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Abstract

In their Distribution Centre in Maasdam, FrieslandCampina uses a four-crew shift schedule to prepare
all necessary orders for their clients, 24 hours of each Monday to Saturday. Their large automated
warehouse is home to 10 000 pallet places, containing fresh dairy products. From here, orders are
either prepared as full pallets, machine-picked layers or hand-picked ”colli”. In the last department
especially, personnel cost is high relative to the throughput. Definitive picking deadlines are often
ambiguous, posing challenges in job and personnel scheduling. The study goal is twofold. Firstly,
to find out whether full knowledge of picking deadlines can contribute to a more efficient job, and
so, shift schedule. Secondly, to offer insight for a trade-off between shift types to absorb workload.
To reach this study goal, a Shift Minimisation Personnel Task Scheduling Problem (Krishnamoorthy
et al., 2012) and a Bin Packing Problem (Paquay et al., 2014) were combined and tailored to fit the
scheduling problem at FC’s DC. In three weekly scenarios, the Mixed Integer Linear Program (MILP)
model scheduled picking jobs in the least expensive shifts through a cost minimisation function. Two
model configurations were used, one to prefer the shift between 09:00 and 17:00 (flex), and one to
prefer either one of the 06:00-14:00 (morning) or the 14:00-22:00 (afternoon) shifts. Both model
configurations inherently avoided themost expensive 22:00-06:00 (night) shift. Main findings include
the possibility to absorb workload using the morning and afternoon shift and to avoid the night shift.
Additionally, it was confirmed that insight in picking deadlines can contribute to an efficient personnel
schedule a great deal.
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1
Introduction

1.1. Background
FrieslandCampina (FC) is a Dutch dairy corporation that has grown to host 9 927 member dairy farms
since its establishment in 1871. They export dairy products to more than 100 countries worldwide
and are responsible for a large part of Dutch dairy (product) production. A large number of logis-
tic processes underlie the successful distribution of these products, part of which happen in their
Distribution Centre (DC) in Maasdam. This is the basis for FC’s distribution of fresh dairy products
throughout The Netherlands, and is placed alongside their factory. Products conveyed directly from
the factory or transported from external locations are stored in their automated warehouse, which
is home to 10 000 pallet places. From here, customer orders are prepared for transport 24 hours
each day from Monday to Saturday. Customer order requirements and product specifications dictate
the picking process for order preparation. This is done either in full pallets, picked automatically in
layers or manually in loose ”colli”. The time between initialisation of client orders and their deadline
ranges between three days and three hours, resulting in different levels of criticality for the picking
department.

The four crews at the DC are deployed in three eight-hour shifts each day and are complemented
using a flexible pool of employees as indicated in Table 1.1. The morning, afternoon and night shifts
are currently populated using permanent personnel and the flex shift using flexible employees. The
shift schedule could also be manned using only flexible or only permanent personnel. As client orders
come in at 09:00 each day, flexible employees are deployed for picking from that time.

Table 1.1: Shift Times

Shift Name Time
Morning 06:00 - 14:00
Afternoon 14:00 - 22:00
Night 22:00 - 06:00
Flex 09:00 - 17:00

1.2. Problem Description
Based on client order deadlines, orders are divided into picking waves. However, these deadlines
often differ from their definitive deadlines. This is shown for three different weeks in Figure 1.1. Due
to the lack of transparency in definitive order deadlines, it is often unclear whether picking orders
are contained in the correct waves, and so, whether picking on the colli picking department is done
”at the right time”. This ambiguity clouds judgement of whether orders can be pushed back in the
schedule. To avoid risk of machine failure or unforeseen workload, picking orders are often completed
quickly after they are placed at the DC.

Large variation in workload is perceived on the colli picking department especially, both within
and between shifts. A challenge is found in determining which shifts are necessary to account for
the workload in this department. The questions raised to this end are which shifts could be use to
account for this workload, and whether the night shift can be avoided in the process. Shift types
to use have their own advantages and drawbacks. Flex shifts contribute the lowest personnel cost,
due to absence of shift pay for irregular hours. Using a combination of the morning and afternoon
shift, in turn, contribute more flexibility to push back jobs when deadlines cannot be met in case of
unforeseen circumstances.

1
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Figure 1.1: Box Plot for Difference between Actual and Planned Loadtimes for Week 5, 7 and 12

1.3. Literature Exploration
A great deal of research is done in job scheduling, workload balancing and shift cost minimisation,
many of which use Mixed Integer Linear Program (MILP) formulations with objectives that minimise
the difference between minimum and maximum workloads (e.g. Ouazène et al. (2016). Other for-
mulations include cost minimisation (Golpîra and Tirkolaee, 2019) and minimisation of the maximal
planned load over all used resources (Vanheusden et al., 2020). However, a shift schedule complexi-
fies the problem. The Shift Minimisation Personnel Task Scheduling Problem (SMPTSP) as proposed
by Krishnamoorthy et al. (2012) covers the issue of minimising the total number of shifts used for
tasks, but their tasks have set start and end times, while the problem at hand requires task schedul-
ing. To schedule tasks, determination of the start time was taken from the formulation by Rieck et
al. (2012), who use start time of a job as a decision variable. To avoid overlaps between scheduled
tasks, the 3D Bin-Packing Problem (BPP) as formulated by Paquay et al. (2014) is used. The number
of dimensions is reduced to one to suit the problem at hand.

1.4. Research Goal and Methodology
This study’s goal is to find out whether, and to what extent, improved insight in picking deadlines can
contribute to a more efficient personnel schedule. By doing so, it aims to contribute to a trade-off
between permanent shifts and flex shifts and to offer insights to assess the necessity of the night
shift.

To this end, a MILP model was used, based on the SMPTSP formulation by Krishnamoorthy et
al. (2012). To schedule jobs in shifts that carry minimal cost, jobs’ start time was used as a deci-
sion variable (e.g. Rieck et al., 2012) and overlaps between jobs were avoided by using part of the
formulation of a Bin-Packing Problem (BPP) approach (Paquay et al., 2014). It is often difficult to
solve optimisation problems within acceptable time (Vanheusden et al., 2021), so the problem was
reformulated to do so. For three weekly scenarios containing varying numbers of picking orders (an
average, a busy and a slow week), daily subsets were made to solve the shift minimisation problem.
A symmetry-breaking set of constraints was added to improve optimisation performance (Gent et al.,
2006).

To contribute to a trade-off between different shift types, three scenarios containing different
amounts of workload were run for two model configurations. Model Configuration 1 uses personnel
costs taken from reality, in which flex shifts are least costly and most attractive for the model to
schedule jobs in. In the second model configuration, a cost reduction was given to the morning and
afternoon shifts. The afternoon shifts were given lower cost than the morning ones to avoid symmetry
in the model, which is inherently more present in this model configuration.
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1.5. Research Questions
To adhere to the main research goal of a more efficient personnel schedule and account for the trade-
offs to be made, the main research question was formulated:

How can full insight in picking deadlines contribute to a more efficient shift schedule on the manual
picking department at FrieslandCampina’s Distribution Centre, taking into account the cost of these

different shifts and regarding different scenarios for workload deviations?

To support the main research question, the sub questions are listed below.

1. Which opportunities can be identified in the current job scheduling method at FC?
2. Which models found in literature are most suitable to solve the job scheduling problem at FC?
3. How can the practical job scheduling problem at FC be represented in a mathematical formula-
tion?

4. How can modeling results be related to the scheduling problem at FC?

1.6. Document Structure
The document is structured along the lines of the sub questions. In finding an answer to the first
sub question, a system analysis is given in Chapter 2. In search for a suitable method, a literature
review is given in Chapter 3. Chapter 4 contains model formulation and reformulation, answering sub
question 3. Sub question 4 is answered through the experiments done in Chapter 5. The discussion
and recommendations for further research, both at FC and in literature, are given in Chapter 6. The
main research question is answered in the conclusion, in Chapter 7.



2
System Description of the Order Picking

System

The system description in this chapter serves to answer the first research question: ”Which opportu-
nities can be identified in the current job scheduling method at FC?” The chapter starts with a context
and system description to this end in Section 2.1. Activities on the picking department are examined
in Section 2.2, followed by a description of personnel and structure in Section 2.3. Workload and
workload distribution is reviewed in Section 2.4. Difficulties in job scheduling are reviewed in Sec-
tion 2.5. KPIs and their expected interaction with the system are given in Section 2.6. A summary,
answering the sub question, is given in Section 2.7

2.1. Context and System Description
An overview of the DC’s departments is given in Appendix B.1. Inventory is kept in a large automated
warehouse (home to about 10 000 pallet places, of which 9 000 are comfortably usable), from which
orders are sent to the appropriate area in the DC automatically to be picked either manually (col-
lipicked) or automatically (layerpicked). When an order is finished, it is taken back to the warehouse
to wait for transport to the client. Whether or not a product can be picked using a layerpicker de-
pends on the physical qualities of the product and on the client order. If a product cannot be picked
in layers or a client requires loose products, the order is prepared on the colli picking department.

A combination of permanent and flexible workforce is employed to accommodate for the workload
in the DC: the permanent workforce operates in four crews, spread over three eight-hour shifts to
cover the 24 hours of Monday to Saturday (elaborated in subsection 2.3.1). When they are employed,
flex personnel assist the permanent workforce during office hours, between 09:00 and 17:00. This
is further elaborated in subsection 2.3.1.

Expensive in execution, the colli pick department especially is examined closely. A great deal of
variation in workload is perceived within and between shifts in this department. As said earlier, this
workload variation can be approached from two directions: personnel and activity scheduling. As
found in Chapter 3, personnel deployment is often a result of the way activities are scheduled. These
two aspects are explored from hereon. This context description contains an organisational chart of
the DC and an IDEF-0 of the picking process, both to contextualise the following sections.

2.1.1. Organisational Chart
In their DC, FC employs about 75 people. To give an overview of the different roles in the DC and to
give context to the system description, an organisational chart is given in Figure 2.1. An extensive
description per role is given in Section B.2. For now, the functions highlighted in the figure correspond
to the departments used for the IDEF-0 diagram in subsection 2.1.2.

2.1.2. IDEF0 for Process Description
The IDEF-0 diagram in Figure 2.2 shows the way an order arrives at and is processed by the DC.
An elaborate explanation of this diagram is given in Appendix B. Inputs to a process step are given
through the arrow on the left, controls come from the top and mechanisms from the bottom. The
output of a process step is given on the right. An order starts with a client order, which is released
as a sales order in process step 1 by the sales department after an Available to Produce (ATP) check.
As the name implies, this check ensures that the order’s contents are available for delivery. This
is then put through to the DC, in which the EWM system makes picking waves in step 2, based on
rules for picking waves and the time given in the client orders. If the client orders are not complete,

4
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Figure 2.1: Organisational Chart of the DC

picking waves are determined using an old transport schedule. In step 3, the picking waves are ”put
in buckets” for picking, based on the times given in these waves, by EWM. Buckets are predefined time
intervals in which picking tasks are placed to be picked on the picking departments in step 4, using
necessary products, pallets and plastic foil as input and outputting a finished order. AOs, layerpickers,
coordinators from the layer and colli picking departments and production support this step. Finished
orders are stored in the warehouse in step 5 and staged for transport in step 6, giving the order ready
for transport as output.

Figure 2.2: IDEF0 Diagram of the Order Picking Process

2.1.3. Explanation of Order Terminology
The following sections use terminology to describe the contents of client orders. However, cate-
gorised as sensitive information, volumes are kept out of the main text. An explanation of this termi-
nology is given in Appendix F.1.

2.2. Activities
This section serves to give insight in and overview of the activities done in the colli pick department
and how the different departments and processes interact.
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2.2.1. Swimlane Diagram
To show the interplay of departments and systems when an order passes through the system, a swim-
lane is used, shown in Figure 2.3.

As shown in the figure, a great deal of interaction happens between departments, which mainly
comes together at WFC. A great deal of work that should be done by the system is taken up by WFC
employees, such as organising orders at the Layerpicker. As shown in the figure, waves are created
in the EWM system and divided over time buckets. These time buckets are set intervals in time over
which the determined picking waves are divided. A choice is made for colli or layerpicking in EWM,
after which waves are released by WFC to be picked on either department. As previously shown in
the IDEF-0, picking waves are based on the time given in sales orders or on an old version of the
timetable, which means the times the waves are based on are not always accurate. As can be seen
in the swimlane, the transporter, Simon Loos (SL), matches the unloading time to an order and puts
through the definitive loading times to FC afterwards. This is then used by the EWM system at FC to
add the definitive due dates to the different orders, which sometimes changes the buckets orders are
put into.

Figure 2.3: Swimlane Diagram for the picking process in the DC

As shown in Figure 2.3 and the description of the process, a great deal of interaction happens
between departments and even companies in determining the ”right time” to pick. Using an estima-
tion based on experience, WFC can determine more accurate picking times by hand, but they have
more on their plate. The interaction between parties calls for clear agreement to the end of obtaining
a more efficient task division, which allows for making substantiated decisions regarding a tighter
personnel schedule.

2.2.2. Types of Client Orders
Picking wave determination is complexified by the different client orders they contain, which leave
different levels of room for flexibility in scheduling due to the time between their creation and deadline.
These different types of client orders also contribute to peaks and drops in workload. The different
types of orders are given in Table 2.1. The dataset used contains 62 074 picking tasks in total, of
which 7 656 are part of A-for-A orders, 46 818 of A-for-B orders and 7 600 A-for-C, resulting in the
shares given in the same table.

The distribution of the time between the creation time of a picking task and its planned load time,
categorising the tasks into order types, is given in the histogram in Figure 2.4.

The first category, A-for-A orders, leaves little room to move around tasks in the schedule, and
cause a peak in workload at 09:00, when they come in. A pool of flex workers is used to account
for this peak, which is still available in the afternoon when the A-for-A orders have already left the
DC. Even though the volumes in this category are quite predictable, these hours contain a large peak
in workload, and employees are kept or put on the schedule to match. However, as explained in
subsection 2.3.1, a shift is 8 hours, meaning employees can come to a standstill if the time is not
filled up with tasks.

The second category comprises the largest number of tasks, and can be moved around in the
schedule. The third, a small category, has the most time between order creation and deadline. Logi-
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Table 2.1: Types of Client Orders

Order type Description Time gap Share
A-for-A Order on same day as

delivery
5 hours before loading
time

12.3%

A-for-B Order between 13:00
and 16:00, one day
before delivery

5 - 24 hours 75.4%

A-for-C Order at least two days
before delivery

24-48 hours 12.3%

Figure 2.4: Histogram of Tasks, labeled by Order Type, on the Colli Picking Department

cally, the last two categories aremost flexible in the schedule to be either pushed forward or backward,
but they are often used to fill up time as employees are present for picking anyway. Additionally, un-
certainty in true loadtimes of orders as well of a desire to mitigate risk of machine failure in the DC
causes risk-averse order scheduling. These elements make it difficult to determine whether picking
is done at ”the right time”: early enough to still deliver orders on time in case of delay, but later in
case of a more efficient personnel schedule.

2.3. Personnel and Structure
To be able to operate 24/6 and to account for the work to be done as explained in the previous
sections, manpower is an inherent attribute to the DC. To this end, this section describes its shift
schedule and associated cost.

