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ABSTRACT

Frequency-to-time transformations are of interest to con-
trolled-source electromagnetic methods when time-domain
data are inverted for a subsurface resistivity model by nu-
merical frequency-domain modeling at a selected, small
number of frequencies whereas the data misfit is determined
in the time domain. We propose an efficient, Prony-type
method using frequency-domain diffusive-field basis func-
tions for which the time-domain equivalents are known. Dif-
fusive fields are characterized by an exponential part whose
argument is proportional to the square root of frequency and
a part that is polynomial in integer powers of the square root
of frequency. Data at a limited number of frequencies suffice
for the transformation back to the time. In the exponential
part, several diffusion-time values must be chosen. Once a
suitable range of diffusion-time values are found, the method
is quite robust in the number of values used. The highest
power in the polynomial part can be determined from the
source and receiver type. When the frequency-domain data
are accurately approximated by the basis functions, the time-
domain result is also accurate. This method is accurate over
a wider time range than other methods and has the correct
late-time asymptotic behavior. The method works well for
data computed for layered and 3D subsurface models.

INTRODUCTION

Controlled-source electromagnetic (CSEM) methods are gener-
ally divided into frequency-domain electromagnetic (FDEM) and
time-domain (transient) electromagnetic (TDEM) methods, depend-
ing on the waveform of the transmitted electrical current. In the

FDEM method, we measure the electromagnetic response caused
by a time-periodic source current. The FDEM and TDEM fields
are related by the Fourier transformation, and the TDEM field
can thus be obtained as the Fourier transformation of FDEM data
when recorded at a sufficient number of frequencies.
Modeling is a vital part of the interpretation in diffusive

electromagnetic field data. For modeling in time, we can use fast
frequency-domain modeling codes (Wannamaker et al., 1984;
Alumbaugh et al., 1996; Abubakar and van den Berg, 2004; Zhda-
nov et al., 2006; Mulder et al., 2008; Tehrani and Slob, 2010) and
then convert the results to the time domain with a suitable numerical
method. An efficient transformation method will allow for the use
of a limited number of important frequencies, thereby reducing the
modeling effort during the inversion of time-domain data when the
data fit is evaluated in the time domain (Druskin and Knizhnerman,
1994; Wirianto et al., 2011).
The Gaver-Stehfest method (Gaver, 1966; Stehfest, 1970) is one

example of a numerical inverse Laplace transformation, but only
works when the Laplace-domain data are available at machine (dou-
ble) precision. Therefore, it is only applicable to solutions that are
exactly known in the Laplace domain, but for which no closed-form
expression exists in the time domain. There are several methods for
computing time-domain electromagnetic data from frequency-do-
main data. One of these is the discrete Fourier transformation,
which can be combined with cubic Hermite interpolation (Mulder
et al., 2008). This leads to a transformation method requiring data at
a limited number of optimally spaced frequencies, but the linear
(equidistant) FFT usually requires over 105 points, which still is
expensive if transients are needed at many receiver positions.
The logarithmic FFT (Talman, 1978; Haines and Jones, 1988) is
much faster, but reportedly less accurate than the linear FFT (Slob
et al., 2010). The decay spectrum method (Newman et al., 1986) is
another option. In this method, the time-domain EM signal is con-
sidered as a combination of several exponentially damped functions
with unknown coefficients. The exponential damping factors are
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also unknown and must be chosen carefully. After solving for the
coefficients in the frequency domain, the time-domain EM signal
follows as a series of basis functions. The results of this Prony-type
method are reported to be subjective and to require a lot of human
interaction. Because the method expands the field in terms of
damped exponentials, the late-time asymptote always has exponen-
tial decay.
None of the methods mentioned so far is considered suitable for

