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Abstract. We present an extension of the dynamic global vegetation model, Lund–Potsdam–Jena Managed
Land (LPJmL), to simulate planted forests intended for carbon (C) sequestration. We implemented three func-
tional types to simulate plantation trees in temperate, tropical, and boreal climates. The parameters of these
functional types were optimized to fit target growth curves (TGCs). These curves represent the evolution of
stemwood C over time in typical productive plantations and were derived by combining field observations and
LPJmL estimates for equivalent natural forests. While the calibrated model underestimates stemwood C growth
rates compared to the TGCs, it represents substantial improvement over using natural forests to represent af-
forestation. Based on a simulation experiment in which we compared global natural forest versus global forest
plantation, we found that forest plantations allow for much larger C uptake rates on the timescale of 100 years,
with a maximum difference of a factor of 1.9, around 54 years. In subsequent simulations for an ambitious but
realistic scenario in which 650 Mha (14 % of global managed land, 4.5 % of global land surface) are converted to
forest over 85 years, we found that natural forests take up 37 PgC versus 48 PgC for forest plantations. Compar-
ing these results to estimations of C sequestration required to achieve the 2 ◦C climate target, we conclude that
afforestation can offer a substantial contribution to climate mitigation. Full evaluation of afforestation as a cli-
mate change mitigation strategy requires an integrated assessment which considers all relevant aspects, including
costs, biodiversity, and trade-offs with other land-use types. Our extended version of LPJmL can contribute to
such an assessment by providing improved estimates of C uptake rates by forest plantations.

1 Introduction

It is increasingly clear that the stringent climate targets of the
Paris Agreement cannot be achieved without negative emis-
sions, i.e., net removal of carbon (C) from the atmosphere
later during the 21st century, to compensate for emissions
in the first half of the century (Gasser et al., 2015; Rogelj et
al., 2018). Of the many proposed techniques to achieve C up-
take, the two options currently most discussed for large-scale
implementation are bioenergy in combination with carbon
capture and storage and afforestation (Williamson, 2016).
Both approaches will require considerable amounts of land

and thus compete with other land-use functions, for exam-
ple, food production and biodiversity. While bioenergy is re-
ceiving considerable attention (van Vuuren et al., 2013), less
consideration has been given to afforestation as a tool for
land-based mitigation. C uptake occurs when natural vegeta-
tion is allowed to grow back on former croplands and pas-
ture. While deliberately taking cropland or pasture out of
production may involve costs, the direct management costs
of natural regrowth are negligible. The carbon uptake rate
of such natural regrowth, however, will usually achieve only
a fraction of the potential C uptake rate at short timescales.
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Considerably higher C uptake rates are possible by planting
forests (Paquette and Messier, 2010). Assisting regrowth by
planting trees can substantially boost growth rates compared
to natural forests because initial stages of primary succes-
sion (with herbaceous or shrub vegetation) are skipped and
because fast-growing tree species can be selected. Moreover,
trees are usually planted as saplings, cultivated under con-
trolled conditions, which improves the chance of successful
establishment compared to development from seeds (Glad-
stone and Thomas Ledig, 1990).

Assessing the potential of land-based approaches for cli-
mate mitigation requires reliable estimates of C sequestra-
tion rates. Process-based models, such as dynamic global
vegetation models (DGVMs), are a crucial tool for provid-
ing these estimates. DGVMs simulate carbon stocks and
fluxes based on mechanistic descriptions of underlying pro-
cesses, such as photosynthesis and organic matter decompo-
sition in relation to environmental conditions. However, since
the focus of DGVM development has traditionally been on
natural ecosystems, very few of these models have an ex-
plicit representation of planted forests. Therefore, previous
modeling studies on large-scale afforestation represented af-
forestation as natural regrowth (Krause et al., 2017), in some
cases applying corrections to account for higher growth rates
(Humpenoder et al., 2014; van Minnen et al., 2008).

In this paper, we present an updated version of the Lund–
Potsdam–Jena Managed Land (LPJmL) DGVM (Bondeau et
al., 2007; Schaphoff et al., 2013), modified to explicitly rep-
resent afforestation. Three new plant functional types have
been implemented in order to represent planted forests in
temperate, tropical, and boreal regions. The parameters of
these plantation types were estimated based on observations
of stemwood carbon from real-world forest plantations. Us-
ing this new LPJmL version, we present a global assessment
of potential carbon sequestration rates in forest plantations
and compare these to rates achieved by letting forests grow
back naturally.