2.3.1. Shifts
In its 24/6 principle, the DC operates 24 hours on each day except Sunday; its shift schedule is shown
in Figure 2.5. The figure shows the way shifts are spread over four weeks through a four-crew shift
schedule, which are shown chronologically in the figure. As seen in the figure, the different types of
shifts follow one another in line with the collective labour agreement. Additionally, on a day-to-day
basis, people have a break schedule. The DC has 36-hour work weeks through the schedule as it is
now. Employees work in the same crews most of the time, but flex personnel is deployed during office
hours (09:00-17:00), as shown in the schematic representation of the shift schedule in Figure 2.6.

Flexibility in the schedule is not only found in the deployment of flexible personnel, but also in the
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Figure 2.5: The Four-Week Shift Schedule

Figure 2.6: Schematic Representation of how Permanent Shifts overlap with Flex Shifts

use of senior days. Twice every four weeks, an employee 58 years and older can choose a free shift.
In the current shift schedule, the permanent crews are deployed in the morning, afternoon and

night shifts, supported by flexible personnel in the flex shifts. However, both personnel types could
be deployed in all shifts.

2.3.2. Personnel Costs
Surcharge is applied to salaries in line with the Collective Labour Agreement (CLA), on top of the base
pay. Normal working hours (from 06:30 until 17:00) get no surcharge, except for 45% on Saturday
and 100% on Sunday. From the end of that time interval until 00:00, 34.2% is paid on top of the
normal hourly wage from Monday until Friday and 100% on Saturday and Sunday. During the night,
from 00:00 until 06:30, surcharge is 37% from Monday until Saturday and 125% on Sunday. An
overview of these costs is given in Table 2.2. Using this surcharge, cost of deployment was calculated
per shift, which was used for the model. Categorised as sensitive information, this calculation and its
outcomes are given in Appendix F.2

Table 2.2: Surcharge on for Irregular Hours

Start End Mon Tue Wed Thu Fri Sat Sun
06:30 17:00 0.0% 0.0% 0.0% 0.0% 0.0% 45% 100%
17:00 00:00 34.2% 34.2% 34.2% 34.2% 34.2% 100% 100%
00:00 06:30 37% 37% 37% 37% 37% 37% 125%

2.4. Workload and Workload Distribution
This section shows the way workload is distributed over and between shifts As said earlier, the general
perception of workload is that there are peaks and drops in its volume and pattern. This fits the image
generated by the different types of client orders and the cooperation between FC and its transporters.

Workload distribution alone is made more interesting by adding the discrepancy between work-
load fluctuations and personnel deployment, through which the problem obtains its price tag. As
explained before, a pool of flex employees is used to handle A-for-A orders that come in each morn-
ing. According to a team lead, the volume of these orders require at least 2 manual pickers. This
phenomenon is accompanied by the problem of employee idleness later on in the shift, when the high
workload people are deployed to absorb sizzles out.

2.4.1. Box Plots of Picking Tasks
This section contains a box plot for the workload distribution on the colli picking department. Data
used for this workload were taken between the 15th of May and the 11th of June 2023. Due to the
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sensitivity of exact volume patterns, only the box plot for Tuesday was enclosed in this section. Hours
of the day are shown on the x-axis and picking volume in number of colli on the y-axis. Boxes for the
night shift are shown in red, the morning shift in green and the afternoon shift in blue.

As seen in Figure 2.7, picking activities are generally less during the night and shrink during this
time as well. At 08:45, the first A-for-A orders are released to the DC, and the hours before this time
are generally slow, as can be seen in Figure 2.7. As the shift starts at 06:00, this means that the
first three hours of this shift are not used very effectively by the people that are deployed during this
time. One way FC counters this effect is by deploying flex workers from 09:00. The A-for-A orders
are done before 12:00 and the workload looks quite constant over the period of time the data was
aggregated. These orders are loaded at 12:00, after which the afternoon shift generally has a large
spread in workload.

Figure 2.7: Workload Distribution on Colli Pick Department for Thursday

2.4.2. Picking Activities compared to Picking Norm
Due to the sensitivity of picking volumes over time periods, a graph comparing the picking norm
with productivity was added to Appendix F.3.1. A histogram for this difference is shown in Figure 2.8.
Taken from the descriptive statistics, the mean difference between the norm and the number of colli
picked is 572, with a standard deviation of 395. This shows both the overcapacity present at the
DC and the large deviations in workload. In this representation of data, it is important to note that
the number of people present were counted from the data, using the number of different people
that confirmed orders. This would be a more representative measure is counts were taken from past
personnel schedules.
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Figure 2.8: Histogram for Difference between Actual Picked Colli and Norm between 11.05.2023 and 31.06.2023

2.5. Job Scheduling and Difficulties
2.5.1. Insight in Load Times
As discussed through the swimlane at subsection 2.2.1, one of the interactions in the picking system
is found between SL and the DC. The first picking deadlines are put through with the client orders, and
the final load times are added once SL links their transporting schedule to these load times. Picking
orders are placed in waves based on the first load times passed to the DC. Although these waves are
changed when the definitive deadlines by SL come through, it is initially often unclear whether picking
jobs are spread over shifts effectively.

The difference between the initial and final load times are shown for three different weeks in 2024
in Figure 2.9. For the weeks between 18.03 and 24.03, 29.01 and 04.02 and for 12.02 and 18.02,
a discrepancy is seen between the load times put through in the client order and the final one, put
through by SL.

Even though it is expected to result in a higher amount of scheduling efficiency, it is difficult to
determine which jobs can be left to be completed later due to this uncertainty. With full insight
in deadlines, it would be possible to determine when jobs can be completed minimised risk of not
delivering to the client in time.
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Figure 2.9: Box Plot for Difference between Actual and Planned Load Times for Week 5, 7 and 12

2.5.2. Job Scheduling with respect to their Deadlines
As a result of uncertainty in definitive job deadlines, they are completed quickly after their creation
times. En example of when jobs are completed with respect to their creation times and deadlines is
shown in Figure 2.10. It was masked as it contains picking volumes; the unmasked figure was moved
to subsection F.3.2. It is shown for week 12 of 2024, between 18.03.2024 and 24.03.2024. In the
figure, the moments jobs are completed are shown in orange and the intervals to schedule them in
in blue. Jobs’ creation times follow a pattern with wave releases. As shown in the figure, some days
contain a great deal of jobs that are completed quickly after their creation times and others show jobs
distributed over the course of their scheduling intervals more.

2.5.3. Stock
As the DC inMaasdamprocesses fresh dairy productsmost of the time, they depend on stock delivered
by their factory. Relatively tight due dates cause stock to be limited and sometimes not sufficient. This
can be in the way of order picking at times.

2.6. KPIs
Parmenter (2007) defines KPIs to represent a set of measures focusing on those aspects of organi-
sational performance that are most critical for the current and future success of the organisation. In
the context of this research, the backdrop of measuring the KPIs for the problem serves to contrast
solution alternatives to. A table with the chosen KPIs is given in Table 2.3, after which they are both
elaborated on.

Table 2.3: Key Performance Indicators

No. KPI Unit
1 Number of redundant hours #
2 Cost of used shifts €
3 Number of people scheduled #

2.6.1. KPI 1: Number of People Scheduled
The first KPI encompasses the number of people scheduled over all shifts
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Figure 2.10: Visualisation of Job Creation Times, Deadlines and their Completion Times between 18.03.2024 and
24.03.2024 (masked)

2.6.2. KPI 2: Number of Redundant Hours
The first KPI is used to measure the difference between personnel presence and the total duration of
orders. It indicates the efficiency of personnel deployment.

2.6.3. KPI 3: Cost of Used Shifts
As shifts carry different costs, using a smaller number of shifts for workload does not always result
in a cost decrease. This KPI was added to assess this effect

2.6.4. KPI Interaction with System
KPIs are put into context of the system in the causal diagram shown in Figure 2.11, in which the KPIs
are outlined in red. As shown, the first KPI, the cost of used shifts, increases with the deployment of
more personnel, both from the permanent and flexible workforce. Additionally, when using expensive
shifts (such as the night shift) to complete picking tasks in, this cost increases.

For the second KPI, thenumberof redundant hours, the discrepancy betweenworkload as a result
of an uneven workload distribution influences the number of redundant hours through the amount of
employee idleness it causes. The uncertainty in order load times is a result of the cooperation with
FC’s transporter, Simon Loos. There is a gap between the systems both parties use to link orders
to transporting units, so an early estimation of which client order needs to be done at what time is
lost in translation. However, leveling out the uneven workload distribution can be used as a control
mechanism to this end, by scheduling orders efficiently in the used shifts.

The third KPI, the number of used shifts, is a direct result of the number of permanent and flex
employees put on the schedule and in turn directly influences total personnel cost. When personnel
norms can be altered through a more level workload distribution, this number of used shifts can be
decreased.
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Figure 2.11: Possibilities for control and their influence on KPIs

2.7. Summary System Description
In answering the first sub question, ”Which opportunities can be identified in the current job scheduling
method at FC?”, this chapter comprises a system analysis.

The first opportunity is identified in the wave determination. As explained in subsection 2.2.1,
jobs are not scheduled explicitly in the current system. They come in and put into picking waves and
buckets based on the deadlines that accommodate client orders. However, as explained in Section 2.5,
large differences are seen in the deadlines received with client orders and those put through by SL in
a later stage. This results in uncertainty in when picking should be done to meet deadlines. As shown
in subsection 2.5.2, orders are often completed quite closely to the time they are initialised.

The second opportunity is found in distributing jobs to the end of an efficient personnel schedule,
so that norms used for personnel scheduling (Section 2.3) can be adjusted accordingly. This means
that personnel is put on the schedule at night in some cases. Being the most expensive shift (sub-
section 2.3.2), this is undesirable. However, it is unclear whether picking jobs can be distributed in
a way that the night shift is avoided. To this end, it is expected that jobs can be moved into the flex
shifts or into the morning shifts and afternoon shifts.

The third opportunity is found in the senior days as explained in Section 2.3. Using these senior
days cleverly can contribute to less redundant hours in shifts with low workload.



3
Literature Review

In finding a method to realise a better workload distribution, this chapter aims to answer the sec-
ond research question: ”Which models found in literature are most suitable to solve the job schedul-
ing problem at FC?” It starts with literature regarding workload balancing and workforce allocation
in Section 3.1. Separate workload balancing literature is given in Section 3.2. Task Scheduling is
discussed in Section 3.3, followed by shift scheduling in Section 3.4. Different workload balancing
criteria and time representation literature are discussed in Section 3.5, followed by a summary of the
literature review in Section 3.6

3.1. Workload Balancing and Workforce Allocation
Irastorza and Deane (1974) have defined workload balancing as ”managing the variability of work-
loads over a time horizon”. This can be done through activity or personnel distribution. A general
strategy for personnel scheduling is letting it depend on the workload forecast, a shown schematically
in Figure 3.1a. Vanheusden et al. (2020) have added the workload balancing step to this equation in
Figure 3.1b.

Figure 3.1: Approaches to Workforce Determination (Vanheusden et al., 2020)

In their literature review regarding personnel scheduling, Van Den Bergh et al. (2013) note that
personnel scheduling is hardly ever combined with unforeseen activities, even though scheduling of
different aspects are bound to interact. They suggest testing amodel’s robustness through simulation
experiments in different settings, with varying input parameters to account for different workload
peaks. They stress the importance of integrating real-life difficulties into personnel scheduling to
make the solutions more suited for practical implementation.

In their study, Smet (2023) aims for a balanced workload distribution over hospital employees,
taking into account the types of patients that arrive and the types of care they need. In their equity
objective function formulation, they encapsulate both spatial (between hospital wards) and temporal
(between days in the planning period for individual wards) workload balancing. Their objective is a
min-max equity function, which minimises the maximum workload in their timeframe. The maximum
workload is taken over all hospital wards as well as over all days, which envelops the spatial and
temporal aspect of the problem, as said earlier. This paper also contains a formulation for constraints
ensuring hospital patients are admitted to the hospital within the feasible time window. To do so,
they use a set of feasible admission dates per patient. This element of scheduling a task within an
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available time frame and keeping a deadline inmind can be used from this study in the current problem
formulation.

3.2. Workload Balancing
A stated earlier, Vanheusden et al. (2020) have formulated a model to solve the issue of Operational
Workload Balancing Problem (OWBP) in warehouses. They aim to balance the workload to prevent
workload peaks, describing the problem as assigning groups of customer orders to predefined time
slots to this end. Their objective function is a minimisation of the maximal planned workload over all
timeslots. They do state that the OWBP issue is a difficult problem to solve optimally when the aim is a
practical computational time. In 2021, Vanheusden et al. did a new study to compare different work-
load balancing approaches, using restricted time windows to retrieve customer orders. They found
that the effectiveness of different balancing measures is influenced only very little by warehouse lay-
out characteristics and customer order parameters (in an e-commerce setting). The effectiveness of
measures is more often influenced by underlying managerial reasons, such as transportation sched-
ules.

Huang et al. (2006) state the importance of a clear definition of workload balancing, in which
they use the maximal workloads and the sum pairwise difference as objectives for their Stochastic
Mixed Linear Program (S-MILP). They use the model for workload balancing in an aircargo terminal
situation, in which they aim to balance the workload between handling terminals and over the given
time horizon. They assume a fixed aircraft schedule, and a stochastic workload from each flight. This
can be compared to the situation at FC in the sense that there is a fixed schedule for a part of the order
picking activities that need to be completed, and there is the stochastic element of unforeseen orders
with short deadlines that also need to be done. However, the problem set to be solved is deterministic
rather than stochastic.

Workload balancing can also be done through task division over personnel, to which end Azmat
et al. (2004) formulate different approaches to an annualised problem, in which the holiday sched-
ule and yearly demand planning constrain the objective of leveling workload for the manufacturing
company the case is built on. They aim to minimise overtime hours over the year and per employee
to formulate a workforce schedule. In their objective, they minimise a pairwise comparison of the
workload difference between employees. In this comparison, they sum the number of hours one em-
ployee works more than the other and the number that the other works more than the one. They add
this to the number of overtime hours for workers.

Golpîra and Tirkolaee formulated a MILP model for stable maintenance task scheduling, using
sets of time buckets to divide maintenance tasks over (2019). These time buckets, however, are
pre-purchased and the objective is to minimise cost and stability over the different buckets.

Simulation is a broad term for methods that allow the user to imitate a real-life simulation and as-
sess the effects of different measures on the simulated system. Kim (2020) have formulated a simula-
tion approach to schedule jobsmore efficiently tomeet compressed response times in an e-commerce
setting. They applied priority-based job scheduling using shop-flow models for their warehouse job
scheduling. A joint evaluation criterion was used to assess the performance of different priority rules,
which integrates the objectives of low earliness, low tardiness, low labour idleness and low work-in-
process stocks. This evaluation criterion is in line with the solution aimed for at FC. However, in an
e-commerce setting, orders come in stochastically, making this simulation a handy approach to test
different scenarios.

