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ABSTRACT
We present a data-driven framework for strategy synthesis for
partially-known switched stochastic systems. The properties of the
system are specified using linear temporal logic (LTL) over finite
traces (LTLf ), which is as expressive as LTL and enables interpreta-
tions over finite behaviors. The framework first learns the unknown
dynamics via Gaussian process regression. Then, it builds a formal
abstraction of the switched system in terms of an uncertain Markov
model, namely an Interval Markov Decision Process (IMDP), by ac-
counting for both the stochastic behavior of the system and the
uncertainty in the learning step. Then, we synthesize a strategy on
the resulting IMDP that maximizes the satisfaction probability of
the LTLf specification and is robust against all the uncertainties
in the abstraction. This strategy is then refined into a switching
strategy for the original stochastic system. We show that this strat-
egy is near-optimal and provide a bound on its distance (error) to
the optimal strategy. We experimentally validate our framework on
various case studies, including both linear and non-linear switched
stochastic systems.

CCS CONCEPTS
• Theory of computation → Abstraction; Logic and verifica-
tion; • Computing methodologies → Gaussian processes; •
Mathematics of computing→ Stochastic processes; • Computer
systems organization → Robotic autonomy.

KEYWORDS
Switched stochastic systems, Gaussian process regression, Formal
synthesis, Safe autonomy, Uncertain Markov decision processes
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1 INTRODUCTION
Switched stochastic systems are a class of stochastic hybrid systems
(SHSs) that provide a powerful framework for modeling complex
real-world systems. They consist of a finite set of stochastic pro-
cesses that capture the uncertainty in the evolution of the under-
lying system with the ability to switch between these processes,
representing control options. These models are employed in numer-
ous application domains such as robotics [25], biological systems
[19], and cyber-physical systems [15]. Many of the applications are
in safety-critical domains and require formal analysis of the under-
lying system. Existing formal approaches to analysis and synthesis
of SHSs are model based, and the resulting guarantees apply only to
the model of the system. In reality, the true model of the system is
often partially-known due to, e.g., the use of black-box controllers,
or the lack of a closed-form analytical representation. This poses
a major challenge for formal reasoning, which also relates to the
classical question of how to extend formal guarantees from models to
systems? This work investigates a data-driven approach to address
this challenge.

Formal verification and synthesis for SHSs has been well studied
in recent years, e.g., [8, 11, 21–23, 30]. The proposed approaches can
be generally divided into two categories. One is a set of approaches
based on numerical analysis of stochastic differential (difference)
equations with asymptotic guarantees in terms of weak conver-
gence [21]. The other set of approaches is based on a finite abstrac-
tion of the SHS to a Markov process, and their formal guarantees
are on probabilistic satisfaction of temporal logic specifications,
namely linear temporal logic (LTL) and probabilistic computation
tree logic (PCTL) [4]. Despite the recent advances, both categories
of approaches assume that the SHS model is fully known and per-
fectly represents the underlying system. This assumption, however,
is often violated, especially in modern systems where AI-modules
are increasingly employed as black-box components.

A few recent studies focus on dealing with unknown dynamical
systems, e.g., [2, 12, 16, 20]. The proposed approaches are based
on data-driven methods and assume some knowledge on the sys-
tem. Work [16, 20] impose a strong assumption that the underlying
system is linear. Then, they employ techniques such as Bayesian
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inference and chance-constrained optimization to provide proba-
bilistic guarantees for the unknown system from a finite set of data.
Work [2] relaxes the linearity assumption and proposes approxi-
mation of the unknown dynamics through a piecewise-polynomial
function. Then, the safety of the system is assessed through barrier
certificates. While this method can deal with a more general class
of systems, it is unclear how the guarantees can be extended to the
underlying system.

An effective method to deal with unknown dynamics in safety-
critical applications is Gaussian process (GP) regression [29]. The
advantage of GP regression is in its ability to quantify the bound on
the uncertainty in the learning process as derived in [9, 13, 24, 31].
This has led to an increased use of GPs in safe learning frameworks,
e.g., [3, 5, 18, 28, 33]. In most work, the main objective is to learn
safe policies via reinforcement learning with the exception of work
[18], which considers a safety verification problem of unknown
systems with noisy measurements. The proposed framework uses
GPs to construct a Markov abstraction for an invariant set (safety)
analysis from a noisy dataset. In all these work, the assumption is
that the underlying system is deterministic and the specification is
simple, whereas the focus here is on unknown stochastic systems
with complex specifications.

This work presents a formal synthesis framework for stochas-
tic systems with partially-known models in the form of switched
stochastic processes. The framework is able to provide formal guar-
antees on the behavior of the underlying system from a set of data.
The specification language is LTL over finite traces (LTLf ) [10],
which has the same expressively as LTL, but the interpretations
of its formulas are over finite behaviors making it an appropriate
language for highly uncertain (unknown) systems such as those
considered here. The approach is based on finite abstraction and
employs GP regression for its construction. Given a set of data,
the framework first learns the unknown dynamics using GP re-
gression. Then, an abstraction is constructed in the form of an
uncertain Markov process, namely interval Markov decision process
(IMDP) using the known and learned dynamics as well as the errors
bounds of the learning process. Given an LTLf property, a strategy
is computed on the abstraction that maximizes the probability of
satisfaction of the property and is robust against all the errors intro-
duced in the learning and abstraction steps. This not only results
in a switching (control) strategy for the underlying system, but it
also provides a lower bound probability for the satisfaction of the
LTLf property for every initial state.

The main contribution of this work is a theoretical and com-
putational framework for control synthesis for partially-known
stochastic systems from a given set of data. This work shows a
method of harvesting the power of machine learning techniques, in
particular GP regression, in a formal synthesis framework. Unlike
classical model-based approaches, this framework enables the ex-
tension of the formal guarantees to the underlying system. This is
achieved by formally incorporating both the uncertainty related to
the stochastic behavior of the system and the uncertainty related
to the partial knowledge of the system in the abstraction, and then
accounting for these uncertainties in generating a robust switching
strategy. As a result, this framework allows for synthesis for com-
plex systems from simplified (low-fidelity) models, i.e., linearized
models; hence, enabling the use of rich and matured techniques for

simple (linear) models in control design for complex systems. Fur-
thermore, this paper presents derivations for probabilistic bounds
for the transition probabilities of the IMDP abstraction as well as
proofs of correctness for the methodology. Finally, the synthesis
framework is demonstrated through a series of case studies on un-
known stochastic systems with both linear and nonlinear dynamics
with various LTLf specifications.