2 Methods

2.1 The LPJmL dynamic global vegetation model

LPJmL is a global process-based model simulating vegeta-
tion dynamics and fluxes of carbon and water in the vegeta-
tion and soil of terrestrial ecosystems (Bondeau et al., 2007;
Schaphoff et al., 2013; Sitch et al., 2003), including agricul-
tural land and biomass plantations for bioenergy production
(Beringer et al., 2011). The model runs primarily on a daily
time step, except for C allocation, vegetation dynamics, and
disturbances for natural vegetation and biomass plantations,
which are resolved annually. Forcing consists of monthly
climate variables (air temperature, precipitation, cloud frac-
tion, and number of wet days per month) – which are in-
terpolated to daily values (Gerten et al., 2004) – and an-
nual atmospheric CO2 concentrations. Using a combination

of plant physiological relations, generalized empirically es-
tablished functions, and plant trait parameters, LPJmL simu-
lates processes such as photosynthesis, plant growth, mainte-
nance and regeneration losses, fire disturbance, soil moisture
dynamics, runoff, evapotranspiration, irrigation, and vegeta-
tion structure (Schaphoff et al., 2013). Natural vegetation is
represented as a number of plant functional types (PFTs):
aggregated vegetation classes representing variation in leaf
type (broadleaf, needleleaf), phenology (summergreen, ev-
ergreen, raingreen), and climate preference (boreal, temper-
ate, tropical). Most model parameters related to vegetation
are defined separately for each PFT. The model simulates the
occurrence of each PFT based on bioclimatic limits and com-
petition with other PFTs for resources. Agricultural ecosys-
tems are handled in a separate module and are represented
by a range of crop functional types (Bondeau et al., 2007).
Additionally, one herbaceous and two woody PFTs are im-
plemented to simulate short-rotation bioenergy plantations
(Beringer et al., 2011). Area fractions specifying allocation
to different land-use types are part of the model input. Fi-
nally, the model can simulate river discharge, surface water
reservoirs, and several types of irrigation. LPJmL has been
coupled to the IMAGE integrated assessment model, serving
as the land surface component (Müller et al., 2016; Stehfest
et al., 2014).

In all simulations for this study, the model was forced
by semi-constant monthly climate input, representative of
the period 1980–2010. This dataset was derived by repeat-
ing a cycle of detrended time series for this period, taken
from the Climate Research Unit (CRU) TS3.23 global grid-
ded (0.5◦× 0.5◦) climate dataset (Harris et al., 2014). For
simplicity, we chose to ignore the effect of atmospheric
CO2 concentration change at this stage; hence, this vari-
able was held fixed at the mean global value for 1980–2010
(362.4 ppmv). Fire disturbance was not considered. Further
information on the model input and configuration is given in
subsequent sections.

2.2 Forest plantations

LPJmL was extended to represent forest plantations. Specif-
ically, a new land-use type was added, as well as three func-
tional types to represent trees in temperate, tropical, and bo-
real plantations. These types – referred to as forest planta-
tion functional types (FPFTs) – are derived from the natu-
ral PFTs (temperate broadleaved summergreen tree, tropical
broadleaved evergreen tree, and boreal needleleaf evergreen
tree, respectively). The occurrence of the FPFTs is subject to
the same establishment and mortality rules used for natural
PFTs. However, the bioclimatic limits are set such that they
do not overlap; hence, co-occurrence of different FPFTs in a
single grid cell is rare, occurring only when climate fluctu-
ates near a boundary between two types.
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Structurally, the implementation largely follows that of
the woody bioenergy plantations implemented in LPJmL
(Beringer et al., 2011), which in turn are based on equiva-
lent natural PFTs. Contrary to bioenergy trees, forest plan-
tations are not automatically clear cut after a fixed rotation
period, but a fraction of the plantation fraction may be har-
vested, specified as model input. However, for the purpose
of this study, harvest was set to zero. Forest plantation PFTs
also differ from other PFTs with regard to establishment of
new trees. A fixed initial planting density (Pinit) was intro-
duced, which determines the number of trees per unit area
at planting. After planting, establishment of new trees oc-
curs similarly to natural PFTs: at fixed maximum rate, down-
scaled according to an exponentially declining function of
foliar projective cover. Generally, stand density will decrease
after plantation due to self-thinning, implemented according
to Reineke’s rule (Reineke, 1933), which relates stem diam-
eter to crown area. When the area-fraction of forest planta-
tions in a given grid cell increases over time, establishment is
determined as a combination of Pinit and the standard estab-
lishment rate, weighted according to the old forest plantation
fraction and the fraction added.

2.3 Calibration

2.3.1 General setup

To obtain realistic growth rates, we calibrated several FPFT-
specific parameters, based on published observed growth
data for forest plantations. Ideally, calibration of dynamic
vegetation models should be performed using detailed obser-
vations for a given site. However, this requires a large amount
of data, both for model input and to compare to model out-
put to assess performance. While much data on growth of
forest plantations have been published, the number of for-
est plantation sites for which calibration data as well as data
for model input are available for sufficiently long time pe-
riods is not enough to derive globally applicable parameter
sets. Therefore, we chose a different approach. Rather than
aiming to reproduce site-level observations, we calibrated the
model in order to obtain desired mean biome-level behavior
for each of the three FPFTs. For every iteration in the cali-
bration, the model was run for a selection of 100 grid cells
from the spatial domain of the FPFT being calibrated. Sub-
sequently, model output for the relevant variables was aggre-
gated over all grid cells and compared to observed values to
determine model performance.