Some other studies have been found using simulation, but those were mainly used for produc-
tion planning. An example is Haeussler and Netzer (2019), who made a comparison between an
optimisation-based and a rule-based approach to workload balancing in a production planning envi-
ronment. They conclude that the optimisation-based model outperforms the rule-based one on most
of the aspects they tested, but that it is still not developed enough to serve as a user-friendly way to
conduct activity planning. In case of a deterministic model, however, this could be useful.

3.3. Task Scheduling
Brucker (2004) and Leung (2004) both give an extensive explanation of scheduling and different
algorithms, most of which concern deterministic scheduling. Lawler et al. (1993) restrict some of the
characteristics in deterministic problems, for example defining that only one job can be handled by
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one machine at a time.
Pinedo (1996) categorised scheduling problems for machine environments. They make a distinc-

tion between environments with single machines, multiple machines, uniform and varying completion
times of jobs, based on the processing times of machines. Problems in which jobs need to move
through the problem in series are touched upon, as well as cases of parallel machines. In line with
this categorisation, the problem at FC can be viewed as problem withm identical machines that act in
parallel (Pm), in which a job j requires a single operation. In this case, order pickers can be seen as
the machines and picking tasks as jobs, which contain a release date, deadline and duration (based
on the processing speed of the order pickers). This problem contains no preemption. They define
the minimisation to always be a function of task completion time, which an be divided in earliness by
subtracting the deadline and tardiness as the same measure with a minimum of 0.

Completion times are used for makespan minimisation in this group of problems. However, the
total makespan depends on the times orders come in and their deadlines at the DC, and the objective
is not a makespan minimisation but a spread of this workload to bring about manpower minimisation.

Rieck et al. (2012) formulated MILP models for project scheduling, in which each project com-
prises a set of tasks to be done before a deadline. These tasks have different needs with respect to
resources, such as machinery, personnel and time. In this formulation, the problem is a resource al-
location problem as opposed to a task scheduling one but people and shifts can be seen as resources.
Their definition of the decision variable contains a start time only, instead of scheduling over all time
blocks the task needs to be scheduled in

3.3.1. Job Shop and Machine Scheduling Problems
In line with the previous definition of task scheduling problems, many manufacturing formulations
of the workload (im)balance problem are formulated as a serial operation, in which one machine
operation needs to be done before the next and tasks or machines have different processing times.
These formulations contain Job-Shop Scheduling Problem (JSSP) formulations, in which an execution
on all or some machines in a specific order is necessary and the goal is to minimise overall makespan
(Błażewicz et al., 2000).

It can be formulated in a multi machine environment, in which machines would be people in the
context of this study. Abdolrazzagh-Nezhad and Abdullah (2017) view various formulations of the
JSSP, categorising fourteen classes of JSSPs. By their definition, the classical JSSP contains three
types of constraints: precedence, capacity and release and due date. Precedence constraints contain
the precedence of different machines for one job and not the precedence relative to another job,
capacity constraints ensure that machines cannot be idle if there is a job in the queue and that one
machine handles one job at a time. The last set of constraints ensure no negative starting time,
specific processing times and no interruption of these processing times. Objective functions aim for
minimal (weighted) tardiness, lateness and makespan.

In the study performed by Rudek (2022), another problem in which tasks are scheduled over
parallel machines is given. In contrast to the other formulations, tasks do not all have the same
release time, but are released at different points in time and also have different deadlines. It also
contains a deterioration function for the different machines to account for maintenance, which is not
needed in the formulation of the model at hand. In many of the Job Shop and Machine Scheduling
problems, the start time of all jobs is 0. As the envisaged deterministic model contains tasks that
arrive at different moments than 0 on the timeline. This formulation needs to be altered to be suitable
for the problem at hand.

As opposed to a JSSP, an Open-Shop Scheduling Problem (OSSP) aims to schedule a number of
jobs over a number of machines in no specific order. It is also categorised as an NP-Hard problem
and is often solved through heuristics.

In Parallel Machine Scheduling Problems, the goal is to schedule J jobs toM machines. Gharbi and
Haouari (2005) have done so, taking into account availability constraints of the machines. Feldmann
et al. (1994) have also done so using a network approach. Mokotoff (n.d.) considers the parallel
machine scheduling problem in her survey, and concludes that large steps are made towards solving
the problem. These steps are seen especially in the objective of makespan minimisation, a relevant
subject in computer science. Models minimising total tardiness are also found to the end of parallel
machine scheduling (eg. Yalaoui and Chen (2002)).
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3.3.2. The Bin-Packing Problem
In the Bin-Packing Problem (BPP), the objective is to pack all rectangular shaped objects in to a
number of bins that is as small as possible (Martello and Vigo, 1998). The generalised BPP aims to
add two sets of compulsory and non-compulsory items to bins, minimising the cost in the process
and taking into account profit of packing specific items (Baldi et al., 2012).

The BPP is often found in cloud computing as a way to place Virtual Machines onto different servers
(Berndt et al., 2018). An example of this is Komarasamy and Muthuswamy (2016), who took on the
problem of storage allocation using this approach. They classified jobs and prioritised them to place
them inside bins. In its objective, the number of bins used can be minimised, but cost can also be
allocated to different bins so that cost is minimised in these problems. An example of this is the
Multiple Container Loading Cost Minimisation Problem (MCLCMP) as discussed by Hou et al. (2011),
in which objects are placed into containers under the objective of cost minimisation.

In the aircraft industry, BPP is used for task scheduling by Witteman et al. (2021), who used this
method for maintenance scheduling taking into account different ability levels of mechanics. They
added a fictitious bin to their definition to add space in the model tasks could be placed in if they did
not fit in the planning horizon. Their objective function contains a cost minimisation. In their study
conducted in 1978, Coffman et al. used a Bin Packing formulation for multiprocessor task allocation.

The use of a BPP formulation for WLB is also seen in a cloud computing setting. An example is the
paper by De Cauwer et al. (2016), who created BPP model with a temporal component, in which they
also minimise total cost of used bins. In their study, Hou et al. (2011) examine the multiple container
loading cost minimization problem (MCLCMP) using Linear Integer Programming and getting superior
results to previous studies. Fleszar and Hindi (2002) have formulated new heuristics for solving the
1D-BPP, which have better performance than previous algorithms.

3.4. Shift Scheduling
Shift allocation of work force must meet requirements of the workforce. This shift allocation problem
is seen as trivial to solve, but too rigid in the case workforce demand fluctuates too much during a
shift (Baker, 1976). This shift scheduling problem requires a predetermined workforce demand, which
would mean that personnel scheduling could be done more efficiently based on current workload.
However, this would mean a suboptimal schedule as workload fluctuates a great deal the way it is
filled in now. Smet et al. (2014) formulated a new method to solve the Shift Minimisation Personnel
Task Scheduling Problem (SMPTSP), in which they use an extra binary variable that indicates whether
an employee has a task during a shift.

Krishnamoorthy et al. (2012) introduced this problem, in which the objective is to minimise overall
personnel cost to schedule all tasks. Again, this formulation contains a heterogeneous workforce to
complete tasks with a fixed start and end time, while this study aims to move tasks around to be able
to schedule the workforce more efficiently. The difference with the FC case is that start and end times
of tasks are not fixed, which means that a model formulation is needed to account for both shift and
task scheduling.

3.5. Workload Balancing Criteria
To formulate a model in balancing the workload over different shifts, measures are needed to show
the workload (im)balance. Many JSSP model formulations aim to minimise total makespan, which
does not necessarily add to a balanced workload for reduced cost in this study. As they see workload
imbalance amongst employees or machines as a large problem, Ho et al. (2009) propose a measure
for workload balancing called Normalized Sum of Square for Workload Deviations (NSSWD), which is
adopted by Schwerdfeger andWalter (2018). In their study, they aim to schedule a set of jobs n over a
set of parallel machinesm by minimising NSSWD. They show that minimising this measure acccounts
for a minimal maximum completion time. However, as it is not the minimal maximum completion time
this study is interested in but a cost minimisation through workload balancing, this is not necessarily
useful for this study.

Ouazène et al. (2016) use this measure for their study on a minimisation problem for parallel
machines. They use both the NSSWD and a Cmax - Cmin criterion (∆C) for workload distribution
over parallel machines. They show that the latter criterion theoretically gives the same results as
the former in a parallel machine workload imbalance minimisation environment. Building on this
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theory, Ouazène et al. (2021) have given a theoretical and computational analysis of various workload
balancing models, in which their main objective is to schedule workload over different machines or
operators to decrease idle time. In the workload balancing problem this study is faced with, this could
mean seeing the machines as hours of the day, in which the employees that need to be deployed are a
result of the workload distribution. This formulation of a workload balancing objective may however
be computationally demanding for large datasets.

In their study in 2014, Ouazène et al. formulated a mathematical programming method to solve
the workload balancing problem. They did so by minimisation of workload between the machines with
the highest and lowest workload, through the∆C criterion as named above. Their decision variables
comprise two binary variables xijm and yjm, respectively denoting whether job j immediately follows
job i on machine m and whether job j is assigned to machine m.

The shift minimisation objective in the SMPTSP as proposed by Krishnamoorthy and Ernst (2001)
is in line with the task scheduling problem viewed in this study.

3.6. Summary of Literature Review
The literature studied in this chapter aims to answer the second sub question: ”Which models found
in literature are most suitable to solve the job scheduling problem at FC?”.

Based on the SMPTSP as defined by Krishnamoorthy et al. (2012), the model objective is to min-
imise shift use over all shifts using a weighted objective function. To determine which job is done at
what time and which shifts are in use (the latter for cost calculation of the objective), binary variables
are used.

The model formulation by Krishnamoorthy et al. (2012) differs from the model needed in this
study on a critical aspect: job scheduling. In their model, jobs have set start and end times, based on
which jobs are placed in ”cliques” of jobs that overlap. Using these cliques, a minimal shift schedule
is devised. However, the start and end times of jobs in the model required in this study are not set,
meaning that the minimal clique algorithm may be used to define sub sets of possible job scheduling
combinations, and a separate job scheduling addition needs to be made.

Using a continuous time horizon for scheduling, jobs can be scheduled both between their cre-
ation time and deadline and between the start and end time of a shift. Jobs’ start time is portrayed as
a decision variable to this end (Rieck et al., 2012). However, when multiple jobs are scheduled in one
shift, they cannot overlap as one person cannot work onmultiple orders. To this end, non-overlapping
constraints are inspired by the BPP approach as formulated in 3D by Paquay et al. (2014). As the
temporal dimension is the only one this study requires, these overlapping constraints can be reformu-
lated into 1D constraints. In their BPP approach to a job scheduling problem, Witteman et al. (2021)
created a fictitious bin in which jobs can be placed if they cannot be planned in the given bins in the
model. In this vein, more shifts than necessary are defined in the model to leave room for jobs that
do not fit into the desired shifts.



4
Model Formulation

This chapter contains the model formulation to answer the third research question: ”How can the
practical job scheduling problem at FC be represented in a mathematical formulation?” Mdel require-
ments and assumptions are given in Section 4.1, followed by the problem description in Section 4.2.
Sets, Parameters and Decision Variables are given in Section 4.3. Section 4.4 contains the model’s
objective function and constraints, followed by a conceptual model. Model development is elabo-
rated in Section 4.5 and a model discussion in Section 4.6. The chapter concludes with a summary
in Section 4.7.

4.1. Model Requirements and Assumptions
Model requirements are found in subsection 4.1.1 and assumptions in subsection 4.1.2

4.1.1. Requirements
To determine whether the model does what it is supposed to do, model requirements were devised in
this section.

• An order must be completed within one shift;
• An order must be completed between its creation time and deadline;
• No job preemption is allowed;
• All jobs must be completed;
• No overlap is allowed between jobs assigned to the same shift;
• A time gap is added between the end of one job and the start of the next to account for process-
ing time between orders.

4.1.2. Assumptions
The model assumptions are given in this section

• There are no skill requirements to complete jobs;
• In real life, orders contain different picking tasks. These picking tasks are contained in an order
and an order is indicated using the word ”job”;

• Jobs are finished in one go;
• A shift represents a worker in that shift;
• Building on the previous assumption, the shifts are not paired to a person. This means the
model does not take into account time between workers’ shifts as defined in the Collective
Labour Agreement;

• The model is focused only on picking jobs, and not on any other tasks employees must perform
in this department;

• The model does not contain a break schedule.

4.2. Problem Description
The different shifts in the model represent an employee deployed in that shift. This is based on the
definition by Krishnamoorthy et al. (2012) and is shown conceptually in Figure 4.1. In their model,
the objective is to schedule tasks in a minimal number of shifts. There are two large differences
between their model and the problem description given for this model. The first is that their employee
qualifications should meet task requirements, which is not present in the problem description in this
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study. The second difference is that the tasks in their model have a set start and end date, even
though the point in the study at hand is to schedule tasks to be able to see whether they fit in less,
or a different composition of, shifts.

Figure 4.1: Schematic representation of shifts

Part of this job scheduling formulation follows directly from the problem description, in which
jobs need to be scheduled between their time of creation and deadline, and need to fit into shifts
completely. To this end, the start time of a job is seen as a continuous variable (Rieck et al., 2012).
The challenge is found in ensuring jobs do not overlap within a shift, as one person cannot work on
two orders at any given moment. To this end, non-overlapping constraints are inspired by the BPP
approach as formulated in 3D by Paquay et al. (2014). As requires only a temporal dimension, these
overlapping constraints were reformulated into 1D constraints.

In their BPP approach to a job scheduling problem, Witteman et al. (2021) created a fictitious bin
in which jobs can be placed if they cannot be planned in the given bins in the model. To this end,
more shifts than necessary should be defined so that the model has room for scheduling.

Due to the NP-hardness of BPPs, the next challenge was found in making the formulation suitable
for practical use. This process is described in Section 4.5.

4.3. Sets, Parameters and Decision Variables
This section contains the model Sets and Parameters in subsection 4.3.1 and Decision Variables in
subsection 4.3.2.

4.3.1. Sets and Parameters
The sets for the mathematical model are given in Table 4.1 and parameters in Table 4.2.

Table 4.1: Sets used for the mathematical formulation

Set Definition
J Set of picking tasks
S Set of shifts

As shown in Table 4.1, the set of jobs to be done is denoted by J , and the set of shifts by S. A job
j is a given deadline DLj , a creation time CTj and a duration Dj . A shift carries cost Cs and has a
start time and end time STs and ETs, respectively. The time used by an operator to switch between
jobs is indicated with BAT ; this time includes placing the finished order in a bin to be moved into the
warehouse and driving to the next start bin. The model also uses a large positive a large positive time
value V .
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Table 4.2: Parameters

Parameter Definition Unit
DLj Deadline of job j [seconds]
CTj Creation time of job j [seconds]
Dj Duration of job j [seconds]
Cs Cost of shift s [€]
STs Start time of shift s [seconds]
ETs End time of shift s [seconds]
BAT Between-activity time [seconds]
V Large temporal value [seconds]

4.3.2. Decision Variables
The decision variables used in the model are given in Table 4.3.

Table 4.3: Decision Variables for the Mathematical Model

Variable Definition Sets
xjs Binary variable indicating whether job j is assigned to shift s j ∈ J, s ∈ S
us Binary variable indicating whether shift s is used s ∈ S
startj Continuous time variable indicating the start time of task j j ∈ J
bjk Binary variable indicating whether task j is scheduled before task k j "= k ∈ J

The first binary variable xjs evaluates to one if task j is assigned to shift s, and the second, us,
indicates whether shift s is in use. For the task scheduling constraints, two additional DVs were
devised, denoting the scheduled start time of a job j, startj , and whether task j is scheduled before
task k, bjk.