accurate frequency-to-time transformation at a large number of
receiver positions. We therefore continue with the method proposed
in Slob and van den Berg (1999) and investigate if it works for ar-
bitrary models, including the earth’s surface and 3D models. We
call it the “diffusion expansion method” (DEM). It uses the possi-
bility to expand the electromagnetic field into a sequence of diffu-
sive field basis functions with a known frequency dependence, but
with unknown diffusion times that must be chosen based on the data
to be transformed. It is therefore a Prony-type method, like the de-
cay spectrum method, but with the advantage that the late-time be-
havior is always correct. The reason is that the expansion functions
are diffusive-field time-functions, and therefore exhibit the time be-
havior of diffusive fields, whereas the decay spectrum method al-
ways creates fields with an exponential decay for late times.
The diffusion expansion functions as a function of frequency have
analytically known time-domain equivalents. Hence, once the ex-
pansion coefficients in the frequency domain have been found,
the transient result is known by inspection for impulse, step,
and ramp responses, whereas they can be obtained to machine pre-
cision by numerical integration for more complicated source time
functions.
To obtain a quantitative measure, we first investigate how well

the Gaver-Stehfest method (GSM), fast Fourier transformation
(FFT), and the diffusion-expansion method (DEM) perform on pro-
blems where the time-domain solution is known exactly. We ana-
lyze how the choice of the range and number of diffusion-time
values affect the results. We then compare the FFT method with
DEM results for a three-layered medium and a 3D model, using
numerical solutions. We find that DEM produces accurate results
using only up to 30 frequency values and is robust in the choice
of the number and range of diffusion-time values as long as the im-
portant values that characterize the data are incorporated in the
range. The minimum value can be estimated from the high-fre-
quency end of the data. It therefore seems a good candidate for
accurate frequency-to-time transformation, and vice versa, requiring
data values at only a limited number of frequencies.

THEORY

Numerical methods for frequency-domain to
time-domain conversion

Modeling of the transient electromagnetic field for CSEM appli-
cations can be performed in an efficient way by first solving the
problem in the frequency domain and then obtaining the time-do-
main solution by suitable numerical methods such as the decay
spectrum method or the Fourier transformation. The Fourier trans-
formation method is straightforward and fast if the number of fre-
quencies can be kept small (Mulder et al., 2008; Slob et al., 2010).
This method has been tested against exact solutions for some simple
problems as well as a realistic marine example by Mulder et al.
(2008). They showed that a limited number of frequencies suffices
to provide time-domain solutions, employing piecewise-cubic

Hermite interpolation to minimize the number of frequency points
where data should be computed, followed by fast Fourier transfor-
mation of the data after interpolation to an equidistant (linear)
frequency range. However, numerical results show that the time
window where the obtained solution is accurate is limited and can-
not be extended by incorporating more frequencies.

Quasi-analytical method for frequency-domain to
time-domain conversion

Slob and van den Berg (1999) showed on scattered electromag-
netic data from an object in a homogeneous embedding that the
electric and magnetic fields can be expanded in diffusive decay
functions as a sum of polynomials in

ffiffiffiffiffi
iω

p
, each multiplied by func-

tions that decay proportional to expð−2 ffiffiffiffiffiffiffi
iωτ

p Þ. Each power of
ffiffiffiffiffi
iω

p
has an unknown constant coefficient. The parameter τ is in principle
unknown, but depends on the measurement configuration and the
subsurface heterogeneity. The range of τ-values can span one or two
decades, depending on the subsurface complexity and the time win-
dow of interest. The expansion functions used are canonical func-
tions for the homogeneous space response to a point dipole
excitation. The scattered field can always be expressed as an infinite
sum of interactions of the scattering medium with the incident field
that would exist in a homogeneous medium. For this reason, Slob
and van den Berg (1999) argued that these functions can be used as
expansion functions for the diffusive total electric and magnetic
fields, but they only showed examples for a homogeneous 3D object
embedded in a homogeneous space. Here we will show that the
method is generally applicable, even in the presence of a noncon-
ductive medium, which gives rise to functions that are different
from the diffusion expansion functions. In the time domain, the air-
wave contributions to the electric and magnetic fields in the subsur-
face have late-time asymptotes that are inversely proportional to
integer powers of time, whereas the other diffusive contributions
all have late-time asymptotes inversely proportional to odd-integer
powers of the square root of time (Slob et al., 2010). The airwave
contributions are therefore represented in the frequency domain by
different frequency-dependent functions than the diffusive fields
that are not related to the airwave. Although the airwave related
field is not properly accounted for, it can be approximated as a series
of exponential diffusion functions. We therefore expect that the
method will still perform well in the presence of a strong airwave
related field and this is what we will show below.
The simplest way to implement this method is to determine a