Within the spatial domain for a given FPFT, many grid
cells exist where growth is marginal due to unfavorable cli-
mate and/or soil properties. The observations used in the cal-
ibration are not representative of these locations, since forest
plantations from which data have been retrieved can be as-
sumed to represent locations where productivity is sufficient
for economic profitability. Therefore, rather than choosing
grid cells randomly, the selection was limited to locations

for which LPJmL simulates relatively high productivity. This
was done based on results from a 300-year simulation with
only natural vegetation, in the same setup as the one used
in the calibration (see Sect. 2.3). For each FPFT, 100 cells
were selected for which the simulated stemwood C storage
of the corresponding natural PFT (see Sect. 2.2) exceeds the
70th percentile over the complete domain where this PFT is
dominant, i.e., has highest foliar projective cover (Fig. 1).
During the calibration, LPJmL was run only for these cells,
with land-use type set to forest plantations.

2.3.2 Observations

Target growth curves

Time series of stand-level stemwood C were collected from
various sources in the literature. We required observations
in the form of time series for a sufficiently long period to
assess the growth behavior on timescales relevant to this
study – at least 50 years. Due to limited data availability (see
Sect. 2.3.1), a rigorous data-selection procedure was not pos-
sible; hence, the observations were collected in an ad hoc
fashion. For the tropical FPFT, we used data from Brown et
al. (1986), who derived time series of stemwood biomass for
several species and species groups for tropical forest plan-
tations. For the temperate and boreal FPFTs, no such com-
pilations were available; hence, we used datasets for typi-
cal plantation species for wood production. Observations for
natural poplar (Populus× euramericana) forests were taken
from Cannell (1982) for the calibration of the temperate
FPFT. For the boreal FPFT, we used data for Scots pine (Pi-
nus sylvestris) plantations from Vanninen et al. (1996). Out-
liers in the observations were removed using Hampel filtering
(Pearson, 2002). The data are depicted in Fig. 2.

Since most forest plantations are grown for timber produc-
tion, they are harvested approximately at the optimal rotation
length for maximum wood production, which is well before
the trees reach maturity. Hence, growth data for higher tree
ages are scarce. Calibrating LPJmL against these observa-
tions alone would result in excessive weight on the earlier
part of the curve, leading to unpredictable results for the later
part. Therefore, we did not use the observations directly in
the LPJmL calibration but used them to derive growth curves
representing the typical growing behavior of productive plan-
tations for each FPFT. We refer to these as the target growth
curves (TGCs). The general structure of the TGCs is given
by the Chapman–Richards function, which is widely used to
model forest growth (e.g., Von Gadow and Hui, 1999). It de-
fines the stemwood C (CSWC) at time t as

CSWC(t)= CSWC,max

(
1− e−kt

)p
, (1)

where CSWC,max is the maximum CSWC, k is the growth
rate, and p is a shape parameter determining the timing of
maximum growth. These parameters were estimated using
a Bayesian non-linear regression approach. The scarcity of
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Figure 1. Location of the grid cells included in calibration simulations (100 per FPFT). The map shows simulated stemwood C (kgC m−2)
for a simulation with potential natural vegetation.

Figure 2. Target growth curves for stemwood C, associated observations, and LPJmL output for natural vegetation in the cells selected for
calibration.

high-age observations was solved by constraining CSWC,max
using a prior distribution based on LPJmL output for the cor-
responding natural PFTs from the 300-year simulation used
to select the calibration grid cells (see Sect. 2.3.1). Specif-
ically, for each FPFT, we used the mean simulated stem-
wood C of the last 10 simulation years, averaged over the
100 calibration cells as a representative value.

The parameters were estimated using Markov chain Monte
Carlo (MCMC) sampling. The samples with highest poste-
rior density, together with the variances over the marginal
posterior distributions, were used in the LPJmL calibration.
Further details are given in the Supplement.

Additional constraints

Initial tests showed that parameter sets derived by calibration
with the TGCs alone result in unrealistically high values of
net primary production (NPP), leading to similarly high litter
fluxes and soil carbon storage. This was traced to a higher
carbon use efficiency (CUE) – the ratio of NPP to gross pri-
mary productivity – and a lower vegetation carbon turnover
time (τvegC; vegetation-C-to-NPP ratio) compared to the nat-
ural PFT counterparts. Therefore, to assure realistic carbon
fluxes and storage, we implemented additional constraints for
these variables in the calibration. These constraints are based

Earth Syst. Dynam., 10, 617–630, 2019 www.earth-syst-dynam.net/10/617/2019/
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on LPJmL simulations for the natural PFT counterparts of
the FPFTs, similar to the maximum stemwood C of the tar-
get growth curves (see Table 2 and Fig. 4).

Additionally, it was found that certain parameter sets,
while leading to acceptable mean results, cause simulated
trees for certain cells to die-off repeatedly at regular inter-
vals. In order to avoid this, we modified the calibration such
that a penalty was added to the cost function when this oc-
curs.