4.4. Objective and Constraints
4.4.1. Objective
As explained in Section 4.2, the model’s goal is to minimise cost of used shifts over the planning
horizon. As the cost per shift differs per shift and weekday, the objective function in Equation 4.1
follows from this goal, in which the cost of used shifts is summed.

min :
∑

s∈S

Cs ∗ us (4.1)

4.4.2. Constraints
An overview of the constraints that bound the objective is given in Equations 4.2 up to 4.10.

Task Scheduling and Shift Capacity Constraints∑

s∈S

xjs = 1 ∀j ∈ J (4.2)

xjs ≤ us ∀ s ∈ S, j ∈ J (4.3)

∑

j∈J

xjs ∗Dj +
∑

j∈J

xjs ∗BAT ≤ ETs − STs ∀s ∈ S (4.4)

Start Time Scheduling Constraints
CTj ≤ startj ∀ j ∈ J (4.5)

startj +Dj +BAT ≤ DLj ∀ j ∈ J (4.6)
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startj ≥ STs − (1− xjs) ∗ V ∀ j ∈ J, s ∈ S (4.7)

startj +Dj +BAT ≤ ETs + (1− xjs) ∗ V ∀ j ∈ J, s ∈ S (4.8)

Overlapping Constraints
bjk + bkj ≥ (xjs + xks)− 1 ∀ j "= k ∈ J, s ∈ S (4.9)

startj +Dj +BAT < startk + (1− bjk)V ∀ j "= k ∈ J (4.10)

The constraints in Equation 4.2 ensure that all jobs are scheduled in exactly one shift. A shift is
marked as used in Equation 4.3. Equation 4.4 impose that the total duration of jobs scheduled in
a shift, with the addition of BAT , does not exceed shift duration. Equation 4.5 denotes that a job’s
start time must be larger than its creation time, and Equation 4.6 prevents a job from exceeding its
deadline, using its duration. The large temporal value V was used to schedule a job between the start
and end time of a shift, respectively in Equations 4.7 and 4.8.

Through the constraints in Equations 4.9 and 4.10, overlap between jobs is avoided. If two jobs
j and k are scheduled in the same shift s, Equation 4.9 forces one of the two jobs to be scheduled
before the other. If job j is scheduled before job k (i.e. bjk = 1), the start time of job j (with the
addition of its duration and the BAT parameter) is constrained by the start time of job k.

4.4.3. Conceptual Model for Task Scheduling
Using the sets, parameters and decision variables as formulated in the previous sections, a conceptual
model for the way constraints ensure task scheduling is shown in Figure 4.2. It shows two shifts, s and
t, over which tasks j and k must be scheduled, respectively shown in green and orange. The creation
time and deadline CT and DL for both tasks are shown in the same colours and with corresponding
subscripts.

Figure 4.2: Visual Representation of Example Jobs and Shifts, with Creation Times and Deadlines

Figure 4.3 shows a possible way these tasks can be scheduled in the given shifts, adhering to
all constraints and including the corresponding evaluation of decision variables in red. As shown in
the figure, the two tasks must be scheduled between their creation time and deadline (Equations 4.5
and 4.6), and must each be completed during a shift with no preemption (Equations 4.8 and 4.7) or
overlap between tasks (Equations 4.9 and 4.10).

Taking into account that the two tasks to schedule both fit into the same shift due to their creation
times, deadlines and durations, the DVs corresponding to this situation are given in red: the scheduled
start times startk and startj , the binary variables that are equal to one xjs, xts as both tasks j and k
are scheduled in shift s, us as shift s is in use and bkj , as task k is scheduled before task j

The case in which job creation times, deadlines and durations do not allow for jobs j and k to be
scheduled in the same shift is shown in Figure 4.4. In this case, both shifts are in use (us = 1 and
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Figure 4.3: Conceptual Representation of Task Scheduling of jobs j and k that fit into Shift s

ut = 1), job j is scheduled in shift t and job k is scheduled in shift s (xjt = 1 and xks = 1, respectively).
Neither bjk nor bkj evaluate to one, as the jobs are scheduled in different shifts, and the start times
of the jobs startk and startj allow for both jobs to be finished within the shifts they are scheduled in.

Figure 4.4: Conceptual Representation of Task Scheduling of jobs j and k that do not fit into Shift s together

4.5. Model Development
Due to the decision variables bjk ensuring no overlap, the number of constraints was very high in
the model’s formulation. This resulted in a slow model that had trouble finding optimality. Some
approaches were used to mitigate this effect, which are elaborated in this section. The first was taken
from the formulation of maximal cliques in graph theory. The approach and outcomes are given in
subsection 4.5.1. To further reduce the problem size, alterations were made to task creation and
deadlines, described in subsection 4.5.2.
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4.5.1. Cliques
An algorithm to find maximal cliques as given by Krishnamoorthy et al. (2012) is used to make sub
sets of tasks that can be scheduled together. This way, sub problems are made so that the model
does not need to compare tasks that could not have been scheduled in the same shift in any case.
The algorithm to do so is given in Figure 4.6, based on the visual representation of cliques as given
in Figure 4.5 (Krishnamoorthy et al., 2012).

Figure 4.5: Visual Representation of Tasks in Cliques

Figure 4.6: Maximal Clique Algorithm

In using cliques, a shorter runtime was expected from the model. However, due to the large
number of overlap between tasks over different days of the week, large overlap of tasks in between
cliques is seen. This is displayed in Figure 4.7, where darker orange means that a job is contained
in more cliques. Using this clique formulation of the model, the optimality gap did not go lower than
70% within a 30-minute runtime for tasks scheduled , meaning the model was so far from optimal
that it was not practical to use it for the end goal of this study.

Figure 4.7: Visualisation of Clique Densities for Jobs between 11.03.2024 06:00 and 14.03.2024 14:00

An alteration was made to this clique formulation to reduce the number of overlaps in the data by
assigning a new creation time to the different jobs in the model. This creation time was equal to the
job deadline, minus its duration minus 2 hours. This alteration resulted in the new creation times and
deadlines as shown in Figure 4.8. This new formulation gave the model very little room to schedule
tasks and resulted in an infeasible model.



4.5. Model Development 25

Figure 4.8: Visualisation of Clique Densities for Jobs between 11.03.2024 06:00 and 14.03.2024 14:00, Short CTs

4.5.2. Subset Creation
After the clique attempts at increasing optimisation speed that did not bring about a great deal of
improvement, it was decided to make sub sets to solve separately. However, as visible in Figure 4.7,
there are tasks that overlap into the next day. To ensure that these tasks were not overlooked in the
model, their deadlines and creation times were altered to fit into the day used for modeling by the
conditions given in algorithm 1. An important step in making these sub sets is deciding which cut-off
time is logical with respect to the model formulation and study goal. As the largest number of orders
come in during the day, the cut-off time was decided to be at 06:00 each day.

Both the cutoff deadline DLcutoff and the cutoff creation date CT cutoff were set to their respec-
tive original values (i.e. DLoriginal and CT original). Through the conditions given below, it was first
determined whether the deadline is found after 06:00, one day after the creation date of the task. If
this is the case, the first cut-off deadlineDLcutoff is set to be at 05:59, the morning after the creation
date. Different conditions are then used to determine the right DLcutoffs and CT cutoffs, based on
the times between their original values and new values. These conditions ensure that tasks are cut
off so that the greatest interval remains between CT cutoff and DLcutoff , and that they are cut off
at the beginning or end of a daily interval in case the job completion interval stretches over multiple
days.
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Algorithm 1: Conditions to cut off Creation Time and Deadline of a Task
DLcutoff = DLoriginal;
CT cutoff = CT original;
if CT original

date+1 06 : 00 ≤ DLoriginal then
DLcutoff = CT original

date+1 06 : 00;
end
if CT original

date == DLcutoff
date & CT cutoff

time < 06 : 00 & DLoriginal
time ≥ 06 : 00 then

DLcutoff = CT original
date 05 : 59

end
if CT cutoff

date < DLcutoff
date & 00 : 00 ≤ CTtime ≤ 06 : 00 & 00 : 00 ≤ DLtime < 06 : 00 then

DLcutoff = CT original
date 05 : 59

end
if CT cutoff

date+1 06 : 00 ≤ DLcutoff & CT cutoff
time < 06 : 00 & 06 : 00 ≤ DLcutoff

time then
end
if DLoriginal −DLcutoff > DLoriginal − CT original & DLoriginal

date ≤ CT original
date+2 then

CT cutoff = DLcutoff ;
DLcutoff = CTdate+205 : 59

end

Figure 4.9 shows the way these conditions cut off the job creation times and deadlines and Fig-
ure 4.10 shows the results for jobs between 11.03.2024 06:00 and 14.03.2024 14:00, showing the
stretch from the cut-off creation time or deadline in dark orange and the parts that are left in light
orange.

Figure 4.9: Visualisation of Conditions for Job Creation Time and Deadline Cutoffs

Effects of Cut-off Deadlines and Creation Times
Cutting off creation times and deadlines allowed to reduce problem size and tighten the solution space,
as it took out jobs with possible scheduling intervals spanning over multiple days. As a result, some
combinations of jobs that would have otherwise been possible are taken out and the model could be
run for different subsets instead of multiple days, which would result in a much slower model due to
the growth in problem size. Cutting of these deadlines and creation times do take away some part of
reality, as it may cause the model to schedule some jobs in more expensive shifts than would have
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Figure 4.10: Visualisation of Job Creation Time and Deadline Cutoffs, for Jobs between 11.03.2024 06:00 and 14.03.2024
14:00

been necessary when using the original creation times and deadlines. This sometimes does not allow
the model to avoid the night shift in its optimisation, which of course causes for more jobs to be
scheduled during these shifts as it is in use anyway.

4.5.3. Addition of Extra Set of Constraints
The final addition to the model to reach a smaller optimality gap within an acceptable amount of time
is found in an extra set of constraints, given in Equation 4.4 and repeated below.

∑

j∈J

xjs ∗Dj +
∑

j∈J

xjs ∗BAT ≤ ETs − STs ∀s ∈ S (4.4)

The set of constraints given in Equation 4.4 is implied by the combination of 4.8, 4.7 and 4.10,
which respectively ensure that a job is scheduled before the end time of a shift, after the start of
a shift, and with BAT seconds between jobs within a shift. However, the addition of Equation 4.4
resulted in a drop in optimality gap from 70% to 0.0% for a model run of 30 minutes. It scheduled
106 jobs in 4 flex shifts, 1 afternoon shift and 1 night shift. The addition of these constraints allows
larger steps in optimisation, effectively resulting in a more efficient model.

4.6. Model Discussion
This section contains a discussion of the model with respect to the different modeling elements.

4.6.1. BAT Parameter and Effects of Number of Shifts in Model
The BAT-parameter in some cases can be used to improve optimisation performance. In different
dataset runs, an optimal solution was found for a higher BAT-parameter value than for another. This
is regarded as a logical consequence for two reasons. The first builds on the idea that less room for
scheduling is better in this model formulation, which is also used in the addition of the extra set of
constraints as explained in subsection 4.5.3. By increasing the BAT value, the model is given less
room for scheduling. This set of constraints is also the root of the second reason for performance
improvements: a higher BAT value may cause the model to need an extra shift for scheduling, which
increases the lower bound. This results in an increase in redundant hours, but also in more shifts
being used anyway, in which more jobs fit more easily. The effects different BAT values have on
model outcomes, so that decisions can be made regarding which BAT values to use, are evaluated in
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the sensitivity analysis in Appendix D.
For the sensitivity analysis, the model was run for Monday until Saturday of the week between

18.03 and 24.03 (days containing respectively 109, 124, 115, 142, 81 and 6 jobs) with varying
values of the BAT-parameter (0, 30, 60, 120 and 240 seconds), all for 75 minutes and with 9 shifts
defined in each shift type category. It was interesting to see that the BAT value of 120 resulted in
an optimality gap 0 in all cases but the one containing 124 jobs, without adding more shifts to the
model and even reducing the number of shifts with respect to the BAT vale of 60 in the case with 115
jobs and the one containing 142. An increase in shifts necessary to accommodate for the duration
of jobs when BAT is included was seen in the sub sets containing 81 and 109 jobs, respectively when
changing the BAT value from 0 to 30 and from 30 to 60.

The cases where an extra shift is necessary to schedule all jobs including BAT logically cause
peaks in the number of redundant hours. This is seen as one ascent that stays constant for the cases
in which BAT causes the turning point for needing an extra shift, and rises and drops again for the
ones where the BAT parameter allows for enhanced optimisation. Due to its desired performance in
most cases in the sensitivity analysis, a BAT parameter of 120 seconds was used for the first run. This
sometimes did not allow for an optimal outcome, as not only the BAT parameter, but also problem
size and shape influence model outcomes.

4.6.2. Number of Shifts
In Appendix D, the influence of the number of shifts defined was examined with respect to model
performance. It was found that a tighter definition of shifts allowed for better model performance,
but optimality does not always mean the absolute optimal outcome. With a tighter defined number
of shifts, there is a risk that the jobs do not all fit into the least expensive ones and a more expensive
shift is chosen. To avoid this, a less-tight shift definition was chosen to avoid the risk of choosing a
number of shifts that was too small.

4.6.3. Duration of Jobs
As explained earlier, the actual picking duration is used for job durations in the model to avoid using
a picking norm. However, there are cases in real life where an order is put aside when stock does not
suffice to finish the order. This would not be a problem is jobs could overlap, which they cannot in
this formulation of the model.

4.6.4. Discussion of Subset Creation
In the process of cutting of jobs’ creation times and deadlines as described in subsection 4.5.2, the
model further deviates from reality and is restricted in its possibilities for scheduling. When creation
dates and times are cut short as shown in Figure 4.10, one result is that some jobs that may have been
scheduled over a course of two days (A-for-B of A-for-C orders, as explained in subsection 2.2.2) are
limited to be scheduled in a day. This especially results in a less useful result when new creation times
and deadlines hinder the model from avoiding night shift scheduling, which in turn tampers with the
study’s goal of finding out whether the DC can refrain from using this shift. Additionally, as shown
in algorithm 1, both creation times and deadlines are cut off with creation times as a basis, meaning
they are cut off earlier rather than later. This may cause a reduction in number of tasks that can be
scheduled closer to their deadline.

4.6.5. Discussion with respect to Model Assumptions
One of the modeling assumptions is that the model does not take into account the time between
shifts employees need to get according to the Collective Labour Agreement. When using the model
as decision support to consider different shift schedules or shift coverage, it is important to keep in
mind that some shifts are generally busier than others in terms of picking jobs. This means that even
when some shifts allow for less personnel, the crews that operate those shifts keep the same size.