2 PROBLEM FORMULATION
Consider a partially-known switched stochastic process as described
below:

xk+1 = fuk (xk ) + дuk (xk ) + vk , (1)
where k ∈ N, xk ∈ Rn , uk ∈ U , and U = {1, ...,m} is a finite
set of modes or actions. For every u ∈ U , fu : Rn → Rn is a
(known a-priori) continuous function and дu : Rn → Rn is a
possibly nonlinear continuous function representing the unknown
dynamics of Process (1). The noise term vk is a random variable
with an independent and stationary θ -sub-Gaussian distribution
pv . This class of distributions are those whose tails decay at least
as fast as a Gaussian with variance θ2, including all distributions
with bounded support the Gaussian distribution itself [26].

Intuitively, xk is a stochastic process driven by the noise process
vk , where some or all the dynamics are unknown in each mode,
and uk indicates the current mode (and hence switching between
the modes). Process (1) is a rich model that allows for the inclusion
of modeling errors in addition to noise. For instance, consider a
nonlinear noisy control system with a finite set of controls U . If
only a linear approximate model of the system is available, then
Process (1) can be used to represent it, where fu becomes the ap-
proximate linear model of the system and дu is all the higher-order
dynamics that are not modelled under each controller u.

We assume to have a collection of state-action-state measure-
ments D = {(xi ,ui ,x

+
i )

m
i=1} generated by Process (1), where x+i ∈

Rn is a sample of one-step evolution of Process (1) when it is initial-
ized at xi ∈ Rn in mode ui ∈ U . Our goal is to use D to learn дu for
each u ∈ U . In order to achieve this correctly, we need an assump-
tion on the regularity of дu . The following assumption suffices to
guarantee that дu can be learned arbitrarily well via GP regression.

Assumption 1. For a compact setX ⊂ Rn , letκ : Rn×Rn → R>0
be a given kernel and Hκ (X ) the reproducing kernel Hilbert space
(RKHS) of functions over X corresponding to κ with norm ∥ · ∥κ [31].
Then, for each u ∈ U and i ∈ {1, ...,n}, д(i)u (·) ∈ Hκ (X ) and for a
constant Bi > 0, it holds that ∥д(i)u (·)∥κ ≤ Bi , where д

(i)
u is the i-th

component of дu .

Assumption 1 is a standard assumption [18, 31], which is intimately
related to the continuity ofдu , as discussed in Section 4. For instance,
assuming that κ is the widely used squared exponential kernel, we
obtain thatHκ (X ) is a space of functions that is dense with respect
to the set of continuous functions on a compact set X ⊂ Rn , i.e.,
members ofHκ (X ) can approximate any continuous function on
X arbitrarily well [32].

Let ωx = x0
u0
−−→ x1

u1
−−→ . . . be a sample path (trajectory) of

Process (1) and denote by ωx(k) = xk , the state of ωx at time k .
Further, we denote by Ωfin

x the set of all sample paths with finite
length, i.e, the set of trajectories ωk

x = x0
u0
−−→ x1

u1
−−→ . . .

uk−1
−−−−→ xk
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for all k ∈ N. With a slight abuse of notation, given path ωx, we
denote by ωk

x the prefix of length k + 1 of ωx.
Given a finite path, a switching strategy chooses themode (action)

of Process (1).

Definition 1 (Switching Strategy). A switching strategy πx :
Ω
fin
x → U is a function that maps a finite path ωk

x ∈ Ω
fin
x to a mode

(action) u ∈ U . The set of all switching strategies is denoted by Πx.

For u ∈ U , a Borel measurable set X ⊆ Rn , and x ∈ Rn , call

Tu (X | x) =

∫
1X (fu (x) + дu (x) +v)pv (v̄)dv̄,

the stochastic transition function induced by Process (1) in mode
u ∈ U , where

1X (x) =

{
1 if x ∈ X

0 otherwise

is the indicator function. From the definition ofTu (X | x) it follows
that, given a strategy πx, for a time horizon [0,N ], Process (1)
defines a stochastic process on the canonical space Ω = (Rn )N+1

with the Borel σ−algebra B(Ω) induced by the product topology
and with the unique probability measure P generated by T πx and a
(fixed) initial condition x0 ∈ Rn such that for k ∈ {1, ...,N }

P[ωN
x (0) ∈ X ] = 1X (x0),

P[ωN
x (k) ∈ X | ωN

x (k − 1) = x ,πx] = T
πx(ωk−1

x )(X | x).

Furthermore, for N = ∞, P is still uniquely defined by Tu by the
Ionescu-Tulcea extension theorem [1].

In this paper, we are interested in the properties of Process (1)
in a compact set X ⊂ Rn . Specifically, we analyze the behavior of
Process (1) with respect to a finite set of closed regions of interest
R = {r1, . . . , r |R |}, where ri ⊆ X . To this end, we associate to
each region ri the atomic proposition pi such that pi = ⊤ (i.e.,
pi is true) if x ∈ ri ; otherwise pi = ⊥ (i.e., pi is false). Let AP =
{p1, . . . ,p |R |} denote the set of all atomic propositions and L : X →

2AP be the labeling function that assigns to state x the set of atomic
propositions that are true at x , i.e.,

pi ∈ L(x) ⇔ x ∈ ri .

Then, we define the trace or observation of pathωk
x = x0

u0
−−→ x1

u1
−−→

. . .
uk−1
−−−−→ xk to be

ρ = ρ0ρ1 . . . ρk ,

where ρi = L(xi ) ∈ 2AP for all i ≤ k . With an abuse of notation we
use L(ωk

x ) to denote the trace of ωk
x .

2.1 Linear temporal logic on finite traces
(LTLf )

In this work, we are interested in the temporal properties of Pro-
cess (1) with respect to the regions of interest in R. To express such
properties, linear temporal logic (LTL) [4] is a popular choice of lan-
guage given its rich expressivity and intuitive formalism. Here, we
employ LTL interpreted over finite traces (LTLf ) [10], which has the
same syntax as LTL but its semantics is defined over finite traces.