2.3.3 Parameter estimation

In the calibration, 15 parameters were estimated, separately
for each FPFT (Table 1). The calibration was performed on a
transformed scale (logit for αa ; log for all other parameters),
in view of the lower bound at zero (and upper bound at 1
for αa). We applied a Bayesian cost function, including in-
formative prior distributions. Priors express belief about rea-
sonable parameter values before the calibration in the form of
probability distributions and help to avoid unrealistic values,
particularly for parameters that have little influence on the
relevant model output. The priors were chosen such that their
central tendency reflects existing parameter values for the
corresponding natural PFTs, with a relatively wide variance
to avoid overly strong influence on the calibration. Full spec-
ification of the priors is given in the Supplement (Sect. S1).

Similar to the parameters, all observations were trans-
formed in the calibration (logit for CUE; log for all other
observations). For the calibration simulations, LPJmL was
started from zero vegetation and soil C and run for a period
of 300 years, sufficient for the vegetation C to reach equi-
librium with reasonable parameter values. LPJmL simulates
heartwood and sapwood C pools but does not distinguish be-
tween stem, branches, and coarse roots. For the purpose of
the calibration, we assumed that all heartwood and 66 % of
the sapwood are located aboveground (Müller et al., 2016),
and 84 % of aboveground wood is located in the stem (which
is representative of mature trees; Pretzsch, 2010).

After simulation, the Chapman–Richards function was fit-
ted to the time series of simulated stemwood C for the
100 grid cells (using non-linear least squares) to derive
FPFT-mean estimates of CSWC,max, k, and p based on
LPJmL predictions. Carbon use efficiency and vegetation
turnover time were determined for the last 10 years of the
simulation, averaged over the 100 grid cells. The observa-
tions were subsequently compared to the corresponding ob-
servations to determine log-likelihood, and combined with
log prior density to determine the overall cost C(θ ) for the
given parameter set θ . Further details are given in Sect. S2.

The optimal parameter set (with minimal value of C)
was derived using the GENOUD algorithm (Mebane Jr. and
Sekhon, 2011), which combines a genetic algorithm with a
gradient search approach. This algorithm has previously been
applied to calibrate LPJmL (Forkel et al., 2014). An addi-
tional description is given in Sect. S2.
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Table 2. Observations and corresponding fits for the 100 included grid cells included in the calibration. Observed values correspond to the
mode of the likelihood function.

Symbol Description Units Temperate Tropical Boreal

Obs. Fit Obs. Fit Obs. Fit

CSWC,max Growth curve parameter; maximum stemwood C kgC m−2 6.77 6.45 15.62 15.74 7.45 7.56
k Parameter of growth curve yr−1 0.197 0.0420 0.0566 0.0301 0.0500 0.0257
p Parameter of growth curve – 3.91 3.37 1.59 1.69 4.28 4.64
CUE Carbon use efficiency; NPP-to-GPP ratio – 0.380 0.342 0.458 0.448 0.460 0.427
τvegC Vegetation C turnover time; vegetation-C-to-NPP ratio yr 16.86 18.37 21.92 17.99 22.27 19.52

2.4 Global simulations

After calibration, several global simulations were performed.
First, in order to assess sequestration potential of afforesta-
tion, a simulation was run in the same setup as the one used
for the calibration, i.e., starting with zero vegetation and
soil C and with land fully allocated to forest plantations and
running for 300 years so that the vegetation C pool can reach
equilibrium. Additionally, a simulation with land fully allo-
cated to natural vegetation was performed to compare natural
regrowth and afforestation as land-based mitigation options.

Second, we applied the model for an ambitious scenario of
large-scale afforestation, assuming that from 2015 onwards
approximately 14 % of global managed land is (correspond-
ing to 650 Mha or 4.5 % of global land surface) gradually re-
placed by forest plantations over the course of 85 years. This
afforestation area is in line with the average land area used
for land-based mitigation (both bio-energy and afforestation)
in 1.5◦ mitigation scenarios in integrated assessment models
(Doelman et al., 2019b; Rogelj et al., 2018). To bring soil C
to reasonable values, the simulation was initialized by two
spin-up phases: (1) a 1000-year phase with natural vegeta-
tion only until 1901, and (2) a phase from 1900 to 2015 with
transient cropland and pasture fractions, based on the HYDE
dataset (Klein Goldewijk et al., 2010). From 2015, forest
plantation area was increased and crop and pasture area was
decreased, balancing each other so that total area of man-
aged (i.e., non-natural) land remained constant. From 2100,
the simulation was continued for another 50 years with con-
stant land use. For this analysis, two complementary simu-
lations were performed. First, a simulation where fractions
of natural vegetation were increased instead of forest plan-
tations, and second, a “baseline” simulation where land-use
fractions were held constant in time from 2015. Figures S2
and S3 depict the development of land-use fractions for the
three scenarios.