minimum and maximum value for τ and divide the time range
up in ðk − 1Þ equidistant time steps, τk ¼ τmin þ ðk − 1ÞΔτ, τmin

being the smallest diffusion time, and Δτ denoting the time step.
Another straightforward way is to use an equidistant diffusion time
step on a logarithmic axis. The maximum value of τ depends on the
time window of interest, because the expansion functions are expo-
nentially small for τ ≫ t. On the other hand, the smallest value of τ
can be found from the slope of high-frequency logarithmic decay
curve in the data. The smallest value of τ can always be estimated
from the configuration if distance and conductivity are known.
The electric-field impulse response can be expanded as

ÊδðxR; iωÞ ≈
XK
k¼1

XJ
j¼0

αk;jF̂
ðjÞðτk; iωÞ; (1)
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where F̂ðjÞðτk; iωÞ ¼ ðiωÞj∕2 expð−2 ffiffiffiffiffiffiffiffiffi
iωτk

p Þ. The maximum power
of

ffiffiffiffiffi
iω

p
depends on the type of source and can be taken as J ¼ 3 for

an electric current source and J ¼ 2 for a magnetic current source.
The higher frequencies become more important for higher values of
J and in configurations where the high-frequency content is very
small, J ¼ 2 can also be chosen for an electric current source.
The number of diffusion times, K, depends on the range of τ-values.
Taking five to seven points per decade is usually sufficient. How to
choose the range of τ-values is explained below. Because the coef-
ficients αk;j are strictly real, equation 1 is solved simultaneously for
the real and imaginary parts of the electric field. For a step current
source function, we should replace F̂ðjÞðτ; iωÞ by F̂ðj−2Þðτ; iωÞ.
The time-domain equivalents of F̂ðjÞðτ; iωÞ are available in recur-

sive form

FðjÞðτ; tÞ ¼
ffiffiffi
τ

p
t
Fðj−1Þðτ; tÞ − j

2t
Fðj−2Þðτ; tÞ (2)

starting from the two functions

Fð−2Þðτ; tÞ ¼ erfcð
ffiffiffiffiffiffiffi
τ∕t

p
ÞHðtÞ;

Fð−1Þðτ; tÞ ¼ expð−τ∕tÞffiffiffiffiffi
πt

p HðtÞ; (3)

where “erfc” denotes the complementary error function. Functions
for any other value of j can be obtained by combining equations 2
and 3. We have implemented the expansion given in equation 1 for
the transformation back to time of the electric-field impulse re-
sponse.

NUMERICAL RESULTS

All numerical examples were computed with double-precision
arithmetic.

Half-space configurations

The first example is a VTI half-space below a nonconductive
half-space. The source and receiver are located at the surface be-
tween the two half-spaces and their distance is given by
xR − xS ¼ ð2000; 0; 0Þ m. The horizontal and vertical conductiv-
ities are fσðhÞ; σðvÞg ¼ f0.1; 0.025g S∕m. The frequency- and
time-domain responses are known in closed form for the x-compo-
nent electric field generated by an x-component electric dipole
source. We can therefore compare exact results with numerical re-
sults obtained with the GSM, the adaptive FFT, and the DEM. No
specific modifications are needed to apply the DEM for an aniso-
tropic medium because the anisotropy is accounted for by choosing
the proper range of τ-values. The inline electric-field component
measured on the surface generated by an x-directed electric current
dipole is given by (Slob et al., 2010)

ExxðxR − xS; 0; 0Þ

¼ 1 − expð−2 ffiffiffiffiffiffiffiffiffi
iωτh

p Þ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðhÞ∕σðvÞ

p
ð1þ ffiffiffiffiffiffiffiffiffi

iωτv
p Þ expð−2 ffiffiffiffiffiffiffiffiffi

iωτv
p Þ

2πσðhÞðxR − xSÞ3 ;