A break schedule and cleaning activities were not included in the model formulation, which may
cause a bit of bias in the number of hours that is available during the day. However, the complete break
schedule was expected to add an unnecessary layer of complexity to the already NP-hard problem at
hand, as redundant time is found in themodel in any case. These hours can be interpreted with regard
to the number of hours that are necessary for break schedules each day. The hours for cleaning were
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also left out in consultation with FC, but should not be overlooked in result interpretation. The same
holds for the coordinator present in the picking department during each shift. As this study only
considers picking jobs and not the tasks that need to be completed by coordinators, they need to be
taken into consideration for further studies at the DC. When certain shifts are not used, consideration
can be done of whether a coordinator is still necessary during these shifts.

Varying the BAT may help broaden the model’s common boarder with reality. Additionally, the
model looks solely at picking tasks and does not consider other operations that need to be done by
employees at the DC, such as cleaning. This means these elements should be considered in interpre-
tation of model outcomes.

4.7. Summary Model Formulation
This section answers the second research question: ”How can the practical job scheduling problem
at FC be represented in a mathematical formulation?”

The model was formulated using the SMPTSP (Krishnamoorthy et al., 2012) for shift definitions,
adding the start times of jobs as decision variables (Rieck et al., 2012). It uses a BPP approach to
ensure no overlap between jobs within a shift (Paquay et al., 2014).

To use the model in practice, daily sub sets were made from the weekly datasets through algo-
rithm 1 in subsection 4.5.2. As explained in subsection 4.6.4, this results in some bias in the model as
not all combinations of orders can be scheduled together. This means that some A-for-B and A-for-C
orders cannot be considered unambiguously. However, the effect is not expected to be large as the
workload of these jobs is spread evenly over the different sub sets.

Another addition to the model formulation was the addition of symmetry-breaking constraints as
explained in subsection 4.5.3. For the test set, it allowed for the optimality gap to drop from 70%
to 0.0% in 30 minutes. Varying the BAT parameter was found to have an effect on optimisation
performance, as well as the number of shifts defined within the model.

Through these alterations and additions to the model formulations found in literature, model per-
formance was improved to be usable for the practical job scheduling problem seen at FC.
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Results

In answering the final sub question, ”How can modeling results be related to the scheduling problem
at FC?”, this chapter contains experimental results. It starts with a recap of the study’s goal and the
experimental setup in Section 5.1. A comparison of the different scenarios is given in Section 5.2
and determination of input parameters in Section 5.3. Section 5.4 contains results of model runs for
the chosen weeks under the different model configurations. A discussion of the results is given in
Section 5.5, followed by verification and validation in Section 5.6 and an answer to sub question 3 in
Section 5.7.

5.1. Study Goal and Experimental Setup
As a recap, the study’s goal is to find a minimal shift schedule and find out whether workload can
be distributed in such a way that the night shift is avoided. The sole purpose is not to find the shift
schedule that is absolutely minimal (this results in a model scheduling mainly flex personnel, due to
its lower cost compared to other shift types), but also to compare its outcomes to a shift schedule
that regards whether the workload can be absorbed by the morning and afternoon shifts. In both
of these model configurations, avoidance of the night shift is inherent to the model’s formulation, in
which the night shift is a more expensive shift. Model configurations are based on the cost structures
as defined in the input data. Due to sensitivity of personnel cost, the relative cost of different shifts is
given using ”+”-es in Table 5.1. As the cost of shifts differs per weekday, it was chosen not to work
with percentages. The absolute cost used as model inputs can be found in Section F.4.

Table 5.1: Relative Cost of Shifts under MC1 and MC2

Shift Name Time Cost MC1 Cost MC2
Morning 06:00 - 14:00 ++ ++
Afternoon 14:00 - 22:00 +++ +
Night 22:00 - 06:00 +++++ +++++
Flex 09:00 - 17:00 + ++++

Under these model configurations, scenarios are used to determine how robust a minimal shift
schedule is with respect to workload: one considers an average, one a busy and one a slow week. The
way the experimental setup is summarised in Figure 5.1. As explained in Chapter 4, the model uses
some assumptions to enhance optimisation performance. These have implications for the model’s
deviation from reality, which are taken into account in the interpretation of results in Section 5.5.
Experiments were run using Gurobi (a commercial solver) in Python. A Macbook Pro 2017 was used
with a 3,5 GHz Dual-Core Intel Core i7 processor and 16 GB RAM.
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Figure 5.1: Study Goal, Model Set ups and Outcomes

5.2. Comparison of Scenarios
This section contains a comparison in number of jobs and job durations between the different sce-
narios used in this study. The number of orders present in each weekly dataset, given per weekday,
is shown in Figure 5.2. The total number of orders in the average week is 577, in the busy week 628
and in the slow week 504.

Figure 5.2: Comparison of the Numbers of Orders between Weekdays of the different Weeks
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5.3. Determination of Input Parameters
For the different model runs performed in this study, the BAT parameter and number of shifts to
be used for optimisation were chosen beforehand. For all model runs, the BAT parameter was set
to 120. This resulted in an optimal outcome in the sensitivity analysis given in Appendix D for most
cases. In the same appendix, it is explained that the number of shifts chosen matters for modeling
outcome and performance.

For the average week, the number of shifts used for optimisation was 9 for the original cost struc-
ture. As more shifts are used side-by-side for the case of the cheap morning and afternoon shifts,
this model run was performed with 6 shifts. When first running the model for the busy scenario in
the first model configuration, a shift number of 14 was chosen to ensure the model had enough room
to schedule in. Model outcomes were suboptimal for a large part through these model runs, so the
number of shifts was re-evaluated to 9 for the first model configuration. Again, the number of shifts
used in the second model configuration was 6. The same numbers were chosen for the slow scenario.

5.4. Experimental Results
This section contains the experimental results for model runs in an average, busy and slow week
in Sections 5.4.1, 5.4.2 and 5.4.3. Due to sensitivity of personnel cost, cost of model outcomes is
given as a percentage compared to actual personnel cost for that scenario. Absolute cost is found in
Appendix F.5.

5.4.1. Results Average Week (18.03.2024 - 24.03.2024)
For the average week, optimality was found in most cases when running for the first model configu-
ration but the second model configuration generated results that were suboptimal. The results for
both of these model configurations are given in this section.

Model Configuration 1
The job scheduled as a result for the model runs of the average week is given in Figure 5.3. The
different shift types correspond to the colours as given in the legend, and the scheduled jobs are
shown in red. As shown in Figure 5.3, a large number of jobs is scheduled in the flex shifts. This is
in line with expectations due to the cost structure in the first model configuration, in which the flex
shifts are cheapest.

Figure 5.3: Job Schedule shown in Shift Schedule for Model Configuration 1, Average Week (18.03.2024 - 24.03.2024)
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Model Configuration 2
In line with the cost structure in the second model configuration, the model tried to schedule as many
jobs as possible in Figure 5.4. However, these model runs resulted in large optimality gaps (around
20%), which is also visible in the number of jobs scheduled in flex shifts over the course of the week.

Figure 5.4: Job Schedule shown in Shift Schedule for Model Configuration 2, Average Week (18.03.2024 - 24.03.2024)

KPI Measurement and Comparison of Cost Configurations for an Average Week
As shown in Table 5.2, the model outperformed reality in both cases. Even though the number of
people scheduled in the model under MC2 is higher than the actual number of people scheduled,
cost is reduced. In the model run for MC2, it was more difficult to find optimality. This resulted in a
much higher number of redundant hours in the model in total.

Table 5.2: Key Performance Indicators for Average Week (18.03.2024 - 24.03.2024)

Model Config. KPI Actual Model Unit
1 No. Redundant Hours 55.94 hours

Cost diff Used Shifts -18.29 %

No. People Scheduled 45 42
2 No. Redundant Hours 95.94 hours

Cost diff Used Shifts -3.49 %

No. People Scheduled 45 47



5.4. Experimental Results 34

5.4.2. Results Busy Week (12.02.2024 - 18.02.2024)
The results for the scenario containing 628 jobs is given in this section.

Model Configuration 1
The results for the first model configuration is shown in Figure 5.5. The different shift types corre-
spond to the colours as given in the legend, and the scheduled jobs are shown in red.

Figure 5.5: Job Schedule shown in Shift Schedule for Model Configuration 1, Busy Week (12.02.2024 - 18.02.2024)

Model Configuration 2
The second model configuration also resulted in large optimality gaps and numbers of shifts, as seen
in Figure 5.6.

Figure 5.6: Job Schedule shown in Shift Schedule for Model Configuration 2, Busy Week (12.02.2024 - 18.02.2024)
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KPI Measurement and Comparison of Cost Configurations for a Busy Week
The comparison of KPI performance for the model run for a busy week is given in Table 5.3.

Table 5.3: Key Performance Indicators for Busy Week (12.02.2024 - 18.02.2024)

Model Config. KPI Actual Model Unit
1 No. Redundant Hours 55.19 hours

Cost of Used Shifts +0.34 %

No. People Scheduled 41 46
2 No. Redundant Hours 87.19 hours

Cost of Used Shifts +16.69 %

No. People Scheduled 41 50

5.4.3. Results Slow Week (29.01.2024 - 04.02.2024)
The results for the scenario containing504 jobs is given in this section.

Model Configuration 1
For the slow week, job scheduling results of the first model configuration are shown in Figure 5.7.
The different shift types correspond to the colours as given in the legend, and the scheduled jobs are
shown in red. For these model runs, the model found optimality for all days except for Tuesday (8.1%
gap from optimum) and Thursday (25.8% gap from optimum). As shown in the figure, the main shifts
in which jobs are scheduled are the flex shifts, in line with the cost structure used in the first model
configuration.

Figure 5.7: Job Schedule shown in Shift Schedule for Original Cost, Slow Week (29.01.2024 - 03.02.2024)

Model Configuration 2
As with the previous cases of runs under the second model configuration, the model had suboptimal
outcomes. This is also seen in the number of shifts jobs are scheduled in.

KPI Measurement and Comparison of Cost Configurations Slow Week
For the slow week, model performance did not exceed FC’s personnel deployment. High numbers of
redundant hours are seen in both model configurations.
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Figure 5.8: Job Schedule shown in Shift Schedule for Changed Cost, Slow Week (29.01.2024 - 03.02.2024)

Table 5.4: Key Performance Indicators for Slow Week (29.01.2024 - 04.02.2024)

Model Config. KPI Actual Model Unit
1 No. Redundant Hours 76.12 hours

Cost of Used Shifts +21.33 %

No. People Scheduled 32 42
2 No. Redundant Hours 100.12 hours

Cost of Used Shifts +40.77 %

No. People Scheduled 32 45

5.5. Result Interpretation
This section contains interpretation of the results, in light of modeling assumptions with respect to
reality and optimality gaps. Model results were verified with expert at the DC.

5.5.1. With Respect to Model Performance
When doing the model runs, it was found that not all problem instances were as easily solvable opti-
mally. As seen in the different model runs given in the previous sections, the model was often subop-
timal, which resulted in outcomes that did not exceed cost performance by FC itself. The gaps from
optimality (an optimal solution being 0.0%) as a result of the different model runs are summarised
in Table 5.5.

Table 5.5: Model Performance per Week, by Model Configuration (MC)

MC Week (scenario) Mon Tue Wed Thu Fri Sat
1 18.03-24.03 (avg) 0.0% 12.3% 0.0% 0.0% 0.0% 0.0%

12.02-18.02 (busy) 4.0% 16.1% 0.0% 0.0% 0.0% 0.0%

29.01-03.02 (slow) 0.0% 8.1% 0.0% 25.8% 0.0% 0.0%
2 18.03-24.03 (avg) 15.4% 36.9% 9.5% 22.0% 16.3% 0.0%

12.02-18.02 (busy) 28.1% 20.8% 2.6% 17.3% 26.1% 0.0%

29.01-03.02 (slow) 14.8% 11.5% 0.0& 13.9% 19.6% 0.0%

As seen in Table 5.5, optimality gaps are structurally larger in the secondmodel configuration than
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in the first. This is expected to be due to an increase in symmetry in the model’s formulation: as two
shifts were now cheapest, it makes no difference to schedule in either one, which makes it difficult to
weigh off these options (Gent et al., 2006). The gaps between the two model configurations cannot
be compared directly, however. As a result of the alterations to shift cost in MC2, the objective bound
was lower, resulting in larger gaps in model outcomes.

5.5.2. With Respect to Job Durations
As explained in subsection 4.1.2, the actual time used to complete each order was taken from the
data and used for order durations in the model. However, a large shortcoming in this data is that
some jobs are portrayed to take longer than they do in reality. An example of this is when they are
placed in parking bins, waiting for products that are not yet in stock. To illustrate this, box plots for
used order durations of the different weeks are shown in Figure 5.9.

Figure 5.9: Box Plots of Order Durations Taken from Data for the Three Scenarios

As seen in Figure 5.9, the largest part of order durations is less than one hour, which was confirmed
by a workflow controller. Another workflow controller stated that picking an order in one and a half
hours is also possible, in case of a new picker. Another explanation given is that a picker takes a break
and leaves the order he is working on without parking it, making the time spent on this order longer.
This was put into perspective by counting the number of jobs for the three scenarios that passed the
one-hour, the one and a quarter-hour and the one and a half-hour thresholds, as this is still where a
large part of data can be found. These counts are given in Table 5.6

Table 5.6: Counts of Jobs that Pass Duration Thresholds, per Scenario

Week (scenario) 1 hour 1.25 hours 1.5 hours
18.03-24.03 (avg) 82 56 42
12.02-18.02 (busy) 90 65 52
29.01-03.02 (slow) 78 57 41

The effect of these longer jobs in themodel is evident from themodel formulation. By the definition
of shifts as given in Section 4.2, a person represents as shift and cannot work on two orders at once.
This avoidance of overlap means that the model may need an extra shift to account for a job that
seems to take 5 hours (in an extreme case), even though the actual duration of this order is much
shorter.

To deal with this, model outcomeswere re-evaluated in light of the lengths these orders realistically
had. To this end, the threshold for a logical order picking duration was set to one hour and 15minutes.
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Using this threshold accounts for the differences in picking performance by employees and the cases
in which a break is taken without properly parking the order. New order durations for the orders
passing the duration threshold were calculated, based on the number of colli they contained and the
netto picking norm as calculated by the DC from October 2023 until April 2024. The calculated norm
over this time period is given in Appendix F.3.3.

Model outcomes showed in which shifts these orders were scheduled. Combining this with the
knowledge of their creation times and deadlines, and the number of redundant hours available in the
shifts the jobs were scheduled in, it was evaluated whether a person could be removed from themodel
outcomes. This was done by calculating the total time difference between the order duration used
in the model and the new one calculated using the number of colli in the order, as explained above.
This time difference was then divided by eight (for the eight hours of each shift) and rounded down,
so that complete shifts were removed. The results of these operations in model outcomes are given
in Table 5.7.

Table 5.7: Comparison of Cost for Different Weeks after Shift Removal

MC Week (scenario) Cost Diff [%] Shifts [#] Red. Hours
1 18.03-24.03 (avg) Actual 45

Model - 18.29 % 42 55.94

Removed - 32.09 % 35

12.02-18.02 (busy) Actual 41

Model + 0.34 % 46 55.19

Removed - 18.04 % 37

29.01-03.02 (slow) Actual 32

Model + 21.33 % 42 76.12

Removed + 4.58 % 36
2 18.03-24.03 (avg) Actual 45

Model - 3.49 % 47 95.94

Removed - 18.49 % 40

12.02-18.02 (busy) Actual 41

Model + 16.69 50 87.19

Removed + 2.25 44

29.01-03.02 (slow) Actual 32 100.12

Model + 40.77 % 45

Removed + 4.58 % 40

5.5.3. With Respect to Staffing Trade-Off
When using model outcomes for a staffing trade-off, some observations were made. The first is that
in most cases, the model could fit almost all of the workload into flex shifts under the first model
configuration. Especially after removing extra shifts based on orders with long durations, as explained
in subsection 5.5.2, the model results show large differences in staffing costs for two out of three
scenarios for this configuration.