3 Results

3.1 Target growth curves

Figure 2 depicts the stemwood C observations for the three
FPFTs, LPJmL simulations for the corresponding natural

PFTs, and the TGCs resulting from the fitting procedure.
The values of the maximum stemwood C (CSWC,max), growth
rate (k), and shape parameter (p) and their marginal vari-
ances are given in Table 2 (see also Fig. S1 in the Sup-
plement). As expected, the observations show substantially
higher growth rates than simulated for the natural PFTs,
as well as an earlier timing of maximum growth. The
TGCs represent a compromise between the observations and
the CSWC,max for natural PFTs, predicted by LPJmL: the ini-
tial high growth rate is representative of the observations,
while CSWC,max is closer to that of the simulated natural
PFTs and notably lower than the level indicated by the ob-
servations.

The tropical FPFT has substantially higher CSWC,max, ap-
proximately twice as high as the other two FPFTs. With
respect to the relative growth rate k, however, the tropical
FPFT is comparable to the boreal FPFT. The temperate FPFT
approaches its maximum stemwood approximately 4 times
faster. The boreal TGC has the highest value of p, resulting
in a later timing of maximum growth.

3.2 LPJmL calibration

The parameter estimates resulting from the calibration are
shown in Fig. 3, together with the range of the prior dis-
tributions. Most estimates are within interquartile range of
the priors, but for several parameters the calibration resulted
in relatively strong changes, in particular kmort1, which con-
trols mortality due to low growth efficiency. Specifically for
the tropical FPFT, the estimates also clearly deviate from the
prior for Emax, kallom1, lrmax, and τsapwood.

The ranges of the observed variables are depicted in Fig. 4,
together with the LPJmL predictions for the calibration grid
cells, based on the optimized parameter sets. The parame-
ter CSWC,max is fit well by the model for all FPFTs. However,
k is clearly underestimated for all three FPFTs, compared
to the observed ranges. This affects the simulated growth
curve for stemwood C, as shown in Fig. 5. In the LPJmL
simulation, vegetation needs a longer time to reach its max-
imum stemwood biomass than the target growth curve. Nev-
ertheless, the growth rate based on the optimized parame-
ters represents a substantial improvement compared to the
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Figure 3. Prior distributions and estimated values of the FPFT parameters estimated in the calibration. The box plots indicate the 5th and
95th percentiles (whiskers), the median (red line), and 25th and 75th percentiles (box) or the priors. The final parameter estimate is indicated
by the asterisk (∗). See Table 1 for an explanation of the parameters.

natural PFT counterparts. The CUE and vegetation turnover
time (τvegC) are also reasonably well fitted.

3.3 Global simulations

3.3.1 Global afforestation and natural regrowth

Figure 6 depicts the predicted spatial distribution of forest
plantation functional types for a global simulation experi-
ment with land fully allocated to forest plantations. The total
area for the temperate, tropical, and boreal plantation types is
2472 Mha (1010 m2), 6242, and 3094 Mha, respectively, cor-
responding to 17 %, 43 %, and 22 % of global land surface.
In 2579 Mha (18 %), no tree growth is simulated due to a
too-cold or too-dry climate. Note that in many non-marginal
regions, tree growth may still be very low due to unfavorable
conditions – the depicted distribution simply results from
the bioclimatic limits set in the model. The distribution the
FPFTs corresponds roughly to zones C, A, and D of the first
level of the Köppen climate classification (Peel et al., 2007).
Since there is no type for forest plantations in arid climates,
the three FPFTs extend also into desert regions.

The global vegetation C stock over time is depicted in
Fig. 7a (see also Fig. S2). Tropical plantations contribute
most to C storage due to their larger area and higher produc-
tivity. Comparison with the simulation where all land is allo-
cated to natural vegetation shows considerably faster C up-
take for forest plantations (Fig. 7b), with a maximum dif-
ference of 308 PgC (193 %) after 54 years. After 300 years,
global vegetation C is 102 PgC higher (112 %) for afforesta-
tion simulation. Soil and litter C storage is also proportion-
ally higher for forest plantations. Note that the soil and litter
C uptake rate is extremely high due to the fact that the simu-
lation was started with zero C. In reality, soil C will already
be present before land-use change and uptake will be much
slower, possibly even negative, depending on previous land
use.

The potential for C uptake is illustrated by the mean an-
nual increment (MAI) of vegetation C since the start of plan-
tation (Fig. 8). There are remarkable differences between
the two simulations. After an initial similar increase, MAI
sharply drops after approximately 10 years for natural re-
growth, while for afforestation MAI keeps rising until ap-
proximately 30 years. The behavior for natural regrowth can
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Figure 4. Ranges of the observations used in the calibration and LPJmL estimates after calibration. The box plots indicate the 5th and 95th
percentiles (whiskers), the median (red line), and 25th and 75th percentiles (box) of the likelihood function. The fitted value is indicated
by the asterisk (∗). CSWC,max: maximum stemwood C, k: growth rate; p: shape factor, CUE: carbon use efficiency (NPP-to-GPP ratio);
τvegC: vegetation C turnover time (vegetation-C-to-NPP ratio).