Definition 2 (LTLf Syntax). An LTLf formula φ is built from
a set of atomic propositions AP and is closed under the Boolean con-
nectives as well as the “next” operator X and the “until” operator
U:

φ ::= ⊤ | p | ¬φ | φ ∧ φ | Xφ | φUφ

where p ∈ AP , ⊤ is “true” or a tautology, and ¬ and ∧ are the “nega-
tion” and “and” operators in Boolean logic, respectively.

The common temporal operators “eventually” (F ) and “globally”
(G) are defined as:

F φ = ⊤U φ and G φ = ¬F ¬φ.

The semantics of LTLf is defined as follows.

Definition 3 (LTLf Semantics). The semantics of an LTLf for-
mula φ are defined over finite traces inAP∗. The set of all finite traces
is (2AP )∗. Let |ρ | denote the length of trace ρ and ρi be the i-th symbol
of ρ. Further, ρ, i |= φ is read as: “the i-th step of trace ρ is a model of
φ.” Then,

• ρ, i |= ⊤,

• ρ, i |= p iff p ∈ ρi ,
• ρ, i |= ¬φ iff ρ, i ̸ |= φ,
• ρ, i |= φ1 ∧ φ2 iff ρ, i |= φ1 and ρ, i |= φ2,
• ρ, i |= Xφ iff |ρ | > i + 1 and ρ, i + 1 |= φ,
• ρ, i |= φ1Uφ2 iff ∃j s.t. i ≤ j < |ρ | and ρ, j |= φ2 and ∀k ,
i ≤ k < j, ρ,k |= φ1.

Finite trace ρ satisfies φ, denoted by ρ |= φ, if ρ, 0 |= φ.

An LTLf formula φ defines a language L(φ) over the alphabet
2AP . L(φ) is a regular language, more specifically,

L(φ) = {ρ ∈ (2AP )∗ | ρ |= φ}.

Given compact setX ⊂ Rn , its set of regions of interest R and the
corresponding set of atomic propositions AP , and an LTLf formula
φ defined over AP , as in [34], we say that path ωx of Process (1)
satisfies φ if there exists a prefix of ωx that is in the language of φ
and lies entirely in X , i.e.,

ωx |= φ ⇔ ∃k ∈ N s .t . L(ωk
x ) ∈ L(φ) and

ωk
x (k

′) ∈ X ∀k ′ ≤ k, (2)

where L(ωk
x ) ∈

(
2AP

)∗ is the trace (observation) of ωk
x .

2.2 Problem Formulation
The ideal goal of this work is, given an LTLf formula φ, to synthe-
size a switching strategy π∗

x such that under π∗
x the probability of

the paths of Process (1) that satisfyφ is maximized. Nevertheless, we
should stress that, in general, the partial knowledge of Process (1)
and the limited amount of data available (not controllable a-priori)
make it infeasible to find a switching strategy that maximizes such
a probability. Hence, in Problem 1 we seek a near-optimal strategy
such that, under this switching strategy, Process (1) is guaranteed
to satisfy φ with a (high) probability greater than a given threshold
with a quantifiable distance from the optimal probability.

Problem 1 (Switching Strategy Synthesis). Given a partially-
known switched stochastic system as defined in Process (1), a dataset
D, a compact set X , an LTLf property φ defined over the regions
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of interest in X , and a probability threshold p̄, find a near-optimal
switching strategy π εx that determines whether for every x0 ∈ X

P[ωx |= φ | π εx ,ωx(0) = x0] ≥ p̄,

and quantify the corresponding error εx0 ≥ 0 with respect to the
optimal switching strategy, i.e.,

|P[ωx |= φ | π εx ,ωx(0) = x0] − p∗(x0)| ≤ εx0 ,

where p∗(x0) = maxπx∈Πx P[ωx |= φ | πx,ωx(0) = x0].

Overview of the Approach. In order to solve Problem 1 we rely on
GP regression and Assumption 1 to find a function д̂u such that
with high probability, |д̂u (x) − дu (x)| ≤ ϵu for all x ∈ X and a
given ϵu > 0. We then use д̂u to build an abstraction of Process
(1) in terms of a finite Markov model, where the stochastic nature
of Process (1), the error in employing д̂u instead of дu , and the
error corresponding to the discretization of space are all formally
modelled as uncertainty. We then synthesize an optimal strategy
for the resulting Markov model that maximizes the probability that
the paths of the Markov model satisfy φ and is robust against the
uncertainties. Finally, we derive upper and lower bounds on the
probability that Process (1) satisfies φ under this strategy.

3 PRELIMINARIES
3.1 Gaussian Process Regression
Gaussian Process (GP) regression is a non-parametric Bayesian
machine learning method [29]. For an unknown function g : Rn →

R, the basic assumption of GP regression is that g is a sample from
a GP with covariance κ : Rn × Rn → R>0. Consider a dataset of
samples D = {(xi , yi ), i ∈ {1, . . . ,m}}, where yi is a sample of an
observation of g(xi ) with independent zero-mean noise v , which is
assumed to be normally distributed with variance σ 2. Let X and Y
be ordered vectors with all points in D such that Xi = xi and Yi =
yi . Further, call K(X,X) the matrix with Ki, j (Xi ,Xj ) = κ(xi , xj ),
K(x,X) the vector such thatKi (x,X) = κ(x,Xi ), andK(X, x) defined
accordingly. Then, the predictive distribution of g at a test point
x is given by the conditional distribution of g given D, which is
Gaussian and with mean µD and variance σ 2

D given by

µD(x) = K(x,X)
(
K(X,X) + σ 2Im

)−1
Y (3)

σ 2
D(x) = κ(x, x) − K(x,X)

(
K(X,X) + σ 2Im

)−1
K(X, x), (4)

where Im is the identity matrix of sizem ×m.

3.2 Interval Markov Decision Processes
We use a generalization of Markov decision processes to abstract
the system. An interval Markov decision process (IMDP), also called
bounded-parameter Markov decision process, uses interval-valued
transition probabilities [14, 17].

Definition 4 (IMDP). An intervalMarkov decision process (IMDP)
is a tuple I = (Q,A, P̌ , P̂ ,AP ,L), where

• Q is a finite set of states,

• A is a finite set of actions, andA(q) denotes the set of available
actions at state q ∈ Q .