(4)

where τh;v ¼ σh;vμ0ðxR − xSÞ2∕4 are the diffusion times corre-
sponding to the horizontal and vertical conductivities, respectively.
It can be seen from equation 4 that we can exactly model this field
with the diffusion expansion method using three values for τ, being

τ ¼ 0, τ ¼ τh, and τ ¼ τv. In the case of τ ¼ 0, we restrict J to zero
because only a delta-pulse will be generated at t ¼ 0 from this part.
The highest power in

ffiffiffiffiffi
iω

p
in the polynomial part is unity, so we take

J ¼ 1 in that case.
For the adaptive FFT method, 39 frequencies, unevenly spaced

on a logarithmic scale between 10−3 and 103 Hz, are necessary to
retrieve accurate data at any other frequency by interpolation within
the range and extrapolation for frequencies smaller than 1 mHz. The
data are interpolated and extrapolated with 221, or about two million
points, using a frequency interval Δf ≈ 2.38 × 10−4 Hz, corre-
sponding to a time step of Δt ¼ 0.1 ms in the time domain. The
same 39 frequencies are used in the DEM, with K ¼ 4 and
J ¼ 3. To account for the impulse response that occurs in the data
for a source and receiver located at the interface, we set τ1 ¼ 0. For
k ¼ 1, we choose J ¼ 0. Then τ2 ¼ 33 ms, whereas τ4 ¼ 10τ2 and
τ3 ¼ ðτ2 þ τ4Þ∕2 is the midpoint between τ2 and τ4. The maximum
normalized error in the DEM result is computed as the amplitude of
the maximum difference, normalized by the amplitude of the data,

Rl
max ¼ max

�jEDEMðωÞ − EðωÞj
jEðωÞj

�
(5)

and produces 1.2 × 10−5. The normalized global rms error (RMSE)
is the average error over all 39 frequencies used in the computation,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ωjEDEMðωÞ − EðωÞj2P
ω
jEðωÞj2

vuut (6)

and is 5.8 × 10−6. From these frequency-domain results, we obtain
time-domain results in a time window where the local normalized
error is less than 5 × 10−2 given by 2.2 × 10−3 ≤ t ≤ 100 s and
spans almost five decades. The results for all methods are displayed
in Figure 1, where it can be seen that the FFT result suffers from
numerical saturation, but the normalized error is less than 5 × 10−2

in the window 4 × 10−3 ≤ t ≤ 1 s, still spanning almost three dec-
ades. We observe also that the GSM produces very good results
when the frequency-domain function is known explicitly.
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Figure 1. Electric-field impulse response for a source and receiver
on the surface between a VTI half-space and a nonconductive half-
space. The exact time-domain result is shown together with results
from GSM, FFT, and DEM.
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We can analyze the performance of DEM as a function of the
choice and number of τ-values and the chosen maximum power
of frequency. As written above, the exact representation is obtained
with three diffusion-time values: τ1 ¼ 0, τ2 ¼ τv, and τ3 ¼ τh; for
τ1, τ2, J ¼ 0, whereas for τ3, J ¼ 1. We will take J ¼ 0 only for τ0
and J ¼ 2 for all other τ-values. We will vary K to see the effects on
the obtained results. For this study, we use 13 frequency values
sampled with a fixed spacing on a logarithmic axis from
10 mHz to 100 Hz and run DEM for different K-values with τ1 ¼
τv∕2 and τK ¼ 5τh. In this particular example with J ¼ 2, the sys-
tem is underdetermined for K ≥ 10 because we have ðJ þ 1ÞðK −
1Þ þ 1 unknown coefficients and 13 complex data points. We solve
for the coefficients in the least-squares sense and keep the inversion
stable by putting a small stabilizing number on the diagonal of the
system matrix. The stabilizing number is taken as 10−12 times the
trace of the system matrix. It can also be taken one or two orders of
magnitudes smaller or bigger, modifying the results slightly, but
also this number can be chosen over quite a large range without
significantly changing the result. From these results, we conclude
that if the frequency-domain data fit has errors at or below 10−5, the
time-domain results are accurate over a wide time range spanning
four decades in time or more. Figure 2 shows the error in the
obtained results for J ¼ 2 and K ¼ 3, 6, 9, 12. The time-domain
results are computed from t ¼ 1 ms to t ¼ 1000 s and it can be seen