Figure 5. Predicted stemwood C for 100 calibration grid cells of each FPFT based on the optimal parameter sets. Note the different scales
of the y axes.

be explained by vegetation succession, leading to a shift from
grasses to trees. This succession does not occur for forest
plantations, where trees start growing immediately, resulting
in a substantially higher MAI in the early part of the simu-
lation. From spatial differences in MAI after 50 years, it is

evident that tropical regions contribute most to this differ-
ence.
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Figure 6. Spatial distribution of the different forest plantation func-
tional types resulting from the bioclimatic limits. In marginal re-
gions, no trees are simulated, but grass may be present.

3.3.2 Transient afforestation and natural regrowth

Figure 9 depicts results of the global simulation scenarios
with gradual increase in forest, applying either afforestation
or natural regrowth. Since changes in C storage – particularly
for the soil – result also from land-use changes before 2015,
we focus on the difference in global C stocks compared to
the baseline simulation with constant land use from 2015.
Until 2015, all three simulations have very similar results,
but small differences arise from the stochastic generation of
daily precipitation. Gradual afforestation of 650 Mha of land
between 2015 and 2100 results in 19, 48, and 75 PgC addi-
tional C storage by 2065, 2100, and 2150, respectively, ver-
sus 16, 37, and 61 PgC for natural regrowth. Most of the dif-
ference between the two simulations is due to vegetation C,
but from 2100 the difference for soil C grows and would
ultimately dominate, had the simulation been continued af-
ter 2150. Global C sequestration rate peaks between 2090
and 2100 at approximately 0.91 and 0.68 PgC yr−1 for
afforestation and natural regrowth, with average rates of
0.25 and 0.19 PgC yr−1 until 2100. Around 2130, global se-
questration rates are higher for the natural regrowth simula-
tion because land use remains constant from 2100, allowing
natural ecosystems to “catch up”.

4 Discussion

4.1 LPJmL calibration

4.1.1 Parameters changes

Compared to the prior distributions – which are largely based
on values for corresponding natural PFTs – the calibration
resulted in a substantial shift for several parameters. We will
discuss the more notable changes. First, kmort1 is substan-
tially higher compared to the prior mode for all FPFTs. This
parameter controls tree mortality related to low growth effi-
ciency, which is defined as the ratio of the annual net biomass
increment to leaf area. A high value of kmort1 results in

higher mortality under unfavorable conditions. The increase
of this parameter can be explained by the fact that the tar-
get growth curves have substantially higher growth rates than
the natural PFT equivalents, while maximum biomass is ap-
proximately the same. The apparent conflict between these
two constraints can in part be resolved by increasing first-
order mortality. A higher value for kmort1 for forest planta-
tion trees is not necessarily unrealistic since it is likely that
fast-growing tree species have low tolerance for low growth
conditions (Pacala et al., 1996).

The parameter kallom3, which relates tree stem diame-
ter to tree height, has also substantially increased for all
FPFTs. Higher values of this parameter mean higher trees
for the same diameter, resulting in higher maximum biomass
per tree. Again, this is in agreement with field observa-
tions, which have shown a positive relationship between tree
growth rate and this parameter (Martínez Cano et al., 2019)

The maximum leaf-to-root mass ratio, lrmax, is also high
compared to the prior, particularly for the tropical and boreal
FPFTs. This causes higher allocation of C to leaves, com-
pared to roots, which positively affects growth rate via leaf
area index and absorbed photosynthetically active radiation.
Conversely, in LPJmL, lower root biomass does not reduce
growth since there is no link between root biomass and water
uptake. Hence, higher values of lrmax unequivocally lead to
higher productivity in the model.

For the tropical FPFT, Emax, τsapwood, and kallom1 have
increased. Emax is the maximum water transport capacity
and controls the transpiration rate. τsapwood is the turnover
time of sapwood – higher values result in more sapwood
biomass, which allows for larger leaf area. Finally, kallom1 re-
lates crown area to stem diameter. The generally stronger
shifts for the tropical FPFT compared to the temperate and
boreal ones is explained by the lower uncertainties of param-
eters k and p of the target growth curve (Figs. 4 and S1),
which is in turn caused by the larger number of stemwood C
observations (Fig. 2).

4.1.2 Fit to observations

The calibration resulted in good fits with respect to most ob-
servations, with the exception of the growth rate parameter
of the target growth curves. Despite substantial improvement
compared to the corresponding natural PFTs, this parameter
is underestimated for all three FPFTs. As a result, predicted
initial C uptake rates are lower than implied by the stem-
wood C observations, possibly underestimating the potential
efficacy of forest plantations for climate mitigation.

As discussed in Sect. 2.3.2, we incorporated data into the
calibration to constrain NPP-to-GPP ratio and vegetation C
turnover time to values similar to those of the correspond-
ing natural PFTs. Earlier calibrations, in which these con-
straints were not included, yielded a substantially better fit
to the growth rate but with unrealistically high litter fluxes,
which points to a trade-off between the fit to these observa-
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Figure 7. Global total ecosystem C over time for simulations with global forest plantations or global natural vegetation. (a) Vegetation C
storage per biome for the global forest plantation simulation only; (b) C storage per compartment for both simulations.