• P̌ : Q ×A ×Q → [0, 1] is a function, where P̌(q,a,q′) defines
the lower bound of the transition probability from state q ∈ Q
to state q′ ∈ Q under action a ∈ A(q),

• P̂ : Q ×A ×Q → [0, 1] is a function, where P̂(q,a,q′) defines
the upper bound of the transition probability from state q ∈ Q
to state q′ ∈ Q under action a ∈ A(q),

• AP is a finite set of atomic propositions,

• L : Q → 2AP is a labeling function that assigns to each state
q ∈ Q a subset of AP .

For allq,q′ ∈ Q and a ∈ A(q), it holds that P̌(q,a,q′) ≤ P̂(q,a,q′)
and

∑
q′∈Q P̌(q,a,q′) ≤ 1 ≤

∑
q′∈Q P̂(q,a,q′).

A path of an IMDP is a sequence of states ωI = q0
a0
−−→ q1

a1
−−→

q2
a2
−−→ . . . such that ak ∈ A(qk ) and P̂(qk ,ak ,qk+1) > 0 for all

k ∈ N. We denote the last state of a finite path ωfin
I

by last(ωfin
I
)

and the set of all finite and infinite paths by Pathsfin and Paths,
respectively. The actions are chosen according to a strategy π which
is defined below.

Definition 5 (Strategy). A strategy π of an IMDP model I is a
function π : Pathsfin → A that maps a finite path ωfin

I
of I onto an

action in A(last(Pathsfin)). If a strategy depends only on last(ωfin
I
), it

is called a memoryless (stationary) strategy. The set of all strategies
is denoted by Π.

Given an arbitrary strategy π , we are restricted to the set of in-
terval Markov chains defined by the transition probability intervals
induced by π . In order to reduce this to a Markov chain, we de-
fine the adversary function, which assigns a transition probability
distribution at each state.

Definition 6 (Adversary). For an IMDP I, an adversary is a
function ξ : Pathsfin × A → D(Q) that, for each finite path ωfin

I
∈

Pathsfin, state q = last(ωfin
I
), and action a ∈ A(last(ωfin

I
)), assigns a

feasible distribution γaq which satisfies

P̌(q,a,q′) ≤ γaq (q
′) ≤ P̂(q,a,q′).

The set of all adversaries is denoted by Ξ.

Under a strategy and a valid adversary, the IMDP collapses to a
Markov chain and induces a probability measure on its paths. We
use this measure as an optimization objective for synthesizing a
desirable strategy.

4 IMDP ABSTRACTION
In order to solve Problem 1, we start by abstracting Process (1) into
an IMDP I = (Q,A, P̌ , P̂ ,AP ,L). Below we describe how we obtain
Q,A,AP , and L. Then, in Section 4.2 we consider upper and lower
bounds for the transition probabilities.

4.1 States and Actions
The set of states Q of I is obtained by discretizating the compact
set X . This discretization needs to respect the set of regions of
interest R = {r1, ..., r |R |}. To achieve this, we first construct a set
of non-overlapping regions of interests R′ from R such that

∪r ′∈R′ r ′ = R and r ′i ∩ r ′j = ∅ ∀r ′i , r ′j ∈ R′ and r ′i , r
′
j .

Then, we partition each r ′i into a set of cells (regions) that are non-
overlapping. Next, we partition the remainder of the compact set
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(X \R) to a set of non-overlapping cells. LetQs = {q1, ...,q |Qs |} de-
note the resulting set of all cells (include R′). Then, by construction,
it holds that

∪q∈Qsq = X , and q ∩ q′ = ∅ ∀q,q′ ∈ Qs and q , q′.

Each region is associated to a state of IMDP I. With an abuse
of notation, q denotes both the region, i.e., q ⊂ X , as well as its
corresponding IMDP state, i.e, q ∈ Q . From the context, the correct
interpretation of q should be clear. Furthermore, let qu denote the
remainder of the state space, i.e., Rn \ X . Then, the set of states of
I is defined as

Q = Qs ∪ {qu }.

The set of actions A of I is given by the set of modesU , i.e., A = U ,
and all actions are available at each state of I, i.e., A(q) = A for all
q ∈ Q .

The set of atomic propositions AP is the same as those defined
over X . With an abuse of notation, we define the IMDP labeling
function L : Q → 2AP with L(q) = L(x) for any choice of x ∈

q. Note that, because the discretization respects the regions of
interests, the labels of the points in a discrete cell are necessarily
the same, i.e., L(x) = L(x ′) for all x ,x ′ ∈ q.

4.2 Transition Probability Bounds
In order to compute the transition probability bounds P̌ and P̂ for all
q,q′ ∈ Q and u ∈ A = U , we need to derive the following bounds:

P̌(q,u,q′) ≤ min
x ∈q

Tu (q′ | x), (5)

P̂(q,u,q′) ≥ max
x ∈q

Tu (q′ | x). (6)

However, without any knowledge about дu in Process (1), the com-
putation of such quantities is infeasible. In what follows we show
how we can employ the data in D and GP regression to compute a
function д̂u such that for any x ∈ X , дu (x) and д̂u (x) are provably
close.

4.2.1 Regression Approach. In our setting, data in D are samples
(x ,u,x+) of Process (1) such that

x+ = fu (x) + дu (x) +v,

where both x and u are known and v is a sample from the noise
process v. From this we can obtain a measurement of дu by simply
noticing that fu is known, i.e., we obtain a dataset composed by:

y+ = x+ − fu (x) = дu (x) +v, (7)

where y+,x+,x ,u are all known. Note that, in our setting, we make
no assumptions on the fact that дu is a sample from a given GP.
Furthermore, the noise vk is not necessarily Gaussian for any k ∈ N.
As a result, the assumptions for GP regression discussed in Section
3.1 are not satisfied and we cannot directly use its prediction to
make probabilistic statements over дu . Nevertheless, thanks to
Assumption 1 we can rely on the properties of the RKHS space
generated by κ to bound the regression error even in our more
agnostic setting.

