interference �Cp follows from

�Cp = 4

π

(
σ 2

β2 − 5.25

β4 σ 4
)

C′
l

√
x

c

(
1 − x

c

)
(52)

given to the 4th power of c/h.
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Allen and Vincenti argue that the two contributions should be treated separately;
a correction for the blockage due to the base profile and a correction for streamline
curvature applied to the lift per unit chord. To this end the pressure distribution of
an airfoil is expressed as

Cpu = 1 −
[(

1 − Cpsym) + 1
4 (Cpl

− Cpu

)]2
(
1 − Cpsym

) (53)

Cpl = 1 −
[(

1 − Cpsym) − 1
4 (Cpl

− Cpu

)]
(
1 − Cpsym

)
2

(54)

where Cp,sym is the pressure coefficient of the base (symmetrical) profile.
For the blockage correction as a result of the presence of the base profile the

lift is removed by taking the average of the kinetic pressures on the upper and
lower surface at the same chord location. If the pressure orifices on upper and lower
surface do not have the same chord location (x-ordinate), an interpolation between
two pressure orifices is performed. If the pressure coefficients on upper and lower
surface are related to the true instead of the apparent dynamic pressure we can write:

Cpu = 1 −

[(√
q∗
u+√

q∗
l

2

)2

+
(

q∗
u+q∗

l

4 − ( σ
πβ2 − 5.25 σ 2

πβ4 )C
′
l

√
1 − (1 − 2x

c
)2

)]

(√
q∗
u+√

q∗
l

2

)2

2

(55)

Cpl = 1 −

[(√
q∗
u+√

q∗
l

2

)2

−
(

q∗
u+q∗

l

4 − ( σ
πβ2 − 5.25 σ 2

πβ4 )C
′
l

√
1 − (1 − 2x

c
)2

)]

(√
q∗
u+√

q∗
l

2

)2

2

(56)
where q∗

u and q∗
l are given by:

q∗
u = (1 − Cp′

u)
q ′

q
(57)

respectively

q∗
l = (1 − Cp′

l )
q ′

q
(58)
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Fig. 2 The uncorrected (a) and corrected (b) characteristics of airfoil DU91-W2-250 for two
different chord-to-height ratios. Data corrected for Mach number

The ratio of the corrected and uncorrected dynamic pressures in the latter equations
can be calculated from (31).

The pressure distribution corrected in this way corresponds to the corrected angle
of attack and lift- and moment coefficients

Figure 2 presents the measured two-dimensional characteristics of the 25% thick
airfoil DU91-W2-250 for two different models with chords of 0.25 m and 0.60 m.
The tests were performed in the 1.25x1.80 m Delft University (TUDelft) Low-speed
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Fig. 3 The corrected pressure distributions for two values of the chord-height ratio at an angle of
attack of 20.3 degrees

Low-turbulence wind tunnel (LTT). The test section has 0.42 m wide corner fillets
and the models were set up vertically, which, leads to an effective height of 1.656 m,
giving c/h values for the two different models of 0.151 and 0.362. The graph shows
a very good match between the corrected characteristics, both for the lift and the
drag curves. Noteworthy is the fact that even up to an angle of attack of 20 degrees
the correction scheme is capable of matching the lift curves. Figure 3 shows the
pressure distributions for both models at α = 20.3o. Even with flow separation at
about 30% of the chord the corrected base pressures match very well.

Correction of Measurements in the Deep-Stall Region

With increasing separation on the wind tunnel model the blockage due to the wake
becomes increasingly important and eventually will become a dominant factor of the
total blockage inside the test section. In these cases the classical treatment of small
perturbations due to blockage is no longer valid. In the deep-stall region of angles of
attack, where the flow separates from the leading edge, the two-dimensional airfoil
model starts to behave like a bluff body.
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Correction methods accounting for the wall interference of bluff bodies in closed
test sections can be divided into methods using the measured drag of the model and
those relying on the measured pressure distribution on the walls: the wall-signature
method.

Maskell’s Method

Maskell (1963) developed a method to correct for wall interference effects when
dealing with separated flow over bluff bodies. In its simplest form the method
only uses the measured drag due to separation and some geometric parameters to
establish a dynamic pressure correction. His method was primarily developed for
the flow over bluff bodies, but can also be used for stalled wings since the flow in
the heavily separated region of the model shows resemblance with bluff body wakes.