Figure 8. Mean ecosystem sequestration rate (mean annual increment, MAI), determined as total C storage divided by time since the start of
LPJmL simulations with only forest plantations or only natural vegetation. (a) Global total versus time; (b) difference between (afforestation
minus natural regrowth) after 50 years.

Figure 9. Results of the simulations for gradual afforestation and natural regrowth. Both graphs show differences relative to the baseline
simulation with constant land use. (a) Global C storage; (b) global C sequestration rate, smoothed using a 10-year moving average window.

tions. From a mass-balance perspective, this result is explica-
ble: fast growth requires high NPP, which will result in high
litter fluxes once vegetation reaches equilibrium biomass.
This is exacerbated by the fact that we constrained max-
imum stemwood C (CSWC,max) at levels close to those of
the corresponding natural PFTs. The fact that fast growth
results in very high litter fluxes when trees reach equilib-
rium relates to the fact that LPJmL does not represent cer-
tain mechanisms that lead to declining productivity with age
(Zaehle et al., 2006). In reality, NPP reduction with age has
been frequently observed (Ryan et al., 1997). Multiple rea-
sons for this phenomenon have been proposed, but the lead-

ing hypothesis is that hydraulic resistance increases with tree
height due to longer distance between soil and leaves (Ryan
and Yoder, 1997). This results in lower photosynthesis rates
and gross productivity (GPP). Since LPJmL does not in-
clude such mechanisms, it is mostly representative of ma-
ture forests. Incorporation of a more realistic representation
of age dependence of forest growth rate is likely to improve
the fit to observations (Zaehle et al., 2006).
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4.2 Global simulations

4.2.1 Global afforestation versus natural regrowth

Despite the underestimated growth rates, our results show C
can be sequestered substantially faster by forest plantations
compared to natural regrowth (Fig. 7), particularly in the first
50 years following land conversion. The largest potential for
plantations lies in tropical regions, which is not surprising,
given that the maximum biomass of tropical FPFTs is more
than twice as high compared to the temperate and boreal
FPFTs. In addition to faster C sequestration, LPJmL also pre-
dicts a 12 % higher equilibrium global vegetation C pool for
forest plantations, despite the fact that the FPFTs were cali-
brated to produce a value of CSWC,max comparable to that of
natural equivalent PFTs (Fig. 5). This contradiction is in part
explained by a larger productivity of forest plantations in less
productive regions, which were not included in the calibra-
tion grid cells. Another reason is a larger spatial extent of the
tropical FPFT compared to that of the natural tropical PFTs.

Combined soil and litter C is also higher for forest plan-
tations after 300 years (Fig. 7b), but its proportion to total
ecosystem C (60 %) is globally almost identical to that of
the natural vegetation, due to the constraints on NPP-to-GPP
ratio and vegetation C turnover time included in the cali-
bration (see Sect. 2.3.2). It is difficult to compare these re-
sults to observations for real-world plantations since studies
on this topic have generally compared natural forests to tree
plantations for production of wood or other products, where
the effects of harvest and other management on soil C are
likely considerable (Guo and Gifford, 2002; van Straaten et
al., 2015). Such effects are not relevant for plantations in-
tended for C sequestration.

4.2.2 Gradual afforestation versus natural regrowth

According to our projections, gradual conversion of 650 Mha
managed land to natural forest between 2015 and 2100 re-
sults in additional C uptake of 16 and 37 PgC by 2065
and 2100, respectively. If these lands are converted to for-
est plantations, the estimated C uptake is 19 and 48 PgC,
i.e., 19 % and 30 % higher. These should be seen as conser-
vative estimates, in view of the underestimated growth rates
resulting from the calibration. To put these numbers into per-
spective, we compare them to results of Gasser et al. (2015),
who estimated the negative emissions needed to limit global
warming to 2 ◦C for a range of scenarios in which both the
start time and the rate of reduction of greenhouse gases var-
ied. In their most favorable scenario (energy and industry
emission reduction starting in 2015 at a rate of 5 % per year),
they estimated an average cumulative negative emission of
25–100 PgC is needed by 2100, compared to 450–800 PgC
in the most unfavorable scenario (energy and industry emis-
sion reduction starting in 2030 at 1 % per year). Hence, large-
scale forest plantations can offer a substantial contribution to
climate mitigation but will likely not be sufficient.

4.3 Comparison to previous work

The results of the simulations for transient afforestation and
natural regrowth compare well to results of previous stud-
ies on potential C sequestration rates of forest plantations
and natural regrowth. For example, using the IMAGE in-
tegrated assessment model, van Minnen et al. (2008) per-
formed a simulation experiment based on the Intergovern-
mental Panel on Climate Change (IPCC) Special Report on
Emissions Scenarios (SRES) A1B scenario where 831 Mha
of agricultural land is converted to permanent forest plan-
tations between 2000 and 2100, taking into consideration
land demand for food production and other uses. They es-
timated an additional 93 PgC can be sequestered but mostly
after 2050, when land becomes gradually available due to de-
creasing population and increasing agricultural efficiency.