In particular, for each дu : Rn → Rn , we use n independent
GPs to learn д(i)u , the i-th component of дu . Then, for a given mode
u, we consider д̂(i)u = µD, where µD is the posterior mean of the

GP as described in (3). We use the following Lemma from [9] to
characterize the error in employing д̂u instead of дu .

Lemma 1 ([9], Theorem 2). Let X be a compact set, δ ∈ (0, 1),
γmκ the maximum information gain parameter associated with κ and
dataset D ofm training points, and Bi > 0 such that ∥д(i)u ∥κ ≤ Bi .
Assume that v is θ -sub-Gaussian and µD and σD are found by setting
σ = 1+2/m. Define β = (θ/

√
σ )

(
Bi +θ

√
2(γmκ + 1 + log 1/δ )

)
. Then,

it holds that

P
[∀x ∈ X , |µD (x) − д

(i)
u (x)| < βσD (x)

]
≥ 1 − δ . (8)

One challenge in employing Lemma 1 is in determining the
values (or bounds) for the information gain constant γmκ and the
RKHS constant Bi . A procedure for obtaining γmκ is given in [31].
The RKHS constant Bi is instead intimately related to the continuity
of дu , as shown in Theorem 3.11 of [27], where a bound of Bi in
terms of the maximum value that дu obtains in X and the kernel κ
is given.

4.2.2 Transitions withinQs . For all states q,q′ ∈ Qs , the transition
probability bounds in (5) are given by Theorem 1 below. In order to
state this result, we first need to introduce the notions of expansion
and reduction of a closed set.

Definition 7 (Expansion and Reduction of a Set). Given a
compact set q ⊂ Rn and a set of n scalars c = {c1, . . . , cn }, where
ci ≥ 0, the expansion of q by c is defined as

q(c) = {x ∈ Rn | ∃xq ∈ q s .t . |x
(i)
q − x (i) | ≤ ci ∀i = {1, . . . ,n}},

and the reduction of q by c is

q(c) = {xq ∈ q | ∀x∂q ∈ ∂q, |x
(i)
q − x

(i)
∂q | > ci ∀i = {1, . . . ,n}},

where ∂q denotes the boundary of q.

In addition, we define the image of region q under the learned
dynamics by

Im(q) = { fu (x) + д̂u (x) | x ∈ q}

and the intersection indicator function as

1WV =

{
1 if V ∩W , ∅

0 otherwise

for arbitrary sets V andW . We can now bound the transition prob-
abilities between the IMDP states in Qs .

Theorem 1. Let ∥h∥q∞ ≡ supx ∈q |h(x)|. Given an action (mode)
u ∈ A, regions q,q′ ∈ Qs , dataset D, regression д̂u , and positive real
vectors ϵ ∈ Rn and η ∈ Rn , it holds that

max
x ∈q

Tu (q′ | x)

≤ 1Im(q)
q′(ϵ+η)

n∏
i=1

P[∥д
(i)
u − д̂

(i)
u ∥

q
∞ ≤ ϵi ]

n∏
i=1

P[|v(i) | ≤ ηi ]

+

n∏
i=1

(1 − P[∥д
(i)
u − д̂

(i)
u ∥

q
∞ ≤ ϵi ]),

(9)
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min
x ∈q

Tu (q′ | x) ≥

1Im(q)
X \q′(ϵ+η)

n∏
i=1

P[∥д
(i)
u − д̂

(i)
u ∥

q
∞ ≤ ϵi ]

n∏
i=1

P[|v(i) | ≤ ηi ].
(10)

Proof. Let ∥дu − д̂u ∥ ≤ ϵ denote the event ∥д(i)u − д̂
(i)
u ∥ ≤ ϵi

for i = 1, . . . ,n (and similar for the complementary event). Define

P[ωx(1) ∈ q′ | x ,u] B P[ωx(1) ∈ q′ |ωx(0) = x ∈ q,u].

Then using the law of total probability

P[ωx(1) ∈ q′ | x ,u] =

P[ωx(1) ∈ q′ | x ,u, ∥дu − д̂u ∥ ≤ ϵ]
n∏
i=1

P[∥д
(i)
u − д̂

(i)
u ∥

q
∞ ≤ ϵi ]+

P[ωx(1) ∈ q′ | x ,u, ∥дu − д̂u ∥ > ϵ]
n∏
i=1

P[∥д
(i)
u − д̂

(i)
u ∥

q
∞ > ϵi ]

The transition kernel can be upper bounded by

max
x ∈q

Tu (q′ | x) = max
x ∈q

P[ωx(1) ∈ q′ | x ,u] ≤

max
x ∈q

P[ωx(1) ∈ q′ | x ,u, ∥дu − д̂u ∥ ≤ ϵ]
n∏
i=1

P[∥д
(i)
u − д̂

(i)
u ∥

q
∞ ≤ ϵi ]

+ 1 ·

n∏
i=1

(1 − P[∥д
(i)
u − д̂

(i)
u ∥

q
∞ ≤ ϵi ]).

To account for the uncertainty in the regression and process noise,
we again use the law of total probability and expand q′ by ϵ and η
and check for an intersection between Im(q) and q′(ϵ + η):

≤ 1Im(q)
q′(ϵ+η)

n∏
i=1

P[|v(i) | ≤ ηi ]
n∏
i=1

P[∥д
(i)
u − д̂

(i)
u ∥

q
∞ ≤ ϵi ]+

n∏
i=1

(1 − P[∥д
(i)
u − д̂

(i)
u ∥

q
∞ ≤ ϵi ]).

Similarly, the transition kernel can be lower bounded by deter-
mining if any points lie outside of the intersection of Im(q) and
q′(ϵ + η):

min
x ∈q

Tu (q′ | x) = min
x ∈q

P[ωx(1) ∈ q′ | x ,u]

≥ 1Im(q)
X \q(ϵ+η)

n∏
i=1

P([v(i) | ≤ ηi ]
n∏
i=1

P[∥д
(i)
u − д̂

(i)
u ∥

q
∞ ≤ ϵi ]

+ 0 ·

n∏
i=1

P[∥д
(i)
u − д̂

(i)
u ∥

q
∞ > ϵi ]

= 1Im(q)
X \q′(ϵ+η)

n∏
i=1

P[|v(i) | ≤ ηi ]
n∏
i=1

P[∥д
(i)
u − д̂

(i)
u ∥

q
∞ ≤ ϵi ].