Despite removal of shifts due to job durations in subsection 5.5.2, the model performed worse
than the staff schedule in reality in the second model configuration for two of the three scenarios:
the average scenario performed better than reality in this case. When considering the optimality
gaps for this configuration as observed in subsection 5.5.1, it makes sense that the model could
not schedule all jobs in the cheapest shifts. As a result, the redundant hours are generally large in
this model configuration. However, the model is able to schedule all orders within the morning and
evening shifts in most cases. This means that, despite the suboptimal outcomes, it can be concluded
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that the workload found at the DC can be absorbed by permanent personnel.
Another observation from modeling outcomes is the difference in workload, and so, necessary

shifts, between the days of the week. When considering a new personnel schedule, it is recommended
to move around personnel hours to accommodate for this workload variation. This can either be done
by changing the permanent personnel norms per day to match workload, or by using flex personnel
to account for this difference in workload. The latter is current practice, but in combination with
deployment of less permanent personnel can be used for a more efficient personnel schedule.

In the different shift schedules generated by themodel, no jobs are scheduled during the afternoon
shift on Saturday. This workload is in line with workload perceived by picking personnel during these
shifts.

5.5.4. With Respect to the Necessity of the Night Shift
In model outcomes given in the previous sections, it is seen that jobs are scheduled in the (most
expensive) night shift. This was expected to be because of the cut off creation times and deadlines,
but when examining jobs scheduled in night shifts more closely, it was found that their creation time
and deadline both fell during these shifts before they were cut off. When forced to use the night shift
anyway, the model added more jobs to fill it up. An example is visualised in Figure 5.10. The figure
contains jobs scheduled in the night between 22.03 and 23.03 (taken from the average scenario). The
horizontal lines all represent a job; the orange part shows the interval between their cutoff creation
time and deadline, and the blue shows their original creation time and deadline.

As seen in the figure, some jobs have a creation time and deadline that both fall in the night
shift. When discussing this with a workflow controller, it was confirmed that these orders most likely
contained products that had been out of stock when they were originally picked. When considering
the duration of orders that actually had to be picked during the night shift, it was found that the total
duration generally lie around 4 hours. As the night shift was used about 2 times each weekly scenario
and there are redundant hours present in the surrounding shifts, the orders with creation times and
deadlines outside the night shift are expected to be compatible to move around the schedule. When
possible, it is especially attractive to move them to the following morning shift. Observed in reality
as well as in model outcomes, morning shifts have three hours that do not contain orders, as these
come in at 09:00. These empty hours can be filled with orders from the day before. As there is a
coordinator present during every shift in the current shift schedule, the workload of jobs that need
to be done in the night shift is accounted for.

Figure 5.10: Visualisation of Jobs Scheduled in the Night Shift
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5.6. Model Verification and Validation
Model verification was done each model run. For all shifts, it was determined that the total time of
order durations, with addition of the BAT parameter for each scheduled order, was no larger than
shift duration. This verifies 1) that orders were scheduled in shifts between start and end times and
2) that jobs do not overlap within shifts. Outcomes were examined closely and it was determined that
jobs were scheduled in the least expensive shifts.

To validate the model, results were discussed with four experts at FC. One of the Team Leads, a
Workflow Controller, the Senior Workflow Controller and the CI-specialist at the DC confirmed that
model outcomes are likely. However, the numbers of shifts scheduled under high optimality gaps were
not considered likely. The high gaps in these cases are expected to be the cause.

5.7. Summary of Model Outcomes
This chapter aimed to answer the fourth sub question: ”How can modeling results be related to the
scheduling problem at FC?” The discussion of model interpretation was given to this end in Section 5.5.

The study goal was twofold. On the one end to make a scheduling trade off between using the
flex shift or a combination of the morning and afternoon shift to account for workload. On the other,
to determine whether picking during the night shift is necessary. To this end, the model was run
for two configurations and three scenarios. The first model configuration, MC 1, uses actual shift
cost. In this configuration, flex shifts are least expensive due to absence of shift pay for irregular
hours (except for during the weekends, subsection 2.3.1). The second model configuration (MC 2)
was run with cost reduction for the morning and afternoon shift. The three scenarios comprised a
week containing an average amount of workload, one containing a high amount and one containing
a relatively low amount.

It was found that order durations were biased in a relatively high number of cases; model outcomes
were modified to account for this effect (subsection 5.5.2). When looking solely at the resulting cost
outcomes both before and after this alteration, it can be concluded that using flex shifts to account
for workload is least costly. However, only using flex shifts makes the distribution of workload in the
model less flexible. As shown in the different shift schedules in the previous pages, the workload
often fits into the 09:00-17:00 shifts, with the addition of an afternoon shift here and there. If the
workload is accounted for using mostly the morning and afternoon shifts (MC 2), more work can be
moved around in a tighter personnel schedule. When observing the cost of MC 2, it is notably higher
in more cases than for MC 1. In two out of three scenarios, it performs worse than the shift schedule
used in reality. However, when combining this with the knowledge that most of these model runs
returned sub optimal results (subsection 5.5.1), these costs will be lower for optimal model runs.
Total cost is still expected to be higher when compared to MC1.

The conclusion was drawn that it is not necessary to schedule extra picking personnel during the
night shift. This was done by examining jobs that caused scheduling in the night shift closely. It
was observed that both their creation times and deadlines fell into the night shift (subsection 5.5.4).
This usually happens in case a product was not in stock at the initial time it should have been picked.
It was found that the average total durations of these jobs is around 4 hours (which is lower when
taking the average over all night shifts, and not just the used ones). Due to the low workload of these
jobs, it is expected that the coordinator present at the department can do the picking work, and can
leave his less critical tasks for the morning crew. Based on their creation times and deadlines, it is
expected that other jobs scheduled during the night shift in the model can be moved to the redundant
hours of the shifts preceding the night shift. The preference, though, is to move these jobs into the
first three hours of the morning shift.
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Discussion

The discussion chapter is divided into three sections. Firstly, a discussion with respect to results and
modeling assumptions is given in Section 6.1. Secondly, recommendations for further research at
FrieslandCampina are found in Section 6.2. The chapter concludes with recommendations for model
development and suggestions for different approaches to similar problems in Section 6.3.

6.1. Discussion with respect to Experimental Results and Modeling Assump-
tions

This study investigated whether orders placed at FrieslandCampina’s Distribution Centre in Maasdam
could be distributed in a way that avoids manual picking during the night shift to reduce personnel
cost. Outcomes support the hypothesis that insight in scheduling deadlines contributes to a more
efficient personnel schedule. The model found a significant cost improvement for the average and
busy scenario in the first configuration, and for the average scenario in the second model configu-
ration. When examining outputs closely, it was determined that it is not necessary to schedule an
extra employee during the night shift. In case some picking needs to be done, (less than) a single
employee would be enough to account for workload. This was discussed at FC, and it was estimated
that this workload can be absorbed by other personnel present at night. As a result of the night shift
being used, other jobs are scheduled here as well. These can be moved either to the previous shift,
or into the first three hours of the next morning shift (if their creation time and deadline allow). This
outcome supports the gut feeling amongst Workflow Control and Team Leads at FC that the night
shift can be avoided.

In a shift trade-off, it is least costly to use flex personnel to account for the workload. However,
only using flex shifts leaves less room for the distribution of workload in the model. If workload
is absorbed in morning and afternoon shifts (MC 2), the time that can be used for order picking is
between 06:00 and 22:00. Comparing this with the model configuration using solely flex personnel,
the second model configuration intuitively gives more room to account for unforeseen workload or
machine failure.

6.1.1. Order Durations
To avoid the use of norms for order durations, the time it took to complete an order in reality was
used in the model. However, as explained in ??, this duration was biased in a relatively large number
of cases. This bias is a result of orders that were started and then placed in parking bins, waiting for
stock. The problemwith this bias is that one person cannot work onmultiple orders in themodel, even
though this is possible in reality in this case. This rigidity is necessary in the SMPTSP formulation of
the model, as a shift represents a person.

The issue was integrated into the results by using picking norms to calculate new order durations
when an order exceeds a time threshold, and quite large differences in numbers of shifts used were
concluded. As a threshold was used to address these types of orders, it cannot be concluded with
certainty that all orders that were placed in a parking bin were caught this way. The threshold was
based on the expert opinions of two workflow control employees. However, this encompasses the
maximum time a picking order can cost. An order that is shorter than the threshold can still be
placed in the parking bin, resulting in an inaccurate order duration.

To avoid this bias in order durations, it is possible to execute the model again for the datasets used
with calculated order durations. Netto picking performance (colli/hour) over the desired amount of
time can be used for calculations. In this approach, a difference in picking norm should be consid-
ered between picking a loose colli and picking a full layer. If, for example, performance is calculated
based on loose colli but full layers are picked (which are less time intensive), the pick norm should be
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changed accordingly. Modeling outcomes for this hypothetical run are expected to result in a lower
objective function value, as it is not expected that all parked orders were caught using the threshold
method as described above.

6.1.2. Daily Sub Sets
To improve model performance, daily sub sets were created, cutting off jobs based on the algorithm
as given in algorithm 1. Through these daily sub sets, less room for job scheduling was available in
the model. Doing so did not allow for outcome evaluation of multiple days, which may be useful to
determine the absolutely minimal job schedule.

However, it was seen that cut-off jobs are relatively well spread over the considered daily sub
sets, so the volumes are expected to be similar per day. By this reasoning, inclusion of orders placed
multiple days in advance is not expected to change much in modeling outcomes.

6.1.3. Choice of Shift Cost for the Second Model Configuration
Due to the NP-Hard and symmetric nature of the model, lower cost had to be assigned either to the
morning or the afternoon shift in the second model configuration. The cost of the afternoon shift was
defined to be lower than cost of the morning shift in the second model configuration, even though
it is the other way around in reality. As the morning shift has three unused hours at the start, this
was expected to help optimisation performance. In retrospect, model performance is expected to be
improved with a less expensive morning than afternoon shift. This is due to A-for-A orders that need
to be completed in morning shifts, forcing the model to use either the morning or the flex shift in any
case.

6.1.4. Choice for Number of Shifts
In the modeling formulation used for this study, 9 shifts were used for the first configuration and 6
for the second. By reducing the number of shifts even further, a direct trade-off between shift types
could be made. In that case, the model would not be able to schedule all jobs in the least expensive
shifts.

To improve model performance for the daily runs separately, indications could be made of how
many shifts jobs should fit into. These can be used to define a tighter number of shifts to use in the
model per daily run.

6.2. Recommendations for Further Research at FrieslandCampina
6.2.1. With Respect to Model Outcomes
Due to optimality gaps in results, cost savingswere not always realised in themodel and a high number
of redundant hours was found in some cases. However, the model does show that job scheduling
within the desired shifts is possible, and that job scheduling in the night is due to insufficient stock
during daily picking hours.

6.2.2. Shift Schedule
At the moment, FC is evaluating new configurations for their shift schedule. In this process, varying
combinations of shift types are assessed. For example, a combination of a two-crew and four-crew
schedule is considered to this end. In this schedule, 70% of employees stick to the four-crew sched-
ule and are complemented in the morning and afternoon shifts in a two-crew schedule for remaining
employees. Another setup is one in which a one-shift schedule supplements a four-crew schedule
during flex shifts. In this case, the flex shifts are filled up with permanent personnel, which results
in lower cost of permanent personnel with the removal of surcharge. In both cases, large financial
impact is seen for employees on schedules that do not contain night shifts in terms of supplements
for irregular hours and break schedules.

When considering the pros and cons of the two scenarios, one of the large drawbacks using the
flex shifts is flexibility in moving jobs within the schedule. In a two-crew scenario, there is more room
to account for orders that could not be completed before 17:00, as crews are present until 22:00.
In case of a one-crew supplementary shift schedule, all jobs need to be finished at 17:00, and more
pressure is put on the slimmed-down four crews to finish jobs that are left open.
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In the current configurations for new crew schedules, the number of people on the schedule are
identical on each day except for Saturday, on which there is no night shift. It is recommended to use
senior days, as explained in Section 2.3, to account for differences in workload observed between
days.

As shown in the consideration of numbers and durations of jobs in Section 5.2, the number of
orders differs for different weekdays in the considered weekly scenarios. For each scenario, it is seen
that the number of orders on Wednesday and Friday is smaller than that on other weekdays. It is
recommended to evaluate whether this is a coincidence or a pattern by analysing volume data over a
longer period of time. Using these outcomes, FC can reflect on the number of people that is necessary
daily.

6.2.3. Other Recommendations
This study reveals that orders can be moved around the schedule to ensure a more efficient personnel
schedule. Picking waves are used at the DC to determine when orders need to be picked, which are
assigned using the given client loadtimes. These are often inaccurate, as shown in subsection 2.5.1.
A more efficient schedule is expected when more insight is gained in the necessary moments orders
need to be completed. As explained in Section 2.5, SL has an expected transport schedule to their
disposal, which they update regularly. If the DC could use these expected transport times and link
them to the client orders they receive, jobs can be put into more accurate picking waves from the
start. By doing so, orders can be left to the next shift with the knowledge that it can be completed
then. As a result, a more efficient personnel schedule can be made.

The recommendation to this end is twofold. The more vital but distant one is to find a way to
upload SL’s transport schedule into FC’s system, EWM, so that relatively accurate transport times can
be added to orders straight away. To this end, a link must be found between the transport numbers
and orders. The performance of picking wave determination can then be evaluated and the personnel
schedule can be changed to match. The less vital but more logical first step, is to assign expected
volumes to the expected transport times SL has in their schedule. By doing so, estimates can be
made about when these volumes should be completed and how FC’s personnel schedule should be
changed to match.

6.3. Recommendations for Model Development
6.3.1. The Model in Practice
For this study’s goal, the model was used deterministically. This allowed to compare minimal shift
schedules, asses the necessity of the night shift and determine whether insight in picking deadlines
can contribute to an improved job and personnel schedule. The model formulation could also be used
to schedule jobs real-time, but this would require some alterations to improve model performance.
Two directions to this end are given below.

Symmetry in Model Formulation
Optimisation difficulty is expected to be due to symmetry which is inherently present in the formu-
lation. Symmetry is found in an optimisation model when a search for an optimum can revisit the
same solution without finding an optimum (Gent et al., 2006). Through the addition of the symmetry-
breaking set of constraints ensuring that no combination of jobs could be scheduled in a shift, some
of that symmetry was caught. However, symmetry is also found in the order jobs are scheduled in:
one can be scheduled before the other and the other before the one. This formulation was chosen so
that the model does not deviate from reality too much.

It is expected that this symmetry can be handled by assigning weights to different jobs, to enforce
which job is scheduled before which (Van Kessel et al., 2023).