Corrections on Drag

Maskell considers the flow depicted in Fig. 4. The wake of the bluff body is
represented by a stream surface originating from the edge of the body, extending
downstream. In plane 2 the cross section of the wake reaches its maximum. Plane 1
is far ahead of plane 2 and contains the undisturbed velocity U. A constant pressure
pb is present on the surface of this wake bubble with associated velocity kU, where
k is the ratio of wake edge velocity over undisturbed velocity. This pressure is equal
to the base pressure acting at the back of the bluff body. Maskell argues that the
pressure distribution on the model in the test section is invariant under the constraint
imposed by the walls. This means that the flow field simply scales with the amount
of blockage, which leads to the expression:

C′
D

k′2 = C′
D

(1 − C′
pb

)
= const. (59)

Fig. 4 The bluff body flow model considered by Maskell (1963)
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whereC′
D is the measured drag coefficient, defined as D′/q′S, with S a representative

area of the body and q′ the dynamic pressure, and C′
pb is the base pressure

coefficient. Maskell confirmed experimentally the invariance principle using drag
and base pressure measurements on a set of square flat plates positioned normal to
the flow in two different wind tunnels, thus varying the amount of blockage. The
S/C values, where C is the cross-sectional area of the tunnel and S the frontal area
of the plates, ranged from 0.0019 to 0.0451 and base pressure coefficients from
−0.386 to −0.589. Also for two-dimensional flow this invariance can be shown, as
is presented in Fig. 5, with measurements on two DU91-W2-250 airfoil models in
the TUDelft LTT, giving relatively small values of S/C, but well outside the range
tested by Maskell (0.091 and 0.151, respectively).

Considerations of conservation of momentum in the fluid passing the control
surface shown in Fig. 4 leads to the expression

C′
D = m

(
k′2 − 1 − m

S

C

)
(60)

where m= B/S and B is the maximum cross section of the wake. Equation (60) was
derived with the assumption that the contribution to the momentum balance of the
in-plane orthogonal components of the velocity in cross-section 1, far ahead of the
object, and in cross-section 2 outside the wake are negligibly small. This is true for
two-dimensional flow; however, with the argument that there is a tendency of the
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Fig. 5 The invariance of CD/k2 (eq. 59) for two different blockage factors of airfoil DU91-W2-
250, Re = 0.7 × 106
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wakes of three-dimensional bodies to become axial-symmetric far downstream this
also holds for other objects.

If the increase of the velocity in the closed test section would only come from
blockage due to the presence of the wake, Maskell arrives at

k′2

k2
= C′

D

CDM

= 1 + CDM

k2 − 1

S

C
(61)

where CDM is the corrected drag coefficient. However, wall constraint impacts the
free expansion of the wake. The effect of this wake distortion on the value of B in
Eq. (60) was determined by the assumption that this distortion is proportional to the
contraction of the stream outside the wake (C-B)/C. Neglecting terms in the order
of (S/C)2 Maskell found that the net result of incorporating wake distortion in the
derivation is to replace the corrected drag coefficient in Eq. (61) by the measured
drag coefficient:

C′
D

CDM

= 1 + C′
D

k2 − 1

S

C
(62)

Hence

CDM
= C′

D

1 + θ S
C

C′
D

(63)

where θ is the blockage factor for bluff-body flow:

θ = 1

k2 − 1
(64)

The parameter k2 can be derived from Eq. 44 through iteration using the measured
mean base pressure as a starting value, (k2)0 = k′2:

(k2)n = k′2
[
1 + 1

(k2)n−1 − 1
C′

D

S

C

]−1

(65)

Two-Dimensional Models
To calculate the blockage factor for a two-dimensional flat plate Maskell used
experimental results from Fage and Johansen (1927), who presented measurements
on a number of two-dimensional flat plates with different chords. For one of the
plates also the base pressure (Cp = −1.30) and the mean pressure along the edge
of the wake (Cp = −1.38) at 90 degrees angle-of-attack were determined. As
indicated, it appeared that these two pressures are not equal, hence the average was
used in the calculation. With CD = 2.13 and S/C = 0.0715, Eqs. (64) and (65) give
θ = 0.960. The corrected drag coefficient is 1.858.
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Fig. 6 Comparison of corrected drag curves using various correction schemes. Re = 0.7 × 106

The average corrected drag coefficient at 90 degrees incidence of the 4 thin
two-dimensional plates tested by Fage and Johansen was 1.86, which deviates
appreciably from the at present commonly adopted value between 1.98 and 2.0. This
might find its origin in the setup of these tests. The drag was determined from the
pressure distribution around the mid-span of the plate with pressure orifices in only
one side of the plate. To complete the pressure distribution around the plate, it had
to be rotated 180◦. For stiffness purposes one side of the plate was not completely
flat but formed a wedge with a 3% thickness at mid-chord.