□

Theorem 1 computes formal bounds for the transition proba-
bilities by using the law of total probability with respect to the
events |v(i) | ≤ ηi (noise is bounded by ηi ), ∥д

(i)
u − д̂

(i)
u ∥

q
∞ ≤ ϵi (the

supremum of the regression error is bounded by ϵi for all x ∈ q),
and their complementary events. In particular, a bound on the prob-
ability of the latter event can be obtained by Lemma 1, while the

probability of former depends on the known distribution of the
noise pv .

In order to get non-trivial transition bounds, constants η and ϵ
should be selected to minimize or maximize the bounds in (9) and
(10) respectively. In particular, we pick η as the smallest constants
such that the noise is bounded by η with high probability, e.g.,
0.99. Then, for this η, our procedure to choose a value for ϵ is as
follows. We first check if Im(q) ⊂ q′. If it is the case, we pick ϵ as
the greatest constants such that Im(q) ⊂ q′(ϵ + η). Otherwise, we

simply select ϵ as the smallest constants such that ∥д(i)u −д̂
(i)
u ∥

q
∞ ≤ ϵ

with high probability, e.g., that satisfies the bound in Lemma 1 with
probability 0.99.

Note that forq ⊂ X the above procedure requires one to compute
Im(q). This is equivalent to computing the maximum and minimum
of (3) for all x ∈ q. Arbitrarily tight bounds for these quantities
can be computed by utilizing the convexity of most used kernels,
such as the the squared-exponential function, as outlined in [6, 7].
With a similar approach, a bound for maxx ∈q σD (x) can also be
computed, as this is required for the computation of Lemma 1.

4.2.3 Transitions to qu . The probability interval for transitioning
to the state qu ∈ Q , i.e., the region outside of X , is given by

P̌(q,u,qu ) = 1 − max
x ∈(q

Tu (X | x),

P̂(q,u,qu ) = 1 − min
x ∈(q

Tu (X | x).

These bounds can be calculated as a corollary of Theorem 1.

Corollary 1. Let q ∈ Qs , then for any ϵ,η > 0 it holds that

P̌(q,u,qu )

≥ 1 − 1Im(q)
X (ϵ+η)

n∏
i=1

P[∥д
(i)
u − д̂

(i)
u ∥

q
∞ ≤ ϵi ]

n∏
i=1

P[|v(i) | ≤ ηi ]

−

n∏
i=1

(1 − P[∥д
(i)
u − д̂

(i)
u ∥

q
∞ ≤ ϵi ]),

P̂(q,u,qu )

≤ 1 − 1Im(q)
X \X (ϵ+η)

n∏
i=1

P[∥д
(i)
u − д̂

(i)
u ∥

q
∞ ≤ ϵi ]

n∏
i=1

P[|v(i) | ≤ ηi ].

To complete the construction of abstraction I, we make qu
absorbing, i.e., P̌(qu ,u,qu ) = P̂(qu ,u,qu ) = 1 for all u ∈ A, to
ensure that I does not account for the transitions to X from qu
since such paths do not satisfy φ as defined in (2).

5 STRATEGY SYNTHESIS
Given an LTLf formula φ, ideally we would like to synthesize an
optimal switching strategy π∗

x for Process (1), under which the prob-
ability of satisfaction of φ by the paths of Process (1) is maximized.
However, since дu is unknown, this is generally infeasible. Instead,
we employ the IMDP abstraction I as constructed above, which is a
conservative model of Process (1) since the transition probabilities
of I include uncertainties (errors) of the learning process as well as
those related to the discretization. On this model, we find a strategy
that is robust against all these uncertainties and maximizes the
probability of satisfying φ. Then, we can refine this strategy to a
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switching strategy for Process (1). Note that the resulting strategy
is not necessarily optimal for Process (1), however, in what follows
we show how the error between the resulting strategy and optimal
strategy π∗

x can be quantified.

5.1 Near-optimal Robust Strategy
The uncertainties in I are characterized by adversary ξ , which
chooses a feasible transition probability from one IMDP state to
another under a given action. Recall that given a strategy π and
an adversary ξ , I becomes a Markov chain with a well-defined
probability measure over its paths. Then, our (robust and near-
optimal strategy) objective translates to finding a strategy that
maximizes the probability of satisfying φ with the assumption that
the adversary (uncertainty) attempts to minimize this probability,
i.e.,

π ε = arg max
π ∈Π

min
ξ ∈Ξ

P[ωI |= φ | π , ξ ,ωI (0) = q], (11)

Under π ε , the lower bound and upper bound on the probability of
satisfaction are then given by

p̌(q) = min
ξ ∈Ξ

P[ωI |= φ | π ε , ξ ,ωI (0) = q], (12)

p̂(q) = max
ξ ∈Ξ

P[ωI |= φ | π ε , ξ ,ωI (0) = q], (13)

respectively.
To correctly refine a strategy computed on I to a switching

strategy for process x, let z : Rn → Q be a function that maps each
state x of Process (1) to its corresponding discrete region q ∈ Q ,
i.e., z(x) = q iff x ∈ q. We also use z to denote mapping from
finite paths of process x to finite paths of I, i.e., for a finite path
ωk
x = x0

u0
−−→ x1

u1
−−→ . . .

uk−1
−−−−→ xk , the corresponding path on I is

given by

z(ωk
x ) = z(x0)

u0
−−→ z(x1)

u1
−−→ . . .

uk−1
−−−−→ z(xk ).

Then, strategy π ε on I is correctly refined to a switching strategy
π εx for process x by

π εx(ω
k
x ) = π ε (z(ωk

x )). (14)

Note that, the maximum probability of satisfaction of φ by Pro-
cess (1) is necessarily lower bounded by p̌ in (10), i.e., p∗(x) ≥

p̌(z(x)), where

p∗(x) = max
πx

P[ωx |= φ | πx,ωx(0) = x].

However, p∗(x) is not necessarily upper bounded by p̂ in (13). Prob-
ability p∗(x) can instead be upper bounded by

p̂∗(x) = max
π ∈Π

max
ξ ∈Ξ

P[ωI |= φ | π , ξ ,ωI (0) = z(x)], (15)

where the adversary (uncertainty) cooperatively chooses feasible
transition probabilities to maximize the probability of satisfaction
of φ. Therefore,

p∗(x) ∈ [p̌(z(x)), p̂∗(z(x))].