that for K ¼ 6 the solution has an error less than 5% over a time
range from 7 ms to 10 s.
The question of finding the smallest nonzero τ-value is answered

by looking at the configuration and the high-frequency behavior of
the electric field. The offset is known and source and receiver are
located on the surface. The imaginary part of the electric field at
high frequency is dominated by the term with the highest power
in

ffiffiffiffiffi
iω

p
times the exponential containing the smallest nonzero τ-va-

lue. At these high frequencies, the ratio of the imaginary parts of the
electric field at two distinct frequencies f1 and f2 can be written as

ImfEðf2Þg
ImfEðf1Þg

≈
cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πf2τmin

p �
− sin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πf2τmin

p �

cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πf1τmin

p �
− sin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πf1τmin

p �

× exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πf2τmin

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πf1τmin

p �
; (7)

from which τmin can be found by ignoring the ratio of the gonio-
metric functions

τmin ≈
logðImfEðf2ÞgÞ − logðImfEðf1ÞgÞ

4πðf1 þ f2Þ − 8π
ffiffiffiffiffiffiffiffiffiffi
f1f2

p : (8)

Due to the goniometric functions, the result oscillates andwe average
over a small number of frequencies. In this example, we take data
from 1 to 2 kHz in steps of 200 Hz to compute an average value
for the minimum diffusion time of τmin ≈ 0.024, whereas the correct
value is τv ¼ π∕100. Obtaining an estimate that is too small is not
detrimental to the result, as we have seen from the above results,
whereas an overestimation does not allow the data to be accurately
fitted by the model and gives a direct indication that τmin should be
made smaller. Similarly, themaximum value for τ can easily be over-
estimated whereas underestimation may lead to inaccurate data fit.
Once accurate results have been found, it is easy to improve the

results further by reducing the range of τ-values, and keeping the
data fit in the frequency domain accurate. Figure 3 shows frequency
data fit errors and resulting time-domain errors of DEM for the same
range of K-values as shown in Figure 2, but in the τ-range with the
estimated minimum value of τmin ¼ 0.024 s and τmax ¼ 10τmin. It
can be seen from the frequency-domain results in the top plot of
Figure 3 that for K ¼ 3 inaccurate results are obtained as the curve
falls outside the plotted window. It can also be seen that the results
for K ¼ 6 are better at low frequencies than for K ¼ 9, and that the
results for K ¼ 6 are more accurate at late times than the results for
K ¼ 9. The time-domain results are computed from t ¼ 1 ms to t ¼
1000 s, and it can be seen that for K ¼ 6 the solution has an error
less than 5% over a time range from 3 ms to 900 s, increasing the
time range by an order of magnitude compared to the initial τ-range
used for inversion and these results are obtained with only 13 fre-
quency values. Increasing the number of τ-values improves the re-
sults on the late-time side to well beyond 1000 s for K ¼ 12.
Increasing both the conductivity values by an order of magnitude

to fσðhÞ; σðvÞg ¼ f1; 0.25g S∕m and putting the source and recei-
vers inside the VTI half-space will produce a strong airwave-related
field because the source and receiver are below the surface
with a horizontal offset much larger than their two-way vertical
distance. We put the source at xS ¼ ð0; 0; 75Þ m and the receiver
at xR ¼ ð2000; 0; 125Þ m. For the adaptive FFT method, 73
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Figure 2. DEM data fit error in percentages in the frequency do-
main (top) and the corresponding error in the time-domain result
(bottom), for J ¼ 2 and a different number, but fixed range of τ-
values from τ2 ¼ 15.7 ms to τK ¼ 314 ms.
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frequencies, unevenly spaced on a logarithmic scale between
10−3 Hz and 103 Hz, are necessary to retrieve the data accurately
by interpolation at any other frequency. Again, the data are interpo-
lated or extrapolated with 221 points using a frequency interval
Δf ≈ 2.38 × 10−4 Hz. We use 21 frequencies equally spaced on a
logarithmic scale from 1 mHz and 1 kHz in the DEM, with τmin ¼
12.6 ms and τmax ¼ 11.4 s, and we choose a logarithmic spacing
to accommodate the large differences in diffusion times between
the airwave related field and the direct field and set K ¼ 11 and
J ¼ 2. The maximum normalized error in the DEM result is
Rl
max ¼ 10−4, up to f ¼ 125 Hz, whereas it grows exponentially