Figure 6 shows the difference in the two-dimensional drag curves corrected with
the various methods. Data come from measurements on a 0.25 m chord model in the
Delft University LTT, with an S/C (= c/h, with h the effective test section height)
value of 0.151. It appears that the method using the base pressures gives results close
to those resulting from the correction scheme for streamlined flow. The difference
with the curve using Maskell’s value of 0.96 for the blockage factor θ is substantial.

The comparison with a 40% smaller model in the same tunnel, depicted in Fig. 7,
shows that only the method using θ = 0.96 brings the two drag curves close
together, with a difference in the maximum drag coefficient in the order of only 1%.

The conclusion must be that the method based on the model rear pressure does
not work for two-dimensional flow with S/C values appreciably larger than those
in Maskell’s measurements. Despite the fact that the value of 0.96 apparently was
derived from one measurement on a two-dimensional flat plate it holds also quite
well for airfoil measurements in the deep-stall region.

On basis of the measurements presented in Fig. 7 a value slightly larger than 0.96
for the blockage factor, say in the order of 1 to 1.03, is necessary to match both drag
curves. The lower boundary of 1.0 is exactly the value that results from a calculation
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of θ using a base pressure of Cpb = −1.30 in the test of the flat plate by Fage and
Johansen described earlier.

It must be noted that the drag curves shown in Figs. 6 and 7 come from pressure
measurements. Depending on the number and distribution of the pressure orifices,
especially in the lower surface trailing edge region, the calculated drag coefficient
may differ slightly from the one resulting from balance measurements. Hence, when
comparing drag curves with different c/h, some of the variations may be attributed
to differences in measurement technique.

Strictly, the uncorrected drag coefficient in the blockage parameter C′
DS/C in

equation 45 is the one due to separation. For angles in the deep-stall region the full
uncorrected value can be used, as the difference is negligibly small.

Correction on the Angle of Attack
When the airfoil is producing lift, the corrections on angle of attack for streamlined
flow are based on the fact that the curvature of the streamlines is altered by the
presence of the walls. For two-dimensional models in deep stall the streamlines
at the model location are on average straight and the increase in lift comes
predominantly from the fact that the entire upper surface has a time-averaged
constant pressure, which decreases with angle of attack. Hence it can be argued
that there is no need for an angle of attack correction in deep stall.

Corrections on Lift andMoment Coefficients
Hackett (1996) recognized that the wake distortion correction in Maskell’s method
comes as part of a dynamic pressure correction, while it in fact is a drag increment,
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which should be removed from the dynamic pressure correction before correcting
the lift and moment coefficients.

In a two-step approach Hackett writes:

�CD = CDM
− CD∞ (66)

where CDM again is the corrected drag coefficient using Maskell’s method and CD∞
is the corrected drag coefficient without distortion. Equations (61) and (64) then
give

CD∞ = CDM
− �CD = CDM

1 + θ S
C

(
CDM

− �CD

) (67)

Combining equations (63), (64), and (67) and solving the quadratic equation in
�CD yields:

�CD = CDM
−

−1 +
√
1 + 4θ S

C
C′

D

2θ S
C

(68)

The lift, moment, and pressure coefficients can now be corrected for wake blockage
using

q ′

q
= CD∞

C′
D

= 1

1 + θ S
C

(
CDM

− �CD

) (69)

Note that equation (68) needs to return a negative value of �Cd as CD∞ is larger
than CDM

A comparison of the lift coefficients from the models of Fig. 7 corrected with the
dynamic pressure correction according to Eq. 69 is presented in Fig. 8.

The differences in lift coefficients between the two models in the range of angles
between maximum lift and deep stall come from a small irregularity near the upper
surface leading edge of the smaller model in the vicinity of the pressure orifices.