Humpenoder et al. (2014) presented a much more ambi-
tious afforestation scenario, in which 2773 Mha of land is
converted to forest plantations. The authors used maximum
C storage for natural vegetation predicted by LPJmL but cor-
rected sequestration rates using stylized growth curves for
plantations in different climate regions. They estimate an ad-
ditional C uptake of 192 PgC after 80 years. Roughly con-
verting our estimate to the same land area yields a similar re-
sult (205 PgC). This similarity is not surprising, given that we
used the same model, and our FPFTs were calibrated to pro-
duce the same maximum biomass as the natural PFT equiva-
lents.

Potential sequestration rates by natural regrowth were
studied by Krause et al. (2017), using the dynamic global
vegetation model LPJ-GUESS. In two scenarios, derived
by IMAGE and the agricultural land-use model MAgPIE,
1119 and 914 Mha were converted to natural lands, resulting
in a predicted additional C uptake of 76 and 55 PgC, respec-
tively, between 2000 and 2099. This compares well with our
estimates for natural regrowth.

4.4 Model limitations

In our implementation of planted forests, the diversity of
plantation tree species is reduced to three functional types
with fixed properties. While the functional diversity of plan-
tation tree species is not as vast as that of natural forests
– especially in the context of C sequestration – the predic-
tions would likely improve from implementation of addi-
tional FPFTs, particularly for the tropical biome. The model
currently predicts a relatively large C storage for dry tropical
zones compared to natural regrowth, which may not be fully
realistic, given water limitations. Addition of a dry tropical
FPFT would allow for a more accurate assessment of C se-
questration in these regions.

This study does not consider the effects of climate change
and CO2 concentration on productivity of forest plantations.
Although there is still considerable uncertainty regarding this
topic, accounting for CO2 fertilization will likely increase the
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C sequestration potential (Schimel et al., 2015) in both natu-
ral and managed forests. However, in order to properly assess
this, it is important to take into account nutrient limitation to
productivity as well (Norby et al., 2010).

We also did not consider possible management options
that may improve C uptake rates. In particular, regular
thinning can result in substantially higher C uptake rates
(van Minnen et al., 2008). The model supports harvesting,
but this feature was not used in this study. However, con-
tinual thinning would result in export of nutrients from the
ecosystem, which would ultimately slow down growth rates,
unless plantations are fertilized. Thus, representing regular
harvest in LPJmL would also require representation of nutri-
ent limitation.

4.5 Considerations beyond C uptake

Evaluation of afforestation and natural regrowth as strategies
for climate change mitigation involves a range of considera-
tions other than carbon sequestration. First, converting agri-
cultural land to forest involves a number of costs. For both
natural and planted forests, this includes price for acquiring
land, while specifically for the latter costs related to estab-
lishing and maintaining the plantation are relevant (e.g., land
preparation, planting of seedlings). The costs per unit C se-
questered will rise with increasing area of (planted) forest,
mainly due to competition for land (Doelman et al., 2019a).

Second, the positive effects of carbon uptake of changing
land cover to forest can be offset due biophysical changes in
the surface energy budget, related to changes in albedo, evap-
otranspiration, and surface roughness (Perugini et al., 2017).
This may result in a net warming effect, regionally, and pos-
sibly globally, depending on the extent of land-cover change.

Third, the reduction of cropland and pasture might also
have a negative impact on food security due to increased
competition for land (Hasegawa et al., 2018). In order to
maintain food production for the growing population, strong
intensification of the agricultural sector would be required.
Locally, this will result in a range of negative effects on the
environment, due to higher application of fertilizers and plant
protection products, as well as water extraction for irrigation
(Smith et al., 2013). Furthermore, in terms of climate change
mitigation, agricultural intensification will likely partially
offset the benefits of afforestation and regrowth, e.g., due to
higher N2O emissions from fertilizers (Burney et al., 2010).

Finally, biodiversity is a particularly important aspect to
consider, given that plantation forests have usually sub-
stantially lower species richness than primary or secondary
forests (Barlow et al., 2007). A more balanced solution may
be a compromise between biodiversity and C sequestration
by establishing a mixture of native and plantation species, or
plantation forest with a native undergrowth (Barlow et al.,
2007; Bremer and Farley, 2010).

5 Conclusions

To our knowledge, the extension of LPJmL presented here
represents the first model of forest plantations for C se-
questration as part of a DGVM for global-scale applica-
tions. Although calibration of the model still resulted in
underestimated growth rates compared to observations of
stemwood C, this represents an improvement over previ-
ous approaches. According to our simulations, conversion of
650 Mha of land to forest over 85 years results in an addi-
tional C uptake of 48 PgC for forest plantation versus 37 PgC
for natural regrowth, with greatest potential in the tropics.
We conclude that large-scale afforestation can offer a sub-
stantial contribution to C uptake, particularly on a timescale
of approximately 50–100 years. Evaluating afforestation as
a strategy for climate change mitigation requires considera-
tion of all relevant aspects in a comprehensive assessment.
Our model can contribute to such an evaluation by providing
improved estimates of C uptake rates.
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