Another solution to symmetry in the model is to add a decision variable denoting whether job j
is a direct neighbour of job k. As the current formulation uses bjk for any two jobs scheduled in the
same shift, it adds constraints that may not be necessary, as the only start time that should constrain
a job’s end time is the one that succeeds it directly. However, the constraints defining the values
of bjk and bkj are only active when these jobs are scheduled in the same shift. To this respect, the
described method to improve model performance may not make a large difference in this problem
scope. It could be used in another problem definition that uses larger shifts.
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Number of Binary Decision Variables
The model formulation uses a large number of binary decision variables, which hinders optimisation
speed. This was a direct result of the non-overlapping constraints. To avoid the need of these con-
straints, the model could be reformulated using the number of colli contained in an order, for example.
In this formulation, picking performance could be used to determine how many orders can be com-
pleted within a shift. In this formulation, creation times and deadlines could be altered to completely
fit into a shift, missing some accuracy.

6.3.2. Other Modeling Approaches to Similar Problems
A simulation study would have allowed for more flexible (and just more) scenario testing. This may be
formulated as a queueing model in the form of a discrete event simulation, in which picking personnel
is each seen as a server with a certain picking capacity (which can be varied to account for reality)
and jobs come in at a certain rate. More historical data analysis would need to be done to determine
those rates.



7
Conclusion and Recommendations

This study aimed to contribute to decision making at FrieslandCampina’s Distribution Centre in two
directions, both in context of the (manual) Colli Picking department. The first study outcome is in light
of a staffing trade-off between accounting for workload using either a combination of the morning
and afternoon shift, or using the flex shift. The second regards the necessity of using the night shift
to account for workload at the picking department. Intrinsic in both study goals lies the question is of
whether improved insight in definitive picking deadlines can contribute to a more efficient personnel
schedule. To this end, the main research question is repeated below:

How can full insight in picking deadlines contribute to a more efficient shift schedule on the manual
picking department at FrieslandCampina’s Distribution Centre, taking into account the cost of these

different shifts and regarding different scenarios for workload deviations?

The main question was supported by sub questions, repeated and answered below. The answer
to the main research question is given in Section 7.1.

1. Which opportunities can be identified in the current job scheduling method at FC?

Through the system analysis in Chapter 2, the largest opportunities in the current job scheduling
method and picking system were identified. The first is insight in job deadlines. Picking jobs are
put into waves based on the deadline they receive with the client order, which is often found to be
incorrect. Due to this uncertainty, jobs are completed quickly after their initialisation. This is done
both to account for unforeseen circumstances and to fill up time picking personnel is present anyway.
Insight in job deadlines is expected to contribute to amore efficient schedule by postponing tasks with
confidence. The second opportunity is found in an efficient personnel schedule to match workload
deviations. This can be done by using flexible personnel to account for high workload or by using
senior days cleverly to account for low workload.

2. How can the practical job scheduling problem at FC be represented in a mathematical formula-
tion?

A MILP model was used to minimise the shift schedule. The Shift Minimisation Personnel Task
Scheduling Problem (SMPTSP) as formulated by Krishnamoorthy et al. (2012) was used to define
shifts and the objective function minimises cost per shift over all used shifts. As the most expensive
shift at the DC is the night shift, it is inherently avoided by the model. One crucial element missing
from the SMPTSP is job scheduling. Using the start time as a decision variable in themodel, jobs could
be scheduled between the start and end time of each shift (Rieck et al., 2012). To avoid overlap, the
three-dimensional Bin-Packing Problem (BPP) as defined by Paquay et al. (2014) was reformulated.

To make the model practically applicable, the weekly scenarios were divided into daily sub sets.
An extra set of constraints was added, increasing steps solver optimisation. The time between jobs
in the model (BAT ) was used to improve optimisation performance.

3. How can mathematical results be related to the scheduling problem at FC?

The model was run for two model configurations and three scenarios, using the commercial solver
Gurobi. Model Configuration (MC) 1 used actual shift cost calculated using surcharge for irregular
hours. MC 2 was run with morning and afternoon shifts that were much cheaper than the flex and
night shift. Under both configurations, three scenarios were tested. A week with an average amount
of workload, one with a high amount of workload and one with a low amount of workload. Modeling
outcomes were biased due to order durations taken from the data. This was altered in the outcomes
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by recalculating order durations. The model found cost savings under MC1 for two out of three
scenarios. Under MC2, the model performed worse than the shift schedule in reality for two out of
three scenarios, both before and after removal of hours for biased job durations. Noticeable under
MC2 were high optimality gaps; the cost of these solutions is expected to be lower in reality.

7.1. Answer to the Main Question and Recommendations to FC
Answering the main question, this study’s results are translated into the following findings. In making
a trade-off between different shift types to account for the workload present at the DC, the least costly
solution is to schedule as many jobs as possible in the flex shifts. However, using a combination of
the morning and afternoon shift will result in increased scheduling flexibility for workload, as not all
orders need to be finished at 17:00 in that case. To this end, it is recommended to use the morning
and afternoon shifts to account for workload.

In evaluation of the night shift, the coordinator or an employee from another department is ex-
pected to be sufficient to account for the workload. The volume of jobs that have both their creation
time and deadline during the night have an average total duration of four hours. Considering that
this volume is not found in every night shift, the average volume is even lower. Based on their cre-
ation times and deadlines, remaining jobs scheduled in this shift can either be completed during the
redundant hours of the shift before, or during the first three hours of the morning shift in the next
day.

To be able to fully use these study outcomes, however, it is necessary for FC to link definitive order
deadlines early on in the process. As explained in Section 2.5, large differences identified between
the deadlines put through in client orders and the definitive deadlines. When these deadlines are
known, orders can be postponed in the schedule to spread workload over a minimal number of shifts.
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Examining Strategies for Shift Scheduling at
FrieslandCampina

Quirine de Zeeuw

Abstract—In their Distribution Centre in Maasdam, Fries-
landCampina uses a four-crew shift schedule to prepare all
necessary orders for their clients, 24 hours of each Monday
to Saturday. Their large automated warehouse is home to
10 000 pallet places, containing fresh dairy products. From
here, orders are either prepared as full pallets, machine-picked
layers or hand-picked ”colli”. In the last department especially,
personnel cost is high relative to the throughput. Definitive
picking deadlines are often ambiguous, posing challenges in job
and personnel scheduling. The study goal is twofold. Firstly,
to find out whether full knowledge of picking deadlines can
contribute to a more efficient job, and so, shift schedule.
Secondly, to offer insight for a trade-off between shift types to
absorb workload. To reach this study goal, a Shift Minimisation
Personnel Task Scheduling Problem (Krishnamoorthy et al.,
2012) and a Bin Packing Problem (Paquay et al., 2014) were
combined and tailored to fit the scheduling problem at FC’s
DC. In three weekly scenarios, the Mixed Integer Linear
Programming (MILP) model scheduled picking jobs in the
least expensive shifts through a cost minimisation function.
Two model configurations were used, one to prefer the shift
between 09:00 and 17:00 (flex), and one to prefer either one
of the 06:00-14:00 (morning) or the 14:00-22:00 (afternoon)
shifts. Both model configurations inherently avoided the most
expensive 22:00-06:00 (night) shift. Main findings include the
possibility to absorb workload using the morning and afternoon
shift and to avoid the night shift. Additionally, it was confirmed
that insight in picking deadlines can contribute to an efficient
personnel schedule a great deal.

Index Terms—Distribution Centre – Optimization – Shift
Minimisation Personnel Task Scheduling – Bin Packing Prob-
lem

I. INTRODUCTION

COLOCATED with their factory in Maasdam, Fries-
landCampina’s (FC) Distribution Centre (DC) is the

centre of fresh dairy product distribution throughout the
Netherlands. Their fully automated warehouse is home
to 10 000 pallet places, from where customer orders are
prepared to be shipped Business-to-Business (B2B). A
large number of logistic processes underlie the successful
distribution of these products to their clients, starting
with the preparation or orders. This is done either as
full pallets, picked mechanically using a layer picker or
picked by hand. Though undesirable due to the relatively
high cost of manpower, the last category is inevitable as
a result of client order or physical product specifications.
In manual order picking, the cost of manpower is a direct

Q. J. de Zeeuw for her Studies Transport, Infrastructure and
Logistics, Delft University of Technology, Delft, The Netherlands.
e-mail: qdezeeuw@gmail.com

result of shift pay for irregular hours, as the DC operates
24 hours from Monday to Saturday.

A. Context Description
In four crews, the DC operates in three shifts per

day, supplemented by ”flex” shifts. The times these shifts
operate is shown in Table 1. The last table column contains
the relative cost of different shifts. As the percentage
difference varies for week and weekend days, this cost was
portrayed as ”+”, in which more pluses mean higher cost.

Table 1: Shifts and their Relative Cost
Shift Name Time Relative Cost
Morning 06:00 - 14:00 ++
Afternoon 14:00 - 22:00 +++
Night 22:00 - 06:00 +++++
Flex 09:00 - 17:00 +

Currently, morning, afternoon and night shifts are
staffed using permanent crews and flex shifts using flexible
personnel. However, shift types can in theory be manned
through use of either personnel type.

B. Problem Description
In the current scheduling process, orders are placed

in picking waves based on the deadlines contained in
client orders. However, as shown in Figure 1, these
deadlines often differ from the definitive deadlines. This
makes it difficult to determine when picking needs to be
executed in order to spread workload effectively, resulting
in risk-averse scheduling choices. Both to avoid effects of
unforeseen circumstances and due to personnel presence,
activities are often done as quickly as possible.

C. Study Goal
This study’s goal is to find out whether, and to what ex-

tent, improved insight in picking deadlines can contribute
to a more efficient personnel schedule. By doing so, it aims
to contribute to a trade-off between permanent shifts and
flex shifts and to offer handles to assess the necessity of
the night shift. To this end, the main research question
was formulated:
”How can full insight in picking deadlines contribute to

a more efficient shift schedule on the manual picking
department at FC’s DC, taking into account the cost of
these different shifts and regarding different scenarios for

workload deviations?”
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Fig. 1: Box Plot for Difference between Actual and
Planned Loadtimes for Week 5, 7 and 12

D. Methodology
To compare minimal shift schedules and make a schedul-

ing trade off to this respect, the problem was formulated as
a Shift Minimisation Personnel Task Scheduling Problem,
using constraints from the Bin-Packing Problem (BPP) to
avoid overlap between jobs scheduled in the same shift.

E. Paper Structure
This paper is structured as follows: it starts with a

literature review, given in section II. The problem is
formulated in line with literature in this section. The
mathematical model is then presented in section III.
section IV contains the experimental setup and results,
followed by a discussion in section V. The study is
concluded in section VI, which includes recommendations
with respect to FrieslandCampina and further research.

II. LITERATURE REVIEW
A great deal of research is done in job scheduling,

workload balancing and shift cost minimisation, many
of which use Mixed Integer Linear Programming (MILP)
formulations with objectives that minimise the difference
between minimum and maximum workloads (e.g. Ouazène
et al. (2016). Other formulations include cost minimisation
(Golpîra and Tirkolaee, 2019) and minimisation of the
maximal planned load over all used resources (Vanheusden
et al., 2020).

In the aircraft industry, BPP is used for task schedul-
ing by Witteman et al. (2021), who used this method
for maintenance scheduling taking into account different
ability levels of mechanics. A fictitious bin was used to
schedule tasks that did not fit into the formulation. Their
objective function contains a cost minimisation. In their
study conducted in 1978, Coffman et al. used a Bin
Packing formulation for multiprocessor task allocation.

Shift allocation of work force must meet requirements
of the workforce. This shift allocation problem is seen as
trivial to solve, but too rigid in the case workforce demand

fluctuates too much during a shift (Baker, 1976). This shift
scheduling problem requires a predetermined workforce
demand, which would mean that personnel scheduling
could be done more efficiently based on current workload.
Smet et al. (2014) formulated a new method to solve the
Shift Minimisation Personnel Task Scheduling Problem
(SMPTSP), in which they use an extra binary variable
that indicates whether an employee has a task during a
shift.

Based on the SMPTSP as defined by Krishnamoorthy
et al. (2012), the model objective is to minimise shift
related cost, using a weighted objective function.

The model formulation by Krishnamoorthy et al. (2012)
differs from the model needed in this study on a critical
aspect: job scheduling. In their model, jobs have set start
and end times, based on which jobs are placed in ”cliques”
of jobs that overlap. Using these cliques, a minimal shift
schedule is devised. However, the start and end times
of jobs in the model required in this study are not set,
meaning a separate job scheduling addition needs to be
made.

A continuous time horizon was used as these models
generally have a smaller problem size (e.g. Stefansson
et al., 2011). With this horizon, jobs can be scheduled both
between their creation time and deadline and between the
start and end time of a shift. However, when multiple jobs
are scheduled in one shift, they are not allowed to overlap
as one person cannot work on multiple orders. To this
end, non-overlapping constraints are found in the BPP
approach as formulated in 3D by Paquay et al. (2014). As
the temporal dimension is the only one this study requires,
these overlapping constraints can be reformulated into 1D
constraints. In their BPP approach to a job scheduling
problem, Witteman et al. (2021) created a fictitious bin
in which jobs can be placed if they cannot be planned in
the given bins in the model. In this vein, more shifts than
necessary are defined in the model to leave room for jobs
that do not fit into the desired shifts.

III. MATHEMATICAL MODEL
This section starts with a problem formulation in

subsection III-A. Model requirements and assumptions
are given in subsection III-B. Sets and Parameters can
be found in subsection III-D and Decision Variables in
subsection III-E. The mathematical model is given in
subsection III-F.

A. Problem Formulation
As described in section II, the model is formulated as

a SMPTSP with the addition of job scheduling. BPP
constraints are used to avoid overlap between jobs in the
model. Shift representation in the model is based on the
SMPTSP and shown in Figure 2. In the figure, three shift
instances are portrayed. A shift instance is defined as the
number of people that jobs can be scheduled in between
start and end time of a shift
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Fig. 2: Conceptual Representation of Shifts in the Model

B. Requirements
An overview of the model requirements are given below.
• An order must be completed within one shift;
• An order must be completed between its creation time

and deadline;
• No job preemption is allowed;
• All jobs must be completed;
• No overlap is allowed between jobs assigned to the

same shift;
• A time gap is added between the end of one job and

the start of the next to account for processing time
between orders.

C. Assumptions
The model assumptions are listed below.
• There are no skill requirements to complete jobs;
• The model uses a continuous time frame;
• In real life, orders contain different picking tasks.

These picking tasks are contained in an order and
an order is indicated using the word ”job”;

• Jobs are finished in one go;
• Building on the previous assumption, the shifts are

not paired to a person. This means the model does
not take into account time between workers’ shifts as
defined in the Collective Labour Agreement;

• The model is focused only on picking jobs, and not
on any other tasks employees must perform in this
department;

• The model does not contain a break schedule.

D. Sets and Parameters
This section contains the sets, parameters and decision

variables used in the mathematical model. Table 2 contains
the used sets, Table 3 its parameters and Table 4 shows
the decision variables in the model.