With the same dynamic pressure ratio the pressure distribution can be corrected:

Cp = 1 − (1 − C′
p)

q ′

q
(70)

Higher Values of c/h
The systematic neglect of terms in the order of (S/C)2 in Maskell’s derivation
may limit the applicability of the method for tests with increasingly higher c/h
values. Maskell’s method has often been found to over-correct at high area ratio’s,
according to Cooper in Agardograph 336 (Ewald 1998) Fig. 9 may shed some
light on the differences that exist when using Maskell’s method with θ = 0.96 to
correct measurements with c/h values higher than 0.15. The measurements shown
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Fig. 8 The aerodynamic characteristics of DU91-W2-250 for two models with c/h=0.091 and
0.151 respectively, corrected with Hackett’s two-step version of Maskell’s analysis

in Figs. 9 and 10 were performed by Wang et al. (2015) in the NF-3 wind tunnel
of Northwestern Polytechnical University in Xi’an, China. Three models of airfoil
WA-210 with chord lengths of 0.5, 0.65, and 0.8 meter were tested in the 1.6x3.0m
test section, giving chord-to-height ratios of 0.167, 0.217, and 0.267, respectively.
The uncorrected data were taken from the paper and corrected with Maskell’s
method using θ = 0.96. The Reynolds number was 0.75x106 and for clarity of
the graph only the high angle of attack region is shown.

It appears that even for the highest c/h value the corrected drag curve does not
deviate much from the lowest value, both for positive and negative angles. The
differences in the maximum corrected drag coefficient for the lowest and the highest
c/h are smaller than 1% and fall well within the experimental error. At these c/h
values there seems to be no over correction using Maskell’s method to correct the
drag.

Figure 10 shows the corresponding lift curves. As is clear from the drag curves,
the largest differences occur for angles of attack beyond 90 degrees, which may also
have an aerodynamic background, as at these angles for relatively low Reynolds
numbers the separation location, and consequently the separation pressure, is very
sensitive to changes, for example, additional turbulence, in the inflow.

TheWall Pressure Signature Method

Hackett and Wilsden (1975) presented a method to correct for wall interference
effects using the static pressure distribution (signature) on the tunnel walls. Sin-
gularities, such as sources and vortices, are distributed along the tunnel centerline
producing a theoretical pressure distribution equivalent to the measured distribution.
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Fig. 9 The uncorrected (a) and Maskell-corrected (b) drag curves for airfoil WA-210 with varying
chord to tunnel height ratio’s, Re = 0.75 × 106. (Uncorrected data from Wang et al. 2015)

The strength of these singularities is calculated using the perturbation velocity at
each pressure location given by

�u(x)

U
=

√
1 − �C′

p(x) − 1 (71)
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Fig. 10 The corrected lift curves for airfoil WA-210 with varying chord to tunnel height ratio’s

where �C′
p is the difference between the pressure distributions with the model

installed and with an empty tunnel. Using wall images the interference effects are
then determined at the model location.

The Source-Source-SinkMethod

Figure 11 shows the theoretical model known as the source-source-sink model with
its associated pressure distribution on the tunnels walls. The method discriminates
between a wake line source at position X2 with span bw giving an asymmetric
wake with a downstream asymptote and a line source (located at X3) and sink
at a distance Cs from each other, both with span bs, producing the symmetric
solid/bubble blockage pressure footprint. The locations are non-dimensionalized
with the width of the test section B.

For this method the initial nonlinear system with seven variables was simplified
by taking all three source spans equal, by estimating them from the model geometry
and by assuming that the wake source is placed midway between the solid blockage
source and sink. Figure 12, taken from Agardograph 336 (Ewald 1998) but slightly
modified, presents the wall velocity distribution of the two distinct blockage
contributions.

The curves for solid blockage and wake blockage are indicated with index sb
and wb, respectively. Ats is the test section area. Also indicated is the half-width at
half-height location of the symmetric solid-blockage curve, �x/B.

To compute the position and strength of the sources and sink, the required
iteration procedure starts with determining the wake source strength Qw from the
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asymptote �uwb/U, which is equal to Qw/UAts, where Ats is the width B times
the height h of the test section. The next step is to estimate the position X2 of
the wake source, which may initially be taken equal to the model position. Then
the wall signature of this wake source alone is calculated and subtracted from the
measured velocity distribution to receive a first estimate of the symmetric solid
blockage signature. If the location of the top of this distribution coincides with
the value for X2 the fitting is complete. If not, the calculation is repeated for a
new value of X2, until convergence is reached with a predefined accuracy. Next,
the half-width at half-height �x/B and the dimensionless peak velocity �uwb/U of
the solid blockage distribution are determined. The remaining components, such
as the source-sink strength and spacing, can now be computed using graphs or
lookup tables. With all the ingredients known the method of images can be used
to determine the interference velocity at the model location. Further details of the
method can be found in Ewald (1998) and a computer code is presented in Hackett
et al. (1979).