Below, we show how the strategy in (11), its corresponding prob-
ability bounds in (12) and (13), and probability in (15) can be com-
puted.

5.2 Synthesis
Given an LTLf formula φ, a deterministic finite automaton can be
constructed that precisely accepts the language of φ per [10].

Definition 8 (DFA). A deterministic finite automaton (DFA) con-
structed from an LTLf formula φ defined over atomic propositions
AP is a tuple Aφ = (S, 2AP ,δ , s0, SF ), where S is a finite set of states,
2AP is a finite set of input symbols, each of which is a set of atomic
propositions in AP , δ : S × 2AP → S is the transition function, s0 ∈ S
is the initial state, and SF ⊆ S is the set of accepting (final) states.

A finite run on a DFA is a sequence of states s = s0s1 . . . sn+1
induced by a sequence of symbols ρ = ρ0ρ1 . . . ρn , where ρi ∈ 2AP
and si+1 = δ (si , ρi ). Finite run s on trace ρ is accepting if sn ∈ SF . If
s is accepting, then trace ρ is accepted by Aφ . The set of all traces
that are accepted by Aφ is call the language of Aφ , denoted by
L(Aφ ). This language is equal to the language of φ, i.e., L(φ) =
L(Aφ ).

Next, we construct a product of DFAAφ with IMDPI to capture
the paths of I that satisfy φ.

Definition 9 (Product IMDP). Given an IMDP I = (Q,A, P̌P ,

P̂P ,AP ,L) and DFA Aφ = (S, 2AP ,δ , s0, SF ), the product IMDP
(PIMDP) P = I × Aφ is itself an IMDP defined as the tuple P =
(QP ,A, P̌P , P̂P ,QP

0 ,Q
P
F ), where QP = Q × S , QP

F = Q × SF ,

QP
0 = {(q, sinit ) | q ∈ Q, sinit = δ (s0,L(q))},

and

P̌P ((q, s),u, (q′, s ′)) =

{
P̌(q,u,q′) if s ′ = δ (s,L(q))

0 otherwise

P̂P ((q, s),u, (q′, s ′)) =

{
P̂(q,u,q′) if s ′ = δ (s,L(q))

0 otherwise.

In its essence, the PIMDP incorporates the historical dependencies
on the runs of the DFA and couples them with the paths of the
IMDP. The projection of a path of P that reaches a state in QP

F
onto Aφ is an accepting run, and hence, the projection of this path
onto abstraction I is a path that satisfies φ. Therefore, the synthesis
problem in (11) is reduced to computing a robust (pessimistic) strat-
egy on product P that maximizes the probability of reaching QP

F .
Similarly, the probability in (15) is given by an optimistic strategy
on P that maximizes the the probability of reaching QP

F . These
problems are variations of a known problem calledmaximal reacha-
bility probability problem and can be solved using a method similar
to value iteration called interval-value iteration [22, 35], whose
computational complexity is polynomial. The resulting strategies
are stationary on P, which map to history dependent strategies on
I.

5.3 Correctness
The following theorem shows that π εx in (14) is a ε-near-optimal
switching strategy for Process (1) and quantifies its distance (error)
ε to the optimal switching strategy π∗

x .

Theorem 2. Given a partially-known switched stochastic system
as defined in Process (1), a dataset D, a compact set X ⊂ Rn , an LTLf
formula φ defined over the regions of interest in X , let I be an IMDP



HSCC ’21, May 19–21,2021, Nashville, TN, USA John Jackson, Luca Laurenti, Eric Frew, and Morteza Lahijanian

abstraction as described in Section 4, π ε be a strategy on I given by
(11), and π εx be the switching strategy for Process (1) obtained from
π ε according to mapping z in (14). Further, let p̌, p̂, and p̂∗ be the
probability bounds in (12), (13), and (15), respectively. Then, it holds
that

P[ωx |= φ | π εx ,ωx(0) = x] ∈ [p̌(z(x)), p̂(z(x))],

and

|P[ωx |= φ | π εx ,ωx(0) = x] − p∗(x)| ≤ p̂∗(z(x)) − p̌(z(x)),

where p∗(x) = maxπx∈Πx P[ωx |= φ | πx,ωx(0) = x].

Theorem 2 is a straightforward consequence of Theorem 1 and guar-
antees that the probability that Process (1) satisfies φ is contained
between p̌ and p̂. In order to quantify the distance of πϵx from the
optimal strategy π∗

x , we compute the optimal upper bound probabil-
ity p̂∗ correspondent to the strategy that optimistically maximizes
the probability of reaching QP

F . In fact, recall that π εx corresponds
to the strategy that maximizes the lower bound of reaching QP

F . It
follows that for any x ∈ X ,

εx = |p̂∗(z(x)) − p̌(z(x))|.

Given a probability bound p̄ on the satisfaction of formula φ,
we use p̌ and p̂ to classify each initial state x0 ∈ X as one of the
following:

x ∈


Qyes if p̌(z(x)) ≥ p̄

Qno if p̂(z(x)) < p̄

Q? otherwise.
Given initial state x0, we can guarantee that φ is definitely satisfied
by the underlying system with at least p̄ if x0 ∈ Qyes. If x0 ∈ Qno,
then we can guarantee that the underlying system never meets the
probability threshold p̄. For x0 ∈ Q?, no guarantees relative to the
threshold p̄ can be given.

6 CASE STUDIES
We illustrate the proposed framework in three case studies using
linear and nonlinear switched systems. In all the demonstrations,
the compact set is X = [−2, 2] × [−2, 2]. We use a uniform grid of
size 0.125 over X to create Qs for our abstraction.

6.1 Linear Switched System with Three Modes
Wefirst demonstrate the framework on a three-mode linear switched
system similar to the synthesis example presented in [22]. We as-
sume the dynamics in all three modes are unknown, i.e.,

xk+1 = дuk (xk ) + vk ,

where each mode is a linear system with дu (xk ) = Auxk for all
u ∈ {1, 2, 3},

A1 =

[
0.4 0.1
0 0.5

]
, A2 =

[
0.4 0.5
0 0.5

]
, A3 =

[
0.4 0
0.5 0.5

]
,

and v is drawn from a Gaussian distribution N(0,σ 2I ) truncated
between [−σ ,σ ] with σ = 0.01.