to Rl
max ¼ 0.13 at f ¼ 1 kHz. The normalized global rms error

RMSE ¼ 7 × 10−7 over all 21 frequencies. For this example, the
FFT-method requires 75 times more computational time than
DEM. Reducing the FFT-length by a factor of four, the difference
is reduced to a factor of 20. In this example, the field that must
be transformed is known explicitly and it does not require much time
to compute for many frequencies (only 2% of the total time for the
FFT method), hence the difference in computation time is mostly
caused by the difference between performing interpolation and
FFT, and inverting the 33 × 33matrix and computing the time func-
tions using the inversion result. For a model that must be computed
numerically, the difference between the two methods will be larger
because the field should be known at more frequency values for in-
terpolation and FFT than for DEM.

The local normalized error is less than 5 × 10−2 in the time win-
dow of 1 × 10−3 ≤ t ≤ 1000 s, spanning six decades, whereas it is
less than 10−4 for 2 × 10−3 < t < 102 s, spanning almost five dec-
ades. Figure 4 shows the results for all methods. The FFT result
suffers from numerical saturation, whereas the normalized error
is less than 5 × 10−2 in the window 10−2 ≤ t ≤ 1 s, spanning only
two decades. This can be extended to earlier times by including
higher frequencies, up 10 kHz, in the adaptive FFT, leading to com-
puting the field at 85 frequency values and a time window where the
local error is below the threshold of 5 × 10−2 down to 3 ms, whereas
the upper limit is unchanged. We conclude that, for these simple
VTI half-space examples, DEM produces very accurate time-do-
main data with a smaller number of frequency data points than ne-
cessary for FFT, over a much wider time range than the FFT method
provides. The FFT method will work independently of the given
subsurface geometry, whereas for DEM this remains to be demon-
strated, which we will do next.

Three-layer configuration

We consider a three-layer example for which no explicit fre-
quency-domain or time-domain solution exists. We make the step
from known to unknown time-domain solutions and, based on what
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Figure 3. DEM data fit error in percentages in the frequency do-
main (top) and the corresponding error in the tim domain result
(bottom), for J ¼ 2 and a different number, but fixed range of τ-
values from τ2 ¼ 24 ms to τK ¼ 240 ms.
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was established in the above examples, we can assume that the late-
time behavior is accurate. Therefore, we trust that the time-domain
DEM results are accurate when the frequency-domain solution is
fitted by the DEM with a small RMSE. Now, we apply the method
to data obtained from modeling a three-layered earth configuration.
The upper half-space is nonconductive, whereas the conductivity of
the second layer and lower half-space are given by σ1 ¼ 3 S∕m and
σ2 ¼ 1 S∕m, respectively. The second layer has a thickness of
1 km, an x-directed electric dipole source is placed 25 m above
the bottom interface and the receiver measures the x-directed elec-
tric field at the bottom interface at 2-km offset in the x-direction, and
at zero offset in the y-direction. We show the time-domain result
of DEM and FFT in Figure 5. To obtain the DEM result, we
used K ¼ 10, J ¼ 2 and a logarithmic spacing for τ between τ ¼
0.61 s and τ ¼ 311 s. We used 33 frequencies logarithmically
spaced between 1 mHz and 100 Hz. The global normalized error
in the data fit was RMSE ¼ 6 × 10−7. For FFT, the same frequency
range was used and data at 113 frequency values were necessary for
accurate interpolation. The same number of points were used for the
linear FFTas described above. From this result, we see that adaptive
FFT requires more than three times the number of data points for a
result that is accurate over a much smaller time window than ob-
tained with DEM.