Allmaras (1986) presents a method for two-dimensional testing with a few
alterations in the original, essentially three-dimensional, theoretical model among
which an additional negative wake source of equal strength far downstream to
satisfy mass conservation. In addition, the wake blockage velocity distribution is
approximated by a hyperbolic tangent function. Allmaras’ formulation results in a
wake source strength deviating from Hackett’s by a factor of 2 for a given velocity
distribution. Computations with data from a wing test having blockage corrections
of about 10% of the measured drag were in good agreement with the results
obtained using simpler methods. In the appendices Allmaras gives a description of
the necessary steps and look-up tables to compute the parameters for his theoretical
model.

TheMatrix Version of theWall Signature Method

The matrix version of the pressure signature method uses multiple sources and
vortex arrays, it is faster, it can handle more complex model geometries, and it
performs better when dealing with more complicated lift-blockage couplings than
the method described above. Interference effects are resolved by setting up influence
matrices for the effects at the tunnel walls of the singularities that represent the
model. In Hackett and Wilsden (1975) and Hackett et al. (1979) the method is
described and a computer program is provided.

The matrix method was used by Wang et al to correct the measurements
presented in Fig. 9a. They used 7 sources and 11 vortices to complete the theoretical
model. The pressure distribution was captured by 135 pressure taps along the ceiling
and floor of the 8m long test section. The result is depicted in Fig. 13. The corrected
drag curves for c/h values of 0.167 and 0.217 are in good agreement, but the curve
for c/h= 0.267 seems to be over corrected. This may be due to the large scatter
for this configuration which might also have been reflected in the wall pressure
distribution. This will have made the construction of the theoretical model and the



17 Wind Tunnel Wall Corrections for Two-Dimensional Testing up to . . . 627

0.0

0.5

1.0

1.5

2.0

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

Cd

(o)

0.167
0.217
0.267

c/h=

Fig. 13 The drag coefficients from Fig. 9a corrected with the matrix version of the wall pressure
method (Wang et al. 2015)

associated fitting to the wall super velocity more difficult, despite the careful least
squares curve fitting that is generally required. In this respect Maskell’s method in
Fig. 9b gives better results. Figure 14 presents the differences between the matrix
version and Maskell’s correction of the drag curve for c/h= 0.217. Here, the matrix
version of the wall signature analysis produces slightly larger corrections compared
to Maskell’s method using θ = 0.96, with a difference in Cd,max in the order of
3.5%. The corrected curves coincide for θ = 1.04.

Data Accuracy

A relatively smooth wall pressure distribution is of paramount importance for a good
computation of the various model components. If the test section is too short, the
wake blockage asymptote at high blockage ratio’s may not be found with sufficient
accuracy, which will have its repercussions on the rest of the calculations. If the
pressure distribution is too scattered around the peak of the symmetrical velocity
perturbation distribution, the solid blockage correction might not be accurately
determined, even with additional least squares curve-fitting. Although a number
of methods exist to cure measured pressure distribution deficiencies, the first aim
should be to produce a smooth curve, which requires a pressure orifice distribution
with enough resolution to capture the upstream and downstream asymptotes and
the peak of the solid blockage velocity distribution. As the magnitude of the
wall pressures is generally lower than the model surface pressures, sensors with
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Fig. 14 The measurements from Wang et al. (2015) corrected with the matrix version of the wall
pressure method and with Maskell’s method using θ = 0.96, c//h=0.217

a sufficiently low pressure range need to be selected. Furthermore, when capturing
the flow dynamics is not an objective, long sampling times will greatly improve the
curve quality.

Summary

Measurements on two-dimensional models in closed-wall test sections need to be
corrected for the presence of the walls. Computation of the interference effects
with the classical correction equations for attached flow give good agreement for
chord-to-test section height ratios c/h of at least 0.36 in the range of angles of
attack between −20 and 20 degrees. In the deep-stall region, when the boundary
layer separates from the leading edge, Maskell’s method with a blockage parameter
θ = 0.96 seems to give good results up to c/h values of 0.267, while the matrix
version at this chord-to-height ratio seems to over-correct, also compared to the
matrix-version results at the lower c/h values. At c/h= 0.217, the matrix version
produces a 3.5% lower maximum drag coefficient compared to the result with
Maskell’s method, but the difference vanishes when θ = 1.04 is used.
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