Two-hundred i.i.d. data points per mode were sampled and prop-
agated through the dynamics to create the dataset for regression.
Figure 1 shows the partition ofX with labelled regions Des andObs
indicating “Desired” and “Obstacle” regions, respectively. With an

Figure 1: Region partition and classification of initial states
using the strategy synthesized for the linear system and φ1.

abuse of notation, these are used to define the atomic propositions
{Des,Obs} and the LTLf specification

φ1 = G(¬Obs) ∧ F (Des),

which reads, “Globally avoid Obstacles and eventually reach a De-
sired region”.

Using our framework, we learned the unknown dynamics and
synthesized a robust and near-optimal switching strategy π ε . Fig-
ure 1 shows the classification of each initial region with threshold
probability p̄ = 0.95 under this strategy. Initial states with the Des
label belong to Qyes as they satisfy φ1 while states with the Obs
label violate it and belong to Qno. There are additional states be-
longing toQyes such that actions dictated by π ε drive the system to
an accepting state with a high probability. These results closely re-
semble the results presented in [22], which assumed full knowledge
of the dynamics, whereas here the dynamics are fully unknown
and are estimated from a limited set of data.

6.2 Parameter Choices
We provide a brief look at the effect of choosing different values
of η, the bounds on the noise components in Theorem 1, on the
synthesis results. For any choice of η, the optimal value of ϵ , the
bounds on the suprema of the regression error components, is then
chosen to minimize (maximize) the upper-bound (lower-bound)
of the transition probability in Theorem 1 as discussed previously.
In the ideal case, the noise parameter primarily effects the lower-
bound of the transition probability, as the optimal choice of ϵ leaves
the indicator function in (10) with a value of zero.

For the three-mode linear switched system above, the effect
of changing η uniformly in a naïve manner is shown in Figure 2.
The choices of η are presented as fractions of the bounds on the
truncated Gaussian distribution. As expected, the lower-bound on
the probability of satisfaction decreases as the value of η decreases.
In a large part, this is due to the reduction in the lower-bound of
the probability of staying within X . There is clearly an optimal
trade-off to be made between ϵ and η, which will be considered in
future work.
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(a) η = 0.5σ (b) η = 0.75σ

(c) η = 0.95σ (d) η = 0.99σ

Figure 2: Effect on changing the parameter η on the lower
bound of the probability of satisfaction from each state.

6.3 Nonlinear Switched System with Four
Modes

Next, we synthesize a switching strategy for a nonlinear system
with four modes, a known linear dynamics component, and an
unknown nonlinear dynamics component. The form of the system
is

xk+1 = xk + дuk (xk ) + vk
The unknown dynamics are

дu (xk ) =


[0.5 + 0.2 sinx(2)k , 0.4 cosx(1)k ]T if u = 1
[−0.5 + 0.2 sinx(2)k , 0.4 cosx(1)k ]T if u = 2
[0.4 cosx(2)k , 0.5 + 0.2 sinx(1)k ]T if u = 3
[0.4 cosx(2)k ,−0.5 + 0.2 sinx(1)k ]T if u = 4

where x (i) indicates the i-th component of the state. Three-hundred
i.i.d. data points were generated from each mode with the same
noise distribution.

The region of interest isDes , which indicated by the black square
in Figure 3a, and the specification is

φ2 = F Des .

Figure 3a shows the synthesis and simulated result. The black lines
indicate simulated paths from a set of randomly selected initial
states, and the star indicates the terminal state. Individual simu-
lations were terminated if an accepting state in the PIMDP was
reached, or if the specification was violated. The size of Qyes in
Figure 3a shows that the strategy π ε can drive many states into

(a) State classification and simulations.

(b) Optimization error ε at each state.

Figure 3: Synthesis results and simulations for the nonlinear
system for φ2. The black square in (a) indicates the region
with label Des.

Des with a high probability. However, there are many states inQno.
In these states, the upper-bound of the probability of satisfying φ2
induced by employing π ε does not meet p̄. In other words, there is
a significant chance of violating φ2.

Figure 3b shows upper bounds of error ε at each state. Recall
that ε bounds the satisfaction probability distance under optimal
and near-optimal strategies in Problem 1. The darker regions cor-
respond to areas with ε approaching zero, meaning π ε is indeed
near-optimal. The lighter regions with ε approaching one indicate
that π ε does not necessarily choose the optimal action. This could
be mitigated by collecting more data and performing a finer abstrac-
tion, or it is possible the system does not have sufficient control
authority.
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Finally, we perform controller synthesis for the partially-known
nonlinear switched system given the specification

φ3 = G(¬O) ∧ F (D1) ∧ F (D2)

with two reachability objectives. Figure 4a shows the partitioning
of the space with labels D1, D2 and O indicating “Desired Location
1”, “Desired Location 2” and “Obstacle” regions respectively. We
use the same abstraction we generated in the previous case.

Figure 4b shows several simulation results from different initial
states, two of which are in Q? and the others in Qyes. The Qno

set is comprised of only the O regions, because starting in O auto-
matically violates the specification. Much of the Qyes set is made
up of a majority of D2 and some states starting in D1. There is a
large amount of free space that can be driven into D1 with high
probability. All paths but one terminate with satisfying φ3, but a
single path is driven into an obstacle. Figure 4c shows that the
optimal action has been found for many of the states, but there is
a significant number of states with a trivial bound of ε = 1. This
metric can help identify areas for further data collection, or state
discretization refinement.

7 CONCLUSION
We developed a data-driven framework for synthesizing a near-
optimal control strategy for partially unknown switched stochastic
systems with LTLf specifications. The framework is based on ab-
straction to an uncertain Markov model that incorporates both the
uncertainty given by the stochastic dynamics of the system and
the uncertainty in learning the unknown dynamics of the system
via GP regression. Our work makes a step towards formally safe
and correct data-driven systems. However, many challenges are
ahead in order to make our framework to scale to larger datasets
and higher dimensional systems. In the future, we plan to con-
sider sparse Gaussian processes as well as optimal techniques for
parameter tuning and refinement.
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