Three-layer model with a resistive 3D body

The three-layer model is modified to have shallower water and to
include a 3D resistive body, mimicking a hydrocarbon reservoir
as shown in Figure 6. The background conductivity in the lower
half-space is 0.5 S∕m, air has zero conductivity, and the sea water
3 S∕m, whereas the resistive body has a conductivity of 0.02 S∕m.
The source is located 100 m above the sea bottom and a receiver is
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Figure 6. A three-layer earth model including an assumed reservoir.
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placed on the sea bed. The water depth is 200 m. A resistive body
has dimensions 4 × 4 × 0.2 km3, and its top is located at 400 m be-
low the sea bed (Figure 4). The x-component of the electric field,
generated by an x-directed electric dipole, is computed at an offset
of 1 km as well as 3.8 km in the x-direction and at zero offset in the
y-direction. Frequency-domain data in this 3D model were gener-
ated by a finite-volume code (Mulder, 2006). The FFT method pro-
duced a time-domain result using 61 frequencies, unequally spaced
on a logarithmic axis, followed by cubic interpolation to a linear
frequency axis using 106 points and a FFT, as described by Mulder
et al. (2008).
For the DEM, we used 31 logarithmically spaced frequencies,

ranging from 1 mHz to 1 kHz. We let K ¼ 10 and J ¼ 2, and
set τmin ¼ 0.135 s and τmax ¼ 25τmin. With these settings, we ob-
tained a global RMSE of 1.8 × 10−4. Figure 7 depicts the time-do-
main result for the DEM together with the result from the FFT. The
two results agree very well in the time range from 20 ms to 8 s, but
the FFT result at early time has a zero-crossing and even becomes
negative before 8 ms, whereas it suffers from noise after 8 s and
fluctuated in far offsets. The DEM solution is smooth and well-be-
haved over the whole plotted time range.

CONCLUSIONS

The diffusion expansion method is a good candidate for CSEM
frequency-to-time conversion of data for any kind of subsurface
model and survey configuration. The expansion contains the un-
known expansion coefficients, multiplied by expansion functions
whose time-domain equivalents are known. The latter consist of
a polynomial term, with integer powers of the square root of fre-
quency, as well as an exponential function whose argument is pro-
portional to the square root of frequency. The proportionality factor
contains a diffusion time that is unknown and must be estimated
from the data. We have shown that this can be achieved by consid-
ering the high-frequency behavior of the data.
Because the frequency-domain expansion functions have analy-

tically known time-domain equivalents, solving for the expansion
coefficients is sufficient to obtain the transient field for different
type for source time functions. If the electromagnetic field is
generated by a step-response, the electromagnetic field that would
have been generated by impulse or ramp source time functions
can be obtained directly from the step response. Hence, it is straight-
forward to obtain the earth’s impulse response from step-
response data.
From the results obtained on functions that are known exactly in

both the frequency and time domains, we found that the DEM pro-
duces accurate time-domain results when the frequency-domain fit
is accurate. In the VTI half-space example with a strong airwave
related signal, time-domain results were obtained with an error be-
low 5% over a time window spanning almost six decades. Given the
results obtained in the three-layer model and in the one with an ad-
ditional 3D resistive body, we believe that accuracy of the fre-
quency-domain data fit ensures an accurate time-domain result.
In the examples, we found an error less than 5% in the time window
spanning four decades.
The results obtained with the DEM appear to be more accurate

over a wider time window than those obtained with a FFT, and the
number of frequency values at which the frequency-domain data

should be known is smaller, which means that modeling 3D data
can be done at a smaller number of frequency values. The computa-
tion of each transient requires less time with the DEM than with the
FFT, because for the FFT, typically in the order of 106 points, com-
puted by cubic interpolation to an equally spaced frequency axis,
should be used, whereas the DEM result is obtained after inverting a
matrix of typical size 30 × 30, followed by multiplying the expan-
sion coefficients with the transient expansion functions. The most
time-consuming part can be to find the proper range of diffusion-
time values that are input into the expansion functions. In our ex-
perience, this is not too difficult, but of course each human inter-
action requires time. Once a proper diffusion-time range is found for
one receiver, it can be modified in an automated way for adjacent
receivers. We found that the solution is quite robust for changes in
the diffusion-time range.
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