Shown in Table 2, two sets are used in the model. J
denotes the set of picking jobs, and S denotes the set of
shifts. Parameters are found in Table 3.

DL j and CTj respectively denote a job’s creation time
and deadline. A job’s duration is given by D j. Shift cost is

Table 2: Sets used for the mathematical formulation
Set Definition
J Set of picking jobs
S Set of shifts

Table 3: Parameters
ParameterDefinition Unit
DL j Deadline of job j [seconds]
CTj Creation time of job j [seconds]
D j Duration of job j [seconds]
Cs Cost of shift s [€]
STs Start time of shift s [seconds]
ETs End time of shift s [seconds]
BAT Between-activity time [seconds]
V Large temporal value [seconds]

denoted by Cs, and its start and end times by STs and ETs.
The time reserved in the model for time between activities
is given by the BAT parameter, and a large temporal value
V is used in the constraints.

E. Decision Variables
Decision variables used in the model are given in

Table 4. The binary decision variable x js indicates whether
job j is scheduled in shift s. The binary decision variable
us indicates whether shift s is in use. The start time of
job j is denoted by start j. b jk indicates whether job j is
scheduled before job k.

Table 4: Decision Variables for the Mathematical Model
Variable Definition Sets
x js Binary variable indicating

whether job j is assigned to
shift s

j ∈ J,s ∈ S

us Binary variable indicating
whether shift s ∈ S is used

s ∈ S

start j Continuous time variable indicat-
ing the start time of task j

j ∈ J

b jk Binary variable indicating
whether task j is scheduled
before task k

j "= k ∈ J

F. Objective and Constraints
1) Objective: Following from the problem formulation,

the objective function minimises the sum of used shifts in
Equation 1.

min : ∑
s∈S

Cs ∗us (1)

2) Task Scheduling and Shift Capacity Constraints:

∑
s∈S

x js = 1 ∀ j ∈ J (2)

x js ≤ us ∀ s ∈ S, j ∈ J (3)

∑
j∈J

x js ∗D j + ∑
j∈J

x js ∗BAT ≤ ETs −STs ∀s ∈ S (4)
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3) Start Time Scheduling Constraints:

CTj ≤ start j ∀ j ∈ J (5)

start j +D j +BAT ≤ DL j ∀ j ∈ J (6)

start j ≥ STs − (1− x js)∗V ∀ j ∈ J,s ∈ S (7)

start j +D j +BAT ≤ ETs +(1− x js)∗V
∀ j ∈ J,s ∈ S

(8)

4) Overlapping Constraints:

b jk +bk j ≥ (x js + xks)−1 ∀ j "= k ∈ J,s ∈ S (9)

start j +D j +BAT < startk +(1−b jk)V
∀ j "= k ∈ J

(10)

The constraints in Equation 2 ensure that all jobs are
scheduled in exactly one shift. A shift is marked as used
in Equation 3. Equation 4 impose that the total duration
of jobs scheduled in a shift, with the addition of BAT ,
does not exceed shift duration. Equation 5 denotes that
a job’s start time must be larger than its creation time,
and Equation 6 prevents a job from exceeding its deadline,
using its duration. The large temporal value V was used
to schedule a job between the start and end time of a
shift, respectively in Equations 7 and 8.

Through the constraints in Equations 9 and 10, overlap
between jobs is avoided. If two jobs j and k are scheduled
in the same shift s, Equation 9 forces one of the two jobs
to be scheduled before the other. If job j is scheduled
before job k (i.e. b jk = 1), the start time of job j (with
the addition of its duration and the BAT parameter) is
constrained by the start time of job k.

IV. EXPERIMENTAL SETUP AND RESULTS
A. Experimental Setup

The model was run for three scenarios under two cost
configurations. The model configurations are explained
below.

1) Model Configuration 1 (MC1): The first model
configuration contains the cost of shifts as calculated from
the shift charge for irregular hours. In this configuration

2) Model Configuration 2 (MC2): The second model
configuration comprises low cost for both the morning
and afternoon shift.

As actual cost is sensitive, relative shift cost is used. This
is summarised for both model configurations in Table 5.

Three weeks containing historical order data were
used as scenarios. The average week (18.03.2024-24.03-
2024) contained 577 orders, the busy week (12.02.2024-
18.02.2024) 628 orders and the slow week (29.01.2024-
04.02.2024) 504.

Table 5: Relative Cost of Shifts under MC1 and MC2
Shift Name Time Cost MC1 Cost MC2
Morning 06:00 - 14:00 ++ ++
Afternoon 14:00 - 22:00 +++ +
Night 22:00 - 06:00 +++++ +++++
Flex 09:00 - 17:00 + ++++

B. Model Inputs

To solve the model within acceptable time, some alter-
ations to input data and parameters were made. These
alterations are described below.

1) Daily Sub Set Creation: Through the creation of
daily sub sets, the problem size was reduced. To do so,
jobs were cut off at their creation time or deadline at 06:00
each day. This was done in cooperation with the company;
06:00 was seen as a logical cut-off time in between the night
and morning shift. An example of cut off jobs for three
days is shown in Figure 3.

Fig. 3: Visualisation of Job Creation Time and Deadline
Cutoffs, for Jobs between 11.03.2024 06:00 and 14.03.2024
14:00

2) BAT Parameter: Test runs indicated that the BAT
parameter influenced optimisation performance. Through
a sensitivity analysis, this effect was confirmed. The model
was run for 81, 109, 115, 124 and 142 jobs with BAT values
of 0, 30, 60, 120 and 240 seconds. When the parameter
was set to 120, an optimum was found for all numbers of
jobs except for the subset with 124 tasks. To this end, a
BAT of 120 was used for experimental runs.

3) Definition of Number of Shifts: When testing the
model, it was found that the number of shifts impedes
optimisation a great deal. This was especially the case
for larger problem instances. To deal with this, 9 shift
instances were used to run MC1. As the morning and
afternoon shifts were expected to accommodate most jobs
during the day, MC2 was run using 6 shift instances.
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C. Experimental Results
Experimental Results are given in this section. They

are first summarised and related to job durations in
subsubsection IV-C1, and then put into perspective of
model performance in subsubsection IV-C2.

1) Model Outcomes with respect to Job Durations:
When results were generated, a bias was found as a result
of using actual order durations in the data. A box plot
of these durations is shown in Figure 4. Large spread
was observed in order durations. When discussing this
with two employees at FC, it was confirmed that an order
should take no more than one to one-and-a-half hour.
The conclusion was drawn that stock most likely did not
suffice for these orders, so they had to be parked. This
time in the parking bin is added in order data, causing
the bias in durations. Using a theshold of 1 hour and
15 minutes to determine which orders were biased, new
durations were calculated based on picking performance
between the months October and April. This information
is sensitive but calculations can be requested with the
author. New order durations were subtracted from the
originals to determine how much time an order had spent
in a parking bin, and shifts were subtracted from model
outcomes accordingly. The comparison of model outcomes
is given in Table 6.

Fig. 4: Box Plot of Order Durations of the Three Scenarios

2) Model Performance: Model performance per week-
day and per weekly scenario is summarised in Table 7. The
optimality gap found under MC2 is quite large in many
cases. The gaps between the two model configurations
cannot be compared directly, however. As a result of the
alterations to shift cost in MC2, the objective bound was
lower, resulting in larger gaps in optimality.

3) Aggregated Results: When looking solely at the re-
sulting cost outcomes both before and after the alteration
to order durations in subsubsection IV-C1, it can be
concluded that using flex shifts to account for workload is
least costly: when observing the cost of MC 2, it is notably

Table 6: Comparison of Cost for Different Weeks before
and after Shift Removal

MC Week
(scenario)

Cost Diff
[%]

Shifts
[#]

Red.
Hours

1 18.03-24.03 Actual 45
(avg) Model -18.29 % 42 55.94

Removed -32.09 % 35
12.02-18.02 Actual 41
(busy) Model +0.34 % 46 55.19

Removed -18.04 % 37
29.01-03.02 Actual 32
(slow) Model +21.33 % 42 76.12

Removed +4.58 % 36
2 18.03-24.03 Actual 45

(avg) Model -3.49 % 47 95.94
Removed -18.49 % 40

12.02-18.02 Actual 41
(busy) Model +16.69 50 87.19

Removed +2.25 44
29.01-03.02 Actual 32 100.12
(slow) Model +40.77 % 45

Removed +4.58 % 40

Table 7: Model Performance per Week, by Model Config-
uration (MC)

MC Week (sce-
nario)

Mon Tue Wed Thu Fri Sat

1 18.03-24.03
(avg)

0.0% 12.3% 0.0% 0.0% 0.0% 0.0%

12.02-18.02
(busy)

4.0% 16.1% 0.0% 0.0% 0.0% 0.0%

29.01-03.02
(slow)

0.0% 8.1% 0.0% 25.8% 0.0% 0.0%

2 18.03-24.03
(avg)

15.4% 36.9% 9.5% 22.0% 16.3% 0.0%

12.02-18.02
(busy)

28.1% 20.8% 2.6% 17.3% 26.1% 0.0%

29.01-03.02
(slow)

14.8% 11.5% 0.0& 13.9% 19.6% 0.0%

higher in more cases than for MC 1 in Table 6. In two out
of three scenarios, results from MC2 perform worse than
the shift schedule used in reality.

However, when combining this with the knowledge that
most of the model runs for MC2 returned sub optimal
results (subsubsection IV-C2), these costs will be lower
for optimal model runs. Total cost is still expected to be
higher when compared to MC1.

In model outputs, some jobs were still scheduled in the
night shift. These instances were examined closely, which
revealed that both the creation time and deadline of a
partition of these jobs fell in the night shift. Creation
times and deadlines may both be found during the night
shift when stock does not suffice for picking earlier on.
The workload induced by these jobs lie around four
hours. When taking into account that not all night shifts
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contained such jobs, the average number of hours that
needs to be spent picking in the night shift is even lower.
It is expected that personnel present during the night
suffices to absorb this workload, and no extra employee
needs to be scheduled to account for it.

V. DISCUSSION
This study investigated whether orders placed at Fries-

landCampina’s Distribution Centre in Maasdam could be
distributed in a way that avoids manual picking during the
night shift to reduce total personnel cost. It does so under
two model configurations. The first absorbs the necessary
workload in the absolute minimal shift schedule (using flex
shifts) and the second considers whether workload can be
accounted for using a combination of the morning and
afternoon shift.

Results support the hypothesis that insight in schedul-
ing deadlines contributes to a more efficient personnel
schedule. The model found a significant cost improvement
for the average and busy scenario in the first configura-
tion, and for the average scenario in the second model
configuration. When examining outputs closely, it was
determined that it is not necessary to schedule an extra
employee solely for picking during the night shift. In the
cases some picking needs to be done during the night, a
single employee from another department would be able
to account for workload. This expectation was confirmed
when discussing the outcomes at FC.

In a shift trade-off, it is least costly to use flex shifts to
account for the workload. However, only using flex shifts
leaves less room for the distribution of workload in the
model. If the workload is accounted for using mostly the
morning and afternoon shifts (MC 2), the time that can be
used for order picking is between 06:00 and 22:00, which
intuitively gives more room to account for unforeseen
circumstances than if all jobs need to be finished between
09:00 and 17:00.

Cost reductions were found only after results were
altered to account for bias in the input data (subsub-
section IV-C1) in some cases. Order durations used from
the data sometimes contained the duration an order was
parked, waiting for stock. Even though an employee in
reality is able to complete other picking tasks in parallel
in this event, the non-overlapping constraints in the model
do not allow to do so. This means that too much time was
scheduled for these jobs with respect to reality, causing
the model to schedule extra shifts. This was accounted for
in model results by recalculation of order durations based
on their contents and average picking performance in the
colli picking department. However, it cannot be said with
certainty that the chosen threshold encompasses all biased
jobs.

To be able to use the model for solutions within
acceptable time, daily sub sets were created. The effect
in cost outcomes is not expected to be significant, as the
volumes that were cut off into different days leveled out.
Nonetheless, it is a deviation from reality. To use the

model to schedule longer jobs over multiple days, other
assumptions would have to be made.

In addition to extra time scheduled due to biased job
durations, the model was subject to optimality gaps in
most cases under the second model configuration. This
means that the cost savings in reality are expected to be
larger than generated by the model.

These increased optimality gaps are expected to be
a result of symmetry in the model (Gent et al., 2006).
An attempt was made to avoid symmetry by choosing a
less costly afternoon than morning shift. However, it is
expected that the presence of A-for-A orders extinguished
that effect. To test this theory, the model could be run
again with a less costly morning shift in comparison to
the afternoon shift.

1) Other Modeling Approaches to Similar Problems:
A simulation study would have allowed for more flexible
(and just more) scenario testing. This may be formulated
as a queueing model in the form of a discrete event
simulation, in which picking personnel is each seen as a
server with a certain picking capacity (which can be varied
to account for reality) and jobs come in at a certain rate.
More historical data analysis would need to be done to
determine those rates.

VI. CONCLUSION AND RECOMMENDATIONS
This study aimed to answer the following research

question:
”How can full insight in picking deadlines contribute to

a more efficient shift schedule on the manual picking
department at FC’s DC, taking into account the cost of
these different shifts and regarding different scenarios for

workload deviations?”
The study’s results can be translated into the following

outcomes. An employee from another department, or a
coordinator is expected to be sufficient to account for the
workload that is present during the night. Taking into
account the average number of redundant hours in a shift
and the first three hours during the morning shift that
are left unfilled, the jobs that were scheduled during the
night shift in the model are expected to be moved out of
the night shift in the job schedule.

In making a trade-off between different shift types to
account for the workload present at the DC, the least
costly solution is to schedule as many jobs as possible
into the flex shifts, but it is recommended to keep using
flex shifts as a supplement to the morning and afternoon
shifts. Even though the model configuration supporting
this solution space resulted in overall higher total cost
for two of the three scenarios, using the morning and
afternoon shifts to account for this workload will result in
more flexibility to move jobs around in the schedule when
necessary.

Both of these outcomes come together in the necessity
of linking expected ordering deadlines to orders. As
explained in subsection I-B, large differences are seen
between the deadlines put through in client orders and
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the definitive deadlines. The model shows that this insight
can contribute to reduced cost by scheduling in less costly
shifts, but knowing when orders must be complete (and so,
how much time is actually available for picking) is crucial
to be able to put these outcomes to practice.

A. Recommendations for Further Research
A suggestion for further research is to run the model

again, using picking performance to calculate all order
durations. A critical look should be taken at pick perfor-
mance to find its deviation from reality.

Despite the difficulty in finding optimal solutions with-
out alterations to input data, the model was suitable for
this study. It is not suitable, however, to use for predic-
tive daily job scheduling yet. Neither is it practical for
historical analysis over longer periods of time. The largest
problem in performance is expected to be symmetry.

A suggestion to remove symmetry from the model, is
to use weights that define which job precedes the next
(Van Kessel et al., 2023). This way, the model does
not have to make that decision. These can be added to
orders based on their creation times. If creation times
are the exact same, weights can be assigned based on
ascending or descending order lengths. Order durations
are a component in making the model functional for
predictive job scheduling. As these are not known exactly
beforehand, they need to be estimated. This can be
done using picking performance as described above, or
by estimating how long different client orders generally
take using historical data.
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